xref: /openbmc/linux/fs/btrfs/disk-io.c (revision 565d76cb)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include "compat.h"
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "volumes.h"
38 #include "print-tree.h"
39 #include "async-thread.h"
40 #include "locking.h"
41 #include "tree-log.h"
42 #include "free-space-cache.h"
43 
44 static struct extent_io_ops btree_extent_io_ops;
45 static void end_workqueue_fn(struct btrfs_work *work);
46 static void free_fs_root(struct btrfs_root *root);
47 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
48 				    int read_only);
49 static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
50 static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
51 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
52 				      struct btrfs_root *root);
53 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
54 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
55 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
56 					struct extent_io_tree *dirty_pages,
57 					int mark);
58 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
59 				       struct extent_io_tree *pinned_extents);
60 static int btrfs_cleanup_transaction(struct btrfs_root *root);
61 
62 /*
63  * end_io_wq structs are used to do processing in task context when an IO is
64  * complete.  This is used during reads to verify checksums, and it is used
65  * by writes to insert metadata for new file extents after IO is complete.
66  */
67 struct end_io_wq {
68 	struct bio *bio;
69 	bio_end_io_t *end_io;
70 	void *private;
71 	struct btrfs_fs_info *info;
72 	int error;
73 	int metadata;
74 	struct list_head list;
75 	struct btrfs_work work;
76 };
77 
78 /*
79  * async submit bios are used to offload expensive checksumming
80  * onto the worker threads.  They checksum file and metadata bios
81  * just before they are sent down the IO stack.
82  */
83 struct async_submit_bio {
84 	struct inode *inode;
85 	struct bio *bio;
86 	struct list_head list;
87 	extent_submit_bio_hook_t *submit_bio_start;
88 	extent_submit_bio_hook_t *submit_bio_done;
89 	int rw;
90 	int mirror_num;
91 	unsigned long bio_flags;
92 	/*
93 	 * bio_offset is optional, can be used if the pages in the bio
94 	 * can't tell us where in the file the bio should go
95 	 */
96 	u64 bio_offset;
97 	struct btrfs_work work;
98 };
99 
100 /* These are used to set the lockdep class on the extent buffer locks.
101  * The class is set by the readpage_end_io_hook after the buffer has
102  * passed csum validation but before the pages are unlocked.
103  *
104  * The lockdep class is also set by btrfs_init_new_buffer on freshly
105  * allocated blocks.
106  *
107  * The class is based on the level in the tree block, which allows lockdep
108  * to know that lower nodes nest inside the locks of higher nodes.
109  *
110  * We also add a check to make sure the highest level of the tree is
111  * the same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this
112  * code needs update as well.
113  */
114 #ifdef CONFIG_DEBUG_LOCK_ALLOC
115 # if BTRFS_MAX_LEVEL != 8
116 #  error
117 # endif
118 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
119 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
120 	/* leaf */
121 	"btrfs-extent-00",
122 	"btrfs-extent-01",
123 	"btrfs-extent-02",
124 	"btrfs-extent-03",
125 	"btrfs-extent-04",
126 	"btrfs-extent-05",
127 	"btrfs-extent-06",
128 	"btrfs-extent-07",
129 	/* highest possible level */
130 	"btrfs-extent-08",
131 };
132 #endif
133 
134 /*
135  * extents on the btree inode are pretty simple, there's one extent
136  * that covers the entire device
137  */
138 static struct extent_map *btree_get_extent(struct inode *inode,
139 		struct page *page, size_t page_offset, u64 start, u64 len,
140 		int create)
141 {
142 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
143 	struct extent_map *em;
144 	int ret;
145 
146 	read_lock(&em_tree->lock);
147 	em = lookup_extent_mapping(em_tree, start, len);
148 	if (em) {
149 		em->bdev =
150 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
151 		read_unlock(&em_tree->lock);
152 		goto out;
153 	}
154 	read_unlock(&em_tree->lock);
155 
156 	em = alloc_extent_map(GFP_NOFS);
157 	if (!em) {
158 		em = ERR_PTR(-ENOMEM);
159 		goto out;
160 	}
161 	em->start = 0;
162 	em->len = (u64)-1;
163 	em->block_len = (u64)-1;
164 	em->block_start = 0;
165 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
166 
167 	write_lock(&em_tree->lock);
168 	ret = add_extent_mapping(em_tree, em);
169 	if (ret == -EEXIST) {
170 		u64 failed_start = em->start;
171 		u64 failed_len = em->len;
172 
173 		free_extent_map(em);
174 		em = lookup_extent_mapping(em_tree, start, len);
175 		if (em) {
176 			ret = 0;
177 		} else {
178 			em = lookup_extent_mapping(em_tree, failed_start,
179 						   failed_len);
180 			ret = -EIO;
181 		}
182 	} else if (ret) {
183 		free_extent_map(em);
184 		em = NULL;
185 	}
186 	write_unlock(&em_tree->lock);
187 
188 	if (ret)
189 		em = ERR_PTR(ret);
190 out:
191 	return em;
192 }
193 
194 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
195 {
196 	return crc32c(seed, data, len);
197 }
198 
199 void btrfs_csum_final(u32 crc, char *result)
200 {
201 	*(__le32 *)result = ~cpu_to_le32(crc);
202 }
203 
204 /*
205  * compute the csum for a btree block, and either verify it or write it
206  * into the csum field of the block.
207  */
208 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
209 			   int verify)
210 {
211 	u16 csum_size =
212 		btrfs_super_csum_size(&root->fs_info->super_copy);
213 	char *result = NULL;
214 	unsigned long len;
215 	unsigned long cur_len;
216 	unsigned long offset = BTRFS_CSUM_SIZE;
217 	char *map_token = NULL;
218 	char *kaddr;
219 	unsigned long map_start;
220 	unsigned long map_len;
221 	int err;
222 	u32 crc = ~(u32)0;
223 	unsigned long inline_result;
224 
225 	len = buf->len - offset;
226 	while (len > 0) {
227 		err = map_private_extent_buffer(buf, offset, 32,
228 					&map_token, &kaddr,
229 					&map_start, &map_len, KM_USER0);
230 		if (err)
231 			return 1;
232 		cur_len = min(len, map_len - (offset - map_start));
233 		crc = btrfs_csum_data(root, kaddr + offset - map_start,
234 				      crc, cur_len);
235 		len -= cur_len;
236 		offset += cur_len;
237 		unmap_extent_buffer(buf, map_token, KM_USER0);
238 	}
239 	if (csum_size > sizeof(inline_result)) {
240 		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
241 		if (!result)
242 			return 1;
243 	} else {
244 		result = (char *)&inline_result;
245 	}
246 
247 	btrfs_csum_final(crc, result);
248 
249 	if (verify) {
250 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
251 			u32 val;
252 			u32 found = 0;
253 			memcpy(&found, result, csum_size);
254 
255 			read_extent_buffer(buf, &val, 0, csum_size);
256 			if (printk_ratelimit()) {
257 				printk(KERN_INFO "btrfs: %s checksum verify "
258 				       "failed on %llu wanted %X found %X "
259 				       "level %d\n",
260 				       root->fs_info->sb->s_id,
261 				       (unsigned long long)buf->start, val, found,
262 				       btrfs_header_level(buf));
263 			}
264 			if (result != (char *)&inline_result)
265 				kfree(result);
266 			return 1;
267 		}
268 	} else {
269 		write_extent_buffer(buf, result, 0, csum_size);
270 	}
271 	if (result != (char *)&inline_result)
272 		kfree(result);
273 	return 0;
274 }
275 
276 /*
277  * we can't consider a given block up to date unless the transid of the
278  * block matches the transid in the parent node's pointer.  This is how we
279  * detect blocks that either didn't get written at all or got written
280  * in the wrong place.
281  */
282 static int verify_parent_transid(struct extent_io_tree *io_tree,
283 				 struct extent_buffer *eb, u64 parent_transid)
284 {
285 	struct extent_state *cached_state = NULL;
286 	int ret;
287 
288 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
289 		return 0;
290 
291 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
292 			 0, &cached_state, GFP_NOFS);
293 	if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
294 	    btrfs_header_generation(eb) == parent_transid) {
295 		ret = 0;
296 		goto out;
297 	}
298 	if (printk_ratelimit()) {
299 		printk("parent transid verify failed on %llu wanted %llu "
300 		       "found %llu\n",
301 		       (unsigned long long)eb->start,
302 		       (unsigned long long)parent_transid,
303 		       (unsigned long long)btrfs_header_generation(eb));
304 	}
305 	ret = 1;
306 	clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
307 out:
308 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
309 			     &cached_state, GFP_NOFS);
310 	return ret;
311 }
312 
313 /*
314  * helper to read a given tree block, doing retries as required when
315  * the checksums don't match and we have alternate mirrors to try.
316  */
317 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
318 					  struct extent_buffer *eb,
319 					  u64 start, u64 parent_transid)
320 {
321 	struct extent_io_tree *io_tree;
322 	int ret;
323 	int num_copies = 0;
324 	int mirror_num = 0;
325 
326 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
327 	while (1) {
328 		ret = read_extent_buffer_pages(io_tree, eb, start, 1,
329 					       btree_get_extent, mirror_num);
330 		if (!ret &&
331 		    !verify_parent_transid(io_tree, eb, parent_transid))
332 			return ret;
333 
334 		num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
335 					      eb->start, eb->len);
336 		if (num_copies == 1)
337 			return ret;
338 
339 		mirror_num++;
340 		if (mirror_num > num_copies)
341 			return ret;
342 	}
343 	return -EIO;
344 }
345 
346 /*
347  * checksum a dirty tree block before IO.  This has extra checks to make sure
348  * we only fill in the checksum field in the first page of a multi-page block
349  */
350 
351 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
352 {
353 	struct extent_io_tree *tree;
354 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
355 	u64 found_start;
356 	unsigned long len;
357 	struct extent_buffer *eb;
358 	int ret;
359 
360 	tree = &BTRFS_I(page->mapping->host)->io_tree;
361 
362 	if (page->private == EXTENT_PAGE_PRIVATE) {
363 		WARN_ON(1);
364 		goto out;
365 	}
366 	if (!page->private) {
367 		WARN_ON(1);
368 		goto out;
369 	}
370 	len = page->private >> 2;
