xref: /openbmc/linux/fs/btrfs/disk-io.c (revision 552b8b36)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56 
57 static const struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61 				    int read_only);
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 				      struct btrfs_root *root);
65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
66 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67 					struct extent_io_tree *dirty_pages,
68 					int mark);
69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70 				       struct extent_io_tree *pinned_extents);
71 static int btrfs_cleanup_transaction(struct btrfs_root *root);
72 static void btrfs_error_commit_super(struct btrfs_root *root);
73 
74 /*
75  * btrfs_end_io_wq structs are used to do processing in task context when an IO
76  * is complete.  This is used during reads to verify checksums, and it is used
77  * by writes to insert metadata for new file extents after IO is complete.
78  */
79 struct btrfs_end_io_wq {
80 	struct bio *bio;
81 	bio_end_io_t *end_io;
82 	void *private;
83 	struct btrfs_fs_info *info;
84 	int error;
85 	enum btrfs_wq_endio_type metadata;
86 	struct list_head list;
87 	struct btrfs_work work;
88 };
89 
90 static struct kmem_cache *btrfs_end_io_wq_cache;
91 
92 int __init btrfs_end_io_wq_init(void)
93 {
94 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
95 					sizeof(struct btrfs_end_io_wq),
96 					0,
97 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
98 					NULL);
99 	if (!btrfs_end_io_wq_cache)
100 		return -ENOMEM;
101 	return 0;
102 }
103 
104 void btrfs_end_io_wq_exit(void)
105 {
106 	if (btrfs_end_io_wq_cache)
107 		kmem_cache_destroy(btrfs_end_io_wq_cache);
108 }
109 
110 /*
111  * async submit bios are used to offload expensive checksumming
112  * onto the worker threads.  They checksum file and metadata bios
113  * just before they are sent down the IO stack.
114  */
115 struct async_submit_bio {
116 	struct inode *inode;
117 	struct bio *bio;
118 	struct list_head list;
119 	extent_submit_bio_hook_t *submit_bio_start;
120 	extent_submit_bio_hook_t *submit_bio_done;
121 	int rw;
122 	int mirror_num;
123 	unsigned long bio_flags;
124 	/*
125 	 * bio_offset is optional, can be used if the pages in the bio
126 	 * can't tell us where in the file the bio should go
127 	 */
128 	u64 bio_offset;
129 	struct btrfs_work work;
130 	int error;
131 };
132 
133 /*
134  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
135  * eb, the lockdep key is determined by the btrfs_root it belongs to and
136  * the level the eb occupies in the tree.
137  *
138  * Different roots are used for different purposes and may nest inside each
139  * other and they require separate keysets.  As lockdep keys should be
140  * static, assign keysets according to the purpose of the root as indicated
141  * by btrfs_root->objectid.  This ensures that all special purpose roots
142  * have separate keysets.
143  *
144  * Lock-nesting across peer nodes is always done with the immediate parent
145  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
146  * subclass to avoid triggering lockdep warning in such cases.
147  *
148  * The key is set by the readpage_end_io_hook after the buffer has passed
149  * csum validation but before the pages are unlocked.  It is also set by
150  * btrfs_init_new_buffer on freshly allocated blocks.
151  *
152  * We also add a check to make sure the highest level of the tree is the
153  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
154  * needs update as well.
155  */
156 #ifdef CONFIG_DEBUG_LOCK_ALLOC
157 # if BTRFS_MAX_LEVEL != 8
158 #  error
159 # endif
160 
161 static struct btrfs_lockdep_keyset {
162 	u64			id;		/* root objectid */
163 	const char		*name_stem;	/* lock name stem */
164 	char			names[BTRFS_MAX_LEVEL + 1][20];
165 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
166 } btrfs_lockdep_keysets[] = {
167 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
168 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
169 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
170 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
171 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
172 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
173 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
174 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
175 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
176 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
177 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
178 	{ .id = 0,				.name_stem = "tree"	},
179 };
180 
181 void __init btrfs_init_lockdep(void)
182 {
183 	int i, j;
184 
185 	/* initialize lockdep class names */
186 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
187 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
188 
189 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
190 			snprintf(ks->names[j], sizeof(ks->names[j]),
191 				 "btrfs-%s-%02d", ks->name_stem, j);
192 	}
193 }
194 
195 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
196 				    int level)
197 {
198 	struct btrfs_lockdep_keyset *ks;
199 
200 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
201 
202 	/* find the matching keyset, id 0 is the default entry */
203 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
204 		if (ks->id == objectid)
205 			break;
206 
207 	lockdep_set_class_and_name(&eb->lock,
208 				   &ks->keys[level], ks->names[level]);
209 }
210 
211 #endif
212 
213 /*
214  * extents on the btree inode are pretty simple, there's one extent
215  * that covers the entire device
216  */
217 static struct extent_map *btree_get_extent(struct inode *inode,
218 		struct page *page, size_t pg_offset, u64 start, u64 len,
219 		int create)
220 {
221 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
222 	struct extent_map *em;
223 	int ret;
224 
225 	read_lock(&em_tree->lock);
226 	em = lookup_extent_mapping(em_tree, start, len);
227 	if (em) {
228 		em->bdev =
229 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
230 		read_unlock(&em_tree->lock);
231 		goto out;
232 	}
233 	read_unlock(&em_tree->lock);
234 
235 	em = alloc_extent_map();
236 	if (!em) {
237 		em = ERR_PTR(-ENOMEM);
238 		goto out;
239 	}
240 	em->start = 0;
241 	em->len = (u64)-1;
242 	em->block_len = (u64)-1;
243 	em->block_start = 0;
244 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
245 
246 	write_lock(&em_tree->lock);
247 	ret = add_extent_mapping(em_tree, em, 0);
248 	if (ret == -EEXIST) {
249 		free_extent_map(em);
250 		em = lookup_extent_mapping(em_tree, start, len);
251 		if (!em)
252 			em = ERR_PTR(-EIO);
253 	} else if (ret) {
254 		free_extent_map(em);
255 		em = ERR_PTR(ret);
256 	}
257 	write_unlock(&em_tree->lock);
258 
259 out:
260 	return em;
261 }
262 
263 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
264 {
265 	return btrfs_crc32c(seed, data, len);
266 }
267 
268 void btrfs_csum_final(u32 crc, char *result)
269 {
270 	put_unaligned_le32(~crc, result);
271 }
272 
273 /*
274  * compute the csum for a btree block, and either verify it or write it
275  * into the csum field of the block.
276  */
277 static int csum_tree_block(struct btrfs_fs_info *fs_info,
278 			   struct extent_buffer *buf,
279 			   int verify)
280 {
281 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
282 	char *result = NULL;
283 	unsigned long len;
284 	unsigned long cur_len;
285 	unsigned long offset = BTRFS_CSUM_SIZE;
286 	char *kaddr;
287 	unsigned long map_start;
288 	unsigned long map_len;
289 	int err;
290 	u32 crc = ~(u32)0;
291 	unsigned long inline_result;
292 
293 	len = buf->len - offset;
294 	while (len > 0) {
295 		err = map_private_extent_buffer(buf, offset, 32,
296 					&kaddr, &map_start, &map_len);
297 		if (err)
298 			return 1;
299 		cur_len = min(len, map_len - (offset - map_start));
300 		crc = btrfs_csum_data(kaddr + offset - map_start,
301 				      crc, cur_len);
302 		len -= cur_len;
303 		offset += cur_len;
304 	}
305 	if (csum_size > sizeof(inline_result)) {
306 		result = kzalloc(csum_size, GFP_NOFS);
307 		if (!result)
308 			return 1;
309 	} else {
310 		result = (char *)&inline_result;
311 	}
312 
313 	btrfs_csum_final(crc, result);
314 
315 	if (verify) {
316 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
317 			u32 val;
318 			u32 found = 0;
319 			memcpy(&found, result, csum_size);
320 
321 			read_extent_buffer(buf, &val, 0, csum_size);
322 			printk_ratelimited(KERN_WARNING
323 				"BTRFS: %s checksum verify failed on %llu wanted %X found %X "
324 				"level %d\n",
325 				fs_info->sb->s_id, buf->start,
326 				val, found, btrfs_header_level(buf));
327 			if (result != (char *)&inline_result)
328 				kfree(result);
329 			return 1;
330 		}
331 	} else {
332 		write_extent_buffer(buf, result, 0, csum_size);
333 	}
334 	if (result != (char *)&inline_result)
335 		kfree(result);
336 	return 0;
337 }
338 
339 /*
340  * we can't consider a given block up to date unless the transid of the
341  * block matches the transid in the parent node's pointer.  This is how we
342  * detect blocks that either didn't get written at all or got written
343  * in the wrong place.
344  */
345 static int verify_parent_transid(struct extent_io_tree *io_tree,
346 				 struct extent_buffer *eb, u64 parent_transid,
347 				 int atomic)
348 {
349 	struct extent_state *cached_state = NULL;
350 	int ret;
351 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
352 
353 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
354 		return 0;
355 
356 	if (atomic)
357 		return -EAGAIN;
358 
359 	if (need_lock) {
360 		btrfs_tree_read_lock(eb);
361 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
362 	}
363 
364 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
365 			 0, &cached_state);
366 	if (extent_buffer_uptodate(eb) &&
367 	    btrfs_header_generation(eb) == parent_transid) {
368 		ret = 0;
369 		goto out;
370 	}
371 	printk_ratelimited(KERN_ERR
372 	    "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
373 			eb->fs_info->sb->s_id, eb->start,
374 			parent_transid, btrfs_header_generation(eb));
375 	ret = 1;
376 
377 	/*
378 	 * Things reading via commit roots that don't have normal protection,
379 	 * like send, can have a really old block in cache that may point at a
380 	 * block that has been free'd and re-allocated.  So don't clear uptodate
381 	 * if we find an eb that is under IO (dirty/writeback) because we could
382 	 * end up reading in the stale data and then writing it back out and
383 	 * making everybody very sad.
384 	 */
385 	if (!extent_buffer_under_io(eb))
386 		clear_extent_buffer_uptodate(eb);
387 out:
388 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
389 			     &cached_state, GFP_NOFS);
390 	if (need_lock)
391 		btrfs_tree_read_unlock_blocking(eb);
392 	return ret;
393 }
394 
395 /*
396  * Return 0 if the superblock checksum type matches the checksum value of that
397  * algorithm. Pass the raw disk superblock data.
398  */
399 static int btrfs_check_super_csum(char *raw_disk_sb)
400 {
401 	struct btrfs_super_block *disk_sb =
402 		(struct btrfs_super_block *)raw_disk_sb;
403 	u16 csum_type = btrfs_super_csum_type(disk_sb);
404 	int ret = 0;
405 
406 	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
407 		u32 crc = ~(u32)0;
408 		const int csum_size = sizeof(crc);
409 		char result[csum_size];
410 
411 		/*
412 		 * The super_block structure does not span the whole
413 		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
414 		 * is filled with zeros and is included in the checkum.
415 		 */
416 		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
417 				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
418 		btrfs_csum_final(crc, result);
419 
420 		if (memcmp(raw_disk_sb, result, csum_size))
421 			ret = 1;
422 	}
423 
424 	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
425 		printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
426 				csum_type);
427 		ret = 1;
428 	}
429 
430 	return ret;
431 }
432 
433 /*
434  * helper to read a given tree block, doing retries as required when
435  * the checksums don't match and we have alternate mirrors to try.
436  */
437 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
438 					  struct extent_buffer *eb,
439 					  u64 start, u64 parent_transid)
440 {
441 	struct extent_io_tree *io_tree;
442 	int failed = 0;
443 	int ret;
444 	int num_copies = 0;
445 	int mirror_num = 0;
446 	int failed_mirror = 0;
447 
448 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
449 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
450 	while (1) {
451 		ret = read_extent_buffer_pages(io_tree, eb, start,
452 					       WAIT_COMPLETE,
453 					       btree_get_extent, mirror_num);
454 		if (!ret) {
455 			if (!verify_parent_transid(io_tree, eb,
456 						   parent_transid, 0))
457 				break;
458 			else
459 				ret = -EIO;
460 		}
461 
462 		/*
463 		 * This buffer's crc is fine, but its contents are corrupted, so
464 		 * there is no reason to read the other copies, they won't be
465 		 * any less wrong.
466 		 */
467 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
468 			break;
469 
470 		num_copies = btrfs_num_copies(root->fs_info,
471 					      eb->start, eb->len);
472 		if (num_copies == 1)
473 			break;
474 
475 		if (!failed_mirror) {
476 			failed = 1;
477 			failed_mirror = eb->read_mirror;
478 		}
479 
480 		mirror_num++;
481 		if (mirror_num == failed_mirror)
482 			mirror_num++;
483 
484 		if (mirror_num > num_copies)
485 			break;
486 	}
487 
488 	if (failed && !ret && failed_mirror)
489 		repair_eb_io_failure(root, eb, failed_mirror);
490 
491 	return ret;
492 }
493 
494 /*
495  * checksum a dirty tree block before IO.  This has extra checks to make sure
496  * we only fill in the checksum field in the first page of a multi-page block
497  */
498 
499 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
500 {
501 	u64 start = page_offset(page);
502 	u64 found_start;
503 	struct extent_buffer *eb;
504 
505 	eb = (struct extent_buffer *)page->private;
506 	if (page != eb->pages[0])
507 		return 0;
508 	found_start = btrfs_header_bytenr(eb);
509 	if (WARN_ON(found_start != start || !PageUptodate(page)))
510 		return 0;
511 	csum_tree_block(fs_info, eb, 0);
512 	return 0;
513 }
514 
515 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
516 				 struct extent_buffer *eb)
517 {
518 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
519 	u8 fsid[BTRFS_UUID_SIZE];
520 	int ret = 1;
521 
522 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
523 	while (fs_devices) {
524 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
525 			ret = 0;
526 			break;
527 		}
528 		fs_devices = fs_devices->seed;
529 	}
530 	return ret;
531 }
532 
533 #define CORRUPT(reason, eb, root, slot)				\
534 	btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"	\
535 		   "root=%llu, slot=%d", reason,			\
536 	       btrfs_header_bytenr(eb),	root->objectid, slot)
537 
538 static noinline int check_leaf(struct btrfs_root *root,
539 			       struct extent_buffer *leaf)
540 {
541 	struct btrfs_key key;
542 	struct btrfs_key leaf_key;
543 	u32 nritems = btrfs_header_nritems(leaf);
544 	int slot;
545 
546 	if (nritems == 0)
547 		return 0;
548 
549 	/* Check the 0 item */
550 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
551 	    BTRFS_LEAF_DATA_SIZE(root)) {
552 		CORRUPT("invalid item offset size pair", leaf, root, 0);
553 		return -EIO;
554 	}
555 
556 	/*
557 	 * Check to make sure each items keys are in the correct order and their
558 	 * offsets make sense.  We only have to loop through nritems-1 because
559 	 * we check the current slot against the next slot, which verifies the
560 	 * next slot's offset+size makes sense and that the current's slot
561 	 * offset is correct.
562 	 */
563 	for (slot = 0; slot < nritems - 1; slot++) {
564 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
565 		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
566 
567 		/* Make sure the keys are in the right order */
568 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
569 			CORRUPT("bad key order", leaf, root, slot);
570 			return -EIO;
571 		}
572 
573 		/*
574 		 * Make sure the offset and ends are right, remember that the
575 		 * item data starts at the end of the leaf and grows towards the
576 		 * front.
577 		 */
578 		if (btrfs_item_offset_nr(leaf, slot) !=
579 			btrfs_item_end_nr(leaf, slot + 1)) {
580 			CORRUPT("slot offset bad", leaf, root, slot);
581 			return -EIO;
582 		}
583 
584 		/*
585 		 * Check to make sure that we don't point outside of the leaf,
586 		 * just incase all the items are consistent to eachother, but
587 		 * all point outside of the leaf.
588 		 */
589 		if (btrfs_item_end_nr(leaf, slot) >
590 		    BTRFS_LEAF_DATA_SIZE(root)) {
591 			CORRUPT("slot end outside of leaf", leaf, root, slot);
592 			return -EIO;
593 		}
594 	}
595 
596 	return 0;
597 }
598 
599 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
600 				      u64 phy_offset, struct page *page,
601 				      u64 start, u64 end, int mirror)
602 {
603 	u64 found_start;
604 	int found_level;
605 	struct extent_buffer *eb;
606 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
607 	int ret = 0;
608 	int reads_done;
609 
610 	if (!page->private)
611 		goto out;
612 
613 	eb = (struct extent_buffer *)page->private;
614 
615 	/* the pending IO might have been the only thing that kept this buffer
616 	 * in memory.  Make sure we have a ref for all this other checks
617 	 */
618 	extent_buffer_get(eb);
619 
620 	reads_done = atomic_dec_and_test(&eb->io_pages);
621 	if (!reads_done)
622 		goto err;
623 
624 	eb->read_mirror = mirror;
625 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
626 		ret = -EIO;
627 		goto err;
628 	}
629 
630 	found_start = btrfs_header_bytenr(eb);
631 	if (found_start != eb->start) {
632 		printk_ratelimited(KERN_ERR "BTRFS (device %s): bad tree block start "
633 			       "%llu %llu\n",
634 			       eb->fs_info->sb->s_id, found_start, eb->start);
635 		ret = -EIO;
636 		goto err;
637 	}
638 	if (check_tree_block_fsid(root->fs_info, eb)) {
639 		printk_ratelimited(KERN_ERR "BTRFS (device %s): bad fsid on block %llu\n",
640 			       eb->fs_info->sb->s_id, eb->start);
641 		ret = -EIO;
642 		goto err;
643 	}
644 	found_level = btrfs_header_level(eb);
645 	if (found_level >= BTRFS_MAX_LEVEL) {
646 		btrfs_err(root->fs_info, "bad tree block level %d",
647 			   (int)btrfs_header_level(eb));
648 		ret = -EIO;
649 		goto err;
650 	}
651 
652 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
653 				       eb, found_level);
654 
655 	ret = csum_tree_block(root->fs_info, eb, 1);
656 	if (ret) {
657 		ret = -EIO;
658 		goto err;
659 	}
660 
661 	/*
662 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
663 	 * that we don't try and read the other copies of this block, just
664 	 * return -EIO.
