1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <asm/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "volumes.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "check-integrity.h" 33 #include "rcu-string.h" 34 #include "dev-replace.h" 35 #include "raid56.h" 36 #include "sysfs.h" 37 #include "qgroup.h" 38 #include "compression.h" 39 #include "tree-checker.h" 40 #include "ref-verify.h" 41 #include "block-group.h" 42 #include "discard.h" 43 #include "space-info.h" 44 #include "zoned.h" 45 #include "subpage.h" 46 47 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 48 BTRFS_HEADER_FLAG_RELOC |\ 49 BTRFS_SUPER_FLAG_ERROR |\ 50 BTRFS_SUPER_FLAG_SEEDING |\ 51 BTRFS_SUPER_FLAG_METADUMP |\ 52 BTRFS_SUPER_FLAG_METADUMP_V2) 53 54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 56 struct btrfs_fs_info *fs_info); 57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 59 struct extent_io_tree *dirty_pages, 60 int mark); 61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 62 struct extent_io_tree *pinned_extents); 63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 65 66 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 67 { 68 if (fs_info->csum_shash) 69 crypto_free_shash(fs_info->csum_shash); 70 } 71 72 /* 73 * async submit bios are used to offload expensive checksumming 74 * onto the worker threads. They checksum file and metadata bios 75 * just before they are sent down the IO stack. 76 */ 77 struct async_submit_bio { 78 struct inode *inode; 79 struct bio *bio; 80 extent_submit_bio_start_t *submit_bio_start; 81 int mirror_num; 82 83 /* Optional parameter for submit_bio_start used by direct io */ 84 u64 dio_file_offset; 85 struct btrfs_work work; 86 blk_status_t status; 87 }; 88 89 /* 90 * Compute the csum of a btree block and store the result to provided buffer. 91 */ 92 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 93 { 94 struct btrfs_fs_info *fs_info = buf->fs_info; 95 const int num_pages = num_extent_pages(buf); 96 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 97 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 98 char *kaddr; 99 int i; 100 101 shash->tfm = fs_info->csum_shash; 102 crypto_shash_init(shash); 103 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start); 104 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 105 first_page_part - BTRFS_CSUM_SIZE); 106 107 for (i = 1; i < num_pages; i++) { 108 kaddr = page_address(buf->pages[i]); 109 crypto_shash_update(shash, kaddr, PAGE_SIZE); 110 } 111 memset(result, 0, BTRFS_CSUM_SIZE); 112 crypto_shash_final(shash, result); 113 } 114 115 /* 116 * we can't consider a given block up to date unless the transid of the 117 * block matches the transid in the parent node's pointer. This is how we 118 * detect blocks that either didn't get written at all or got written 119 * in the wrong place. 120 */ 121 static int verify_parent_transid(struct extent_io_tree *io_tree, 122 struct extent_buffer *eb, u64 parent_transid, 123 int atomic) 124 { 125 struct extent_state *cached_state = NULL; 126 int ret; 127 128 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 129 return 0; 130 131 if (atomic) 132 return -EAGAIN; 133 134 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, &cached_state); 135 if (extent_buffer_uptodate(eb) && 136 btrfs_header_generation(eb) == parent_transid) { 137 ret = 0; 138 goto out; 139 } 140 btrfs_err_rl(eb->fs_info, 141 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 142 eb->start, eb->read_mirror, 143 parent_transid, btrfs_header_generation(eb)); 144 ret = 1; 145 clear_extent_buffer_uptodate(eb); 146 out: 147 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, 148 &cached_state); 149 return ret; 150 } 151 152 static bool btrfs_supported_super_csum(u16 csum_type) 153 { 154 switch (csum_type) { 155 case BTRFS_CSUM_TYPE_CRC32: 156 case BTRFS_CSUM_TYPE_XXHASH: 157 case BTRFS_CSUM_TYPE_SHA256: 158 case BTRFS_CSUM_TYPE_BLAKE2: 159 return true; 160 default: 161 return false; 162 } 163 } 164 165 /* 166 * Return 0 if the superblock checksum type matches the checksum value of that 167 * algorithm. Pass the raw disk superblock data. 168 */ 169 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 170 const struct btrfs_super_block *disk_sb) 171 { 172 char result[BTRFS_CSUM_SIZE]; 173 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 174 175 shash->tfm = fs_info->csum_shash; 176 177 /* 178 * The super_block structure does not span the whole 179 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 180 * filled with zeros and is included in the checksum. 181 */ 182 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE, 183 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 184 185 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 186 return 1; 187 188 return 0; 189 } 190 191 int btrfs_verify_level_key(struct extent_buffer *eb, int level, 192 struct btrfs_key *first_key, u64 parent_transid) 193 { 194 struct btrfs_fs_info *fs_info = eb->fs_info; 195 int found_level; 196 struct btrfs_key found_key; 197 int ret; 198 199 found_level = btrfs_header_level(eb); 200 if (found_level != level) { 201 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 202 KERN_ERR "BTRFS: tree level check failed\n"); 203 btrfs_err(fs_info, 204 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 205 eb->start, level, found_level); 206 return -EIO; 207 } 208 209 if (!first_key) 210 return 0; 211 212 /* 213 * For live tree block (new tree blocks in current transaction), 214 * we need proper lock context to avoid race, which is impossible here. 215 * So we only checks tree blocks which is read from disk, whose 216 * generation <= fs_info->last_trans_committed. 217 */ 218 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 219 return 0; 220 221 /* We have @first_key, so this @eb must have at least one item */ 222 if (btrfs_header_nritems(eb) == 0) { 223 btrfs_err(fs_info, 224 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 225 eb->start); 226 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 227 return -EUCLEAN; 228 } 229 230 if (found_level) 231 btrfs_node_key_to_cpu(eb, &found_key, 0); 232 else 233 btrfs_item_key_to_cpu(eb, &found_key, 0); 234 ret = btrfs_comp_cpu_keys(first_key, &found_key); 235 236 if (ret) { 237 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 238 KERN_ERR "BTRFS: tree first key check failed\n"); 239 btrfs_err(fs_info, 240 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 241 eb->start, parent_transid, first_key->objectid, 242 first_key->type, first_key->offset, 243 found_key.objectid, found_key.type, 244 found_key.offset); 245 } 246 return ret; 247 } 248 249 /* 250 * helper to read a given tree block, doing retries as required when 251 * the checksums don't match and we have alternate mirrors to try. 252 * 253 * @parent_transid: expected transid, skip check if 0 254 * @level: expected level, mandatory check 255 * @first_key: expected key of first slot, skip check if NULL 256 */ 257 int btrfs_read_extent_buffer(struct extent_buffer *eb, 258 u64 parent_transid, int level, 259 struct btrfs_key *first_key) 260 { 261 struct btrfs_fs_info *fs_info = eb->fs_info; 262 struct extent_io_tree *io_tree; 263 int failed = 0; 264 int ret; 265 int num_copies = 0; 266 int mirror_num = 0; 267 int failed_mirror = 0; 268 269 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 270 while (1) { 271 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 272 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num); 273 if (!ret) { 274 if (verify_parent_transid(io_tree, eb, 275 parent_transid, 0)) 276 ret = -EIO; 277 else if (btrfs_verify_level_key(eb, level, 278 first_key, parent_transid)) 279 ret = -EUCLEAN; 280 else 281 break; 282 } 283 284 num_copies = btrfs_num_copies(fs_info, 285 eb->start, eb->len); 286 if (num_copies == 1) 287 break; 288 289 if (!failed_mirror) { 290 failed = 1; 291 failed_mirror = eb->read_mirror; 292 } 293 294 mirror_num++; 295 if (mirror_num == failed_mirror) 296 mirror_num++; 297 298 if (mirror_num > num_copies) 299 break; 300 } 301 302 if (failed && !ret && failed_mirror) 303 btrfs_repair_eb_io_failure(eb, failed_mirror); 304 305 return ret; 306 } 307 308 static int csum_one_extent_buffer(struct extent_buffer *eb) 309 { 310 struct btrfs_fs_info *fs_info = eb->fs_info; 311 u8 result[BTRFS_CSUM_SIZE]; 312 int ret; 313 314 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 315 offsetof(struct btrfs_header, fsid), 316 BTRFS_FSID_SIZE) == 0); 317 csum_tree_block(eb, result); 318 319 if (btrfs_header_level(eb)) 320 ret = btrfs_check_node(eb); 321 else 322 ret = btrfs_check_leaf_full(eb); 323 324 if (ret < 0) 325 goto error; 326 327 /* 328 * Also check the generation, the eb reached here must be newer than 329 * last committed. Or something seriously wrong happened. 330 */ 331 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) { 332 ret = -EUCLEAN; 333 btrfs_err(fs_info, 334 "block=%llu bad generation, have %llu expect > %llu", 335 eb->start, btrfs_header_generation(eb), 336 fs_info->last_trans_committed); 337 goto error; 338 } 339 write_extent_buffer(eb, result, 0, fs_info->csum_size); 340 341 return 0; 342 343 error: 344 btrfs_print_tree(eb, 0); 345 btrfs_err(fs_info, "block=%llu write time tree block corruption detected", 346 eb->start); 347 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 348 return ret; 349 } 350 351 /* Checksum all dirty extent buffers in one bio_vec */ 352 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info, 353 struct bio_vec *bvec) 354 { 355 struct page *page = bvec->bv_page; 356 u64 bvec_start = page_offset(page) + bvec->bv_offset; 357 u64 cur; 358 int ret = 0; 359 360 for (cur = bvec_start; cur < bvec_start + bvec->bv_len; 361 cur += fs_info->nodesize) { 362 struct extent_buffer *eb; 363 bool uptodate; 364 365 eb = find_extent_buffer(fs_info, cur); 366 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur, 367 fs_info->nodesize); 368 369 /* A dirty eb shouldn't disappear from buffer_radix */ 370 if (WARN_ON(!eb)) 371 return -EUCLEAN; 372 373 if (WARN_ON(cur != btrfs_header_bytenr(eb))) { 374 free_extent_buffer(eb); 375 return -EUCLEAN; 376 } 377 if (WARN_ON(!uptodate)) { 378 free_extent_buffer(eb); 379 return -EUCLEAN; 380 } 381 382 ret = csum_one_extent_buffer(eb); 383 free_extent_buffer(eb); 384 if (ret < 0) 385 return ret; 386 } 387 return ret; 388 } 389 390 /* 391 * Checksum a dirty tree block before IO. This has extra checks to make sure 392 * we only fill in the checksum field in the first page of a multi-page block. 393 * For subpage extent buffers we need bvec to also read the offset in the page. 394 */ 395 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec) 396 { 397 struct page *page = bvec->bv_page; 398 u64 start = page_offset(page); 399 u64 found_start; 400 struct extent_buffer *eb; 401 402 if (fs_info->nodesize < PAGE_SIZE) 403 return csum_dirty_subpage_buffers(fs_info, bvec); 404 405 eb = (struct extent_buffer *)page->private; 406 if (page != eb->pages[0]) 407 return 0; 408 409 found_start = btrfs_header_bytenr(eb); 410 411 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) { 412 WARN_ON(found_start != 0); 413 return 0; 414 } 415 416 /* 417 * Please do not consolidate these warnings into a single if. 418 * It is useful to know what went wrong. 