1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/buffer_head.h> 11 #include <linux/workqueue.h> 12 #include <linux/kthread.h> 13 #include <linux/slab.h> 14 #include <linux/migrate.h> 15 #include <linux/ratelimit.h> 16 #include <linux/uuid.h> 17 #include <linux/semaphore.h> 18 #include <linux/error-injection.h> 19 #include <linux/crc32c.h> 20 #include <asm/unaligned.h> 21 #include "ctree.h" 22 #include "disk-io.h" 23 #include "transaction.h" 24 #include "btrfs_inode.h" 25 #include "volumes.h" 26 #include "print-tree.h" 27 #include "locking.h" 28 #include "tree-log.h" 29 #include "free-space-cache.h" 30 #include "free-space-tree.h" 31 #include "inode-map.h" 32 #include "check-integrity.h" 33 #include "rcu-string.h" 34 #include "dev-replace.h" 35 #include "raid56.h" 36 #include "sysfs.h" 37 #include "qgroup.h" 38 #include "compression.h" 39 #include "tree-checker.h" 40 #include "ref-verify.h" 41 42 #ifdef CONFIG_X86 43 #include <asm/cpufeature.h> 44 #endif 45 46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 47 BTRFS_HEADER_FLAG_RELOC |\ 48 BTRFS_SUPER_FLAG_ERROR |\ 49 BTRFS_SUPER_FLAG_SEEDING |\ 50 BTRFS_SUPER_FLAG_METADUMP |\ 51 BTRFS_SUPER_FLAG_METADUMP_V2) 52 53 static const struct extent_io_ops btree_extent_io_ops; 54 static void end_workqueue_fn(struct btrfs_work *work); 55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 57 struct btrfs_fs_info *fs_info); 58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 60 struct extent_io_tree *dirty_pages, 61 int mark); 62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 63 struct extent_io_tree *pinned_extents); 64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 66 67 /* 68 * btrfs_end_io_wq structs are used to do processing in task context when an IO 69 * is complete. This is used during reads to verify checksums, and it is used 70 * by writes to insert metadata for new file extents after IO is complete. 71 */ 72 struct btrfs_end_io_wq { 73 struct bio *bio; 74 bio_end_io_t *end_io; 75 void *private; 76 struct btrfs_fs_info *info; 77 blk_status_t status; 78 enum btrfs_wq_endio_type metadata; 79 struct btrfs_work work; 80 }; 81 82 static struct kmem_cache *btrfs_end_io_wq_cache; 83 84 int __init btrfs_end_io_wq_init(void) 85 { 86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 87 sizeof(struct btrfs_end_io_wq), 88 0, 89 SLAB_MEM_SPREAD, 90 NULL); 91 if (!btrfs_end_io_wq_cache) 92 return -ENOMEM; 93 return 0; 94 } 95 96 void __cold btrfs_end_io_wq_exit(void) 97 { 98 kmem_cache_destroy(btrfs_end_io_wq_cache); 99 } 100 101 /* 102 * async submit bios are used to offload expensive checksumming 103 * onto the worker threads. They checksum file and metadata bios 104 * just before they are sent down the IO stack. 105 */ 106 struct async_submit_bio { 107 void *private_data; 108 struct bio *bio; 109 extent_submit_bio_start_t *submit_bio_start; 110 int mirror_num; 111 /* 112 * bio_offset is optional, can be used if the pages in the bio 113 * can't tell us where in the file the bio should go 114 */ 115 u64 bio_offset; 116 struct btrfs_work work; 117 blk_status_t status; 118 }; 119 120 /* 121 * Lockdep class keys for extent_buffer->lock's in this root. For a given 122 * eb, the lockdep key is determined by the btrfs_root it belongs to and 123 * the level the eb occupies in the tree. 124 * 125 * Different roots are used for different purposes and may nest inside each 126 * other and they require separate keysets. As lockdep keys should be 127 * static, assign keysets according to the purpose of the root as indicated 128 * by btrfs_root->root_key.objectid. This ensures that all special purpose 129 * roots have separate keysets. 130 * 131 * Lock-nesting across peer nodes is always done with the immediate parent 132 * node locked thus preventing deadlock. As lockdep doesn't know this, use 133 * subclass to avoid triggering lockdep warning in such cases. 134 * 135 * The key is set by the readpage_end_io_hook after the buffer has passed 136 * csum validation but before the pages are unlocked. It is also set by 137 * btrfs_init_new_buffer on freshly allocated blocks. 138 * 139 * We also add a check to make sure the highest level of the tree is the 140 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 141 * needs update as well. 142 */ 143 #ifdef CONFIG_DEBUG_LOCK_ALLOC 144 # if BTRFS_MAX_LEVEL != 8 145 # error 146 # endif 147 148 static struct btrfs_lockdep_keyset { 149 u64 id; /* root objectid */ 150 const char *name_stem; /* lock name stem */ 151 char names[BTRFS_MAX_LEVEL + 1][20]; 152 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 153 } btrfs_lockdep_keysets[] = { 154 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 155 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 156 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 157 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 158 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 159 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 160 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 161 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 162 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 163 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 164 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 165 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 166 { .id = 0, .name_stem = "tree" }, 167 }; 168 169 void __init btrfs_init_lockdep(void) 170 { 171 int i, j; 172 173 /* initialize lockdep class names */ 174 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 175 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 176 177 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 178 snprintf(ks->names[j], sizeof(ks->names[j]), 179 "btrfs-%s-%02d", ks->name_stem, j); 180 } 181 } 182 183 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 184 int level) 185 { 186 struct btrfs_lockdep_keyset *ks; 187 188 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 189 190 /* find the matching keyset, id 0 is the default entry */ 191 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 192 if (ks->id == objectid) 193 break; 194 195 lockdep_set_class_and_name(&eb->lock, 196 &ks->keys[level], ks->names[level]); 197 } 198 199 #endif 200 201 /* 202 * extents on the btree inode are pretty simple, there's one extent 203 * that covers the entire device 204 */ 205 struct extent_map *btree_get_extent(struct btrfs_inode *inode, 206 struct page *page, size_t pg_offset, u64 start, u64 len, 207 int create) 208 { 209 struct btrfs_fs_info *fs_info = inode->root->fs_info; 210 struct extent_map_tree *em_tree = &inode->extent_tree; 211 struct extent_map *em; 212 int ret; 213 214 read_lock(&em_tree->lock); 215 em = lookup_extent_mapping(em_tree, start, len); 216 if (em) { 217 em->bdev = fs_info->fs_devices->latest_bdev; 218 read_unlock(&em_tree->lock); 219 goto out; 220 } 221 read_unlock(&em_tree->lock); 222 223 em = alloc_extent_map(); 224 if (!em) { 225 em = ERR_PTR(-ENOMEM); 226 goto out; 227 } 228 em->start = 0; 229 em->len = (u64)-1; 230 em->block_len = (u64)-1; 231 em->block_start = 0; 232 em->bdev = fs_info->fs_devices->latest_bdev; 233 234 write_lock(&em_tree->lock); 235 ret = add_extent_mapping(em_tree, em, 0); 236 if (ret == -EEXIST) { 237 free_extent_map(em); 238 em = lookup_extent_mapping(em_tree, start, len); 239 if (!em) 240 em = ERR_PTR(-EIO); 241 } else if (ret) { 242 free_extent_map(em); 243 em = ERR_PTR(ret); 244 } 245 write_unlock(&em_tree->lock); 246 247 out: 248 return em; 249 } 250 251 u32 btrfs_csum_data(const char *data, u32 seed, size_t len) 252 { 253 return crc32c(seed, data, len); 254 } 255 256 void btrfs_csum_final(u32 crc, u8 *result) 257 { 258 put_unaligned_le32(~crc, result); 259 } 260 261 /* 262 * compute the csum for a btree block, and either verify it or write it 263 * into the csum field of the block. 264 */ 265 static int csum_tree_block(struct btrfs_fs_info *fs_info, 266 struct extent_buffer *buf, 267 int verify) 268 { 269 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 270 char result[BTRFS_CSUM_SIZE]; 271 unsigned long len; 272 unsigned long cur_len; 273 unsigned long offset = BTRFS_CSUM_SIZE; 274 char *kaddr; 275 unsigned long map_start; 276 unsigned long map_len; 277 int err; 278 u32 crc = ~(u32)0; 279 280 len = buf->len - offset; 281 while (len > 0) { 282 err = map_private_extent_buffer(buf, offset, 32, 283 &kaddr, &map_start, &map_len); 284 if (err) 285 return err; 286 cur_len = min(len, map_len - (offset - map_start)); 287 crc = btrfs_csum_data(kaddr + offset - map_start, 288 crc, cur_len); 289 len -= cur_len; 290 offset += cur_len; 291 } 292 memset(result, 0, BTRFS_CSUM_SIZE); 293 294 btrfs_csum_final(crc, result); 295 296 if (verify) { 297 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 298 u32 val; 299 u32 found = 0; 300 memcpy(&found, result, csum_size); 301 302 read_extent_buffer(buf, &val, 0, csum_size); 303 btrfs_warn_rl(fs_info, 304 "%s checksum verify failed on %llu wanted %X found %X level %d", 305 fs_info->sb->s_id, buf->start, 306 val, found, btrfs_header_level(buf)); 307 return -EUCLEAN; 308 } 309 } else { 310 write_extent_buffer(buf, result, 0, csum_size); 311 } 312 313 return 0; 314 } 315 316 /* 317 * we can't consider a given block up to date unless the transid of the 318 * block matches the transid in the parent node's pointer. This is how we 319 * detect blocks that either didn't get written at all or got written 320 * in the wrong place. 321 */ 322 static int verify_parent_transid(struct extent_io_tree *io_tree, 323 struct extent_buffer *eb, u64 parent_transid, 324 int atomic) 325 { 326 struct extent_state *cached_state = NULL; 327 int ret; 328 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 329 330 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 331 return 0; 332 333 if (atomic) 334 return -EAGAIN; 335 336 if (need_lock) { 337 btrfs_tree_read_lock(eb); 338 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 339 } 340 341 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 342 &cached_state); 343 if (extent_buffer_uptodate(eb) && 344 btrfs_header_generation(eb) == parent_transid) { 345 ret = 0; 346 goto out; 347 } 348 btrfs_err_rl(eb->fs_info, 349 "parent transid verify failed on %llu wanted %llu found %llu", 350 eb->start, 351 parent_transid, btrfs_header_generation(eb)); 352 ret = 1; 353 354 /* 355 * Things reading via commit roots that don't have normal protection, 356 * like send, can have a really old block in cache that may point at a 357 * block that has been freed and re-allocated. So don't clear uptodate 358 * if we find an eb that is under IO (dirty/writeback) because we could 359 * end up reading in the stale data and then writing it back out and 360 * making everybody very sad. 361 */ 362 if (!extent_buffer_under_io(eb)) 363 clear_extent_buffer_uptodate(eb); 364 out: 365 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 366 &cached_state); 367 if (need_lock) 368 btrfs_tree_read_unlock_blocking(eb); 369 return ret; 370 } 371 372 /* 373 * Return 0 if the superblock checksum type matches the checksum value of that 374 * algorithm. Pass the raw disk superblock data. 375 */ 376 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 377 char *raw_disk_sb) 378 { 379 struct btrfs_super_block *disk_sb = 380 (struct btrfs_super_block *)raw_disk_sb; 381 u16 csum_type = btrfs_super_csum_type(disk_sb); 382 int ret = 0; 383 384 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 385 u32 crc = ~(u32)0; 386 char result[sizeof(crc)]; 387 388 /* 389 * The super_block structure does not span the whole 390 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 391 * is filled with zeros and is included in the checksum. 392 */ 393 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 394 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 395 btrfs_csum_final(crc, result); 396 397 if (memcmp(raw_disk_sb, result, sizeof(result))) 398 ret = 1; 399 } 400 401 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 402 btrfs_err(fs_info, "unsupported checksum algorithm %u", 403 csum_type); 404 ret = 1; 405 } 406 407 return ret; 408 } 409 410 static int verify_level_key(struct btrfs_fs_info *fs_info, 411 struct extent_buffer *eb, int level, 412 struct btrfs_key *first_key, u64 parent_transid) 413 { 414 int found_level; 415 struct btrfs_key found_key; 416 int ret; 417 418 found_level = btrfs_header_level(eb); 419 if (found_level != level) { 420 #ifdef CONFIG_BTRFS_DEBUG 421 WARN_ON(1); 422 btrfs_err(fs_info, 423 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 424 eb->start, level, found_level); 425 #endif 426 return -EIO; 427 } 428 429 if (!first_key) 430 return 0; 431 432 /* 433 * For live tree block (new tree blocks in current transaction), 434 * we need proper lock context to avoid race, which is impossible here. 435 * So we only checks tree blocks which is read from disk, whose 436 * generation <= fs_info->last_trans_committed. 437 */ 438 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 439 return 0; 440 if (found_level) 441 btrfs_node_key_to_cpu(eb, &found_key, 0); 442 else 443 btrfs_item_key_to_cpu(eb, &found_key, 0); 444 ret = btrfs_comp_cpu_keys(first_key, &found_key); 445 446 #ifdef CONFIG_BTRFS_DEBUG 447 if (ret) { 448 WARN_ON(1); 449 btrfs_err(fs_info, 450 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 451 eb->start, parent_transid, first_key->objectid, 452 first_key->type, first_key->offset, 453 found_key.objectid, found_key.type, 454 found_key.offset); 455 } 456 #endif 457 return ret; 458 } 459 460 /* 461 * helper to read a given tree block, doing retries as required when 462 * the checksums don't match and we have alternate mirrors to try. 463 * 464 * @parent_transid: expected transid, skip check if 0 465 * @level: expected level, mandatory check 466 * @first_key: expected key of first slot, skip check if NULL 467 */ 468 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info, 469 struct extent_buffer *eb, 470 u64 parent_transid, int level, 471 struct btrfs_key *first_key) 472 { 473 struct extent_io_tree *io_tree; 474 int failed = 0; 475 int ret; 476 int num_copies = 0; 477 int mirror_num = 0; 478 int failed_mirror = 0; 479 480 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 481 while (1) { 482 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 483 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE, 484 mirror_num); 485 if (!ret) { 486 if (verify_parent_transid(io_tree, eb, 487 parent_transid, 0)) 488 ret = -EIO; 489 else if (verify_level_key(fs_info, eb, level, 490 first_key, parent_transid)) 491 ret = -EUCLEAN; 492 else 493 break; 494 } 495 496 num_copies = btrfs_num_copies(fs_info, 497 eb->start, eb->len); 498 if (num_copies == 1) 499 break; 500 501 if (!failed_mirror) { 502 failed = 1; 503 failed_mirror = eb->read_mirror; 504 } 505 506 mirror_num++; 507 if (mirror_num == failed_mirror) 508 mirror_num++; 509 510 if (mirror_num > num_copies) 511 break; 512 } 513 514 if (failed && !ret && failed_mirror) 515 repair_eb_io_failure(fs_info, eb, failed_mirror); 516 517 return ret; 518 } 519 520 /* 521 * checksum a dirty tree block before IO. This has extra checks to make sure 522 * we only fill in the checksum field in the first page of a multi-page block 523 */ 524 525 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 526 { 527 u64 start = page_offset(page); 528 u64 found_start; 529 struct extent_buffer *eb; 530 531 eb = (struct extent_buffer *)page->private; 532 if (page != eb->pages[0]) 533 return 0; 534 535 found_start = btrfs_header_bytenr(eb); 536 /* 537 * Please do not consolidate these warnings into a single if. 538 * It is useful to know what went wrong. 