665 	 */
666 	if (found_level == 0 && check_leaf(root, eb)) {
667 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
668 		ret = -EIO;
669 	}
670 
671 	if (!ret)
672 		set_extent_buffer_uptodate(eb);
673 err:
674 	if (reads_done &&
675 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
676 		btree_readahead_hook(root, eb, eb->start, ret);
677 
678 	if (ret) {
679 		/*
680 		 * our io error hook is going to dec the io pages
681 		 * again, we have to make sure it has something
682 		 * to decrement
683 		 */
684 		atomic_inc(&eb->io_pages);
685 		clear_extent_buffer_uptodate(eb);
686 	}
687 	free_extent_buffer(eb);
688 out:
689 	return ret;
690 }
691 
692 static int btree_io_failed_hook(struct page *page, int failed_mirror)
693 {
694 	struct extent_buffer *eb;
695 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
696 
697 	eb = (struct extent_buffer *)page->private;
698 	set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
699 	eb->read_mirror = failed_mirror;
700 	atomic_dec(&eb->io_pages);
701 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
702 		btree_readahead_hook(root, eb, eb->start, -EIO);
703 	return -EIO;	/* we fixed nothing */
704 }
705 
706 static void end_workqueue_bio(struct bio *bio)
707 {
708 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
709 	struct btrfs_fs_info *fs_info;
710 	struct btrfs_workqueue *wq;
711 	btrfs_work_func_t func;
712 
713 	fs_info = end_io_wq->info;
714 	end_io_wq->error = bio->bi_error;
715 
716 	if (bio->bi_rw & REQ_WRITE) {
717 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
718 			wq = fs_info->endio_meta_write_workers;
719 			func = btrfs_endio_meta_write_helper;
720 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
721 			wq = fs_info->endio_freespace_worker;
722 			func = btrfs_freespace_write_helper;
723 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
724 			wq = fs_info->endio_raid56_workers;
725 			func = btrfs_endio_raid56_helper;
726 		} else {
727 			wq = fs_info->endio_write_workers;
728 			func = btrfs_endio_write_helper;
729 		}
730 	} else {
731 		if (unlikely(end_io_wq->metadata ==
732 			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
733 			wq = fs_info->endio_repair_workers;
734 			func = btrfs_endio_repair_helper;
735 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
736 			wq = fs_info->endio_raid56_workers;
737 			func = btrfs_endio_raid56_helper;
738 		} else if (end_io_wq->metadata) {
739 			wq = fs_info->endio_meta_workers;
740 			func = btrfs_endio_meta_helper;
741 		} else {
742 			wq = fs_info->endio_workers;
743 			func = btrfs_endio_helper;
744 		}
745 	}
746 
747 	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
748 	btrfs_queue_work(wq, &end_io_wq->work);
749 }
750 
751 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
752 			enum btrfs_wq_endio_type metadata)
753 {
754 	struct btrfs_end_io_wq *end_io_wq;
755 
756 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
757 	if (!end_io_wq)
758 		return -ENOMEM;
759 
760 	end_io_wq->private = bio->bi_private;
761 	end_io_wq->end_io = bio->bi_end_io;
762 	end_io_wq->info = info;
763 	end_io_wq->error = 0;
764 	end_io_wq->bio = bio;
765 	end_io_wq->metadata = metadata;
766 
767 	bio->bi_private = end_io_wq;
768 	bio->bi_end_io = end_workqueue_bio;
769 	return 0;
770 }
771 
772 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
773 {
774 	unsigned long limit = min_t(unsigned long,
775 				    info->thread_pool_size,
776 				    info->fs_devices->open_devices);
777 	return 256 * limit;
778 }
779 
780 static void run_one_async_start(struct btrfs_work *work)
781 {
782 	struct async_submit_bio *async;
783 	int ret;
784 
785 	async = container_of(work, struct  async_submit_bio, work);
786 	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
787 				      async->mirror_num, async->bio_flags,
788 				      async->bio_offset);
789 	if (ret)
790 		async->error = ret;
791 }
792 
793 static void run_one_async_done(struct btrfs_work *work)
794 {
795 	struct btrfs_fs_info *fs_info;
796 	struct async_submit_bio *async;
797 	int limit;
798 
799 	async = container_of(work, struct  async_submit_bio, work);
800 	fs_info = BTRFS_I(async->inode)->root->fs_info;
801 
802 	limit = btrfs_async_submit_limit(fs_info);
803 	limit = limit * 2 / 3;
804 
805 	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
806 	    waitqueue_active(&fs_info->async_submit_wait))
807 		wake_up(&fs_info->async_submit_wait);
808 
809 	/* If an error occured we just want to clean up the bio and move on */
810 	if (async->error) {
811 		async->bio->bi_error = async->error;
812 		bio_endio(async->bio);
813 		return;
814 	}
815 
816 	async->submit_bio_done(async->inode, async->rw, async->bio,
817 			       async->mirror_num, async->bio_flags,
818 			       async->bio_offset);
819 }
820 
821 static void run_one_async_free(struct btrfs_work *work)
822 {
823 	struct async_submit_bio *async;
824 
825 	async = container_of(work, struct  async_submit_bio, work);
826 	kfree(async);
827 }
828 
829 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
830 			int rw, struct bio *bio, int mirror_num,
831 			unsigned long bio_flags,
832 			u64 bio_offset,
833 			extent_submit_bio_hook_t *submit_bio_start,
834 			extent_submit_bio_hook_t *submit_bio_done)
835 {
836 	struct async_submit_bio *async;
837 
838 	async = kmalloc(sizeof(*async), GFP_NOFS);
839 	if (!async)
840 		return -ENOMEM;
841 
842 	async->inode = inode;
843 	async->rw = rw;
844 	async->bio = bio;
845 	async->mirror_num = mirror_num;
846 	async->submit_bio_start = submit_bio_start;
847 	async->submit_bio_done = submit_bio_done;
848 
849 	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
850 			run_one_async_done, run_one_async_free);
851 
852 	async->bio_flags = bio_flags;
853 	async->bio_offset = bio_offset;
854 
855 	async->error = 0;
856 
857 	atomic_inc(&fs_info->nr_async_submits);
858 
859 	if (rw & REQ_SYNC)
860 		btrfs_set_work_high_priority(&async->work);
861 
862 	btrfs_queue_work(fs_info->workers, &async->work);
863 
864 	while (atomic_read(&fs_info->async_submit_draining) &&
865 	      atomic_read(&fs_info->nr_async_submits)) {
866 		wait_event(fs_info->async_submit_wait,
867 			   (atomic_read(&fs_info->nr_async_submits) == 0));
868 	}
869 
870 	return 0;
871 }
872 
873 static int btree_csum_one_bio(struct bio *bio)
874 {
875 	struct bio_vec *bvec;
876 	struct btrfs_root *root;
877 	int i, ret = 0;
878 
879 	bio_for_each_segment_all(bvec, bio, i) {
880 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
881 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
882 		if (ret)
883 			break;
884 	}
885 
886 	return ret;
887 }
888 
889 static int __btree_submit_bio_start(struct inode *inode, int rw,
890 				    struct bio *bio, int mirror_num,
891 				    unsigned long bio_flags,
892 				    u64 bio_offset)
893 {
894 	/*
895 	 * when we're called for a write, we're already in the async
896 	 * submission context.  Just jump into btrfs_map_bio
897 	 */
898 	return btree_csum_one_bio(bio);
899 }
900 
901 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
902 				 int mirror_num, unsigned long bio_flags,
903 				 u64 bio_offset)
904 {
905 	int ret;
906 
907 	/*
908 	 * when we're called for a write, we're already in the async
909 	 * submission context.  Just jump into btrfs_map_bio
910 	 */
911 	ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
912 	if (ret) {
913 		bio->bi_error = ret;
914 		bio_endio(bio);
915 	}
916 	return ret;
917 }
918 
919 static int check_async_write(struct inode *inode, unsigned long bio_flags)
920 {
921 	if (bio_flags & EXTENT_BIO_TREE_LOG)
922 		return 0;
923 #ifdef CONFIG_X86
924 	if (cpu_has_xmm4_2)
925 		return 0;
926 #endif
927 	return 1;
928 }
929 
930 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
931 				 int mirror_num, unsigned long bio_flags,
932 				 u64 bio_offset)
933 {
934 	int async = check_async_write(inode, bio_flags);
935 	int ret;
936 
937 	if (!(rw & REQ_WRITE)) {
938 		/*
939 		 * called for a read, do the setup so that checksum validation
940 		 * can happen in the async kernel threads
941 		 */
942 		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
943 					  bio, BTRFS_WQ_ENDIO_METADATA);
944 		if (ret)
945 			goto out_w_error;
946 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
947 				    mirror_num, 0);
948 	} else if (!async) {
949 		ret = btree_csum_one_bio(bio);
950 		if (ret)
951 			goto out_w_error;
952 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
953 				    mirror_num, 0);
954 	} else {
955 		/*
956 		 * kthread helpers are used to submit writes so that
957 		 * checksumming can happen in parallel across all CPUs
958 		 */
959 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
960 					  inode, rw, bio, mirror_num, 0,
961 					  bio_offset,
962 					  __btree_submit_bio_start,
963 					  __btree_submit_bio_done);
964 	}
965 
966 	if (ret)
967 		goto out_w_error;
968 	return 0;
969 
970 out_w_error:
971 	bio->bi_error = ret;
972 	bio_endio(bio);
973 	return ret;
974 }
975 
976 #ifdef CONFIG_MIGRATION
977 static int btree_migratepage(struct address_space *mapping,
978 			struct page *newpage, struct page *page,
979 			enum migrate_mode mode)
980 {
981 	/*
982 	 * we can't safely write a btree page from here,
983 	 * we haven't done the locking hook
984 	 */
985 	if (PageDirty(page))
986 		return -EAGAIN;
987 	/*
988 	 * Buffers may be managed in a filesystem specific way.
989 	 * We must have no buffers or drop them.
990 	 */
991 	if (page_has_private(page) &&
992 	    !try_to_release_page(page, GFP_KERNEL))
993 		return -EAGAIN;
994 	return migrate_page(mapping, newpage, page, mode);
995 }
996 #endif
997 
998 
999 static int btree_writepages(struct address_space *mapping,
1000 			    struct writeback_control *wbc)
1001 {
1002 	struct btrfs_fs_info *fs_info;
1003 	int ret;
1004 
1005 	if (wbc->sync_mode == WB_SYNC_NONE) {
1006 
1007 		if (wbc->for_kupdate)
1008 			return 0;
1009 
1010 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
1011 		/* this is a bit racy, but that's ok */
1012 		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1013 					     BTRFS_DIRTY_METADATA_THRESH);
1014 		if (ret < 0)
1015 			return 0;
1016 	}
1017 	return btree_write_cache_pages(mapping, wbc);
1018 }
1019 
1020 static int btree_readpage(struct file *file, struct page *page)
1021 {
1022 	struct extent_io_tree *tree;
1023 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1024 	return extent_read_full_page(tree, page, btree_get_extent, 0);
1025 }
1026 
1027 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1028 {
1029 	if (PageWriteback(page) || PageDirty(page))
1030 		return 0;
1031 
1032 	return try_release_extent_buffer(page);
1033 }
1034 
1035 static void btree_invalidatepage(struct page *page, unsigned int offset,
1036 				 unsigned int length)
1037 {
1038 	struct extent_io_tree *tree;
1039 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1040 	extent_invalidatepage(tree, page, offset);
1041 	btree_releasepage(page, GFP_NOFS);
1042 	if (PagePrivate(page)) {
1043 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1044 			   "page private not zero on page %llu",
1045 			   (unsigned long long)page_offset(page));
1046 		ClearPagePrivate(page);
1047 		set_page_private(page, 0);
1048 		page_cache_release(page);
1049 	}
1050 }
1051 
1052 static int btree_set_page_dirty(struct page *page)
1053 {
1054 #ifdef DEBUG
1055 	struct extent_buffer *eb;
1056 
1057 	BUG_ON(!PagePrivate(page));
1058 	eb = (struct extent_buffer *)page->private;
1059 	BUG_ON(!eb);
1060 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1061 	BUG_ON(!atomic_read(&eb->refs));
1062 	btrfs_assert_tree_locked(eb);
1063 #endif
1064 	return __set_page_dirty_nobuffers(page);
1065 }
1066 
1067 static const struct address_space_operations btree_aops = {
1068 	.readpage	= btree_readpage,
1069 	.writepages	= btree_writepages,
1070 	.releasepage	= btree_releasepage,
1071 	.invalidatepage = btree_invalidatepage,
1072 #ifdef CONFIG_MIGRATION
1073 	.migratepage	= btree_migratepage,
1074 #endif
1075 	.set_page_dirty = btree_set_page_dirty,
1076 };
1077 
1078 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1079 {
1080 	struct extent_buffer *buf = NULL;
1081 	struct inode *btree_inode = root->fs_info->btree_inode;
1082 
1083 	buf = btrfs_find_create_tree_block(root, bytenr);
1084 	if (!buf)
1085 		return;
1086 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1087 				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1088 	free_extent_buffer(buf);
1089 }
1090 
1091 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1092 			 int mirror_num, struct extent_buffer **eb)
1093 {
1094 	struct extent_buffer *buf = NULL;
1095 	struct inode *btree_inode = root->fs_info->btree_inode;
1096 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1097 	int ret;
1098 
1099 	buf = btrfs_find_create_tree_block(root, bytenr);
1100 	if (!buf)
1101 		return 0;
1102 
1103 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1104 
1105 	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1106 				       btree_get_extent, mirror_num);
1107 	if (ret) {
1108 		free_extent_buffer(buf);
1109 		return ret;
1110 	}
1111 
1112 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1113 		free_extent_buffer(buf);
1114 		return -EIO;
1115 	} else if (extent_buffer_uptodate(buf)) {
1116 		*eb = buf;
1117 	} else {
1118 		free_extent_buffer(buf);
1119 	}
1120 	return 0;
1121 }
1122 
1123 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1124 					    u64 bytenr)
1125 {
1126 	return find_extent_buffer(fs_info, bytenr);
1127 }
1128 
1129 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1130 						 u64 bytenr)
1131 {
1132 	if (btrfs_test_is_dummy_root(root))
1133 		return alloc_test_extent_buffer(root->fs_info, bytenr);
1134 	return alloc_extent_buffer(root->fs_info, bytenr);
1135 }
1136 
1137 
1138 int btrfs_write_tree_block(struct extent_buffer *buf)
1139 {
1140 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1141 					buf->start + buf->len - 1);
1142 }
1143 
1144 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1145 {
1146 	return filemap_fdatawait_range(buf->pages[0]->mapping,
1147 				       buf->start, buf->start + buf->len - 1);
1148 }
1149 
1150 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1151 				      u64 parent_transid)
1152 {
1153 	struct extent_buffer *buf = NULL;
1154 	int ret;
1155 
1156 	buf = btrfs_find_create_tree_block(root, bytenr);
1157 	if (!buf)
1158 		return ERR_PTR(-ENOMEM);
1159 
1160 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1161 	if (ret) {
1162 		free_extent_buffer(buf);
1163 		return ERR_PTR(ret);
1164 	}
1165 	return buf;
1166 
1167 }
1168 
1169 void clean_tree_block(struct btrfs_trans_handle *trans,
1170 		      struct btrfs_fs_info *fs_info,
1171 		      struct extent_buffer *buf)
1172 {
1173 	if (btrfs_header_generation(buf) ==
1174 	    fs_info->running_transaction->transid) {
1175 		btrfs_assert_tree_locked(buf);
1176 
1177 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1178 			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
1179 					     -buf->len,
1180 					     fs_info->dirty_metadata_batch);
1181 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1182 			btrfs_set_lock_blocking(buf);
1183 			clear_extent_buffer_dirty(buf);
1184 		}
1185 	}
1186 }
1187 
1188 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1189 {
1190 	struct btrfs_subvolume_writers *writers;
1191 	int ret;
1192 
1193 	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1194 	if (!writers)
1195 		return ERR_PTR(-ENOMEM);
1196 
1197 	ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1198 	if (ret < 0) {
1199 		kfree(writers);
1200 		return ERR_PTR(ret);
1201 	}
1202 
1203 	init_waitqueue_head(&writers->wait);
1204 	return writers;
1205 }
1206 
1207 static void
1208 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1209 {
1210 	percpu_counter_destroy(&writers->counter);
1211 	kfree(writers);
1212 }
1213 
1214 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1215 			 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1216 			 u64 objectid)
1217 {
1218 	root->node = NULL;
1219 	root->commit_root = NULL;
1220 	root->sectorsize = sectorsize;
1221 	root->nodesize = nodesize;
1222 	root->stripesize = stripesize;
1223 	root->state = 0;
1224 	root->orphan_cleanup_state = 0;
1225 
1226 	root->objectid = objectid;
1227 	root->last_trans = 0;
1228 	root->highest_objectid = 0;
1229 	root->nr_delalloc_inodes = 0;
1230 	root->nr_ordered_extents = 0;
1231 	root->name = NULL;
1232 	root->inode_tree = RB_ROOT;
1233 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1234 	root->block_rsv = NULL;