419 */ 420 if (WARN_ON(found_start != start)) 421 return -EUCLEAN; 422 if (WARN_ON(!PageUptodate(page))) 423 return -EUCLEAN; 424 425 return csum_one_extent_buffer(eb); 426 } 427 428 static int check_tree_block_fsid(struct extent_buffer *eb) 429 { 430 struct btrfs_fs_info *fs_info = eb->fs_info; 431 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 432 u8 fsid[BTRFS_FSID_SIZE]; 433 u8 *metadata_uuid; 434 435 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 436 BTRFS_FSID_SIZE); 437 /* 438 * Checking the incompat flag is only valid for the current fs. For 439 * seed devices it's forbidden to have their uuid changed so reading 440 * ->fsid in this case is fine 441 */ 442 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 443 metadata_uuid = fs_devices->metadata_uuid; 444 else 445 metadata_uuid = fs_devices->fsid; 446 447 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) 448 return 0; 449 450 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 451 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 452 return 0; 453 454 return 1; 455 } 456 457 /* Do basic extent buffer checks at read time */ 458 static int validate_extent_buffer(struct extent_buffer *eb) 459 { 460 struct btrfs_fs_info *fs_info = eb->fs_info; 461 u64 found_start; 462 const u32 csum_size = fs_info->csum_size; 463 u8 found_level; 464 u8 result[BTRFS_CSUM_SIZE]; 465 const u8 *header_csum; 466 int ret = 0; 467 468 found_start = btrfs_header_bytenr(eb); 469 if (found_start != eb->start) { 470 btrfs_err_rl(fs_info, 471 "bad tree block start, mirror %u want %llu have %llu", 472 eb->read_mirror, eb->start, found_start); 473 ret = -EIO; 474 goto out; 475 } 476 if (check_tree_block_fsid(eb)) { 477 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u", 478 eb->start, eb->read_mirror); 479 ret = -EIO; 480 goto out; 481 } 482 found_level = btrfs_header_level(eb); 483 if (found_level >= BTRFS_MAX_LEVEL) { 484 btrfs_err(fs_info, 485 "bad tree block level, mirror %u level %d on logical %llu", 486 eb->read_mirror, btrfs_header_level(eb), eb->start); 487 ret = -EIO; 488 goto out; 489 } 490 491 csum_tree_block(eb, result); 492 header_csum = page_address(eb->pages[0]) + 493 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum)); 494 495 if (memcmp(result, header_csum, csum_size) != 0) { 496 btrfs_warn_rl(fs_info, 497 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d", 498 eb->start, eb->read_mirror, 499 CSUM_FMT_VALUE(csum_size, header_csum), 500 CSUM_FMT_VALUE(csum_size, result), 501 btrfs_header_level(eb)); 502 ret = -EUCLEAN; 503 goto out; 504 } 505 506 /* 507 * If this is a leaf block and it is corrupt, set the corrupt bit so 508 * that we don't try and read the other copies of this block, just 509 * return -EIO. 510 */ 511 if (found_level == 0 && btrfs_check_leaf_full(eb)) { 512 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 513 ret = -EIO; 514 } 515 516 if (found_level > 0 && btrfs_check_node(eb)) 517 ret = -EIO; 518 519 if (!ret) 520 set_extent_buffer_uptodate(eb); 521 else 522 btrfs_err(fs_info, 523 "read time tree block corruption detected on logical %llu mirror %u", 524 eb->start, eb->read_mirror); 525 out: 526 return ret; 527 } 528 529 static int validate_subpage_buffer(struct page *page, u64 start, u64 end, 530 int mirror) 531 { 532 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 533 struct extent_buffer *eb; 534 bool reads_done; 535 int ret = 0; 536 537 /* 538 * We don't allow bio merge for subpage metadata read, so we should 539 * only get one eb for each endio hook. 540 */ 541 ASSERT(end == start + fs_info->nodesize - 1); 542 ASSERT(PagePrivate(page)); 543 544 eb = find_extent_buffer(fs_info, start); 545 /* 546 * When we are reading one tree block, eb must have been inserted into 547 * the radix tree. If not, something is wrong. 548 */ 549 ASSERT(eb); 550 551 reads_done = atomic_dec_and_test(&eb->io_pages); 552 /* Subpage read must finish in page read */ 553 ASSERT(reads_done); 554 555 eb->read_mirror = mirror; 556 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 557 ret = -EIO; 558 goto err; 559 } 560 ret = validate_extent_buffer(eb); 561 if (ret < 0) 562 goto err; 563 564 set_extent_buffer_uptodate(eb); 565 566 free_extent_buffer(eb); 567 return ret; 568 err: 569 /* 570 * end_bio_extent_readpage decrements io_pages in case of error, 571 * make sure it has something to decrement. 572 */ 573 atomic_inc(&eb->io_pages); 574 clear_extent_buffer_uptodate(eb); 575 free_extent_buffer(eb); 576 return ret; 577 } 578 579 int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio, 580 struct page *page, u64 start, u64 end, 581 int mirror) 582 { 583 struct extent_buffer *eb; 584 int ret = 0; 585 int reads_done; 586 587 ASSERT(page->private); 588 589 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 590 return validate_subpage_buffer(page, start, end, mirror); 591 592 eb = (struct extent_buffer *)page->private; 593 594 /* 595 * The pending IO might have been the only thing that kept this buffer 596 * in memory. Make sure we have a ref for all this other checks 597 */ 598 atomic_inc(&eb->refs); 599 600 reads_done = atomic_dec_and_test(&eb->io_pages); 601 if (!reads_done) 602 goto err; 603 604 eb->read_mirror = mirror; 605 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 606 ret = -EIO; 607 goto err; 608 } 609 ret = validate_extent_buffer(eb); 610 err: 611 if (ret) { 612 /* 613 * our io error hook is going to dec the io pages 614 * again, we have to make sure it has something 615 * to decrement 616 */ 617 atomic_inc(&eb->io_pages); 618 clear_extent_buffer_uptodate(eb); 619 } 620 free_extent_buffer(eb); 621 622 return ret; 623 } 624 625 static void run_one_async_start(struct btrfs_work *work) 626 { 627 struct async_submit_bio *async; 628 blk_status_t ret; 629 630 async = container_of(work, struct async_submit_bio, work); 631 ret = async->submit_bio_start(async->inode, async->bio, 632 async->dio_file_offset); 633 if (ret) 634 async->status = ret; 635 } 636 637 /* 638 * In order to insert checksums into the metadata in large chunks, we wait 639 * until bio submission time. All the pages in the bio are checksummed and 640 * sums are attached onto the ordered extent record. 641 * 642 * At IO completion time the csums attached on the ordered extent record are 643 * inserted into the tree. 644 */ 645 static void run_one_async_done(struct btrfs_work *work) 646 { 647 struct async_submit_bio *async = 648 container_of(work, struct async_submit_bio, work); 649 struct inode *inode = async->inode; 650 struct btrfs_bio *bbio = btrfs_bio(async->bio); 651 652 /* If an error occurred we just want to clean up the bio and move on */ 653 if (async->status) { 654 btrfs_bio_end_io(bbio, async->status); 655 return; 656 } 657 658 /* 659 * All of the bios that pass through here are from async helpers. 660 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context. 661 * This changes nothing when cgroups aren't in use. 662 */ 663 async->bio->bi_opf |= REQ_CGROUP_PUNT; 664 btrfs_submit_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num); 665 } 666 667 static void run_one_async_free(struct btrfs_work *work) 668 { 669 struct async_submit_bio *async; 670 671 async = container_of(work, struct async_submit_bio, work); 672 kfree(async); 673 } 674 675 /* 676 * Submit bio to an async queue. 677 * 678 * Retrun: 679 * - true if the work has been succesfuly submitted 680 * - false in case of error 681 */ 682 bool btrfs_wq_submit_bio(struct inode *inode, struct bio *bio, int mirror_num, 683 u64 dio_file_offset, 684 extent_submit_bio_start_t *submit_bio_start) 685 { 686 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 687 struct async_submit_bio *async; 688 689 async = kmalloc(sizeof(*async), GFP_NOFS); 690 if (!async) 691 return false; 692 693 async->inode = inode; 694 async->bio = bio; 695 async->mirror_num = mirror_num; 696 async->submit_bio_start = submit_bio_start; 697 698 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done, 699 run_one_async_free); 700 701 async->dio_file_offset = dio_file_offset; 702 703 async->status = 0; 704 705 if (op_is_sync(bio->bi_opf)) 706 btrfs_queue_work(fs_info->hipri_workers, &async->work); 707 else 708 btrfs_queue_work(fs_info->workers, &async->work); 709 return true; 710 } 711 712 static blk_status_t btree_csum_one_bio(struct bio *bio) 713 { 714 struct bio_vec *bvec; 715 struct btrfs_root *root; 716 int ret = 0; 717 struct bvec_iter_all iter_all; 718 719 ASSERT(!bio_flagged(bio, BIO_CLONED)); 720 bio_for_each_segment_all(bvec, bio, iter_all) { 721 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 722 ret = csum_dirty_buffer(root->fs_info, bvec); 723 if (ret) 724 break; 725 } 726 727 return errno_to_blk_status(ret); 728 } 729 730 static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio, 731 u64 dio_file_offset) 732 { 733 /* 734 * when we're called for a write, we're already in the async 735 * submission context. Just jump into btrfs_submit_bio. 736 */ 737 return btree_csum_one_bio(bio); 738 } 739 740 static bool should_async_write(struct btrfs_fs_info *fs_info, 741 struct btrfs_inode *bi) 742 { 743 if (btrfs_is_zoned(fs_info)) 744 return false; 745 if (atomic_read(&bi->sync_writers)) 746 return false; 747 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags)) 748 return false; 749 return true; 750 } 751 752 void btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio, int mirror_num) 753 { 754 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 755 struct btrfs_bio *bbio = btrfs_bio(bio); 756 blk_status_t ret; 757 758 bio->bi_opf |= REQ_META; 759 760 if (btrfs_op(bio) != BTRFS_MAP_WRITE) { 761 btrfs_submit_bio(fs_info, bio, mirror_num); 762 return; 763 } 764 765 /* 766 * Kthread helpers are used to submit writes so that checksumming can 767 * happen in parallel across all CPUs. 768 */ 769 if (should_async_write(fs_info, BTRFS_I(inode)) && 770 btrfs_wq_submit_bio(inode, bio, mirror_num, 0, btree_submit_bio_start)) 771 return; 772 773 ret = btree_csum_one_bio(bio); 774 if (ret) { 775 btrfs_bio_end_io(bbio, ret); 776 return; 777 } 778 779 btrfs_submit_bio(fs_info, bio, mirror_num); 780 } 781 782 #ifdef CONFIG_MIGRATION 783 static int btree_migrate_folio(struct address_space *mapping, 784 struct folio *dst, struct folio *src, enum migrate_mode mode) 785 { 786 /* 787 * we can't safely write a btree page from here, 788 * we haven't done the locking hook 789 */ 790 if (folio_test_dirty(src)) 791 return -EAGAIN; 792 /* 793 * Buffers may be managed in a filesystem specific way. 794 * We must have no buffers or drop them. 795 */ 796 if (folio_get_private(src) && 797 !filemap_release_folio(src, GFP_KERNEL)) 798 return -EAGAIN; 799 return migrate_folio(mapping, dst, src, mode); 800 } 801 #else 802 #define btree_migrate_folio NULL 803 #endif 804 805 static int btree_writepages(struct address_space *mapping, 806 struct writeback_control *wbc) 807 { 808 struct btrfs_fs_info *fs_info; 809 int ret; 810 811 if (wbc->sync_mode == WB_SYNC_NONE) { 812 813 if (wbc->for_kupdate) 814 return 0; 815 816 fs_info = BTRFS_I(mapping->host)->root->fs_info; 817 /* this is a bit racy, but that's ok */ 818 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 819 BTRFS_DIRTY_METADATA_THRESH, 820 fs_info->dirty_metadata_batch); 821 if (ret < 0) 822 return 0; 823 } 824 return btree_write_cache_pages(mapping, wbc); 825 } 826 827 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) 828 { 829 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 830 return false; 831 832 return try_release_extent_buffer(&folio->page); 833 } 834 835 static void btree_invalidate_folio(struct folio *folio, size_t offset, 836 size_t length) 837 { 838 struct extent_io_tree *tree; 839 tree = &BTRFS_I(folio->mapping->host)->io_tree; 840 extent_invalidate_folio(tree, folio, offset); 841 btree_release_folio(folio, GFP_NOFS); 842 if (folio_get_private(folio)) { 843 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info, 844 "folio private not zero on folio %llu", 845 (unsigned long long)folio_pos(folio)); 846 folio_detach_private(folio); 847 } 848 } 849 850 #ifdef DEBUG 851 static bool btree_dirty_folio(struct address_space *mapping, 852 struct folio *folio) 853 { 854 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 855 struct btrfs_subpage *subpage; 856 struct extent_buffer *eb; 857 int cur_bit = 0; 858 u64 page_start = folio_pos(folio); 859 860 if (fs_info->sectorsize == PAGE_SIZE) { 861 eb = folio_get_private(folio); 862 BUG_ON(!eb); 863 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 864 BUG_ON(!atomic_read(&eb->refs)); 865 btrfs_assert_tree_write_locked(eb); 866 return filemap_dirty_folio(mapping, folio); 867 } 868 subpage = folio_get_private(folio); 869 870 ASSERT(subpage->dirty_bitmap); 871 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) { 872 unsigned long flags; 873 u64 cur; 874 u16 tmp = (1 << cur_bit); 875 876 spin_lock_irqsave(&subpage->lock, flags); 877 if (!(tmp & subpage->dirty_bitmap)) { 878 spin_unlock_irqrestore(&subpage->lock, flags); 879 cur_bit++; 880 continue; 881 } 882 spin_unlock_irqrestore(&subpage->lock, flags); 883 cur = page_start + cur_bit * fs_info->sectorsize; 884 885 eb = find_extent_buffer(fs_info, cur); 886 ASSERT(eb); 887 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 888 ASSERT(atomic_read(&eb->refs)); 889 btrfs_assert_tree_write_locked(eb); 890 free_extent_buffer(eb); 891 892 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits); 893 } 894 return filemap_dirty_folio(mapping, folio); 895 } 896 #else 897 #define btree_dirty_folio filemap_dirty_folio 898 #endif 899 900 static const struct address_space_operations btree_aops = { 901 .writepages = btree_writepages, 902 .release_folio = btree_release_folio, 903 .invalidate_folio = btree_invalidate_folio, 904 .migrate_folio = btree_migrate_folio, 905 .dirty_folio = btree_dirty_folio, 906 }; 907 908 struct extent_buffer *btrfs_find_create_tree_block( 909 struct btrfs_fs_info *fs_info, 910 u64 bytenr, u64 owner_root, 911 int level) 912 { 913 if (btrfs_is_testing(fs_info)) 914 return alloc_test_extent_buffer(fs_info, bytenr); 915 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 916 } 917 918 /* 919 * Read tree block at logical address @bytenr and do variant basic but critical 920 * verification. 