539 */ 540 if (WARN_ON(found_start != start)) 541 return -EUCLEAN; 542 if (WARN_ON(!PageUptodate(page))) 543 return -EUCLEAN; 544 545 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid, 546 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0); 547 548 return csum_tree_block(fs_info, eb, 0); 549 } 550 551 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info, 552 struct extent_buffer *eb) 553 { 554 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 555 u8 fsid[BTRFS_FSID_SIZE]; 556 int ret = 1; 557 558 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 559 while (fs_devices) { 560 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 561 ret = 0; 562 break; 563 } 564 fs_devices = fs_devices->seed; 565 } 566 return ret; 567 } 568 569 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 570 u64 phy_offset, struct page *page, 571 u64 start, u64 end, int mirror) 572 { 573 u64 found_start; 574 int found_level; 575 struct extent_buffer *eb; 576 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 577 struct btrfs_fs_info *fs_info = root->fs_info; 578 int ret = 0; 579 int reads_done; 580 581 if (!page->private) 582 goto out; 583 584 eb = (struct extent_buffer *)page->private; 585 586 /* the pending IO might have been the only thing that kept this buffer 587 * in memory. Make sure we have a ref for all this other checks 588 */ 589 extent_buffer_get(eb); 590 591 reads_done = atomic_dec_and_test(&eb->io_pages); 592 if (!reads_done) 593 goto err; 594 595 eb->read_mirror = mirror; 596 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 597 ret = -EIO; 598 goto err; 599 } 600 601 found_start = btrfs_header_bytenr(eb); 602 if (found_start != eb->start) { 603 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu", 604 eb->start, found_start); 605 ret = -EIO; 606 goto err; 607 } 608 if (check_tree_block_fsid(fs_info, eb)) { 609 btrfs_err_rl(fs_info, "bad fsid on block %llu", 610 eb->start); 611 ret = -EIO; 612 goto err; 613 } 614 found_level = btrfs_header_level(eb); 615 if (found_level >= BTRFS_MAX_LEVEL) { 616 btrfs_err(fs_info, "bad tree block level %d on %llu", 617 (int)btrfs_header_level(eb), eb->start); 618 ret = -EIO; 619 goto err; 620 } 621 622 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 623 eb, found_level); 624 625 ret = csum_tree_block(fs_info, eb, 1); 626 if (ret) 627 goto err; 628 629 /* 630 * If this is a leaf block and it is corrupt, set the corrupt bit so 631 * that we don't try and read the other copies of this block, just 632 * return -EIO. 633 */ 634 if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) { 635 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 636 ret = -EIO; 637 } 638 639 if (found_level > 0 && btrfs_check_node(fs_info, eb)) 640 ret = -EIO; 641 642 if (!ret) 643 set_extent_buffer_uptodate(eb); 644 err: 645 if (reads_done && 646 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 647 btree_readahead_hook(eb, ret); 648 649 if (ret) { 650 /* 651 * our io error hook is going to dec the io pages 652 * again, we have to make sure it has something 653 * to decrement 654 */ 655 atomic_inc(&eb->io_pages); 656 clear_extent_buffer_uptodate(eb); 657 } 658 free_extent_buffer(eb); 659 out: 660 return ret; 661 } 662 663 static int btree_io_failed_hook(struct page *page, int failed_mirror) 664 { 665 struct extent_buffer *eb; 666 667 eb = (struct extent_buffer *)page->private; 668 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 669 eb->read_mirror = failed_mirror; 670 atomic_dec(&eb->io_pages); 671 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 672 btree_readahead_hook(eb, -EIO); 673 return -EIO; /* we fixed nothing */ 674 } 675 676 static void end_workqueue_bio(struct bio *bio) 677 { 678 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 679 struct btrfs_fs_info *fs_info; 680 struct btrfs_workqueue *wq; 681 btrfs_work_func_t func; 682 683 fs_info = end_io_wq->info; 684 end_io_wq->status = bio->bi_status; 685 686 if (bio_op(bio) == REQ_OP_WRITE) { 687 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 688 wq = fs_info->endio_meta_write_workers; 689 func = btrfs_endio_meta_write_helper; 690 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 691 wq = fs_info->endio_freespace_worker; 692 func = btrfs_freespace_write_helper; 693 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 694 wq = fs_info->endio_raid56_workers; 695 func = btrfs_endio_raid56_helper; 696 } else { 697 wq = fs_info->endio_write_workers; 698 func = btrfs_endio_write_helper; 699 } 700 } else { 701 if (unlikely(end_io_wq->metadata == 702 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 703 wq = fs_info->endio_repair_workers; 704 func = btrfs_endio_repair_helper; 705 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 706 wq = fs_info->endio_raid56_workers; 707 func = btrfs_endio_raid56_helper; 708 } else if (end_io_wq->metadata) { 709 wq = fs_info->endio_meta_workers; 710 func = btrfs_endio_meta_helper; 711 } else { 712 wq = fs_info->endio_workers; 713 func = btrfs_endio_helper; 714 } 715 } 716 717 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 718 btrfs_queue_work(wq, &end_io_wq->work); 719 } 720 721 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 722 enum btrfs_wq_endio_type metadata) 723 { 724 struct btrfs_end_io_wq *end_io_wq; 725 726 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 727 if (!end_io_wq) 728 return BLK_STS_RESOURCE; 729 730 end_io_wq->private = bio->bi_private; 731 end_io_wq->end_io = bio->bi_end_io; 732 end_io_wq->info = info; 733 end_io_wq->status = 0; 734 end_io_wq->bio = bio; 735 end_io_wq->metadata = metadata; 736 737 bio->bi_private = end_io_wq; 738 bio->bi_end_io = end_workqueue_bio; 739 return 0; 740 } 741 742 static void run_one_async_start(struct btrfs_work *work) 743 { 744 struct async_submit_bio *async; 745 blk_status_t ret; 746 747 async = container_of(work, struct async_submit_bio, work); 748 ret = async->submit_bio_start(async->private_data, async->bio, 749 async->bio_offset); 750 if (ret) 751 async->status = ret; 752 } 753 754 static void run_one_async_done(struct btrfs_work *work) 755 { 756 struct async_submit_bio *async; 757 758 async = container_of(work, struct async_submit_bio, work); 759 760 /* If an error occurred we just want to clean up the bio and move on */ 761 if (async->status) { 762 async->bio->bi_status = async->status; 763 bio_endio(async->bio); 764 return; 765 } 766 767 btrfs_submit_bio_done(async->private_data, async->bio, async->mirror_num); 768 } 769 770 static void run_one_async_free(struct btrfs_work *work) 771 { 772 struct async_submit_bio *async; 773 774 async = container_of(work, struct async_submit_bio, work); 775 kfree(async); 776 } 777 778 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 779 int mirror_num, unsigned long bio_flags, 780 u64 bio_offset, void *private_data, 781 extent_submit_bio_start_t *submit_bio_start) 782 { 783 struct async_submit_bio *async; 784 785 async = kmalloc(sizeof(*async), GFP_NOFS); 786 if (!async) 787 return BLK_STS_RESOURCE; 788 789 async->private_data = private_data; 790 async->bio = bio; 791 async->mirror_num = mirror_num; 792 async->submit_bio_start = submit_bio_start; 793 794 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 795 run_one_async_done, run_one_async_free); 796 797 async->bio_offset = bio_offset; 798 799 async->status = 0; 800 801 if (op_is_sync(bio->bi_opf)) 802 btrfs_set_work_high_priority(&async->work); 803 804 btrfs_queue_work(fs_info->workers, &async->work); 805 return 0; 806 } 807 808 static blk_status_t btree_csum_one_bio(struct bio *bio) 809 { 810 struct bio_vec *bvec; 811 struct btrfs_root *root; 812 int i, ret = 0; 813 814 ASSERT(!bio_flagged(bio, BIO_CLONED)); 815 bio_for_each_segment_all(bvec, bio, i) { 816 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 817 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 818 if (ret) 819 break; 820 } 821 822 return errno_to_blk_status(ret); 823 } 824 825 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio, 826 u64 bio_offset) 827 { 828 /* 829 * when we're called for a write, we're already in the async 830 * submission context. Just jump into btrfs_map_bio 831 */ 832 return btree_csum_one_bio(bio); 833 } 834 835 static int check_async_write(struct btrfs_inode *bi) 836 { 837 if (atomic_read(&bi->sync_writers)) 838 return 0; 839 #ifdef CONFIG_X86 840 if (static_cpu_has(X86_FEATURE_XMM4_2)) 841 return 0; 842 #endif 843 return 1; 844 } 845 846 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio, 847 int mirror_num, unsigned long bio_flags, 848 u64 bio_offset) 849 { 850 struct inode *inode = private_data; 851 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 852 int async = check_async_write(BTRFS_I(inode)); 853 blk_status_t ret; 854 855 if (bio_op(bio) != REQ_OP_WRITE) { 856 /* 857 * called for a read, do the setup so that checksum validation 858 * can happen in the async kernel threads 859 */ 860 ret = btrfs_bio_wq_end_io(fs_info, bio, 861 BTRFS_WQ_ENDIO_METADATA); 862 if (ret) 863 goto out_w_error; 864 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 865 } else if (!async) { 866 ret = btree_csum_one_bio(bio); 867 if (ret) 868 goto out_w_error; 869 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 870 } else { 871 /* 872 * kthread helpers are used to submit writes so that 873 * checksumming can happen in parallel across all CPUs 874 */ 875 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0, 876 bio_offset, private_data, 877 btree_submit_bio_start); 878 } 879 880 if (ret) 881 goto out_w_error; 882 return 0; 883 884 out_w_error: 885 bio->bi_status = ret; 886 bio_endio(bio); 887 return ret; 888 } 889 890 #ifdef CONFIG_MIGRATION 891 static int btree_migratepage(struct address_space *mapping, 892 struct page *newpage, struct page *page, 893 enum migrate_mode mode) 894 { 895 /* 896 * we can't safely write a btree page from here, 897 * we haven't done the locking hook 898 */ 899 if (PageDirty(page)) 900 return -EAGAIN; 901 /* 902 * Buffers may be managed in a filesystem specific way. 903 * We must have no buffers or drop them. 904 */ 905 if (page_has_private(page) && 906 !try_to_release_page(page, GFP_KERNEL)) 907 return -EAGAIN; 908 return migrate_page(mapping, newpage, page, mode); 909 } 910 #endif 911 912 913 static int btree_writepages(struct address_space *mapping, 914 struct writeback_control *wbc) 915 { 916 struct btrfs_fs_info *fs_info; 917 int ret; 918 919 if (wbc->sync_mode == WB_SYNC_NONE) { 920 921 if (wbc->for_kupdate) 922 return 0; 923 924 fs_info = BTRFS_I(mapping->host)->root->fs_info; 925 /* this is a bit racy, but that's ok */ 926 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 927 BTRFS_DIRTY_METADATA_THRESH, 928 fs_info->dirty_metadata_batch); 929 if (ret < 0) 930 return 0; 931 } 932 return btree_write_cache_pages(mapping, wbc); 933 } 934 935 static int btree_readpage(struct file *file, struct page *page) 936 { 937 struct extent_io_tree *tree; 938 tree = &BTRFS_I(page->mapping->host)->io_tree; 939 return extent_read_full_page(tree, page, btree_get_extent, 0); 940 } 941 942 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 943 { 944 if (PageWriteback(page) || PageDirty(page)) 945 return 0; 946 947 return try_release_extent_buffer(page); 948 } 949 950 static void btree_invalidatepage(struct page *page, unsigned int offset, 951 unsigned int length) 952 { 953 struct extent_io_tree *tree; 954 tree = &BTRFS_I(page->mapping->host)->io_tree; 955 extent_invalidatepage(tree, page, offset); 956 btree_releasepage(page, GFP_NOFS); 957 if (PagePrivate(page)) { 958 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 959 "page private not zero on page %llu", 960 (unsigned long long)page_offset(page)); 961 ClearPagePrivate(page); 962 set_page_private(page, 0); 963 put_page(page); 964 } 965 } 966 967 static int btree_set_page_dirty(struct page *page) 968 { 969 #ifdef DEBUG 970 struct extent_buffer *eb; 971 972 BUG_ON(!PagePrivate(page)); 973 eb = (struct extent_buffer *)page->private; 974 BUG_ON(!eb); 975 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 976 BUG_ON(!atomic_read(&eb->refs)); 977 btrfs_assert_tree_locked(eb); 978 #endif 979 return __set_page_dirty_nobuffers(page); 980 } 981 982 static const struct address_space_operations btree_aops = { 983 .readpage = btree_readpage, 984 .writepages = btree_writepages, 985 .releasepage = btree_releasepage, 986 .invalidatepage = btree_invalidatepage, 987 #ifdef CONFIG_MIGRATION 988 .migratepage = btree_migratepage, 989 #endif 990 .set_page_dirty = btree_set_page_dirty, 991 }; 992 993 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr) 994 { 995 struct extent_buffer *buf = NULL; 996 struct inode *btree_inode = fs_info->btree_inode; 997 998 buf = btrfs_find_create_tree_block(fs_info, bytenr); 999 if (IS_ERR(buf)) 1000 return; 1001 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1002 buf, WAIT_NONE, 0); 1003 free_extent_buffer(buf); 1004 } 1005 1006 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr, 1007 int mirror_num, struct extent_buffer **eb) 1008 { 1009 struct extent_buffer *buf = NULL; 1010 struct inode *btree_inode = fs_info->btree_inode; 1011 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1012 int ret; 1013 1014 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1015 if (IS_ERR(buf)) 1016 return 0; 1017 1018 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1019 1020 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK, 1021 mirror_num); 1022 if (ret) { 1023 free_extent_buffer(buf); 1024 return ret; 1025 } 1026 1027 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1028 free_extent_buffer(buf); 1029 return -EIO; 1030 } else if (extent_buffer_uptodate(buf)) { 1031 *eb = buf; 1032 } else { 1033 free_extent_buffer(buf); 1034 } 1035 return 0; 1036 } 1037 1038 struct extent_buffer *btrfs_find_create_tree_block( 1039 struct btrfs_fs_info *fs_info, 1040 u64 bytenr) 1041 { 1042 if (btrfs_is_testing(fs_info)) 1043 return alloc_test_extent_buffer(fs_info, bytenr); 1044 return alloc_extent_buffer(fs_info, bytenr); 1045 } 1046 1047 1048 int btrfs_write_tree_block(struct extent_buffer *buf) 1049 { 1050 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1051 buf->start + buf->len - 1); 1052 } 1053 1054 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1055 { 1056 filemap_fdatawait_range(buf->pages[0]->mapping, 1057 buf->start, buf->start + buf->len - 1); 1058 } 1059 1060 /* 1061 * Read tree block at logical address @bytenr and do variant basic but critical 1062 * verification. 1063 * 1064 * @parent_transid: expected transid of this tree block, skip check if 0 1065 * @level: expected level, mandatory check 1066 * @first_key: expected key in slot 0, skip check if NULL 1067 */ 1068 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 1069 u64 parent_transid, int level, 1070 struct btrfs_key *first_key) 1071 { 1072 struct extent_buffer *buf = NULL; 1073 int ret; 1074 1075 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1076 if (IS_ERR(buf)) 1077 return buf; 1078 1079 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid, 1080 level, first_key); 1081 if (ret) { 1082 free_extent_buffer(buf); 1083 return ERR_PTR(ret); 1084 } 1085 return buf; 1086 1087 } 1088 1089 void clean_tree_block(struct btrfs_fs_info *fs_info, 1090 struct extent_buffer *buf) 1091 { 1092 if (btrfs_header_generation(buf) == 1093 fs_info->running_transaction->transid) { 1094 btrfs_assert_tree_locked(buf); 1095 1096 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1097 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1098 -buf->len, 1099 fs_info->dirty_metadata_batch); 1100 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1101 btrfs_set_lock_blocking(buf); 1102 clear_extent_buffer_dirty(buf); 1103 } 1104 } 1105 } 1106 1107 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1108 { 1109 struct btrfs_subvolume_writers *writers; 1110 int ret; 1111 1112 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1113 if (!writers) 1114 return ERR_PTR(-ENOMEM); 1115 1116 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS); 1117 if (ret < 0) { 1118 kfree(writers); 1119 return ERR_PTR(ret); 1120 } 1121 1122 init_waitqueue_head(&writers->wait); 1123 return writers; 1124 } 1125 1126 static void 1127 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1128 { 1129 percpu_counter_destroy(&writers->counter); 1130 kfree(writers); 1131 } 1132 1133 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1134 u64 objectid) 1135 { 1136 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1137 root->node = NULL; 1138 root->commit_root = NULL; 1139 root->state = 0; 1140 root->orphan_cleanup_state = 0; 1141 1142 root->last_trans = 0; 1143 root->highest_objectid = 0; 1144 root->nr_delalloc_inodes = 0; 1145 root->nr_ordered_extents = 0; 1146 root->inode_tree = RB_ROOT; 1147 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1148 root->block_rsv = NULL; 1149 1150 INIT_LIST_HEAD(&root->dirty_list); 1151 INIT_LIST_HEAD(&root->root_list); 1152 INIT_LIST_HEAD(&root->delalloc_inodes); 1153 INIT_LIST_HEAD(&root->delalloc_root); 1154 INIT_LIST_HEAD(&root->ordered_extents); 1155 INIT_LIST_HEAD(&root->ordered_root); 1156 INIT_LIST_HEAD(&root->logged_list[0]); 1157 INIT_LIST_HEAD(&root->logged_list[1]); 1158 spin_lock_init(&root->inode_lock); 1159 spin_lock_init(&root->delalloc_lock); 1160 spin_lock_init(&root->ordered_extent_lock); 1161 spin_lock_init(&root->accounting_lock); 1162 spin_lock_init(&root->log_extents_lock[0]); 1163 spin_lock_init(&root->log_extents_lock[1]); 1164 spin_lock_init(&root->qgroup_meta_rsv_lock); 1165 mutex_init(&root->objectid_mutex); 1166 mutex_init(&root->log_mutex); 1167 mutex_init(&root->ordered_extent_mutex); 1168 mutex_init(&root->delalloc_mutex); 1169 init_waitqueue_head(&root->log_writer_wait); 1170 init_waitqueue_head(&root->log_commit_wait[0]); 1171 init_waitqueue_head(&root->log_commit_wait[1]); 1172 INIT_LIST_HEAD(&root->log_ctxs[0]); 1173 INIT_LIST_HEAD(&root->log_ctxs[1]); 1174 atomic_set(&root->log_commit[0], 0); 1175 atomic_set(&root->log_commit[1], 0); 1176 atomic_set(&root->log_writers, 0); 1177 atomic_set(&root->log_batch, 0); 1178 refcount_set(&root->refs, 1); 1179 atomic_set(&root->will_be_snapshotted, 0); 1180 atomic_set(&root->snapshot_force_cow, 0); 1181 root->log_transid = 0; 1182 root->log_transid_committed = -1; 1183 root->last_log_commit = 0; 1184 if (!dummy) 1185 extent_io_tree_init(&root->dirty_log_pages, NULL); 1186 1187 memset(&root->root_key, 