1235 	root->orphan_block_rsv = NULL;
1236 
1237 	INIT_LIST_HEAD(&root->dirty_list);
1238 	INIT_LIST_HEAD(&root->root_list);
1239 	INIT_LIST_HEAD(&root->delalloc_inodes);
1240 	INIT_LIST_HEAD(&root->delalloc_root);
1241 	INIT_LIST_HEAD(&root->ordered_extents);
1242 	INIT_LIST_HEAD(&root->ordered_root);
1243 	INIT_LIST_HEAD(&root->logged_list[0]);
1244 	INIT_LIST_HEAD(&root->logged_list[1]);
1245 	spin_lock_init(&root->orphan_lock);
1246 	spin_lock_init(&root->inode_lock);
1247 	spin_lock_init(&root->delalloc_lock);
1248 	spin_lock_init(&root->ordered_extent_lock);
1249 	spin_lock_init(&root->accounting_lock);
1250 	spin_lock_init(&root->log_extents_lock[0]);
1251 	spin_lock_init(&root->log_extents_lock[1]);
1252 	mutex_init(&root->objectid_mutex);
1253 	mutex_init(&root->log_mutex);
1254 	mutex_init(&root->ordered_extent_mutex);
1255 	mutex_init(&root->delalloc_mutex);
1256 	init_waitqueue_head(&root->log_writer_wait);
1257 	init_waitqueue_head(&root->log_commit_wait[0]);
1258 	init_waitqueue_head(&root->log_commit_wait[1]);
1259 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1260 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1261 	atomic_set(&root->log_commit[0], 0);
1262 	atomic_set(&root->log_commit[1], 0);
1263 	atomic_set(&root->log_writers, 0);
1264 	atomic_set(&root->log_batch, 0);
1265 	atomic_set(&root->orphan_inodes, 0);
1266 	atomic_set(&root->refs, 1);
1267 	atomic_set(&root->will_be_snapshoted, 0);
1268 	root->log_transid = 0;
1269 	root->log_transid_committed = -1;
1270 	root->last_log_commit = 0;
1271 	if (fs_info)
1272 		extent_io_tree_init(&root->dirty_log_pages,
1273 				     fs_info->btree_inode->i_mapping);
1274 
1275 	memset(&root->root_key, 0, sizeof(root->root_key));
1276 	memset(&root->root_item, 0, sizeof(root->root_item));
1277 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1278 	if (fs_info)
1279 		root->defrag_trans_start = fs_info->generation;
1280 	else
1281 		root->defrag_trans_start = 0;
1282 	root->root_key.objectid = objectid;
1283 	root->anon_dev = 0;
1284 
1285 	spin_lock_init(&root->root_item_lock);
1286 }
1287 
1288 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1289 {
1290 	struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1291 	if (root)
1292 		root->fs_info = fs_info;
1293 	return root;
1294 }
1295 
1296 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1297 /* Should only be used by the testing infrastructure */
1298 struct btrfs_root *btrfs_alloc_dummy_root(void)
1299 {
1300 	struct btrfs_root *root;
1301 
1302 	root = btrfs_alloc_root(NULL);
1303 	if (!root)
1304 		return ERR_PTR(-ENOMEM);
1305 	__setup_root(4096, 4096, 4096, root, NULL, 1);
1306 	set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1307 	root->alloc_bytenr = 0;
1308 
1309 	return root;
1310 }
1311 #endif
1312 
1313 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1314 				     struct btrfs_fs_info *fs_info,
1315 				     u64 objectid)
1316 {
1317 	struct extent_buffer *leaf;
1318 	struct btrfs_root *tree_root = fs_info->tree_root;
1319 	struct btrfs_root *root;
1320 	struct btrfs_key key;
1321 	int ret = 0;
1322 	uuid_le uuid;
1323 
1324 	root = btrfs_alloc_root(fs_info);
1325 	if (!root)
1326 		return ERR_PTR(-ENOMEM);
1327 
1328 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1329 		tree_root->stripesize, root, fs_info, objectid);
1330 	root->root_key.objectid = objectid;
1331 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1332 	root->root_key.offset = 0;
1333 
1334 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1335 	if (IS_ERR(leaf)) {
1336 		ret = PTR_ERR(leaf);
1337 		leaf = NULL;
1338 		goto fail;
1339 	}
1340 
1341 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1342 	btrfs_set_header_bytenr(leaf, leaf->start);
1343 	btrfs_set_header_generation(leaf, trans->transid);
1344 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1345 	btrfs_set_header_owner(leaf, objectid);
1346 	root->node = leaf;
1347 
1348 	write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1349 			    BTRFS_FSID_SIZE);
1350 	write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1351 			    btrfs_header_chunk_tree_uuid(leaf),
1352 			    BTRFS_UUID_SIZE);
1353 	btrfs_mark_buffer_dirty(leaf);
1354 
1355 	root->commit_root = btrfs_root_node(root);
1356 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1357 
1358 	root->root_item.flags = 0;
1359 	root->root_item.byte_limit = 0;
1360 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1361 	btrfs_set_root_generation(&root->root_item, trans->transid);
1362 	btrfs_set_root_level(&root->root_item, 0);
1363 	btrfs_set_root_refs(&root->root_item, 1);
1364 	btrfs_set_root_used(&root->root_item, leaf->len);
1365 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1366 	btrfs_set_root_dirid(&root->root_item, 0);
1367 	uuid_le_gen(&uuid);
1368 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1369 	root->root_item.drop_level = 0;
1370 
1371 	key.objectid = objectid;
1372 	key.type = BTRFS_ROOT_ITEM_KEY;
1373 	key.offset = 0;
1374 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1375 	if (ret)
1376 		goto fail;
1377 
1378 	btrfs_tree_unlock(leaf);
1379 
1380 	return root;
1381 
1382 fail:
1383 	if (leaf) {
1384 		btrfs_tree_unlock(leaf);
1385 		free_extent_buffer(root->commit_root);
1386 		free_extent_buffer(leaf);
1387 	}
1388 	kfree(root);
1389 
1390 	return ERR_PTR(ret);
1391 }
1392 
1393 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1394 					 struct btrfs_fs_info *fs_info)
1395 {
1396 	struct btrfs_root *root;
1397 	struct btrfs_root *tree_root = fs_info->tree_root;
1398 	struct extent_buffer *leaf;
1399 
1400 	root = btrfs_alloc_root(fs_info);
1401 	if (!root)
1402 		return ERR_PTR(-ENOMEM);
1403 
1404 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1405 		     tree_root->stripesize, root, fs_info,
1406 		     BTRFS_TREE_LOG_OBJECTID);
1407 
1408 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1409 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1410 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1411 
1412 	/*
1413 	 * DON'T set REF_COWS for log trees
1414 	 *
1415 	 * log trees do not get reference counted because they go away
1416 	 * before a real commit is actually done.  They do store pointers
1417 	 * to file data extents, and those reference counts still get
1418 	 * updated (along with back refs to the log tree).
1419 	 */
1420 
1421 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1422 			NULL, 0, 0, 0);
1423 	if (IS_ERR(leaf)) {
1424 		kfree(root);
1425 		return ERR_CAST(leaf);
1426 	}
1427 
1428 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1429 	btrfs_set_header_bytenr(leaf, leaf->start);
1430 	btrfs_set_header_generation(leaf, trans->transid);
1431 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1432 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1433 	root->node = leaf;
1434 
1435 	write_extent_buffer(root->node, root->fs_info->fsid,
1436 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
1437 	btrfs_mark_buffer_dirty(root->node);
1438 	btrfs_tree_unlock(root->node);
1439 	return root;
1440 }
1441 
1442 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1443 			     struct btrfs_fs_info *fs_info)
1444 {
1445 	struct btrfs_root *log_root;
1446 
1447 	log_root = alloc_log_tree(trans, fs_info);
1448 	if (IS_ERR(log_root))
1449 		return PTR_ERR(log_root);
1450 	WARN_ON(fs_info->log_root_tree);
1451 	fs_info->log_root_tree = log_root;
1452 	return 0;
1453 }
1454 
1455 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1456 		       struct btrfs_root *root)
1457 {
1458 	struct btrfs_root *log_root;
1459 	struct btrfs_inode_item *inode_item;
1460 
1461 	log_root = alloc_log_tree(trans, root->fs_info);
1462 	if (IS_ERR(log_root))
1463 		return PTR_ERR(log_root);
1464 
1465 	log_root->last_trans = trans->transid;
1466 	log_root->root_key.offset = root->root_key.objectid;
1467 
1468 	inode_item = &log_root->root_item.inode;
1469 	btrfs_set_stack_inode_generation(inode_item, 1);
1470 	btrfs_set_stack_inode_size(inode_item, 3);
1471 	btrfs_set_stack_inode_nlink(inode_item, 1);
1472 	btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1473 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1474 
1475 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1476 
1477 	WARN_ON(root->log_root);
1478 	root->log_root = log_root;
1479 	root->log_transid = 0;
1480 	root->log_transid_committed = -1;
1481 	root->last_log_commit = 0;
1482 	return 0;
1483 }
1484 
1485 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1486 					       struct btrfs_key *key)
1487 {
1488 	struct btrfs_root *root;
1489 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1490 	struct btrfs_path *path;
1491 	u64 generation;
1492 	int ret;
1493 
1494 	path = btrfs_alloc_path();
1495 	if (!path)
1496 		return ERR_PTR(-ENOMEM);
1497 
1498 	root = btrfs_alloc_root(fs_info);
1499 	if (!root) {
1500 		ret = -ENOMEM;
1501 		goto alloc_fail;
1502 	}
1503 
1504 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1505 		tree_root->stripesize, root, fs_info, key->objectid);
1506 
1507 	ret = btrfs_find_root(tree_root, key, path,
1508 			      &root->root_item, &root->root_key);
1509 	if (ret) {
1510 		if (ret > 0)
1511 			ret = -ENOENT;
1512 		goto find_fail;
1513 	}
1514 
1515 	generation = btrfs_root_generation(&root->root_item);
1516 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1517 				     generation);
1518 	if (IS_ERR(root->node)) {
1519 		ret = PTR_ERR(root->node);
1520 		goto find_fail;
1521 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1522 		ret = -EIO;
1523 		free_extent_buffer(root->node);
1524 		goto find_fail;
1525 	}
1526 	root->commit_root = btrfs_root_node(root);
1527 out:
1528 	btrfs_free_path(path);
1529 	return root;
1530 
1531 find_fail:
1532 	kfree(root);
1533 alloc_fail:
1534 	root = ERR_PTR(ret);
1535 	goto out;
1536 }
1537 
1538 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1539 				      struct btrfs_key *location)
1540 {
1541 	struct btrfs_root *root;
1542 
1543 	root = btrfs_read_tree_root(tree_root, location);
1544 	if (IS_ERR(root))
1545 		return root;
1546 
1547 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1548 		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1549 		btrfs_check_and_init_root_item(&root->root_item);
1550 	}
1551 
1552 	return root;
1553 }
1554 
1555 int btrfs_init_fs_root(struct btrfs_root *root)
1556 {
1557 	int ret;
1558 	struct btrfs_subvolume_writers *writers;
1559 
1560 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1561 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1562 					GFP_NOFS);
1563 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1564 		ret = -ENOMEM;
1565 		goto fail;
1566 	}
1567 
1568 	writers = btrfs_alloc_subvolume_writers();
1569 	if (IS_ERR(writers)) {
1570 		ret = PTR_ERR(writers);
1571 		goto fail;
1572 	}
1573 	root->subv_writers = writers;
1574 
1575 	btrfs_init_free_ino_ctl(root);
1576 	spin_lock_init(&root->ino_cache_lock);
1577 	init_waitqueue_head(&root->ino_cache_wait);
1578 
1579 	ret = get_anon_bdev(&root->anon_dev);
1580 	if (ret)
1581 		goto free_writers;
1582 	return 0;
1583 
1584 free_writers:
1585 	btrfs_free_subvolume_writers(root->subv_writers);
1586 fail:
1587 	kfree(root->free_ino_ctl);
1588 	kfree(root->free_ino_pinned);
1589 	return ret;
1590 }
1591 
1592 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1593 					       u64 root_id)
1594 {
1595 	struct btrfs_root *root;
1596 
1597 	spin_lock(&fs_info->fs_roots_radix_lock);
1598 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1599 				 (unsigned long)root_id);
1600 	spin_unlock(&fs_info->fs_roots_radix_lock);
1601 	return root;
1602 }
1603 
1604 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1605 			 struct btrfs_root *root)
1606 {
1607 	int ret;
1608 
1609 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1610 	if (ret)
1611 		return ret;
1612 
1613 	spin_lock(&fs_info->fs_roots_radix_lock);
1614 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1615 				(unsigned long)root->root_key.objectid,
1616 				root);
1617 	if (ret == 0)
1618 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1619 	spin_unlock(&fs_info->fs_roots_radix_lock);
1620 	radix_tree_preload_end();
1621 
1622 	return ret;
1623 }
1624 
1625 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1626 				     struct btrfs_key *location,
1627 				     bool check_ref)
1628 {
1629 	struct btrfs_root *root;
1630 	struct btrfs_path *path;
1631 	struct btrfs_key key;
1632 	int ret;
1633 
1634 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1635 		return fs_info->tree_root;
1636 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1637 		return fs_info->extent_root;
1638 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1639 		return fs_info->chunk_root;
1640 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1641 		return fs_info->dev_root;
1642 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1643 		return fs_info->csum_root;
1644 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1645 		return fs_info->quota_root ? fs_info->quota_root :
1646 					     ERR_PTR(-ENOENT);
1647 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1648 		return fs_info->uuid_root ? fs_info->uuid_root :
1649 					    ERR_PTR(-ENOENT);
1650 again:
1651 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1652 	if (root) {
1653 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1654 			return ERR_PTR(-ENOENT);
1655 		return root;
1656 	}
1657 
1658 	root = btrfs_read_fs_root(fs_info->tree_root, location);
1659 	if (IS_ERR(root))
1660 		return root;
1661 
1662 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1663 		ret = -ENOENT;
1664 		goto fail;
1665 	}
1666 
1667 	ret = btrfs_init_fs_root(root);
1668 	if (ret)
1669 		goto fail;
1670 
1671 	path = btrfs_alloc_path();
1672 	if (!path) {
1673 		ret = -ENOMEM;
1674 		goto fail;
1675 	}
1676 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1677 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1678 	key.offset = location->objectid;
1679 
1680 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1681 	btrfs_free_path(path);
1682 	if (ret < 0)
1683 		goto fail;
1684 	if (ret == 0)
1685 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1686 
1687 	ret = btrfs_insert_fs_root(fs_info, root);
1688 	if (ret) {
1689 		if (ret == -EEXIST) {
1690 			free_fs_root(root);
1691 			goto again;
1692 		}
1693 		goto fail;
1694 	}
1695 	return root;
1696 fail:
1697 	free_fs_root(root);
1698 	return ERR_PTR(ret);
1699 }
1700 
1701 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1702 {
1703 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1704 	int ret = 0;
1705 	struct btrfs_device *device;
1706 	struct backing_dev_info *bdi;
1707 
1708 	rcu_read_lock();
1709 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1710 		if (!device->bdev)
1711 			continue;
1712 		bdi = blk_get_backing_dev_info(device->bdev);
1713 		if (bdi_congested(bdi, bdi_bits)) {
1714 			ret = 1;
1715 			break;
1716 		}
1717 	}
1718 	rcu_read_unlock();
1719 	return ret;
1720 }
1721 
1722 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1723 {
1724 	int err;
1725 
1726 	err = bdi_setup_and_register(bdi, "btrfs");
1727 	if (err)
1728 		return err;
1729 
1730 	bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
1731 	bdi->congested_fn	= btrfs_congested_fn;
1732 	bdi->congested_data	= info;
1733 	bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1734 	return 0;
1735 }
1736 
1737 /*
1738  * called by the kthread helper functions to finally call the bio end_io
1739  * functions.  This is where read checksum verification actually happens
1740  */
1741 static void end_workqueue_fn(struct btrfs_work *work)
1742 {
1743 	struct bio *bio;
1744 	struct btrfs_end_io_wq *end_io_wq;
1745 
1746 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1747 	bio = end_io_wq->bio;
1748 
1749 	bio->bi_error = end_io_wq->error;
1750 	bio->bi_private = end_io_wq->private;
1751 	bio->bi_end_io = end_io_wq->end_io;
1752 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1753 	bio_endio(bio);
1754 }
1755 
1756 static int cleaner_kthread(void *arg)
1757 {
1758 	struct btrfs_root *root = arg;
1759 	int again;
1760 	struct btrfs_trans_handle *trans;
1761 
1762 	do {
1763 		again = 0;
1764 
1765 		/* Make the cleaner go to sleep early. */
1766 		if (btrfs_need_cleaner_sleep(root))
1767 			goto sleep;
1768 
1769 		if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1770 			goto sleep;
1771 
1772 		/*
1773 		 * Avoid the problem that we change the status of the fs
1774 		 * during the above check and trylock.