371 	WARN_ON(len == 0);
372 
373 	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
374 	if (eb == NULL) {
375 		WARN_ON(1);
376 		goto out;
377 	}
378 	ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
379 					     btrfs_header_generation(eb));
380 	BUG_ON(ret);
381 	WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
382 
383 	found_start = btrfs_header_bytenr(eb);
384 	if (found_start != start) {
385 		WARN_ON(1);
386 		goto err;
387 	}
388 	if (eb->first_page != page) {
389 		WARN_ON(1);
390 		goto err;
391 	}
392 	if (!PageUptodate(page)) {
393 		WARN_ON(1);
394 		goto err;
395 	}
396 	csum_tree_block(root, eb, 0);
397 err:
398 	free_extent_buffer(eb);
399 out:
400 	return 0;
401 }
402 
403 static int check_tree_block_fsid(struct btrfs_root *root,
404 				 struct extent_buffer *eb)
405 {
406 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
407 	u8 fsid[BTRFS_UUID_SIZE];
408 	int ret = 1;
409 
410 	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
411 			   BTRFS_FSID_SIZE);
412 	while (fs_devices) {
413 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
414 			ret = 0;
415 			break;
416 		}
417 		fs_devices = fs_devices->seed;
418 	}
419 	return ret;
420 }
421 
422 #ifdef CONFIG_DEBUG_LOCK_ALLOC
423 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
424 {
425 	lockdep_set_class_and_name(&eb->lock,
426 			   &btrfs_eb_class[level],
427 			   btrfs_eb_name[level]);
428 }
429 #endif
430 
431 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
432 			       struct extent_state *state)
433 {
434 	struct extent_io_tree *tree;
435 	u64 found_start;
436 	int found_level;
437 	unsigned long len;
438 	struct extent_buffer *eb;
439 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
440 	int ret = 0;
441 
442 	tree = &BTRFS_I(page->mapping->host)->io_tree;
443 	if (page->private == EXTENT_PAGE_PRIVATE)
444 		goto out;
445 	if (!page->private)
446 		goto out;
447 
448 	len = page->private >> 2;
449 	WARN_ON(len == 0);
450 
451 	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
452 	if (eb == NULL) {
453 		ret = -EIO;
454 		goto out;
455 	}
456 
457 	found_start = btrfs_header_bytenr(eb);
458 	if (found_start != start) {
459 		if (printk_ratelimit()) {
460 			printk(KERN_INFO "btrfs bad tree block start "
461 			       "%llu %llu\n",
462 			       (unsigned long long)found_start,
463 			       (unsigned long long)eb->start);
464 		}
465 		ret = -EIO;
466 		goto err;
467 	}
468 	if (eb->first_page != page) {
469 		printk(KERN_INFO "btrfs bad first page %lu %lu\n",
470 		       eb->first_page->index, page->index);
471 		WARN_ON(1);
472 		ret = -EIO;
473 		goto err;
474 	}
475 	if (check_tree_block_fsid(root, eb)) {
476 		if (printk_ratelimit()) {
477 			printk(KERN_INFO "btrfs bad fsid on block %llu\n",
478 			       (unsigned long long)eb->start);
479 		}
480 		ret = -EIO;
481 		goto err;
482 	}
483 	found_level = btrfs_header_level(eb);
484 
485 	btrfs_set_buffer_lockdep_class(eb, found_level);
486 
487 	ret = csum_tree_block(root, eb, 1);
488 	if (ret)
489 		ret = -EIO;
490 
491 	end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
492 	end = eb->start + end - 1;
493 err:
494 	free_extent_buffer(eb);
495 out:
496 	return ret;
497 }
498 
499 static void end_workqueue_bio(struct bio *bio, int err)
500 {
501 	struct end_io_wq *end_io_wq = bio->bi_private;
502 	struct btrfs_fs_info *fs_info;
503 
504 	fs_info = end_io_wq->info;
505 	end_io_wq->error = err;
506 	end_io_wq->work.func = end_workqueue_fn;
507 	end_io_wq->work.flags = 0;
508 
509 	if (bio->bi_rw & REQ_WRITE) {
510 		if (end_io_wq->metadata == 1)
511 			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
512 					   &end_io_wq->work);
513 		else if (end_io_wq->metadata == 2)
514 			btrfs_queue_worker(&fs_info->endio_freespace_worker,
515 					   &end_io_wq->work);
516 		else
517 			btrfs_queue_worker(&fs_info->endio_write_workers,
518 					   &end_io_wq->work);
519 	} else {
520 		if (end_io_wq->metadata)
521 			btrfs_queue_worker(&fs_info->endio_meta_workers,
522 					   &end_io_wq->work);
523 		else
524 			btrfs_queue_worker(&fs_info->endio_workers,
525 					   &end_io_wq->work);
526 	}
527 }
528 
529 /*
530  * For the metadata arg you want
531  *
532  * 0 - if data
533  * 1 - if normal metadta
534  * 2 - if writing to the free space cache area
535  */
536 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
537 			int metadata)
538 {
539 	struct end_io_wq *end_io_wq;
540 	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
541 	if (!end_io_wq)
542 		return -ENOMEM;
543 
544 	end_io_wq->private = bio->bi_private;
545 	end_io_wq->end_io = bio->bi_end_io;
546 	end_io_wq->info = info;
547 	end_io_wq->error = 0;
548 	end_io_wq->bio = bio;
549 	end_io_wq->metadata = metadata;
550 
551 	bio->bi_private = end_io_wq;
552 	bio->bi_end_io = end_workqueue_bio;
553 	return 0;
554 }
555 
556 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
557 {
558 	unsigned long limit = min_t(unsigned long,
559 				    info->workers.max_workers,
560 				    info->fs_devices->open_devices);
561 	return 256 * limit;
562 }
563 
564 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
565 {
566 	return atomic_read(&info->nr_async_bios) >
567 		btrfs_async_submit_limit(info);
568 }
569 
570 static void run_one_async_start(struct btrfs_work *work)
571 {
572 	struct async_submit_bio *async;
573 
574 	async = container_of(work, struct  async_submit_bio, work);
575 	async->submit_bio_start(async->inode, async->rw, async->bio,
576 			       async->mirror_num, async->bio_flags,
577 			       async->bio_offset);
578 }
579 
580 static void run_one_async_done(struct btrfs_work *work)
581 {
582 	struct btrfs_fs_info *fs_info;
583 	struct async_submit_bio *async;
584 	int limit;
585 
586 	async = container_of(work, struct  async_submit_bio, work);
587 	fs_info = BTRFS_I(async->inode)->root->fs_info;
588 
589 	limit = btrfs_async_submit_limit(fs_info);
590 	limit = limit * 2 / 3;
591 
592 	atomic_dec(&fs_info->nr_async_submits);
593 
594 	if (atomic_read(&fs_info->nr_async_submits) < limit &&
595 	    waitqueue_active(&fs_info->async_submit_wait))
596 		wake_up(&fs_info->async_submit_wait);
597 
598 	async->submit_bio_done(async->inode, async->rw, async->bio,
599 			       async->mirror_num, async->bio_flags,
600 			       async->bio_offset);
601 }
602 
603 static void run_one_async_free(struct btrfs_work *work)
604 {
605 	struct async_submit_bio *async;
606 
607 	async = container_of(work, struct  async_submit_bio, work);
608 	kfree(async);
609 }
610 
611 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
612 			int rw, struct bio *bio, int mirror_num,
613 			unsigned long bio_flags,
614 			u64 bio_offset,
615 			extent_submit_bio_hook_t *submit_bio_start,
616 			extent_submit_bio_hook_t *submit_bio_done)
617 {
618 	struct async_submit_bio *async;
619 
620 	async = kmalloc(sizeof(*async), GFP_NOFS);
621 	if (!async)
622 		return -ENOMEM;
623 
624 	async->inode = inode;
625 	async->rw = rw;
626 	async->bio = bio;
627 	async->mirror_num = mirror_num;
628 	async->submit_bio_start = submit_bio_start;
629 	async->submit_bio_done = submit_bio_done;
630 
631 	async->work.func = run_one_async_start;
632 	async->work.ordered_func = run_one_async_done;
633 	async->work.ordered_free = run_one_async_free;
634 
635 	async->work.flags = 0;
636 	async->bio_flags = bio_flags;
637 	async->bio_offset = bio_offset;
638 
639 	atomic_inc(&fs_info->nr_async_submits);
640 
641 	if (rw & REQ_SYNC)
642 		btrfs_set_work_high_prio(&async->work);
643 
644 	btrfs_queue_worker(&fs_info->workers, &async->work);
645 
646 	while (atomic_read(&fs_info->async_submit_draining) &&
647 	      atomic_read(&fs_info->nr_async_submits)) {
648 		wait_event(fs_info->async_submit_wait,
649 			   (atomic_read(&fs_info->nr_async_submits) == 0));
650 	}
651 
652 	return 0;
653 }
654 
655 static int btree_csum_one_bio(struct bio *bio)
656 {
657 	struct bio_vec *bvec = bio->bi_io_vec;
658 	int bio_index = 0;
659 	struct btrfs_root *root;
660 
661 	WARN_ON(bio->bi_vcnt <= 0);
662 	while (bio_index < bio->bi_vcnt) {
663 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
664 		csum_dirty_buffer(root, bvec->bv_page);
665 		bio_index++;
666 		bvec++;
667 	}
668 	return 0;
669 }
670 
671 static int __btree_submit_bio_start(struct inode *inode, int rw,
672 				    struct bio *bio, int mirror_num,
673 				    unsigned long bio_flags,
674 				    u64 bio_offset)
675 {
676 	/*
677 	 * when we're called for a write, we're already in the async
678 	 * submission context.  Just jump into btrfs_map_bio
679 	 */
680 	btree_csum_one_bio(bio);
681 	return 0;
682 }
683 
684 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
685 				 int mirror_num, unsigned long bio_flags,
686 				 u64 bio_offset)
687 {
688 	/*
689 	 * when we're called for a write, we're already in the async
690 	 * submission context.  Just jump into btrfs_map_bio
691 	 */
692 	return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
693 }
694 
695 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
696 				 int mirror_num, unsigned long bio_flags,
697 				 u64 bio_offset)
698 {
699 	int ret;
700 
701 	ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
702 					  bio, 1);
703 	BUG_ON(ret);
704 
705 	if (!(rw & REQ_WRITE)) {
706 		/*
707 		 * called for a read, do the setup so that checksum validation
708 		 * can happen in the async kernel threads
709 		 */
710 		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
711 				     mirror_num, 0);
712 	}
713 
714 	/*
715 	 * kthread helpers are used to submit writes so that checksumming
716 	 * can happen in parallel across all CPUs
717 	 */
718 	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
719 				   inode, rw, bio, mirror_num, 0,
720 				   bio_offset,
721 				   __btree_submit_bio_start,
722 				   __btree_submit_bio_done);
723 }
724 
725 #ifdef CONFIG_MIGRATION
726 static int btree_migratepage(struct address_space *mapping,
727 			struct page *newpage, struct page *page)
728 {
729 	/*
730 	 * we can't safely write a btree page from here,
731 	 * we haven't done the locking hook
732 	 */
733 	if (PageDirty(page))
734 		return -EAGAIN;
735 	/*
736 	 * Buffers may be managed in a filesystem specific way.
737 	 * We must have no buffers or drop them.