0, sizeof(root->root_key)); 1188 memset(&root->root_item, 0, sizeof(root->root_item)); 1189 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1190 if (!dummy) 1191 root->defrag_trans_start = fs_info->generation; 1192 else 1193 root->defrag_trans_start = 0; 1194 root->root_key.objectid = objectid; 1195 root->anon_dev = 0; 1196 1197 spin_lock_init(&root->root_item_lock); 1198 } 1199 1200 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1201 gfp_t flags) 1202 { 1203 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1204 if (root) 1205 root->fs_info = fs_info; 1206 return root; 1207 } 1208 1209 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1210 /* Should only be used by the testing infrastructure */ 1211 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1212 { 1213 struct btrfs_root *root; 1214 1215 if (!fs_info) 1216 return ERR_PTR(-EINVAL); 1217 1218 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1219 if (!root) 1220 return ERR_PTR(-ENOMEM); 1221 1222 /* We don't use the stripesize in selftest, set it as sectorsize */ 1223 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 1224 root->alloc_bytenr = 0; 1225 1226 return root; 1227 } 1228 #endif 1229 1230 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1231 struct btrfs_fs_info *fs_info, 1232 u64 objectid) 1233 { 1234 struct extent_buffer *leaf; 1235 struct btrfs_root *tree_root = fs_info->tree_root; 1236 struct btrfs_root *root; 1237 struct btrfs_key key; 1238 int ret = 0; 1239 uuid_le uuid = NULL_UUID_LE; 1240 1241 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1242 if (!root) 1243 return ERR_PTR(-ENOMEM); 1244 1245 __setup_root(root, fs_info, objectid); 1246 root->root_key.objectid = objectid; 1247 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1248 root->root_key.offset = 0; 1249 1250 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1251 if (IS_ERR(leaf)) { 1252 ret = PTR_ERR(leaf); 1253 leaf = NULL; 1254 goto fail; 1255 } 1256 1257 root->node = leaf; 1258 btrfs_mark_buffer_dirty(leaf); 1259 1260 root->commit_root = btrfs_root_node(root); 1261 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1262 1263 root->root_item.flags = 0; 1264 root->root_item.byte_limit = 0; 1265 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1266 btrfs_set_root_generation(&root->root_item, trans->transid); 1267 btrfs_set_root_level(&root->root_item, 0); 1268 btrfs_set_root_refs(&root->root_item, 1); 1269 btrfs_set_root_used(&root->root_item, leaf->len); 1270 btrfs_set_root_last_snapshot(&root->root_item, 0); 1271 btrfs_set_root_dirid(&root->root_item, 0); 1272 if (is_fstree(objectid)) 1273 uuid_le_gen(&uuid); 1274 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1275 root->root_item.drop_level = 0; 1276 1277 key.objectid = objectid; 1278 key.type = BTRFS_ROOT_ITEM_KEY; 1279 key.offset = 0; 1280 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1281 if (ret) 1282 goto fail; 1283 1284 btrfs_tree_unlock(leaf); 1285 1286 return root; 1287 1288 fail: 1289 if (leaf) { 1290 btrfs_tree_unlock(leaf); 1291 free_extent_buffer(root->commit_root); 1292 free_extent_buffer(leaf); 1293 } 1294 kfree(root); 1295 1296 return ERR_PTR(ret); 1297 } 1298 1299 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1300 struct btrfs_fs_info *fs_info) 1301 { 1302 struct btrfs_root *root; 1303 struct extent_buffer *leaf; 1304 1305 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1306 if (!root) 1307 return ERR_PTR(-ENOMEM); 1308 1309 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1310 1311 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1312 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1313 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1314 1315 /* 1316 * DON'T set REF_COWS for log trees 1317 * 1318 * log trees do not get reference counted because they go away 1319 * before a real commit is actually done. They do store pointers 1320 * to file data extents, and those reference counts still get 1321 * updated (along with back refs to the log tree). 1322 */ 1323 1324 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1325 NULL, 0, 0, 0); 1326 if (IS_ERR(leaf)) { 1327 kfree(root); 1328 return ERR_CAST(leaf); 1329 } 1330 1331 root->node = leaf; 1332 1333 btrfs_mark_buffer_dirty(root->node); 1334 btrfs_tree_unlock(root->node); 1335 return root; 1336 } 1337 1338 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1339 struct btrfs_fs_info *fs_info) 1340 { 1341 struct btrfs_root *log_root; 1342 1343 log_root = alloc_log_tree(trans, fs_info); 1344 if (IS_ERR(log_root)) 1345 return PTR_ERR(log_root); 1346 WARN_ON(fs_info->log_root_tree); 1347 fs_info->log_root_tree = log_root; 1348 return 0; 1349 } 1350 1351 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1352 struct btrfs_root *root) 1353 { 1354 struct btrfs_fs_info *fs_info = root->fs_info; 1355 struct btrfs_root *log_root; 1356 struct btrfs_inode_item *inode_item; 1357 1358 log_root = alloc_log_tree(trans, fs_info); 1359 if (IS_ERR(log_root)) 1360 return PTR_ERR(log_root); 1361 1362 log_root->last_trans = trans->transid; 1363 log_root->root_key.offset = root->root_key.objectid; 1364 1365 inode_item = &log_root->root_item.inode; 1366 btrfs_set_stack_inode_generation(inode_item, 1); 1367 btrfs_set_stack_inode_size(inode_item, 3); 1368 btrfs_set_stack_inode_nlink(inode_item, 1); 1369 btrfs_set_stack_inode_nbytes(inode_item, 1370 fs_info->nodesize); 1371 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1372 1373 btrfs_set_root_node(&log_root->root_item, log_root->node); 1374 1375 WARN_ON(root->log_root); 1376 root->log_root = log_root; 1377 root->log_transid = 0; 1378 root->log_transid_committed = -1; 1379 root->last_log_commit = 0; 1380 return 0; 1381 } 1382 1383 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1384 struct btrfs_key *key) 1385 { 1386 struct btrfs_root *root; 1387 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1388 struct btrfs_path *path; 1389 u64 generation; 1390 int ret; 1391 int level; 1392 1393 path = btrfs_alloc_path(); 1394 if (!path) 1395 return ERR_PTR(-ENOMEM); 1396 1397 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1398 if (!root) { 1399 ret = -ENOMEM; 1400 goto alloc_fail; 1401 } 1402 1403 __setup_root(root, fs_info, key->objectid); 1404 1405 ret = btrfs_find_root(tree_root, key, path, 1406 &root->root_item, &root->root_key); 1407 if (ret) { 1408 if (ret > 0) 1409 ret = -ENOENT; 1410 goto find_fail; 1411 } 1412 1413 generation = btrfs_root_generation(&root->root_item); 1414 level = btrfs_root_level(&root->root_item); 1415 root->node = read_tree_block(fs_info, 1416 btrfs_root_bytenr(&root->root_item), 1417 generation, level, NULL); 1418 if (IS_ERR(root->node)) { 1419 ret = PTR_ERR(root->node); 1420 goto find_fail; 1421 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1422 ret = -EIO; 1423 free_extent_buffer(root->node); 1424 goto find_fail; 1425 } 1426 root->commit_root = btrfs_root_node(root); 1427 out: 1428 btrfs_free_path(path); 1429 return root; 1430 1431 find_fail: 1432 kfree(root); 1433 alloc_fail: 1434 root = ERR_PTR(ret); 1435 goto out; 1436 } 1437 1438 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1439 struct btrfs_key *location) 1440 { 1441 struct btrfs_root *root; 1442 1443 root = btrfs_read_tree_root(tree_root, location); 1444 if (IS_ERR(root)) 1445 return root; 1446 1447 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1448 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1449 btrfs_check_and_init_root_item(&root->root_item); 1450 } 1451 1452 return root; 1453 } 1454 1455 int btrfs_init_fs_root(struct btrfs_root *root) 1456 { 1457 int ret; 1458 struct btrfs_subvolume_writers *writers; 1459 1460 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1461 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1462 GFP_NOFS); 1463 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1464 ret = -ENOMEM; 1465 goto fail; 1466 } 1467 1468 writers = btrfs_alloc_subvolume_writers(); 1469 if (IS_ERR(writers)) { 1470 ret = PTR_ERR(writers); 1471 goto fail; 1472 } 1473 root->subv_writers = writers; 1474 1475 btrfs_init_free_ino_ctl(root); 1476 spin_lock_init(&root->ino_cache_lock); 1477 init_waitqueue_head(&root->ino_cache_wait); 1478 1479 ret = get_anon_bdev(&root->anon_dev); 1480 if (ret) 1481 goto fail; 1482 1483 mutex_lock(&root->objectid_mutex); 1484 ret = btrfs_find_highest_objectid(root, 1485 &root->highest_objectid); 1486 if (ret) { 1487 mutex_unlock(&root->objectid_mutex); 1488 goto fail; 1489 } 1490 1491 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1492 1493 mutex_unlock(&root->objectid_mutex); 1494 1495 return 0; 1496 fail: 1497 /* The caller is responsible to call btrfs_free_fs_root */ 1498 return ret; 1499 } 1500 1501 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1502 u64 root_id) 1503 { 1504 struct btrfs_root *root; 1505 1506 spin_lock(&fs_info->fs_roots_radix_lock); 1507 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1508 (unsigned long)root_id); 1509 spin_unlock(&fs_info->fs_roots_radix_lock); 1510 return root; 1511 } 1512 1513 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1514 struct btrfs_root *root) 1515 { 1516 int ret; 1517 1518 ret = radix_tree_preload(GFP_NOFS); 1519 if (ret) 1520 return ret; 1521 1522 spin_lock(&fs_info->fs_roots_radix_lock); 1523 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1524 (unsigned long)root->root_key.objectid, 1525 root); 1526 if (ret == 0) 1527 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1528 spin_unlock(&fs_info->fs_roots_radix_lock); 1529 radix_tree_preload_end(); 1530 1531 return ret; 1532 } 1533 1534 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1535 struct btrfs_key *location, 1536 bool check_ref) 1537 { 1538 struct btrfs_root *root; 1539 struct btrfs_path *path; 1540 struct btrfs_key key; 1541 int ret; 1542 1543 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1544 return fs_info->tree_root; 1545 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1546 return fs_info->extent_root; 1547 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1548 return fs_info->chunk_root; 1549 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1550 return fs_info->dev_root; 1551 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1552 return fs_info->csum_root; 1553 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1554 return fs_info->quota_root ? fs_info->quota_root : 1555 ERR_PTR(-ENOENT); 1556 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1557 return fs_info->uuid_root ? fs_info->uuid_root : 1558 ERR_PTR(-ENOENT); 1559 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1560 return fs_info->free_space_root ? fs_info->free_space_root : 1561 ERR_PTR(-ENOENT); 1562 again: 1563 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1564 if (root) { 1565 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1566 return ERR_PTR(-ENOENT); 1567 return root; 1568 } 1569 1570 root = btrfs_read_fs_root(fs_info->tree_root, location); 1571 if (IS_ERR(root)) 1572 return root; 1573 1574 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1575 ret = -ENOENT; 1576 goto fail; 1577 } 1578 1579 ret = btrfs_init_fs_root(root); 1580 if (ret) 1581 goto fail; 1582 1583 path = btrfs_alloc_path(); 1584 if (!path) { 1585 ret = -ENOMEM; 1586 goto fail; 1587 } 1588 key.objectid = BTRFS_ORPHAN_OBJECTID; 1589 key.type = BTRFS_ORPHAN_ITEM_KEY; 1590 key.offset = location->objectid; 1591 1592 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1593 btrfs_free_path(path); 1594 if (ret < 0) 1595 goto fail; 1596 if (ret == 0) 1597 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1598 1599 ret = btrfs_insert_fs_root(fs_info, root); 1600 if (ret) { 1601 if (ret == -EEXIST) { 1602 btrfs_free_fs_root(root); 1603 goto again; 1604 } 1605 goto fail; 1606 } 1607 return root; 1608 fail: 1609 btrfs_free_fs_root(root); 1610 return ERR_PTR(ret); 1611 } 1612 1613 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1614 { 1615 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1616 int ret = 0; 1617 struct btrfs_device *device; 1618 struct backing_dev_info *bdi; 1619 1620 rcu_read_lock(); 1621 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1622 if (!device->bdev) 1623 continue; 1624 bdi = device->bdev->bd_bdi; 1625 if (bdi_congested(bdi, bdi_bits)) { 1626 ret = 1; 1627 break; 1628 } 1629 } 1630 rcu_read_unlock(); 1631 return ret; 1632 } 1633 1634 /* 1635 * called by the kthread helper functions to finally call the bio end_io 1636 * functions. This is where read checksum verification actually happens 1637 */ 1638 static void end_workqueue_fn(struct btrfs_work *work) 1639 { 1640 struct bio *bio; 1641 struct btrfs_end_io_wq *end_io_wq; 1642 1643 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1644 bio = end_io_wq->bio; 1645 1646 bio->bi_status = end_io_wq->status; 1647 bio->bi_private = end_io_wq->private; 1648 bio->bi_end_io = end_io_wq->end_io; 1649 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1650 bio_endio(bio); 1651 } 1652 1653 static int cleaner_kthread(void *arg) 1654 { 1655 struct btrfs_root *root = arg; 1656 struct btrfs_fs_info *fs_info = root->fs_info; 1657 int again; 1658 1659 while (1) { 1660 again = 0; 1661 1662 /* Make the cleaner go to sleep early. */ 1663 if (btrfs_need_cleaner_sleep(fs_info)) 1664 goto sleep; 1665 1666 /* 1667 * Do not do anything if we might cause open_ctree() to block 1668 * before we have finished mounting the filesystem. 1669 */ 1670 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1671 goto sleep; 1672 1673 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1674 goto sleep; 1675 1676 /* 1677 * Avoid the problem that we change the status of the fs 1678 * during the above check and trylock. 1679 */ 1680 if (btrfs_need_cleaner_sleep(fs_info)) { 1681 mutex_unlock(&fs_info->cleaner_mutex); 1682 goto sleep; 1683 } 1684 1685 mutex_lock(&fs_info->cleaner_delayed_iput_mutex); 1686 btrfs_run_delayed_iputs(fs_info); 1687 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex); 1688 1689 again = btrfs_clean_one_deleted_snapshot(root); 1690 mutex_unlock(&fs_info->cleaner_mutex); 1691 1692 /* 1693 * The defragger has dealt with the R/O remount and umount, 1694 * needn't do anything special here. 1695 */ 1696 btrfs_run_defrag_inodes(fs_info); 1697 1698 /* 1699 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1700 * with relocation (btrfs_relocate_chunk) and relocation 1701 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1702 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1703 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1704 * unused block groups. 1705 */ 1706 btrfs_delete_unused_bgs(fs_info); 1707 sleep: 1708 if (kthread_should_park()) 1709 kthread_parkme(); 1710 if (kthread_should_stop()) 1711 return 0; 1712 if (!again) { 1713 set_current_state(TASK_INTERRUPTIBLE); 1714 schedule(); 1715 __set_current_state(TASK_RUNNING); 1716 } 1717 } 1718 } 1719 1720 static int transaction_kthread(void *arg) 1721 { 1722 struct btrfs_root *root = arg; 1723 struct btrfs_fs_info *fs_info = root->fs_info; 1724 struct btrfs_trans_handle *trans; 1725 struct btrfs_transaction *cur; 1726 u64 transid; 1727 time64_t now; 1728 unsigned long delay; 1729 bool cannot_commit; 1730 1731 do { 1732 cannot_commit = false; 1733 delay = HZ * fs_info->commit_interval; 1734 mutex_lock(&fs_info->transaction_kthread_mutex); 1735 1736 spin_lock(&fs_info->trans_lock); 1737 cur = fs_info->running_transaction; 1738 if (!cur) { 1739 spin_unlock(&fs_info->trans_lock); 1740 goto sleep; 1741 } 1742 1743 now = ktime_get_seconds(); 1744 if (cur->state < TRANS_STATE_BLOCKED && 1745 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) && 1746 (now < cur->start_time || 1747 now - cur->start_time < fs_info->commit_interval)) { 1748 spin_unlock(&fs_info->trans_lock); 1749 delay = HZ * 5; 1750 goto sleep; 1751 } 1752 transid = cur->transid; 1753 spin_unlock(&fs_info->trans_lock); 1754 1755 /* If the file system is aborted, this will always fail. */ 1756 trans = btrfs_attach_transaction(root); 1757 if (IS_ERR(trans)) { 1758 if (PTR_ERR(trans) != -ENOENT) 1759 cannot_commit = true; 1760 goto sleep; 1761 } 1762 if (transid == trans->transid) { 1763 btrfs_commit_transaction(trans); 1764 } else { 1765 btrfs_end_transaction(trans); 1766 } 1767 sleep: 1768 wake_up_process(fs_info->cleaner_kthread); 1769 mutex_unlock(&fs_info->transaction_kthread_mutex); 1770 1771 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1772 &fs_info->fs_state))) 1773 btrfs_cleanup_transaction(fs_info); 1774 if (!kthread_should_stop() && 1775 (!btrfs_transaction_blocked(fs_info) || 1776 cannot_commit)) 1777 schedule_timeout_interruptible(delay); 1778 } while (!kthread_should_stop()); 1779 return 0; 1780 } 1781 1782 /* 1783 * this will find the highest generation in the array of 1784 * root backups. The index of the highest array is returned, 1785 * or -1 if we can't find anything. 