921 * 922 * @owner_root: the objectid of the root owner for this block. 923 * @parent_transid: expected transid of this tree block, skip check if 0 924 * @level: expected level, mandatory check 925 * @first_key: expected key in slot 0, skip check if NULL 926 */ 927 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 928 u64 owner_root, u64 parent_transid, 929 int level, struct btrfs_key *first_key) 930 { 931 struct extent_buffer *buf = NULL; 932 int ret; 933 934 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 935 if (IS_ERR(buf)) 936 return buf; 937 938 ret = btrfs_read_extent_buffer(buf, parent_transid, level, first_key); 939 if (ret) { 940 free_extent_buffer_stale(buf); 941 return ERR_PTR(ret); 942 } 943 if (btrfs_check_eb_owner(buf, owner_root)) { 944 free_extent_buffer_stale(buf); 945 return ERR_PTR(-EUCLEAN); 946 } 947 return buf; 948 949 } 950 951 void btrfs_clean_tree_block(struct extent_buffer *buf) 952 { 953 struct btrfs_fs_info *fs_info = buf->fs_info; 954 if (btrfs_header_generation(buf) == 955 fs_info->running_transaction->transid) { 956 btrfs_assert_tree_write_locked(buf); 957 958 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 959 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 960 -buf->len, 961 fs_info->dirty_metadata_batch); 962 clear_extent_buffer_dirty(buf); 963 } 964 } 965 } 966 967 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 968 u64 objectid) 969 { 970 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 971 972 memset(&root->root_key, 0, sizeof(root->root_key)); 973 memset(&root->root_item, 0, sizeof(root->root_item)); 974 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 975 root->fs_info = fs_info; 976 root->root_key.objectid = objectid; 977 root->node = NULL; 978 root->commit_root = NULL; 979 root->state = 0; 980 RB_CLEAR_NODE(&root->rb_node); 981 982 root->last_trans = 0; 983 root->free_objectid = 0; 984 root->nr_delalloc_inodes = 0; 985 root->nr_ordered_extents = 0; 986 root->inode_tree = RB_ROOT; 987 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 988 989 btrfs_init_root_block_rsv(root); 990 991 INIT_LIST_HEAD(&root->dirty_list); 992 INIT_LIST_HEAD(&root->root_list); 993 INIT_LIST_HEAD(&root->delalloc_inodes); 994 INIT_LIST_HEAD(&root->delalloc_root); 995 INIT_LIST_HEAD(&root->ordered_extents); 996 INIT_LIST_HEAD(&root->ordered_root); 997 INIT_LIST_HEAD(&root->reloc_dirty_list); 998 INIT_LIST_HEAD(&root->logged_list[0]); 999 INIT_LIST_HEAD(&root->logged_list[1]); 1000 spin_lock_init(&root->inode_lock); 1001 spin_lock_init(&root->delalloc_lock); 1002 spin_lock_init(&root->ordered_extent_lock); 1003 spin_lock_init(&root->accounting_lock); 1004 spin_lock_init(&root->log_extents_lock[0]); 1005 spin_lock_init(&root->log_extents_lock[1]); 1006 spin_lock_init(&root->qgroup_meta_rsv_lock); 1007 mutex_init(&root->objectid_mutex); 1008 mutex_init(&root->log_mutex); 1009 mutex_init(&root->ordered_extent_mutex); 1010 mutex_init(&root->delalloc_mutex); 1011 init_waitqueue_head(&root->qgroup_flush_wait); 1012 init_waitqueue_head(&root->log_writer_wait); 1013 init_waitqueue_head(&root->log_commit_wait[0]); 1014 init_waitqueue_head(&root->log_commit_wait[1]); 1015 INIT_LIST_HEAD(&root->log_ctxs[0]); 1016 INIT_LIST_HEAD(&root->log_ctxs[1]); 1017 atomic_set(&root->log_commit[0], 0); 1018 atomic_set(&root->log_commit[1], 0); 1019 atomic_set(&root->log_writers, 0); 1020 atomic_set(&root->log_batch, 0); 1021 refcount_set(&root->refs, 1); 1022 atomic_set(&root->snapshot_force_cow, 0); 1023 atomic_set(&root->nr_swapfiles, 0); 1024 root->log_transid = 0; 1025 root->log_transid_committed = -1; 1026 root->last_log_commit = 0; 1027 root->anon_dev = 0; 1028 if (!dummy) { 1029 extent_io_tree_init(fs_info, &root->dirty_log_pages, 1030 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL); 1031 extent_io_tree_init(fs_info, &root->log_csum_range, 1032 IO_TREE_LOG_CSUM_RANGE, NULL); 1033 } 1034 1035 spin_lock_init(&root->root_item_lock); 1036 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 1037 #ifdef CONFIG_BTRFS_DEBUG 1038 INIT_LIST_HEAD(&root->leak_list); 1039 spin_lock(&fs_info->fs_roots_radix_lock); 1040 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 1041 spin_unlock(&fs_info->fs_roots_radix_lock); 1042 #endif 1043 } 1044 1045 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1046 u64 objectid, gfp_t flags) 1047 { 1048 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1049 if (root) 1050 __setup_root(root, fs_info, objectid); 1051 return root; 1052 } 1053 1054 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1055 /* Should only be used by the testing infrastructure */ 1056 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1057 { 1058 struct btrfs_root *root; 1059 1060 if (!fs_info) 1061 return ERR_PTR(-EINVAL); 1062 1063 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 1064 if (!root) 1065 return ERR_PTR(-ENOMEM); 1066 1067 /* We don't use the stripesize in selftest, set it as sectorsize */ 1068 root->alloc_bytenr = 0; 1069 1070 return root; 1071 } 1072 #endif 1073 1074 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) 1075 { 1076 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); 1077 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); 1078 1079 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); 1080 } 1081 1082 static int global_root_key_cmp(const void *k, const struct rb_node *node) 1083 { 1084 const struct btrfs_key *key = k; 1085 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); 1086 1087 return btrfs_comp_cpu_keys(key, &root->root_key); 1088 } 1089 1090 int btrfs_global_root_insert(struct btrfs_root *root) 1091 { 1092 struct btrfs_fs_info *fs_info = root->fs_info; 1093 struct rb_node *tmp; 1094 1095 write_lock(&fs_info->global_root_lock); 1096 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); 1097 write_unlock(&fs_info->global_root_lock); 1098 ASSERT(!tmp); 1099 1100 return tmp ? -EEXIST : 0; 1101 } 1102 1103 void btrfs_global_root_delete(struct btrfs_root *root) 1104 { 1105 struct btrfs_fs_info *fs_info = root->fs_info; 1106 1107 write_lock(&fs_info->global_root_lock); 1108 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1109 write_unlock(&fs_info->global_root_lock); 1110 } 1111 1112 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, 1113 struct btrfs_key *key) 1114 { 1115 struct rb_node *node; 1116 struct btrfs_root *root = NULL; 1117 1118 read_lock(&fs_info->global_root_lock); 1119 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); 1120 if (node) 1121 root = container_of(node, struct btrfs_root, rb_node); 1122 read_unlock(&fs_info->global_root_lock); 1123 1124 return root; 1125 } 1126 1127 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) 1128 { 1129 struct btrfs_block_group *block_group; 1130 u64 ret; 1131 1132 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 1133 return 0; 1134 1135 if (bytenr) 1136 block_group = btrfs_lookup_block_group(fs_info, bytenr); 1137 else 1138 block_group = btrfs_lookup_first_block_group(fs_info, bytenr); 1139 ASSERT(block_group); 1140 if (!block_group) 1141 return 0; 1142 ret = block_group->global_root_id; 1143 btrfs_put_block_group(block_group); 1144 1145 return ret; 1146 } 1147 1148 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) 1149 { 1150 struct btrfs_key key = { 1151 .objectid = BTRFS_CSUM_TREE_OBJECTID, 1152 .type = BTRFS_ROOT_ITEM_KEY, 1153 .offset = btrfs_global_root_id(fs_info, bytenr), 1154 }; 1155 1156 return btrfs_global_root(fs_info, &key); 1157 } 1158 1159 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) 1160 { 1161 struct btrfs_key key = { 1162 .objectid = BTRFS_EXTENT_TREE_OBJECTID, 1163 .type = BTRFS_ROOT_ITEM_KEY, 1164 .offset = btrfs_global_root_id(fs_info, bytenr), 1165 }; 1166 1167 return btrfs_global_root(fs_info, &key); 1168 } 1169 1170 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1171 u64 objectid) 1172 { 1173 struct btrfs_fs_info *fs_info = trans->fs_info; 1174 struct extent_buffer *leaf; 1175 struct btrfs_root *tree_root = fs_info->tree_root; 1176 struct btrfs_root *root; 1177 struct btrfs_key key; 1178 unsigned int nofs_flag; 1179 int ret = 0; 1180 1181 /* 1182 * We're holding a transaction handle, so use a NOFS memory allocation 1183 * context to avoid deadlock if reclaim happens. 1184 */ 1185 nofs_flag = memalloc_nofs_save(); 1186 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 1187 memalloc_nofs_restore(nofs_flag); 1188 if (!root) 1189 return ERR_PTR(-ENOMEM); 1190 1191 root->root_key.objectid = objectid; 1192 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1193 root->root_key.offset = 0; 1194 1195 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 1196 BTRFS_NESTING_NORMAL); 1197 if (IS_ERR(leaf)) { 1198 ret = PTR_ERR(leaf); 1199 leaf = NULL; 1200 goto fail_unlock; 1201 } 1202 1203 root->node = leaf; 1204 btrfs_mark_buffer_dirty(leaf); 1205 1206 root->commit_root = btrfs_root_node(root); 1207 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1208 1209 btrfs_set_root_flags(&root->root_item, 0); 1210 btrfs_set_root_limit(&root->root_item, 0); 1211 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1212 btrfs_set_root_generation(&root->root_item, trans->transid); 1213 btrfs_set_root_level(&root->root_item, 0); 1214 btrfs_set_root_refs(&root->root_item, 1); 1215 btrfs_set_root_used(&root->root_item, leaf->len); 1216 btrfs_set_root_last_snapshot(&root->root_item, 0); 1217 btrfs_set_root_dirid(&root->root_item, 0); 1218 if (is_fstree(objectid)) 1219 generate_random_guid(root->root_item.uuid); 1220 else 1221 export_guid(root->root_item.uuid, &guid_null); 1222 btrfs_set_root_drop_level(&root->root_item, 0); 1223 1224 btrfs_tree_unlock(leaf); 1225 1226 key.objectid = objectid; 1227 key.type = BTRFS_ROOT_ITEM_KEY; 1228 key.offset = 0; 1229 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1230 if (ret) 1231 goto fail; 1232 1233 return root; 1234 1235 fail_unlock: 1236 if (leaf) 1237 btrfs_tree_unlock(leaf); 1238 fail: 1239 btrfs_put_root(root); 1240 1241 return ERR_PTR(ret); 1242 } 1243 1244 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1245 struct btrfs_fs_info *fs_info) 1246 { 1247 struct btrfs_root *root; 1248 1249 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 1250 if (!root) 1251 return ERR_PTR(-ENOMEM); 1252 1253 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1254 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1255 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1256 1257 return root; 1258 } 1259 1260 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 1261 struct btrfs_root *root) 1262 { 1263 struct extent_buffer *leaf; 1264 1265 /* 1266 * DON'T set SHAREABLE bit for log trees. 1267 * 1268 * Log trees are not exposed to user space thus can't be snapshotted, 1269 * and they go away before a real commit is actually done. 1270 * 1271 * They do store pointers to file data extents, and those reference 1272 * counts still get updated (along with back refs to the log tree). 