1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/crc32c.h> 30 #include <linux/slab.h> 31 #include <linux/migrate.h> 32 #include "compat.h" 33 #include "ctree.h" 34 #include "disk-io.h" 35 #include "transaction.h" 36 #include "btrfs_inode.h" 37 #include "volumes.h" 38 #include "print-tree.h" 39 #include "async-thread.h" 40 #include "locking.h" 41 #include "tree-log.h" 42 #include "free-space-cache.h" 43 44 static struct extent_io_ops btree_extent_io_ops; 45 static void end_workqueue_fn(struct btrfs_work *work); 46 static void free_fs_root(struct btrfs_root *root); 47 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 48 int read_only); 49 static int btrfs_destroy_ordered_operations(struct btrfs_root *root); 50 static int btrfs_destroy_ordered_extents(struct btrfs_root *root); 51 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 52 struct btrfs_root *root); 53 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t); 54 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 55 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 56 struct extent_io_tree *dirty_pages, 57 int mark); 58 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 59 struct extent_io_tree *pinned_extents); 60 static int btrfs_cleanup_transaction(struct btrfs_root *root); 61 62 /* 63 * end_io_wq structs are used to do processing in task context when an IO is 64 * complete. This is used during reads to verify checksums, and it is used 65 * by writes to insert metadata for new file extents after IO is complete. 66 */ 67 struct end_io_wq { 68 struct bio *bio; 69 bio_end_io_t *end_io; 70 void *private; 71 struct btrfs_fs_info *info; 72 int error; 73 int metadata; 74 struct list_head list; 75 struct btrfs_work work; 76 }; 77 78 /* 79 * async submit bios are used to offload expensive checksumming 80 * onto the worker threads. They checksum file and metadata bios 81 * just before they are sent down the IO stack. 82 */ 83 struct async_submit_bio { 84 struct inode *inode; 85 struct bio *bio; 86 struct list_head list; 87 extent_submit_bio_hook_t *submit_bio_start; 88 extent_submit_bio_hook_t *submit_bio_done; 89 int rw; 90 int mirror_num; 91 unsigned long bio_flags; 92 /* 93 * bio_offset is optional, can be used if the pages in the bio 94 * can't tell us where in the file the bio should go 95 */ 96 u64 bio_offset; 97 struct btrfs_work work; 98 }; 99 100 /* These are used to set the lockdep class on the extent buffer locks. 101 * The class is set by the readpage_end_io_hook after the buffer has 102 * passed csum validation but before the pages are unlocked. 103 * 104 * The lockdep class is also set by btrfs_init_new_buffer on freshly 105 * allocated blocks. 106 * 107 * The class is based on the level in the tree block, which allows lockdep 108 * to know that lower nodes nest inside the locks of higher nodes. 109 * 110 * We also add a check to make sure the highest level of the tree is 111 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this 112 * code needs update as well. 113 */ 114 #ifdef CONFIG_DEBUG_LOCK_ALLOC 115 # if BTRFS_MAX_LEVEL != 8 116 # error 117 # endif 118 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1]; 119 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = { 120 /* leaf */ 121 "btrfs-extent-00", 122 "btrfs-extent-01", 123 "btrfs-extent-02", 124 "btrfs-extent-03", 125 "btrfs-extent-04", 126 "btrfs-extent-05", 127 "btrfs-extent-06", 128 "btrfs-extent-07", 129 /* highest possible level */ 130 "btrfs-extent-08", 131 }; 132 #endif 133 134 /* 135 * extents on the btree inode are pretty simple, there's one extent 136 * that covers the entire device 137 */ 138 static struct extent_map *btree_get_extent(struct inode *inode, 139 struct page *page, size_t page_offset, u64 start, u64 len, 140 int create) 141 { 142 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 143 struct extent_map *em; 144 int ret; 145 146 read_lock(&em_tree->lock); 147 em = lookup_extent_mapping(em_tree, start, len); 148 if (em) { 149 em->bdev = 150 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 151 read_unlock(&em_tree->lock); 152 goto out; 153 } 154 read_unlock(&em_tree->lock); 155 156 em = alloc_extent_map(GFP_NOFS); 157 if (!em) { 158 em = ERR_PTR(-ENOMEM); 159 goto out; 160 } 161 em->start = 0; 162 em->len = (u64)-1; 163 em->block_len = (u64)-1; 164 em->block_start = 0; 165 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 166 167 write_lock(&em_tree->lock); 168 ret = add_extent_mapping(em_tree, em); 169 if (ret == -EEXIST) { 170 u64 failed_start = em->start; 171 u64 failed_len = em->len; 172 173 free_extent_map(em); 174 em = lookup_extent_mapping(em_tree, start, len); 175 if (em) { 176 ret = 0; 177 } else { 178 em = lookup_extent_mapping(em_tree, failed_start, 179 failed_len); 180 ret = -EIO; 181 } 182 } else if (ret) { 183 free_extent_map(em); 184 em = NULL; 185 } 186 write_unlock(&em_tree->lock); 187 188 if (ret) 189 em = ERR_PTR(ret); 190 out: 191 return em; 192 } 193 194 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) 195 { 196 return crc32c(seed, data, len); 197 } 198 199 void btrfs_csum_final(u32 crc, char *result) 200 { 201 *(__le32 *)result = ~cpu_to_le32(crc); 202 } 203 204 /* 205 * compute the csum for a btree block, and either verify it or write it 206 * into the csum field of the block. 207 */ 208 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 209 int verify) 210 { 211 u16 csum_size = 212 btrfs_super_csum_size(&root->fs_info->super_copy); 213 char *result = NULL; 214 unsigned long len; 215 unsigned long cur_len; 216 unsigned long offset = BTRFS_CSUM_SIZE; 217 char *map_token = NULL; 218 char *kaddr; 219 unsigned long map_start; 220 unsigned long map_len; 221 int err; 222 u32 crc = ~(u32)0; 223 unsigned long inline_result; 224 225 len = buf->len - offset; 226 while (len > 0) { 227 err = map_private_extent_buffer(buf, offset, 32, 228 &map_token, &kaddr, 229 &map_start, &map_len, KM_USER0); 230 if (err) 231 return 1; 232 cur_len = min(len, map_len - (offset - map_start)); 233 crc = btrfs_csum_data(root, kaddr + offset - map_start, 234 crc, cur_len); 235 len -= cur_len; 236 offset += cur_len; 237 unmap_extent_buffer(buf, map_token, KM_USER0); 238 } 239 if (csum_size > sizeof(inline_result)) { 240 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 241 if (!result) 242 return 1; 243 } else { 244 result = (char *)&inline_result; 245 } 246 247 btrfs_csum_final(crc, result); 248 249 if (verify) { 250 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 251 u32 val; 252 u32 found = 0; 253 memcpy(&found, result, csum_size); 254 255 read_extent_buffer(buf, &val, 0, csum_size); 256 if (printk_ratelimit()) { 257 printk(KERN_INFO "btrfs: %s checksum verify " 258 "failed on %llu wanted %X found %X " 259 "level %d\n", 260 root->fs_info->sb->s_id, 261 (unsigned long long)buf->start, val, found, 262 btrfs_header_level(buf)); 263 } 264 if (result != (char *)&inline_result) 265 kfree(result); 266 return 1; 267 } 268 } else { 269 write_extent_buffer(buf, result, 0, csum_size); 270 } 271 if (result != (char *)&inline_result) 272 kfree(result); 273 return 0; 274 } 275 276 /* 277 * we can't consider a given block up to date unless the transid of the 278 * block matches the transid in the parent node's pointer. This is how we 279 * detect blocks that either didn't get written at all or got written 280 * in the wrong place. 281 */ 282 static int verify_parent_transid(struct extent_io_tree *io_tree, 283 struct extent_buffer *eb, u64 parent_transid) 284 { 285 struct extent_state *cached_state = NULL; 286 int ret; 287 288 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 289 return 0; 290 291 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 292 0, &cached_state, GFP_NOFS); 293 if (extent_buffer_uptodate(io_tree, eb, cached_state) && 294 btrfs_header_generation(eb) == parent_transid) { 295 ret = 0; 296 goto out; 297 } 298 if (printk_ratelimit()) { 299 printk("parent transid verify failed on %llu wanted %llu " 300 "found %llu\n", 301 (unsigned long long)eb->start, 302 (unsigned long long)parent_transid, 303 (unsigned long long)btrfs_header_generation(eb)); 304 } 305 ret = 1; 306 clear_extent_buffer_uptodate(io_tree, eb, &cached_state); 307 out: 308 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 309 &cached_state, GFP_NOFS); 310 return ret; 311 } 312 313 /* 314 * helper to read a given tree block, doing retries as required when 315 * the checksums don't match and we have alternate mirrors to try. 316 */ 317 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 318 struct extent_buffer *eb, 319 u64 start, u64 parent_transid) 320 { 321 struct extent_io_tree *io_tree; 322 int ret; 323 int num_copies = 0; 324 int mirror_num = 0; 325 326 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 327 while (1) { 328 ret = read_extent_buffer_pages(io_tree, eb, start, 1, 329 btree_get_extent, mirror_num); 330 if (!ret && 331 !verify_parent_transid(io_tree, eb, parent_transid)) 332 return ret; 333 334 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, 335 eb->start, eb->len); 336 if (num_copies == 1) 337 return ret; 338 339 mirror_num++; 340 if (mirror_num > num_copies) 341 return ret; 342 } 343 return -EIO; 344 } 345 346 /* 347 * checksum a dirty tree block before IO. This has extra checks to make sure 348 * we only fill in the checksum field in the first page of a multi-page block 349 */ 350 351 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 352 { 353 struct extent_io_tree *tree; 354 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 355 u64 found_start; 356 unsigned long len; 357 struct extent_buffer *eb; 358 int ret; 359 360 tree = &BTRFS_I(page->mapping->host)->io_tree; 361 362 if (page->private == EXTENT_PAGE_PRIVATE) { 363 WARN_ON(1); 364 goto out; 365 } 366 if (!page->private) { 367 WARN_ON(1); 368 goto out; 369 } 370 len = page->private >> 2; 371 WARN_ON(len == 0); 372 373 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); 374 if (eb == NULL) { 375 WARN_ON(1); 376 goto out; 377 } 378 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE, 379 btrfs_header_generation(eb)); 380 BUG_ON(ret); 381 WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN)); 382 383 found_start = btrfs_header_bytenr(eb); 384 if (found_start != start) { 385 WARN_ON(1); 386 goto err; 387 } 388 if (eb->first_page != page) { 389 WARN_ON(1); 390 goto err; 391 } 392 if (!PageUptodate(page)) { 393 WARN_ON(1); 394 goto err; 395 } 396 csum_tree_block(root, eb, 0); 397 err: 398 free_extent_buffer(eb); 399 out: 400 return 0; 401 } 402 403 static int check_tree_block_fsid(struct btrfs_root *root, 404 struct extent_buffer *eb) 405 { 406 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 407 u8 fsid[BTRFS_UUID_SIZE]; 408 int ret = 1; 409 410 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb), 411 BTRFS_FSID_SIZE); 412 while (fs_devices) { 413 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 414 ret = 0; 415 break; 416 } 417 fs_devices = fs_devices->seed; 418 } 419 return ret; 420 } 421 422 #ifdef CONFIG_DEBUG_LOCK_ALLOC 423 