1775 		 */
1776 		if (btrfs_need_cleaner_sleep(root)) {
1777 			mutex_unlock(&root->fs_info->cleaner_mutex);
1778 			goto sleep;
1779 		}
1780 
1781 		btrfs_run_delayed_iputs(root);
1782 		again = btrfs_clean_one_deleted_snapshot(root);
1783 		mutex_unlock(&root->fs_info->cleaner_mutex);
1784 
1785 		/*
1786 		 * The defragger has dealt with the R/O remount and umount,
1787 		 * needn't do anything special here.
1788 		 */
1789 		btrfs_run_defrag_inodes(root->fs_info);
1790 
1791 		/*
1792 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1793 		 * with relocation (btrfs_relocate_chunk) and relocation
1794 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1795 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1796 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1797 		 * unused block groups.
1798 		 */
1799 		btrfs_delete_unused_bgs(root->fs_info);
1800 sleep:
1801 		if (!try_to_freeze() && !again) {
1802 			set_current_state(TASK_INTERRUPTIBLE);
1803 			if (!kthread_should_stop())
1804 				schedule();
1805 			__set_current_state(TASK_RUNNING);
1806 		}
1807 	} while (!kthread_should_stop());
1808 
1809 	/*
1810 	 * Transaction kthread is stopped before us and wakes us up.
1811 	 * However we might have started a new transaction and COWed some
1812 	 * tree blocks when deleting unused block groups for example. So
1813 	 * make sure we commit the transaction we started to have a clean
1814 	 * shutdown when evicting the btree inode - if it has dirty pages
1815 	 * when we do the final iput() on it, eviction will trigger a
1816 	 * writeback for it which will fail with null pointer dereferences
1817 	 * since work queues and other resources were already released and
1818 	 * destroyed by the time the iput/eviction/writeback is made.
1819 	 */
1820 	trans = btrfs_attach_transaction(root);
1821 	if (IS_ERR(trans)) {
1822 		if (PTR_ERR(trans) != -ENOENT)
1823 			btrfs_err(root->fs_info,
1824 				  "cleaner transaction attach returned %ld",
1825 				  PTR_ERR(trans));
1826 	} else {
1827 		int ret;
1828 
1829 		ret = btrfs_commit_transaction(trans, root);
1830 		if (ret)
1831 			btrfs_err(root->fs_info,
1832 				  "cleaner open transaction commit returned %d",
1833 				  ret);
1834 	}
1835 
1836 	return 0;
1837 }
1838 
1839 static int transaction_kthread(void *arg)
1840 {
1841 	struct btrfs_root *root = arg;
1842 	struct btrfs_trans_handle *trans;
1843 	struct btrfs_transaction *cur;
1844 	u64 transid;
1845 	unsigned long now;
1846 	unsigned long delay;
1847 	bool cannot_commit;
1848 
1849 	do {
1850 		cannot_commit = false;
1851 		delay = HZ * root->fs_info->commit_interval;
1852 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1853 
1854 		spin_lock(&root->fs_info->trans_lock);
1855 		cur = root->fs_info->running_transaction;
1856 		if (!cur) {
1857 			spin_unlock(&root->fs_info->trans_lock);
1858 			goto sleep;
1859 		}
1860 
1861 		now = get_seconds();
1862 		if (cur->state < TRANS_STATE_BLOCKED &&
1863 		    (now < cur->start_time ||
1864 		     now - cur->start_time < root->fs_info->commit_interval)) {
1865 			spin_unlock(&root->fs_info->trans_lock);
1866 			delay = HZ * 5;
1867 			goto sleep;
1868 		}
1869 		transid = cur->transid;
1870 		spin_unlock(&root->fs_info->trans_lock);
1871 
1872 		/* If the file system is aborted, this will always fail. */
1873 		trans = btrfs_attach_transaction(root);
1874 		if (IS_ERR(trans)) {
1875 			if (PTR_ERR(trans) != -ENOENT)
1876 				cannot_commit = true;
1877 			goto sleep;
1878 		}
1879 		if (transid == trans->transid) {
1880 			btrfs_commit_transaction(trans, root);
1881 		} else {
1882 			btrfs_end_transaction(trans, root);
1883 		}
1884 sleep:
1885 		wake_up_process(root->fs_info->cleaner_kthread);
1886 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1887 
1888 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1889 				      &root->fs_info->fs_state)))
1890 			btrfs_cleanup_transaction(root);
1891 		if (!try_to_freeze()) {
1892 			set_current_state(TASK_INTERRUPTIBLE);
1893 			if (!kthread_should_stop() &&
1894 			    (!btrfs_transaction_blocked(root->fs_info) ||
1895 			     cannot_commit))
1896 				schedule_timeout(delay);
1897 			__set_current_state(TASK_RUNNING);
1898 		}
1899 	} while (!kthread_should_stop());
1900 	return 0;
1901 }
1902 
1903 /*
1904  * this will find the highest generation in the array of
1905  * root backups.  The index of the highest array is returned,
1906  * or -1 if we can't find anything.
1907  *
1908  * We check to make sure the array is valid by comparing the
1909  * generation of the latest  root in the array with the generation
1910  * in the super block.  If they don't match we pitch it.
1911  */
1912 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1913 {
1914 	u64 cur;
1915 	int newest_index = -1;
1916 	struct btrfs_root_backup *root_backup;
1917 	int i;
1918 
1919 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1920 		root_backup = info->super_copy->super_roots + i;
1921 		cur = btrfs_backup_tree_root_gen(root_backup);
1922 		if (cur == newest_gen)
1923 			newest_index = i;
1924 	}
1925 
1926 	/* check to see if we actually wrapped around */
1927 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1928 		root_backup = info->super_copy->super_roots;
1929 		cur = btrfs_backup_tree_root_gen(root_backup);
1930 		if (cur == newest_gen)
1931 			newest_index = 0;
1932 	}
1933 	return newest_index;
1934 }
1935 
1936 
1937 /*
1938  * find the oldest backup so we know where to store new entries
1939  * in the backup array.  This will set the backup_root_index
1940  * field in the fs_info struct
1941  */
1942 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1943 				     u64 newest_gen)
1944 {
1945 	int newest_index = -1;
1946 
1947 	newest_index = find_newest_super_backup(info, newest_gen);
1948 	/* if there was garbage in there, just move along */
1949 	if (newest_index == -1) {
1950 		info->backup_root_index = 0;
1951 	} else {
1952 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1953 	}
1954 }
1955 
1956 /*
1957  * copy all the root pointers into the super backup array.
1958  * this will bump the backup pointer by one when it is
1959  * done
1960  */
1961 static void backup_super_roots(struct btrfs_fs_info *info)
1962 {
1963 	int next_backup;
1964 	struct btrfs_root_backup *root_backup;
1965 	int last_backup;
1966 
1967 	next_backup = info->backup_root_index;
1968 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1969 		BTRFS_NUM_BACKUP_ROOTS;
1970 
1971 	/*
1972 	 * just overwrite the last backup if we're at the same generation
1973 	 * this happens only at umount
1974 	 */
1975 	root_backup = info->super_for_commit->super_roots + last_backup;
1976 	if (btrfs_backup_tree_root_gen(root_backup) ==
1977 	    btrfs_header_generation(info->tree_root->node))
1978 		next_backup = last_backup;
1979 
1980 	root_backup = info->super_for_commit->super_roots + next_backup;
1981 
1982 	/*
1983 	 * make sure all of our padding and empty slots get zero filled
1984 	 * regardless of which ones we use today
1985 	 */
1986 	memset(root_backup, 0, sizeof(*root_backup));
1987 
1988 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1989 
1990 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1991 	btrfs_set_backup_tree_root_gen(root_backup,
1992 			       btrfs_header_generation(info->tree_root->node));
1993 
1994 	btrfs_set_backup_tree_root_level(root_backup,
1995 			       btrfs_header_level(info->tree_root->node));
1996 
1997 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1998 	btrfs_set_backup_chunk_root_gen(root_backup,
1999 			       btrfs_header_generation(info->chunk_root->node));
2000 	btrfs_set_backup_chunk_root_level(root_backup,
2001 			       btrfs_header_level(info->chunk_root->node));
2002 
2003 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2004 	btrfs_set_backup_extent_root_gen(root_backup,
2005 			       btrfs_header_generation(info->extent_root->node));
2006 	btrfs_set_backup_extent_root_level(root_backup,
2007 			       btrfs_header_level(info->extent_root->node));
2008 
2009 	/*
2010 	 * we might commit during log recovery, which happens before we set
2011 	 * the fs_root.  Make sure it is valid before we fill it in.
2012 	 */
2013 	if (info->fs_root && info->fs_root->node) {
2014 		btrfs_set_backup_fs_root(root_backup,
2015 					 info->fs_root->node->start);
2016 		btrfs_set_backup_fs_root_gen(root_backup,
2017 			       btrfs_header_generation(info->fs_root->node));
2018 		btrfs_set_backup_fs_root_level(root_backup,
2019 			       btrfs_header_level(info->fs_root->node));
2020 	}
2021 
2022 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2023 	btrfs_set_backup_dev_root_gen(root_backup,
2024 			       btrfs_header_generation(info->dev_root->node));
2025 	btrfs_set_backup_dev_root_level(root_backup,
2026 				       btrfs_header_level(info->dev_root->node));
2027 
2028 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2029 	btrfs_set_backup_csum_root_gen(root_backup,
2030 			       btrfs_header_generation(info->csum_root->node));
2031 	btrfs_set_backup_csum_root_level(root_backup,
2032 			       btrfs_header_level(info->csum_root->node));
2033 
2034 	btrfs_set_backup_total_bytes(root_backup,
2035 			     btrfs_super_total_bytes(info->super_copy));
2036 	btrfs_set_backup_bytes_used(root_backup,
2037 			     btrfs_super_bytes_used(info->super_copy));
2038 	btrfs_set_backup_num_devices(root_backup,
2039 			     btrfs_super_num_devices(info->super_copy));
2040 
2041 	/*
2042 	 * if we don't copy this out to the super_copy, it won't get remembered
2043 	 * for the next commit
2044 	 */
2045 	memcpy(&info->super_copy->super_roots,
2046 	       &info->super_for_commit->super_roots,
2047 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2048 }
2049 
2050 /*
2051  * this copies info out of the root backup array and back into
2052  * the in-memory super block.  It is meant to help iterate through
2053  * the array, so you send it the number of backups you've already
2054  * tried and the last backup index you used.
2055  *
2056  * this returns -1 when it has tried all the backups
2057  */
2058 static noinline int next_root_backup(struct btrfs_fs_info *info,
2059 				     struct btrfs_super_block *super,
2060 				     int *num_backups_tried, int *backup_index)
2061 {
2062 	struct btrfs_root_backup *root_backup;
2063 	int newest = *backup_index;
2064 
2065 	if (*num_backups_tried == 0) {
2066 		u64 gen = btrfs_super_generation(super);
2067 
2068 		newest = find_newest_super_backup(info, gen);
2069 		if (newest == -1)
2070 			return -1;
2071 
2072 		*backup_index = newest;
2073 		*num_backups_tried = 1;
2074 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2075 		/* we've tried all the backups, all done */
2076 		return -1;
2077 	} else {
2078 		/* jump to the next oldest backup */
2079 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2080 			BTRFS_NUM_BACKUP_ROOTS;
2081 		*backup_index = newest;
2082 		*num_backups_tried += 1;
2083 	}
2084 	root_backup = super->super_roots + newest;
2085 
2086 	btrfs_set_super_generation(super,
2087 				   btrfs_backup_tree_root_gen(root_backup));
2088 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2089 	btrfs_set_super_root_level(super,
2090 				   btrfs_backup_tree_root_level(root_backup));
2091 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2092 
2093 	/*
2094 	 * fixme: the total bytes and num_devices need to match or we should
2095 	 * need a fsck
2096 	 */
2097 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2098 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2099 	return 0;
2100 }
2101 
2102 /* helper to cleanup workers */
2103 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2104 {
2105 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2106 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2107 	btrfs_destroy_workqueue(fs_info->workers);
2108 	btrfs_destroy_workqueue(fs_info->endio_workers);
2109 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2110 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2111 	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2112 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2113 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2114 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2115 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2116 	btrfs_destroy_workqueue(fs_info->submit_workers);
2117 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2118 	btrfs_destroy_workqueue(fs_info->caching_workers);
2119 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2120 	btrfs_destroy_workqueue(fs_info->flush_workers);
2121 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2122 	btrfs_destroy_workqueue(fs_info->extent_workers);
2123 }
2124 
2125 static void free_root_extent_buffers(struct btrfs_root *root)
2126 {
2127 	if (root) {
2128 		free_extent_buffer(root->node);
2129 		free_extent_buffer(root->commit_root);
2130 		root->node = NULL;
2131 		root->commit_root = NULL;
2132 	}
2133 }
2134 
2135 /* helper to cleanup tree roots */
2136 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2137 {
2138 	free_root_extent_buffers(info->tree_root);
2139 
2140 	free_root_extent_buffers(info->dev_root);
2141 	free_root_extent_buffers(info->extent_root);
2142 	free_root_extent_buffers(info->csum_root);
2143 	free_root_extent_buffers(info->quota_root);
2144 	free_root_extent_buffers(info->uuid_root);
2145 	if (chunk_root)
2146 		free_root_extent_buffers(info->chunk_root);
2147 }
2148 
2149 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2150 {
2151 	int ret;
2152 	struct btrfs_root *gang[8];
2153 	int i;
2154 
2155 	while (!list_empty(&fs_info->dead_roots)) {
2156 		gang[0] = list_entry(fs_info->dead_roots.next,
2157 				     struct btrfs_root, root_list);
2158 		list_del(&gang[0]->root_list);
2159 
2160 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2161 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2162 		} else {
2163 			free_extent_buffer(gang[0]->node);
2164 			free_extent_buffer(gang[0]->commit_root);
2165 			btrfs_put_fs_root(gang[0]);
2166 		}
2167 	}
2168 
2169 	while (1) {
2170 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2171 					     (void **)gang, 0,
2172 					     ARRAY_SIZE(gang));
2173 		if (!ret)
2174 			break;
2175 		for (i = 0; i < ret; i++)
2176 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2177 	}
2178 
2179 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2180 		btrfs_free_log_root_tree(NULL, fs_info);
2181 		btrfs_destroy_pinned_extent(fs_info->tree_root,
2182 					    fs_info->pinned_extents);
2183 	}
2184 }
2185 
2186 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2187 {
2188 	mutex_init(&fs_info->scrub_lock);
2189 	atomic_set(&fs_info->scrubs_running, 0);
2190 	atomic_set(&fs_info->scrub_pause_req, 0);
2191 	atomic_set(&fs_info->scrubs_paused, 0);
2192 	atomic_set(&fs_info->scrub_cancel_req, 0);
2193 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2194 	fs_info->scrub_workers_refcnt = 0;
2195 }
2196 
2197 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2198 {
2199 	spin_lock_init(&fs_info->balance_lock);
2200 	mutex_init(&fs_info->balance_mutex);
2201 	atomic_set(&fs_info->balance_running, 0);
2202 	atomic_set(&fs_info->balance_pause_req, 0);
2203 	atomic_set(&fs_info->balance_cancel_req, 0);
2204 	fs_info->balance_ctl = NULL;
2205 	init_waitqueue_head(&fs_info->balance_wait_q);
2206 }
2207 
2208 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2209 				   struct btrfs_root *tree_root)
2210 {
2211 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2212 	set_nlink(fs_info->btree_inode, 1);
2213 	/*
2214 	 * we set the i_size on the btree inode to the max possible int.