1273 */ 1274 1275 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1276 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL); 1277 if (IS_ERR(leaf)) 1278 return PTR_ERR(leaf); 1279 1280 root->node = leaf; 1281 1282 btrfs_mark_buffer_dirty(root->node); 1283 btrfs_tree_unlock(root->node); 1284 1285 return 0; 1286 } 1287 1288 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1289 struct btrfs_fs_info *fs_info) 1290 { 1291 struct btrfs_root *log_root; 1292 1293 log_root = alloc_log_tree(trans, fs_info); 1294 if (IS_ERR(log_root)) 1295 return PTR_ERR(log_root); 1296 1297 if (!btrfs_is_zoned(fs_info)) { 1298 int ret = btrfs_alloc_log_tree_node(trans, log_root); 1299 1300 if (ret) { 1301 btrfs_put_root(log_root); 1302 return ret; 1303 } 1304 } 1305 1306 WARN_ON(fs_info->log_root_tree); 1307 fs_info->log_root_tree = log_root; 1308 return 0; 1309 } 1310 1311 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1312 struct btrfs_root *root) 1313 { 1314 struct btrfs_fs_info *fs_info = root->fs_info; 1315 struct btrfs_root *log_root; 1316 struct btrfs_inode_item *inode_item; 1317 int ret; 1318 1319 log_root = alloc_log_tree(trans, fs_info); 1320 if (IS_ERR(log_root)) 1321 return PTR_ERR(log_root); 1322 1323 ret = btrfs_alloc_log_tree_node(trans, log_root); 1324 if (ret) { 1325 btrfs_put_root(log_root); 1326 return ret; 1327 } 1328 1329 log_root->last_trans = trans->transid; 1330 log_root->root_key.offset = root->root_key.objectid; 1331 1332 inode_item = &log_root->root_item.inode; 1333 btrfs_set_stack_inode_generation(inode_item, 1); 1334 btrfs_set_stack_inode_size(inode_item, 3); 1335 btrfs_set_stack_inode_nlink(inode_item, 1); 1336 btrfs_set_stack_inode_nbytes(inode_item, 1337 fs_info->nodesize); 1338 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1339 1340 btrfs_set_root_node(&log_root->root_item, log_root->node); 1341 1342 WARN_ON(root->log_root); 1343 root->log_root = log_root; 1344 root->log_transid = 0; 1345 root->log_transid_committed = -1; 1346 root->last_log_commit = 0; 1347 return 0; 1348 } 1349 1350 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1351 struct btrfs_path *path, 1352 struct btrfs_key *key) 1353 { 1354 struct btrfs_root *root; 1355 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1356 u64 generation; 1357 int ret; 1358 int level; 1359 1360 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1361 if (!root) 1362 return ERR_PTR(-ENOMEM); 1363 1364 ret = btrfs_find_root(tree_root, key, path, 1365 &root->root_item, &root->root_key); 1366 if (ret) { 1367 if (ret > 0) 1368 ret = -ENOENT; 1369 goto fail; 1370 } 1371 1372 generation = btrfs_root_generation(&root->root_item); 1373 level = btrfs_root_level(&root->root_item); 1374 root->node = read_tree_block(fs_info, 1375 btrfs_root_bytenr(&root->root_item), 1376 key->objectid, generation, level, NULL); 1377 if (IS_ERR(root->node)) { 1378 ret = PTR_ERR(root->node); 1379 root->node = NULL; 1380 goto fail; 1381 } 1382 if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1383 ret = -EIO; 1384 goto fail; 1385 } 1386 1387 /* 1388 * For real fs, and not log/reloc trees, root owner must 1389 * match its root node owner 1390 */ 1391 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) && 1392 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1393 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1394 root->root_key.objectid != btrfs_header_owner(root->node)) { 1395 btrfs_crit(fs_info, 1396 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu", 1397 root->root_key.objectid, root->node->start, 1398 btrfs_header_owner(root->node), 1399 root->root_key.objectid); 1400 ret = -EUCLEAN; 1401 goto fail; 1402 } 1403 root->commit_root = btrfs_root_node(root); 1404 return root; 1405 fail: 1406 btrfs_put_root(root); 1407 return ERR_PTR(ret); 1408 } 1409 1410 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1411 struct btrfs_key *key) 1412 { 1413 struct btrfs_root *root; 1414 struct btrfs_path *path; 1415 1416 path = btrfs_alloc_path(); 1417 if (!path) 1418 return ERR_PTR(-ENOMEM); 1419 root = read_tree_root_path(tree_root, path, key); 1420 btrfs_free_path(path); 1421 1422 return root; 1423 } 1424 1425 /* 1426 * Initialize subvolume root in-memory structure 1427 * 1428 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1429 */ 1430 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1431 { 1432 int ret; 1433 unsigned int nofs_flag; 1434 1435 /* 1436 * We might be called under a transaction (e.g. indirect backref 1437 * resolution) which could deadlock if it triggers memory reclaim 1438 */ 1439 nofs_flag = memalloc_nofs_save(); 1440 ret = btrfs_drew_lock_init(&root->snapshot_lock); 1441 memalloc_nofs_restore(nofs_flag); 1442 if (ret) 1443 goto fail; 1444 1445 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1446 !btrfs_is_data_reloc_root(root)) { 1447 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1448 btrfs_check_and_init_root_item(&root->root_item); 1449 } 1450 1451 /* 1452 * Don't assign anonymous block device to roots that are not exposed to 1453 * userspace, the id pool is limited to 1M 1454 */ 1455 if (is_fstree(root->root_key.objectid) && 1456 btrfs_root_refs(&root->root_item) > 0) { 1457 if (!anon_dev) { 1458 ret = get_anon_bdev(&root->anon_dev); 1459 if (ret) 1460 goto fail; 1461 } else { 1462 root->anon_dev = anon_dev; 1463 } 1464 } 1465 1466 mutex_lock(&root->objectid_mutex); 1467 ret = btrfs_init_root_free_objectid(root); 1468 if (ret) { 1469 mutex_unlock(&root->objectid_mutex); 1470 goto fail; 1471 } 1472 1473 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1474 1475 mutex_unlock(&root->objectid_mutex); 1476 1477 return 0; 1478 fail: 1479 /* The caller is responsible to call btrfs_free_fs_root */ 1480 return ret; 1481 } 1482 1483 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1484 u64 root_id) 1485 { 1486 struct btrfs_root *root; 1487 1488 spin_lock(&fs_info->fs_roots_radix_lock); 1489 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1490 (unsigned long)root_id); 1491 if (root) 1492 root = btrfs_grab_root(root); 1493 spin_unlock(&fs_info->fs_roots_radix_lock); 1494 return root; 1495 } 1496 1497 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1498 u64 objectid) 1499 { 1500 struct btrfs_key key = { 1501 .objectid = objectid, 1502 .type = BTRFS_ROOT_ITEM_KEY, 1503 .offset = 0, 1504 }; 1505 1506 if (objectid == BTRFS_ROOT_TREE_OBJECTID) 1507 return btrfs_grab_root(fs_info->tree_root); 1508 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 1509 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1510 if (objectid == BTRFS_CHUNK_TREE_OBJECTID) 1511 return btrfs_grab_root(fs_info->chunk_root); 1512 if (objectid == BTRFS_DEV_TREE_OBJECTID) 1513 return btrfs_grab_root(fs_info->dev_root); 1514 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 1515 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1516 if (objectid == BTRFS_QUOTA_TREE_OBJECTID) 1517 return btrfs_grab_root(fs_info->quota_root) ? 1518 fs_info->quota_root : ERR_PTR(-ENOENT); 1519 if (objectid == BTRFS_UUID_TREE_OBJECTID) 1520 return btrfs_grab_root(fs_info->uuid_root) ? 1521 fs_info->uuid_root : ERR_PTR(-ENOENT); 1522 if (objectid == BTRFS_BLOCK_GROUP_TREE_OBJECTID) 1523 return btrfs_grab_root(fs_info->block_group_root) ? 1524 fs_info->block_group_root : ERR_PTR(-ENOENT); 1525 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) { 1526 struct btrfs_root *root = btrfs_global_root(fs_info, &key); 1527 1528 return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT); 1529 } 1530 return NULL; 1531 } 1532 1533 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1534 struct btrfs_root *root) 1535 { 1536 int ret; 1537 1538 ret = radix_tree_preload(GFP_NOFS); 1539 if (ret) 1540 return ret; 1541 1542 spin_lock(&fs_info->fs_roots_radix_lock); 1543 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1544 (unsigned long)root->root_key.objectid, 1545 root); 1546 if (ret == 0) { 1547 btrfs_grab_root(root); 1548 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1549 } 1550 spin_unlock(&fs_info->fs_roots_radix_lock); 1551 radix_tree_preload_end(); 1552 1553 return ret; 1554 } 1555 1556 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) 1557 { 1558 #ifdef CONFIG_BTRFS_DEBUG 1559 struct btrfs_root *root; 1560 1561 while (!list_empty(&fs_info->allocated_roots)) { 1562 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1563 1564 root = list_first_entry(&fs_info->allocated_roots, 1565 struct btrfs_root, leak_list); 1566 btrfs_err(fs_info, "leaked root %s refcount %d", 1567 btrfs_root_name(&root->root_key, buf), 1568 refcount_read(&root->refs)); 1569 while (refcount_read(&root->refs) > 1) 1570 btrfs_put_root(root); 1571 btrfs_put_root(root); 1572 } 1573 #endif 1574 } 1575 1576 static void free_global_roots(struct btrfs_fs_info *fs_info) 1577 { 1578 struct btrfs_root *root; 1579 struct rb_node *node; 1580 1581 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { 1582 root = rb_entry(node, struct btrfs_root, rb_node); 1583 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1584 btrfs_put_root(root); 1585 } 1586 } 1587 1588 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1589 { 1590 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1591 percpu_counter_destroy(&fs_info->delalloc_bytes); 1592 percpu_counter_destroy(&fs_info->ordered_bytes); 1593 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1594 btrfs_free_csum_hash(fs_info); 1595 btrfs_free_stripe_hash_table(fs_info); 1596 btrfs_free_ref_cache(fs_info); 1597 kfree(fs_info->balance_ctl); 1598 kfree(fs_info->delayed_root); 1599 free_global_roots(fs_info); 1600 btrfs_put_root(fs_info->tree_root); 1601 btrfs_put_root(fs_info->chunk_root); 1602 btrfs_put_root(fs_info->dev_root); 1603 btrfs_put_root(fs_info->quota_root); 1604 btrfs_put_root(fs_info->uuid_root); 1605 btrfs_put_root(fs_info->fs_root); 1606 btrfs_put_root(fs_info->data_reloc_root); 1607 btrfs_put_root(fs_info->block_group_root); 1608 btrfs_check_leaked_roots(fs_info); 1609 btrfs_extent_buffer_leak_debug_check(fs_info); 1610 kfree(fs_info->super_copy); 1611 kfree(fs_info->super_for_commit); 1612 kfree(fs_info->subpage_info); 1613 kvfree(fs_info); 1614 } 1615 1616 1617 /* 1618 * Get an in-memory reference of a root structure. 1619 * 1620 * For essential trees like root/extent tree, we grab it from fs_info directly. 1621 * For subvolume trees, we check the cached filesystem roots first. If not 1622 * found, then read it from disk and add it to cached fs roots. 1623 * 1624 * Caller should release the root by calling btrfs_put_root() after the usage. 1625 * 1626 * NOTE: Reloc and log trees can't be read by this function as they share the 1627 * same root objectid. 1628 * 1629 * @objectid: root id 1630 * @anon_dev: preallocated anonymous block device number for new roots, 1631 * pass 0 for new allocation. 1632 * @check_ref: whether to check root item references, If true, return -ENOENT 1633 * for orphan roots 1634 */ 1635 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1636 u64 objectid, dev_t anon_dev, 1637 bool check_ref) 1638 { 1639 struct btrfs_root *root; 1640 struct btrfs_path *path; 1641 struct btrfs_key key; 1642 int ret; 1643 1644 root = btrfs_get_global_root(fs_info, objectid); 1645 if (root) 1646 return root; 1647 again: 1648 root = btrfs_lookup_fs_root(fs_info, objectid); 1649 if (root) { 1650 /* Shouldn't get preallocated anon_dev for cached roots */ 1651 ASSERT(!anon_dev); 1652 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1653 btrfs_put_root(root); 1654 return ERR_PTR(-ENOENT); 1655 } 1656 return root; 1657 } 1658 1659 key.objectid = objectid; 1660 key.type = BTRFS_ROOT_ITEM_KEY; 1661 key.offset = (u64)-1; 1662 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1663 if (IS_ERR(root)) 1664 return root; 1665 1666 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1667 ret = -ENOENT; 1668 goto fail; 1669 } 1670 1671 ret = btrfs_init_fs_root(root, anon_dev); 1672 if (ret) 1673 goto fail; 1674 1675 path = btrfs_alloc_path(); 1676 if (!path) { 1677 ret = -ENOMEM; 1678 goto fail; 1679 } 1680 key.objectid = BTRFS_ORPHAN_OBJECTID; 1681 key.type = BTRFS_ORPHAN_ITEM_KEY; 1682 key.offset = objectid; 1683 1684 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1685 btrfs_free_path(path); 1686 if (ret < 0) 1687 goto fail; 1688 if (ret == 0) 1689 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1690 1691 ret = btrfs_insert_fs_root(fs_info, root); 1692 if (ret) { 1693 if (ret == -EEXIST) { 1694 btrfs_put_root(root); 1695 goto again; 1696 } 1697 goto fail; 1698 } 1699 return root; 1700 fail: 1701 /* 1702 * If our caller provided us an anonymous device, then it's his 1703 * responsibility to free it in case we fail. So we have to set our 1704 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() 1705 * and once again by our caller. 