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level) 424 { 425 lockdep_set_class_and_name(&eb->lock, 426 &btrfs_eb_class[level], 427 btrfs_eb_name[level]); 428 } 429 #endif 430 431 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, 432 struct extent_state *state) 433 { 434 struct extent_io_tree *tree; 435 u64 found_start; 436 int found_level; 437 unsigned long len; 438 struct extent_buffer *eb; 439 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 440 int ret = 0; 441 442 tree = &BTRFS_I(page->mapping->host)->io_tree; 443 if (page->private == EXTENT_PAGE_PRIVATE) 444 goto out; 445 if (!page->private) 446 goto out; 447 448 len = page->private >> 2; 449 WARN_ON(len == 0); 450 451 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); 452 if (eb == NULL) { 453 ret = -EIO; 454 goto out; 455 } 456 457 found_start = btrfs_header_bytenr(eb); 458 if (found_start != start) { 459 if (printk_ratelimit()) { 460 printk(KERN_INFO "btrfs bad tree block start " 461 "%llu %llu\n", 462 (unsigned long long)found_start, 463 (unsigned long long)eb->start); 464 } 465 ret = -EIO; 466 goto err; 467 } 468 if (eb->first_page != page) { 469 printk(KERN_INFO "btrfs bad first page %lu %lu\n", 470 eb->first_page->index, page->index); 471 WARN_ON(1); 472 ret = -EIO; 473 goto err; 474 } 475 if (check_tree_block_fsid(root, eb)) { 476 if (printk_ratelimit()) { 477 printk(KERN_INFO "btrfs bad fsid on block %llu\n", 478 (unsigned long long)eb->start); 479 } 480 ret = -EIO; 481 goto err; 482 } 483 found_level = btrfs_header_level(eb); 484 485 btrfs_set_buffer_lockdep_class(eb, found_level); 486 487 ret = csum_tree_block(root, eb, 1); 488 if (ret) 489 ret = -EIO; 490 491 end = min_t(u64, eb->len, PAGE_CACHE_SIZE); 492 end = eb->start + end - 1; 493 err: 494 free_extent_buffer(eb); 495 out: 496 return ret; 497 } 498 499 static void end_workqueue_bio(struct bio *bio, int err) 500 { 501 struct end_io_wq *end_io_wq = bio->bi_private; 502 struct btrfs_fs_info *fs_info; 503 504 fs_info = end_io_wq->info; 505 end_io_wq->error = err; 506 end_io_wq->work.func = end_workqueue_fn; 507 end_io_wq->work.flags = 0; 508 509 if (bio->bi_rw & REQ_WRITE) { 510 if (end_io_wq->metadata == 1) 511 btrfs_queue_worker(&fs_info->endio_meta_write_workers, 512 &end_io_wq->work); 513 else if (end_io_wq->metadata == 2) 514 btrfs_queue_worker(&fs_info->endio_freespace_worker, 515 &end_io_wq->work); 516 else 517 btrfs_queue_worker(&fs_info->endio_write_workers, 518 &end_io_wq->work); 519 } else { 520 if (end_io_wq->metadata) 521 btrfs_queue_worker(&fs_info->endio_meta_workers, 522 &end_io_wq->work); 523 else 524 btrfs_queue_worker(&fs_info->endio_workers, 525 &end_io_wq->work); 526 } 527 } 528 529 /* 530 * For the metadata arg you want 531 * 532 * 0 - if data 533 * 1 - if normal metadta 534 * 2 - if writing to the free space cache area 535 */ 536 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 537 int metadata) 538 { 539 struct end_io_wq *end_io_wq; 540 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 541 if (!end_io_wq) 542 return -ENOMEM; 543 544 end_io_wq->private = bio->bi_private; 545 end_io_wq->end_io = bio->bi_end_io; 546 end_io_wq->info = info; 547 end_io_wq->error = 0; 548 end_io_wq->bio = bio; 549 end_io_wq->metadata = metadata; 550 551 bio->bi_private = end_io_wq; 552 bio->bi_end_io = end_workqueue_bio; 553 return 0; 554 } 555 556 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 557 { 558 unsigned long limit = min_t(unsigned long, 559 info->workers.max_workers, 560 info->fs_devices->open_devices); 561 return 256 * limit; 562 } 563 564 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone) 565 { 566 return atomic_read(&info->nr_async_bios) > 567 btrfs_async_submit_limit(info); 568 } 569 570 static void run_one_async_start(struct btrfs_work *work) 571 { 572 struct async_submit_bio *async; 573 574 async = container_of(work, struct async_submit_bio, work); 575 async->submit_bio_start(async->inode, async->rw, async->bio, 576 async->mirror_num, async->bio_flags, 577 async->bio_offset); 578 } 579 580 static void run_one_async_done(struct btrfs_work *work) 581 { 582 struct btrfs_fs_info *fs_info; 583 struct async_submit_bio *async; 584 int limit; 585 586 async = container_of(work, struct async_submit_bio, work); 587 fs_info = BTRFS_I(async->inode)->root->fs_info; 588 589 limit = btrfs_async_submit_limit(fs_info); 590 limit = limit * 2 / 3; 591 592 atomic_dec(&fs_info->nr_async_submits); 593 594 if (atomic_read(&fs_info->nr_async_submits) < limit && 595 waitqueue_active(&fs_info->async_submit_wait)) 596 wake_up(&fs_info->async_submit_wait); 597 598 async->submit_bio_done(async->inode, async->rw, async->bio, 599 async->mirror_num, async->bio_flags, 600 async->bio_offset); 601 } 602 603 static void run_one_async_free(struct btrfs_work *work) 604 { 605 struct async_submit_bio *async; 606 607 async = container_of(work, struct async_submit_bio, work); 608 kfree(async); 609 } 610 611 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 612 int rw, struct bio *bio, int mirror_num, 613 unsigned long bio_flags, 614 u64 bio_offset, 615 extent_submit_bio_hook_t *submit_bio_start, 616 extent_submit_bio_hook_t *submit_bio_done) 617 { 618 struct async_submit_bio *async; 619 620 async = kmalloc(sizeof(*async), GFP_NOFS); 621 if (!async) 622 return -ENOMEM; 623 624 async->inode = inode; 625 async->rw = rw; 626 async->bio = bio; 627 async->mirror_num = mirror_num; 628 async->submit_bio_start = submit_bio_start; 629 async->submit_bio_done = submit_bio_done; 630 631 async->work.func = run_one_async_start; 632 async->work.ordered_func = run_one_async_done; 633 async->work.ordered_free = run_one_async_free; 634 635 async->work.flags = 0; 636 async->bio_flags = bio_flags; 637 async->bio_offset = bio_offset; 638 639 atomic_inc(&fs_info->nr_async_submits); 640 641 if (rw & REQ_SYNC) 642 btrfs_set_work_high_prio(&async->work); 643 644 btrfs_queue_worker(&fs_info->workers, &async->work); 645 646 while (atomic_read(&fs_info->async_submit_draining) && 647 atomic_read(&fs_info->nr_async_submits)) { 648 wait_event(fs_info->async_submit_wait, 649 (atomic_read(&fs_info->nr_async_submits) == 0)); 650 } 651 652 return 0; 653 } 654 655 static int btree_csum_one_bio(struct bio *bio) 656 { 657 struct bio_vec *bvec = bio->bi_io_vec; 658 int bio_index = 0; 659 struct btrfs_root *root; 660 661 WARN_ON(bio->bi_vcnt <= 0); 662 while (bio_index < bio->bi_vcnt) { 663 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 664 csum_dirty_buffer(root, bvec->bv_page); 665 bio_index++; 666 bvec++; 667 } 668 return 0; 669 } 670 671 static int __btree_submit_bio_start(struct inode *inode, int rw, 672 struct bio *bio, int mirror_num, 673 unsigned long bio_flags, 674 u64 bio_offset) 675 { 676 /* 677 * when we're called for a write, we're already in the async 678 * submission context. Just jump into btrfs_map_bio 679 */ 680 btree_csum_one_bio(bio); 681 return 0; 682 } 683 684 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 685 int mirror_num, unsigned long bio_flags, 686 u64 bio_offset) 687 { 688 /* 689 * when we're called for a write, we're already in the async 690 * submission context. Just jump into btrfs_map_bio 691 */ 692 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 693 } 694 695 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 696 int mirror_num, unsigned long bio_flags, 697 u64 bio_offset) 698 { 699 int ret; 700 701 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 702 bio, 1); 703 BUG_ON(ret); 704 705 if (!(rw & REQ_WRITE)) { 706 /* 707 * called for a read, do the setup so that checksum validation 708 * can happen in the async kernel threads 709 */ 710 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 711 mirror_num, 0); 712 } 713 714 /* 715 * kthread helpers are used to submit writes so that checksumming 716 * can happen in parallel across all CPUs 717 */ 718 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 719 inode, rw, bio, mirror_num, 0, 720 bio_offset, 721 __btree_submit_bio_start, 722 __btree_submit_bio_done); 723 } 724 725 #ifdef CONFIG_MIGRATION 726 static int btree_migratepage(struct address_space *mapping, 727 struct page *newpage, struct page *page) 728 { 729 /* 730 * we can't safely write a btree page from here, 731 * we haven't done the locking hook 732 */ 733 if (PageDirty(page)) 734 return -EAGAIN; 735 /* 736 * Buffers may be managed in a filesystem specific way. 737 * We must have no buffers or drop them. 738 */ 739 if (page_has_private(page) && 740 !try_to_release_page(page, GFP_KERNEL)) 741 return -EAGAIN; 742 return migrate_page(mapping, newpage, page); 743 } 744 #endif 745 746 static int btree_writepage(struct page *page, struct writeback_control *wbc) 747 { 748 struct extent_io_tree *tree; 749 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 750 struct extent_buffer *eb; 751 int was_dirty; 752 753 tree = &BTRFS_I(page->mapping->host)->io_tree; 754 if (!(current->flags & PF_MEMALLOC)) { 755 return extent_write_full_page(tree, page, 756 btree_get_extent, wbc); 757 } 758 759 redirty_page_for_writepage(wbc, page); 760 eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE); 761 WARN_ON(!eb); 762 763 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 764 if (!was_dirty) { 765 spin_lock(&root->fs_info->delalloc_lock); 766 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE; 767 spin_unlock(&root->fs_info->delalloc_lock); 768 } 769 free_extent_buffer(eb); 770 771 unlock_page(page); 772 return 0; 773 } 774 775 static int btree_writepages(struct address_space *mapping, 776 struct writeback_control *wbc) 777 { 778 struct extent_io_tree *tree; 779 tree = &BTRFS_I(mapping->host)->io_tree; 780 if (wbc->sync_mode == WB_SYNC_NONE) { 781 struct btrfs_root *root = BTRFS_I(mapping->host)->root; 782 u64 num_dirty; 783 unsigned long thresh = 32 * 1024 * 1024; 784 785 if (wbc->for_kupdate) 786 return 0; 787 788 /* this is a bit racy, but that's ok */ 789 num_dirty = root->fs_info->dirty_metadata_bytes; 790 if (num_dirty < thresh) 791 return 0; 792 } 793 return extent_writepages(tree, mapping, btree_get_extent, wbc); 794 } 795 796 static int btree_readpage(struct file *file, struct page *page) 797 { 798 struct extent_io_tree *tree; 799 tree = &BTRFS_I(page->mapping->host)->io_tree; 800 return extent_read_full_page(tree, page, btree_get_extent); 801 } 802 803 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 804 { 805 struct extent_io_tree *tree; 806 struct extent_map_tree *map; 807 int ret; 808 809 if (PageWriteback(page) || PageDirty(page)) 810 return 0; 811 812 tree = &BTRFS_I(page->mapping->host)->io_tree; 813 map = &BTRFS_I(page->mapping->host)->extent_tree; 814 815 ret = try_release_extent_state(map, tree, page, gfp_flags); 816 if (!ret) 817 return 0; 818 819 ret = try_release_extent_buffer(tree, page); 820 if (ret == 1) { 821 ClearPagePrivate(page); 822 set_page_private(page, 0); 823 page_cache_release(page); 824 } 825 826 return ret; 827 } 828 829 static void btree_invalidatepage(struct page *page, unsigned long offset) 830 { 831 struct