2215 	 * the real end of the address space is determined by all of
2216 	 * the devices in the system
2217 	 */
2218 	fs_info->btree_inode->i_size = OFFSET_MAX;
2219 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2220 
2221 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2222 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2223 			     fs_info->btree_inode->i_mapping);
2224 	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2225 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2226 
2227 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2228 
2229 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2230 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2231 	       sizeof(struct btrfs_key));
2232 	set_bit(BTRFS_INODE_DUMMY,
2233 		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2234 	btrfs_insert_inode_hash(fs_info->btree_inode);
2235 }
2236 
2237 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2238 {
2239 	fs_info->dev_replace.lock_owner = 0;
2240 	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2241 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2242 	mutex_init(&fs_info->dev_replace.lock_management_lock);
2243 	mutex_init(&fs_info->dev_replace.lock);
2244 	init_waitqueue_head(&fs_info->replace_wait);
2245 }
2246 
2247 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2248 {
2249 	spin_lock_init(&fs_info->qgroup_lock);
2250 	mutex_init(&fs_info->qgroup_ioctl_lock);
2251 	fs_info->qgroup_tree = RB_ROOT;
2252 	fs_info->qgroup_op_tree = RB_ROOT;
2253 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2254 	fs_info->qgroup_seq = 1;
2255 	fs_info->quota_enabled = 0;
2256 	fs_info->pending_quota_state = 0;
2257 	fs_info->qgroup_ulist = NULL;
2258 	mutex_init(&fs_info->qgroup_rescan_lock);
2259 }
2260 
2261 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2262 		struct btrfs_fs_devices *fs_devices)
2263 {
2264 	int max_active = fs_info->thread_pool_size;
2265 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2266 
2267 	fs_info->workers =
2268 		btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2269 				      max_active, 16);
2270 
2271 	fs_info->delalloc_workers =
2272 		btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2273 
2274 	fs_info->flush_workers =
2275 		btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2276 
2277 	fs_info->caching_workers =
2278 		btrfs_alloc_workqueue("cache", flags, max_active, 0);
2279 
2280 	/*
2281 	 * a higher idle thresh on the submit workers makes it much more
2282 	 * likely that bios will be send down in a sane order to the
2283 	 * devices
2284 	 */
2285 	fs_info->submit_workers =
2286 		btrfs_alloc_workqueue("submit", flags,
2287 				      min_t(u64, fs_devices->num_devices,
2288 					    max_active), 64);
2289 
2290 	fs_info->fixup_workers =
2291 		btrfs_alloc_workqueue("fixup", flags, 1, 0);
2292 
2293 	/*
2294 	 * endios are largely parallel and should have a very
2295 	 * low idle thresh
2296 	 */
2297 	fs_info->endio_workers =
2298 		btrfs_alloc_workqueue("endio", flags, max_active, 4);
2299 	fs_info->endio_meta_workers =
2300 		btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2301 	fs_info->endio_meta_write_workers =
2302 		btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2303 	fs_info->endio_raid56_workers =
2304 		btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2305 	fs_info->endio_repair_workers =
2306 		btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2307 	fs_info->rmw_workers =
2308 		btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2309 	fs_info->endio_write_workers =
2310 		btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2311 	fs_info->endio_freespace_worker =
2312 		btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2313 	fs_info->delayed_workers =
2314 		btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2315 	fs_info->readahead_workers =
2316 		btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2317 	fs_info->qgroup_rescan_workers =
2318 		btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2319 	fs_info->extent_workers =
2320 		btrfs_alloc_workqueue("extent-refs", flags,
2321 				      min_t(u64, fs_devices->num_devices,
2322 					    max_active), 8);
2323 
2324 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2325 	      fs_info->submit_workers && fs_info->flush_workers &&
2326 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2327 	      fs_info->endio_meta_write_workers &&
2328 	      fs_info->endio_repair_workers &&
2329 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2330 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2331 	      fs_info->caching_workers && fs_info->readahead_workers &&
2332 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2333 	      fs_info->extent_workers &&
2334 	      fs_info->qgroup_rescan_workers)) {
2335 		return -ENOMEM;
2336 	}
2337 
2338 	return 0;
2339 }
2340 
2341 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2342 			    struct btrfs_fs_devices *fs_devices)
2343 {
2344 	int ret;
2345 	struct btrfs_root *tree_root = fs_info->tree_root;
2346 	struct btrfs_root *log_tree_root;
2347 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2348 	u64 bytenr = btrfs_super_log_root(disk_super);
2349 
2350 	if (fs_devices->rw_devices == 0) {
2351 		printk(KERN_WARNING "BTRFS: log replay required "
2352 		       "on RO media\n");
2353 		return -EIO;
2354 	}
2355 
2356 	log_tree_root = btrfs_alloc_root(fs_info);
2357 	if (!log_tree_root)
2358 		return -ENOMEM;
2359 
2360 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
2361 			tree_root->stripesize, log_tree_root, fs_info,
2362 			BTRFS_TREE_LOG_OBJECTID);
2363 
2364 	log_tree_root->node = read_tree_block(tree_root, bytenr,
2365 			fs_info->generation + 1);
2366 	if (IS_ERR(log_tree_root->node)) {
2367 		printk(KERN_ERR "BTRFS: failed to read log tree\n");
2368 		ret = PTR_ERR(log_tree_root->node);
2369 		kfree(log_tree_root);
2370 		return ret;
2371 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2372 		printk(KERN_ERR "BTRFS: failed to read log tree\n");
2373 		free_extent_buffer(log_tree_root->node);
2374 		kfree(log_tree_root);
2375 		return -EIO;
2376 	}
2377 	/* returns with log_tree_root freed on success */
2378 	ret = btrfs_recover_log_trees(log_tree_root);
2379 	if (ret) {
2380 		btrfs_error(tree_root->fs_info, ret,
2381 			    "Failed to recover log tree");
2382 		free_extent_buffer(log_tree_root->node);
2383 		kfree(log_tree_root);
2384 		return ret;
2385 	}
2386 
2387 	if (fs_info->sb->s_flags & MS_RDONLY) {
2388 		ret = btrfs_commit_super(tree_root);
2389 		if (ret)
2390 			return ret;
2391 	}
2392 
2393 	return 0;
2394 }
2395 
2396 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2397 			    struct btrfs_root *tree_root)
2398 {
2399 	struct btrfs_root *root;
2400 	struct btrfs_key location;
2401 	int ret;
2402 
2403 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2404 	location.type = BTRFS_ROOT_ITEM_KEY;
2405 	location.offset = 0;
2406 
2407 	root = btrfs_read_tree_root(tree_root, &location);
2408 	if (IS_ERR(root))
2409 		return PTR_ERR(root);
2410 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2411 	fs_info->extent_root = root;
2412 
2413 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2414 	root = btrfs_read_tree_root(tree_root, &location);
2415 	if (IS_ERR(root))
2416 		return PTR_ERR(root);
2417 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2418 	fs_info->dev_root = root;
2419 	btrfs_init_devices_late(fs_info);
2420 
2421 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2422 	root = btrfs_read_tree_root(tree_root, &location);
2423 	if (IS_ERR(root))
2424 		return PTR_ERR(root);
2425 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2426 	fs_info->csum_root = root;
2427 
2428 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2429 	root = btrfs_read_tree_root(tree_root, &location);
2430 	if (!IS_ERR(root)) {
2431 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2432 		fs_info->quota_enabled = 1;
2433 		fs_info->pending_quota_state = 1;
2434 		fs_info->quota_root = root;
2435 	}
2436 
2437 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2438 	root = btrfs_read_tree_root(tree_root, &location);
2439 	if (IS_ERR(root)) {
2440 		ret = PTR_ERR(root);
2441 		if (ret != -ENOENT)
2442 			return ret;
2443 	} else {
2444 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2445 		fs_info->uuid_root = root;
2446 	}
2447 
2448 	return 0;
2449 }
2450 
2451 int open_ctree(struct super_block *sb,
2452 	       struct btrfs_fs_devices *fs_devices,
2453 	       char *options)
2454 {
2455 	u32 sectorsize;
2456 	u32 nodesize;
2457 	u32 stripesize;
2458 	u64 generation;
2459 	u64 features;
2460 	struct btrfs_key location;
2461 	struct buffer_head *bh;
2462 	struct btrfs_super_block *disk_super;
2463 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2464 	struct btrfs_root *tree_root;
2465 	struct btrfs_root *chunk_root;
2466 	int ret;
2467 	int err = -EINVAL;
2468 	int num_backups_tried = 0;
2469 	int backup_index = 0;
2470 	int max_active;
2471 
2472 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2473 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2474 	if (!tree_root || !chunk_root) {
2475 		err = -ENOMEM;
2476 		goto fail;
2477 	}
2478 
2479 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2480 	if (ret) {
2481 		err = ret;
2482 		goto fail;
2483 	}
2484 
2485 	ret = setup_bdi(fs_info, &fs_info->bdi);
2486 	if (ret) {
2487 		err = ret;
2488 		goto fail_srcu;
2489 	}
2490 
2491 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2492 	if (ret) {
2493 		err = ret;
2494 		goto fail_bdi;
2495 	}
2496 	fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2497 					(1 + ilog2(nr_cpu_ids));
2498 
2499 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2500 	if (ret) {
2501 		err = ret;
2502 		goto fail_dirty_metadata_bytes;
2503 	}
2504 
2505 	ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2506 	if (ret) {
2507 		err = ret;
2508 		goto fail_delalloc_bytes;
2509 	}
2510 
2511 	fs_info->btree_inode = new_inode(sb);
2512 	if (!fs_info->btree_inode) {
2513 		err = -ENOMEM;
2514 		goto fail_bio_counter;
2515 	}
2516 
2517 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2518 
2519 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2520 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2521 	INIT_LIST_HEAD(&fs_info->trans_list);
2522 	INIT_LIST_HEAD(&fs_info->dead_roots);
2523 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2524 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2525 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2526 	spin_lock_init(&fs_info->delalloc_root_lock);
2527 	spin_lock_init(&fs_info->trans_lock);
2528 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2529 	spin_lock_init(&fs_info->delayed_iput_lock);
2530 	spin_lock_init(&fs_info->defrag_inodes_lock);
2531 	spin_lock_init(&fs_info->free_chunk_lock);
2532 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2533 	spin_lock_init(&fs_info->super_lock);
2534 	spin_lock_init(&fs_info->qgroup_op_lock);
2535 	spin_lock_init(&fs_info->buffer_lock);
2536 	spin_lock_init(&fs_info->unused_bgs_lock);
2537 	rwlock_init(&fs_info->tree_mod_log_lock);
2538 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2539 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2540 	mutex_init(&fs_info->reloc_mutex);
2541 	mutex_init(&fs_info->delalloc_root_mutex);
2542 	seqlock_init(&fs_info->profiles_lock);
2543 	init_rwsem(&fs_info->delayed_iput_sem);
2544 
2545 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2546 	INIT_LIST_HEAD(&fs_info->space_info);
2547 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2548 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2549 	btrfs_mapping_init(&fs_info->mapping_tree);
2550 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2551 			     BTRFS_BLOCK_RSV_GLOBAL);
2552 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2553 			     BTRFS_BLOCK_RSV_DELALLOC);
2554 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2555 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2556 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2557 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2558 			     BTRFS_BLOCK_RSV_DELOPS);
2559 	atomic_set(&fs_info->nr_async_submits, 0);
2560 	atomic_set(&fs_info->async_delalloc_pages, 0);
2561 	atomic_set(&fs_info->async_submit_draining, 0);
2562 	atomic_set(&fs_info->nr_async_bios, 0);
2563 	atomic_set(&fs_info->defrag_running, 0);
2564 	atomic_set(&fs_info->qgroup_op_seq, 0);
2565 	atomic64_set(&fs_info->tree_mod_seq, 0);
2566 	fs_info->sb = sb;
2567 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2568 	fs_info->metadata_ratio = 0;
2569 	fs_info->defrag_inodes = RB_ROOT;
2570 	fs_info->free_chunk_space = 0;
2571 	fs_info->tree_mod_log = RB_ROOT;
2572 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2573 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2574 	/* readahead state */
2575 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2576 	spin_lock_init(&fs_info->reada_lock);
2577 
2578 	fs_info->thread_pool_size = min_t(unsigned long,
2579 					  num_online_cpus() + 2, 8);
2580 
2581 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2582 	spin_lock_init(&fs_info->ordered_root_lock);
2583 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2584 					GFP_NOFS);
2585 	if (!fs_info->delayed_root) {
2586 		err = -ENOMEM;
2587 		goto fail_iput;
2588 	}
2589 	btrfs_init_delayed_root(fs_info->delayed_root);
2590 
2591 	btrfs_init_scrub(fs_info);
2592 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2593 	fs_info->check_integrity_print_mask = 0;
2594 #endif
2595 	btrfs_init_balance(fs_info);
2596 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2597 
2598 	sb->s_blocksize = 4096;
2599 	sb->s_blocksize_bits = blksize_bits(4096);
2600 	sb->s_bdi = &fs_info->bdi;
2601 
2602 	btrfs_init_btree_inode(fs_info, tree_root);
2603 
2604 	spin_lock_init(&fs_info->block_group_cache_lock);
2605 	fs_info->block_group_cache_tree = RB_ROOT;
2606 	fs_info->first_logical_byte = (u64)-1;
2607 
2608 	extent_io_tree_init(&fs_info->freed_extents[0],
2609 			     fs_info->btree_inode->i_mapping);
2610 	extent_io_tree_init(&fs_info->freed_extents[1],
2611 			     fs_info->btree_inode->i_mapping);
2612 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2613 	fs_info->do_barriers = 1;
2614 
2615 
2616 	mutex_init(&fs_info->ordered_operations_mutex);
2617 	mutex_init(&fs_info->tree_log_mutex);
2618 	mutex_init(&fs_info->chunk_mutex);
2619 	mutex_init(&fs_info->transaction_kthread_mutex);
2620 	mutex_init(&fs_info->cleaner_mutex);
2621 	mutex_init(&fs_info->volume_mutex);
2622 	mutex_init(&fs_info->ro_block_group_mutex);
2623 	init_rwsem(&fs_info->commit_root_sem);
2624 	init_rwsem(&fs_info->cleanup_work_sem);
2625 	init_rwsem(&fs_info->subvol_sem);
2626 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2627 
2628 	btrfs_init_dev_replace_locks(fs_info);
2629 	btrfs_init_qgroup(fs_info);
2630 
2631 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2632 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2633 
2634 	init_waitqueue_head(&fs_info->transaction_throttle);
2635 	init_waitqueue_head(&fs_info->transaction_wait);
2636 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2637 	init_waitqueue_head(&fs_info->async_submit_wait);
2638 
2639 	INIT_LIST_HEAD(&fs_info->pinned_chunks);
2640 
2641 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2642 	if (ret) {
2643 		err = ret;
2644 		goto fail_alloc;
2645 	}
2646 
2647 	__setup_root(4096, 4096, 4096, tree_root,
2648 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2649 
2650 	invalidate_bdev(fs_devices->latest_bdev);
2651 
2652 	/*
2653 	 * Read super block and check the signature bytes only
2654 	 */
2655 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2656 	if (!bh) {
2657 		err = -EINVAL;
2658 		goto fail_alloc;
2659 	}
2660 
2661 	/*
2662 	 * We want to check superblock checksum, the type is stored inside.
2663 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2664 	 */
2665 	if (btrfs_check_super_csum(bh->b_data)) {
2666 		printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2667 		err = -EINVAL;
2668 		goto fail_alloc;
2669 	}
2670 
2671 	/*
2672 	 * super_copy is zeroed at allocation time and we never touch the
2673 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2674 	 * the whole block of INFO_SIZE
2675 	 */
2676 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2677 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2678 	       sizeof(*fs_info->super_for_commit));
2679 	brelse(bh);
2680 
2681 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2682 
2683 	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2684 	if (ret) {
2685 		printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2686 		err = -EINVAL;
2687 		goto fail_alloc;
2688 	}
2689 
2690 	disk_super = fs_info->super_copy;
2691 	if (!btrfs_super_root(disk_super))
2692 		goto fail_alloc;
2693 
2694 	/* check FS state, whether FS is broken. */
2695 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2696 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2697 
2698 	/*
2699 	 * run through our array of backup supers and setup
2700 	 * our ring pointer to the oldest one
2701 	 */
2702 	generation = btrfs_super_generation(disk_super);
2703 	find_oldest_super_backup(fs_info, generation);
2704 
2705 	/*
2706 	 * In the long term, we'll store the compression type in the super
2707 	 * block, and it'll be used for per file compression control.
2708 	 */
2709 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2710 
2711 	ret = btrfs_parse_options(tree_root, options);
2712 	if (ret) {
2713 		err = ret;
2714 		goto fail_alloc;
2715 	}
2716 
2717 	features = btrfs_super_incompat_flags(disk_super) &
2718 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2719 	if (features) {
2720 		printk(KERN_ERR "BTRFS: couldn't mount because of "
2721 		       "unsupported optional features (%Lx).\n",
2722 		       features);
2723 		err = -EINVAL;
2724 		goto fail_alloc;
2725 	}
2726 
2727 	/*
2728 	 * Leafsize and nodesize were always equal, this is only a sanity check.
2729 	 */
2730 	if (le32_to_cpu(disk_super->__unused_leafsize) !=
2731 	    btrfs_super_nodesize(disk_super)) {
2732 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2733 		       "blocksizes don't match.  node %d leaf %d\n",
2734 		       btrfs_super_nodesize(disk_super),
2735 		       le32_to_cpu(disk_super->__unused_leafsize));
2736 		err = -EINVAL;
2737 		goto fail_alloc;
2738 	}
2739 	if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2740 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2741 		       "blocksize (%d) was too large\n",
2742 		       btrfs_super_nodesize(disk_super));
2743 		err = -EINVAL;
2744 		goto fail_alloc;
2745 	}
2746 
2747 	features = btrfs_super_incompat_flags(disk_super);
2748 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2749 	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2750 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2751 
2752 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2753 		printk(KERN_INFO "BTRFS: has skinny extents\n");
2754 
2755 	/*
2756 	 * flag our filesystem as having big metadata blocks if
2757 	 * they are bigger than the page size
2758 	 */
2759 	if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2760 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2761 			printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2762 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2763 	}
2764 
2765 	nodesize = btrfs_super_nodesize(disk_super);
2766 	sectorsize = btrfs_super_sectorsize(disk_super);
2767 	stripesize = btrfs_super_stripesize(disk_super);
2768 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2769 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2770 
2771 	/*
2772 	 * mixed block groups end up with duplicate but slightly offset
2773 	 * extent buffers for the same range.  It leads to corruptions
2774 	 */
2775 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2776 	    (sectorsize != nodesize)) {
2777 		printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2778 				"are not allowed for mixed block groups on %s\n",
2779 				sb->s_id);
2780 		goto fail_alloc;
2781 	}
2782 
2783 	/*
2784 	 * Needn't use the lock because there is no other task which will
2785 	 * update the flag.