1706 */ 1707 if (anon_dev) 1708 root->anon_dev = 0; 1709 btrfs_put_root(root); 1710 return ERR_PTR(ret); 1711 } 1712 1713 /* 1714 * Get in-memory reference of a root structure 1715 * 1716 * @objectid: tree objectid 1717 * @check_ref: if set, verify that the tree exists and the item has at least 1718 * one reference 1719 */ 1720 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1721 u64 objectid, bool check_ref) 1722 { 1723 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref); 1724 } 1725 1726 /* 1727 * Get in-memory reference of a root structure, created as new, optionally pass 1728 * the anonymous block device id 1729 * 1730 * @objectid: tree objectid 1731 * @anon_dev: if zero, allocate a new anonymous block device or use the 1732 * parameter value 1733 */ 1734 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1735 u64 objectid, dev_t anon_dev) 1736 { 1737 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1738 } 1739 1740 /* 1741 * btrfs_get_fs_root_commit_root - return a root for the given objectid 1742 * @fs_info: the fs_info 1743 * @objectid: the objectid we need to lookup 1744 * 1745 * This is exclusively used for backref walking, and exists specifically because 1746 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1747 * creation time, which means we may have to read the tree_root in order to look 1748 * up a fs root that is not in memory. If the root is not in memory we will 1749 * read the tree root commit root and look up the fs root from there. This is a 1750 * temporary root, it will not be inserted into the radix tree as it doesn't 1751 * have the most uptodate information, it'll simply be discarded once the 1752 * backref code is finished using the root. 1753 */ 1754 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1755 struct btrfs_path *path, 1756 u64 objectid) 1757 { 1758 struct btrfs_root *root; 1759 struct btrfs_key key; 1760 1761 ASSERT(path->search_commit_root && path->skip_locking); 1762 1763 /* 1764 * This can return -ENOENT if we ask for a root that doesn't exist, but 1765 * since this is called via the backref walking code we won't be looking 1766 * up a root that doesn't exist, unless there's corruption. So if root 1767 * != NULL just return it. 1768 */ 1769 root = btrfs_get_global_root(fs_info, objectid); 1770 if (root) 1771 return root; 1772 1773 root = btrfs_lookup_fs_root(fs_info, objectid); 1774 if (root) 1775 return root; 1776 1777 key.objectid = objectid; 1778 key.type = BTRFS_ROOT_ITEM_KEY; 1779 key.offset = (u64)-1; 1780 root = read_tree_root_path(fs_info->tree_root, path, &key); 1781 btrfs_release_path(path); 1782 1783 return root; 1784 } 1785 1786 static int cleaner_kthread(void *arg) 1787 { 1788 struct btrfs_fs_info *fs_info = arg; 1789 int again; 1790 1791 while (1) { 1792 again = 0; 1793 1794 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1795 1796 /* Make the cleaner go to sleep early. */ 1797 if (btrfs_need_cleaner_sleep(fs_info)) 1798 goto sleep; 1799 1800 /* 1801 * Do not do anything if we might cause open_ctree() to block 1802 * before we have finished mounting the filesystem. 1803 */ 1804 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1805 goto sleep; 1806 1807 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1808 goto sleep; 1809 1810 /* 1811 * Avoid the problem that we change the status of the fs 1812 * during the above check and trylock. 1813 */ 1814 if (btrfs_need_cleaner_sleep(fs_info)) { 1815 mutex_unlock(&fs_info->cleaner_mutex); 1816 goto sleep; 1817 } 1818 1819 btrfs_run_delayed_iputs(fs_info); 1820 1821 again = btrfs_clean_one_deleted_snapshot(fs_info); 1822 mutex_unlock(&fs_info->cleaner_mutex); 1823 1824 /* 1825 * The defragger has dealt with the R/O remount and umount, 1826 * needn't do anything special here. 1827 */ 1828 btrfs_run_defrag_inodes(fs_info); 1829 1830 /* 1831 * Acquires fs_info->reclaim_bgs_lock to avoid racing 1832 * with relocation (btrfs_relocate_chunk) and relocation 1833 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1834 * after acquiring fs_info->reclaim_bgs_lock. So we 1835 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1836 * unused block groups. 1837 */ 1838 btrfs_delete_unused_bgs(fs_info); 1839 1840 /* 1841 * Reclaim block groups in the reclaim_bgs list after we deleted 1842 * all unused block_groups. This possibly gives us some more free 1843 * space. 1844 */ 1845 btrfs_reclaim_bgs(fs_info); 1846 sleep: 1847 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1848 if (kthread_should_park()) 1849 kthread_parkme(); 1850 if (kthread_should_stop()) 1851 return 0; 1852 if (!again) { 1853 set_current_state(TASK_INTERRUPTIBLE); 1854 schedule(); 1855 __set_current_state(TASK_RUNNING); 1856 } 1857 } 1858 } 1859 1860 static int transaction_kthread(void *arg) 1861 { 1862 struct btrfs_root *root = arg; 1863 struct btrfs_fs_info *fs_info = root->fs_info; 1864 struct btrfs_trans_handle *trans; 1865 struct btrfs_transaction *cur; 1866 u64 transid; 1867 time64_t delta; 1868 unsigned long delay; 1869 bool cannot_commit; 1870 1871 do { 1872 cannot_commit = false; 1873 delay = msecs_to_jiffies(fs_info->commit_interval * 1000); 1874 mutex_lock(&fs_info->transaction_kthread_mutex); 1875 1876 spin_lock(&fs_info->trans_lock); 1877 cur = fs_info->running_transaction; 1878 if (!cur) { 1879 spin_unlock(&fs_info->trans_lock); 1880 goto sleep; 1881 } 1882 1883 delta = ktime_get_seconds() - cur->start_time; 1884 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && 1885 cur->state < TRANS_STATE_COMMIT_START && 1886 delta < fs_info->commit_interval) { 1887 spin_unlock(&fs_info->trans_lock); 1888 delay -= msecs_to_jiffies((delta - 1) * 1000); 1889 delay = min(delay, 1890 msecs_to_jiffies(fs_info->commit_interval * 1000)); 1891 goto sleep; 1892 } 1893 transid = cur->transid; 1894 spin_unlock(&fs_info->trans_lock); 1895 1896 /* If the file system is aborted, this will always fail. */ 1897 trans = btrfs_attach_transaction(root); 1898 if (IS_ERR(trans)) { 1899 if (PTR_ERR(trans) != -ENOENT) 1900 cannot_commit = true; 1901 goto sleep; 1902 } 1903 if (transid == trans->transid) { 1904 btrfs_commit_transaction(trans); 1905 } else { 1906 btrfs_end_transaction(trans); 1907 } 1908 sleep: 1909 wake_up_process(fs_info->cleaner_kthread); 1910 mutex_unlock(&fs_info->transaction_kthread_mutex); 1911 1912 if (BTRFS_FS_ERROR(fs_info)) 1913 btrfs_cleanup_transaction(fs_info); 1914 if (!kthread_should_stop() && 1915 (!btrfs_transaction_blocked(fs_info) || 1916 cannot_commit)) 1917 schedule_timeout_interruptible(delay); 1918 } while (!kthread_should_stop()); 1919 return 0; 1920 } 1921 1922 /* 1923 * This will find the highest generation in the array of root backups. The 1924 * index of the highest array is returned, or -EINVAL if we can't find 1925 * anything. 1926 * 1927 * We check to make sure the array is valid by comparing the 1928 * generation of the latest root in the array with the generation 1929 * in the super block. If they don't match we pitch it. 1930 */ 1931 static int find_newest_super_backup(struct btrfs_fs_info *info) 1932 { 1933 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1934 u64 cur; 1935 struct btrfs_root_backup *root_backup; 1936 int i; 1937 1938 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1939 root_backup = info->super_copy->super_roots + i; 1940 cur = btrfs_backup_tree_root_gen(root_backup); 1941 if (cur == newest_gen) 1942 return i; 1943 } 1944 1945 return -EINVAL; 1946 } 1947 1948 /* 1949 * copy all the root pointers into the super backup array. 1950 * this will bump the backup pointer by one when it is 1951 * done 1952 */ 1953 static void backup_super_roots(struct btrfs_fs_info *info) 1954 { 1955 const int next_backup = info->backup_root_index; 1956 struct btrfs_root_backup *root_backup; 1957 1958 root_backup = info->super_for_commit->super_roots + next_backup; 1959 1960 /* 1961 * make sure all of our padding and empty slots get zero filled 1962 * regardless of which ones we use today 1963 */ 1964 memset(root_backup, 0, sizeof(*root_backup)); 1965 1966 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1967 1968 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1969 btrfs_set_backup_tree_root_gen(root_backup, 1970 btrfs_header_generation(info->tree_root->node)); 1971 1972 btrfs_set_backup_tree_root_level(root_backup, 1973 btrfs_header_level(info->tree_root->node)); 1974 1975 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1976 btrfs_set_backup_chunk_root_gen(root_backup, 1977 btrfs_header_generation(info->chunk_root->node)); 1978 btrfs_set_backup_chunk_root_level(root_backup, 1979 btrfs_header_level(info->chunk_root->node)); 1980 1981 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) { 1982 struct btrfs_root *extent_root = btrfs_extent_root(info, 0); 1983 struct btrfs_root *csum_root = btrfs_csum_root(info, 0); 1984 1985 btrfs_set_backup_extent_root(root_backup, 1986 extent_root->node->start); 1987 btrfs_set_backup_extent_root_gen(root_backup, 1988 btrfs_header_generation(extent_root->node)); 1989 btrfs_set_backup_extent_root_level(root_backup, 1990 btrfs_header_level(extent_root->node)); 1991 1992 btrfs_set_backup_csum_root(root_backup, csum_root->node->start); 1993 btrfs_set_backup_csum_root_gen(root_backup, 1994 btrfs_header_generation(csum_root->node)); 1995 btrfs_set_backup_csum_root_level(root_backup, 1996 btrfs_header_level(csum_root->node)); 1997 } 1998 1999 /* 2000 * we might commit during log recovery, which happens before we set 2001 * the fs_root. Make sure it is valid before we fill it in. 2002 */ 2003 if (info->fs_root && info->fs_root->node) { 2004 btrfs_set_backup_fs_root(root_backup, 2005 info->fs_root->node->start); 2006 btrfs_set_backup_fs_root_gen(root_backup, 2007 btrfs_header_generation(info->fs_root->node)); 2008 btrfs_set_backup_fs_root_level(root_backup, 2009 btrfs_header_level(info->fs_root->node)); 2010 } 2011 2012 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 2013 btrfs_set_backup_dev_root_gen(root_backup, 2014 btrfs_header_generation(info->dev_root->node)); 2015 btrfs_set_backup_dev_root_level(root_backup, 2016 btrfs_header_level(info->dev_root->node)); 2017 2018 btrfs_set_backup_total_bytes(root_backup, 2019 btrfs_super_total_bytes(info->super_copy)); 2020 btrfs_set_backup_bytes_used(root_backup, 2021 btrfs_super_bytes_used(info->super_copy)); 2022 btrfs_set_backup_num_devices(root_backup, 2023 btrfs_super_num_devices(info->super_copy)); 2024 2025 /* 2026 * if we don't copy this out to the super_copy, it won't get remembered 2027 * for the next commit 2028 */ 2029 memcpy(&info->super_copy->super_roots, 2030 &info->super_for_commit->super_roots, 2031 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 2032 } 2033 2034 /* 2035 * read_backup_root - Reads a backup root based on the passed priority. Prio 0 2036 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 2037 * 2038 * fs_info - filesystem whose backup roots need to be read 2039 * priority - priority of backup root required 2040 * 2041 * Returns backup root index on success and -EINVAL otherwise. 2042 */ 2043 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 2044 { 2045 int backup_index = find_newest_super_backup(fs_info); 2046 struct btrfs_super_block *super = fs_info->super_copy; 2047 struct btrfs_root_backup *root_backup; 2048 2049 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 2050 if (priority == 0) 2051 return backup_index; 2052 2053 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 2054 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 2055 } else { 2056 return -EINVAL; 2057 } 2058 2059 root_backup = super->super_roots + backup_index; 2060 2061 btrfs_set_super_generation(super, 2062 btrfs_backup_tree_root_gen(root_backup)); 2063 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2064 btrfs_set_super_root_level(super, 2065 btrfs_backup_tree_root_level(root_backup)); 2066 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2067 2068 /* 2069 * Fixme: the total bytes and num_devices need to match or we should 2070 * need a fsck 2071 */ 2072 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2073 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2074 2075 return backup_index; 2076 } 2077 2078 /* helper to cleanup workers */ 2079 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2080 { 2081 btrfs_destroy_workqueue(fs_info->fixup_workers); 2082 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2083 btrfs_destroy_workqueue(fs_info->hipri_workers); 2084 btrfs_destroy_workqueue(fs_info->workers); 2085 if (fs_info->endio_workers) 2086 destroy_workqueue(fs_info->endio_workers); 2087 if (fs_info->endio_raid56_workers) 2088 destroy_workqueue(fs_info->endio_raid56_workers); 2089 if (fs_info->rmw_workers) 2090 destroy_workqueue(fs_info->rmw_workers); 2091 if (fs_info->compressed_write_workers) 2092 destroy_workqueue(fs_info->compressed_write_workers); 2093 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2094 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2095 btrfs_destroy_workqueue(fs_info->delayed_workers); 2096 btrfs_destroy_workqueue(fs_info->caching_workers); 2097 btrfs_destroy_workqueue(fs_info->flush_workers); 2098 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2099 if (fs_info->discard_ctl.discard_workers) 2100 destroy_workqueue(fs_info->discard_ctl.discard_workers); 2101 /* 2102 * Now that all other work queues are destroyed, we can safely destroy 2103 * the queues used for metadata I/O, since tasks from those other work 2104 * queues can do metadata I/O operations. 