738 	 */
739 	if (page_has_private(page) &&
740 	    !try_to_release_page(page, GFP_KERNEL))
741 		return -EAGAIN;
742 	return migrate_page(mapping, newpage, page);
743 }
744 #endif
745 
746 static int btree_writepage(struct page *page, struct writeback_control *wbc)
747 {
748 	struct extent_io_tree *tree;
749 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
750 	struct extent_buffer *eb;
751 	int was_dirty;
752 
753 	tree = &BTRFS_I(page->mapping->host)->io_tree;
754 	if (!(current->flags & PF_MEMALLOC)) {
755 		return extent_write_full_page(tree, page,
756 					      btree_get_extent, wbc);
757 	}
758 
759 	redirty_page_for_writepage(wbc, page);
760 	eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
761 	WARN_ON(!eb);
762 
763 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
764 	if (!was_dirty) {
765 		spin_lock(&root->fs_info->delalloc_lock);
766 		root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
767 		spin_unlock(&root->fs_info->delalloc_lock);
768 	}
769 	free_extent_buffer(eb);
770 
771 	unlock_page(page);
772 	return 0;
773 }
774 
775 static int btree_writepages(struct address_space *mapping,
776 			    struct writeback_control *wbc)
777 {
778 	struct extent_io_tree *tree;
779 	tree = &BTRFS_I(mapping->host)->io_tree;
780 	if (wbc->sync_mode == WB_SYNC_NONE) {
781 		struct btrfs_root *root = BTRFS_I(mapping->host)->root;
782 		u64 num_dirty;
783 		unsigned long thresh = 32 * 1024 * 1024;
784 
785 		if (wbc->for_kupdate)
786 			return 0;
787 
788 		/* this is a bit racy, but that's ok */
789 		num_dirty = root->fs_info->dirty_metadata_bytes;
790 		if (num_dirty < thresh)
791 			return 0;
792 	}
793 	return extent_writepages(tree, mapping, btree_get_extent, wbc);
794 }
795 
796 static int btree_readpage(struct file *file, struct page *page)
797 {
798 	struct extent_io_tree *tree;
799 	tree = &BTRFS_I(page->mapping->host)->io_tree;
800 	return extent_read_full_page(tree, page, btree_get_extent);
801 }
802 
803 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
804 {
805 	struct extent_io_tree *tree;
806 	struct extent_map_tree *map;
807 	int ret;
808 
809 	if (PageWriteback(page) || PageDirty(page))
810 		return 0;
811 
812 	tree = &BTRFS_I(page->mapping->host)->io_tree;
813 	map = &BTRFS_I(page->mapping->host)->extent_tree;
814 
815 	ret = try_release_extent_state(map, tree, page, gfp_flags);
816 	if (!ret)
817 		return 0;
818 
819 	ret = try_release_extent_buffer(tree, page);
820 	if (ret == 1) {
821 		ClearPagePrivate(page);
822 		set_page_private(page, 0);
823 		page_cache_release(page);
824 	}
825 
826 	return ret;
827 }
828 
829 static void btree_invalidatepage(struct page *page, unsigned long offset)
830 {
831 	struct extent_io_tree *tree;
832 	tree = &BTRFS_I(page->mapping->host)->io_tree;
833 	extent_invalidatepage(tree, page, offset);
834 	btree_releasepage(page, GFP_NOFS);
835 	if (PagePrivate(page)) {
836 		printk(KERN_WARNING "btrfs warning page private not zero "
837 		       "on page %llu\n", (unsigned long long)page_offset(page));
838 		ClearPagePrivate(page);
839 		set_page_private(page, 0);
840 		page_cache_release(page);
841 	}
842 }
843 
844 static const struct address_space_operations btree_aops = {
845 	.readpage	= btree_readpage,
846 	.writepage	= btree_writepage,
847 	.writepages	= btree_writepages,
848 	.releasepage	= btree_releasepage,
849 	.invalidatepage = btree_invalidatepage,
850 	.sync_page	= block_sync_page,
851 #ifdef CONFIG_MIGRATION
852 	.migratepage	= btree_migratepage,
853 #endif
854 };
855 
856 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
857 			 u64 parent_transid)
858 {
859 	struct extent_buffer *buf = NULL;
860 	struct inode *btree_inode = root->fs_info->btree_inode;
861 	int ret = 0;
862 
863 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
864 	if (!buf)
865 		return 0;
866 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
867 				 buf, 0, 0, btree_get_extent, 0);
868 	free_extent_buffer(buf);
869 	return ret;
870 }
871 
872 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
873 					    u64 bytenr, u32 blocksize)
874 {
875 	struct inode *btree_inode = root->fs_info->btree_inode;
876 	struct extent_buffer *eb;
877 	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
878 				bytenr, blocksize, GFP_NOFS);
879 	return eb;
880 }
881 
882 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
883 						 u64 bytenr, u32 blocksize)
884 {
885 	struct inode *btree_inode = root->fs_info->btree_inode;
886 	struct extent_buffer *eb;
887 
888 	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
889 				 bytenr, blocksize, NULL, GFP_NOFS);
890 	return eb;
891 }
892 
893 
894 int btrfs_write_tree_block(struct extent_buffer *buf)
895 {
896 	return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
897 					buf->start + buf->len - 1);
898 }
899 
900 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
901 {
902 	return filemap_fdatawait_range(buf->first_page->mapping,
903 				       buf->start, buf->start + buf->len - 1);
904 }
905 
906 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
907 				      u32 blocksize, u64 parent_transid)
908 {
909 	struct extent_buffer *buf = NULL;
910 	int ret;
911 
912 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
913 	if (!buf)
914 		return NULL;
915 
916 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
917 
918 	if (ret == 0)
919 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
920 	return buf;
921 
922 }
923 
924 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
925 		     struct extent_buffer *buf)
926 {
927 	struct inode *btree_inode = root->fs_info->btree_inode;
928 	if (btrfs_header_generation(buf) ==
929 	    root->fs_info->running_transaction->transid) {
930 		btrfs_assert_tree_locked(buf);
931 
932 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
933 			spin_lock(&root->fs_info->delalloc_lock);
934 			if (root->fs_info->dirty_metadata_bytes >= buf->len)
935 				root->fs_info->dirty_metadata_bytes -= buf->len;
936 			else
937 				WARN_ON(1);
938 			spin_unlock(&root->fs_info->delalloc_lock);
939 		}
940 
941 		/* ugh, clear_extent_buffer_dirty needs to lock the page */
942 		btrfs_set_lock_blocking(buf);
943 		clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
944 					  buf);
945 	}
946 	return 0;
947 }
948 
949 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
950 			u32 stripesize, struct btrfs_root *root,
951 			struct btrfs_fs_info *fs_info,
952 			u64 objectid)
953 {
954 	root->node = NULL;
955 	root->commit_root = NULL;
956 	root->sectorsize = sectorsize;
957 	root->nodesize = nodesize;
958 	root->leafsize = leafsize;
959 	root->stripesize = stripesize;
960 	root->ref_cows = 0;
961 	root->track_dirty = 0;
962 	root->in_radix = 0;
963 	root->orphan_item_inserted = 0;
964 	root->orphan_cleanup_state = 0;
965 
966 	root->fs_info = fs_info;
967 	root->objectid = objectid;
968 	root->last_trans = 0;
969 	root->highest_objectid = 0;
970 	root->name = NULL;
971 	root->in_sysfs = 0;
972 	root->inode_tree = RB_ROOT;
973 	root->block_rsv = NULL;
974 	root->orphan_block_rsv = NULL;
975 
976 	INIT_LIST_HEAD(&root->dirty_list);
977 	INIT_LIST_HEAD(&root->orphan_list);
978 	INIT_LIST_HEAD(&root->root_list);
979 	spin_lock_init(&root->node_lock);
980 	spin_lock_init(&root->orphan_lock);
981 	spin_lock_init(&root->inode_lock);
982 	spin_lock_init(&root->accounting_lock);
983 	mutex_init(&root->objectid_mutex);
984 	mutex_init(&root->log_mutex);
985 	init_waitqueue_head(&root->log_writer_wait);
986 	init_waitqueue_head(&root->log_commit_wait[0]);
987 	init_waitqueue_head(&root->log_commit_wait[1]);
988 	atomic_set(&root->log_commit[0], 0);
989 	atomic_set(&root->log_commit[1], 0);
990 	atomic_set(&root->log_writers, 0);
991 	root->log_batch = 0;
992 	root->log_transid = 0;
993 	root->last_log_commit = 0;
994 	extent_io_tree_init(&root->dirty_log_pages,
995 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
996 
997 	memset(&root->root_key, 0, sizeof(root->root_key));
998 	memset(&root->root_item, 0, sizeof(root->root_item));
999 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1000 	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1001 	root->defrag_trans_start = fs_info->generation;
1002 	init_completion(&root->kobj_unregister);
1003 	root->defrag_running = 0;
1004 	root->root_key.objectid = objectid;
1005 	root->anon_super.s_root = NULL;
1006 	root->anon_super.s_dev = 0;
1007 	INIT_LIST_HEAD(&root->anon_super.s_list);
1008 	INIT_LIST_HEAD(&root->anon_super.s_instances);
1009 	init_rwsem(&root->anon_super.s_umount);
1010 
1011 	return 0;
1012 }
1013 
1014 static int find_and_setup_root(struct btrfs_root *tree_root,
1015 			       struct btrfs_fs_info *fs_info,
1016 			       u64 objectid,
1017 			       struct btrfs_root *root)
1018 {
1019 	int ret;
1020 	u32 blocksize;
1021 	u64 generation;
1022 
1023 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1024 		     tree_root->sectorsize, tree_root->stripesize,
1025 		     root, fs_info, objectid);
1026 	ret = btrfs_find_last_root(tree_root, objectid,
1027 				   &root->root_item, &root->root_key);
1028 	if (ret > 0)
1029 		return -ENOENT;
1030 	BUG_ON(ret);
1031 
1032 	generation = btrfs_root_generation(&root->root_item);
1033 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1034 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1035 				     blocksize, generation);
1036 	if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1037 		free_extent_buffer(root->node);
1038 		return -EIO;
1039 	}
1040 	root->commit_root = btrfs_root_node(root);
1041 	return 0;
1042 }
1043 
1044 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1045 					 struct btrfs_fs_info *fs_info)
1046 {
1047 	struct btrfs_root *root;
1048 	struct btrfs_root *tree_root = fs_info->tree_root;
1049 	struct extent_buffer *leaf;
1050 
1051 	root = kzalloc(sizeof(*root), GFP_NOFS);
1052 	if (!root)
1053 		return ERR_PTR(-ENOMEM);
1054 
1055 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1056 		     tree_root->sectorsize, tree_root->stripesize,
1057 		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1058 
1059 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1060 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1061 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1062 	/*
1063 	 * log trees do not get reference counted because they go away
1064 	 * before a real commit is actually done.  They do store pointers
1065 	 * to file data extents, and those reference counts still get
1066 	 * updated (along with back refs to the log tree).
1067 	 */
1068 	root->ref_cows = 0;
1069 
1070 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1071 				      BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1072 	if (IS_ERR(leaf)) {
1073 		kfree(root);
1074 		return ERR_CAST(leaf);
1075 	}
1076 
1077 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1078 	btrfs_set_header_bytenr(leaf, leaf->start);
1079 	btrfs_set_header_generation(leaf, trans->transid);
1080 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1081 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1082 	root->node = leaf;
1083 
1084 	write_extent_buffer(root->node, root->fs_info->fsid,
1085 			    (unsigned long)btrfs_header_fsid(root->node),
1086 			    BTRFS_FSID_SIZE);
1087 	btrfs_mark_buffer_dirty(root->node);
1088 	btrfs_tree_unlock(root->node);
1089 	return root;
1090 }
1091 
1092 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1093 			     struct btrfs_fs_info *fs_info)
1094 {
1095 	struct btrfs_root *log_root;
1096 
1097 	log_root = alloc_log_tree(trans, fs_info);
1098 	if (IS_ERR(log_root))
1099 		return PTR_ERR(log_root);
1100 	WARN_ON(fs_info->log_root_tree);
1101 	fs_info->log_root_tree = log_root;
1102 	return 0;
1103 }
1104 
1105 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1106 		       struct btrfs_root *root)
1107 {
1108 	struct btrfs_root *log_root;
1109 	struct btrfs_inode_item *inode_item;
1110 
1111 	log_root = alloc_log_tree(trans, root->fs_info);
1112 	if (IS_ERR(log_root))
1113 		return PTR_ERR(log_root);
1114 
1115 	log_root->last_trans = trans->transid;
1116 	log_root->root_key.offset = root->root_key.objectid;
1117 
1118 	inode_item = &log_root->root_item.inode;
1119 	inode_item->generation = cpu_to_le64(1);
1120 	inode_item->size = cpu_to_le64(3);
1121 	inode_item->nlink = cpu_to_le32(1);
1122 	inode_item->nbytes = cpu_to_le64(root->leafsize);
1123 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1124 
1125 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1126 
1127 	WARN_ON(root->log_root);
1128 	root->log_root = log_root;
1129 	root->log_transid = 0;
1130 	root->last_log_commit = 0;
1131 	return 0;
1132 }
1133 
1134 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1135 					       struct btrfs_key *location)
1136 {
1137 	struct btrfs_root *root;
1138 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1139 	struct btrfs_path *path;
1140 	struct extent_buffer *l;
1141 	u64 generation;
1142 	u32 blocksize;
1143 	int ret = 0;
1144 
1145 	root = kzalloc(sizeof(*root), GFP_NOFS);
1146 	if (!root)
1147 		return ERR_PTR(-ENOMEM);
1148 	if (location->offset == (u64)-1) {
1149 		ret = find_and_setup_root(tree_root, fs_info,
1150 					  location->objectid, root);
1151 		if (ret) {
1152 			kfree(root);
1153 			return ERR_PTR(ret);
1154 		}
1155 		goto out;
1156 	}
1157 
1158 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1159 		     tree_root->sectorsize, tree_root->stripesize,
1160 		     root, fs_info, location->objectid);
1161 
1162 	path = btrfs_alloc_path();
1163 	BUG_ON(!path);
1164 	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1165 	if (ret == 0) {
1166 		l = path->nodes[0];
1167 		read_extent_buffer(l, &root->root_item,
1168 				btrfs_item_ptr_offset(l, path->slots[0]),
1169 				sizeof(root->root_item));
1170 		memcpy(&root->root_key, location, sizeof(*location));
1171 	}
1172 	btrfs_free_path(path);
1173 	if (ret) {
1174 		kfree(root);
1175 		if (ret > 0)
1176 			ret = -ENOENT;
1177 		return ERR_PTR(ret);
1178 	}
1179 
1180 	generation = btrfs_root_generation(&root->root_item);
1181 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1182 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1183 				     blocksize, generation);
1184 	root->commit_root = btrfs_root_node(root);
1185 	BUG_ON(!root->node);
1186 out:
1187 	if (location->objectid != BTRFS_TREE_LOG_OBJECTID)
1188 		root->ref_cows = 1;
1189 
1190 	return root;
1191 }
1192 
1193 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1194 					u64 root_objectid)
1195 {
1196 	struct btrfs_root *root;
1197 
1198 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1199 		return fs_info->tree_root;