2786 	 */
2787 	btrfs_set_super_incompat_flags(disk_super, features);
2788 
2789 	features = btrfs_super_compat_ro_flags(disk_super) &
2790 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2791 	if (!(sb->s_flags & MS_RDONLY) && features) {
2792 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2793 		       "unsupported option features (%Lx).\n",
2794 		       features);
2795 		err = -EINVAL;
2796 		goto fail_alloc;
2797 	}
2798 
2799 	max_active = fs_info->thread_pool_size;
2800 
2801 	ret = btrfs_init_workqueues(fs_info, fs_devices);
2802 	if (ret) {
2803 		err = ret;
2804 		goto fail_sb_buffer;
2805 	}
2806 
2807 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2808 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2809 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2810 
2811 	tree_root->nodesize = nodesize;
2812 	tree_root->sectorsize = sectorsize;
2813 	tree_root->stripesize = stripesize;
2814 
2815 	sb->s_blocksize = sectorsize;
2816 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2817 
2818 	if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2819 		printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
2820 		goto fail_sb_buffer;
2821 	}
2822 
2823 	if (sectorsize != PAGE_SIZE) {
2824 		printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
2825 		       "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2826 		goto fail_sb_buffer;
2827 	}
2828 
2829 	mutex_lock(&fs_info->chunk_mutex);
2830 	ret = btrfs_read_sys_array(tree_root);
2831 	mutex_unlock(&fs_info->chunk_mutex);
2832 	if (ret) {
2833 		printk(KERN_ERR "BTRFS: failed to read the system "
2834 		       "array on %s\n", sb->s_id);
2835 		goto fail_sb_buffer;
2836 	}
2837 
2838 	generation = btrfs_super_chunk_root_generation(disk_super);
2839 
2840 	__setup_root(nodesize, sectorsize, stripesize, chunk_root,
2841 		     fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2842 
2843 	chunk_root->node = read_tree_block(chunk_root,
2844 					   btrfs_super_chunk_root(disk_super),
2845 					   generation);
2846 	if (IS_ERR(chunk_root->node) ||
2847 	    !extent_buffer_uptodate(chunk_root->node)) {
2848 		printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2849 		       sb->s_id);
2850 		if (!IS_ERR(chunk_root->node))
2851 			free_extent_buffer(chunk_root->node);
2852 		chunk_root->node = NULL;
2853 		goto fail_tree_roots;
2854 	}
2855 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2856 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2857 
2858 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2859 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2860 
2861 	ret = btrfs_read_chunk_tree(chunk_root);
2862 	if (ret) {
2863 		printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2864 		       sb->s_id);
2865 		goto fail_tree_roots;
2866 	}
2867 
2868 	/*
2869 	 * keep the device that is marked to be the target device for the
2870 	 * dev_replace procedure
2871 	 */
2872 	btrfs_close_extra_devices(fs_devices, 0);
2873 
2874 	if (!fs_devices->latest_bdev) {
2875 		printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2876 		       sb->s_id);
2877 		goto fail_tree_roots;
2878 	}
2879 
2880 retry_root_backup:
2881 	generation = btrfs_super_generation(disk_super);
2882 
2883 	tree_root->node = read_tree_block(tree_root,
2884 					  btrfs_super_root(disk_super),
2885 					  generation);
2886 	if (IS_ERR(tree_root->node) ||
2887 	    !extent_buffer_uptodate(tree_root->node)) {
2888 		printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2889 		       sb->s_id);
2890 		if (!IS_ERR(tree_root->node))
2891 			free_extent_buffer(tree_root->node);
2892 		tree_root->node = NULL;
2893 		goto recovery_tree_root;
2894 	}
2895 
2896 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2897 	tree_root->commit_root = btrfs_root_node(tree_root);
2898 	btrfs_set_root_refs(&tree_root->root_item, 1);
2899 
2900 	ret = btrfs_read_roots(fs_info, tree_root);
2901 	if (ret)
2902 		goto recovery_tree_root;
2903 
2904 	fs_info->generation = generation;
2905 	fs_info->last_trans_committed = generation;
2906 
2907 	ret = btrfs_recover_balance(fs_info);
2908 	if (ret) {
2909 		printk(KERN_ERR "BTRFS: failed to recover balance\n");
2910 		goto fail_block_groups;
2911 	}
2912 
2913 	ret = btrfs_init_dev_stats(fs_info);
2914 	if (ret) {
2915 		printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2916 		       ret);
2917 		goto fail_block_groups;
2918 	}
2919 
2920 	ret = btrfs_init_dev_replace(fs_info);
2921 	if (ret) {
2922 		pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2923 		goto fail_block_groups;
2924 	}
2925 
2926 	btrfs_close_extra_devices(fs_devices, 1);
2927 
2928 	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2929 	if (ret) {
2930 		pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2931 		goto fail_block_groups;
2932 	}
2933 
2934 	ret = btrfs_sysfs_add_device(fs_devices);
2935 	if (ret) {
2936 		pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2937 		goto fail_fsdev_sysfs;
2938 	}
2939 
2940 	ret = btrfs_sysfs_add_one(fs_info);
2941 	if (ret) {
2942 		pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2943 		goto fail_fsdev_sysfs;
2944 	}
2945 
2946 	ret = btrfs_init_space_info(fs_info);
2947 	if (ret) {
2948 		printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2949 		goto fail_sysfs;
2950 	}
2951 
2952 	ret = btrfs_read_block_groups(fs_info->extent_root);
2953 	if (ret) {
2954 		printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2955 		goto fail_sysfs;
2956 	}
2957 	fs_info->num_tolerated_disk_barrier_failures =
2958 		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2959 	if (fs_info->fs_devices->missing_devices >
2960 	     fs_info->num_tolerated_disk_barrier_failures &&
2961 	    !(sb->s_flags & MS_RDONLY)) {
2962 		pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
2963 			fs_info->fs_devices->missing_devices,
2964 			fs_info->num_tolerated_disk_barrier_failures);
2965 		goto fail_sysfs;
2966 	}
2967 
2968 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2969 					       "btrfs-cleaner");
2970 	if (IS_ERR(fs_info->cleaner_kthread))
2971 		goto fail_sysfs;
2972 
2973 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2974 						   tree_root,
2975 						   "btrfs-transaction");
2976 	if (IS_ERR(fs_info->transaction_kthread))
2977 		goto fail_cleaner;
2978 
2979 	if (!btrfs_test_opt(tree_root, SSD) &&
2980 	    !btrfs_test_opt(tree_root, NOSSD) &&
2981 	    !fs_info->fs_devices->rotating) {
2982 		printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2983 		       "mode\n");
2984 		btrfs_set_opt(fs_info->mount_opt, SSD);
2985 	}
2986 
2987 	/*
2988 	 * Mount does not set all options immediatelly, we can do it now and do
2989 	 * not have to wait for transaction commit
2990 	 */
2991 	btrfs_apply_pending_changes(fs_info);
2992 
2993 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2994 	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2995 		ret = btrfsic_mount(tree_root, fs_devices,
2996 				    btrfs_test_opt(tree_root,
2997 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2998 				    1 : 0,
2999 				    fs_info->check_integrity_print_mask);
3000 		if (ret)
3001 			printk(KERN_WARNING "BTRFS: failed to initialize"
3002 			       " integrity check module %s\n", sb->s_id);
3003 	}
3004 #endif
3005 	ret = btrfs_read_qgroup_config(fs_info);
3006 	if (ret)
3007 		goto fail_trans_kthread;
3008 
3009 	/* do not make disk changes in broken FS */
3010 	if (btrfs_super_log_root(disk_super) != 0) {
3011 		ret = btrfs_replay_log(fs_info, fs_devices);
3012 		if (ret) {
3013 			err = ret;
3014 			goto fail_qgroup;
3015 		}
3016 	}
3017 
3018 	ret = btrfs_find_orphan_roots(tree_root);
3019 	if (ret)
3020 		goto fail_qgroup;
3021 
3022 	if (!(sb->s_flags & MS_RDONLY)) {
3023 		ret = btrfs_cleanup_fs_roots(fs_info);
3024 		if (ret)
3025 			goto fail_qgroup;
3026 
3027 		mutex_lock(&fs_info->cleaner_mutex);
3028 		ret = btrfs_recover_relocation(tree_root);
3029 		mutex_unlock(&fs_info->cleaner_mutex);
3030 		if (ret < 0) {
3031 			printk(KERN_WARNING
3032 			       "BTRFS: failed to recover relocation\n");
3033 			err = -EINVAL;
3034 			goto fail_qgroup;
3035 		}
3036 	}
3037 
3038 	location.objectid = BTRFS_FS_TREE_OBJECTID;
3039 	location.type = BTRFS_ROOT_ITEM_KEY;
3040 	location.offset = 0;
3041 
3042 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3043 	if (IS_ERR(fs_info->fs_root)) {
3044 		err = PTR_ERR(fs_info->fs_root);
3045 		goto fail_qgroup;
3046 	}
3047 
3048 	if (sb->s_flags & MS_RDONLY)
3049 		return 0;
3050 
3051 	down_read(&fs_info->cleanup_work_sem);
3052 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3053 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3054 		up_read(&fs_info->cleanup_work_sem);
3055 		close_ctree(tree_root);
3056 		return ret;
3057 	}
3058 	up_read(&fs_info->cleanup_work_sem);
3059 
3060 	ret = btrfs_resume_balance_async(fs_info);
3061 	if (ret) {
3062 		printk(KERN_WARNING "BTRFS: failed to resume balance\n");
3063 		close_ctree(tree_root);
3064 		return ret;
3065 	}
3066 
3067 	ret = btrfs_resume_dev_replace_async(fs_info);
3068 	if (ret) {
3069 		pr_warn("BTRFS: failed to resume dev_replace\n");
3070 		close_ctree(tree_root);
3071 		return ret;
3072 	}
3073 
3074 	btrfs_qgroup_rescan_resume(fs_info);
3075 
3076 	if (!fs_info->uuid_root) {
3077 		pr_info("BTRFS: creating UUID tree\n");
3078 		ret = btrfs_create_uuid_tree(fs_info);
3079 		if (ret) {
3080 			pr_warn("BTRFS: failed to create the UUID tree %d\n",
3081 				ret);
3082 			close_ctree(tree_root);
3083 			return ret;
3084 		}
3085 	} else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3086 		   fs_info->generation !=
3087 				btrfs_super_uuid_tree_generation(disk_super)) {
3088 		pr_info("BTRFS: checking UUID tree\n");
3089 		ret = btrfs_check_uuid_tree(fs_info);
3090 		if (ret) {
3091 			pr_warn("BTRFS: failed to check the UUID tree %d\n",
3092 				ret);
3093 			close_ctree(tree_root);
3094 			return ret;
3095 		}
3096 	} else {
3097 		fs_info->update_uuid_tree_gen = 1;
3098 	}
3099 
3100 	fs_info->open = 1;
3101 
3102 	return 0;
3103 
3104 fail_qgroup:
3105 	btrfs_free_qgroup_config(fs_info);
3106 fail_trans_kthread:
3107 	kthread_stop(fs_info->transaction_kthread);
3108 	btrfs_cleanup_transaction(fs_info->tree_root);
3109 	btrfs_free_fs_roots(fs_info);
3110 fail_cleaner:
3111 	kthread_stop(fs_info->cleaner_kthread);
3112 
3113 	/*
3114 	 * make sure we're done with the btree inode before we stop our
3115 	 * kthreads
3116 	 */
3117 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3118 
3119 fail_sysfs:
3120 	btrfs_sysfs_remove_one(fs_info);
3121 
3122 fail_fsdev_sysfs:
3123 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3124 
3125 fail_block_groups:
3126 	btrfs_put_block_group_cache(fs_info);
3127 	btrfs_free_block_groups(fs_info);
3128 
3129 fail_tree_roots:
3130 	free_root_pointers(fs_info, 1);
3131 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3132 
3133 fail_sb_buffer:
3134 	btrfs_stop_all_workers(fs_info);
3135 fail_alloc:
3136 fail_iput:
3137 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3138 
3139 	iput(fs_info->btree_inode);
3140 fail_bio_counter:
3141 	percpu_counter_destroy(&fs_info->bio_counter);
3142 fail_delalloc_bytes:
3143 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3144 fail_dirty_metadata_bytes:
3145 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3146 fail_bdi:
3147 	bdi_destroy(&fs_info->bdi);
3148 fail_srcu:
3149 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3150 fail:
3151 	btrfs_free_stripe_hash_table(fs_info);
3152 	btrfs_close_devices(fs_info->fs_devices);
3153 	return err;
3154 
3155 recovery_tree_root:
3156 	if (!btrfs_test_opt(tree_root, RECOVERY))
3157 		goto fail_tree_roots;
3158 
3159 	free_root_pointers(fs_info, 0);
3160 
3161 	/* don't use the log in recovery mode, it won't be valid */
3162 	btrfs_set_super_log_root(disk_super, 0);
3163 
3164 	/* we can't trust the free space cache either */
3165 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3166 
3167 	ret = next_root_backup(fs_info, fs_info->super_copy,
3168 			       &num_backups_tried, &backup_index);
3169 	if (ret == -1)
3170 		goto fail_block_groups;
3171 	goto retry_root_backup;
3172 }
3173 
3174 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3175 {
3176 	if (uptodate) {
3177 		set_buffer_uptodate(bh);
3178 	} else {
3179 		struct btrfs_device *device = (struct btrfs_device *)
3180 			bh->b_private;
3181 
3182 		printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3183 					  "I/O error on %s\n",
3184 					  rcu_str_deref(device->name));
3185 		/* note, we dont' set_buffer_write_io_error because we have
3186 		 * our own ways of dealing with the IO errors
3187 		 */
3188 		clear_buffer_uptodate(bh);
3189 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3190 	}
3191 	unlock_buffer(bh);
3192 	put_bh(bh);
3193 }
3194 
3195 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3196 {
3197 	struct buffer_head *bh;
3198 	struct buffer_head *latest = NULL;
3199 	struct btrfs_super_block *super;
3200 	int i;
3201 	u64 transid = 0;
3202 	u64 bytenr;
3203 
3204 	/* we would like to check all the supers, but that would make
3205 	 * a btrfs mount succeed after a mkfs from a different FS.
3206 	 * So, we need to add a special mount option to scan for
3207 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3208 	 */
3209 	for (i = 0; i < 1; i++) {
3210 		bytenr = btrfs_sb_offset(i);
3211 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3212 					i_size_read(bdev->bd_inode))
3213 			break;
3214 		bh = __bread(bdev, bytenr / 4096,
3215 					BTRFS_SUPER_INFO_SIZE);
3216 		if (!bh)
3217 			continue;
3218 
3219 		super = (struct btrfs_super_block *)bh->b_data;
3220 		if (btrfs_super_bytenr(super) != bytenr ||
3221 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3222 			brelse(bh);
3223 			continue;
3224 		}
3225 
3226 		if (!latest || btrfs_super_generation(super) > transid) {
3227 			brelse(latest);
3228 			latest = bh;
3229 			transid = btrfs_super_generation(super);
3230 		} else {
3231 			brelse(bh);
3232 		}
3233 	}
3234 	return latest;
3235 }
3236 
3237 /*
3238  * this should be called twice, once with wait == 0 and
3239  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3240  * we write are pinned.
3241  *
3242  * They are released when wait == 1 is done.
3243  * max_mirrors must be the same for both runs, and it indicates how
3244  * many supers on this one device should be written.
3245  *
3246  * max_mirrors == 0 means to write them all.
3247  */
3248 static int write_dev_supers(struct btrfs_device *device,
3249 			    struct btrfs_super_block *sb,
3250 			    int do_barriers, int wait, int max_mirrors)
3251 {
3252 	struct buffer_head *bh;
3253 	int i;
3254 	int ret;
3255 	int errors = 0;
3256 	u32 crc;
3257 	u64 bytenr;
3258 
3259 	if (max_mirrors == 0)
3260 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3261 
3262 	for (i = 0; i < max_mirrors; i++) {
3263 		bytenr = btrfs_sb_offset(i);
3264 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3265 		    device->commit_total_bytes)
3266 			break;
3267 
3268 		if (wait) {
3269 			bh = __find_get_block(device->bdev, bytenr / 4096,
3270 					      BTRFS_SUPER_INFO_SIZE);
3271 			if (!bh) {
3272 				errors++;
3273 				continue;
3274 			}
3275 			wait_on_buffer(bh);
3276 			if (!buffer_uptodate(bh))
3277 				errors++;
3278 
3279 			/* drop our reference */
3280 			brelse(bh);
3281 
3282 			/* drop the reference from the wait == 0 run */
3283 			brelse(bh);
3284 			continue;
3285 		} else {
3286 			btrfs_set_super_bytenr(sb, bytenr);
3287 
3288 			crc = ~(u32)0;
3289 			crc = btrfs_csum_data((char *)sb +
3290 					      BTRFS_CSUM_SIZE, crc,
3291 					      BTRFS_SUPER_INFO_SIZE -
3292 					      BTRFS_CSUM_SIZE);
3293 			btrfs_csum_final(crc, sb->csum);
3294 
3295 			/*
3296 			 * one reference for us, and we leave it for the
3297 			 * caller
3298 			 */
3299 			bh = __getblk(device->bdev, bytenr / 4096,
3300 				      BTRFS_SUPER_INFO_SIZE);
3301 			if (!bh) {
3302 				printk(KERN_ERR "BTRFS: couldn't get super "
3303 				       "buffer head for bytenr %Lu\n", bytenr);
3304 				errors++;
3305 				continue;
3306 			}
3307 
3308 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3309 
3310 			/* one reference for submit_bh */
3311 			get_bh(bh);
3312 
3313 			set_buffer_uptodate(bh);
3314 			lock_buffer(bh);
3315 			bh->b_end_io = btrfs_end_buffer_write_sync;
3316 			bh->b_private = device;
3317 		}
3318 
3319 		/*
3320 		 * we fua the first super.  The others we allow
3321 		 * to go down lazy.