2105 */ 2106 if (fs_info->endio_meta_workers) 2107 destroy_workqueue(fs_info->endio_meta_workers); 2108 } 2109 2110 static void free_root_extent_buffers(struct btrfs_root *root) 2111 { 2112 if (root) { 2113 free_extent_buffer(root->node); 2114 free_extent_buffer(root->commit_root); 2115 root->node = NULL; 2116 root->commit_root = NULL; 2117 } 2118 } 2119 2120 static void free_global_root_pointers(struct btrfs_fs_info *fs_info) 2121 { 2122 struct btrfs_root *root, *tmp; 2123 2124 rbtree_postorder_for_each_entry_safe(root, tmp, 2125 &fs_info->global_root_tree, 2126 rb_node) 2127 free_root_extent_buffers(root); 2128 } 2129 2130 /* helper to cleanup tree roots */ 2131 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 2132 { 2133 free_root_extent_buffers(info->tree_root); 2134 2135 free_global_root_pointers(info); 2136 free_root_extent_buffers(info->dev_root); 2137 free_root_extent_buffers(info->quota_root); 2138 free_root_extent_buffers(info->uuid_root); 2139 free_root_extent_buffers(info->fs_root); 2140 free_root_extent_buffers(info->data_reloc_root); 2141 free_root_extent_buffers(info->block_group_root); 2142 if (free_chunk_root) 2143 free_root_extent_buffers(info->chunk_root); 2144 } 2145 2146 void btrfs_put_root(struct btrfs_root *root) 2147 { 2148 if (!root) 2149 return; 2150 2151 if (refcount_dec_and_test(&root->refs)) { 2152 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2153 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 2154 if (root->anon_dev) 2155 free_anon_bdev(root->anon_dev); 2156 btrfs_drew_lock_destroy(&root->snapshot_lock); 2157 free_root_extent_buffers(root); 2158 #ifdef CONFIG_BTRFS_DEBUG 2159 spin_lock(&root->fs_info->fs_roots_radix_lock); 2160 list_del_init(&root->leak_list); 2161 spin_unlock(&root->fs_info->fs_roots_radix_lock); 2162 #endif 2163 kfree(root); 2164 } 2165 } 2166 2167 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2168 { 2169 int ret; 2170 struct btrfs_root *gang[8]; 2171 int i; 2172 2173 while (!list_empty(&fs_info->dead_roots)) { 2174 gang[0] = list_entry(fs_info->dead_roots.next, 2175 struct btrfs_root, root_list); 2176 list_del(&gang[0]->root_list); 2177 2178 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 2179 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2180 btrfs_put_root(gang[0]); 2181 } 2182 2183 while (1) { 2184 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2185 (void **)gang, 0, 2186 ARRAY_SIZE(gang)); 2187 if (!ret) 2188 break; 2189 for (i = 0; i < ret; i++) 2190 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2191 } 2192 } 2193 2194 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2195 { 2196 mutex_init(&fs_info->scrub_lock); 2197 atomic_set(&fs_info->scrubs_running, 0); 2198 atomic_set(&fs_info->scrub_pause_req, 0); 2199 atomic_set(&fs_info->scrubs_paused, 0); 2200 atomic_set(&fs_info->scrub_cancel_req, 0); 2201 init_waitqueue_head(&fs_info->scrub_pause_wait); 2202 refcount_set(&fs_info->scrub_workers_refcnt, 0); 2203 } 2204 2205 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2206 { 2207 spin_lock_init(&fs_info->balance_lock); 2208 mutex_init(&fs_info->balance_mutex); 2209 atomic_set(&fs_info->balance_pause_req, 0); 2210 atomic_set(&fs_info->balance_cancel_req, 0); 2211 fs_info->balance_ctl = NULL; 2212 init_waitqueue_head(&fs_info->balance_wait_q); 2213 atomic_set(&fs_info->reloc_cancel_req, 0); 2214 } 2215 2216 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2217 { 2218 struct inode *inode = fs_info->btree_inode; 2219 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, 2220 fs_info->tree_root); 2221 2222 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2223 set_nlink(inode, 1); 2224 /* 2225 * we set the i_size on the btree inode to the max possible int. 2226 * the real end of the address space is determined by all of 2227 * the devices in the system 2228 */ 2229 inode->i_size = OFFSET_MAX; 2230 inode->i_mapping->a_ops = &btree_aops; 2231 2232 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2233 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 2234 IO_TREE_BTREE_INODE_IO, NULL); 2235 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2236 2237 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 2238 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID; 2239 BTRFS_I(inode)->location.type = 0; 2240 BTRFS_I(inode)->location.offset = 0; 2241 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2242 __insert_inode_hash(inode, hash); 2243 } 2244 2245 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2246 { 2247 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2248 init_rwsem(&fs_info->dev_replace.rwsem); 2249 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2250 } 2251 2252 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2253 { 2254 spin_lock_init(&fs_info->qgroup_lock); 2255 mutex_init(&fs_info->qgroup_ioctl_lock); 2256 fs_info->qgroup_tree = RB_ROOT; 2257 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2258 fs_info->qgroup_seq = 1; 2259 fs_info->qgroup_ulist = NULL; 2260 fs_info->qgroup_rescan_running = false; 2261 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL; 2262 mutex_init(&fs_info->qgroup_rescan_lock); 2263 } 2264 2265 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) 2266 { 2267 u32 max_active = fs_info->thread_pool_size; 2268 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2269 2270 fs_info->workers = 2271 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16); 2272 fs_info->hipri_workers = 2273 btrfs_alloc_workqueue(fs_info, "worker-high", 2274 flags | WQ_HIGHPRI, max_active, 16); 2275 2276 fs_info->delalloc_workers = 2277 btrfs_alloc_workqueue(fs_info, "delalloc", 2278 flags, max_active, 2); 2279 2280 fs_info->flush_workers = 2281 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2282 flags, max_active, 0); 2283 2284 fs_info->caching_workers = 2285 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2286 2287 fs_info->fixup_workers = 2288 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2289 2290 fs_info->endio_workers = 2291 alloc_workqueue("btrfs-endio", flags, max_active); 2292 fs_info->endio_meta_workers = 2293 alloc_workqueue("btrfs-endio-meta", flags, max_active); 2294 fs_info->endio_raid56_workers = 2295 alloc_workqueue("btrfs-endio-raid56", flags, max_active); 2296 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active); 2297 fs_info->endio_write_workers = 2298 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2299 max_active, 2); 2300 fs_info->compressed_write_workers = 2301 alloc_workqueue("btrfs-compressed-write", flags, max_active); 2302 fs_info->endio_freespace_worker = 2303 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2304 max_active, 0); 2305 fs_info->delayed_workers = 2306 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2307 max_active, 0); 2308 fs_info->qgroup_rescan_workers = 2309 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2310 fs_info->discard_ctl.discard_workers = 2311 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1); 2312 2313 if (!(fs_info->workers && fs_info->hipri_workers && 2314 fs_info->delalloc_workers && fs_info->flush_workers && 2315 fs_info->endio_workers && fs_info->endio_meta_workers && 2316 fs_info->compressed_write_workers && 2317 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2318 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2319 fs_info->caching_workers && fs_info->fixup_workers && 2320 fs_info->delayed_workers && fs_info->qgroup_rescan_workers && 2321 fs_info->discard_ctl.discard_workers)) { 2322 return -ENOMEM; 2323 } 2324 2325 return 0; 2326 } 2327 2328 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2329 { 2330 struct crypto_shash *csum_shash; 2331 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2332 2333 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2334 2335 if (IS_ERR(csum_shash)) { 2336 btrfs_err(fs_info, "error allocating %s hash for checksum", 2337 csum_driver); 2338 return PTR_ERR(csum_shash); 2339 } 2340 2341 fs_info->csum_shash = csum_shash; 2342 2343 btrfs_info(fs_info, "using %s (%s) checksum algorithm", 2344 btrfs_super_csum_name(csum_type), 2345 crypto_shash_driver_name(csum_shash)); 2346 return 0; 2347 } 2348 2349 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2350 struct btrfs_fs_devices *fs_devices) 2351 { 2352 int ret; 2353 struct btrfs_root *log_tree_root; 2354 struct btrfs_super_block *disk_super = fs_info->super_copy; 2355 u64 bytenr = btrfs_super_log_root(disk_super); 2356 int level = btrfs_super_log_root_level(disk_super); 2357 2358 if (fs_devices->rw_devices == 0) { 2359 btrfs_warn(fs_info, "log replay required on RO media"); 2360 return -EIO; 2361 } 2362 2363 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2364 GFP_KERNEL); 2365 if (!log_tree_root) 2366 return -ENOMEM; 2367 2368 log_tree_root->node = read_tree_block(fs_info, bytenr, 2369 BTRFS_TREE_LOG_OBJECTID, 2370 fs_info->generation + 1, level, 2371 NULL); 2372 if (IS_ERR(log_tree_root->node)) { 2373 btrfs_warn(fs_info, "failed to read log tree"); 2374 ret = PTR_ERR(log_tree_root->node); 2375 log_tree_root->node = NULL; 2376 btrfs_put_root(log_tree_root); 2377 return ret; 2378 } 2379 if (!extent_buffer_uptodate(log_tree_root->node)) { 2380 btrfs_err(fs_info, "failed to read log tree"); 2381 btrfs_put_root(log_tree_root); 2382 return -EIO; 2383 } 2384 2385 /* returns with log_tree_root freed on success */ 2386 ret = btrfs_recover_log_trees(log_tree_root); 2387 if (ret) { 2388 btrfs_handle_fs_error(fs_info, ret, 2389 "Failed to recover log tree"); 2390 btrfs_put_root(log_tree_root); 2391 return ret; 2392 } 2393 2394 if (sb_rdonly(fs_info->sb)) { 2395 ret = btrfs_commit_super(fs_info); 2396 if (ret) 2397 return ret; 2398 } 2399 2400 return 0; 2401 } 2402 2403 static int load_global_roots_objectid(struct btrfs_root *tree_root, 2404 struct btrfs_path *path, u64 objectid, 2405 const char *name) 2406 { 2407 struct btrfs_fs_info *fs_info = tree_root->fs_info; 2408 struct btrfs_root *root; 2409 u64 max_global_id = 0; 2410 int ret; 2411 struct btrfs_key key = { 2412 .objectid = objectid, 2413 .type = BTRFS_ROOT_ITEM_KEY, 2414 .offset = 0, 2415 }; 2416 bool found = false; 2417 2418 /* If we have IGNOREDATACSUMS skip loading these roots. */ 2419 if (objectid == BTRFS_CSUM_TREE_OBJECTID && 2420 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2421 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2422 return 0; 2423 } 2424 2425 while (1) { 2426 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 2427 if (ret < 0) 2428 break; 2429 2430 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2431 ret = btrfs_next_leaf(tree_root, path); 2432 if (ret) { 2433 if (ret > 0) 2434 ret = 0; 2435 break; 2436 } 2437 } 2438 ret = 0; 2439 2440 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2441 if (key.objectid != objectid) 2442 break; 2443 btrfs_release_path(path); 2444 2445 /* 2446 * Just worry about this for extent tree, it'll be the same for 2447 * everybody. 