extent_io_tree *tree; 832 tree = &BTRFS_I(page->mapping->host)->io_tree; 833 extent_invalidatepage(tree, page, offset); 834 btree_releasepage(page, GFP_NOFS); 835 if (PagePrivate(page)) { 836 printk(KERN_WARNING "btrfs warning page private not zero " 837 "on page %llu\n", (unsigned long long)page_offset(page)); 838 ClearPagePrivate(page); 839 set_page_private(page, 0); 840 page_cache_release(page); 841 } 842 } 843 844 static const struct address_space_operations btree_aops = { 845 .readpage = btree_readpage, 846 .writepage = btree_writepage, 847 .writepages = btree_writepages, 848 .releasepage = btree_releasepage, 849 .invalidatepage = btree_invalidatepage, 850 .sync_page = block_sync_page, 851 #ifdef CONFIG_MIGRATION 852 .migratepage = btree_migratepage, 853 #endif 854 }; 855 856 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 857 u64 parent_transid) 858 { 859 struct extent_buffer *buf = NULL; 860 struct inode *btree_inode = root->fs_info->btree_inode; 861 int ret = 0; 862 863 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 864 if (!buf) 865 return 0; 866 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 867 buf, 0, 0, btree_get_extent, 0); 868 free_extent_buffer(buf); 869 return ret; 870 } 871 872 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 873 u64 bytenr, u32 blocksize) 874 { 875 struct inode *btree_inode = root->fs_info->btree_inode; 876 struct extent_buffer *eb; 877 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 878 bytenr, blocksize, GFP_NOFS); 879 return eb; 880 } 881 882 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 883 u64 bytenr, u32 blocksize) 884 { 885 struct inode *btree_inode = root->fs_info->btree_inode; 886 struct extent_buffer *eb; 887 888 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 889 bytenr, blocksize, NULL, GFP_NOFS); 890 return eb; 891 } 892 893 894 int btrfs_write_tree_block(struct extent_buffer *buf) 895 { 896 return filemap_fdatawrite_range(buf->first_page->mapping, buf->start, 897 buf->start + buf->len - 1); 898 } 899 900 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 901 { 902 return filemap_fdatawait_range(buf->first_page->mapping, 903 buf->start, buf->start + buf->len - 1); 904 } 905 906 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 907 u32 blocksize, u64 parent_transid) 908 { 909 struct extent_buffer *buf = NULL; 910 int ret; 911 912 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 913 if (!buf) 914 return NULL; 915 916 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 917 918 if (ret == 0) 919 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 920 return buf; 921 922 } 923 924 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 925 struct extent_buffer *buf) 926 { 927 struct inode *btree_inode = root->fs_info->btree_inode; 928 if (btrfs_header_generation(buf) == 929 root->fs_info->running_transaction->transid) { 930 btrfs_assert_tree_locked(buf); 931 932 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 933 spin_lock(&root->fs_info->delalloc_lock); 934 if (root->fs_info->dirty_metadata_bytes >= buf->len) 935 root->fs_info->dirty_metadata_bytes -= buf->len; 936 else 937 WARN_ON(1); 938 spin_unlock(&root->fs_info->delalloc_lock); 939 } 940 941 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 942 btrfs_set_lock_blocking(buf); 943 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 944 buf); 945 } 946 return 0; 947 } 948 949 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 950 u32 stripesize, struct btrfs_root *root, 951 struct btrfs_fs_info *fs_info, 952 u64 objectid) 953 { 954 root->node = NULL; 955 root->commit_root = NULL; 956 root->sectorsize = sectorsize; 957 root->nodesize = nodesize; 958 root->leafsize = leafsize; 959 root->stripesize = stripesize; 960 root->ref_cows = 0; 961 root->track_dirty = 0; 962 root->in_radix = 0; 963 root->orphan_item_inserted = 0; 964 root->orphan_cleanup_state = 0; 965 966 root->fs_info = fs_info; 967 root->objectid = objectid; 968 root->last_trans = 0; 969 root->highest_objectid = 0; 970 root->name = NULL; 971 root->in_sysfs = 0; 972 root->inode_tree = RB_ROOT; 973 root->block_rsv = NULL; 974 root->orphan_block_rsv = NULL; 975 976 INIT_LIST_HEAD(&root->dirty_list); 977 INIT_LIST_HEAD(&root->orphan_list); 978 INIT_LIST_HEAD(&root->root_list); 979 spin_lock_init(&root->node_lock); 980 spin_lock_init(&root->orphan_lock); 981 spin_lock_init(&root->inode_lock); 982 spin_lock_init(&root->accounting_lock); 983 mutex_init(&root->objectid_mutex); 984 mutex_init(&root->log_mutex); 985 init_waitqueue_head(&root->log_writer_wait); 986 init_waitqueue_head(&root->log_commit_wait[0]); 987 init_waitqueue_head(&root->log_commit_wait[1]); 988 atomic_set(&root->log_commit[0], 0); 989 atomic_set(&root->log_commit[1], 0); 990 atomic_set(&root->log_writers, 0); 991 root->log_batch = 0; 992 root->log_transid = 0; 993 root->last_log_commit = 0; 994 extent_io_tree_init(&root->dirty_log_pages, 995 fs_info->btree_inode->i_mapping, GFP_NOFS); 996 997 memset(&root->root_key, 0, sizeof(root->root_key)); 998 memset(&root->root_item, 0, sizeof(root->root_item)); 999 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1000 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 1001 root->defrag_trans_start = fs_info->generation; 1002 init_completion(&root->kobj_unregister); 1003 root->defrag_running = 0; 1004 root->root_key.objectid = objectid; 1005 root->anon_super.s_root = NULL; 1006 root->anon_super.s_dev = 0; 1007 INIT_LIST_HEAD(&root->anon_super.s_list); 1008 INIT_LIST_HEAD(&root->anon_super.s_instances); 1009 init_rwsem(&root->anon_super.s_umount); 1010 1011 return 0; 1012 } 1013 1014 static int find_and_setup_root(struct btrfs_root *tree_root, 1015 struct btrfs_fs_info *fs_info, 1016 u64 objectid, 1017 struct btrfs_root *root) 1018 { 1019 int ret; 1020 u32 blocksize; 1021 u64 generation; 1022 1023 __setup_root(tree_root->nodesize, tree_root->leafsize, 1024 tree_root->sectorsize, tree_root->stripesize, 1025 root, fs_info, objectid); 1026 ret = btrfs_find_last_root(tree_root, objectid, 1027 &root->root_item, &root->root_key); 1028 if (ret > 0) 1029 return -ENOENT; 1030 BUG_ON(ret); 1031 1032 generation = btrfs_root_generation(&root->root_item); 1033 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1034 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1035 blocksize, generation); 1036 if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) { 1037 free_extent_buffer(root->node); 1038 return -EIO; 1039 } 1040 root->commit_root = btrfs_root_node(root); 1041 return 0; 1042 } 1043 1044 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1045 struct btrfs_fs_info *fs_info) 1046 { 1047 struct btrfs_root *root; 1048 struct btrfs_root *tree_root = fs_info->tree_root; 1049 struct extent_buffer *leaf; 1050 1051 root = kzalloc(sizeof(*root), GFP_NOFS); 1052 if (!root) 1053 return ERR_PTR(-ENOMEM); 1054 1055 __setup_root(tree_root->nodesize, tree_root->leafsize, 1056 tree_root->sectorsize, tree_root->stripesize, 1057 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1058 1059 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1060 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1061 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1062 /* 1063 * log trees do not get reference counted because they go away 1064 * before a real commit is actually done. They do store pointers 1065 * to file data extents, and those reference counts still get 1066 * updated (along with back refs to the log tree). 1067 */ 1068 root->ref_cows = 0; 1069 1070 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 1071 BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0); 1072 if (IS_ERR(leaf)) { 1073 kfree(root); 1074 return ERR_CAST(leaf); 1075 } 1076 1077 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1078 btrfs_set_header_bytenr(leaf, leaf->start); 1079 btrfs_set_header_generation(leaf, trans->transid); 1080 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1081 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1082 root->node = leaf; 1083 1084 write_extent_buffer(root->node, root->fs_info->fsid, 1085 (unsigned long)btrfs_header_fsid(root->node), 1086 BTRFS_FSID_SIZE); 1087 btrfs_mark_buffer_dirty(root->node); 1088 btrfs_tree_unlock(root->node); 1089 return root; 1090 } 1091 1092 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1093 struct btrfs_fs_info *fs_info) 1094 { 1095 struct btrfs_root *log_root; 1096 1097 log_root = alloc_log_tree(trans, fs_info); 1098 if (IS_ERR(log_root)) 1099 return PTR_ERR(log_root); 1100 WARN_ON(fs_info->log_root_tree); 1101 fs_info->log_root_tree = log_root; 1102 return 0; 1103 } 1104 1105 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1106 struct btrfs_root *root) 1107 { 1108 struct btrfs_root *log_root; 1109 struct btrfs_inode_item *inode_item; 1110 1111 log_root = alloc_log_tree(trans, root->fs_info); 1112 if (IS_ERR(log_root)) 1113 return PTR_ERR(log_root); 1114 1115 log_root->last_trans = trans->transid; 1116 log_root->root_key.offset = root->root_key.objectid; 1117 1118 inode_item = &log_root->root_item.inode; 1119 inode_item->generation = cpu_to_le64(1); 1120 inode_item->size = cpu_to_le64(3); 1121 inode_item->nlink = cpu_to_le32(1); 1122 inode_item->nbytes = cpu_to_le64(root->leafsize); 1123 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 1124 1125 btrfs_set_root_node(&log_root->root_item, log_root->node); 1126 1127 WARN_ON(root->log_root); 1128 root->log_root = log_root; 1129 root->log_transid = 0; 1130 root->last_log_commit = 0; 1131 return 0; 1132 } 1133 1134 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root, 1135 struct btrfs_key *location) 1136 { 1137 struct btrfs_root *root; 1138 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1139 struct btrfs_path *path; 1140 struct extent_buffer *l; 1141 u64 generation; 1142 u32 blocksize; 1143 int ret = 0; 1144 1145 root = kzalloc(sizeof(*root), GFP_NOFS); 1146 if (!root) 1147 return ERR_PTR(-ENOMEM); 1148 if (location->offset == (u64)-1) { 1149 ret = find_and_setup_root(tree_root, fs_info, 1150 location->objectid, root); 1151 if (ret) { 1152 kfree(root); 1153 return ERR_PTR(ret); 1154 } 1155 goto out; 1156 } 1157 1158 __setup_root(tree_root->nodesize, tree_root->leafsize, 1159 tree_root->sectorsize, tree_root->stripesize, 1160 root, fs_info, location->objectid); 1161 1162 path = btrfs_alloc_path(); 1163 BUG_ON(!path); 1164 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); 1165 if (ret == 0) { 1166 l = path->nodes[0]; 1167 read_extent_buffer(l, &root->root_item, 1168 btrfs_item_ptr_offset(l, path->slots[0]), 1169 sizeof(root->root_item)); 1170 memcpy(&root->root_key, location, sizeof(*location)); 1171 } 1172 btrfs_free_path(path); 1173 if (ret) { 1174 kfree(root); 1175 if (ret > 0) 1176 ret = -ENOENT; 1177 return ERR_PTR(ret); 1178 } 1179 1180 generation = btrfs_root_generation(&root->root_item); 1181 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1182 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1183 blocksize, generation); 1184 root->commit_root = btrfs_root_node(root); 1185 BUG_ON(!root->node); 1186 out: 1187 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) 1188 root->ref_cows = 1; 1189 1190 return root; 1191 } 1192 1193 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1194 u64 root_objectid) 1195 { 1196 struct btrfs_root *root; 1197 1198 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID) 1199 return fs_info->tree_root; 1200 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID) 1201 return fs_info->extent_root; 1202 1203 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1204 (unsigned long)root_objectid); 1205 return root; 1206 } 1207 1208 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, 1209 struct btrfs_key *location) 1210 { 1211 struct btrfs_root *root; 1212 int ret; 1213 1214 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1215 return fs_info->tree_root; 1216 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1217 return fs_info->extent_root; 1218 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1219 return fs_info->chunk_root; 1220 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1221 return fs_info->dev_root; 1222 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1223 return fs_info->csum_root; 1224 again: 1225 spin_lock(&fs_info->fs_roots_radix_lock); 1226 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1227 (unsigned long)location->objectid); 1228 spin_unlock(&fs_info->fs_roots_radix_lock); 1229 if (root) 1230 return root; 1231 1232 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location); 1233 if (IS_ERR(root)) 1234 return root; 1235 1236 set_anon_super(&root->anon_super, NULL); 1237 1238 if (btrfs_root_refs(&root->root_item) == 0) { 1239 ret = -ENOENT; 1240 goto fail; 1241 } 1242 1243 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid); 1244 if (ret < 0) 1245 goto fail; 1246 if (ret == 0) 1247 root->orphan_item_inserted = 1; 1248 1249 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1250 if (ret) 1251 goto fail; 1252 1253 spin_lock(&fs_info->fs_roots_radix_lock); 1254 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1255 (unsigned long)root->root_key.objectid, 1256 root); 1257 if (ret == 0) 1258 root->in_radix = 1; 1259 1260 spin_unlock(&fs_info->fs_roots_radix_lock); 1261 radix_tree_preload_end(); 1262 if (ret) { 1263 if (ret == -EEXIST) { 1264 free_fs_root(root); 1265 goto again; 1266 } 1267 goto fail; 1268 } 1269 1270 ret = btrfs_find_dead_roots(fs_info->tree_root, 1271 root->root_key.objectid); 1272 WARN_ON(ret); 1273 return root; 1274 fail: 1275 free_fs_root(root); 1276 return ERR_PTR(ret); 1277 } 1278 1279 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info, 1280 struct btrfs_key *location, 1281 const char *name, int namelen) 1282 { 1283 return btrfs_read_fs_root_no_name(fs_info, location); 1284 #if 0 1285 struct btrfs_root *root; 1286 int ret; 1287 1288 root = btrfs_read_fs_root_no_name(fs_info, location); 1289 if (!root) 1290 return NULL; 1291 1292 if (root->in_sysfs) 1293 return root; 1294 1295 ret = btrfs_set_root_name(root, name, namelen); 1296 if (ret) { 1297 free_extent_buffer(root->node); 1298 kfree(root); 1299 return ERR_PTR(ret); 1300 } 1301 1302 ret = btrfs_sysfs_add_root(root); 1303 if (ret) { 1304 free_extent_buffer(root->node); 1305 kfree(root->name); 1306 kfree(root); 1307 return ERR_PTR(ret); 1308 } 1309 root->in_sysfs = 1; 1310 return root; 1311 #endif 1312 } 1313 1314 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1315 { 1316 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1317 int ret = 0; 1318 struct btrfs_device *device; 1319 struct backing_dev_info *bdi; 1320 1321 list_for_each_entry(device, &info->fs_devices->devices, dev_list) { 1322 if (!device->bdev) 1323 continue; 1324 bdi = blk_get_backing_dev_info(device->bdev); 1325 if (bdi && bdi_congested(bdi, bdi_bits)) { 1326 ret = 1; 1327 break; 1328 } 1329 } 1330 return ret; 1331 } 1332 1333 /* 1334 * this unplugs every device on the box, and it is only used when page 1335 * is null 1336 */ 1337 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 1338 { 1339 struct btrfs_device *device; 1340 struct btrfs_fs_info *info; 1341 1342 info = (struct btrfs_fs_info *)bdi->unplug_io_data; 1343 list_for_each_entry(device, &info->fs_devices->devices, dev_list) { 1344 if (!device->bdev) 1345 continue; 1346 1347 bdi = blk_get_backing_dev_info(device->bdev); 1348 if (bdi->unplug_io_fn) 1349 bdi->unplug_io_fn(bdi, page); 1350 } 1351 } 1352 1353 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 1354 { 1355 struct inode *inode; 1356 struct extent_map_tree *em_tree; 1357 struct extent_map *em; 1358 struct address_space *mapping; 1359 u64 offset; 1360 1361 /* the generic O_DIRECT read code does this */ 1362 if (1 || !page) { 1363 __unplug_io_fn(bdi, page); 1364 return; 1365 } 1366 1367 /* 1368 * page->mapping may change at any time. Get a consistent copy 1369 * and use that for everything below 1370 */ 1371 smp_mb(); 1372 mapping = page->mapping; 1373 if (!mapping) 1374 return; 1375 1376 inode = mapping->host; 1377 1378 /* 1379 * don't do the expensive searching for a small number of 1380 * devices 1381 */ 1382 if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) { 1383 __unplug_io_fn(bdi, page); 1384 return; 1385 } 1386 1387 offset = page_offset(page); 1388 1389 em_tree = &BTRFS_I(inode)->extent_tree; 1390 read_lock(&em_tree->lock); 1391 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE); 1392 read_unlock(&em_tree->lock); 1393 if (!em) { 1394 __unplug_io_fn(bdi, page); 1395 return; 1396 } 1397 1398 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1399 free_extent_map(em); 1400 __unplug_io_fn(bdi, page); 1401 return; 1402 } 1403 offset = offset - em->start; 1404 btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree, 1405 em->block_start + offset, page); 1406 free_extent_map(em); 1407 } 1408 1409 /* 1410 * If this fails, caller must call bdi_destroy() to get rid of the 1411 * bdi again. 1412 */ 1413 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1414 { 1415 int err; 1416 1417 bdi->capabilities = BDI_CAP_MAP_COPY; 1418 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY); 1419 if (err) 1420 return err; 1421 1422 bdi->ra_pages = default_backing_dev_info.ra_pages; 1423 bdi->unplug_io_fn = btrfs_unplug_io_fn; 1424 bdi->unplug_io_data = info; 1425 bdi->congested_fn = btrfs_congested_fn; 1426 bdi->congested_data = info; 1427 return 0; 1428 } 1429 1430 static int bio_ready_for_csum(struct bio *bio) 1431 { 1432 u64 length = 0; 1433 u64 buf_len = 0; 1434 u64 start = 0; 1435 struct page *page; 1436 struct extent_io_tree *io_tree = NULL; 1437 struct bio_vec *bvec; 1438 int i; 1439 int ret; 1440 1441 bio_for_each_segment(bvec, bio, i) { 1442 page = bvec->bv_page; 1443 if (page->private == EXTENT_PAGE_PRIVATE) { 1444 length += bvec->bv_len; 1445 continue; 1446 } 1447 if (!page->private) { 1448 length += bvec->bv_len; 1449 continue; 1450 } 1451 length = bvec->bv_len; 1452 buf_len = page->private >> 2; 1453 start = page_offset(page) + bvec->bv_offset; 1454 io_tree = &BTRFS_I(page->mapping->host)->io_tree; 1455 } 1456 /* are we fully contained in this bio? */ 1457 if (buf_len <= length) 1458 return 1; 1459 1460 ret = extent_range_uptodate(io_tree, start + length, 1461 start + buf_len - 1); 1462 return ret; 1463 } 1464 1465 /* 1466 * called by the kthread helper functions to finally call the bio end_io 1467 * functions. This is where read checksum verification actually happens 1468 */ 1469 static void end_workqueue_fn(struct btrfs_work *work) 1470 { 1471 struct bio *bio; 1472 struct end_io_wq *end_io_wq; 1473 struct btrfs_fs_info *fs_info; 1474 int error; 1475 1476 end_io_wq = container_of(work, struct end_io_wq, work); 1477 bio = end_io_wq->bio; 1478 fs_info = end_io_wq->info; 1479 1480 /* metadata bio reads are special because the whole tree block must 1481 * be checksummed at once. This makes sure the entire block is in 1482 * ram and up to date before trying to verify things. For 1483 * blocksize <= pagesize, it is basically a noop 1484 */ 1485 if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata && 1486 !bio_ready_for_csum(bio)) { 1487 btrfs_queue_worker(&fs_info->endio_meta_workers, 1488 &end_io_wq->work); 1489 return; 1490 } 1491 error = end_io_wq->error; 1492 bio->bi_private = end_io_wq->private; 1493 bio->bi_end_io = end_io_wq->end_io; 1494 kfree(end_io_wq); 1495 bio_endio(bio, error); 1496 } 1497 1498 static int cleaner_kthread(void *arg) 1499 { 1500 struct btrfs_root *root = arg; 1501 1502 do { 1503 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1504 1505 if (!(root->fs_info->sb->s_flags & MS_RDONLY) && 1506 mutex_trylock(&root->fs_info->cleaner_mutex)) { 1507 btrfs_run_delayed_iputs(root); 1508 btrfs_clean_old_snapshots(root); 1509 mutex_unlock(&root->fs_info->cleaner_mutex); 1510 } 1511 1512 if (freezing(current)) { 1513 refrigerator(); 1514 } else { 1515 set_current_state(TASK_INTERRUPTIBLE); 1516 if (!kthread_should_stop()) 1517 schedule(); 1518 __set_current_state(TASK_RUNNING); 1519 } 1520 } while (!kthread_should_stop()); 1521 return 0; 1522 } 1523 1524 static int transaction_kthread(void *arg) 1525 { 1526 struct btrfs_root *root = arg; 1527 struct btrfs_trans_handle *trans; 1528 struct btrfs_transaction *cur; 1529 u64 transid; 1530 unsigned long now; 1531 unsigned long delay; 1532 int ret; 1533 1534 do { 1535 delay = HZ * 30; 1536 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1537 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1538 1539 spin_lock(&root->fs_info->new_trans_lock); 1540 cur = root->fs_info->running_transaction; 1541 if (!cur) { 1542 spin_unlock(&root->fs_info->new_trans_lock); 1543 goto sleep; 1544 } 1545 1546 now = get_seconds(); 1547 if (!cur->blocked && 1548 (now < cur->start_time || now - cur->start_time < 30)) { 1549 spin_unlock(&root->fs_info->new_trans_lock); 1550 delay = HZ * 5; 1551 goto sleep; 1552 } 1553 transid = cur->transid; 1554 spin_unlock(&root->fs_info->new_trans_lock); 1555 1556 trans = btrfs_join_transaction(root, 1); 1557 BUG_ON(IS_ERR(trans)); 1558 if (transid == trans->transid) { 1559 ret = btrfs_commit_transaction(trans, root); 1560 BUG_ON(ret); 1561 } else { 1562 btrfs_end_transaction(trans, root); 1563 } 1564 sleep: 1565 wake_up_process(root->fs_info->cleaner_kthread); 1566 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1567 1568 if (freezing(current)) { 1569 refrigerator(); 1570 } else { 1571 set_current_state(TASK_INTERRUPTIBLE); 1572 if (!kthread_should_stop() && 1573 !btrfs_transaction_blocked(root->fs_info)) 1574 schedule_timeout(delay); 1575 __set_current_state(TASK_RUNNING); 1576 } 1577 } while (!kthread_should_stop()); 1578 return 0; 1579 } 1580 1581 struct btrfs_root *open_ctree(struct super_block *sb, 1582 struct btrfs_fs_devices *fs_devices, 1583 char *options) 1584 { 1585 u32 sectorsize; 1586 u32 nodesize; 1587 u32 leafsize; 1588 u32 blocksize; 1589 u32 stripesize; 1590 u64 generation; 1591 u64 features; 1592 struct btrfs_key location; 1593 struct buffer_head *bh; 1594 