1786 * 1787 * We check to make sure the array is valid by comparing the 1788 * generation of the latest root in the array with the generation 1789 * in the super block. If they don't match we pitch it. 1790 */ 1791 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1792 { 1793 u64 cur; 1794 int newest_index = -1; 1795 struct btrfs_root_backup *root_backup; 1796 int i; 1797 1798 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1799 root_backup = info->super_copy->super_roots + i; 1800 cur = btrfs_backup_tree_root_gen(root_backup); 1801 if (cur == newest_gen) 1802 newest_index = i; 1803 } 1804 1805 /* check to see if we actually wrapped around */ 1806 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1807 root_backup = info->super_copy->super_roots; 1808 cur = btrfs_backup_tree_root_gen(root_backup); 1809 if (cur == newest_gen) 1810 newest_index = 0; 1811 } 1812 return newest_index; 1813 } 1814 1815 1816 /* 1817 * find the oldest backup so we know where to store new entries 1818 * in the backup array. This will set the backup_root_index 1819 * field in the fs_info struct 1820 */ 1821 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1822 u64 newest_gen) 1823 { 1824 int newest_index = -1; 1825 1826 newest_index = find_newest_super_backup(info, newest_gen); 1827 /* if there was garbage in there, just move along */ 1828 if (newest_index == -1) { 1829 info->backup_root_index = 0; 1830 } else { 1831 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1832 } 1833 } 1834 1835 /* 1836 * copy all the root pointers into the super backup array. 1837 * this will bump the backup pointer by one when it is 1838 * done 1839 */ 1840 static void backup_super_roots(struct btrfs_fs_info *info) 1841 { 1842 int next_backup; 1843 struct btrfs_root_backup *root_backup; 1844 int last_backup; 1845 1846 next_backup = info->backup_root_index; 1847 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1848 BTRFS_NUM_BACKUP_ROOTS; 1849 1850 /* 1851 * just overwrite the last backup if we're at the same generation 1852 * this happens only at umount 1853 */ 1854 root_backup = info->super_for_commit->super_roots + last_backup; 1855 if (btrfs_backup_tree_root_gen(root_backup) == 1856 btrfs_header_generation(info->tree_root->node)) 1857 next_backup = last_backup; 1858 1859 root_backup = info->super_for_commit->super_roots + next_backup; 1860 1861 /* 1862 * make sure all of our padding and empty slots get zero filled 1863 * regardless of which ones we use today 1864 */ 1865 memset(root_backup, 0, sizeof(*root_backup)); 1866 1867 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1868 1869 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1870 btrfs_set_backup_tree_root_gen(root_backup, 1871 btrfs_header_generation(info->tree_root->node)); 1872 1873 btrfs_set_backup_tree_root_level(root_backup, 1874 btrfs_header_level(info->tree_root->node)); 1875 1876 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1877 btrfs_set_backup_chunk_root_gen(root_backup, 1878 btrfs_header_generation(info->chunk_root->node)); 1879 btrfs_set_backup_chunk_root_level(root_backup, 1880 btrfs_header_level(info->chunk_root->node)); 1881 1882 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1883 btrfs_set_backup_extent_root_gen(root_backup, 1884 btrfs_header_generation(info->extent_root->node)); 1885 btrfs_set_backup_extent_root_level(root_backup, 1886 btrfs_header_level(info->extent_root->node)); 1887 1888 /* 1889 * we might commit during log recovery, which happens before we set 1890 * the fs_root. Make sure it is valid before we fill it in. 1891 */ 1892 if (info->fs_root && info->fs_root->node) { 1893 btrfs_set_backup_fs_root(root_backup, 1894 info->fs_root->node->start); 1895 btrfs_set_backup_fs_root_gen(root_backup, 1896 btrfs_header_generation(info->fs_root->node)); 1897 btrfs_set_backup_fs_root_level(root_backup, 1898 btrfs_header_level(info->fs_root->node)); 1899 } 1900 1901 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1902 btrfs_set_backup_dev_root_gen(root_backup, 1903 btrfs_header_generation(info->dev_root->node)); 1904 btrfs_set_backup_dev_root_level(root_backup, 1905 btrfs_header_level(info->dev_root->node)); 1906 1907 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1908 btrfs_set_backup_csum_root_gen(root_backup, 1909 btrfs_header_generation(info->csum_root->node)); 1910 btrfs_set_backup_csum_root_level(root_backup, 1911 btrfs_header_level(info->csum_root->node)); 1912 1913 btrfs_set_backup_total_bytes(root_backup, 1914 btrfs_super_total_bytes(info->super_copy)); 1915 btrfs_set_backup_bytes_used(root_backup, 1916 btrfs_super_bytes_used(info->super_copy)); 1917 btrfs_set_backup_num_devices(root_backup, 1918 btrfs_super_num_devices(info->super_copy)); 1919 1920 /* 1921 * if we don't copy this out to the super_copy, it won't get remembered 1922 * for the next commit 1923 */ 1924 memcpy(&info->super_copy->super_roots, 1925 &info->super_for_commit->super_roots, 1926 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1927 } 1928 1929 /* 1930 * this copies info out of the root backup array and back into 1931 * the in-memory super block. It is meant to help iterate through 1932 * the array, so you send it the number of backups you've already 1933 * tried and the last backup index you used. 1934 * 1935 * this returns -1 when it has tried all the backups 1936 */ 1937 static noinline int next_root_backup(struct btrfs_fs_info *info, 1938 struct btrfs_super_block *super, 1939 int *num_backups_tried, int *backup_index) 1940 { 1941 struct btrfs_root_backup *root_backup; 1942 int newest = *backup_index; 1943 1944 if (*num_backups_tried == 0) { 1945 u64 gen = btrfs_super_generation(super); 1946 1947 newest = find_newest_super_backup(info, gen); 1948 if (newest == -1) 1949 return -1; 1950 1951 *backup_index = newest; 1952 *num_backups_tried = 1; 1953 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 1954 /* we've tried all the backups, all done */ 1955 return -1; 1956 } else { 1957 /* jump to the next oldest backup */ 1958 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 1959 BTRFS_NUM_BACKUP_ROOTS; 1960 *backup_index = newest; 1961 *num_backups_tried += 1; 1962 } 1963 root_backup = super->super_roots + newest; 1964 1965 btrfs_set_super_generation(super, 1966 btrfs_backup_tree_root_gen(root_backup)); 1967 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1968 btrfs_set_super_root_level(super, 1969 btrfs_backup_tree_root_level(root_backup)); 1970 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1971 1972 /* 1973 * fixme: the total bytes and num_devices need to match or we should 1974 * need a fsck 1975 */ 1976 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1977 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1978 return 0; 1979 } 1980 1981 /* helper to cleanup workers */ 1982 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1983 { 1984 btrfs_destroy_workqueue(fs_info->fixup_workers); 1985 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1986 btrfs_destroy_workqueue(fs_info->workers); 1987 btrfs_destroy_workqueue(fs_info->endio_workers); 1988 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 1989 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 1990 btrfs_destroy_workqueue(fs_info->rmw_workers); 1991 btrfs_destroy_workqueue(fs_info->endio_write_workers); 1992 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 1993 btrfs_destroy_workqueue(fs_info->submit_workers); 1994 btrfs_destroy_workqueue(fs_info->delayed_workers); 1995 btrfs_destroy_workqueue(fs_info->caching_workers); 1996 btrfs_destroy_workqueue(fs_info->readahead_workers); 1997 btrfs_destroy_workqueue(fs_info->flush_workers); 1998 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 1999 btrfs_destroy_workqueue(fs_info->extent_workers); 2000 /* 2001 * Now that all other work queues are destroyed, we can safely destroy 2002 * the queues used for metadata I/O, since tasks from those other work 2003 * queues can do metadata I/O operations. 2004 */ 2005 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2006 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2007 } 2008 2009 static void free_root_extent_buffers(struct btrfs_root *root) 2010 { 2011 if (root) { 2012 free_extent_buffer(root->node); 2013 free_extent_buffer(root->commit_root); 2014 root->node = NULL; 2015 root->commit_root = NULL; 2016 } 2017 } 2018 2019 /* helper to cleanup tree roots */ 2020 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2021 { 2022 free_root_extent_buffers(info->tree_root); 2023 2024 free_root_extent_buffers(info->dev_root); 2025 free_root_extent_buffers(info->extent_root); 2026 free_root_extent_buffers(info->csum_root); 2027 free_root_extent_buffers(info->quota_root); 2028 free_root_extent_buffers(info->uuid_root); 2029 if (chunk_root) 2030 free_root_extent_buffers(info->chunk_root); 2031 free_root_extent_buffers(info->free_space_root); 2032 } 2033 2034 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2035 { 2036 int ret; 2037 struct btrfs_root *gang[8]; 2038 int i; 2039 2040 while (!list_empty(&fs_info->dead_roots)) { 2041 gang[0] = list_entry(fs_info->dead_roots.next, 2042 struct btrfs_root, root_list); 2043 list_del(&gang[0]->root_list); 2044 2045 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2046 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2047 } else { 2048 free_extent_buffer(gang[0]->node); 2049 free_extent_buffer(gang[0]->commit_root); 2050 btrfs_put_fs_root(gang[0]); 2051 } 2052 } 2053 2054 while (1) { 2055 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2056 (void **)gang, 0, 2057 ARRAY_SIZE(gang)); 2058 if (!ret) 2059 break; 2060 for (i = 0; i < ret; i++) 2061 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2062 } 2063 2064 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2065 btrfs_free_log_root_tree(NULL, fs_info); 2066 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 2067 } 2068 } 2069 2070 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2071 { 2072 mutex_init(&fs_info->scrub_lock); 2073 atomic_set(&fs_info->scrubs_running, 0); 2074 atomic_set(&fs_info->scrub_pause_req, 0); 2075 atomic_set(&fs_info->scrubs_paused, 0); 2076 atomic_set(&fs_info->scrub_cancel_req, 0); 2077 init_waitqueue_head(&fs_info->scrub_pause_wait); 2078 fs_info->scrub_workers_refcnt = 0; 2079 } 2080 2081 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2082 { 2083 spin_lock_init(&fs_info->balance_lock); 2084 mutex_init(&fs_info->balance_mutex); 2085 atomic_set(&fs_info->balance_pause_req, 0); 2086 atomic_set(&fs_info->balance_cancel_req, 0); 2087 fs_info->balance_ctl = NULL; 2088 init_waitqueue_head(&fs_info->balance_wait_q); 2089 } 2090 2091 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2092 { 2093 struct inode *inode = fs_info->btree_inode; 2094 2095 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2096 set_nlink(inode, 1); 2097 /* 2098 * we set the i_size on the btree inode to the max possible int. 2099 * the real end of the address space is determined by all of 2100 * the devices in the system 2101 */ 2102 inode->i_size = OFFSET_MAX; 2103 inode->i_mapping->a_ops = &btree_aops; 2104 2105 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2106 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode); 2107 BTRFS_I(inode)->io_tree.track_uptodate = 0; 2108 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2109 2110 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops; 2111 2112 BTRFS_I(inode)->root = fs_info->tree_root; 2113 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); 2114 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2115 btrfs_insert_inode_hash(inode); 2116 } 2117 2118 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2119 { 2120 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2121 rwlock_init(&fs_info->dev_replace.lock); 2122 atomic_set(&fs_info->dev_replace.blocking_readers, 0); 2123 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2124 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq); 2125 } 2126 2127 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2128 { 2129 spin_lock_init(&fs_info->qgroup_lock); 2130 mutex_init(&fs_info->qgroup_ioctl_lock); 2131 fs_info->qgroup_tree = RB_ROOT; 2132 fs_info->qgroup_op_tree = RB_ROOT; 2133 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2134 fs_info->qgroup_seq = 1; 2135 fs_info->qgroup_ulist = NULL; 2136 fs_info->qgroup_rescan_running = false; 2137 mutex_init(&fs_info->qgroup_rescan_lock); 2138 } 2139 2140 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2141 struct btrfs_fs_devices *fs_devices) 2142 { 2143 u32 max_active = fs_info->thread_pool_size; 2144 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2145 2146 fs_info->workers = 2147 btrfs_alloc_workqueue(fs_info, "worker", 2148 flags | WQ_HIGHPRI, max_active, 16); 2149 2150 fs_info->delalloc_workers = 2151 btrfs_alloc_workqueue(fs_info, "delalloc", 2152 flags, max_active, 2); 2153 2154 fs_info->flush_workers = 2155 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2156 flags, max_active, 0); 2157 2158 fs_info->caching_workers = 2159 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2160 2161 /* 2162 * a higher idle thresh on the submit workers makes it much more 2163 * likely that bios will be send down in a sane order to the 2164 * devices 2165 */ 2166 fs_info->submit_workers = 2167 btrfs_alloc_workqueue(fs_info, "submit", flags, 2168 min_t(u64, fs_devices->num_devices, 2169 max_active), 64); 2170 2171 fs_info->fixup_workers = 2172 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2173 2174 /* 2175 * endios are largely parallel and should have a very 2176 * low idle thresh 2177 */ 2178 fs_info->endio_workers = 2179 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2180 fs_info->endio_meta_workers = 2181 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2182 max_active, 4); 2183 fs_info->endio_meta_write_workers = 2184 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2185 max_active, 2); 2186 fs_info->endio_raid56_workers = 2187 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2188 max_active, 4); 2189 fs_info->endio_repair_workers = 2190 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0); 2191 fs_info->rmw_workers = 2192 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2193 fs_info->endio_write_workers = 2194 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2195 max_active, 2); 2196 fs_info->endio_freespace_worker = 2197 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2198 max_active, 0); 2199 fs_info->delayed_workers = 2200 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2201 max_active, 0); 2202 fs_info->readahead_workers = 2203 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2204 max_active, 2); 2205 fs_info->qgroup_rescan_workers = 2206 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2207 fs_info->extent_workers = 2208 btrfs_alloc_workqueue(fs_info, "extent-refs", flags, 2209 min_t(u64, fs_devices->num_devices, 2210 max_active), 8); 2211 2212 if (!