2448 */ 2449 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2450 max_global_id = max(max_global_id, key.offset); 2451 2452 found = true; 2453 root = read_tree_root_path(tree_root, path, &key); 2454 if (IS_ERR(root)) { 2455 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2456 ret = PTR_ERR(root); 2457 break; 2458 } 2459 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2460 ret = btrfs_global_root_insert(root); 2461 if (ret) { 2462 btrfs_put_root(root); 2463 break; 2464 } 2465 key.offset++; 2466 } 2467 btrfs_release_path(path); 2468 2469 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2470 fs_info->nr_global_roots = max_global_id + 1; 2471 2472 if (!found || ret) { 2473 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 2474 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2475 2476 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2477 ret = ret ? ret : -ENOENT; 2478 else 2479 ret = 0; 2480 btrfs_err(fs_info, "failed to load root %s", name); 2481 } 2482 return ret; 2483 } 2484 2485 static int load_global_roots(struct btrfs_root *tree_root) 2486 { 2487 struct btrfs_path *path; 2488 int ret = 0; 2489 2490 path = btrfs_alloc_path(); 2491 if (!path) 2492 return -ENOMEM; 2493 2494 ret = load_global_roots_objectid(tree_root, path, 2495 BTRFS_EXTENT_TREE_OBJECTID, "extent"); 2496 if (ret) 2497 goto out; 2498 ret = load_global_roots_objectid(tree_root, path, 2499 BTRFS_CSUM_TREE_OBJECTID, "csum"); 2500 if (ret) 2501 goto out; 2502 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) 2503 goto out; 2504 ret = load_global_roots_objectid(tree_root, path, 2505 BTRFS_FREE_SPACE_TREE_OBJECTID, 2506 "free space"); 2507 out: 2508 btrfs_free_path(path); 2509 return ret; 2510 } 2511 2512 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2513 { 2514 struct btrfs_root *tree_root = fs_info->tree_root; 2515 struct btrfs_root *root; 2516 struct btrfs_key location; 2517 int ret; 2518 2519 BUG_ON(!fs_info->tree_root); 2520 2521 ret = load_global_roots(tree_root); 2522 if (ret) 2523 return ret; 2524 2525 location.type = BTRFS_ROOT_ITEM_KEY; 2526 location.offset = 0; 2527 2528 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 2529 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; 2530 root = btrfs_read_tree_root(tree_root, &location); 2531 if (IS_ERR(root)) { 2532 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2533 ret = PTR_ERR(root); 2534 goto out; 2535 } 2536 } else { 2537 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2538 fs_info->block_group_root = root; 2539 } 2540 } 2541 2542 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2543 root = btrfs_read_tree_root(tree_root, &location); 2544 if (IS_ERR(root)) { 2545 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2546 ret = PTR_ERR(root); 2547 goto out; 2548 } 2549 } else { 2550 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2551 fs_info->dev_root = root; 2552 } 2553 /* Initialize fs_info for all devices in any case */ 2554 btrfs_init_devices_late(fs_info); 2555 2556 /* 2557 * This tree can share blocks with some other fs tree during relocation 2558 * and we need a proper setup by btrfs_get_fs_root 2559 */ 2560 root = btrfs_get_fs_root(tree_root->fs_info, 2561 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2562 if (IS_ERR(root)) { 2563 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2564 ret = PTR_ERR(root); 2565 goto out; 2566 } 2567 } else { 2568 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2569 fs_info->data_reloc_root = root; 2570 } 2571 2572 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2573 root = btrfs_read_tree_root(tree_root, &location); 2574 if (!IS_ERR(root)) { 2575 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2576 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2577 fs_info->quota_root = root; 2578 } 2579 2580 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2581 root = btrfs_read_tree_root(tree_root, &location); 2582 if (IS_ERR(root)) { 2583 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2584 ret = PTR_ERR(root); 2585 if (ret != -ENOENT) 2586 goto out; 2587 } 2588 } else { 2589 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2590 fs_info->uuid_root = root; 2591 } 2592 2593 return 0; 2594 out: 2595 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2596 location.objectid, ret); 2597 return ret; 2598 } 2599 2600 /* 2601 * Real super block validation 2602 * NOTE: super csum type and incompat features will not be checked here. 2603 * 2604 * @sb: super block to check 2605 * @mirror_num: the super block number to check its bytenr: 2606 * 0 the primary (1st) sb 2607 * 1, 2 2nd and 3rd backup copy 2608 * -1 skip bytenr check 2609 */ 2610 int btrfs_validate_super(struct btrfs_fs_info *fs_info, 2611 struct btrfs_super_block *sb, int mirror_num) 2612 { 2613 u64 nodesize = btrfs_super_nodesize(sb); 2614 u64 sectorsize = btrfs_super_sectorsize(sb); 2615 int ret = 0; 2616 2617 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2618 btrfs_err(fs_info, "no valid FS found"); 2619 ret = -EINVAL; 2620 } 2621 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2622 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2623 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2624 ret = -EINVAL; 2625 } 2626 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2627 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2628 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2629 ret = -EINVAL; 2630 } 2631 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2632 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2633 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2634 ret = -EINVAL; 2635 } 2636 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2637 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2638 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2639 ret = -EINVAL; 2640 } 2641 2642 /* 2643 * Check sectorsize and nodesize first, other check will need it. 2644 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2645 */ 2646 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2647 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2648 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2649 ret = -EINVAL; 2650 } 2651 2652 /* 2653 * We only support at most two sectorsizes: 4K and PAGE_SIZE. 2654 * 2655 * We can support 16K sectorsize with 64K page size without problem, 2656 * but such sectorsize/pagesize combination doesn't make much sense. 2657 * 4K will be our future standard, PAGE_SIZE is supported from the very 2658 * beginning. 2659 */ 2660 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) { 2661 btrfs_err(fs_info, 2662 "sectorsize %llu not yet supported for page size %lu", 2663 sectorsize, PAGE_SIZE); 2664 ret = -EINVAL; 2665 } 2666 2667 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2668 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2669 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2670 ret = -EINVAL; 2671 } 2672 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2673 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2674 le32_to_cpu(sb->__unused_leafsize), nodesize); 2675 ret = -EINVAL; 2676 } 2677 2678 /* Root alignment check */ 2679 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2680 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2681 btrfs_super_root(sb)); 2682 ret = -EINVAL; 2683 } 2684 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2685 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2686 btrfs_super_chunk_root(sb)); 2687 ret = -EINVAL; 2688 } 2689 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2690 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2691 btrfs_super_log_root(sb)); 2692 ret = -EINVAL; 2693 } 2694 2695 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, 2696 BTRFS_FSID_SIZE)) { 2697 btrfs_err(fs_info, 2698 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2699 fs_info->super_copy->fsid, fs_info->fs_devices->fsid); 2700 ret = -EINVAL; 2701 } 2702 2703 if (btrfs_fs_incompat(fs_info, METADATA_UUID) && 2704 memcmp(fs_info->fs_devices->metadata_uuid, 2705 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) { 2706 btrfs_err(fs_info, 2707 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2708 fs_info->super_copy->metadata_uuid, 2709 fs_info->fs_devices->metadata_uuid); 2710 ret = -EINVAL; 2711 } 2712 2713 /* 2714 * Artificial requirement for block-group-tree to force newer features 2715 * (free-space-tree, no-holes) so the test matrix is smaller. 2716 */ 2717 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 2718 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || 2719 !btrfs_fs_incompat(fs_info, NO_HOLES))) { 2720 btrfs_err(fs_info, 2721 "block-group-tree feature requires fres-space-tree and no-holes"); 2722 ret = -EINVAL; 2723 } 2724 2725 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2726 BTRFS_FSID_SIZE) != 0) { 2727 btrfs_err(fs_info, 2728 "dev_item UUID does not match metadata fsid: %pU != %pU", 2729 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2730 ret = -EINVAL; 2731 } 2732 2733 /* 2734 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2735 * done later 2736 */ 2737 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2738 btrfs_err(fs_info, "bytes_used is too small %llu", 2739 btrfs_super_bytes_used(sb)); 2740 ret = -EINVAL; 2741 } 2742 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2743 btrfs_err(fs_info, "invalid stripesize %u", 2744 btrfs_super_stripesize(sb)); 2745 ret = -EINVAL; 2746 } 2747 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2748 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2749 btrfs_super_num_devices(sb)); 2750 if (btrfs_super_num_devices(sb) == 0) { 2751 btrfs_err(fs_info, "number of devices is 0"); 2752 ret = -EINVAL; 2753 } 2754 2755 if (mirror_num >= 0 && 2756 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2757 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2758 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2759 ret = -EINVAL; 2760 } 2761 2762 /* 2763 * Obvious sys_chunk_array corruptions, it must hold at least one key 2764 * and one chunk 2765 */ 2766 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2767 btrfs_err(fs_info, "system chunk array too big %u > %u", 2768 btrfs_super_sys_array_size(sb), 2769 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2770 ret = -EINVAL; 2771 } 2772 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2773 + sizeof(struct btrfs_chunk)) { 2774 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2775 btrfs_super_sys_array_size(sb), 2776 sizeof(struct btrfs_disk_key) 2777 + sizeof(struct btrfs_chunk)); 2778 ret = -EINVAL; 2779 } 2780 2781 /* 2782 * The generation is a global counter, we'll trust it more than the others 2783 * but it's still possible that it's the one that's wrong. 2784 */ 2785 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2786 btrfs_warn(fs_info, 2787 "suspicious: generation < chunk_root_generation: %llu < %llu", 2788 btrfs_super_generation(sb), 2789 btrfs_super_chunk_root_generation(sb)); 2790 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2791 && btrfs_super_cache_generation(sb) != (u64)-1) 2792 btrfs_warn(fs_info, 2793 "suspicious: generation < cache_generation: %llu < %llu", 2794 btrfs_super_generation(sb), 2795 btrfs_super_cache_generation(sb)); 2796 2797 return ret; 2798 } 2799 2800 /* 2801 * Validation of super block at mount time. 2802 * Some checks already done early at mount time, like csum type and incompat 2803 * flags will be skipped. 2804 */ 2805 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2806 { 2807 return btrfs_validate_super(fs_info, fs_info->super_copy, 0); 2808 } 2809 2810 /* 2811 * Validation of super block at write time. 2812 * Some checks like bytenr check will be skipped as their values will be 2813 * overwritten soon. 2814 * Extra checks like csum type and incompat flags will be done here. 2815 */ 2816 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2817 struct btrfs_super_block *sb) 2818 { 2819 int ret; 2820 2821 ret = btrfs_validate_super(fs_info, sb, -1); 2822 if (ret < 0) 2823 goto out; 2824 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2825 ret = -EUCLEAN; 2826 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2827 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2828 goto out; 2829 } 2830 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2831 ret = -EUCLEAN; 2832 btrfs_err(fs_info, 2833 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2834 btrfs_super_incompat_flags(sb), 2835 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2836 goto out; 2837 } 2838 out: 2839 if (ret < 0) 2840 btrfs_err(fs_info, 2841 "super block corruption detected before writing it to disk"); 2842 return ret; 2843 } 2844 2845 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) 2846 { 2847 int ret = 0; 2848 2849 root->node = read_tree_block(root->fs_info, bytenr, 2850 root->root_key.objectid, gen, level, NULL); 2851 if (IS_ERR(root->node)) { 2852 ret = PTR_ERR(root->node); 2853 root->node = NULL; 2854 return ret; 2855 } 2856 if (!extent_buffer_uptodate(root->node)) { 2857 free_extent_buffer(root->node); 2858 root->node = NULL; 2859 return -EIO; 2860 } 2861 2862 btrfs_set_root_node(&root->root_item, root->node); 2863 root->commit_root = btrfs_root_node(root); 2864 btrfs_set_root_refs(&root->root_item, 1); 2865 return ret; 2866 } 2867 2868 static int load_important_roots(struct btrfs_fs_info *fs_info) 2869 { 2870 struct btrfs_super_block *sb = fs_info->super_copy; 2871 u64 gen, bytenr; 2872 int level, ret; 2873 2874 bytenr = btrfs_super_root(sb); 2875 gen = btrfs_super_generation(sb); 2876 level = btrfs_super_root_level(sb); 2877 ret = load_super_root(fs_info->tree_root, bytenr, gen, level); 2878 if (ret) { 2879 btrfs_warn(fs_info, "couldn't read tree root"); 2880 return ret; 2881 } 2882 return 0; 2883 } 2884 2885 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2886 { 2887 int backup_index = find_newest_super_backup(fs_info); 2888 struct btrfs_super_block *sb = fs_info->super_copy; 2889 struct btrfs_root *tree_root = fs_info->tree_root; 2890 bool handle_error = false; 2891 int ret = 0; 2892 int i; 2893 2894 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2895 if (handle_error) { 2896 if (!IS_ERR(tree_root->node)) 2897 free_extent_buffer(tree_root->node); 2898 tree_root->node = NULL; 2899 