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root), 1595 GFP_NOFS); 1596 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root), 1597 GFP_NOFS); 1598 struct btrfs_root *tree_root = btrfs_sb(sb); 1599 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1600 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root), 1601 GFP_NOFS); 1602 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root), 1603 GFP_NOFS); 1604 struct btrfs_root *log_tree_root; 1605 1606 int ret; 1607 int err = -EINVAL; 1608 1609 struct btrfs_super_block *disk_super; 1610 1611 if (!extent_root || !tree_root || !fs_info || 1612 !chunk_root || !dev_root || !csum_root) { 1613 err = -ENOMEM; 1614 goto fail; 1615 } 1616 1617 ret = init_srcu_struct(&fs_info->subvol_srcu); 1618 if (ret) { 1619 err = ret; 1620 goto fail; 1621 } 1622 1623 ret = setup_bdi(fs_info, &fs_info->bdi); 1624 if (ret) { 1625 err = ret; 1626 goto fail_srcu; 1627 } 1628 1629 fs_info->btree_inode = new_inode(sb); 1630 if (!fs_info->btree_inode) { 1631 err = -ENOMEM; 1632 goto fail_bdi; 1633 } 1634 1635 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 1636 INIT_LIST_HEAD(&fs_info->trans_list); 1637 INIT_LIST_HEAD(&fs_info->dead_roots); 1638 INIT_LIST_HEAD(&fs_info->delayed_iputs); 1639 INIT_LIST_HEAD(&fs_info->hashers); 1640 INIT_LIST_HEAD(&fs_info->delalloc_inodes); 1641 INIT_LIST_HEAD(&fs_info->ordered_operations); 1642 INIT_LIST_HEAD(&fs_info->caching_block_groups); 1643 spin_lock_init(&fs_info->delalloc_lock); 1644 spin_lock_init(&fs_info->new_trans_lock); 1645 spin_lock_init(&fs_info->ref_cache_lock); 1646 spin_lock_init(&fs_info->fs_roots_radix_lock); 1647 spin_lock_init(&fs_info->delayed_iput_lock); 1648 1649 init_completion(&fs_info->kobj_unregister); 1650 fs_info->tree_root = tree_root; 1651 fs_info->extent_root = extent_root; 1652 fs_info->csum_root = csum_root; 1653 fs_info->chunk_root = chunk_root; 1654 fs_info->dev_root = dev_root; 1655 fs_info->fs_devices = fs_devices; 1656 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 1657 INIT_LIST_HEAD(&fs_info->space_info); 1658 btrfs_mapping_init(&fs_info->mapping_tree); 1659 btrfs_init_block_rsv(&fs_info->global_block_rsv); 1660 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv); 1661 btrfs_init_block_rsv(&fs_info->trans_block_rsv); 1662 btrfs_init_block_rsv(&fs_info->chunk_block_rsv); 1663 btrfs_init_block_rsv(&fs_info->empty_block_rsv); 1664 INIT_LIST_HEAD(&fs_info->durable_block_rsv_list); 1665 mutex_init(&fs_info->durable_block_rsv_mutex); 1666 atomic_set(&fs_info->nr_async_submits, 0); 1667 atomic_set(&fs_info->async_delalloc_pages, 0); 1668 atomic_set(&fs_info->async_submit_draining, 0); 1669 atomic_set(&fs_info->nr_async_bios, 0); 1670 fs_info->sb = sb; 1671 fs_info->max_inline = 8192 * 1024; 1672 fs_info->metadata_ratio = 0; 1673 1674 fs_info->thread_pool_size = min_t(unsigned long, 1675 num_online_cpus() + 2, 8); 1676 1677 INIT_LIST_HEAD(&fs_info->ordered_extents); 1678 spin_lock_init(&fs_info->ordered_extent_lock); 1679 1680 sb->s_blocksize = 4096; 1681 sb->s_blocksize_bits = blksize_bits(4096); 1682 sb->s_bdi = &fs_info->bdi; 1683 1684 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 1685 fs_info->btree_inode->i_nlink = 1; 1686 /* 1687 * we set the i_size on the btree inode to the max possible int. 1688 * the real end of the address space is determined by all of 1689 * the devices in the system 1690 */ 1691 fs_info->btree_inode->i_size = OFFSET_MAX; 1692 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 1693 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 1694 1695 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 1696 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 1697 fs_info->btree_inode->i_mapping, 1698 GFP_NOFS); 1699 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree, 1700 GFP_NOFS); 1701 1702 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 1703 1704 BTRFS_I(fs_info->btree_inode)->root = tree_root; 1705 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 1706 sizeof(struct btrfs_key)); 1707 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1; 1708 insert_inode_hash(fs_info->btree_inode); 1709 1710 spin_lock_init(&fs_info->block_group_cache_lock); 1711 fs_info->block_group_cache_tree = RB_ROOT; 1712 1713 extent_io_tree_init(&fs_info->freed_extents[0], 1714 fs_info->btree_inode->i_mapping, GFP_NOFS); 1715 extent_io_tree_init(&fs_info->freed_extents[1], 1716 fs_info->btree_inode->i_mapping, GFP_NOFS); 1717 fs_info->pinned_extents = &fs_info->freed_extents[0]; 1718 fs_info->do_barriers = 1; 1719 1720 1721 mutex_init(&fs_info->trans_mutex); 1722 mutex_init(&fs_info->ordered_operations_mutex); 1723 mutex_init(&fs_info->tree_log_mutex); 1724 mutex_init(&fs_info->chunk_mutex); 1725 mutex_init(&fs_info->transaction_kthread_mutex); 1726 mutex_init(&fs_info->cleaner_mutex); 1727 mutex_init(&fs_info->volume_mutex); 1728 init_rwsem(&fs_info->extent_commit_sem); 1729 init_rwsem(&fs_info->cleanup_work_sem); 1730 init_rwsem(&fs_info->subvol_sem); 1731 1732 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 1733 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 1734 1735 init_waitqueue_head(&fs_info->transaction_throttle); 1736 init_waitqueue_head(&fs_info->transaction_wait); 1737 init_waitqueue_head(&fs_info->transaction_blocked_wait); 1738 init_waitqueue_head(&fs_info->async_submit_wait); 1739 1740 __setup_root(4096, 4096, 4096, 4096, tree_root, 1741 fs_info, BTRFS_ROOT_TREE_OBJECTID); 1742 1743 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 1744 if (!bh) { 1745 err = -EINVAL; 1746 goto fail_iput; 1747 } 1748 1749 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy)); 1750 memcpy(&fs_info->super_for_commit, &fs_info->super_copy, 1751 sizeof(fs_info->super_for_commit)); 1752 brelse(bh); 1753 1754 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE); 1755 1756 disk_super = &fs_info->super_copy; 1757 if (!btrfs_super_root(disk_super)) 1758 goto fail_iput; 1759 1760 /* check FS state, whether FS is broken. */ 1761 fs_info->fs_state |= btrfs_super_flags(disk_super); 1762 1763 btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 1764 1765 ret = btrfs_parse_options(tree_root, options); 1766 if (ret) { 1767 err = ret; 1768 goto fail_iput; 1769 } 1770 1771 features = btrfs_super_incompat_flags(disk_super) & 1772 ~BTRFS_FEATURE_INCOMPAT_SUPP; 1773 if (features) { 1774 printk(KERN_ERR "BTRFS: couldn't mount because of " 1775 "unsupported optional features (%Lx).\n", 1776 (unsigned long long)features); 1777 err = -EINVAL; 1778 goto fail_iput; 1779 } 1780 1781 features = btrfs_super_incompat_flags(disk_super); 1782 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 1783 if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO) 1784 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 1785 btrfs_set_super_incompat_flags(disk_super, features); 1786 1787 features = btrfs_super_compat_ro_flags(disk_super) & 1788 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 1789 if (!(sb->s_flags & MS_RDONLY) && features) { 1790 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 1791 "unsupported option features (%Lx).\n", 1792 (unsigned long long)features); 1793 err = -EINVAL; 1794 goto fail_iput; 1795 } 1796 1797 btrfs_init_workers(&fs_info->generic_worker, 1798 "genwork", 1, NULL); 1799 1800 btrfs_init_workers(&fs_info->workers, "worker", 1801 fs_info->thread_pool_size, 1802 &fs_info->generic_worker); 1803 1804 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", 1805 fs_info->thread_pool_size, 1806 &fs_info->generic_worker); 1807 1808 btrfs_init_workers(&fs_info->submit_workers, "submit", 1809 min_t(u64, fs_devices->num_devices, 1810 fs_info->thread_pool_size), 1811 &fs_info->generic_worker); 1812 1813 /* a higher idle thresh on the submit workers makes it much more 1814 * likely that bios will be send down in a sane order to the 1815 * devices 1816 */ 1817 fs_info->submit_workers.idle_thresh = 64; 1818 1819 fs_info->workers.idle_thresh = 16; 1820 fs_info->workers.ordered = 1; 1821 1822 fs_info->delalloc_workers.idle_thresh = 2; 1823 fs_info->delalloc_workers.ordered = 1; 1824 1825 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1, 1826 &fs_info->generic_worker); 1827 btrfs_init_workers(&fs_info->endio_workers, "endio", 1828 fs_info->thread_pool_size, 1829 &fs_info->generic_worker); 1830 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", 1831 fs_info->thread_pool_size, 1832 &fs_info->generic_worker); 1833 btrfs_init_workers(&fs_info->endio_meta_write_workers, 1834 "endio-meta-write", fs_info->thread_pool_size, 1835 &fs_info->generic_worker); 1836 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", 1837 fs_info->thread_pool_size, 1838 &fs_info->generic_worker); 1839 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write", 1840 1, &fs_info->generic_worker); 1841 1842 /* 1843 * endios are largely parallel and should have a very 1844 * low idle thresh 1845 */ 1846 fs_info->endio_workers.idle_thresh = 4; 1847 fs_info->endio_meta_workers.idle_thresh = 4; 1848 1849 fs_info->endio_write_workers.idle_thresh = 2; 1850 fs_info->endio_meta_write_workers.idle_thresh = 2; 1851 1852 btrfs_start_workers(&fs_info->workers, 1); 1853 btrfs_start_workers(&fs_info->generic_worker, 1); 1854 btrfs_start_workers(&fs_info->submit_workers, 1); 1855 btrfs_start_workers(&fs_info->delalloc_workers, 1); 1856 btrfs_start_workers(&fs_info->fixup_workers, 1); 1857 btrfs_start_workers(&fs_info->endio_workers, 1); 1858 btrfs_start_workers(&fs_info->endio_meta_workers, 1); 1859 btrfs_start_workers(&fs_info->endio_meta_write_workers, 1); 1860 btrfs_start_workers(&fs_info->endio_write_workers, 1); 1861 btrfs_start_workers(&fs_info->endio_freespace_worker, 1); 1862 1863 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 1864 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 1865 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 1866 1867 nodesize = btrfs_super_nodesize(disk_super); 1868 leafsize = btrfs_super_leafsize(disk_super); 1869 sectorsize = btrfs_super_sectorsize(disk_super); 1870 stripesize = btrfs_super_stripesize(disk_super); 1871 tree_root->nodesize = nodesize; 1872 tree_root->leafsize = leafsize; 1873 tree_root->sectorsize = sectorsize; 1874 tree_root->stripesize = stripesize; 1875 1876 sb->s_blocksize = sectorsize; 1877 sb->s_blocksize_bits = blksize_bits(sectorsize); 1878 1879 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, 1880 sizeof(disk_super->magic))) { 1881 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); 1882 goto fail_sb_buffer; 1883 } 1884 1885 mutex_lock(&fs_info->chunk_mutex); 1886 ret = btrfs_read_sys_array(tree_root); 1887 mutex_unlock(&fs_info->chunk_mutex); 1888 if (ret) { 1889 printk(KERN_WARNING "btrfs: failed to read the system " 1890 "array on %s\n", sb->s_id); 1891 goto fail_sb_buffer; 1892 } 1893 1894 blocksize = btrfs_level_size(tree_root, 1895 btrfs_super_chunk_root_level(disk_super)); 1896 generation = btrfs_super_chunk_root_generation(disk_super); 1897 1898 __setup_root(nodesize, leafsize, sectorsize, stripesize, 1899 