1200 	if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1201 		return fs_info->extent_root;
1202 
1203 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1204 				 (unsigned long)root_objectid);
1205 	return root;
1206 }
1207 
1208 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1209 					      struct btrfs_key *location)
1210 {
1211 	struct btrfs_root *root;
1212 	int ret;
1213 
1214 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1215 		return fs_info->tree_root;
1216 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1217 		return fs_info->extent_root;
1218 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1219 		return fs_info->chunk_root;
1220 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1221 		return fs_info->dev_root;
1222 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1223 		return fs_info->csum_root;
1224 again:
1225 	spin_lock(&fs_info->fs_roots_radix_lock);
1226 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1227 				 (unsigned long)location->objectid);
1228 	spin_unlock(&fs_info->fs_roots_radix_lock);
1229 	if (root)
1230 		return root;
1231 
1232 	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1233 	if (IS_ERR(root))
1234 		return root;
1235 
1236 	set_anon_super(&root->anon_super, NULL);
1237 
1238 	if (btrfs_root_refs(&root->root_item) == 0) {
1239 		ret = -ENOENT;
1240 		goto fail;
1241 	}
1242 
1243 	ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1244 	if (ret < 0)
1245 		goto fail;
1246 	if (ret == 0)
1247 		root->orphan_item_inserted = 1;
1248 
1249 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1250 	if (ret)
1251 		goto fail;
1252 
1253 	spin_lock(&fs_info->fs_roots_radix_lock);
1254 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1255 				(unsigned long)root->root_key.objectid,
1256 				root);
1257 	if (ret == 0)
1258 		root->in_radix = 1;
1259 
1260 	spin_unlock(&fs_info->fs_roots_radix_lock);
1261 	radix_tree_preload_end();
1262 	if (ret) {
1263 		if (ret == -EEXIST) {
1264 			free_fs_root(root);
1265 			goto again;
1266 		}
1267 		goto fail;
1268 	}
1269 
1270 	ret = btrfs_find_dead_roots(fs_info->tree_root,
1271 				    root->root_key.objectid);
1272 	WARN_ON(ret);
1273 	return root;
1274 fail:
1275 	free_fs_root(root);
1276 	return ERR_PTR(ret);
1277 }
1278 
1279 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1280 				      struct btrfs_key *location,
1281 				      const char *name, int namelen)
1282 {
1283 	return btrfs_read_fs_root_no_name(fs_info, location);
1284 #if 0
1285 	struct btrfs_root *root;
1286 	int ret;
1287 
1288 	root = btrfs_read_fs_root_no_name(fs_info, location);
1289 	if (!root)
1290 		return NULL;
1291 
1292 	if (root->in_sysfs)
1293 		return root;
1294 
1295 	ret = btrfs_set_root_name(root, name, namelen);
1296 	if (ret) {
1297 		free_extent_buffer(root->node);
1298 		kfree(root);
1299 		return ERR_PTR(ret);
1300 	}
1301 
1302 	ret = btrfs_sysfs_add_root(root);
1303 	if (ret) {
1304 		free_extent_buffer(root->node);
1305 		kfree(root->name);
1306 		kfree(root);
1307 		return ERR_PTR(ret);
1308 	}
1309 	root->in_sysfs = 1;
1310 	return root;
1311 #endif
1312 }
1313 
1314 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1315 {
1316 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1317 	int ret = 0;
1318 	struct btrfs_device *device;
1319 	struct backing_dev_info *bdi;
1320 
1321 	list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1322 		if (!device->bdev)
1323 			continue;
1324 		bdi = blk_get_backing_dev_info(device->bdev);
1325 		if (bdi && bdi_congested(bdi, bdi_bits)) {
1326 			ret = 1;
1327 			break;
1328 		}
1329 	}
1330 	return ret;
1331 }
1332 
1333 /*
1334  * this unplugs every device on the box, and it is only used when page
1335  * is null
1336  */
1337 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1338 {
1339 	struct btrfs_device *device;
1340 	struct btrfs_fs_info *info;
1341 
1342 	info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1343 	list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1344 		if (!device->bdev)
1345 			continue;
1346 
1347 		bdi = blk_get_backing_dev_info(device->bdev);
1348 		if (bdi->unplug_io_fn)
1349 			bdi->unplug_io_fn(bdi, page);
1350 	}
1351 }
1352 
1353 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1354 {
1355 	struct inode *inode;
1356 	struct extent_map_tree *em_tree;
1357 	struct extent_map *em;
1358 	struct address_space *mapping;
1359 	u64 offset;
1360 
1361 	/* the generic O_DIRECT read code does this */
1362 	if (1 || !page) {
1363 		__unplug_io_fn(bdi, page);
1364 		return;
1365 	}
1366 
1367 	/*
1368 	 * page->mapping may change at any time.  Get a consistent copy
1369 	 * and use that for everything below
1370 	 */
1371 	smp_mb();
1372 	mapping = page->mapping;
1373 	if (!mapping)
1374 		return;
1375 
1376 	inode = mapping->host;
1377 
1378 	/*
1379 	 * don't do the expensive searching for a small number of
1380 	 * devices
1381 	 */
1382 	if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1383 		__unplug_io_fn(bdi, page);
1384 		return;
1385 	}
1386 
1387 	offset = page_offset(page);
1388 
1389 	em_tree = &BTRFS_I(inode)->extent_tree;
1390 	read_lock(&em_tree->lock);
1391 	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1392 	read_unlock(&em_tree->lock);
1393 	if (!em) {
1394 		__unplug_io_fn(bdi, page);
1395 		return;
1396 	}
1397 
1398 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1399 		free_extent_map(em);
1400 		__unplug_io_fn(bdi, page);
1401 		return;
1402 	}
1403 	offset = offset - em->start;
1404 	btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1405 			  em->block_start + offset, page);
1406 	free_extent_map(em);
1407 }
1408 
1409 /*
1410  * If this fails, caller must call bdi_destroy() to get rid of the
1411  * bdi again.
1412  */
1413 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1414 {
1415 	int err;
1416 
1417 	bdi->capabilities = BDI_CAP_MAP_COPY;
1418 	err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1419 	if (err)
1420 		return err;
1421 
1422 	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1423 	bdi->unplug_io_fn	= btrfs_unplug_io_fn;
1424 	bdi->unplug_io_data	= info;
1425 	bdi->congested_fn	= btrfs_congested_fn;
1426 	bdi->congested_data	= info;
1427 	return 0;
1428 }
1429 
1430 static int bio_ready_for_csum(struct bio *bio)
1431 {
1432 	u64 length = 0;
1433 	u64 buf_len = 0;
1434 	u64 start = 0;
1435 	struct page *page;
1436 	struct extent_io_tree *io_tree = NULL;
1437 	struct bio_vec *bvec;
1438 	int i;
1439 	int ret;
1440 
1441 	bio_for_each_segment(bvec, bio, i) {
1442 		page = bvec->bv_page;
1443 		if (page->private == EXTENT_PAGE_PRIVATE) {
1444 			length += bvec->bv_len;
1445 			continue;
1446 		}
1447 		if (!page->private) {
1448 			length += bvec->bv_len;
1449 			continue;
1450 		}
1451 		length = bvec->bv_len;
1452 		buf_len = page->private >> 2;
1453 		start = page_offset(page) + bvec->bv_offset;
1454 		io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1455 	}
1456 	/* are we fully contained in this bio? */
1457 	if (buf_len <= length)
1458 		return 1;
1459 
1460 	ret = extent_range_uptodate(io_tree, start + length,
1461 				    start + buf_len - 1);
1462 	return ret;
1463 }
1464 
1465 /*
1466  * called by the kthread helper functions to finally call the bio end_io
1467  * functions.  This is where read checksum verification actually happens
1468  */
1469 static void end_workqueue_fn(struct btrfs_work *work)
1470 {
1471 	struct bio *bio;
1472 	struct end_io_wq *end_io_wq;
1473 	struct btrfs_fs_info *fs_info;
1474 	int error;
1475 
1476 	end_io_wq = container_of(work, struct end_io_wq, work);
1477 	bio = end_io_wq->bio;
1478 	fs_info = end_io_wq->info;
1479 
1480 	/* metadata bio reads are special because the whole tree block must
1481 	 * be checksummed at once.  This makes sure the entire block is in
1482 	 * ram and up to date before trying to verify things.  For
1483 	 * blocksize <= pagesize, it is basically a noop
1484 	 */
1485 	if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
1486 	    !bio_ready_for_csum(bio)) {
1487 		btrfs_queue_worker(&fs_info->endio_meta_workers,
1488 				   &end_io_wq->work);
1489 		return;
1490 	}
1491 	error = end_io_wq->error;
1492 	bio->bi_private = end_io_wq->private;
1493 	bio->bi_end_io = end_io_wq->end_io;
1494 	kfree(end_io_wq);
1495 	bio_endio(bio, error);
1496 }
1497 
1498 static int cleaner_kthread(void *arg)
1499 {
1500 	struct btrfs_root *root = arg;
1501 
1502 	do {
1503 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1504 
1505 		if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1506 		    mutex_trylock(&root->fs_info->cleaner_mutex)) {
1507 			btrfs_run_delayed_iputs(root);
1508 			btrfs_clean_old_snapshots(root);
1509 			mutex_unlock(&root->fs_info->cleaner_mutex);
1510 		}
1511 
1512 		if (freezing(current)) {
1513 			refrigerator();
1514 		} else {
1515 			set_current_state(TASK_INTERRUPTIBLE);
1516 			if (!kthread_should_stop())
1517 				schedule();
1518 			__set_current_state(TASK_RUNNING);
1519 		}
1520 	} while (!kthread_should_stop());
1521 	return 0;
1522 }
1523 
1524 static int transaction_kthread(void *arg)
1525 {
1526 	struct btrfs_root *root = arg;
1527 	struct btrfs_trans_handle *trans;
1528 	struct btrfs_transaction *cur;
1529 	u64 transid;
1530 	unsigned long now;
1531 	unsigned long delay;
1532 	int ret;
1533 
1534 	do {
1535 		delay = HZ * 30;
1536 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1537 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1538 
1539 		spin_lock(&root->fs_info->new_trans_lock);
1540 		cur = root->fs_info->running_transaction;
1541 		if (!cur) {
1542 			spin_unlock(&root->fs_info->new_trans_lock);
1543 			goto sleep;
1544 		}
1545 
1546 		now = get_seconds();
1547 		if (!cur->blocked &&
1548 		    (now < cur->start_time || now - cur->start_time < 30)) {
1549 			spin_unlock(&root->fs_info->new_trans_lock);
1550 			delay = HZ * 5;
1551 			goto sleep;
1552 		}
1553 		transid = cur->transid;
1554 		spin_unlock(&root->fs_info->new_trans_lock);
1555 
1556 		trans = btrfs_join_transaction(root, 1);
1557 		BUG_ON(IS_ERR(trans));
1558 		if (transid == trans->transid) {
1559 			ret = btrfs_commit_transaction(trans, root);
1560 			BUG_ON(ret);
1561 		} else {
1562 			btrfs_end_transaction(trans, root);
1563 		}
1564 sleep:
1565 		wake_up_process(root->fs_info->cleaner_kthread);
1566 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1567 
1568 		if (freezing(current)) {
1569 			refrigerator();
1570 		} else {
1571 			set_current_state(TASK_INTERRUPTIBLE);
1572 			if (!kthread_should_stop() &&
1573 			    !btrfs_transaction_blocked(root->fs_info))
1574 				schedule_timeout(delay);
1575 			__set_current_state(TASK_RUNNING);
1576 		}
1577 	} while (!kthread_should_stop());
1578 	return 0;
1579 }
1580 
1581 struct btrfs_root *open_ctree(struct super_block *sb,
1582 			      struct btrfs_fs_devices *fs_devices,
1583 			      char *options)
1584 {
1585 	u32 sectorsize;
1586 	u32 nodesize;
1587 	u32 leafsize;
1588 	u32 blocksize;
1589 	u32 stripesize;
1590 	u64 generation;
1591 	u64 features;
1592 	struct btrfs_key location;
1593 	struct buffer_head *bh;
1594 	struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1595 						 GFP_NOFS);
1596 	struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1597 						 GFP_NOFS);
1598 	struct btrfs_root *tree_root = btrfs_sb(sb);
1599 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1600 	struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1601 						GFP_NOFS);
1602 	struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1603 					      GFP_NOFS);
1604 	struct btrfs_root *log_tree_root;
1605 
1606 	int ret;
1607 	int err = -EINVAL;
1608 
1609 	struct btrfs_super_block *disk_super;
1610 
1611 	if (!extent_root || !tree_root || !fs_info ||
1612 	    !chunk_root || !dev_root || !csum_root) {
1613 		err = -ENOMEM;
1614 		goto fail;
1615 	}
1616 
1617 	ret = init_srcu_struct(&fs_info->subvol_srcu);
1618 	if (ret) {
1619 		err = ret;
1620 		goto fail;
1621 	}
1622 
1623 	ret = setup_bdi(fs_info, &fs_info->bdi);
1624 	if (ret) {
1625 		err = ret;
1626 		goto fail_srcu;
1627 	}
1628 
1629 	fs_info->btree_inode = new_inode(sb);
1630 	if (!fs_info->btree_inode) {
1631 		err = -ENOMEM;
1632 		goto fail_bdi;
1633 	}
1634 
1635 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1636 	INIT_LIST_HEAD(&fs_info->trans_list);
1637 	INIT_LIST_HEAD(&fs_info->dead_roots);
1638 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
1639 	INIT_LIST_HEAD(&fs_info->hashers);
1640 	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1641 	INIT_LIST_HEAD(&fs_info->ordered_operations);
1642 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
1643 	spin_lock_init(&fs_info->delalloc_lock);
1644 	spin_lock_init(&fs_info->new_trans_lock);
1645 	spin_lock_init(&fs_info->ref_cache_lock);
1646 	spin_lock_init(&fs_info->fs_roots_radix_lock);
1647 	spin_lock_init(&fs_info->delayed_iput_lock);
1648 
1649 	init_completion(&fs_info->kobj_unregister);
1650 	fs_info->tree_root = tree_root;
1651 	fs_info->extent_root = extent_root;
1652 	fs_info->csum_root = csum_root;
1653 	fs_info->chunk_root = chunk_root;
1654 	fs_info->dev_root = dev_root;
1655 	fs_info->fs_devices = fs_devices;
1656 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1657 	INIT_LIST_HEAD(&fs_info->space_info);
1658 	btrfs_mapping_init(&fs_info->mapping_tree);
1659 	btrfs_init_block_rsv(&fs_info->global_block_rsv);
1660 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1661 	btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1662 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1663 	btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1664 	INIT_LIST_HEAD(&fs_info->durable_block_rsv_list);
1665 	mutex_init(&fs_info->durable_block_rsv_mutex);
1666 	atomic_set(&fs_info->nr_async_submits, 0);
1667 	atomic_set(&fs_info->async_delalloc_pages, 0);
1668 	atomic_set(&fs_info->async_submit_draining, 0);
1669 	atomic_set(&fs_info->nr_async_bios, 0);
1670 	fs_info->sb = sb;
1671 	fs_info->max_inline = 8192 * 1024;
1672 	fs_info->metadata_ratio = 0;
1673 
1674 	fs_info->thread_pool_size = min_t(unsigned long,
1675 					  num_online_cpus() + 2, 8);
1676 
1677 	INIT_LIST_HEAD(&fs_info->ordered_extents);
1678 	spin_lock_init(&fs_info->ordered_extent_lock);
1679 
1680 	sb->s_blocksize = 4096;
1681 	sb->s_blocksize_bits = blksize_bits(4096);
1682 	sb->s_bdi = &fs_info->bdi;
1683 
1684 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1685 	fs_info->btree_inode->i_nlink = 1;
1686 	/*
1687 	 * we set the i_size on the btree inode to the max possible int.