(fs_info->workers && fs_info->delalloc_workers && 2213 fs_info->submit_workers && fs_info->flush_workers && 2214 fs_info->endio_workers && fs_info->endio_meta_workers && 2215 fs_info->endio_meta_write_workers && 2216 fs_info->endio_repair_workers && 2217 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2218 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2219 fs_info->caching_workers && fs_info->readahead_workers && 2220 fs_info->fixup_workers && fs_info->delayed_workers && 2221 fs_info->extent_workers && 2222 fs_info->qgroup_rescan_workers)) { 2223 return -ENOMEM; 2224 } 2225 2226 return 0; 2227 } 2228 2229 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2230 struct btrfs_fs_devices *fs_devices) 2231 { 2232 int ret; 2233 struct btrfs_root *log_tree_root; 2234 struct btrfs_super_block *disk_super = fs_info->super_copy; 2235 u64 bytenr = btrfs_super_log_root(disk_super); 2236 int level = btrfs_super_log_root_level(disk_super); 2237 2238 if (fs_devices->rw_devices == 0) { 2239 btrfs_warn(fs_info, "log replay required on RO media"); 2240 return -EIO; 2241 } 2242 2243 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2244 if (!log_tree_root) 2245 return -ENOMEM; 2246 2247 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2248 2249 log_tree_root->node = read_tree_block(fs_info, bytenr, 2250 fs_info->generation + 1, 2251 level, NULL); 2252 if (IS_ERR(log_tree_root->node)) { 2253 btrfs_warn(fs_info, "failed to read log tree"); 2254 ret = PTR_ERR(log_tree_root->node); 2255 kfree(log_tree_root); 2256 return ret; 2257 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2258 btrfs_err(fs_info, "failed to read log tree"); 2259 free_extent_buffer(log_tree_root->node); 2260 kfree(log_tree_root); 2261 return -EIO; 2262 } 2263 /* returns with log_tree_root freed on success */ 2264 ret = btrfs_recover_log_trees(log_tree_root); 2265 if (ret) { 2266 btrfs_handle_fs_error(fs_info, ret, 2267 "Failed to recover log tree"); 2268 free_extent_buffer(log_tree_root->node); 2269 kfree(log_tree_root); 2270 return ret; 2271 } 2272 2273 if (sb_rdonly(fs_info->sb)) { 2274 ret = btrfs_commit_super(fs_info); 2275 if (ret) 2276 return ret; 2277 } 2278 2279 return 0; 2280 } 2281 2282 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2283 { 2284 struct btrfs_root *tree_root = fs_info->tree_root; 2285 struct btrfs_root *root; 2286 struct btrfs_key location; 2287 int ret; 2288 2289 BUG_ON(!fs_info->tree_root); 2290 2291 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2292 location.type = BTRFS_ROOT_ITEM_KEY; 2293 location.offset = 0; 2294 2295 root = btrfs_read_tree_root(tree_root, &location); 2296 if (IS_ERR(root)) { 2297 ret = PTR_ERR(root); 2298 goto out; 2299 } 2300 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2301 fs_info->extent_root = root; 2302 2303 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2304 root = btrfs_read_tree_root(tree_root, &location); 2305 if (IS_ERR(root)) { 2306 ret = PTR_ERR(root); 2307 goto out; 2308 } 2309 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2310 fs_info->dev_root = root; 2311 btrfs_init_devices_late(fs_info); 2312 2313 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2314 root = btrfs_read_tree_root(tree_root, &location); 2315 if (IS_ERR(root)) { 2316 ret = PTR_ERR(root); 2317 goto out; 2318 } 2319 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2320 fs_info->csum_root = root; 2321 2322 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2323 root = btrfs_read_tree_root(tree_root, &location); 2324 if (!IS_ERR(root)) { 2325 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2326 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2327 fs_info->quota_root = root; 2328 } 2329 2330 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2331 root = btrfs_read_tree_root(tree_root, &location); 2332 if (IS_ERR(root)) { 2333 ret = PTR_ERR(root); 2334 if (ret != -ENOENT) 2335 goto out; 2336 } else { 2337 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2338 fs_info->uuid_root = root; 2339 } 2340 2341 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2342 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2343 root = btrfs_read_tree_root(tree_root, &location); 2344 if (IS_ERR(root)) { 2345 ret = PTR_ERR(root); 2346 goto out; 2347 } 2348 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2349 fs_info->free_space_root = root; 2350 } 2351 2352 return 0; 2353 out: 2354 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2355 location.objectid, ret); 2356 return ret; 2357 } 2358 2359 /* 2360 * Real super block validation 2361 * NOTE: super csum type and incompat features will not be checked here. 2362 * 2363 * @sb: super block to check 2364 * @mirror_num: the super block number to check its bytenr: 2365 * 0 the primary (1st) sb 2366 * 1, 2 2nd and 3rd backup copy 2367 * -1 skip bytenr check 2368 */ 2369 static int validate_super(struct btrfs_fs_info *fs_info, 2370 struct btrfs_super_block *sb, int mirror_num) 2371 { 2372 u64 nodesize = btrfs_super_nodesize(sb); 2373 u64 sectorsize = btrfs_super_sectorsize(sb); 2374 int ret = 0; 2375 2376 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2377 btrfs_err(fs_info, "no valid FS found"); 2378 ret = -EINVAL; 2379 } 2380 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2381 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2382 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2383 ret = -EINVAL; 2384 } 2385 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2386 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2387 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2388 ret = -EINVAL; 2389 } 2390 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2391 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2392 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2393 ret = -EINVAL; 2394 } 2395 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2396 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2397 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2398 ret = -EINVAL; 2399 } 2400 2401 /* 2402 * Check sectorsize and nodesize first, other check will need it. 2403 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2404 */ 2405 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2406 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2407 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2408 ret = -EINVAL; 2409 } 2410 /* Only PAGE SIZE is supported yet */ 2411 if (sectorsize != PAGE_SIZE) { 2412 btrfs_err(fs_info, 2413 "sectorsize %llu not supported yet, only support %lu", 2414 sectorsize, PAGE_SIZE); 2415 ret = -EINVAL; 2416 } 2417 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2418 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2419 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2420 ret = -EINVAL; 2421 } 2422 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2423 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2424 le32_to_cpu(sb->__unused_leafsize), nodesize); 2425 ret = -EINVAL; 2426 } 2427 2428 /* Root alignment check */ 2429 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2430 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2431 btrfs_super_root(sb)); 2432 ret = -EINVAL; 2433 } 2434 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2435 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2436 btrfs_super_chunk_root(sb)); 2437 ret = -EINVAL; 2438 } 2439 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2440 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2441 btrfs_super_log_root(sb)); 2442 ret = -EINVAL; 2443 } 2444 2445 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) { 2446 btrfs_err(fs_info, 2447 "dev_item UUID does not match fsid: %pU != %pU", 2448 fs_info->fsid, sb->dev_item.fsid); 2449 ret = -EINVAL; 2450 } 2451 2452 /* 2453 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2454 * done later 2455 */ 2456 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2457 btrfs_err(fs_info, "bytes_used is too small %llu", 2458 btrfs_super_bytes_used(sb)); 2459 ret = -EINVAL; 2460 } 2461 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2462 btrfs_err(fs_info, "invalid stripesize %u", 2463 btrfs_super_stripesize(sb)); 2464 ret = -EINVAL; 2465 } 2466 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2467 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2468 btrfs_super_num_devices(sb)); 2469 if (btrfs_super_num_devices(sb) == 0) { 2470 btrfs_err(fs_info, "number of devices is 0"); 2471 ret = -EINVAL; 2472 } 2473 2474 if (mirror_num >= 0 && 2475 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2476 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2477 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2478 ret = -EINVAL; 2479 } 2480 2481 /* 2482 * Obvious sys_chunk_array corruptions, it must hold at least one key 2483 * and one chunk 2484 */ 2485 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2486 btrfs_err(fs_info, "system chunk array too big %u > %u", 2487 btrfs_super_sys_array_size(sb), 2488 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2489 ret = -EINVAL; 2490 } 2491 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2492 + sizeof(struct btrfs_chunk)) { 2493 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2494 btrfs_super_sys_array_size(sb), 2495 sizeof(struct btrfs_disk_key) 2496 + sizeof(struct btrfs_chunk)); 2497 ret = -EINVAL; 2498 } 2499 2500 /* 2501 * The generation is a global counter, we'll trust it more than the others 2502 * but it's still possible that it's the one that's wrong. 2503 */ 2504 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2505 btrfs_warn(fs_info, 2506 "suspicious: generation < chunk_root_generation: %llu < %llu", 2507 btrfs_super_generation(sb), 2508 btrfs_super_chunk_root_generation(sb)); 2509 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2510 && btrfs_super_cache_generation(sb) != (u64)-1) 2511 btrfs_warn(fs_info, 2512 "suspicious: generation < cache_generation: %llu < %llu", 2513 btrfs_super_generation(sb), 2514 btrfs_super_cache_generation(sb)); 2515 2516 return ret; 2517 } 2518 2519 /* 2520 * Validation of super block at mount time. 2521 * Some checks already done early at mount time, like csum type and incompat 2522 * flags will be skipped. 2523 */ 2524 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2525 { 2526 return validate_super(fs_info, fs_info->super_copy, 0); 2527 } 2528 2529 /* 2530 * Validation of super block at write time. 2531 * Some checks like bytenr check will be skipped as their values will be 2532 * overwritten soon. 2533 * Extra checks like csum type and incompat flags will be done here. 2534 */ 2535 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2536 struct btrfs_super_block *sb) 2537 { 2538 int ret; 2539 2540 ret = validate_super(fs_info, sb, -1); 2541 if (ret < 0) 2542 goto out; 2543 if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) { 2544 ret = -EUCLEAN; 2545 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2546 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2547 goto out; 2548 } 2549 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2550 ret = -EUCLEAN; 2551 btrfs_err(fs_info, 2552 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2553 btrfs_super_incompat_flags(sb), 2554 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2555 goto out; 2556 } 2557 out: 2558 if (ret < 0) 2559 btrfs_err(fs_info, 2560 "super block corruption detected before writing it to disk"); 2561 return ret; 2562 } 2563 2564 int open_ctree(struct super_block *sb, 2565 struct btrfs_fs_devices *fs_devices, 2566 char *options) 2567 { 2568 u32 sectorsize; 2569 u32 nodesize; 2570 u32 stripesize; 2571 u64 generation; 2572 u64 features; 2573 struct btrfs_key location; 2574 struct buffer_head *bh; 2575 struct btrfs_super_block *disk_super; 2576 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2577 struct btrfs_root *tree_root; 2578 struct btrfs_root *chunk_root; 2579 int ret; 2580 int err = -EINVAL; 2581 int num_backups_tried = 0; 2582 int backup_index = 0; 2583 int clear_free_space_tree = 0; 2584 int level; 2585 2586 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2587 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2588 if (!tree_root || !chunk_root) { 2589 err = -ENOMEM; 2590 goto fail; 2591 } 2592 2593 ret = init_srcu_struct(&fs_info->subvol_srcu); 2594 if (ret) { 2595 err = ret; 2596 goto fail; 2597 } 2598 2599 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2600 if (ret) { 2601 err = ret; 2602 goto fail_srcu; 2603 } 2604 fs_info->dirty_metadata_batch = PAGE_SIZE * 2605 (1 + ilog2(nr_cpu_ids)); 2606 2607 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2608 if (ret) { 2609 err = ret; 2610 goto fail_dirty_metadata_bytes; 2611 } 2612 2613 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2614 GFP_KERNEL); 2615 if (ret) { 2616 err = ret; 2617 goto fail_delalloc_bytes; 2618 } 2619 2620 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2621 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2622 INIT_LIST_HEAD(&fs_info->trans_list); 2623 INIT_LIST_HEAD(&fs_info->dead_roots); 2624 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2625 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2626 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2627 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs); 2628 spin_lock_init(&fs_info->pending_raid_kobjs_lock); 2629 spin_lock_init(&fs_info->delalloc_root_lock); 2630 spin_lock_init(&fs_info->trans_lock); 2631 spin_lock_init(&fs_info->fs_roots_radix_lock); 2632 spin_lock_init(&fs_info->delayed_iput_lock); 2633 spin_lock_init(&fs_info->defrag_inodes_lock); 2634 spin_lock_init(&fs_info->tree_mod_seq_lock); 2635 spin_lock_init(&fs_info->super_lock); 2636 spin_lock_init(&fs_info->qgroup_op_lock); 2637 spin_lock_init(&fs_info->buffer_lock); 2638 spin_lock_init(&fs_info->unused_bgs_lock); 2639 rwlock_init(&fs_info->tree_mod_log_lock); 2640 mutex_init(&fs_info->unused_bg_unpin_mutex); 2641 mutex_init(&fs_info->delete_unused_bgs_mutex); 2642 mutex_init(&fs_info->reloc_mutex); 2643 mutex_init(&fs_info->delalloc_root_mutex); 2644 mutex_init(&fs_info->cleaner_delayed_iput_mutex); 2645 seqlock_init(&fs_info->profiles_lock); 2646 2647 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2648 INIT_LIST_HEAD(&fs_info->space_info); 2649 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2650 INIT_LIST_HEAD(&fs_info->unused_bgs); 2651 btrfs_mapping_init(&fs_info->mapping_tree); 2652 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2653 BTRFS_BLOCK_RSV_GLOBAL); 2654 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2655 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2656 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2657 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2658 BTRFS_BLOCK_RSV_DELOPS); 2659 atomic_set(&fs_info->async_delalloc_pages, 0); 2660 atomic_set(&fs_info->defrag_running, 0); 2661 atomic_set(&fs_info->qgroup_op_seq, 0); 2662 atomic_set(&fs_info->reada_works_cnt, 0); 2663 atomic64_set(&fs_info->tree_mod_seq, 0); 2664 fs_info->sb = sb; 2665 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2666 fs_info->metadata_ratio = 0; 2667 fs_info->defrag_inodes = RB_ROOT; 2668 atomic64_set(&fs_info->free_chunk_space, 0); 2669 fs_info->tree_mod_log = RB_ROOT; 2670 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2671 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2672 /* readahead state */ 2673 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2674 spin_lock_init(&fs_info->reada_lock); 2675 btrfs_init_ref_verify(fs_info); 2676 2677 fs_info->thread_pool_size = min_t(unsigned long, 2678 num_online_cpus() + 2, 8); 2679 2680 INIT_LIST_HEAD(&fs_info->ordered_roots); 2681 spin_lock_init(&fs_info->ordered_root_lock); 2682 2683 fs_info->btree_inode = new_inode(sb); 2684 if (!fs_info->btree_inode) { 2685 err = -ENOMEM; 2686 goto fail_bio_counter; 2687 } 2688 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2689 2690 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2691 GFP_KERNEL); 2692 if (!fs_info->delayed_root) { 2693 err = -ENOMEM; 2694 goto fail_iput; 2695 } 2696 btrfs_init_delayed_root(fs_info->delayed_root); 2697 2698 btrfs_init_scrub(fs_info); 2699 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2700 fs_info->check_integrity_print_mask = 0; 2701 #endif 2702 btrfs_init_balance(fs_info); 2703 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2704 2705 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2706 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2707 2708 btrfs_init_btree_inode(fs_info); 2709 2710 spin_lock_init(&fs_info->block_group_cache_lock); 2711 fs_info->block_group_cache_tree = RB_ROOT; 2712 fs_info->first_logical_byte = (u64)-1; 2713 2714 extent_io_tree_init(&fs_info->freed_extents[0], NULL); 2715 extent_io_tree_init(&fs_info->freed_extents[1], NULL); 2716 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2717 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2718 2719 mutex_init(&fs_info->ordered_operations_mutex); 2720 mutex_init(&fs_info->tree_log_mutex); 2721 mutex_init(&fs_info->chunk_mutex); 2722 mutex_init(&fs_info->transaction_kthread_mutex); 2723 mutex_init(&fs_info->cleaner_mutex); 2724 mutex_init(&fs_info->ro_block_group_mutex); 2725 init_rwsem(&fs_info->commit_root_sem); 2726 init_rwsem(&fs_info->cleanup_work_sem); 2727 init_rwsem(&fs_info->subvol_sem); 2728 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2729 2730 btrfs_init_dev_replace_locks(fs_info); 2731 btrfs_init_qgroup(fs_info); 2732 2733 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2734 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2735 2736 init_waitqueue_head(&fs_info->transaction_throttle); 2737 init_waitqueue_head(&fs_info->transaction_wait); 2738 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2739 init_waitqueue_head(&fs_info->async_submit_wait); 2740 2741 INIT_LIST_HEAD(&fs_info->pinned_chunks); 2742 2743 /* Usable values until the real ones are cached from the superblock */ 2744 fs_info->nodesize = 4096; 2745 fs_info->sectorsize = 4096; 2746 fs_info->stripesize = 4096; 2747 2748 ret = btrfs_alloc_stripe_hash_table(fs_info); 2749 if (ret) { 2750 err = ret; 2751 goto fail_alloc; 2752 } 2753 2754 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 2755 2756 invalidate_bdev(fs_devices->latest_bdev); 2757 2758 /* 2759 * Read super block and check the signature bytes only 2760 */ 2761 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2762 if (IS_ERR(bh)) { 2763 err = PTR_ERR(bh); 2764 goto fail_alloc; 2765 } 2766 2767 /* 2768 * We want to check superblock checksum, the type is stored inside. 