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 1900 1901 chunk_root->node = read_tree_block(chunk_root, 1902 btrfs_super_chunk_root(disk_super), 1903 blocksize, generation); 1904 BUG_ON(!chunk_root->node); 1905 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { 1906 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n", 1907 sb->s_id); 1908 goto fail_chunk_root; 1909 } 1910 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 1911 chunk_root->commit_root = btrfs_root_node(chunk_root); 1912 1913 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 1914 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), 1915 BTRFS_UUID_SIZE); 1916 1917 mutex_lock(&fs_info->chunk_mutex); 1918 ret = btrfs_read_chunk_tree(chunk_root); 1919 mutex_unlock(&fs_info->chunk_mutex); 1920 if (ret) { 1921 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", 1922 sb->s_id); 1923 goto fail_chunk_root; 1924 } 1925 1926 btrfs_close_extra_devices(fs_devices); 1927 1928 blocksize = btrfs_level_size(tree_root, 1929 btrfs_super_root_level(disk_super)); 1930 generation = btrfs_super_generation(disk_super); 1931 1932 tree_root->node = read_tree_block(tree_root, 1933 btrfs_super_root(disk_super), 1934 blocksize, generation); 1935 if (!tree_root->node) 1936 goto fail_chunk_root; 1937 if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { 1938 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n", 1939 sb->s_id); 1940 goto fail_tree_root; 1941 } 1942 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 1943 tree_root->commit_root = btrfs_root_node(tree_root); 1944 1945 ret = find_and_setup_root(tree_root, fs_info, 1946 BTRFS_EXTENT_TREE_OBJECTID, extent_root); 1947 if (ret) 1948 goto fail_tree_root; 1949 extent_root->track_dirty = 1; 1950 1951 ret = find_and_setup_root(tree_root, fs_info, 1952 BTRFS_DEV_TREE_OBJECTID, dev_root); 1953 if (ret) 1954 goto fail_extent_root; 1955 dev_root->track_dirty = 1; 1956 1957 ret = find_and_setup_root(tree_root, fs_info, 1958 BTRFS_CSUM_TREE_OBJECTID, csum_root); 1959 if (ret) 1960 goto fail_dev_root; 1961 1962 csum_root->track_dirty = 1; 1963 1964 fs_info->generation = generation; 1965 fs_info->last_trans_committed = generation; 1966 fs_info->data_alloc_profile = (u64)-1; 1967 fs_info->metadata_alloc_profile = (u64)-1; 1968 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile; 1969 1970 ret = btrfs_read_block_groups(extent_root); 1971 if (ret) { 1972 printk(KERN_ERR "Failed to read block groups: %d\n", ret); 1973 goto fail_block_groups; 1974 } 1975 1976 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 1977 "btrfs-cleaner"); 1978 if (IS_ERR(fs_info->cleaner_kthread)) 1979 goto fail_block_groups; 1980 1981 fs_info->transaction_kthread = kthread_run(transaction_kthread, 1982 tree_root, 1983 "btrfs-transaction"); 1984 if (IS_ERR(fs_info->transaction_kthread)) 1985 goto fail_cleaner; 1986 1987 if (!btrfs_test_opt(tree_root, SSD) && 1988 !btrfs_test_opt(tree_root, NOSSD) && 1989 !fs_info->fs_devices->rotating) { 1990 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD " 1991 "mode\n"); 1992 btrfs_set_opt(fs_info->mount_opt, SSD); 1993 } 1994 1995 /* do not make disk changes in broken FS */ 1996 if (btrfs_super_log_root(disk_super) != 0 && 1997 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) { 1998 u64 bytenr = btrfs_super_log_root(disk_super); 1999 2000 if (fs_devices->rw_devices == 0) { 2001 printk(KERN_WARNING "Btrfs log replay required " 2002 "on RO media\n"); 2003 err = -EIO; 2004 goto fail_trans_kthread; 2005 } 2006 blocksize = 2007 btrfs_level_size(tree_root, 2008 btrfs_super_log_root_level(disk_super)); 2009 2010 log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS); 2011 if (!log_tree_root) { 2012 err = -ENOMEM; 2013 goto fail_trans_kthread; 2014 } 2015 2016 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2017 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2018 2019 log_tree_root->node = read_tree_block(tree_root, bytenr, 2020 blocksize, 2021 generation + 1); 2022 ret = btrfs_recover_log_trees(log_tree_root); 2023 BUG_ON(ret); 2024 2025 if (sb->s_flags & MS_RDONLY) { 2026 ret = btrfs_commit_super(tree_root); 2027 BUG_ON(ret); 2028 } 2029 } 2030 2031 ret = btrfs_find_orphan_roots(tree_root); 2032 BUG_ON(ret); 2033 2034 if (!(sb->s_flags & MS_RDONLY)) { 2035 ret = btrfs_cleanup_fs_roots(fs_info); 2036 BUG_ON(ret); 2037 2038 ret = btrfs_recover_relocation(tree_root); 2039 if (ret < 0) { 2040 printk(KERN_WARNING 2041 "btrfs: failed to recover relocation\n"); 2042 err = -EINVAL; 2043 goto fail_trans_kthread; 2044 } 2045 } 2046 2047 location.objectid = BTRFS_FS_TREE_OBJECTID; 2048 location.type = BTRFS_ROOT_ITEM_KEY; 2049 location.offset = (u64)-1; 2050 2051 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 2052 if (!fs_info->fs_root) 2053 goto fail_trans_kthread; 2054 if (IS_ERR(fs_info->fs_root)) { 2055 err = PTR_ERR(fs_info->fs_root); 2056 goto fail_trans_kthread; 2057 } 2058 2059 if (!(sb->s_flags & MS_RDONLY)) { 2060 down_read(&fs_info->cleanup_work_sem); 2061 btrfs_orphan_cleanup(fs_info->fs_root); 2062 btrfs_orphan_cleanup(fs_info->tree_root); 2063 up_read(&fs_info->cleanup_work_sem); 2064 } 2065 2066 return tree_root; 2067 2068 fail_trans_kthread: 2069 kthread_stop(fs_info->transaction_kthread); 2070 fail_cleaner: 2071 kthread_stop(fs_info->cleaner_kthread); 2072 2073 /* 2074 * make sure we're done with the btree inode before we stop our 2075 * kthreads 2076 */ 2077 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 2078 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2079 2080 fail_block_groups: 2081 btrfs_free_block_groups(fs_info); 2082 free_extent_buffer(csum_root->node); 2083 free_extent_buffer(csum_root->commit_root); 2084 fail_dev_root: 2085 free_extent_buffer(dev_root->node); 2086 free_extent_buffer(dev_root->commit_root); 2087 fail_extent_root: 2088 free_extent_buffer(extent_root->node); 2089 free_extent_buffer(extent_root->commit_root); 2090 fail_tree_root: 2091 free_extent_buffer(tree_root->node); 2092 free_extent_buffer(tree_root->commit_root); 2093 fail_chunk_root: 2094 free_extent_buffer(chunk_root->node); 2095 free_extent_buffer(chunk_root->commit_root); 2096 fail_sb_buffer: 2097 btrfs_stop_workers(&fs_info->generic_worker); 2098 btrfs_stop_workers(&fs_info->fixup_workers); 2099 btrfs_stop_workers(&fs_info->delalloc_workers); 2100 btrfs_stop_workers(&fs_info->workers); 2101 btrfs_stop_workers(&fs_info->endio_workers); 2102 btrfs_stop_workers(&fs_info->endio_meta_workers); 2103 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2104 btrfs_stop_workers(&fs_info->endio_write_workers); 2105 btrfs_stop_workers(&fs_info->endio_freespace_worker); 2106 btrfs_stop_workers(&fs_info->submit_workers); 2107 fail_iput: 2108 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2109 iput(fs_info->btree_inode); 2110 2111 btrfs_close_devices(fs_info->fs_devices); 2112 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2113 fail_bdi: 2114 bdi_destroy(&fs_info->bdi); 2115 fail_srcu: 2116 cleanup_srcu_struct(&fs_info->subvol_srcu); 2117 fail: 2118 kfree(extent_root); 2119 kfree(tree_root); 2120 kfree(fs_info); 2121 kfree(chunk_root); 2122 kfree(dev_root); 2123 kfree(csum_root); 2124 return ERR_PTR(err); 2125 } 2126 2127 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 2128 { 2129 char b[BDEVNAME_SIZE]; 2130 2131 if (uptodate) { 2132 set_buffer_uptodate(bh); 2133 } else { 2134 if (printk_ratelimit()) { 2135 printk(KERN_WARNING "lost page write due to " 2136 "I/O error on %s\n", 2137 bdevname(bh->b_bdev, b)); 2138 } 2139 /* note, we dont' set_buffer_write_io_error because we have 2140 * our own ways of dealing with the IO errors 2141 */ 2142 clear_buffer_uptodate(bh); 2143 } 2144 unlock_buffer(bh); 2145 put_bh(bh); 2146 } 2147 2148 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 2149 { 2150 struct buffer_head *bh; 2151 struct buffer_head *latest = NULL; 2152 struct btrfs_super_block *super; 2153 int i; 2154 u64 transid = 0; 2155 u64 bytenr; 2156 2157 /* we would like to check all the supers, but that would make 2158 * a btrfs mount succeed after a mkfs from a different FS. 2159 * So, we need to add a special mount option to scan for 2160 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 2161 */ 2162 for (i = 0; i < 1; i++) { 2163 bytenr = btrfs_sb_offset(i); 2164 if (bytenr + 4096 >= i_size_read(bdev->bd_inode)) 2165 break; 2166 bh = __bread(bdev, bytenr / 4096, 4096); 2167 if (!bh) 2168 continue; 2169 2170 super = (struct btrfs_super_block *)bh->b_data; 2171 if (btrfs_super_bytenr(super) != bytenr || 2172 strncmp((char *)(&super->magic), BTRFS_MAGIC, 2173 sizeof(super->magic))) { 2174 brelse(bh); 2175 continue; 2176 } 2177 2178 if (!latest || btrfs_super_generation(super) > transid) { 2179 brelse(latest); 2180 latest = bh; 2181 transid = btrfs_super_generation(super); 2182 } else { 2183 brelse(bh); 2184 } 2185 } 2186 return latest; 2187 } 2188 2189 /* 2190 * this should be called twice, once with wait == 0 and 2191 * once with wait == 1. When wait == 0 is done, all the buffer heads 2192 * we write are pinned. 2193 * 2194 * They are released when wait == 1 is done. 2195 * max_mirrors must be the same for both runs, and it indicates how 2196 * many supers on this one device should be written. 2197 * 2198 * max_mirrors == 0 means to write them all. 2199 */ 2200 static int write_dev_supers(struct btrfs_device *device, 2201 struct btrfs_super_block *sb, 2202 int do_barriers, int wait, int max_mirrors) 2203 { 2204 struct buffer_head *bh; 2205 int i; 2206 int ret; 2207 int errors = 0; 2208 u32 crc; 2209 u64 bytenr; 2210 int last_barrier = 0; 2211 2212 if (max_mirrors == 0) 2213 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 2214 2215 /* make sure only the last submit_bh does a barrier */ 2216 if (do_barriers) { 2217 for (i = 0; i < max_mirrors; i++) { 2218 bytenr = btrfs_sb_offset(i); 2219 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 2220 device->total_bytes) 2221 break; 2222 last_barrier = i; 2223 } 2224 } 2225 2226 for (i = 0; i < max_mirrors; i++) { 2227 bytenr = btrfs_sb_offset(i); 2228 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 2229 break; 2230 2231 if (wait) { 2232 bh = __find_get_block(device->bdev, bytenr / 4096, 2233 BTRFS_SUPER_INFO_SIZE); 2234 BUG_ON(!bh); 2235 wait_on_buffer(bh); 2236 if (!buffer_uptodate(bh)) 2237 errors++; 2238 2239 /* drop our reference */ 2240 brelse(bh); 2241 2242 /* drop the reference from the wait == 0 run */ 2243 brelse(bh); 2244 continue; 2245 } else { 2246 btrfs_set_super_bytenr(sb, bytenr); 2247 2248 crc = ~(u32)0; 2249 crc = btrfs_csum_data(NULL, (char *)sb + 2250 BTRFS_CSUM_SIZE, crc, 2251 BTRFS_SUPER_INFO_SIZE - 2252 BTRFS_CSUM_SIZE); 2253 btrfs_csum_final(crc, sb->csum); 2254 2255 /* 2256 * one reference for us, and we leave it for the 2257 * caller 2258 */ 2259 bh = __getblk(device->bdev, bytenr / 4096, 2260 BTRFS_SUPER_INFO_SIZE); 2261 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 2262 2263 /* one reference for submit_bh */ 2264 get_bh(bh); 2265 2266 set_buffer_uptodate(bh); 2267 lock_buffer(bh); 2268 bh->b_end_io = btrfs_end_buffer_write_sync; 2269 } 2270 2271 if (i == last_barrier && do_barriers) 2272 ret = submit_bh(WRITE_FLUSH_FUA, bh); 2273 else 2274 ret = submit_bh(WRITE_SYNC, bh); 2275 2276 if (ret) 2277 errors++; 2278 } 2279 return errors < i ? 