1688 	 * the real end of the address space is determined by all of
1689 	 * the devices in the system
1690 	 */
1691 	fs_info->btree_inode->i_size = OFFSET_MAX;
1692 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1693 	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1694 
1695 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1696 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1697 			     fs_info->btree_inode->i_mapping,
1698 			     GFP_NOFS);
1699 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1700 			     GFP_NOFS);
1701 
1702 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1703 
1704 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
1705 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1706 	       sizeof(struct btrfs_key));
1707 	BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
1708 	insert_inode_hash(fs_info->btree_inode);
1709 
1710 	spin_lock_init(&fs_info->block_group_cache_lock);
1711 	fs_info->block_group_cache_tree = RB_ROOT;
1712 
1713 	extent_io_tree_init(&fs_info->freed_extents[0],
1714 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1715 	extent_io_tree_init(&fs_info->freed_extents[1],
1716 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1717 	fs_info->pinned_extents = &fs_info->freed_extents[0];
1718 	fs_info->do_barriers = 1;
1719 
1720 
1721 	mutex_init(&fs_info->trans_mutex);
1722 	mutex_init(&fs_info->ordered_operations_mutex);
1723 	mutex_init(&fs_info->tree_log_mutex);
1724 	mutex_init(&fs_info->chunk_mutex);
1725 	mutex_init(&fs_info->transaction_kthread_mutex);
1726 	mutex_init(&fs_info->cleaner_mutex);
1727 	mutex_init(&fs_info->volume_mutex);
1728 	init_rwsem(&fs_info->extent_commit_sem);
1729 	init_rwsem(&fs_info->cleanup_work_sem);
1730 	init_rwsem(&fs_info->subvol_sem);
1731 
1732 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1733 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1734 
1735 	init_waitqueue_head(&fs_info->transaction_throttle);
1736 	init_waitqueue_head(&fs_info->transaction_wait);
1737 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
1738 	init_waitqueue_head(&fs_info->async_submit_wait);
1739 
1740 	__setup_root(4096, 4096, 4096, 4096, tree_root,
1741 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
1742 
1743 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1744 	if (!bh) {
1745 		err = -EINVAL;
1746 		goto fail_iput;
1747 	}
1748 
1749 	memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1750 	memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1751 	       sizeof(fs_info->super_for_commit));
1752 	brelse(bh);
1753 
1754 	memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1755 
1756 	disk_super = &fs_info->super_copy;
1757 	if (!btrfs_super_root(disk_super))
1758 		goto fail_iput;
1759 
1760 	/* check FS state, whether FS is broken. */
1761 	fs_info->fs_state |= btrfs_super_flags(disk_super);
1762 
1763 	btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
1764 
1765 	ret = btrfs_parse_options(tree_root, options);
1766 	if (ret) {
1767 		err = ret;
1768 		goto fail_iput;
1769 	}
1770 
1771 	features = btrfs_super_incompat_flags(disk_super) &
1772 		~BTRFS_FEATURE_INCOMPAT_SUPP;
1773 	if (features) {
1774 		printk(KERN_ERR "BTRFS: couldn't mount because of "
1775 		       "unsupported optional features (%Lx).\n",
1776 		       (unsigned long long)features);
1777 		err = -EINVAL;
1778 		goto fail_iput;
1779 	}
1780 
1781 	features = btrfs_super_incompat_flags(disk_super);
1782 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
1783 	if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
1784 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
1785 	btrfs_set_super_incompat_flags(disk_super, features);
1786 
1787 	features = btrfs_super_compat_ro_flags(disk_super) &
1788 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
1789 	if (!(sb->s_flags & MS_RDONLY) && features) {
1790 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1791 		       "unsupported option features (%Lx).\n",
1792 		       (unsigned long long)features);
1793 		err = -EINVAL;
1794 		goto fail_iput;
1795 	}
1796 
1797 	btrfs_init_workers(&fs_info->generic_worker,
1798 			   "genwork", 1, NULL);
1799 
1800 	btrfs_init_workers(&fs_info->workers, "worker",
1801 			   fs_info->thread_pool_size,
1802 			   &fs_info->generic_worker);
1803 
1804 	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1805 			   fs_info->thread_pool_size,
1806 			   &fs_info->generic_worker);
1807 
1808 	btrfs_init_workers(&fs_info->submit_workers, "submit",
1809 			   min_t(u64, fs_devices->num_devices,
1810 			   fs_info->thread_pool_size),
1811 			   &fs_info->generic_worker);
1812 
1813 	/* a higher idle thresh on the submit workers makes it much more
1814 	 * likely that bios will be send down in a sane order to the
1815 	 * devices
1816 	 */
1817 	fs_info->submit_workers.idle_thresh = 64;
1818 
1819 	fs_info->workers.idle_thresh = 16;
1820 	fs_info->workers.ordered = 1;
1821 
1822 	fs_info->delalloc_workers.idle_thresh = 2;
1823 	fs_info->delalloc_workers.ordered = 1;
1824 
1825 	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
1826 			   &fs_info->generic_worker);
1827 	btrfs_init_workers(&fs_info->endio_workers, "endio",
1828 			   fs_info->thread_pool_size,
1829 			   &fs_info->generic_worker);
1830 	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1831 			   fs_info->thread_pool_size,
1832 			   &fs_info->generic_worker);
1833 	btrfs_init_workers(&fs_info->endio_meta_write_workers,
1834 			   "endio-meta-write", fs_info->thread_pool_size,
1835 			   &fs_info->generic_worker);
1836 	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1837 			   fs_info->thread_pool_size,
1838 			   &fs_info->generic_worker);
1839 	btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
1840 			   1, &fs_info->generic_worker);
1841 
1842 	/*
1843 	 * endios are largely parallel and should have a very
1844 	 * low idle thresh
1845 	 */
1846 	fs_info->endio_workers.idle_thresh = 4;
1847 	fs_info->endio_meta_workers.idle_thresh = 4;
1848 
1849 	fs_info->endio_write_workers.idle_thresh = 2;
1850 	fs_info->endio_meta_write_workers.idle_thresh = 2;
1851 
1852 	btrfs_start_workers(&fs_info->workers, 1);
1853 	btrfs_start_workers(&fs_info->generic_worker, 1);
1854 	btrfs_start_workers(&fs_info->submit_workers, 1);
1855 	btrfs_start_workers(&fs_info->delalloc_workers, 1);
1856 	btrfs_start_workers(&fs_info->fixup_workers, 1);
1857 	btrfs_start_workers(&fs_info->endio_workers, 1);
1858 	btrfs_start_workers(&fs_info->endio_meta_workers, 1);
1859 	btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
1860 	btrfs_start_workers(&fs_info->endio_write_workers, 1);
1861 	btrfs_start_workers(&fs_info->endio_freespace_worker, 1);
1862 
1863 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1864 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1865 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1866 
1867 	nodesize = btrfs_super_nodesize(disk_super);
1868 	leafsize = btrfs_super_leafsize(disk_super);
1869 	sectorsize = btrfs_super_sectorsize(disk_super);
1870 	stripesize = btrfs_super_stripesize(disk_super);
1871 	tree_root->nodesize = nodesize;
1872 	tree_root->leafsize = leafsize;
1873 	tree_root->sectorsize = sectorsize;
1874 	tree_root->stripesize = stripesize;
1875 
1876 	sb->s_blocksize = sectorsize;
1877 	sb->s_blocksize_bits = blksize_bits(sectorsize);
1878 
1879 	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1880 		    sizeof(disk_super->magic))) {
1881 		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1882 		goto fail_sb_buffer;
1883 	}
1884 
1885 	mutex_lock(&fs_info->chunk_mutex);
1886 	ret = btrfs_read_sys_array(tree_root);
1887 	mutex_unlock(&fs_info->chunk_mutex);
1888 	if (ret) {
1889 		printk(KERN_WARNING "btrfs: failed to read the system "
1890 		       "array on %s\n", sb->s_id);
1891 		goto fail_sb_buffer;
1892 	}
1893 
1894 	blocksize = btrfs_level_size(tree_root,
1895 				     btrfs_super_chunk_root_level(disk_super));
1896 	generation = btrfs_super_chunk_root_generation(disk_super);
1897 
1898 	__setup_root(nodesize, leafsize, sectorsize, stripesize,
1899 		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1900 
1901 	chunk_root->node = read_tree_block(chunk_root,
1902 					   btrfs_super_chunk_root(disk_super),
1903 					   blocksize, generation);
1904 	BUG_ON(!chunk_root->node);
1905 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
1906 		printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
1907 		       sb->s_id);
1908 		goto fail_chunk_root;
1909 	}
1910 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
1911 	chunk_root->commit_root = btrfs_root_node(chunk_root);
1912 
1913 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1914 	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1915 	   BTRFS_UUID_SIZE);
1916 
1917 	mutex_lock(&fs_info->chunk_mutex);
1918 	ret = btrfs_read_chunk_tree(chunk_root);
1919 	mutex_unlock(&fs_info->chunk_mutex);
1920 	if (ret) {