2769 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2770 */ 2771 if (btrfs_check_super_csum(fs_info, bh->b_data)) { 2772 btrfs_err(fs_info, "superblock checksum mismatch"); 2773 err = -EINVAL; 2774 brelse(bh); 2775 goto fail_alloc; 2776 } 2777 2778 /* 2779 * super_copy is zeroed at allocation time and we never touch the 2780 * following bytes up to INFO_SIZE, the checksum is calculated from 2781 * the whole block of INFO_SIZE 2782 */ 2783 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2784 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2785 sizeof(*fs_info->super_for_commit)); 2786 brelse(bh); 2787 2788 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2789 2790 ret = btrfs_validate_mount_super(fs_info); 2791 if (ret) { 2792 btrfs_err(fs_info, "superblock contains fatal errors"); 2793 err = -EINVAL; 2794 goto fail_alloc; 2795 } 2796 2797 disk_super = fs_info->super_copy; 2798 if (!btrfs_super_root(disk_super)) 2799 goto fail_alloc; 2800 2801 /* check FS state, whether FS is broken. */ 2802 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2803 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2804 2805 /* 2806 * run through our array of backup supers and setup 2807 * our ring pointer to the oldest one 2808 */ 2809 generation = btrfs_super_generation(disk_super); 2810 find_oldest_super_backup(fs_info, generation); 2811 2812 /* 2813 * In the long term, we'll store the compression type in the super 2814 * block, and it'll be used for per file compression control. 2815 */ 2816 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2817 2818 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 2819 if (ret) { 2820 err = ret; 2821 goto fail_alloc; 2822 } 2823 2824 features = btrfs_super_incompat_flags(disk_super) & 2825 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2826 if (features) { 2827 btrfs_err(fs_info, 2828 "cannot mount because of unsupported optional features (%llx)", 2829 features); 2830 err = -EINVAL; 2831 goto fail_alloc; 2832 } 2833 2834 features = btrfs_super_incompat_flags(disk_super); 2835 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2836 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 2837 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2838 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 2839 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 2840 2841 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2842 btrfs_info(fs_info, "has skinny extents"); 2843 2844 /* 2845 * flag our filesystem as having big metadata blocks if 2846 * they are bigger than the page size 2847 */ 2848 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 2849 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2850 btrfs_info(fs_info, 2851 "flagging fs with big metadata feature"); 2852 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2853 } 2854 2855 nodesize = btrfs_super_nodesize(disk_super); 2856 sectorsize = btrfs_super_sectorsize(disk_super); 2857 stripesize = sectorsize; 2858 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2859 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2860 2861 /* Cache block sizes */ 2862 fs_info->nodesize = nodesize; 2863 fs_info->sectorsize = sectorsize; 2864 fs_info->stripesize = stripesize; 2865 2866 /* 2867 * mixed block groups end up with duplicate but slightly offset 2868 * extent buffers for the same range. It leads to corruptions 2869 */ 2870 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2871 (sectorsize != nodesize)) { 2872 btrfs_err(fs_info, 2873 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 2874 nodesize, sectorsize); 2875 goto fail_alloc; 2876 } 2877 2878 /* 2879 * Needn't use the lock because there is no other task which will 2880 * update the flag. 2881 */ 2882 btrfs_set_super_incompat_flags(disk_super, features); 2883 2884 features = btrfs_super_compat_ro_flags(disk_super) & 2885 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2886 if (!sb_rdonly(sb) && features) { 2887 btrfs_err(fs_info, 2888 "cannot mount read-write because of unsupported optional features (%llx)", 2889 features); 2890 err = -EINVAL; 2891 goto fail_alloc; 2892 } 2893 2894 ret = btrfs_init_workqueues(fs_info, fs_devices); 2895 if (ret) { 2896 err = ret; 2897 goto fail_sb_buffer; 2898 } 2899 2900 sb->s_bdi->congested_fn = btrfs_congested_fn; 2901 sb->s_bdi->congested_data = fs_info; 2902 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 2903 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE; 2904 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 2905 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 2906 2907 sb->s_blocksize = sectorsize; 2908 sb->s_blocksize_bits = blksize_bits(sectorsize); 2909 memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE); 2910 2911 mutex_lock(&fs_info->chunk_mutex); 2912 ret = btrfs_read_sys_array(fs_info); 2913 mutex_unlock(&fs_info->chunk_mutex); 2914 if (ret) { 2915 btrfs_err(fs_info, "failed to read the system array: %d", ret); 2916 goto fail_sb_buffer; 2917 } 2918 2919 generation = btrfs_super_chunk_root_generation(disk_super); 2920 level = btrfs_super_chunk_root_level(disk_super); 2921 2922 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2923 2924 chunk_root->node = read_tree_block(fs_info, 2925 btrfs_super_chunk_root(disk_super), 2926 generation, level, NULL); 2927 if (IS_ERR(chunk_root->node) || 2928 !extent_buffer_uptodate(chunk_root->node)) { 2929 btrfs_err(fs_info, "failed to read chunk root"); 2930 if (!IS_ERR(chunk_root->node)) 2931 free_extent_buffer(chunk_root->node); 2932 chunk_root->node = NULL; 2933 goto fail_tree_roots; 2934 } 2935 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2936 chunk_root->commit_root = btrfs_root_node(chunk_root); 2937 2938 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2939 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2940 2941 ret = btrfs_read_chunk_tree(fs_info); 2942 if (ret) { 2943 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 2944 goto fail_tree_roots; 2945 } 2946 2947 /* 2948 * Keep the devid that is marked to be the target device for the 2949 * device replace procedure 2950 */ 2951 btrfs_free_extra_devids(fs_devices, 0); 2952 2953 if (!fs_devices->latest_bdev) { 2954 btrfs_err(fs_info, "failed to read devices"); 2955 goto fail_tree_roots; 2956 } 2957 2958 retry_root_backup: 2959 generation = btrfs_super_generation(disk_super); 2960 level = btrfs_super_root_level(disk_super); 2961 2962 tree_root->node = read_tree_block(fs_info, 2963 btrfs_super_root(disk_super), 2964 generation, level, NULL); 2965 if (IS_ERR(tree_root->node) || 2966 !extent_buffer_uptodate(tree_root->node)) { 2967 btrfs_warn(fs_info, "failed to read tree root"); 2968 if (!IS_ERR(tree_root->node)) 2969 free_extent_buffer(tree_root->node); 2970 tree_root->node = NULL; 2971 goto recovery_tree_root; 2972 } 2973 2974 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2975 tree_root->commit_root = btrfs_root_node(tree_root); 2976 btrfs_set_root_refs(&tree_root->root_item, 1); 2977 2978 mutex_lock(&tree_root->objectid_mutex); 2979 ret = btrfs_find_highest_objectid(tree_root, 2980 &tree_root->highest_objectid); 2981 if (ret) { 2982 mutex_unlock(&tree_root->objectid_mutex); 2983 goto recovery_tree_root; 2984 } 2985 2986 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 2987 2988 mutex_unlock(&tree_root->objectid_mutex); 2989 2990 ret = btrfs_read_roots(fs_info); 2991 if (ret) 2992 goto recovery_tree_root; 2993 2994 fs_info->generation = generation; 2995 fs_info->last_trans_committed = generation; 2996 2997 ret = btrfs_verify_dev_extents(fs_info); 2998 if (ret) { 2999 btrfs_err(fs_info, 3000 "failed to verify dev extents against chunks: %d", 3001 ret); 3002 goto fail_block_groups; 3003 } 3004 ret = btrfs_recover_balance(fs_info); 3005 if (ret) { 3006 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3007 goto fail_block_groups; 3008 } 3009 3010 ret = btrfs_init_dev_stats(fs_info); 3011 if (ret) { 3012 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3013 goto fail_block_groups; 3014 } 3015 3016 ret = btrfs_init_dev_replace(fs_info); 3017 if (ret) { 3018 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3019 goto fail_block_groups; 3020 } 3021 3022 btrfs_free_extra_devids(fs_devices, 1); 3023 3024 ret = btrfs_sysfs_add_fsid(fs_devices, NULL); 3025 if (ret) { 3026 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3027 ret); 3028 goto fail_block_groups; 3029 } 3030 3031 ret = btrfs_sysfs_add_device(fs_devices); 3032 if (ret) { 3033 btrfs_err(fs_info, "failed to init sysfs device interface: %d", 3034 ret); 3035 goto fail_fsdev_sysfs; 3036 } 3037 3038 ret = btrfs_sysfs_add_mounted(fs_info); 3039 if (ret) { 3040 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3041 goto fail_fsdev_sysfs; 3042 } 3043 3044 ret = btrfs_init_space_info(fs_info); 3045 if (ret) { 3046 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3047 goto fail_sysfs; 3048 } 3049 3050 ret = btrfs_read_block_groups(fs_info); 3051 if (ret) { 3052 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3053 goto fail_sysfs; 3054 } 3055 3056 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) { 3057 btrfs_warn(fs_info, 3058 "writeable mount is not allowed due to too many missing devices"); 3059 goto fail_sysfs; 3060 } 3061 3062 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3063 "btrfs-cleaner"); 3064 if (IS_ERR(fs_info->cleaner_kthread)) 3065 goto fail_sysfs; 3066 3067 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3068 tree_root, 3069 "btrfs-transaction"); 3070 if (IS_ERR(fs_info->transaction_kthread)) 3071 goto fail_cleaner; 3072 3073 if (!btrfs_test_opt(fs_info, NOSSD) && 3074 !fs_info->fs_devices->rotating) { 3075 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3076 } 3077 3078 /* 3079 * Mount does not set all options immediately, we can do it now and do 3080 * not have to wait for transaction commit 3081 */ 3082 btrfs_apply_pending_changes(fs_info); 3083 3084 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3085 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3086 ret = btrfsic_mount(fs_info, fs_devices, 3087 btrfs_test_opt(fs_info, 3088 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3089 1 : 0, 3090 fs_info->check_integrity_print_mask); 3091 if (ret) 3092 btrfs_warn(fs_info, 3093 "failed to initialize integrity check module: %d", 3094 ret); 3095 } 3096 #endif 3097 ret = btrfs_read_qgroup_config(fs_info); 3098 if (ret) 3099 goto fail_trans_kthread; 3100 3101 if (btrfs_build_ref_tree(fs_info)) 3102 btrfs_err(fs_info, "couldn't build ref tree"); 3103 3104 /* do not make disk changes in broken FS or nologreplay is given */ 3105 if (btrfs_super_log_root(disk_super) != 0 && 3106 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3107 ret = btrfs_replay_log(fs_info, fs_devices); 3108 if (ret) { 3109 err = ret; 3110 goto fail_qgroup; 3111 } 3112 } 3113 3114 ret = btrfs_find_orphan_roots(fs_info); 3115 if (ret) 3116 goto fail_qgroup; 3117 3118 if (!sb_rdonly(sb)) { 3119 ret = btrfs_cleanup_fs_roots(fs_info); 3120 if (ret) 3121 goto fail_qgroup; 3122 3123 mutex_lock(&fs_info->cleaner_mutex); 3124 ret = btrfs_recover_relocation(tree_root); 3125 mutex_unlock(&fs_info->cleaner_mutex); 3126 if (ret < 0) { 3127 btrfs_warn(fs_info, "failed to recover relocation: %d", 3128 ret); 3129 err = -EINVAL; 3130 goto fail_qgroup; 3131 } 3132 } 3133 3134 location.objectid = BTRFS_FS_TREE_OBJECTID; 3135 location.type = BTRFS_ROOT_ITEM_KEY; 3136 location.offset = 0; 3137 3138 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 3139 if (IS_ERR(fs_info->fs_root)) { 3140 err = PTR_ERR(fs_info->fs_root); 3141 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3142 goto fail_qgroup; 3143 } 3144 3145 if (sb_rdonly(sb)) 3146 return 0; 3147 3148 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3149 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3150 clear_free_space_tree = 1; 3151 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3152 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3153 btrfs_warn(fs_info, "free space tree is invalid"); 3154 clear_free_space_tree = 1; 3155 } 3156 3157 if (clear_free_space_tree) { 3158 btrfs_info(fs_info, "clearing free space tree"); 3159 ret = btrfs_clear_free_space_tree(fs_info); 3160 if (ret) { 3161 btrfs_warn(fs_info, 3162 "failed to clear free space tree: %d", ret); 3163 close_ctree(fs_info); 3164 return ret; 3165 } 3166 } 3167 3168 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3169 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3170 btrfs_info(fs_info, "creating free space tree"); 3171 ret = btrfs_create_free_space_tree(fs_info); 3172 if (ret) { 3173 btrfs_warn(fs_info, 3174 "failed to create free space tree: %d", ret); 3175 close_ctree(fs_info); 3176 return ret; 3177 } 3178 } 3179 3180 down_read(&fs_info->cleanup_work_sem); 3181 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3182 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3183 up_read(&fs_info->cleanup_work_sem); 3184 close_ctree(fs_info); 3185 return ret; 3186 } 3187 up_read(&fs_info->cleanup_work_sem); 3188 3189 ret = btrfs_resume_balance_async(fs_info); 3190 if (ret) { 3191 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3192 close_ctree(fs_info); 3193 return ret; 3194 } 3195 3196 ret = btrfs_resume_dev_replace_async(fs_info); 3197 if (ret) { 3198 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3199 close_ctree(fs_info); 3200 return ret; 3201 } 3202 3203 btrfs_qgroup_rescan_resume(fs_info); 3204 3205 if (!fs_info->uuid_root) { 3206 btrfs_info(fs_info, "creating UUID tree"); 3207 ret = btrfs_create_uuid_tree(fs_info); 3208 if (ret) { 3209 btrfs_warn(fs_info, 3210 "failed to create the UUID tree: %d", ret); 3211 close_ctree(fs_info); 3212 return ret; 3213 } 3214 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3215 fs_info->generation != 3216 btrfs_super_uuid_tree_generation(disk_super)) { 3217 btrfs_info(fs_info, "checking UUID tree"); 3218 ret = btrfs_check_uuid_tree(fs_info); 3219 if (ret) { 3220 btrfs_warn(fs_info, 3221 "failed to check the UUID tree: %d", ret); 3222 close_ctree(fs_info); 3223 return ret; 3224 } 3225 } else { 3226 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3227 } 3228 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3229 3230 /* 3231 * backuproot only affect mount behavior, and if open_ctree succeeded, 3232 * no need to keep the flag 3233 */ 3234 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3235 3236 return 0; 3237 3238 fail_qgroup: 3239 btrfs_free_qgroup_config(fs_info); 3240 fail_trans_kthread: 3241 kthread_stop(fs_info->transaction_kthread); 3242 btrfs_cleanup_transaction(fs_info); 3243 btrfs_free_fs_roots(fs_info); 3244 fail_cleaner: 3245 kthread_stop(fs_info->cleaner_kthread); 3246 3247 /* 3248 * make sure we're done with the btree inode before we stop our 3249 * kthreads 3250 */ 3251 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3252 3253 fail_sysfs: 3254 btrfs_sysfs_remove_mounted(fs_info); 3255 3256 fail_fsdev_sysfs: 3257 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3258 3259 fail_block_groups: 3260 btrfs_put_block_group_cache(fs_info); 3261 3262 fail_tree_roots: 3263 free_root_pointers(fs_info, 1); 3264 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3265 3266 fail_sb_buffer: 3267 btrfs_stop_all_workers(fs_info); 3268 btrfs_free_block_groups(fs_info); 3269 fail_alloc: 3270 fail_iput: 3271 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3272 3273 iput(fs_info->btree_inode); 3274 fail_bio_counter: 3275 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 3276 fail_delalloc_bytes: 3277 percpu_counter_destroy(&fs_info->delalloc_bytes); 3278 fail_dirty_metadata_bytes: 3279 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3280 fail_srcu: 3281 cleanup_srcu_struct(&fs_info->subvol_srcu); 3282 fail: 3283 btrfs_free_stripe_hash_table(fs_info); 3284 btrfs_close_devices(fs_info->fs_devices); 3285 return err; 3286 3287 recovery_tree_root: 3288 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 3289 goto fail_tree_roots; 3290 3291 free_root_pointers(fs_info, 0); 3292 3293 /* don't use the log in recovery mode, it won't be valid */ 3294 btrfs_set_super_log_root(disk_super, 0); 3295 3296 /* we can't trust the free space cache either */ 3297 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3298 3299 ret = next_root_backup(fs_info, fs_info->super_copy, 3300 &num_backups_tried, &backup_index); 3301 if (ret == -1) 3302 goto fail_block_groups; 3303 goto retry_root_backup; 3304 } 3305 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3306 3307 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3308 { 3309 if (uptodate) { 3310 set_buffer_uptodate(bh); 3311 } else { 3312 struct btrfs_device *device = (struct btrfs_device *) 3313 bh->b_private; 3314 3315 btrfs_warn_rl_in_rcu(device->fs_info, 3316 "lost page write due to IO error on %s", 3317 rcu_str_deref(device->name)); 3318 /* note, we don't set_buffer_write_io_error because we have 3319 * our own ways of dealing with the IO errors 3320 */ 3321 clear_buffer_uptodate(bh); 3322 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3323 } 3324 unlock_buffer(bh); 3325 put_bh(bh); 3326 } 3327 3328 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, 3329 struct buffer_head **bh_ret) 3330 { 3331 struct buffer_head *bh; 3332 struct btrfs_super_block *super; 3333 u64 bytenr; 3334 3335 bytenr = btrfs_sb_offset(copy_num); 3336 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3337 return -EINVAL; 3338 3339 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE); 3340 /* 3341 * If we fail to read from the underlying devices, as of now 3342 * the best option we have is to mark it EIO. 3343 */ 3344 if (!bh) 3345 return -EIO; 3346 3347 super = (struct btrfs_super_block *)bh->b_data; 3348 if (btrfs_super_bytenr(super) != bytenr || 3349 btrfs_super_magic(super) != BTRFS_MAGIC) { 3350 brelse(bh); 3351 return -EINVAL; 3352 } 3353 3354 *bh_ret = bh; 3355 return 0; 3356 } 3357 3358 3359 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3360 { 3361 struct buffer_head *bh; 3362 struct buffer_head *latest = NULL; 3363 struct btrfs_super_block *super; 3364 int i; 3365 u64 transid = 0; 3366 int ret = -EINVAL; 3367 3368 /* we would like to check all the supers, but that would make 3369 * a btrfs mount succeed after a mkfs from a different FS. 3370 * So, we need to add a special mount option to scan for 3371 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3372 */ 3373 for (i = 0; i < 1; i++) { 3374 ret = btrfs_read_dev_one_super(bdev, i, &bh); 3375 if (ret) 3376 continue; 3377 3378 super = (struct btrfs_super_block *)bh->b_data; 3379 3380 if (!latest || btrfs_super_generation(super) > transid) { 3381 brelse(latest); 3382 latest = bh; 3383 transid = btrfs_super_generation(super); 3384 } else { 3385 brelse(bh); 3386 } 3387 } 3388 3389 if (!latest) 3390 return ERR_PTR(ret); 3391 3392 return latest; 3393 } 3394 3395 /* 3396 * Write superblock @sb to the @device. Do not wait for completion, all the 3397 * buffer heads we write are pinned. 