3322 		 */
3323 		if (i == 0)
3324 			ret = btrfsic_submit_bh(WRITE_FUA, bh);
3325 		else
3326 			ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3327 		if (ret)
3328 			errors++;
3329 	}
3330 	return errors < i ? 0 : -1;
3331 }
3332 
3333 /*
3334  * endio for the write_dev_flush, this will wake anyone waiting
3335  * for the barrier when it is done
3336  */
3337 static void btrfs_end_empty_barrier(struct bio *bio)
3338 {
3339 	if (bio->bi_private)
3340 		complete(bio->bi_private);
3341 	bio_put(bio);
3342 }
3343 
3344 /*
3345  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3346  * sent down.  With wait == 1, it waits for the previous flush.
3347  *
3348  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3349  * capable
3350  */
3351 static int write_dev_flush(struct btrfs_device *device, int wait)
3352 {
3353 	struct bio *bio;
3354 	int ret = 0;
3355 
3356 	if (device->nobarriers)
3357 		return 0;
3358 
3359 	if (wait) {
3360 		bio = device->flush_bio;
3361 		if (!bio)
3362 			return 0;
3363 
3364 		wait_for_completion(&device->flush_wait);
3365 
3366 		if (bio->bi_error) {
3367 			ret = bio->bi_error;
3368 			btrfs_dev_stat_inc_and_print(device,
3369 				BTRFS_DEV_STAT_FLUSH_ERRS);
3370 		}
3371 
3372 		/* drop the reference from the wait == 0 run */
3373 		bio_put(bio);
3374 		device->flush_bio = NULL;
3375 
3376 		return ret;
3377 	}
3378 
3379 	/*
3380 	 * one reference for us, and we leave it for the
3381 	 * caller
3382 	 */
3383 	device->flush_bio = NULL;
3384 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3385 	if (!bio)
3386 		return -ENOMEM;
3387 
3388 	bio->bi_end_io = btrfs_end_empty_barrier;
3389 	bio->bi_bdev = device->bdev;
3390 	init_completion(&device->flush_wait);
3391 	bio->bi_private = &device->flush_wait;
3392 	device->flush_bio = bio;
3393 
3394 	bio_get(bio);
3395 	btrfsic_submit_bio(WRITE_FLUSH, bio);
3396 
3397 	return 0;
3398 }
3399 
3400 /*
3401  * send an empty flush down to each device in parallel,
3402  * then wait for them
3403  */
3404 static int barrier_all_devices(struct btrfs_fs_info *info)
3405 {
3406 	struct list_head *head;
3407 	struct btrfs_device *dev;
3408 	int errors_send = 0;
3409 	int errors_wait = 0;
3410 	int ret;
3411 
3412 	/* send down all the barriers */
3413 	head = &info->fs_devices->devices;
3414 	list_for_each_entry_rcu(dev, head, dev_list) {
3415 		if (dev->missing)
3416 			continue;
3417 		if (!dev->bdev) {
3418 			errors_send++;
3419 			continue;
3420 		}
3421 		if (!dev->in_fs_metadata || !dev->writeable)
3422 			continue;
3423 
3424 		ret = write_dev_flush(dev, 0);
3425 		if (ret)
3426 			errors_send++;
3427 	}
3428 
3429 	/* wait for all the barriers */
3430 	list_for_each_entry_rcu(dev, head, dev_list) {
3431 		if (dev->missing)
3432 			continue;
3433 		if (!dev->bdev) {
3434 			errors_wait++;
3435 			continue;
3436 		}
3437 		if (!dev->in_fs_metadata || !dev->writeable)
3438 			continue;
3439 
3440 		ret = write_dev_flush(dev, 1);
3441 		if (ret)
3442 			errors_wait++;
3443 	}
3444 	if (errors_send > info->num_tolerated_disk_barrier_failures ||
3445 	    errors_wait > info->num_tolerated_disk_barrier_failures)
3446 		return -EIO;
3447 	return 0;
3448 }
3449 
3450 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3451 {
3452 	if ((flags & (BTRFS_BLOCK_GROUP_DUP |
3453 		      BTRFS_BLOCK_GROUP_RAID0 |
3454 		      BTRFS_AVAIL_ALLOC_BIT_SINGLE)) ||
3455 	    ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0))
3456 		return 0;
3457 
3458 	if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3459 		     BTRFS_BLOCK_GROUP_RAID5 |
3460 		     BTRFS_BLOCK_GROUP_RAID10))
3461 		return 1;
3462 
3463 	if (flags & BTRFS_BLOCK_GROUP_RAID6)
3464 		return 2;
3465 
3466 	pr_warn("BTRFS: unknown raid type: %llu\n", flags);
3467 	return 0;
3468 }
3469 
3470 int btrfs_calc_num_tolerated_disk_barrier_failures(
3471 	struct btrfs_fs_info *fs_info)
3472 {
3473 	struct btrfs_ioctl_space_info space;
3474 	struct btrfs_space_info *sinfo;
3475 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3476 		       BTRFS_BLOCK_GROUP_SYSTEM,
3477 		       BTRFS_BLOCK_GROUP_METADATA,
3478 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3479 	int i;
3480 	int c;
3481 	int num_tolerated_disk_barrier_failures =
3482 		(int)fs_info->fs_devices->num_devices;
3483 
3484 	for (i = 0; i < ARRAY_SIZE(types); i++) {
3485 		struct btrfs_space_info *tmp;
3486 
3487 		sinfo = NULL;
3488 		rcu_read_lock();
3489 		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3490 			if (tmp->flags == types[i]) {
3491 				sinfo = tmp;
3492 				break;
3493 			}
3494 		}
3495 		rcu_read_unlock();
3496 
3497 		if (!sinfo)
3498 			continue;
3499 
3500 		down_read(&sinfo->groups_sem);
3501 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3502 			u64 flags;
3503 
3504 			if (list_empty(&sinfo->block_groups[c]))
3505 				continue;
3506 
3507 			btrfs_get_block_group_info(&sinfo->block_groups[c],
3508 						   &space);
3509 			if (space.total_bytes == 0 || space.used_bytes == 0)
3510 				continue;
3511 			flags = space.flags;
3512 
3513 			num_tolerated_disk_barrier_failures = min(
3514 				num_tolerated_disk_barrier_failures,
3515 				btrfs_get_num_tolerated_disk_barrier_failures(
3516 					flags));
3517 		}
3518 		up_read(&sinfo->groups_sem);
3519 	}
3520 
3521 	return num_tolerated_disk_barrier_failures;
3522 }
3523 
3524 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3525 {
3526 	struct list_head *head;
3527 	struct btrfs_device *dev;
3528 	struct btrfs_super_block *sb;
3529 	struct btrfs_dev_item *dev_item;
3530 	int ret;
3531 	int do_barriers;
3532 	int max_errors;
3533 	int total_errors = 0;
3534 	u64 flags;
3535 
3536 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
3537 	backup_super_roots(root->fs_info);
3538 
3539 	sb = root->fs_info->super_for_commit;
3540 	dev_item = &sb->dev_item;
3541 
3542 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3543 	head = &root->fs_info->fs_devices->devices;
3544 	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3545 
3546 	if (do_barriers) {
3547 		ret = barrier_all_devices(root->fs_info);
3548 		if (ret) {
3549 			mutex_unlock(
3550 				&root->fs_info->fs_devices->device_list_mutex);
3551 			btrfs_error(root->fs_info, ret,
3552 				    "errors while submitting device barriers.");
3553 			return ret;
3554 		}
3555 	}
3556 
3557 	list_for_each_entry_rcu(dev, head, dev_list) {
3558 		if (!dev->bdev) {
3559 			total_errors++;
3560 			continue;
3561 		}
3562 		if (!dev->in_fs_metadata || !dev->writeable)
3563 			continue;
3564 
3565 		btrfs_set_stack_device_generation(dev_item, 0);
3566 		btrfs_set_stack_device_type(dev_item, dev->type);
3567 		btrfs_set_stack_device_id(dev_item, dev->devid);
3568 		btrfs_set_stack_device_total_bytes(dev_item,
3569 						   dev->commit_total_bytes);
3570 		btrfs_set_stack_device_bytes_used(dev_item,
3571 						  dev->commit_bytes_used);
3572 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3573 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3574 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3575 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3576 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3577 
3578 		flags = btrfs_super_flags(sb);
3579 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3580 
3581 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3582 		if (ret)
3583 			total_errors++;
3584 	}
3585 	if (total_errors > max_errors) {
3586 		btrfs_err(root->fs_info, "%d errors while writing supers",
3587 		       total_errors);
3588 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3589 
3590 		/* FUA is masked off if unsupported and can't be the reason */
3591 		btrfs_error(root->fs_info, -EIO,
3592 			    "%d errors while writing supers", total_errors);
3593 		return -EIO;
3594 	}
3595 
3596 	total_errors = 0;
3597 	list_for_each_entry_rcu(dev, head, dev_list) {
3598 		if (!dev->bdev)
3599 			continue;
3600 		if (!dev->in_fs_metadata || !dev->writeable)
3601 			continue;
3602 
3603 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3604 		if (ret)
3605 			total_errors++;
3606 	}
3607 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3608 	if (total_errors > max_errors) {
3609 		btrfs_error(root->fs_info, -EIO,
3610 			    "%d errors while writing supers", total_errors);
3611 		return -EIO;
3612 	}
3613 	return 0;
3614 }
3615 
3616 int write_ctree_super(struct btrfs_trans_handle *trans,
3617 		      struct btrfs_root *root, int max_mirrors)
3618 {
3619 	return write_all_supers(root, max_mirrors);
3620 }
3621 
3622 /* Drop a fs root from the radix tree and free it. */
3623 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3624 				  struct btrfs_root *root)
3625 {
3626 	spin_lock(&fs_info->fs_roots_radix_lock);
3627 	radix_tree_delete(&fs_info->fs_roots_radix,
3628 			  (unsigned long)root->root_key.objectid);
3629 	spin_unlock(&fs_info->fs_roots_radix_lock);
3630 
3631 	if (btrfs_root_refs(&root->root_item) == 0)
3632 		synchronize_srcu(&fs_info->subvol_srcu);
3633 
3634 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3635 		btrfs_free_log(NULL, root);
3636 
3637 	if (root->free_ino_pinned)
3638 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3639 	if (root->free_ino_ctl)
3640 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3641 	free_fs_root(root);
3642 }
3643 
3644 static void free_fs_root(struct btrfs_root *root)
3645 {
3646 	iput(root->ino_cache_inode);
3647 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3648 	btrfs_free_block_rsv(root, root->orphan_block_rsv);
3649 	root->orphan_block_rsv = NULL;
3650 	if (root->anon_dev)
3651 		free_anon_bdev(root->anon_dev);
3652 	if (root->subv_writers)
3653 		btrfs_free_subvolume_writers(root->subv_writers);
3654 	free_extent_buffer(root->node);
3655 	free_extent_buffer(root->commit_root);
3656 	kfree(root->free_ino_ctl);
3657 	kfree(root->free_ino_pinned);
3658 	kfree(root->name);
3659 	btrfs_put_fs_root(root);
3660 }
3661 
3662 void btrfs_free_fs_root(struct btrfs_root *root)
3663 {
3664 	free_fs_root(root);
3665 }
3666 
3667 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3668 {
3669 	u64 root_objectid = 0;
3670 	struct btrfs_root *gang[8];
3671 	int i = 0;
3672 	int err = 0;
3673 	unsigned int ret = 0;
3674 	int index;
3675 
3676 	while (1) {
3677 		index = srcu_read_lock(&fs_info->subvol_srcu);
3678 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3679 					     (void **)gang, root_objectid,
3680 					     ARRAY_SIZE(gang));
3681 		if (!ret) {
3682 			srcu_read_unlock(&fs_info->subvol_srcu, index);
3683 			break;
3684 		}
3685 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3686 
3687 		for (i = 0; i < ret; i++) {
3688 			/* Avoid to grab roots in dead_roots */
3689 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3690 				gang[i] = NULL;
3691 				continue;
3692 			}
3693 			/* grab all the search result for later use */
3694 			gang[i] = btrfs_grab_fs_root(gang[i]);
3695 		}
3696 		srcu_read_unlock(&fs_info->subvol_srcu, index);
3697 
3698 		for (i = 0; i < ret; i++) {
3699 			if (!gang[i])
3700 				continue;
3701 			root_objectid = gang[i]->root_key.objectid;
3702 			err = btrfs_orphan_cleanup(gang[i]);
3703 			if (err)
3704 				break;
3705 			btrfs_put_fs_root(gang[i]);
3706 		}
3707 		root_objectid++;
3708 	}
3709 
3710 	/* release the uncleaned roots due to error */
3711 	for (; i < ret; i++) {
3712 		if (gang[i])
3713 			btrfs_put_fs_root(gang[i]);
3714 	}
3715 	return err;
3716 }
3717 
3718 int btrfs_commit_super(struct btrfs_root *root)
3719 {
3720 	struct btrfs_trans_handle *trans;
3721 
3722 	mutex_lock(&root->fs_info->cleaner_mutex);
3723 	btrfs_run_delayed_iputs(root);
3724 	mutex_unlock(&root->fs_info->cleaner_mutex);
3725 	wake_up_process(root->fs_info->cleaner_kthread);
3726 
3727 	/* wait until ongoing cleanup work done */
3728 	down_write(&root->fs_info->cleanup_work_sem);
3729 	up_write(&root->fs_info->cleanup_work_sem);
3730 
3731 	trans = btrfs_join_transaction(root);
3732 	if (IS_ERR(trans))
3733 		return PTR_ERR(trans);
3734 	return btrfs_commit_transaction(trans, root);
3735 }
3736 
3737 void close_ctree(struct btrfs_root *root)
3738 {
3739 	struct btrfs_fs_info *fs_info = root->fs_info;
3740 	int ret;
3741 
3742 	fs_info->closing = 1;
3743 	smp_mb();
3744 
3745 	/* wait for the uuid_scan task to finish */
3746 	down(&fs_info->uuid_tree_rescan_sem);
3747 	/* avoid complains from lockdep et al., set sem back to initial state */
3748 	up(&fs_info->uuid_tree_rescan_sem);
3749 
3750 	/* pause restriper - we want to resume on mount */
3751 	btrfs_pause_balance(fs_info);
3752 
3753 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3754 
3755 	btrfs_scrub_cancel(fs_info);
3756 
3757 	/* wait for any defraggers to finish */
3758 	wait_event(fs_info->transaction_wait,
3759 		   (atomic_read(&fs_info->defrag_running) == 0));
3760 
3761 	/* clear out the rbtree of defraggable inodes */
3762 	btrfs_cleanup_defrag_inodes(fs_info);
3763 
3764 	cancel_work_sync(&fs_info->async_reclaim_work);
3765 
3766 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3767 		/*
3768 		 * If the cleaner thread is stopped and there are
3769 		 * block groups queued for removal, the deletion will be
3770 		 * skipped when we quit the cleaner thread.
3771 		 */
3772 		btrfs_delete_unused_bgs(root->fs_info);
3773 
3774 		ret = btrfs_commit_super(root);
3775 		if (ret)
3776 			btrfs_err(fs_info, "commit super ret %d", ret);
3777 	}
3778 
3779 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3780 		btrfs_error_commit_super(root);
3781 
3782 	kthread_stop(fs_info->transaction_kthread);
3783 	kthread_stop(fs_info->cleaner_kthread);
3784 
3785 	fs_info->closing = 2;
3786 	smp_mb();
3787 
3788 	btrfs_free_qgroup_config(fs_info);
3789 
3790 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3791 		btrfs_info(fs_info, "at unmount delalloc count %lld",
3792 		       percpu_counter_sum(&fs_info->delalloc_bytes));
3793 	}
3794 
3795 	btrfs_sysfs_remove_one(fs_info);
3796 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3797 
3798 	btrfs_free_fs_roots(fs_info);
3799 
3800 	btrfs_put_block_group_cache(fs_info);
3801 
3802 	btrfs_free_block_groups(fs_info);
3803 
3804 	/*
3805 	 * we must make sure there is not any read request to
3806 	 * submit after we stopping all workers.
3807 	 */
3808 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3809 	btrfs_stop_all_workers(fs_info);
3810 
3811 	fs_info->open = 0;
3812 	free_root_pointers(fs_info, 1);
3813 
3814 	iput(fs_info->btree_inode);
3815 
3816 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3817 	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3818 		btrfsic_unmount(root, fs_info->fs_devices);
3819 #endif
3820 
3821 	btrfs_close_devices(fs_info->fs_devices);
3822 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3823 
3824 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3825 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3826 	percpu_counter_destroy(&fs_info->bio_counter);
3827 	bdi_destroy(&fs_info->bdi);
3828 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3829 
3830 	btrfs_free_stripe_hash_table(fs_info);
3831 
3832 	__btrfs_free_block_rsv(root->orphan_block_rsv);
3833 	root->orphan_block_rsv = NULL;
3834 
3835 	lock_chunks(root);
3836 	while (!list_empty(&fs_info->pinned_chunks)) {
3837 		struct extent_map *em;
3838 
3839 		em = list_first_entry(&fs_info->pinned_chunks,
3840 				      struct extent_map, list);
3841 		list_del_init(&em->list);
3842 		free_extent_map(em);
3843 	}
3844 	unlock_chunks(root);
3845 }
3846 
3847 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3848 			  int atomic)
3849 {
3850 	int ret;
3851 	struct inode *btree_inode = buf->pages[0]->mapping->host;
3852 
3853 	ret = extent_buffer_uptodate(buf);
3854 	if (!ret)
3855 		return ret;
3856 
3857 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3858 				    parent_transid, atomic);
3859 	if (ret == -EAGAIN)
3860 		return ret;
3861 	return !ret;
3862 }
3863 
3864 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3865 {
3866 	return set_extent_buffer_uptodate(buf);
3867 }
3868 
3869 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3870 {
3871 	struct btrfs_root *root;
3872 	u64 transid = btrfs_header_generation(buf);
3873 	int was_dirty;
3874 
3875 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3876 	/*
3877 	 * This is a fast path so only do this check if we have sanity tests
3878 	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3879 	 * outside of the sanity tests.