0 : -1; 2280 } 2281 2282 int write_all_supers(struct btrfs_root *root, int max_mirrors) 2283 { 2284 struct list_head *head; 2285 struct btrfs_device *dev; 2286 struct btrfs_super_block *sb; 2287 struct btrfs_dev_item *dev_item; 2288 int ret; 2289 int do_barriers; 2290 int max_errors; 2291 int total_errors = 0; 2292 u64 flags; 2293 2294 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1; 2295 do_barriers = !btrfs_test_opt(root, NOBARRIER); 2296 2297 sb = &root->fs_info->super_for_commit; 2298 dev_item = &sb->dev_item; 2299 2300 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2301 head = &root->fs_info->fs_devices->devices; 2302 list_for_each_entry(dev, head, dev_list) { 2303 if (!dev->bdev) { 2304 total_errors++; 2305 continue; 2306 } 2307 if (!dev->in_fs_metadata || !dev->writeable) 2308 continue; 2309 2310 btrfs_set_stack_device_generation(dev_item, 0); 2311 btrfs_set_stack_device_type(dev_item, dev->type); 2312 btrfs_set_stack_device_id(dev_item, dev->devid); 2313 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 2314 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 2315 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 2316 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 2317 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 2318 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 2319 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2320 2321 flags = btrfs_super_flags(sb); 2322 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 2323 2324 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 2325 if (ret) 2326 total_errors++; 2327 } 2328 if (total_errors > max_errors) { 2329 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2330 total_errors); 2331 BUG(); 2332 } 2333 2334 total_errors = 0; 2335 list_for_each_entry(dev, head, dev_list) { 2336 if (!dev->bdev) 2337 continue; 2338 if (!dev->in_fs_metadata || !dev->writeable) 2339 continue; 2340 2341 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 2342 if (ret) 2343 total_errors++; 2344 } 2345 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2346 if (total_errors > max_errors) { 2347 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2348 total_errors); 2349 BUG(); 2350 } 2351 return 0; 2352 } 2353 2354 int write_ctree_super(struct btrfs_trans_handle *trans, 2355 struct btrfs_root *root, int max_mirrors) 2356 { 2357 int ret; 2358 2359 ret = write_all_supers(root, max_mirrors); 2360 return ret; 2361 } 2362 2363 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 2364 { 2365 spin_lock(&fs_info->fs_roots_radix_lock); 2366 radix_tree_delete(&fs_info->fs_roots_radix, 2367 (unsigned long)root->root_key.objectid); 2368 spin_unlock(&fs_info->fs_roots_radix_lock); 2369 2370 if (btrfs_root_refs(&root->root_item) == 0) 2371 synchronize_srcu(&fs_info->subvol_srcu); 2372 2373 free_fs_root(root); 2374 return 0; 2375 } 2376 2377 static void free_fs_root(struct btrfs_root *root) 2378 { 2379 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2380 if (root->anon_super.s_dev) { 2381 down_write(&root->anon_super.s_umount); 2382 kill_anon_super(&root->anon_super); 2383 } 2384 free_extent_buffer(root->node); 2385 free_extent_buffer(root->commit_root); 2386 kfree(root->name); 2387 kfree(root); 2388 } 2389 2390 static int del_fs_roots(struct btrfs_fs_info *fs_info) 2391 { 2392 int ret; 2393 struct btrfs_root *gang[8]; 2394 int i; 2395 2396 while (!list_empty(&fs_info->dead_roots)) { 2397 gang[0] = list_entry(fs_info->dead_roots.next, 2398 struct btrfs_root, root_list); 2399 list_del(&gang[0]->root_list); 2400 2401 if (gang[0]->in_radix) { 2402 btrfs_free_fs_root(fs_info, gang[0]); 2403 } else { 2404 free_extent_buffer(gang[0]->node); 2405 free_extent_buffer(gang[0]->commit_root); 2406 kfree(gang[0]); 2407 } 2408 } 2409 2410 while (1) { 2411 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2412 (void **)gang, 0, 2413 ARRAY_SIZE(gang)); 2414 if (!ret) 2415 break; 2416 for (i = 0; i < ret; i++) 2417 btrfs_free_fs_root(fs_info, gang[i]); 2418 } 2419 return 0; 2420 } 2421 2422 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2423 { 2424 u64 root_objectid = 0; 2425 struct btrfs_root *gang[8]; 2426 int i; 2427 int ret; 2428 2429 while (1) { 2430 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2431 (void **)gang, root_objectid, 2432 ARRAY_SIZE(gang)); 2433 if (!ret) 2434 break; 2435 2436 root_objectid = gang[ret - 1]->root_key.objectid + 1; 2437 for (i = 0; i < ret; i++) { 2438 root_objectid = gang[i]->root_key.objectid; 2439 btrfs_orphan_cleanup(gang[i]); 2440 } 2441 root_objectid++; 2442 } 2443 return 0; 2444 } 2445 2446 int btrfs_commit_super(struct btrfs_root *root) 2447 { 2448 struct btrfs_trans_handle *trans; 2449 int ret; 2450 2451 mutex_lock(&root->fs_info->cleaner_mutex); 2452 btrfs_run_delayed_iputs(root); 2453 btrfs_clean_old_snapshots(root); 2454 mutex_unlock(&root->fs_info->cleaner_mutex); 2455 2456 /* wait until ongoing cleanup work done */ 2457 down_write(&root->fs_info->cleanup_work_sem); 2458 up_write(&root->fs_info->cleanup_work_sem); 2459 2460 trans = btrfs_join_transaction(root, 1); 2461 if (IS_ERR(trans)) 2462 return PTR_ERR(trans); 2463 ret = btrfs_commit_transaction(trans, root); 2464 BUG_ON(ret); 2465 /* run commit again to drop the original snapshot */ 2466 trans = btrfs_join_transaction(root, 1); 2467 if (IS_ERR(trans)) 2468 return PTR_ERR(trans); 2469 btrfs_commit_transaction(trans, root); 2470 ret = btrfs_write_and_wait_transaction(NULL, root); 2471 BUG_ON(ret); 2472 2473 ret = write_ctree_super(NULL, root, 0); 2474 return ret; 2475 } 2476 2477 int close_ctree(struct btrfs_root *root) 2478 { 2479 struct btrfs_fs_info *fs_info = root->fs_info; 2480 int ret; 2481 2482 fs_info->closing = 1; 2483 smp_mb(); 2484 2485 btrfs_put_block_group_cache(fs_info); 2486 2487 /* 2488 * Here come 2 situations when btrfs is broken to flip readonly: 2489 * 2490 * 1. when btrfs flips readonly somewhere else before 2491 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag, 2492 * and btrfs will skip to write sb directly to keep 2493 * ERROR state on disk. 2494 * 2495 * 2. when btrfs flips readonly just in btrfs_commit_super, 2496 * and in such case, btrfs cannot write sb via btrfs_commit_super, 2497 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag, 2498 * btrfs will cleanup all FS resources first and write sb then. 2499 */ 2500 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 2501 ret = btrfs_commit_super(root); 2502 if (ret) 2503 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 2504 } 2505 2506 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 2507 ret = btrfs_error_commit_super(root); 2508 if (ret) 2509 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 2510 } 2511 2512 kthread_stop(root->fs_info->transaction_kthread); 2513 kthread_stop(root->fs_info->cleaner_kthread); 2514 2515 fs_info->closing = 2; 2516 smp_mb(); 2517 2518 if (fs_info->delalloc_bytes) { 2519 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n", 2520 (unsigned long long)fs_info->delalloc_bytes); 2521 } 2522 if (fs_info->total_ref_cache_size) { 2523 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n", 2524 (unsigned long long)fs_info->total_ref_cache_size); 2525 } 2526 2527 free_extent_buffer(fs_info->extent_root->node); 2528 free_extent_buffer(fs_info->extent_root->commit_root); 2529 free_extent_buffer(fs_info->tree_root->node); 2530 free_extent_buffer(fs_info->tree_root->commit_root); 2531 free_extent_buffer(root->fs_info->chunk_root->node); 2532 free_extent_buffer(root->fs_info->chunk_root->commit_root); 2533 free_extent_buffer(root->fs_info->dev_root->node); 2534 free_extent_buffer(root->fs_info->dev_root->commit_root); 2535 free_extent_buffer(root->fs_info->csum_root->node); 2536 free_extent_buffer(root->fs_info->csum_root->commit_root); 2537 2538 btrfs_free_block_groups(root->fs_info); 2539 2540 del_fs_roots(fs_info); 2541 2542 iput(fs_info->btree_inode); 2543 2544 btrfs_stop_workers(&fs_info->generic_worker); 2545 btrfs_stop_workers(&fs_info->fixup_workers); 2546 btrfs_stop_workers(&fs_info->delalloc_workers); 2547 btrfs_stop_workers(&fs_info->workers); 2548 btrfs_stop_workers(&fs_info->endio_workers); 2549 btrfs_stop_workers(&fs_info->endio_meta_workers); 2550 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2551 btrfs_stop_workers(&fs_info->endio_write_workers); 2552 btrfs_stop_workers(&fs_info->endio_freespace_worker); 2553 btrfs_stop_workers(&fs_info->submit_workers); 2554 2555 btrfs_close_devices(fs_info->fs_devices); 2556 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2557 2558 bdi_destroy(&fs_info->bdi); 2559 cleanup_srcu_struct(&fs_info->subvol_srcu); 2560 2561 kfree(fs_info->extent_root); 2562 kfree(fs_info->tree_root); 2563 kfree(fs_info->chunk_root); 2564 kfree(fs_info->dev_root); 2565 kfree(fs_info->csum_root); 2566 kfree(fs_info); 2567 2568 return 0; 2569 } 2570 2571 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid) 2572 { 2573 int ret; 2574 struct inode *btree_inode = buf->first_page->mapping->host; 2575 2576 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf, 2577 NULL); 2578 if (!ret) 2579 return ret; 2580 2581 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 2582 parent_transid); 2583 return !ret; 2584 } 2585 2586 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 2587 { 2588 struct inode *btree_inode = buf->first_page->mapping->host; 2589 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, 2590 buf); 2591 } 2592 2593 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 2594 { 2595 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 2596 u64 transid = btrfs_header_generation(buf); 2597 struct inode *btree_inode = root->fs_info->btree_inode; 2598 int was_dirty; 2599 2600 btrfs_assert_tree_locked(buf); 2601 if (transid != root->fs_info->generation) { 2602 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, " 2603 "found %llu running %llu\n", 2604 (unsigned long long)buf->start, 2605 (unsigned long long)transid, 2606 (unsigned long long)root->fs_info->generation); 2607 WARN_ON(1); 2608 } 2609 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 2610 buf); 2611 if (!was_dirty) { 2612 spin_lock(&root->fs_info->delalloc_lock); 2613 root->fs_info->dirty_metadata_bytes += buf->len; 2614 spin_unlock(&root->fs_info->delalloc_lock); 2615 } 2616 } 2617 2618 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 2619 { 2620 /* 2621 * looks as though older kernels can get into trouble with 2622 * this code, they end up stuck in balance_dirty_pages forever 2623 */ 2624 u64 num_dirty; 2625 unsigned long thresh = 32 * 1024 * 1024; 2626 2627 if (current->flags & PF_MEMALLOC) 2628 return; 2629 2630 num_dirty = root->fs_info->dirty_metadata_bytes; 2631 2632 if (num_dirty > thresh) { 2633 