3398 * 3399 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3400 * the expected device size at commit time. Note that max_mirrors must be 3401 * same for write and wait phases. 3402 * 3403 * Return number of errors when buffer head is not found or submission fails. 3404 */ 3405 static int write_dev_supers(struct btrfs_device *device, 3406 struct btrfs_super_block *sb, int max_mirrors) 3407 { 3408 struct buffer_head *bh; 3409 int i; 3410 int ret; 3411 int errors = 0; 3412 u32 crc; 3413 u64 bytenr; 3414 int op_flags; 3415 3416 if (max_mirrors == 0) 3417 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3418 3419 for (i = 0; i < max_mirrors; i++) { 3420 bytenr = btrfs_sb_offset(i); 3421 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3422 device->commit_total_bytes) 3423 break; 3424 3425 btrfs_set_super_bytenr(sb, bytenr); 3426 3427 crc = ~(u32)0; 3428 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc, 3429 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 3430 btrfs_csum_final(crc, sb->csum); 3431 3432 /* One reference for us, and we leave it for the caller */ 3433 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, 3434 BTRFS_SUPER_INFO_SIZE); 3435 if (!bh) { 3436 btrfs_err(device->fs_info, 3437 "couldn't get super buffer head for bytenr %llu", 3438 bytenr); 3439 errors++; 3440 continue; 3441 } 3442 3443 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3444 3445 /* one reference for submit_bh */ 3446 get_bh(bh); 3447 3448 set_buffer_uptodate(bh); 3449 lock_buffer(bh); 3450 bh->b_end_io = btrfs_end_buffer_write_sync; 3451 bh->b_private = device; 3452 3453 /* 3454 * we fua the first super. The others we allow 3455 * to go down lazy. 3456 */ 3457 op_flags = REQ_SYNC | REQ_META | REQ_PRIO; 3458 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3459 op_flags |= REQ_FUA; 3460 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh); 3461 if (ret) 3462 errors++; 3463 } 3464 return errors < i ? 0 : -1; 3465 } 3466 3467 /* 3468 * Wait for write completion of superblocks done by write_dev_supers, 3469 * @max_mirrors same for write and wait phases. 3470 * 3471 * Return number of errors when buffer head is not found or not marked up to 3472 * date. 3473 */ 3474 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3475 { 3476 struct buffer_head *bh; 3477 int i; 3478 int errors = 0; 3479 bool primary_failed = false; 3480 u64 bytenr; 3481 3482 if (max_mirrors == 0) 3483 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3484 3485 for (i = 0; i < max_mirrors; i++) { 3486 bytenr = btrfs_sb_offset(i); 3487 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3488 device->commit_total_bytes) 3489 break; 3490 3491 bh = __find_get_block(device->bdev, 3492 bytenr / BTRFS_BDEV_BLOCKSIZE, 3493 BTRFS_SUPER_INFO_SIZE); 3494 if (!bh) { 3495 errors++; 3496 if (i == 0) 3497 primary_failed = true; 3498 continue; 3499 } 3500 wait_on_buffer(bh); 3501 if (!buffer_uptodate(bh)) { 3502 errors++; 3503 if (i == 0) 3504 primary_failed = true; 3505 } 3506 3507 /* drop our reference */ 3508 brelse(bh); 3509 3510 /* drop the reference from the writing run */ 3511 brelse(bh); 3512 } 3513 3514 /* log error, force error return */ 3515 if (primary_failed) { 3516 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3517 device->devid); 3518 return -1; 3519 } 3520 3521 return errors < i ? 0 : -1; 3522 } 3523 3524 /* 3525 * endio for the write_dev_flush, this will wake anyone waiting 3526 * for the barrier when it is done 3527 */ 3528 static void btrfs_end_empty_barrier(struct bio *bio) 3529 { 3530 complete(bio->bi_private); 3531 } 3532 3533 /* 3534 * Submit a flush request to the device if it supports it. Error handling is 3535 * done in the waiting counterpart. 3536 */ 3537 static void write_dev_flush(struct btrfs_device *device) 3538 { 3539 struct request_queue *q = bdev_get_queue(device->bdev); 3540 struct bio *bio = device->flush_bio; 3541 3542 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 3543 return; 3544 3545 bio_reset(bio); 3546 bio->bi_end_io = btrfs_end_empty_barrier; 3547 bio_set_dev(bio, device->bdev); 3548 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 3549 init_completion(&device->flush_wait); 3550 bio->bi_private = &device->flush_wait; 3551 3552 btrfsic_submit_bio(bio); 3553 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3554 } 3555 3556 /* 3557 * If the flush bio has been submitted by write_dev_flush, wait for it. 3558 */ 3559 static blk_status_t wait_dev_flush(struct btrfs_device *device) 3560 { 3561 struct bio *bio = device->flush_bio; 3562 3563 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3564 return BLK_STS_OK; 3565 3566 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3567 wait_for_completion_io(&device->flush_wait); 3568 3569 return bio->bi_status; 3570 } 3571 3572 static int check_barrier_error(struct btrfs_fs_info *fs_info) 3573 { 3574 if (!btrfs_check_rw_degradable(fs_info, NULL)) 3575 return -EIO; 3576 return 0; 3577 } 3578 3579 /* 3580 * send an empty flush down to each device in parallel, 3581 * then wait for them 3582 */ 3583 static int barrier_all_devices(struct btrfs_fs_info *info) 3584 { 3585 struct list_head *head; 3586 struct btrfs_device *dev; 3587 int errors_wait = 0; 3588 blk_status_t ret; 3589 3590 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3591 /* send down all the barriers */ 3592 head = &info->fs_devices->devices; 3593 list_for_each_entry(dev, head, dev_list) { 3594 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3595 continue; 3596 if (!dev->bdev) 3597 continue; 3598 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3599 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3600 continue; 3601 3602 write_dev_flush(dev); 3603 dev->last_flush_error = BLK_STS_OK; 3604 } 3605 3606 /* wait for all the barriers */ 3607 list_for_each_entry(dev, head, dev_list) { 3608 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3609 continue; 3610 if (!dev->bdev) { 3611 errors_wait++; 3612 continue; 3613 } 3614 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3615 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3616 continue; 3617 3618 ret = wait_dev_flush(dev); 3619 if (ret) { 3620 dev->last_flush_error = ret; 3621 btrfs_dev_stat_inc_and_print(dev, 3622 BTRFS_DEV_STAT_FLUSH_ERRS); 3623 errors_wait++; 3624 } 3625 } 3626 3627 if (errors_wait) { 3628 /* 3629 * At some point we need the status of all disks 3630 * to arrive at the volume status. So error checking 3631 * is being pushed to a separate loop. 3632 */ 3633 return check_barrier_error(info); 3634 } 3635 return 0; 3636 } 3637 3638 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3639 { 3640 int raid_type; 3641 int min_tolerated = INT_MAX; 3642 3643 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3644 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3645 min_tolerated = min(min_tolerated, 3646 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3647 tolerated_failures); 3648 3649 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3650 if (raid_type == BTRFS_RAID_SINGLE) 3651 continue; 3652 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 3653 continue; 3654 min_tolerated = min(min_tolerated, 3655 btrfs_raid_array[raid_type]. 3656 tolerated_failures); 3657 } 3658 3659 if (min_tolerated == INT_MAX) { 3660 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3661 min_tolerated = 0; 3662 } 3663 3664 return min_tolerated; 3665 } 3666 3667 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3668 { 3669 struct list_head *head; 3670 struct btrfs_device *dev; 3671 struct btrfs_super_block *sb; 3672 struct btrfs_dev_item *dev_item; 3673 int ret; 3674 int do_barriers; 3675 int max_errors; 3676 int total_errors = 0; 3677 u64 flags; 3678 3679 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 3680 3681 /* 3682 * max_mirrors == 0 indicates we're from commit_transaction, 3683 * not from fsync where the tree roots in fs_info have not 3684 * been consistent on disk. 3685 */ 3686 if (max_mirrors == 0) 3687 backup_super_roots(fs_info); 3688 3689 sb = fs_info->super_for_commit; 3690 dev_item = &sb->dev_item; 3691 3692 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3693 head = &fs_info->fs_devices->devices; 3694 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 3695 3696 if (do_barriers) { 3697 ret = barrier_all_devices(fs_info); 3698 if (ret) { 3699 mutex_unlock( 3700 &fs_info->fs_devices->device_list_mutex); 3701 btrfs_handle_fs_error(fs_info, ret, 3702 "errors while submitting device barriers."); 3703 return ret; 3704 } 3705 } 3706 3707 list_for_each_entry(dev, head, dev_list) { 3708 if (!dev->bdev) { 3709 total_errors++; 3710 continue; 3711 } 3712 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3713 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3714 continue; 3715 3716 btrfs_set_stack_device_generation(dev_item, 0); 3717 btrfs_set_stack_device_type(dev_item, dev->type); 3718 btrfs_set_stack_device_id(dev_item, dev->devid); 3719 btrfs_set_stack_device_total_bytes(dev_item, 3720 dev->commit_total_bytes); 3721 btrfs_set_stack_device_bytes_used(dev_item, 3722 dev->commit_bytes_used); 3723 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3724 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3725 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3726 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3727 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE); 3728 3729 flags = btrfs_super_flags(sb); 3730 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3731 3732 ret = btrfs_validate_write_super(fs_info, sb); 3733 if (ret < 0) { 3734 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3735 btrfs_handle_fs_error(fs_info, -EUCLEAN, 3736 "unexpected superblock corruption detected"); 3737 return -EUCLEAN; 3738 } 3739 3740 ret = write_dev_supers(dev, sb, max_mirrors); 3741 if (ret) 3742 total_errors++; 3743 } 3744 if (total_errors > max_errors) { 3745 btrfs_err(fs_info, "%d errors while writing supers", 3746 total_errors); 3747 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3748 3749 /* FUA is masked off if unsupported and can't be the reason */ 3750 btrfs_handle_fs_error(fs_info, -EIO, 3751 "%d errors while writing supers", 3752 total_errors); 3753 return -EIO; 3754 } 3755 3756 total_errors = 0; 3757 list_for_each_entry(dev, head, dev_list) { 3758 if (!dev->bdev) 3759 continue; 3760 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3761 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3762 continue; 3763 3764 ret = wait_dev_supers(dev, max_mirrors); 3765 if (ret) 3766 total_errors++; 3767 } 3768 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3769 if (total_errors > max_errors) { 3770 btrfs_handle_fs_error(fs_info, -EIO, 3771 "%d errors while writing supers", 3772 total_errors); 3773 return -EIO; 3774 } 3775 return 0; 3776 } 3777 3778 /* Drop a fs root from the radix tree and free it. */ 3779 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3780 struct btrfs_root *root) 3781 { 3782 spin_lock(&fs_info->fs_roots_radix_lock); 3783 radix_tree_delete(&fs_info->fs_roots_radix, 3784 (unsigned long)root->root_key.objectid); 3785 spin_unlock(&fs_info->fs_roots_radix_lock); 3786 3787 if (btrfs_root_refs(&root->root_item) == 0) 3788 synchronize_srcu(&fs_info->subvol_srcu); 3789 3790 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3791 btrfs_free_log(NULL, root); 3792 if (root->reloc_root) { 3793 free_extent_buffer(root->reloc_root->node); 3794 free_extent_buffer(root->reloc_root->commit_root); 3795 btrfs_put_fs_root(root->reloc_root); 3796 root->reloc_root = NULL; 3797 } 3798 } 3799 3800 if (root->free_ino_pinned) 3801 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3802 if (root->free_ino_ctl) 3803 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3804 btrfs_free_fs_root(root); 3805 } 3806 3807 void btrfs_free_fs_root(struct btrfs_root *root) 3808 { 3809 iput(root->ino_cache_inode); 3810 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3811 if (root->anon_dev) 3812 free_anon_bdev(root->anon_dev); 3813 if (root->subv_writers) 3814 btrfs_free_subvolume_writers(root->subv_writers); 3815 free_extent_buffer(root->node); 3816 free_extent_buffer(root->commit_root); 3817 kfree(root->free_ino_ctl); 3818 kfree(root->free_ino_pinned); 3819 btrfs_put_fs_root(root); 3820 } 3821 3822 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3823 { 3824 u64 root_objectid = 0; 3825 struct btrfs_root *gang[8]; 3826 int i = 0; 3827 int err = 0; 3828 unsigned int ret = 0; 3829 int index; 3830 3831 while (1) { 3832 index = srcu_read_lock(&fs_info->subvol_srcu); 3833 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3834 (void **)gang, root_objectid, 3835 ARRAY_SIZE(gang)); 3836 if (!ret) { 3837 srcu_read_unlock(&fs_info->subvol_srcu, index); 3838 break; 3839 } 3840 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3841 3842 for (i = 0; i < ret; i++) { 3843 /* Avoid to grab roots in dead_roots */ 3844 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3845 gang[i] = NULL; 3846 continue; 3847 } 3848 /* grab all the search result for later use */ 3849 gang[i] = btrfs_grab_fs_root(gang[i]); 3850 } 3851 srcu_read_unlock(&fs_info->subvol_srcu, index); 3852 3853 for (i = 0; i < ret; i++) { 3854 if (!gang[i]) 3855 continue; 3856 root_objectid = gang[i]->root_key.objectid; 3857 err = btrfs_orphan_cleanup(gang[i]); 3858 if (err) 3859 break; 3860 btrfs_put_fs_root(gang[i]); 3861 } 3862 root_objectid++; 3863 } 3864 3865 /* release the uncleaned roots due to error */ 3866 for (; i < ret; i++) { 3867 if (gang[i]) 3868 btrfs_put_fs_root(gang[i]); 3869 } 3870 return err; 3871 } 3872 3873 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 3874 { 3875 struct btrfs_root *root = fs_info->tree_root; 3876 struct btrfs_trans_handle *trans; 3877 3878 mutex_lock(&fs_info->cleaner_mutex); 3879 btrfs_run_delayed_iputs(fs_info); 3880 mutex_unlock(&fs_info->cleaner_mutex); 3881 wake_up_process(fs_info->cleaner_kthread); 3882 3883 /* wait until ongoing cleanup work done */ 3884 down_write(&fs_info->cleanup_work_sem); 3885 up_write(&fs_info->cleanup_work_sem); 3886 3887 trans = btrfs_join_transaction(root); 3888 if (IS_ERR(trans)) 3889 return PTR_ERR(trans); 3890 return btrfs_commit_transaction(trans); 3891 } 3892 3893 void close_ctree(struct btrfs_fs_info *fs_info) 3894 { 3895 int ret; 3896 3897 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 3898 /* 3899 * We don't want the cleaner to start new transactions, add more delayed 3900 * iputs, etc. while we're closing. We can't use kthread_stop() yet 3901 * because that frees the task_struct, and the transaction kthread might 3902 * still try to wake up the cleaner. 3903 */ 3904 kthread_park(fs_info->cleaner_kthread); 3905 3906 /* wait for the qgroup rescan worker to stop */ 3907 btrfs_qgroup_wait_for_completion(fs_info, false); 3908 3909 /* wait for the uuid_scan task to finish */ 3910 down(&fs_info->uuid_tree_rescan_sem); 3911 /* avoid complains from lockdep et al., set sem back to initial state */ 3912 up(&fs_info->uuid_tree_rescan_sem); 3913 3914 /* pause restriper - we want to resume on mount */ 3915 btrfs_pause_balance(fs_info); 3916 3917 btrfs_dev_replace_suspend_for_unmount(fs_info); 3918 3919 btrfs_scrub_cancel(fs_info); 3920 3921 /* wait for any defraggers to finish */ 3922 wait_event(fs_info->transaction_wait, 3923 (atomic_read(&fs_info->defrag_running) == 0)); 3924 3925 /* clear out the rbtree of defraggable inodes */ 3926 btrfs_cleanup_defrag_inodes(fs_info); 3927 3928 cancel_work_sync(&fs_info->async_reclaim_work); 3929 3930 if (!sb_rdonly(fs_info->sb)) { 3931 /* 3932 * The cleaner kthread is stopped, so do one final pass over 3933 * unused block groups. 