3880 	 */
3881 	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3882 		return;
3883 #endif
3884 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3885 	btrfs_assert_tree_locked(buf);
3886 	if (transid != root->fs_info->generation)
3887 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3888 		       "found %llu running %llu\n",
3889 			buf->start, transid, root->fs_info->generation);
3890 	was_dirty = set_extent_buffer_dirty(buf);
3891 	if (!was_dirty)
3892 		__percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3893 				     buf->len,
3894 				     root->fs_info->dirty_metadata_batch);
3895 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3896 	if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3897 		btrfs_print_leaf(root, buf);
3898 		ASSERT(0);
3899 	}
3900 #endif
3901 }
3902 
3903 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3904 					int flush_delayed)
3905 {
3906 	/*
3907 	 * looks as though older kernels can get into trouble with
3908 	 * this code, they end up stuck in balance_dirty_pages forever
3909 	 */
3910 	int ret;
3911 
3912 	if (current->flags & PF_MEMALLOC)
3913 		return;
3914 
3915 	if (flush_delayed)
3916 		btrfs_balance_delayed_items(root);
3917 
3918 	ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3919 				     BTRFS_DIRTY_METADATA_THRESH);
3920 	if (ret > 0) {
3921 		balance_dirty_pages_ratelimited(
3922 				   root->fs_info->btree_inode->i_mapping);
3923 	}
3924 	return;
3925 }
3926 
3927 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3928 {
3929 	__btrfs_btree_balance_dirty(root, 1);
3930 }
3931 
3932 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3933 {
3934 	__btrfs_btree_balance_dirty(root, 0);
3935 }
3936 
3937 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3938 {
3939 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3940 	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3941 }
3942 
3943 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3944 			      int read_only)
3945 {
3946 	struct btrfs_super_block *sb = fs_info->super_copy;
3947 	int ret = 0;
3948 
3949 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3950 		printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
3951 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
3952 		ret = -EINVAL;
3953 	}
3954 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3955 		printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
3956 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
3957 		ret = -EINVAL;
3958 	}
3959 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3960 		printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
3961 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
3962 		ret = -EINVAL;
3963 	}
3964 
3965 	/*
3966 	 * The common minimum, we don't know if we can trust the nodesize/sectorsize
3967 	 * items yet, they'll be verified later. Issue just a warning.
3968 	 */
3969 	if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
3970 		printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
3971 				btrfs_super_root(sb));
3972 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
3973 		printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
3974 				btrfs_super_chunk_root(sb));
3975 	if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
3976 		printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
3977 				btrfs_super_log_root(sb));
3978 
3979 	/*
3980 	 * Check the lower bound, the alignment and other constraints are
3981 	 * checked later.
3982 	 */
3983 	if (btrfs_super_nodesize(sb) < 4096) {
3984 		printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
3985 				btrfs_super_nodesize(sb));
3986 		ret = -EINVAL;
3987 	}
3988 	if (btrfs_super_sectorsize(sb) < 4096) {
3989 		printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
3990 				btrfs_super_sectorsize(sb));
3991 		ret = -EINVAL;
3992 	}
3993 
3994 	if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
3995 		printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
3996 				fs_info->fsid, sb->dev_item.fsid);
3997 		ret = -EINVAL;
3998 	}
3999 
4000 	/*
4001 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4002 	 * done later
4003 	 */
4004 	if (btrfs_super_num_devices(sb) > (1UL << 31))
4005 		printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4006 				btrfs_super_num_devices(sb));
4007 	if (btrfs_super_num_devices(sb) == 0) {
4008 		printk(KERN_ERR "BTRFS: number of devices is 0\n");
4009 		ret = -EINVAL;
4010 	}
4011 
4012 	if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4013 		printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4014 				btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4015 		ret = -EINVAL;
4016 	}
4017 
4018 	/*
4019 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
4020 	 * and one chunk
4021 	 */
4022 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4023 		printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4024 				btrfs_super_sys_array_size(sb),
4025 				BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4026 		ret = -EINVAL;
4027 	}
4028 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4029 			+ sizeof(struct btrfs_chunk)) {
4030 		printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4031 				btrfs_super_sys_array_size(sb),
4032 				sizeof(struct btrfs_disk_key)
4033 				+ sizeof(struct btrfs_chunk));
4034 		ret = -EINVAL;
4035 	}
4036 
4037 	/*
4038 	 * The generation is a global counter, we'll trust it more than the others
4039 	 * but it's still possible that it's the one that's wrong.
4040 	 */
4041 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4042 		printk(KERN_WARNING
4043 			"BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4044 			btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4045 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4046 	    && btrfs_super_cache_generation(sb) != (u64)-1)
4047 		printk(KERN_WARNING
4048 			"BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4049 			btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4050 
4051 	return ret;
4052 }
4053 
4054 static void btrfs_error_commit_super(struct btrfs_root *root)
4055 {
4056 	mutex_lock(&root->fs_info->cleaner_mutex);
4057 	btrfs_run_delayed_iputs(root);
4058 	mutex_unlock(&root->fs_info->cleaner_mutex);
4059 
4060 	down_write(&root->fs_info->cleanup_work_sem);
4061 	up_write(&root->fs_info->cleanup_work_sem);
4062 
4063 	/* cleanup FS via transaction */
4064 	btrfs_cleanup_transaction(root);
4065 }
4066 
4067 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4068 {
4069 	struct btrfs_ordered_extent *ordered;
4070 
4071 	spin_lock(&root->ordered_extent_lock);
4072 	/*
4073 	 * This will just short circuit the ordered completion stuff which will
4074 	 * make sure the ordered extent gets properly cleaned up.
4075 	 */
4076 	list_for_each_entry(ordered, &root->ordered_extents,
4077 			    root_extent_list)
4078 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4079 	spin_unlock(&root->ordered_extent_lock);
4080 }
4081 
4082 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4083 {
4084 	struct btrfs_root *root;
4085 	struct list_head splice;
4086 
4087 	INIT_LIST_HEAD(&splice);
4088 
4089 	spin_lock(&fs_info->ordered_root_lock);
4090 	list_splice_init(&fs_info->ordered_roots, &splice);
4091 	while (!list_empty(&splice)) {
4092 		root = list_first_entry(&splice, struct btrfs_root,
4093 					ordered_root);
4094 		list_move_tail(&root->ordered_root,
4095 			       &fs_info->ordered_roots);
4096 
4097 		spin_unlock(&fs_info->ordered_root_lock);
4098 		btrfs_destroy_ordered_extents(root);
4099 
4100 		cond_resched();
4101 		spin_lock(&fs_info->ordered_root_lock);
4102 	}
4103 	spin_unlock(&fs_info->ordered_root_lock);
4104 }
4105 
4106 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4107 				      struct btrfs_root *root)
4108 {
4109 	struct rb_node *node;
4110 	struct btrfs_delayed_ref_root *delayed_refs;
4111 	struct btrfs_delayed_ref_node *ref;
4112 	int ret = 0;
4113 
4114 	delayed_refs = &trans->delayed_refs;
4115 
4116 	spin_lock(&delayed_refs->lock);
4117 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4118 		spin_unlock(&delayed_refs->lock);
4119 		btrfs_info(root->fs_info, "delayed_refs has NO entry");
4120 		return ret;
4121 	}
4122 
4123 	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4124 		struct btrfs_delayed_ref_head *head;
4125 		struct btrfs_delayed_ref_node *tmp;
4126 		bool pin_bytes = false;
4127 
4128 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4129 				href_node);
4130 		if (!mutex_trylock(&head->mutex)) {
4131 			atomic_inc(&head->node.refs);
4132 			spin_unlock(&delayed_refs->lock);
4133 
4134 			mutex_lock(&head->mutex);
4135 			mutex_unlock(&head->mutex);
4136 			btrfs_put_delayed_ref(&head->node);
4137 			spin_lock(&delayed_refs->lock);
4138 			continue;
4139 		}
4140 		spin_lock(&head->lock);
4141 		list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4142 						 list) {
4143 			ref->in_tree = 0;
4144 			list_del(&ref->list);
4145 			atomic_dec(&delayed_refs->num_entries);
4146 			btrfs_put_delayed_ref(ref);
4147 		}
4148 		if (head->must_insert_reserved)
4149 			pin_bytes = true;
4150 		btrfs_free_delayed_extent_op(head->extent_op);
4151 		delayed_refs->num_heads--;
4152 		if (head->processing == 0)
4153 			delayed_refs->num_heads_ready--;
4154 		atomic_dec(&delayed_refs->num_entries);
4155 		head->node.in_tree = 0;
4156 		rb_erase(&head->href_node, &delayed_refs->href_root);
4157 		spin_unlock(&head->lock);
4158 		spin_unlock(&delayed_refs->lock);
4159 		mutex_unlock(&head->mutex);
4160 
4161 		if (pin_bytes)
4162 			btrfs_pin_extent(root, head->node.bytenr,
4163 					 head->node.num_bytes, 1);
4164 		btrfs_put_delayed_ref(&head->node);
4165 		cond_resched();
4166 		spin_lock(&delayed_refs->lock);
4167 	}
4168 
4169 	spin_unlock(&delayed_refs->lock);
4170 
4171 	return ret;
4172 }
4173 
4174 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4175 {
4176 	struct btrfs_inode *btrfs_inode;
4177 	struct list_head splice;
4178 
4179 	INIT_LIST_HEAD(&splice);
4180 
4181 	spin_lock(&root->delalloc_lock);
4182 	list_splice_init(&root->delalloc_inodes, &splice);
4183 
4184 	while (!list_empty(&splice)) {
4185 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4186 					       delalloc_inodes);
4187 
4188 		list_del_init(&btrfs_inode->delalloc_inodes);
4189 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4190 			  &btrfs_inode->runtime_flags);
4191 		spin_unlock(&root->delalloc_lock);
4192 
4193 		btrfs_invalidate_inodes(btrfs_inode->root);
4194 
4195 		spin_lock(&root->delalloc_lock);
4196 	}
4197 
4198 	spin_unlock(&root->delalloc_lock);
4199 }
4200 
4201 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4202 {
4203 	struct btrfs_root *root;
4204 	struct list_head splice;
4205 
4206 	INIT_LIST_HEAD(&splice);
4207 
4208 	spin_lock(&fs_info->delalloc_root_lock);
4209 	list_splice_init(&fs_info->delalloc_roots, &splice);
4210 	while (!list_empty(&splice)) {
4211 		root = list_first_entry(&splice, struct btrfs_root,
4212 					 delalloc_root);
4213 		list_del_init(&root->delalloc_root);
4214 		root = btrfs_grab_fs_root(root);
4215 		BUG_ON(!root);
4216 		spin_unlock(&fs_info->delalloc_root_lock);
4217 
4218 		btrfs_destroy_delalloc_inodes(root);
4219 		btrfs_put_fs_root(root);
4220 
4221 		spin_lock(&fs_info->delalloc_root_lock);
4222 	}
4223 	spin_unlock(&fs_info->delalloc_root_lock);
4224 }
4225 
4226 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4227 					struct extent_io_tree *dirty_pages,
4228 					int mark)
4229 {
4230 	int ret;
4231 	struct extent_buffer *eb;
4232 	u64 start = 0;
4233 	u64 end;
4234 
4235 	while (1) {
4236 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4237 					    mark, NULL);
4238 		if (ret)
4239 			break;
4240 
4241 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4242 		while (start <= end) {
4243 			eb = btrfs_find_tree_block(root->fs_info, start);
4244 			start += root->nodesize;
4245 			if (!eb)
4246 				continue;
4247 			wait_on_extent_buffer_writeback(eb);
4248 
4249 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4250 					       &eb->bflags))
4251 				clear_extent_buffer_dirty(eb);
4252 			free_extent_buffer_stale(eb);
4253 		}
4254 	}
4255 
4256 	return ret;
4257 }
4258 
4259 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4260 				       struct extent_io_tree *pinned_extents)
4261 {
4262 	struct extent_io_tree *unpin;
4263 	u64 start;
4264 	u64 end;
4265 	int ret;
4266 	bool loop = true;
4267 
4268 	unpin = pinned_extents;
4269 again:
4270 	while (1) {
4271 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4272 					    EXTENT_DIRTY, NULL);
4273 		if (ret)
4274 			break;
4275 
4276 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
4277 		btrfs_error_unpin_extent_range(root, start, end);
4278 		cond_resched();
4279 	}
4280 
4281 	if (loop) {
4282 		if (unpin == &root->fs_info->freed_extents[0])
4283 			unpin = &root->fs_info->freed_extents[1];
4284 		else
4285 			unpin = &root->fs_info->freed_extents[0];
4286 		loop = false;
4287 		goto again;
4288 	}
4289 
4290 	return 0;
4291 }
4292 
4293 static void btrfs_free_pending_ordered(struct btrfs_transaction *cur_trans,
4294 				       struct btrfs_fs_info *fs_info)
4295 {
4296 	struct btrfs_ordered_extent *ordered;
4297 
4298 	spin_lock(&fs_info->trans_lock);
4299 	while (!list_empty(&cur_trans->pending_ordered)) {
4300 		ordered = list_first_entry(&cur_trans->pending_ordered,
4301 					   struct btrfs_ordered_extent,
4302 					   trans_list);
4303 		list_del_init(&ordered->trans_list);
4304 		spin_unlock(&fs_info->trans_lock);
4305 
4306 		btrfs_put_ordered_extent(ordered);
4307 		spin_lock(&fs_info->trans_lock);
4308 	}
4309 	spin_unlock(&fs_info->trans_lock);
4310 }
4311 
4312 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4313 				   struct btrfs_root *root)
4314 {
4315 	btrfs_destroy_delayed_refs(cur_trans, root);
4316 
4317 	cur_trans->state = TRANS_STATE_COMMIT_START;
4318 	wake_up(&root->fs_info->transaction_blocked_wait);
4319 
4320 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4321 	wake_up(&root->fs_info->transaction_wait);
4322 
4323 	btrfs_free_pending_ordered(cur_trans, root->fs_info);
4324 	btrfs_destroy_delayed_inodes(root);
4325 	btrfs_assert_delayed_root_empty(root);
4326 
4327 	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4328 				     EXTENT_DIRTY);
4329 	btrfs_destroy_pinned_extent(root,
4330 				    root->fs_info->pinned_extents);
4331 
4332 	cur_trans->state =TRANS_STATE_COMPLETED;
4333 	wake_up(&cur_trans->commit_wait);
4334 
4335 	/*
4336 	memset(cur_trans, 0, sizeof(*cur_trans));
4337 	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4338 	*/
4339 }
4340 
4341 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4342 {
4343 	struct btrfs_transaction *t;
4344 
4345 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
4346 
4347 	spin_lock(&root->fs_info->trans_lock);
4348 	while (!list_empty(&root->fs_info->trans_list)) {
4349 		t = list_first_entry(&root->fs_info->trans_list,
4350 				     struct btrfs_transaction, list);
4351 		if (t->state >= TRANS_STATE_COMMIT_START) {
4352 			atomic_inc(&t->use_count);
4353 			spin_unlock(&root->fs_info->trans_lock);
4354 			btrfs_wait_for_commit(root, t->transid);
4355 			btrfs_put_transaction(t);
4356 			spin_lock(&root->fs_info->trans_lock);
4357 			continue;
4358 		}
4359 		if (t == root->fs_info->running_transaction) {
4360 			t->state = TRANS_STATE_COMMIT_DOING;
4361 			spin_unlock(&root->fs_info->trans_lock);
4362 			/*
4363 			 * We wait for 0 num_writers since we don't hold a trans
4364 			 * handle open currently for this transaction.
4365 			 */
4366 			wait_event(t->writer_wait,
4367 				   atomic_read(&t->num_writers) == 0);
4368 		} else {
4369 			spin_unlock(&root->fs_info->trans_lock);
4370 		}
4371 		btrfs_cleanup_one_transaction(t, root);
4372 
4373 		spin_lock(&root->fs_info->trans_lock);
4374 		if (t == root->fs_info->running_transaction)
4375 			root->fs_info->running_transaction = NULL;
4376 		list_del_init(&t->list);
4377 		spin_unlock(&root->fs_info->trans_lock);
4378 
4379 		btrfs_put_transaction(t);
4380 		trace_btrfs_transaction_commit(root);
4381 		spin_lock(&root->fs_info->trans_lock);
4382 	}
4383 	spin_unlock(&root->fs_info->trans_lock);
4384 	btrfs_destroy_all_ordered_extents(root->fs_info);
4385 	btrfs_destroy_delayed_inodes(root);
4386 	btrfs_assert_delayed_root_empty(root);
4387 	btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4388 	btrfs_destroy_all_delalloc_inodes(root->fs_info);
4389 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4390 
4391 	return 0;
4392 }
4393 
4394 static const struct extent_io_ops btree_extent_io_ops = {
4395 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4396 	.readpage_io_failed_hook = btree_io_failed_hook,
4397 	.submit_bio_hook = btree_submit_bio_hook,
4398 	/* note we're sharing with inode.c for the merge bio hook */
4399 	.merge_bio_hook = btrfs_merge_bio_hook,
4400 };
4401