1921 		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1922 		       sb->s_id);
1923 		goto fail_chunk_root;
1924 	}
1925 
1926 	btrfs_close_extra_devices(fs_devices);
1927 
1928 	blocksize = btrfs_level_size(tree_root,
1929 				     btrfs_super_root_level(disk_super));
1930 	generation = btrfs_super_generation(disk_super);
1931 
1932 	tree_root->node = read_tree_block(tree_root,
1933 					  btrfs_super_root(disk_super),
1934 					  blocksize, generation);
1935 	if (!tree_root->node)
1936 		goto fail_chunk_root;
1937 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
1938 		printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
1939 		       sb->s_id);
1940 		goto fail_tree_root;
1941 	}
1942 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
1943 	tree_root->commit_root = btrfs_root_node(tree_root);
1944 
1945 	ret = find_and_setup_root(tree_root, fs_info,
1946 				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1947 	if (ret)
1948 		goto fail_tree_root;
1949 	extent_root->track_dirty = 1;
1950 
1951 	ret = find_and_setup_root(tree_root, fs_info,
1952 				  BTRFS_DEV_TREE_OBJECTID, dev_root);
1953 	if (ret)
1954 		goto fail_extent_root;
1955 	dev_root->track_dirty = 1;
1956 
1957 	ret = find_and_setup_root(tree_root, fs_info,
1958 				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
1959 	if (ret)
1960 		goto fail_dev_root;
1961 
1962 	csum_root->track_dirty = 1;
1963 
1964 	fs_info->generation = generation;
1965 	fs_info->last_trans_committed = generation;
1966 	fs_info->data_alloc_profile = (u64)-1;
1967 	fs_info->metadata_alloc_profile = (u64)-1;
1968 	fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1969 
1970 	ret = btrfs_read_block_groups(extent_root);
1971 	if (ret) {
1972 		printk(KERN_ERR "Failed to read block groups: %d\n", ret);
1973 		goto fail_block_groups;
1974 	}
1975 
1976 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1977 					       "btrfs-cleaner");
1978 	if (IS_ERR(fs_info->cleaner_kthread))
1979 		goto fail_block_groups;
1980 
1981 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
1982 						   tree_root,
1983 						   "btrfs-transaction");
1984 	if (IS_ERR(fs_info->transaction_kthread))
1985 		goto fail_cleaner;
1986 
1987 	if (!btrfs_test_opt(tree_root, SSD) &&
1988 	    !btrfs_test_opt(tree_root, NOSSD) &&
1989 	    !fs_info->fs_devices->rotating) {
1990 		printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
1991 		       "mode\n");
1992 		btrfs_set_opt(fs_info->mount_opt, SSD);
1993 	}
1994 
1995 	/* do not make disk changes in broken FS */
1996 	if (btrfs_super_log_root(disk_super) != 0 &&
1997 	    !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
1998 		u64 bytenr = btrfs_super_log_root(disk_super);
1999 
2000 		if (fs_devices->rw_devices == 0) {
2001 			printk(KERN_WARNING "Btrfs log replay required "
2002 			       "on RO media\n");
2003 			err = -EIO;
2004 			goto fail_trans_kthread;
2005 		}
2006 		blocksize =
2007 		     btrfs_level_size(tree_root,
2008 				      btrfs_super_log_root_level(disk_super));
2009 
2010 		log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
2011 		if (!log_tree_root) {
2012 			err = -ENOMEM;
2013 			goto fail_trans_kthread;
2014 		}
2015 
2016 		__setup_root(nodesize, leafsize, sectorsize, stripesize,
2017 			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2018 
2019 		log_tree_root->node = read_tree_block(tree_root, bytenr,
2020 						      blocksize,
2021 						      generation + 1);
2022 		ret = btrfs_recover_log_trees(log_tree_root);
2023 		BUG_ON(ret);
2024 
2025 		if (sb->s_flags & MS_RDONLY) {
2026 			ret =  btrfs_commit_super(tree_root);
2027 			BUG_ON(ret);
2028 		}
2029 	}
2030 
2031 	ret = btrfs_find_orphan_roots(tree_root);
2032 	BUG_ON(ret);
2033 
2034 	if (!(sb->s_flags & MS_RDONLY)) {
2035 		ret = btrfs_cleanup_fs_roots(fs_info);
2036 		BUG_ON(ret);
2037 
2038 		ret = btrfs_recover_relocation(tree_root);
2039 		if (ret < 0) {
2040 			printk(KERN_WARNING
2041 			       "btrfs: failed to recover relocation\n");
2042 			err = -EINVAL;
2043 			goto fail_trans_kthread;
2044 		}
2045 	}
2046 
2047 	location.objectid = BTRFS_FS_TREE_OBJECTID;
2048 	location.type = BTRFS_ROOT_ITEM_KEY;
2049 	location.offset = (u64)-1;
2050 
2051 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2052 	if (!fs_info->fs_root)
2053 		goto fail_trans_kthread;
2054 	if (IS_ERR(fs_info->fs_root)) {
2055 		err = PTR_ERR(fs_info->fs_root);
2056 		goto fail_trans_kthread;
2057 	}
2058 
2059 	if (!(sb->s_flags & MS_RDONLY)) {
2060 		down_read(&fs_info->cleanup_work_sem);
2061 		btrfs_orphan_cleanup(fs_info->fs_root);
2062 		btrfs_orphan_cleanup(fs_info->tree_root);
2063 		up_read(&fs_info->cleanup_work_sem);
2064 	}
2065 
2066 	return tree_root;
2067 
2068 fail_trans_kthread:
2069 	kthread_stop(fs_info->transaction_kthread);
2070 fail_cleaner:
2071 	kthread_stop(fs_info->cleaner_kthread);
2072 
2073 	/*
2074 	 * make sure we're done with the btree inode before we stop our
2075 	 * kthreads
2076 	 */
2077 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2078 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2079 
2080 fail_block_groups:
2081 	btrfs_free_block_groups(fs_info);
2082 	free_extent_buffer(csum_root->node);
2083 	free_extent_buffer(csum_root->commit_root);
2084 fail_dev_root:
2085 	free_extent_buffer(dev_root->node);
2086 	free_extent_buffer(dev_root->commit_root);
2087 fail_extent_root:
2088 	free_extent_buffer(extent_root->node);
2089 	free_extent_buffer(extent_root->commit_root);
2090 fail_tree_root:
2091 	free_extent_buffer(tree_root->node);
2092 	free_extent_buffer(tree_root->commit_root);
2093 fail_chunk_root:
2094 	free_extent_buffer(chunk_root->node);
2095 	free_extent_buffer(chunk_root->commit_root);
2096 fail_sb_buffer:
2097 	btrfs_stop_workers(&fs_info->generic_worker);
2098 	btrfs_stop_workers(&fs_info->fixup_workers);
2099 	btrfs_stop_workers(&fs_info->delalloc_workers);
2100 	btrfs_stop_workers(&fs_info->workers);
2101 	btrfs_stop_workers(&fs_info->endio_workers);
2102 	btrfs_stop_workers(&fs_info->endio_meta_workers);
2103 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2104 	btrfs_stop_workers(&fs_info->endio_write_workers);
2105 	btrfs_stop_workers(&fs_info->endio_freespace_worker);
2106 	btrfs_stop_workers(&fs_info->submit_workers);
2107 fail_iput:
2108 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2109 	iput(fs_info->btree_inode);
2110 
2111 	btrfs_close_devices(fs_info->fs_devices);
2112 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2113 fail_bdi:
2114 	bdi_destroy(&fs_info->bdi);
2115 fail_srcu:
2116 	cleanup_srcu_struct(&fs_info->subvol_srcu);
2117 fail:
2118 	kfree(extent_root);
2119 	kfree(tree_root);
2120 	kfree(fs_info);
2121 	kfree(chunk_root);
2122 	kfree(dev_root);
2123 	kfree(csum_root);
2124 	return ERR_PTR(err);
2125 }
2126 
2127 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2128 {
2129 	char b[BDEVNAME_SIZE];
2130 
2131 	if (uptodate) {
2132 		set_buffer_uptodate(bh);
2133 	} else {
2134 		if (printk_ratelimit()) {
2135 			printk(KERN_WARNING "lost page write due to "
2136 					"I/O error on %s\n",
2137 				       bdevname(bh->b_bdev, b));
2138 		}
2139 		/* note, we dont' set_buffer_write_io_error because we have
2140 		 * our own ways of dealing with the IO errors
2141 		 */
2142 		clear_buffer_uptodate(bh);
2143 	}
2144 	unlock_buffer(bh);
2145 	put_bh(bh);
2146 }
2147 
2148 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2149 {
2150 	struct buffer_head *bh;
2151 	struct buffer_head *latest = NULL;
2152 	struct btrfs_super_block *super;
2153 	int i;
2154 	u64 transid = 0;
2155 	u64 bytenr;
2156 
2157 	/* we would like to check all the supers, but that would make
2158 	 * a btrfs mount succeed after a mkfs from a different FS.
2159 	 * So, we need to add a special mount option to scan for
2160 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2161 	 */
2162 	for (i = 0; i < 1; i++) {
2163 		bytenr = btrfs_sb_offset(i);
2164 		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2165 			break;
2166 		bh = __bread(bdev, bytenr / 4096, 4096);
2167 		if (!bh)
2168 			continue;
2169 
2170 		super = (struct btrfs_super_block *)bh->b_data;
2171 		if (btrfs_super_bytenr(super) != bytenr ||
2172 		    strncmp((char *)(&super->magic), BTRFS_MAGIC,
2173 			    sizeof(super->magic))) {
2174 			brelse(bh);
2175 			continue;
2176 		}
2177 
2178 		if (!latest || btrfs_super_generation(super) > transid) {
2179 			brelse(latest);
2180 			latest = bh;
2181 			transid = btrfs_super_generation(super);
2182 		} else {
2183 			brelse(bh);
2184 		}
2185 	}
2186 	return latest;
2187 }
2188 
2189 /*
2190  * this should be called twice, once with wait == 0 and
2191  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2192  * we write are pinned.
2193  *
2194  * They are released when wait == 1 is done.
2195  * max_mirrors must be the same for both runs, and it indicates how
2196  * many supers on this one device should be written.
2197  *
2198  * max_mirrors == 0 means to write them all.