balance_dirty_pages_ratelimited_nr( 2634 root->fs_info->btree_inode->i_mapping, 1); 2635 } 2636 return; 2637 } 2638 2639 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 2640 { 2641 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 2642 int ret; 2643 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 2644 if (ret == 0) 2645 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 2646 return ret; 2647 } 2648 2649 int btree_lock_page_hook(struct page *page) 2650 { 2651 struct inode *inode = page->mapping->host; 2652 struct btrfs_root *root = BTRFS_I(inode)->root; 2653 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2654 struct extent_buffer *eb; 2655 unsigned long len; 2656 u64 bytenr = page_offset(page); 2657 2658 if (page->private == EXTENT_PAGE_PRIVATE) 2659 goto out; 2660 2661 len = page->private >> 2; 2662 eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS); 2663 if (!eb) 2664 goto out; 2665 2666 btrfs_tree_lock(eb); 2667 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 2668 2669 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 2670 spin_lock(&root->fs_info->delalloc_lock); 2671 if (root->fs_info->dirty_metadata_bytes >= eb->len) 2672 root->fs_info->dirty_metadata_bytes -= eb->len; 2673 else 2674 WARN_ON(1); 2675 spin_unlock(&root->fs_info->delalloc_lock); 2676 } 2677 2678 btrfs_tree_unlock(eb); 2679 free_extent_buffer(eb); 2680 out: 2681 lock_page(page); 2682 return 0; 2683 } 2684 2685 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 2686 int read_only) 2687 { 2688 if (read_only) 2689 return; 2690 2691 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) 2692 printk(KERN_WARNING "warning: mount fs with errors, " 2693 "running btrfsck is recommended\n"); 2694 } 2695 2696 int btrfs_error_commit_super(struct btrfs_root *root) 2697 { 2698 int ret; 2699 2700 mutex_lock(&root->fs_info->cleaner_mutex); 2701 btrfs_run_delayed_iputs(root); 2702 mutex_unlock(&root->fs_info->cleaner_mutex); 2703 2704 down_write(&root->fs_info->cleanup_work_sem); 2705 up_write(&root->fs_info->cleanup_work_sem); 2706 2707 /* cleanup FS via transaction */ 2708 btrfs_cleanup_transaction(root); 2709 2710 ret = write_ctree_super(NULL, root, 0); 2711 2712 return ret; 2713 } 2714 2715 static int btrfs_destroy_ordered_operations(struct btrfs_root *root) 2716 { 2717 struct btrfs_inode *btrfs_inode; 2718 struct list_head splice; 2719 2720 INIT_LIST_HEAD(&splice); 2721 2722 mutex_lock(&root->fs_info->ordered_operations_mutex); 2723 spin_lock(&root->fs_info->ordered_extent_lock); 2724 2725 list_splice_init(&root->fs_info->ordered_operations, &splice); 2726 while (!list_empty(&splice)) { 2727 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 2728 ordered_operations); 2729 2730 list_del_init(&btrfs_inode->ordered_operations); 2731 2732 btrfs_invalidate_inodes(btrfs_inode->root); 2733 } 2734 2735 spin_unlock(&root->fs_info->ordered_extent_lock); 2736 mutex_unlock(&root->fs_info->ordered_operations_mutex); 2737 2738 return 0; 2739 } 2740 2741 static int btrfs_destroy_ordered_extents(struct btrfs_root *root) 2742 { 2743 struct list_head splice; 2744 struct btrfs_ordered_extent *ordered; 2745 struct inode *inode; 2746 2747 INIT_LIST_HEAD(&splice); 2748 2749 spin_lock(&root->fs_info->ordered_extent_lock); 2750 2751 list_splice_init(&root->fs_info->ordered_extents, &splice); 2752 while (!list_empty(&splice)) { 2753 ordered = list_entry(splice.next, struct btrfs_ordered_extent, 2754 root_extent_list); 2755 2756 list_del_init(&ordered->root_extent_list); 2757 atomic_inc(&ordered->refs); 2758 2759 /* the inode may be getting freed (in sys_unlink path). */ 2760 inode = igrab(ordered->inode); 2761 2762 spin_unlock(&root->fs_info->ordered_extent_lock); 2763 if (inode) 2764 iput(inode); 2765 2766 atomic_set(&ordered->refs, 1); 2767 btrfs_put_ordered_extent(ordered); 2768 2769 spin_lock(&root->fs_info->ordered_extent_lock); 2770 } 2771 2772 spin_unlock(&root->fs_info->ordered_extent_lock); 2773 2774 return 0; 2775 } 2776 2777 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 2778 struct btrfs_root *root) 2779 { 2780 struct rb_node *node; 2781 struct btrfs_delayed_ref_root *delayed_refs; 2782 struct btrfs_delayed_ref_node *ref; 2783 int ret = 0; 2784 2785 delayed_refs = &trans->delayed_refs; 2786 2787 spin_lock(&delayed_refs->lock); 2788 if (delayed_refs->num_entries == 0) { 2789 printk(KERN_INFO "delayed_refs has NO entry\n"); 2790 return ret; 2791 } 2792 2793 node = rb_first(&delayed_refs->root); 2794 while (node) { 2795 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2796 node = rb_next(node); 2797 2798 ref->in_tree = 0; 2799 rb_erase(&ref->rb_node, &delayed_refs->root); 2800 delayed_refs->num_entries--; 2801 2802 atomic_set(&ref->refs, 1); 2803 if (btrfs_delayed_ref_is_head(ref)) { 2804 struct btrfs_delayed_ref_head *head; 2805 2806 head = btrfs_delayed_node_to_head(ref); 2807 mutex_lock(&head->mutex); 2808 kfree(head->extent_op); 2809 delayed_refs->num_heads--; 2810 if (list_empty(&head->cluster)) 2811 delayed_refs->num_heads_ready--; 2812 list_del_init(&head->cluster); 2813 mutex_unlock(&head->mutex); 2814 } 2815 2816 spin_unlock(&delayed_refs->lock); 2817 btrfs_put_delayed_ref(ref); 2818 2819 cond_resched(); 2820 spin_lock(&delayed_refs->lock); 2821 } 2822 2823 spin_unlock(&delayed_refs->lock); 2824 2825 return ret; 2826 } 2827 2828 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t) 2829 { 2830 struct btrfs_pending_snapshot *snapshot; 2831 struct list_head splice; 2832 2833 INIT_LIST_HEAD(&splice); 2834 2835 list_splice_init(&t->pending_snapshots, &splice); 2836 2837 while (!list_empty(&splice)) { 2838 snapshot = list_entry(splice.next, 2839 struct btrfs_pending_snapshot, 2840 list); 2841 2842 list_del_init(&snapshot->list); 2843 2844 kfree(snapshot); 2845 } 2846 2847 return 0; 2848 } 2849 2850 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 2851 { 2852 struct btrfs_inode *btrfs_inode; 2853 struct list_head splice; 2854 2855 INIT_LIST_HEAD(&splice); 2856 2857 list_splice_init(&root->fs_info->delalloc_inodes, &splice); 2858 2859 spin_lock(&root->fs_info->delalloc_lock); 2860 2861 while (!list_empty(&splice)) { 2862 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 2863 delalloc_inodes); 2864 2865 list_del_init(&btrfs_inode->delalloc_inodes); 2866 2867 btrfs_invalidate_inodes(btrfs_inode->root); 2868 } 2869 2870 spin_unlock(&root->fs_info->delalloc_lock); 2871 2872 return 0; 2873 } 2874 2875 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 2876 struct extent_io_tree *dirty_pages, 2877 int mark) 2878 { 2879 int ret; 2880 struct page *page; 2881 struct inode *btree_inode = root->fs_info->btree_inode; 2882 struct extent_buffer *eb; 2883 u64 start = 0; 2884 u64 end; 2885 u64 offset; 2886 unsigned long index; 2887 2888 while (1) { 2889 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 2890 mark); 2891 if (ret) 2892 break; 2893 2894 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 2895 while (start <= end) { 2896 index = start >> PAGE_CACHE_SHIFT; 2897 start = (u64)(index + 1) << PAGE_CACHE_SHIFT; 2898 page = find_get_page(btree_inode->i_mapping, index); 2899 if (!page) 2900 continue; 2901 offset = page_offset(page); 2902 2903 spin_lock(&dirty_pages->buffer_lock); 2904 eb = radix_tree_lookup( 2905 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer, 2906 offset >> PAGE_CACHE_SHIFT); 2907 spin_unlock(&dirty_pages->buffer_lock); 2908 if (eb) { 2909 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY, 2910 &eb->bflags); 2911 atomic_set(&eb->refs, 1); 2912 } 2913 if (PageWriteback(page)) 2914 end_page_writeback(page); 2915 2916 lock_page(page); 2917 if (PageDirty(page)) { 2918 clear_page_dirty_for_io(page); 2919 spin_lock_irq(&page->mapping->tree_lock); 2920 radix_tree_tag_clear(&page->mapping->page_tree, 2921 page_index(page), 2922 PAGECACHE_TAG_DIRTY); 2923 spin_unlock_irq(&page->mapping->tree_lock); 2924 } 2925 2926 page->mapping->a_ops->invalidatepage(page, 0); 2927 unlock_page(page); 2928 } 2929 } 2930 2931 return ret; 2932 } 2933 2934 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 2935 struct extent_io_tree *pinned_extents) 2936 { 2937 struct extent_io_tree *unpin; 2938 u64 start; 2939 u64 end; 2940 int ret; 2941 2942 unpin = pinned_extents; 2943 while (1) { 2944 ret = find_first_extent_bit(unpin, 0, &start, &end, 2945 EXTENT_DIRTY); 2946 if (ret) 2947 break; 2948 2949 /* opt_discard */ 2950 ret = btrfs_error_discard_extent(root, start, end + 1 - start); 2951 2952 clear_extent_dirty(unpin, start, end, GFP_NOFS); 2953 btrfs_error_unpin_extent_range(root, start, end); 2954 cond_resched(); 2955 } 2956 2957 return 0; 2958 } 2959 2960 static int btrfs_cleanup_transaction(struct btrfs_root *root) 2961 { 2962 struct btrfs_transaction *t; 2963 LIST_HEAD(list); 2964 2965 WARN_ON(1); 2966 2967 mutex_lock(&root->fs_info->trans_mutex); 2968 mutex_lock(&root->fs_info->transaction_kthread_mutex); 2969 2970 list_splice_init(&root->fs_info->trans_list, &list); 2971 while (!list_empty(&list)) { 2972 t = list_entry(list.next, struct btrfs_transaction, list); 2973 if (!t) 2974 break; 2975 2976 btrfs_destroy_ordered_operations(root); 2977 2978 btrfs_destroy_ordered_extents(root); 2979 2980 btrfs_destroy_delayed_refs(t, root); 2981 2982 btrfs_block_rsv_release(root, 2983 &root->fs_info->trans_block_rsv, 2984 t->dirty_pages.dirty_bytes); 2985 2986 /* FIXME: cleanup wait for commit */ 2987 t->in_commit = 1; 2988 t->blocked = 1; 2989 if (waitqueue_active(&root->fs_info->transaction_blocked_wait)) 2990 wake_up(&root->fs_info->transaction_blocked_wait); 2991 2992 t->blocked = 0; 2993 if (waitqueue_active(&root->fs_info->transaction_wait)) 2994 wake_up(&root->fs_info->transaction_wait); 2995 mutex_unlock(&root->fs_info->trans_mutex); 2996 2997 mutex_lock(&root->fs_info->trans_mutex); 2998 t->commit_done = 1; 2999 if (waitqueue_active(&t->commit_wait)) 3000 wake_up(&t->commit_wait); 3001 mutex_unlock(&root->fs_info->trans_mutex); 3002 3003 mutex_lock(&root->fs_info->trans_mutex); 3004 3005 btrfs_destroy_pending_snapshots(t); 3006 3007 btrfs_destroy_delalloc_inodes(root); 3008 3009 spin_lock(&root->fs_info->new_trans_lock); 3010 root->fs_info->running_transaction = NULL; 3011 spin_unlock(&root->fs_info->new_trans_lock); 3012 3013 btrfs_destroy_marked_extents(root, &t->dirty_pages, 3014 EXTENT_DIRTY); 3015 3016 btrfs_destroy_pinned_extent(root, 3017 root->fs_info->pinned_extents); 3018 3019 t->use_count = 0; 3020 list_del_init(&t->list); 3021 memset(t, 0, sizeof(*t)); 3022 kmem_cache_free(btrfs_transaction_cachep, t); 3023 } 3024 3025 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 3026 mutex_unlock(&root->fs_info->trans_mutex); 3027 3028 return 0; 3029 } 3030 3031 static struct extent_io_ops btree_extent_io_ops = { 3032 .write_cache_pages_lock_hook = btree_lock_page_hook, 3033 .readpage_end_io_hook = btree_readpage_end_io_hook, 3034 .submit_bio_hook = btree_submit_bio_hook, 3035 /* note we're sharing with inode.c for the merge bio hook */ 3036 .merge_bio_hook = btrfs_merge_bio_hook, 3037 }; 3038