3934 */ 3935 btrfs_delete_unused_bgs(fs_info); 3936 3937 ret = btrfs_commit_super(fs_info); 3938 if (ret) 3939 btrfs_err(fs_info, "commit super ret %d", ret); 3940 } 3941 3942 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) || 3943 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) 3944 btrfs_error_commit_super(fs_info); 3945 3946 kthread_stop(fs_info->transaction_kthread); 3947 kthread_stop(fs_info->cleaner_kthread); 3948 3949 ASSERT(list_empty(&fs_info->delayed_iputs)); 3950 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 3951 3952 btrfs_free_qgroup_config(fs_info); 3953 ASSERT(list_empty(&fs_info->delalloc_roots)); 3954 3955 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3956 btrfs_info(fs_info, "at unmount delalloc count %lld", 3957 percpu_counter_sum(&fs_info->delalloc_bytes)); 3958 } 3959 3960 btrfs_sysfs_remove_mounted(fs_info); 3961 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3962 3963 btrfs_free_fs_roots(fs_info); 3964 3965 btrfs_put_block_group_cache(fs_info); 3966 3967 /* 3968 * we must make sure there is not any read request to 3969 * submit after we stopping all workers. 3970 */ 3971 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3972 btrfs_stop_all_workers(fs_info); 3973 3974 btrfs_free_block_groups(fs_info); 3975 3976 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 3977 free_root_pointers(fs_info, 1); 3978 3979 iput(fs_info->btree_inode); 3980 3981 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3982 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 3983 btrfsic_unmount(fs_info->fs_devices); 3984 #endif 3985 3986 btrfs_close_devices(fs_info->fs_devices); 3987 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3988 3989 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3990 percpu_counter_destroy(&fs_info->delalloc_bytes); 3991 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 3992 cleanup_srcu_struct(&fs_info->subvol_srcu); 3993 3994 btrfs_free_stripe_hash_table(fs_info); 3995 btrfs_free_ref_cache(fs_info); 3996 3997 while (!list_empty(&fs_info->pinned_chunks)) { 3998 struct extent_map *em; 3999 4000 em = list_first_entry(&fs_info->pinned_chunks, 4001 struct extent_map, list); 4002 list_del_init(&em->list); 4003 free_extent_map(em); 4004 } 4005 } 4006 4007 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4008 int atomic) 4009 { 4010 int ret; 4011 struct inode *btree_inode = buf->pages[0]->mapping->host; 4012 4013 ret = extent_buffer_uptodate(buf); 4014 if (!ret) 4015 return ret; 4016 4017 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4018 parent_transid, atomic); 4019 if (ret == -EAGAIN) 4020 return ret; 4021 return !ret; 4022 } 4023 4024 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4025 { 4026 struct btrfs_fs_info *fs_info; 4027 struct btrfs_root *root; 4028 u64 transid = btrfs_header_generation(buf); 4029 int was_dirty; 4030 4031 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4032 /* 4033 * This is a fast path so only do this check if we have sanity tests 4034 * enabled. Normal people shouldn't be using umapped buffers as dirty 4035 * outside of the sanity tests. 4036 */ 4037 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4038 return; 4039 #endif 4040 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4041 fs_info = root->fs_info; 4042 btrfs_assert_tree_locked(buf); 4043 if (transid != fs_info->generation) 4044 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4045 buf->start, transid, fs_info->generation); 4046 was_dirty = set_extent_buffer_dirty(buf); 4047 if (!was_dirty) 4048 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4049 buf->len, 4050 fs_info->dirty_metadata_batch); 4051 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4052 /* 4053 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4054 * but item data not updated. 4055 * So here we should only check item pointers, not item data. 4056 */ 4057 if (btrfs_header_level(buf) == 0 && 4058 btrfs_check_leaf_relaxed(fs_info, buf)) { 4059 btrfs_print_leaf(buf); 4060 ASSERT(0); 4061 } 4062 #endif 4063 } 4064 4065 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4066 int flush_delayed) 4067 { 4068 /* 4069 * looks as though older kernels can get into trouble with 4070 * this code, they end up stuck in balance_dirty_pages forever 4071 */ 4072 int ret; 4073 4074 if (current->flags & PF_MEMALLOC) 4075 return; 4076 4077 if (flush_delayed) 4078 btrfs_balance_delayed_items(fs_info); 4079 4080 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4081 BTRFS_DIRTY_METADATA_THRESH, 4082 fs_info->dirty_metadata_batch); 4083 if (ret > 0) { 4084 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4085 } 4086 } 4087 4088 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4089 { 4090 __btrfs_btree_balance_dirty(fs_info, 1); 4091 } 4092 4093 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4094 { 4095 __btrfs_btree_balance_dirty(fs_info, 0); 4096 } 4097 4098 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level, 4099 struct btrfs_key *first_key) 4100 { 4101 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4102 struct btrfs_fs_info *fs_info = root->fs_info; 4103 4104 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid, 4105 level, first_key); 4106 } 4107 4108 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4109 { 4110 /* cleanup FS via transaction */ 4111 btrfs_cleanup_transaction(fs_info); 4112 4113 mutex_lock(&fs_info->cleaner_mutex); 4114 btrfs_run_delayed_iputs(fs_info); 4115 mutex_unlock(&fs_info->cleaner_mutex); 4116 4117 down_write(&fs_info->cleanup_work_sem); 4118 up_write(&fs_info->cleanup_work_sem); 4119 } 4120 4121 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4122 { 4123 struct btrfs_ordered_extent *ordered; 4124 4125 spin_lock(&root->ordered_extent_lock); 4126 /* 4127 * This will just short circuit the ordered completion stuff which will 4128 * make sure the ordered extent gets properly cleaned up. 4129 */ 4130 list_for_each_entry(ordered, &root->ordered_extents, 4131 root_extent_list) 4132 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4133 spin_unlock(&root->ordered_extent_lock); 4134 } 4135 4136 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4137 { 4138 struct btrfs_root *root; 4139 struct list_head splice; 4140 4141 INIT_LIST_HEAD(&splice); 4142 4143 spin_lock(&fs_info->ordered_root_lock); 4144 list_splice_init(&fs_info->ordered_roots, &splice); 4145 while (!list_empty(&splice)) { 4146 root = list_first_entry(&splice, struct btrfs_root, 4147 ordered_root); 4148 list_move_tail(&root->ordered_root, 4149 &fs_info->ordered_roots); 4150 4151 spin_unlock(&fs_info->ordered_root_lock); 4152 btrfs_destroy_ordered_extents(root); 4153 4154 cond_resched(); 4155 spin_lock(&fs_info->ordered_root_lock); 4156 } 4157 spin_unlock(&fs_info->ordered_root_lock); 4158 } 4159 4160 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4161 struct btrfs_fs_info *fs_info) 4162 { 4163 struct rb_node *node; 4164 struct btrfs_delayed_ref_root *delayed_refs; 4165 struct btrfs_delayed_ref_node *ref; 4166 int ret = 0; 4167 4168 delayed_refs = &trans->delayed_refs; 4169 4170 spin_lock(&delayed_refs->lock); 4171 if (atomic_read(&delayed_refs->num_entries) == 0) { 4172 spin_unlock(&delayed_refs->lock); 4173 btrfs_info(fs_info, "delayed_refs has NO entry"); 4174 return ret; 4175 } 4176 4177 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4178 struct btrfs_delayed_ref_head *head; 4179 struct rb_node *n; 4180 bool pin_bytes = false; 4181 4182 head = rb_entry(node, struct btrfs_delayed_ref_head, 4183 href_node); 4184 if (!mutex_trylock(&head->mutex)) { 4185 refcount_inc(&head->refs); 4186 spin_unlock(&delayed_refs->lock); 4187 4188 mutex_lock(&head->mutex); 4189 mutex_unlock(&head->mutex); 4190 btrfs_put_delayed_ref_head(head); 4191 spin_lock(&delayed_refs->lock); 4192 continue; 4193 } 4194 spin_lock(&head->lock); 4195 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4196 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4197 ref_node); 4198 ref->in_tree = 0; 4199 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4200 RB_CLEAR_NODE(&ref->ref_node); 4201 if (!list_empty(&ref->add_list)) 4202 list_del(&ref->add_list); 4203 atomic_dec(&delayed_refs->num_entries); 4204 btrfs_put_delayed_ref(ref); 4205 } 4206 if (head->must_insert_reserved) 4207 pin_bytes = true; 4208 btrfs_free_delayed_extent_op(head->extent_op); 4209 delayed_refs->num_heads--; 4210 if (head->processing == 0) 4211 delayed_refs->num_heads_ready--; 4212 atomic_dec(&delayed_refs->num_entries); 4213 rb_erase_cached(&head->href_node, &delayed_refs->href_root); 4214 RB_CLEAR_NODE(&head->href_node); 4215 spin_unlock(&head->lock); 4216 spin_unlock(&delayed_refs->lock); 4217 mutex_unlock(&head->mutex); 4218 4219 if (pin_bytes) 4220 btrfs_pin_extent(fs_info, head->bytenr, 4221 head->num_bytes, 1); 4222 btrfs_put_delayed_ref_head(head); 4223 cond_resched(); 4224 spin_lock(&delayed_refs->lock); 4225 } 4226 4227 spin_unlock(&delayed_refs->lock); 4228 4229 return ret; 4230 } 4231 4232 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4233 { 4234 struct btrfs_inode *btrfs_inode; 4235 struct list_head splice; 4236 4237 INIT_LIST_HEAD(&splice); 4238 4239 spin_lock(&root->delalloc_lock); 4240 list_splice_init(&root->delalloc_inodes, &splice); 4241 4242 while (!list_empty(&splice)) { 4243 struct inode *inode = NULL; 4244 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4245 delalloc_inodes); 4246 __btrfs_del_delalloc_inode(root, btrfs_inode); 4247 spin_unlock(&root->delalloc_lock); 4248 4249 /* 4250 * Make sure we get a live inode and that it'll not disappear 4251 * meanwhile. 4252 */ 4253 inode = igrab(&btrfs_inode->vfs_inode); 4254 if (inode) { 4255 invalidate_inode_pages2(inode->i_mapping); 4256 iput(inode); 4257 } 4258 spin_lock(&root->delalloc_lock); 4259 } 4260 spin_unlock(&root->delalloc_lock); 4261 } 4262 4263 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4264 { 4265 struct btrfs_root *root; 4266 struct list_head splice; 4267 4268 INIT_LIST_HEAD(&splice); 4269 4270 spin_lock(&fs_info->delalloc_root_lock); 4271 list_splice_init(&fs_info->delalloc_roots, &splice); 4272 while (!list_empty(&splice)) { 4273 root = list_first_entry(&splice, struct btrfs_root, 4274 delalloc_root); 4275 root = btrfs_grab_fs_root(root); 4276 BUG_ON(!root); 4277 spin_unlock(&fs_info->delalloc_root_lock); 4278 4279 btrfs_destroy_delalloc_inodes(root); 4280 btrfs_put_fs_root(root); 4281 4282 spin_lock(&fs_info->delalloc_root_lock); 4283 } 4284 spin_unlock(&fs_info->delalloc_root_lock); 4285 } 4286 4287 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4288 struct extent_io_tree *dirty_pages, 4289 int mark) 4290 { 4291 int ret; 4292 struct extent_buffer *eb; 4293 u64 start = 0; 4294 u64 end; 4295 4296 while (1) { 4297 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4298 mark, NULL); 4299 if (ret) 4300 break; 4301 4302 clear_extent_bits(dirty_pages, start, end, mark); 4303 while (start <= end) { 4304 eb = find_extent_buffer(fs_info, start); 4305 start += fs_info->nodesize; 4306 if (!eb) 4307 continue; 4308 wait_on_extent_buffer_writeback(eb); 4309 4310 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4311 &eb->bflags)) 4312 clear_extent_buffer_dirty(eb); 4313 free_extent_buffer_stale(eb); 4314 } 4315 } 4316 4317 return ret; 4318 } 4319 4320 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4321 struct extent_io_tree *pinned_extents) 4322 { 4323 struct extent_io_tree *unpin; 4324 u64 start; 4325 u64 end; 4326 int ret; 4327 bool loop = true; 4328 4329 unpin = pinned_extents; 4330 again: 4331 while (1) { 4332 /* 4333 * The btrfs_finish_extent_commit() may get the same range as 4334 * ours between find_first_extent_bit and clear_extent_dirty. 4335 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4336 * the same extent range. 4337 */ 4338 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4339 ret = find_first_extent_bit(unpin, 0, &start, &end, 4340 EXTENT_DIRTY, NULL); 4341 if (ret) { 4342 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4343 break; 4344 } 4345 4346 clear_extent_dirty(unpin, start, end); 4347 btrfs_error_unpin_extent_range(fs_info, start, end); 4348 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4349 cond_resched(); 4350 } 4351 4352 if (loop) { 4353 if (unpin == &fs_info->freed_extents[0]) 4354 unpin = &fs_info->freed_extents[1]; 4355 else 4356 unpin = &fs_info->freed_extents[0]; 4357 loop = false; 4358 goto again; 4359 } 4360 4361 return 0; 4362 } 4363 4364 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache) 4365 { 4366 struct inode *inode; 4367 4368 inode = cache->io_ctl.inode; 4369 if (inode) { 4370 invalidate_inode_pages2(inode->i_mapping); 4371 BTRFS_I(inode)->generation = 0; 4372 cache->io_ctl.inode = NULL; 4373 iput(inode); 4374 } 4375 btrfs_put_block_group(cache); 4376 } 4377 4378 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4379 struct btrfs_fs_info *fs_info) 4380 { 4381 struct btrfs_block_group_cache *cache; 4382 4383 spin_lock(&cur_trans->dirty_bgs_lock); 4384 while (!list_empty(&cur_trans->dirty_bgs)) { 4385 cache = list_first_entry(&cur_trans->dirty_bgs, 4386 struct btrfs_block_group_cache, 4387 dirty_list); 4388 4389 if (!list_empty(&cache->io_list)) { 4390 spin_unlock(&cur_trans->dirty_bgs_lock); 4391 list_del_init(&cache->io_list); 4392 btrfs_cleanup_bg_io(cache); 4393 spin_lock(&cur_trans->dirty_bgs_lock); 4394 } 4395 4396 list_del_init(&cache->dirty_list); 4397 spin_lock(&cache->lock); 4398 cache->disk_cache_state = BTRFS_DC_ERROR; 4399 spin_unlock(&cache->lock); 4400 4401 spin_unlock(&cur_trans->dirty_bgs_lock); 4402 btrfs_put_block_group(cache); 4403 spin_lock(&cur_trans->dirty_bgs_lock); 4404 } 4405 spin_unlock(&cur_trans->dirty_bgs_lock); 4406 4407 /* 4408 * Refer to the definition of io_bgs member for details why it's safe 4409 * to use it without any locking 4410 */ 4411 while (!list_empty(&cur_trans->io_bgs)) { 4412 cache = list_first_entry(&cur_trans->io_bgs, 4413 struct btrfs_block_group_cache, 4414 io_list); 4415 4416 list_del_init(&cache->io_list); 4417 spin_lock(&cache->lock); 4418 cache->disk_cache_state = BTRFS_DC_ERROR; 4419 spin_unlock(&cache->lock); 4420 btrfs_cleanup_bg_io(cache); 4421 } 4422 } 4423 4424 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4425 struct btrfs_fs_info *fs_info) 4426 { 4427 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4428 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4429 ASSERT(list_empty(&cur_trans->io_bgs)); 4430 4431 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4432 4433 cur_trans->state = TRANS_STATE_COMMIT_START; 4434 wake_up(&fs_info->transaction_blocked_wait); 4435 4436 cur_trans->state = TRANS_STATE_UNBLOCKED; 4437 wake_up(&fs_info->transaction_wait); 4438 4439 btrfs_destroy_delayed_inodes(fs_info); 4440 btrfs_assert_delayed_root_empty(fs_info); 4441 4442 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4443 EXTENT_DIRTY); 4444 btrfs_destroy_pinned_extent(fs_info, 4445 fs_info->pinned_extents); 4446 4447 cur_trans->state =TRANS_STATE_COMPLETED; 4448 wake_up(&cur_trans->commit_wait); 4449 } 4450 4451 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4452 { 4453 struct btrfs_transaction *t; 4454 4455 mutex_lock(&fs_info->transaction_kthread_mutex); 4456 4457 spin_lock(&fs_info->trans_lock); 4458 while (!list_empty(&fs_info->trans_list)) { 4459 t = list_first_entry(&fs_info->trans_list, 4460 struct btrfs_transaction, list); 4461 if (t->state >= TRANS_STATE_COMMIT_START) { 4462 refcount_inc(&t->use_count); 4463 spin_unlock(&fs_info->trans_lock); 4464 btrfs_wait_for_commit(fs_info, t->transid); 4465 btrfs_put_transaction(t); 4466 spin_lock(&fs_info->trans_lock); 4467 continue; 4468 } 4469 if (t == fs_info->running_transaction) { 4470 t->state = TRANS_STATE_COMMIT_DOING; 4471 spin_unlock(&fs_info->trans_lock); 4472 /* 4473 * We wait for 0 num_writers since we don't hold a trans 4474 * handle open currently for this transaction. 4475 */ 4476 wait_event(t->writer_wait, 4477 atomic_read(&t->num_writers) == 0); 4478 } else { 4479 spin_unlock(&fs_info->trans_lock); 4480 } 4481 btrfs_cleanup_one_transaction(t, fs_info); 4482 4483 spin_lock(&fs_info->trans_lock); 4484 if (t == fs_info->running_transaction) 4485 fs_info->running_transaction = NULL; 4486 list_del_init(&t->list); 4487 spin_unlock(&fs_info->trans_lock); 4488 4489 btrfs_put_transaction(t); 4490 trace_btrfs_transaction_commit(fs_info->tree_root); 4491 spin_lock(&fs_info->trans_lock); 4492 } 4493 spin_unlock(&fs_info->trans_lock); 4494 btrfs_destroy_all_ordered_extents(fs_info); 4495 btrfs_destroy_delayed_inodes(fs_info); 4496 btrfs_assert_delayed_root_empty(fs_info); 4497 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 4498 btrfs_destroy_all_delalloc_inodes(fs_info); 4499 mutex_unlock(&fs_info->transaction_kthread_mutex); 4500 4501 return 0; 4502 } 4503 4504 static const struct extent_io_ops btree_extent_io_ops = { 4505 /* mandatory callbacks */ 4506 .submit_bio_hook = btree_submit_bio_hook, 4507 .readpage_end_io_hook = btree_readpage_end_io_hook, 4508 .readpage_io_failed_hook = btree_io_failed_hook, 4509 4510 /* optional callbacks */ 4511 }; 4512