2199  */
2200 static int write_dev_supers(struct btrfs_device *device,
2201 			    struct btrfs_super_block *sb,
2202 			    int do_barriers, int wait, int max_mirrors)
2203 {
2204 	struct buffer_head *bh;
2205 	int i;
2206 	int ret;
2207 	int errors = 0;
2208 	u32 crc;
2209 	u64 bytenr;
2210 	int last_barrier = 0;
2211 
2212 	if (max_mirrors == 0)
2213 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2214 
2215 	/* make sure only the last submit_bh does a barrier */
2216 	if (do_barriers) {
2217 		for (i = 0; i < max_mirrors; i++) {
2218 			bytenr = btrfs_sb_offset(i);
2219 			if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2220 			    device->total_bytes)
2221 				break;
2222 			last_barrier = i;
2223 		}
2224 	}
2225 
2226 	for (i = 0; i < max_mirrors; i++) {
2227 		bytenr = btrfs_sb_offset(i);
2228 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2229 			break;
2230 
2231 		if (wait) {
2232 			bh = __find_get_block(device->bdev, bytenr / 4096,
2233 					      BTRFS_SUPER_INFO_SIZE);
2234 			BUG_ON(!bh);
2235 			wait_on_buffer(bh);
2236 			if (!buffer_uptodate(bh))
2237 				errors++;
2238 
2239 			/* drop our reference */
2240 			brelse(bh);
2241 
2242 			/* drop the reference from the wait == 0 run */
2243 			brelse(bh);
2244 			continue;
2245 		} else {
2246 			btrfs_set_super_bytenr(sb, bytenr);
2247 
2248 			crc = ~(u32)0;
2249 			crc = btrfs_csum_data(NULL, (char *)sb +
2250 					      BTRFS_CSUM_SIZE, crc,
2251 					      BTRFS_SUPER_INFO_SIZE -
2252 					      BTRFS_CSUM_SIZE);
2253 			btrfs_csum_final(crc, sb->csum);
2254 
2255 			/*
2256 			 * one reference for us, and we leave it for the
2257 			 * caller
2258 			 */
2259 			bh = __getblk(device->bdev, bytenr / 4096,
2260 				      BTRFS_SUPER_INFO_SIZE);
2261 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2262 
2263 			/* one reference for submit_bh */
2264 			get_bh(bh);
2265 
2266 			set_buffer_uptodate(bh);
2267 			lock_buffer(bh);
2268 			bh->b_end_io = btrfs_end_buffer_write_sync;
2269 		}
2270 
2271 		if (i == last_barrier && do_barriers)
2272 			ret = submit_bh(WRITE_FLUSH_FUA, bh);
2273 		else
2274 			ret = submit_bh(WRITE_SYNC, bh);
2275 
2276 		if (ret)
2277 			errors++;
2278 	}
2279 	return errors < i ? 0 : -1;
2280 }
2281 
2282 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2283 {
2284 	struct list_head *head;
2285 	struct btrfs_device *dev;
2286 	struct btrfs_super_block *sb;
2287 	struct btrfs_dev_item *dev_item;
2288 	int ret;
2289 	int do_barriers;
2290 	int max_errors;
2291 	int total_errors = 0;
2292 	u64 flags;
2293 
2294 	max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2295 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
2296 
2297 	sb = &root->fs_info->super_for_commit;
2298 	dev_item = &sb->dev_item;
2299 
2300 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2301 	head = &root->fs_info->fs_devices->devices;
2302 	list_for_each_entry(dev, head, dev_list) {
2303 		if (!dev->bdev) {
2304 			total_errors++;
2305 			continue;
2306 		}
2307 		if (!dev->in_fs_metadata || !dev->writeable)
2308 			continue;
2309 
2310 		btrfs_set_stack_device_generation(dev_item, 0);
2311 		btrfs_set_stack_device_type(dev_item, dev->type);
2312 		btrfs_set_stack_device_id(dev_item, dev->devid);
2313 		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2314 		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2315 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2316 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2317 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2318 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2319 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2320 
2321 		flags = btrfs_super_flags(sb);
2322 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2323 
2324 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2325 		if (ret)
2326 			total_errors++;
2327 	}
2328 	if (total_errors > max_errors) {
2329 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2330 		       total_errors);
2331 		BUG();
2332 	}
2333 
2334 	total_errors = 0;
2335 	list_for_each_entry(dev, head, dev_list) {
2336 		if (!dev->bdev)
2337 			continue;
2338 		if (!dev->in_fs_metadata || !dev->writeable)
2339 			continue;
2340 
2341 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2342 		if (ret)
2343 			total_errors++;
2344 	}
2345 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2346 	if (total_errors > max_errors) {
2347 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2348 		       total_errors);
2349 		BUG();
2350 	}
2351 	return 0;
2352 }
2353 
2354 int write_ctree_super(struct btrfs_trans_handle *trans,
2355 		      struct btrfs_root *root, int max_mirrors)
2356 {
2357 	int ret;
2358 
2359 	ret = write_all_supers(root, max_mirrors);
2360 	return ret;
2361 }
2362 
2363 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2364 {
2365 	spin_lock(&fs_info->fs_roots_radix_lock);
2366 	radix_tree_delete(&fs_info->fs_roots_radix,
2367 			  (unsigned long)root->root_key.objectid);
2368 	spin_unlock(&fs_info->fs_roots_radix_lock);
2369 
2370 	if (btrfs_root_refs(&root->root_item) == 0)
2371 		synchronize_srcu(&fs_info->subvol_srcu);
2372 
2373 	free_fs_root(root);
2374 	return 0;
2375 }
2376 
2377 static void free_fs_root(struct btrfs_root *root)
2378 {
2379 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2380 	if (root->anon_super.s_dev) {
2381 		down_write(&root->anon_super.s_umount);
2382 		kill_anon_super(&root->anon_super);
2383 	}
2384 	free_extent_buffer(root->node);
2385 	free_extent_buffer(root->commit_root);
2386 	kfree(root->name);
2387 	kfree(root);
2388 }
2389 
2390 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2391 {
2392 	int ret;
2393 	struct btrfs_root *gang[8];
2394 	int i;
2395 
2396 	while (!list_empty(&fs_info->dead_roots)) {
2397 		gang[0] = list_entry(fs_info->dead_roots.next,
2398 				     struct btrfs_root, root_list);
2399 		list_del(&gang[0]->root_list);
2400 
2401 		if (gang[0]->in_radix) {
2402 			btrfs_free_fs_root(fs_info, gang[0]);
2403 		} else {
2404 			free_extent_buffer(gang[0]->node);
2405 			free_extent_buffer(gang[0]->commit_root);
2406 			kfree(gang[0]);
2407 		}
2408 	}
2409 
2410 	while (1) {
2411 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2412 					     (void **)gang, 0,
2413 					     ARRAY_SIZE(gang));
2414 		if (!ret)
2415 			break;
2416 		for (i = 0; i < ret; i++)
2417 			btrfs_free_fs_root(fs_info, gang[i]);
2418 	}
2419 	return 0;
2420 }
2421 
2422 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2423 {
2424 	u64 root_objectid = 0;
2425 	struct btrfs_root *gang[8];
2426 	int i;
2427 	int ret;
2428 
2429 	while (1) {
2430 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2431 					     (void **)gang, root_objectid,
2432 					     ARRAY_SIZE(gang));
2433 		if (!ret)
2434 			break;
2435 
2436 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
2437 		for (i = 0; i < ret; i++) {
2438 			root_objectid = gang[i]->root_key.objectid;
2439 			btrfs_orphan_cleanup(gang[i]);
2440 		}
2441 		root_objectid++;
2442 	}
2443 	return 0;
2444 }
2445 
2446 int btrfs_commit_super(struct btrfs_root *root)
2447 {
2448 	struct btrfs_trans_handle *trans;
2449 	int ret;
2450 
2451 	mutex_lock(&root->fs_info->cleaner_mutex);
2452 	btrfs_run_delayed_iputs(root);
2453 	btrfs_clean_old_snapshots(root);
2454 	mutex_unlock(&root->fs_info->cleaner_mutex);
2455 
2456 	/* wait until ongoing cleanup work done */
2457 	down_write(&root->fs_info->cleanup_work_sem);
2458 	up_write(&root->fs_info->cleanup_work_sem);
2459 
2460 	trans = btrfs_join_transaction(root, 1);
2461 	if (IS_ERR(trans))
2462 		return PTR_ERR(trans);
2463 	ret = btrfs_commit_transaction(trans, root);
2464 	BUG_ON(ret);
2465 	/* run commit again to drop the original snapshot */
2466 	trans = btrfs_join_transaction(root, 1);
2467 	if (IS_ERR(trans))
2468 		return PTR_ERR(trans);
2469 	btrfs_commit_transaction(trans, root);
2470 	ret = btrfs_write_and_wait_transaction(NULL, root);
2471 	BUG_ON(ret);
2472 
2473 	ret = write_ctree_super(NULL, root, 0);
2474 	return ret;
2475 }
2476 
2477 int close_ctree(struct btrfs_root *root)
2478 {
2479 	struct btrfs_fs_info *fs_info = root->fs_info;
2480 	int ret;
2481 
2482 	fs_info->closing = 1;
2483 	smp_mb();
2484 
2485 	btrfs_put_block_group_cache(fs_info);
2486 
2487 	/*
2488 	 * Here come 2 situations when btrfs is broken to flip readonly:
2489 	 *
2490 	 * 1. when btrfs flips readonly somewhere else before
2491 	 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
2492 	 * and btrfs will skip to write sb directly to keep
2493 	 * ERROR state on disk.
2494 	 *
2495 	 * 2. when btrfs flips readonly just in btrfs_commit_super,
2496 	 * and in such case, btrfs cannot write sb via btrfs_commit_super,
2497 	 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
2498 	 * btrfs will cleanup all FS resources first and write sb then.
2499 	 */
2500 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2501 		ret = btrfs_commit_super(root);
2502 		if (ret)
2503 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2504 	}
2505 
2506 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
2507 		ret = btrfs_error_commit_super(root);
2508 		if (ret)
2509 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2510 	}
2511 
2512 	kthread_stop(root->fs_info->transaction_kthread);
2513 	kthread_stop(root->fs_info->cleaner_kthread);
2514 
2515 	fs_info->closing = 2;
2516 	smp_mb();
2517 
2518 	if (fs_info->delalloc_bytes) {
2519 		printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2520 		       (unsigned long long)fs_info->delalloc_bytes);
2521 	}
2522 	if (fs_info->total_ref_cache_size) {
2523 		printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2524 		       (unsigned long long)fs_info->total_ref_cache_size);
2525 	}
2526 
2527 	free_extent_buffer(fs_info->extent_root->node);
2528 	free_extent_buffer(fs_info->extent_root->commit_root);
2529 	free_extent_buffer(fs_info->tree_root->node);
2530 	free_extent_buffer(fs_info->tree_root->commit_root);
2531 	free_extent_buffer(root->fs_info->chunk_root->node);
2532 	free_extent_buffer(root->fs_info->chunk_root->commit_root);
2533 	free_extent_buffer(root->fs_info->dev_root->node);
2534 	free_extent_buffer(root->fs_info->dev_root->commit_root);
2535 	free_extent_buffer(root->fs_info->csum_root->node);
2536 	free_extent_buffer(root->fs_info->csum_root->commit_root);
2537 
2538 	btrfs_free_block_groups(root->fs_info);
2539 
2540 	del_fs_roots(fs_info);
2541 
2542 	iput(fs_info->btree_inode);
2543 
2544 	btrfs_stop_workers(&fs_info->generic_worker);
2545 	btrfs_stop_workers(&fs_info->fixup_workers);
2546 	btrfs_stop_workers(&fs_info->delalloc_workers);
2547 	btrfs_stop_workers(&fs_info->workers);
2548 	btrfs_stop_workers(&fs_info->endio_workers);
2549 	btrfs_stop_workers(&fs_info->endio_meta_workers);
2550 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2551 	btrfs_stop_workers(&fs_info->endio_write_workers);
2552 	btrfs_stop_workers(&fs_info->endio_freespace_worker);
2553 	btrfs_stop_workers(&fs_info->submit_workers);
2554 
2555 	btrfs_close_devices(fs_info->fs_devices);
2556 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2557 
2558 	bdi_destroy(&fs_info->bdi);
2559 	cleanup_srcu_struct(&fs_info->subvol_srcu);
2560 
2561 	kfree(fs_info->extent_root);
2562 	kfree(fs_info->tree_root);
2563 	kfree(fs_info->chunk_root);
2564 	kfree(fs_info->dev_root);
2565 	kfree(fs_info->csum_root);
2566 	kfree(fs_info);
2567 
2568 	return 0;
2569 }
2570 
2571 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2572 {
2573 	int ret;
2574 	struct inode *btree_inode = buf->first_page->mapping->host;
2575 
2576 	ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
2577 				     NULL);
2578 	if (!ret)
2579 		return ret;
2580 
2581 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2582 				    parent_transid);
2583 	return !ret;
2584 }
2585 
2586 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2587 {
2588 	struct inode *btree_inode = buf->first_page->mapping->host;
2589 	return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2590 					  buf);
2591 }
2592 
2593 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2594 {
2595 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2596 	u64 transid = btrfs_header_generation(buf);
2597 	struct inode *btree_inode = root->fs_info->btree_inode;
2598 	int was_dirty;
2599 
2600 	btrfs_assert_tree_locked(buf);
2601 	if (transid != root->fs_info->generation) {
2602 		printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2603 		       "found %llu running %llu\n",
2604 			(unsigned long long)buf->start,
2605 			(unsigned long long)transid,
2606 			(unsigned long long)root->fs_info->generation);
2607 		WARN_ON(1);
2608 	}
2609 	was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2610 					    buf);
2611 	if (!was_dirty) {
2612 		spin_lock(&root->fs_info->delalloc_lock);
2613 		root->fs_info->dirty_metadata_bytes += buf->len;
2614 		spin_unlock(&root->fs_info->delalloc_lock);
2615 	}
2616 }
2617 
2618 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2619 {
2620 	/*
2621 	 * looks as though older kernels can get into trouble with
2622 	 * this code, they end up stuck in balance_dirty_pages forever
2623 	 */
2624 	u64 num_dirty;
2625 	unsigned long thresh = 32 * 1024 * 1024;
2626 
2627 	if (current->flags & PF_MEMALLOC)
2628 		return;
2629 
2630 	num_dirty = root->fs_info->dirty_metadata_bytes;
2631 
2632 	if (num_dirty > thresh) {
2633 		balance_dirty_pages_ratelimited_nr(
2634 				   root->fs_info->btree_inode->i_mapping, 1);
2635 	}
2636 	return;
2637 }
2638 
2639 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2640 {
2641 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2642 	int ret;
2643 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2644 	if (ret == 0)
2645 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2646 	return ret;
2647 }
2648 
2649 int btree_lock_page_hook(struct page *page)
2650 {
2651 	struct inode *inode = page->mapping->host;
2652 	struct btrfs_root *root = BTRFS_I(inode)->root;
2653 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2654 	struct extent_buffer *eb;
2655 	unsigned long len;
2656 	u64 bytenr = page_offset(page);
2657 
2658 	if (page->private == EXTENT_PAGE_PRIVATE)
2659 		goto out;
2660 
2661 	len = page->private >> 2;
2662 	eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2663 	if (!eb)
2664 		goto out;
2665 
2666 	btrfs_tree_lock(eb);
2667 	btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2668 
2669 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2670 		spin_lock(&root->fs_info->delalloc_lock);
2671 		if (root->fs_info->dirty_metadata_bytes >= eb->len)
2672 			root->fs_info->dirty_metadata_bytes -= eb->len;
2673 		else
2674 			WARN_ON(1);
2675 		spin_unlock(&root->fs_info->delalloc_lock);
2676 	}
2677 
2678 	btrfs_tree_unlock(eb);
2679 	free_extent_buffer(eb);
2680 out:
2681 	lock_page(page);
2682 	return 0;
2683 }
2684 
2685 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
2686 			      int read_only)
2687 {
2688 	if (read_only)
2689 		return;
2690 
2691 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
2692 		printk(KERN_WARNING "warning: mount fs with errors, "
2693 		       "running btrfsck is recommended\n");
2694 }
2695 
2696 int btrfs_error_commit_super(struct btrfs_root *root)
2697 {
2698 	int ret;
2699 
2700 	mutex_lock(&root->fs_info->cleaner_mutex);
2701 	btrfs_run_delayed_iputs(root);
2702 	mutex_unlock(&root->fs_info->cleaner_mutex);
2703 
2704 	down_write(&root->fs_info->cleanup_work_sem);
2705 	up_write(&root->fs_info->cleanup_work_sem);
2706 
2707 	/* cleanup FS via transaction */
2708 	btrfs_cleanup_transaction(root);
2709 
2710 	ret = write_ctree_super(NULL, root, 0);
2711 
2712 	return ret;
2713 }
2714 
2715 static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
2716 {
2717 	struct btrfs_inode *btrfs_inode;
2718 	struct list_head splice;
2719 
2720 	INIT_LIST_HEAD(&splice);
2721 
2722 	mutex_lock(&root->fs_info->ordered_operations_mutex);
2723 	spin_lock(&root->fs_info->ordered_extent_lock);
2724 
2725 	list_splice_init(&root->fs_info->ordered_operations, &splice);
2726 	while (!list_empty(&splice)) {
2727 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
2728 					 ordered_operations);
2729 
2730 		list_del_init(&btrfs_inode->ordered_operations);
2731 
2732 		btrfs_invalidate_inodes(btrfs_inode->root);
2733 	}
2734 
2735 	spin_unlock(&root->fs_info->ordered_extent_lock);
2736 	mutex_unlock(&root->fs_info->ordered_operations_mutex);
2737 
2738 	return 0;
2739 }
2740 
2741 static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
2742 {
2743 	struct list_head splice;
2744 	struct btrfs_ordered_extent *ordered;
2745 	struct inode *inode;
2746 
2747 	INIT_LIST_HEAD(&splice);
2748 
2749 	spin_lock(&root->fs_info->ordered_extent_lock);
2750 
2751 	list_splice_init(&root->fs_info->ordered_extents, &splice);
2752 	while (!list_empty(&splice)) {
2753 		ordered = list_entry(splice.next, struct btrfs_ordered_extent,
2754 				     root_extent_list);
2755 
2756 		list_del_init(&ordered->root_extent_list);
2757 		atomic_inc(&ordered->refs);
2758 
2759 		/* the inode may be getting freed (in sys_unlink path). */
2760 		inode = igrab(ordered->inode);
2761 
2762 		spin_unlock(&root->fs_info->ordered_extent_lock);
2763 		if (inode)
2764 			iput(inode);
2765 
2766 		atomic_set(&ordered->refs, 1);
2767 		btrfs_put_ordered_extent(ordered);
2768 
2769 		spin_lock(&root->fs_info->ordered_extent_lock);
2770 	}
2771 
2772 	spin_unlock(&root->fs_info->ordered_extent_lock);
2773 
2774 	return 0;
2775 }
2776 
2777 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2778 				      struct btrfs_root *root)
2779 {
2780 	struct rb_node *node;
2781 	struct btrfs_delayed_ref_root *delayed_refs;
2782 	struct btrfs_delayed_ref_node *ref;
2783 	int ret = 0;
2784 
2785 	delayed_refs = &trans->delayed_refs;
2786 
2787 	spin_lock(&delayed_refs->lock);
2788 	if (delayed_refs->num_entries == 0) {
2789 		printk(KERN_INFO "delayed_refs has NO entry\n");
2790 		return ret;
2791 	}
2792 
2793 	node = rb_first(&delayed_refs->root);
2794 	while (node) {
2795 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2796 		node = rb_next(node);
2797 
2798 		ref->in_tree = 0;
2799 		rb_erase(&ref->rb_node, &delayed_refs->root);
2800 		delayed_refs->num_entries--;
2801 
2802 		atomic_set(&ref->refs, 1);
2803 		if (btrfs_delayed_ref_is_head(ref)) {
2804 			struct btrfs_delayed_ref_head *head;
2805 
2806 			head = btrfs_delayed_node_to_head(ref);
2807 			mutex_lock(&head->mutex);
2808 			kfree(head->extent_op);
2809 			delayed_refs->num_heads--;
2810 			if (list_empty(&head->cluster))
2811 				delayed_refs->num_heads_ready--;
2812 			list_del_init(&head->cluster);
2813 			mutex_unlock(&head->mutex);
2814 		}
2815 
2816 		spin_unlock(&delayed_refs->lock);
2817 		btrfs_put_delayed_ref(ref);
2818 
2819 		cond_resched();
2820 		spin_lock(&delayed_refs->lock);
2821 	}
2822 
2823 	spin_unlock(&delayed_refs->lock);
2824 
2825 	return ret;
2826 }
2827 
2828 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
2829 {
2830 	struct btrfs_pending_snapshot *snapshot;
2831 	struct list_head splice;
2832 
2833 	INIT_LIST_HEAD(&splice);
2834 
2835 	list_splice_init(&t->pending_snapshots, &splice);
2836 
2837 	while (!list_empty(&splice)) {
2838 		snapshot = list_entry(splice.next,
2839 				      struct btrfs_pending_snapshot,
2840 				      list);
2841 
2842 		list_del_init(&snapshot->list);
2843 
2844 		kfree(snapshot);
2845 	}
2846 
2847 	return 0;
2848 }
2849 
2850 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
2851 {
2852 	struct btrfs_inode *btrfs_inode;
2853 	struct list_head splice;
2854 
2855 	INIT_LIST_HEAD(&splice);
2856 
2857 	list_splice_init(&root->fs_info->delalloc_inodes, &splice);
2858 
2859 	spin_lock(&root->fs_info->delalloc_lock);
2860 
2861 	while (!list_empty(&splice)) {
2862 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
2863 				    delalloc_inodes);
2864 
2865 		list_del_init(&btrfs_inode->delalloc_inodes);
2866 
2867 		btrfs_invalidate_inodes(btrfs_inode->root);
2868 	}
2869 
2870 	spin_unlock(&root->fs_info->delalloc_lock);
2871 
2872 	return 0;
2873 }
2874 
2875 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
2876 					struct extent_io_tree *dirty_pages,
2877 					int mark)
2878 {
2879 	int ret;
2880 	struct page *page;
2881 	struct inode *btree_inode = root->fs_info->btree_inode;
2882 	struct extent_buffer *eb;
2883 	u64 start = 0;
2884 	u64 end;
2885 	u64 offset;
2886 	unsigned long index;
2887 
2888 	while (1) {
2889 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
2890 					    mark);
2891 		if (ret)
2892 			break;
2893 
2894 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
2895 		while (start <= end) {
2896 			index = start >> PAGE_CACHE_SHIFT;
2897 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
2898 			page = find_get_page(btree_inode->i_mapping, index);
2899 			if (!page)
2900 				continue;
2901 			offset = page_offset(page);
2902 
2903 			spin_lock(&dirty_pages->buffer_lock);
2904 			eb = radix_tree_lookup(
2905 			     &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
2906 					       offset >> PAGE_CACHE_SHIFT);
2907 			spin_unlock(&dirty_pages->buffer_lock);
2908 			if (eb) {
2909 				ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
2910 							 &eb->bflags);
2911 				atomic_set(&eb->refs, 1);
2912 			}
2913 			if (PageWriteback(page))
2914 				end_page_writeback(page);
2915 
2916 			lock_page(page);
2917 			if (PageDirty(page)) {
2918 				clear_page_dirty_for_io(page);
2919 				spin_lock_irq(&page->mapping->tree_lock);
2920 				radix_tree_tag_clear(&page->mapping->page_tree,
2921 							page_index(page),
2922 							PAGECACHE_TAG_DIRTY);
2923 				spin_unlock_irq(&page->mapping->tree_lock);
2924 			}
2925 
2926 			page->mapping->a_ops->invalidatepage(page, 0);
2927 			unlock_page(page);
2928 		}
2929 	}
2930 
2931 	return ret;
2932 }
2933 
2934 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
2935 				       struct extent_io_tree *pinned_extents)
2936 {
2937 	struct extent_io_tree *unpin;
2938 	u64 start;
2939 	u64 end;
2940 	int ret;
2941 
2942 	unpin = pinned_extents;
2943 	while (1) {
2944 		ret = find_first_extent_bit(unpin, 0, &start, &end,
2945 					    EXTENT_DIRTY);
2946 		if (ret)
2947 			break;
2948 
2949 		/* opt_discard */
2950 		ret = btrfs_error_discard_extent(root, start, end + 1 - start);
2951 
2952 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
2953 		btrfs_error_unpin_extent_range(root, start, end);
2954 		cond_resched();
2955 	}
2956 
2957 	return 0;
2958 }
2959 
2960 static int btrfs_cleanup_transaction(struct btrfs_root *root)
2961 {
2962 	struct btrfs_transaction *t;
2963 	LIST_HEAD(list);
2964 
2965 	WARN_ON(1);
2966 
2967 	mutex_lock(&root->fs_info->trans_mutex);
2968 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
2969 
2970 	list_splice_init(&root->fs_info->trans_list, &list);
2971 	while (!list_empty(&list)) {
2972 		t = list_entry(list.next, struct btrfs_transaction, list);
2973 		if (!t)
2974 			break;
2975 
2976 		btrfs_destroy_ordered_operations(root);
2977 
2978 		btrfs_destroy_ordered_extents(root);
2979 
2980 		btrfs_destroy_delayed_refs(t, root);
2981 
2982 		btrfs_block_rsv_release(root,
2983 					&root->fs_info->trans_block_rsv,
2984 					t->dirty_pages.dirty_bytes);
2985 
2986 		/* FIXME: cleanup wait for commit */
2987 		t->in_commit = 1;
2988 		t->blocked = 1;
2989 		if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
2990 			wake_up(&root->fs_info->transaction_blocked_wait);
2991 
2992 		t->blocked = 0;
2993 		if (waitqueue_active(&root->fs_info->transaction_wait))
2994 			wake_up(&root->fs_info->transaction_wait);
2995 		mutex_unlock(&root->fs_info->trans_mutex);
2996 
2997 		mutex_lock(&root->fs_info->trans_mutex);
2998 		t->commit_done = 1;
2999 		if (waitqueue_active(&t->commit_wait))
3000 			wake_up(&t->commit_wait);
3001 		mutex_unlock(&root->fs_info->trans_mutex);
3002 
3003 		mutex_lock(&root->fs_info->trans_mutex);
3004 
3005 		btrfs_destroy_pending_snapshots(t);
3006 
3007 		btrfs_destroy_delalloc_inodes(root);
3008 
3009 		spin_lock(&root->fs_info->new_trans_lock);
3010 		root->fs_info->running_transaction = NULL;
3011 		spin_unlock(&root->fs_info->new_trans_lock);
3012 
3013 		btrfs_destroy_marked_extents(root, &t->dirty_pages,
3014 					     EXTENT_DIRTY);
3015 
3016 		btrfs_destroy_pinned_extent(root,
3017 					    root->fs_info->pinned_extents);
3018 
3019 		t->use_count = 0;
3020 		list_del_init(&t->list);
3021 		memset(t, 0, sizeof(*t));
3022 		kmem_cache_free(btrfs_transaction_cachep, t);
3023 	}
3024 
3025 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3026 	mutex_unlock(&root->fs_info->trans_mutex);
3027 
3028 	return 0;
3029 }
3030 
3031 static struct extent_io_ops btree_extent_io_ops = {
3032 	.write_cache_pages_lock_hook = btree_lock_page_hook,
3033 	.readpage_end_io_hook = btree_readpage_end_io_hook,
3034 	.submit_bio_hook = btree_submit_bio_hook,
3035 	/* note we're sharing with inode.c for the merge bio hook */
3036 	.merge_bio_hook = btrfs_merge_bio_hook,
3037 };
3038