2900 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2901 break; 2902 2903 free_root_pointers(fs_info, 0); 2904 2905 /* 2906 * Don't use the log in recovery mode, it won't be 2907 * valid 2908 */ 2909 btrfs_set_super_log_root(sb, 0); 2910 2911 /* We can't trust the free space cache either */ 2912 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2913 2914 ret = read_backup_root(fs_info, i); 2915 backup_index = ret; 2916 if (ret < 0) 2917 return ret; 2918 } 2919 2920 ret = load_important_roots(fs_info); 2921 if (ret) { 2922 handle_error = true; 2923 continue; 2924 } 2925 2926 /* 2927 * No need to hold btrfs_root::objectid_mutex since the fs 2928 * hasn't been fully initialised and we are the only user 2929 */ 2930 ret = btrfs_init_root_free_objectid(tree_root); 2931 if (ret < 0) { 2932 handle_error = true; 2933 continue; 2934 } 2935 2936 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 2937 2938 ret = btrfs_read_roots(fs_info); 2939 if (ret < 0) { 2940 handle_error = true; 2941 continue; 2942 } 2943 2944 /* All successful */ 2945 fs_info->generation = btrfs_header_generation(tree_root->node); 2946 fs_info->last_trans_committed = fs_info->generation; 2947 fs_info->last_reloc_trans = 0; 2948 2949 /* Always begin writing backup roots after the one being used */ 2950 if (backup_index < 0) { 2951 fs_info->backup_root_index = 0; 2952 } else { 2953 fs_info->backup_root_index = backup_index + 1; 2954 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2955 } 2956 break; 2957 } 2958 2959 return ret; 2960 } 2961 2962 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2963 { 2964 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2965 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2966 INIT_LIST_HEAD(&fs_info->trans_list); 2967 INIT_LIST_HEAD(&fs_info->dead_roots); 2968 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2969 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2970 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2971 spin_lock_init(&fs_info->delalloc_root_lock); 2972 spin_lock_init(&fs_info->trans_lock); 2973 spin_lock_init(&fs_info->fs_roots_radix_lock); 2974 spin_lock_init(&fs_info->delayed_iput_lock); 2975 spin_lock_init(&fs_info->defrag_inodes_lock); 2976 spin_lock_init(&fs_info->super_lock); 2977 spin_lock_init(&fs_info->buffer_lock); 2978 spin_lock_init(&fs_info->unused_bgs_lock); 2979 spin_lock_init(&fs_info->treelog_bg_lock); 2980 spin_lock_init(&fs_info->zone_active_bgs_lock); 2981 spin_lock_init(&fs_info->relocation_bg_lock); 2982 rwlock_init(&fs_info->tree_mod_log_lock); 2983 rwlock_init(&fs_info->global_root_lock); 2984 mutex_init(&fs_info->unused_bg_unpin_mutex); 2985 mutex_init(&fs_info->reclaim_bgs_lock); 2986 mutex_init(&fs_info->reloc_mutex); 2987 mutex_init(&fs_info->delalloc_root_mutex); 2988 mutex_init(&fs_info->zoned_meta_io_lock); 2989 mutex_init(&fs_info->zoned_data_reloc_io_lock); 2990 seqlock_init(&fs_info->profiles_lock); 2991 2992 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); 2993 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); 2994 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); 2995 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); 2996 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start, 2997 BTRFS_LOCKDEP_TRANS_COMMIT_START); 2998 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, 2999 BTRFS_LOCKDEP_TRANS_UNBLOCKED); 3000 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, 3001 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 3002 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, 3003 BTRFS_LOCKDEP_TRANS_COMPLETED); 3004 3005 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 3006 INIT_LIST_HEAD(&fs_info->space_info); 3007 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 3008 INIT_LIST_HEAD(&fs_info->unused_bgs); 3009 INIT_LIST_HEAD(&fs_info->reclaim_bgs); 3010 INIT_LIST_HEAD(&fs_info->zone_active_bgs); 3011 #ifdef CONFIG_BTRFS_DEBUG 3012 INIT_LIST_HEAD(&fs_info->allocated_roots); 3013 INIT_LIST_HEAD(&fs_info->allocated_ebs); 3014 spin_lock_init(&fs_info->eb_leak_lock); 3015 #endif 3016 extent_map_tree_init(&fs_info->mapping_tree); 3017 btrfs_init_block_rsv(&fs_info->global_block_rsv, 3018 BTRFS_BLOCK_RSV_GLOBAL); 3019 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 3020 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 3021 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 3022 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 3023 BTRFS_BLOCK_RSV_DELOPS); 3024 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 3025 BTRFS_BLOCK_RSV_DELREFS); 3026 3027 atomic_set(&fs_info->async_delalloc_pages, 0); 3028 atomic_set(&fs_info->defrag_running, 0); 3029 atomic_set(&fs_info->nr_delayed_iputs, 0); 3030 atomic64_set(&fs_info->tree_mod_seq, 0); 3031 fs_info->global_root_tree = RB_ROOT; 3032 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 3033 fs_info->metadata_ratio = 0; 3034 fs_info->defrag_inodes = RB_ROOT; 3035 atomic64_set(&fs_info->free_chunk_space, 0); 3036 fs_info->tree_mod_log = RB_ROOT; 3037 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 3038 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 3039 btrfs_init_ref_verify(fs_info); 3040 3041 fs_info->thread_pool_size = min_t(unsigned long, 3042 num_online_cpus() + 2, 8); 3043 3044 INIT_LIST_HEAD(&fs_info->ordered_roots); 3045 spin_lock_init(&fs_info->ordered_root_lock); 3046 3047 btrfs_init_scrub(fs_info); 3048 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3049 fs_info->check_integrity_print_mask = 0; 3050 #endif 3051 btrfs_init_balance(fs_info); 3052 btrfs_init_async_reclaim_work(fs_info); 3053 3054 rwlock_init(&fs_info->block_group_cache_lock); 3055 fs_info->block_group_cache_tree = RB_ROOT_CACHED; 3056 3057 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 3058 IO_TREE_FS_EXCLUDED_EXTENTS, NULL); 3059 3060 mutex_init(&fs_info->ordered_operations_mutex); 3061 mutex_init(&fs_info->tree_log_mutex); 3062 mutex_init(&fs_info->chunk_mutex); 3063 mutex_init(&fs_info->transaction_kthread_mutex); 3064 mutex_init(&fs_info->cleaner_mutex); 3065 mutex_init(&fs_info->ro_block_group_mutex); 3066 init_rwsem(&fs_info->commit_root_sem); 3067 init_rwsem(&fs_info->cleanup_work_sem); 3068 init_rwsem(&fs_info->subvol_sem); 3069 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 3070 3071 btrfs_init_dev_replace_locks(fs_info); 3072 btrfs_init_qgroup(fs_info); 3073 btrfs_discard_init(fs_info); 3074 3075 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 3076 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 3077 3078 init_waitqueue_head(&fs_info->transaction_throttle); 3079 init_waitqueue_head(&fs_info->transaction_wait); 3080 init_waitqueue_head(&fs_info->transaction_blocked_wait); 3081 init_waitqueue_head(&fs_info->async_submit_wait); 3082 init_waitqueue_head(&fs_info->delayed_iputs_wait); 3083 3084 /* Usable values until the real ones are cached from the superblock */ 3085 fs_info->nodesize = 4096; 3086 fs_info->sectorsize = 4096; 3087 fs_info->sectorsize_bits = ilog2(4096); 3088 fs_info->stripesize = 4096; 3089 3090 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; 3091 3092 spin_lock_init(&fs_info->swapfile_pins_lock); 3093 fs_info->swapfile_pins = RB_ROOT; 3094 3095 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; 3096 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); 3097 } 3098 3099 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 3100 { 3101 int ret; 3102 3103 fs_info->sb = sb; 3104 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 3105 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 3106 3107 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 3108 if (ret) 3109 return ret; 3110 3111 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 3112 if (ret) 3113 return ret; 3114 3115 fs_info->dirty_metadata_batch = PAGE_SIZE * 3116 (1 + ilog2(nr_cpu_ids)); 3117 3118 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 3119 if (ret) 3120 return ret; 3121 3122 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 3123 GFP_KERNEL); 3124 if (ret) 3125 return ret; 3126 3127 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 3128 GFP_KERNEL); 3129 if (!fs_info->delayed_root) 3130 return -ENOMEM; 3131 btrfs_init_delayed_root(fs_info->delayed_root); 3132 3133 if (sb_rdonly(sb)) 3134 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 3135 3136 return btrfs_alloc_stripe_hash_table(fs_info); 3137 } 3138 3139 static int btrfs_uuid_rescan_kthread(void *data) 3140 { 3141 struct btrfs_fs_info *fs_info = data; 3142 int ret; 3143 3144 /* 3145 * 1st step is to iterate through the existing UUID tree and 3146 * to delete all entries that contain outdated data. 3147 * 2nd step is to add all missing entries to the UUID tree. 3148 */ 3149 ret = btrfs_uuid_tree_iterate(fs_info); 3150 if (ret < 0) { 3151 if (ret != -EINTR) 3152 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 3153 ret); 3154 up(&fs_info->uuid_tree_rescan_sem); 3155 return ret; 3156 } 3157 return btrfs_uuid_scan_kthread(data); 3158 } 3159 3160 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 3161 { 3162 struct task_struct *task; 3163 3164 down(&fs_info->uuid_tree_rescan_sem); 3165 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 3166 if (IS_ERR(task)) { 3167 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 3168 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 3169 up(&fs_info->uuid_tree_rescan_sem); 3170 return PTR_ERR(task); 3171 } 3172 3173 return 0; 3174 } 3175 3176 /* 3177 * Some options only have meaning at mount time and shouldn't persist across 3178 * remounts, or be displayed. Clear these at the end of mount and remount 3179 * code paths. 3180 */ 3181 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info) 3182 { 3183 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3184 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE); 3185 } 3186 3187 /* 3188 * Mounting logic specific to read-write file systems. Shared by open_ctree 3189 * and btrfs_remount when remounting from read-only to read-write. 3190 */ 3191 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 3192 { 3193 int ret; 3194 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 3195 bool clear_free_space_tree = false; 3196 3197 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3198 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3199 clear_free_space_tree = true; 3200 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3201 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3202 btrfs_warn(fs_info, "free space tree is invalid"); 3203 clear_free_space_tree = true; 3204 } 3205 3206 if (clear_free_space_tree) { 3207 btrfs_info(fs_info, "clearing free space tree"); 3208 ret = btrfs_clear_free_space_tree(fs_info); 3209 if (ret) { 3210 btrfs_warn(fs_info, 3211 "failed to clear free space tree: %d", ret); 3212 goto out; 3213 } 3214 } 3215 3216 /* 3217 * btrfs_find_orphan_roots() is responsible for finding all the dead 3218 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load 3219 * them into the fs_info->fs_roots_radix tree. This must be done before 3220 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it 3221 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan 3222 * item before the root's tree is deleted - this means that if we unmount 3223 * or crash before the deletion completes, on the next mount we will not 3224 * delete what remains of the tree because the orphan item does not 3225 * exists anymore, which is what tells us we have a pending deletion. 3226 */ 3227 ret = btrfs_find_orphan_roots(fs_info); 3228 if (ret) 3229 goto out; 3230 3231 ret = btrfs_cleanup_fs_roots(fs_info); 3232 if (ret) 3233 goto out; 3234 3235 down_read(&fs_info->cleanup_work_sem); 3236 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3237 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3238 up_read(&fs_info->cleanup_work_sem); 3239 goto out; 3240 } 3241 up_read(&fs_info->cleanup_work_sem); 3242 3243 mutex_lock(&fs_info->cleaner_mutex); 3244 ret = btrfs_recover_relocation(fs_info); 3245 mutex_unlock(&fs_info->cleaner_mutex); 3246 if (ret < 0) { 3247 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 3248 goto out; 3249 } 3250 3251 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3252 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3253 btrfs_info(fs_info, "creating free space tree"); 3254 ret = btrfs_create_free_space_tree(fs_info); 3255 if (ret) { 3256 btrfs_warn(fs_info, 3257 "failed to create free space tree: %d", ret); 3258 goto out; 3259 } 3260 } 3261 3262 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 3263 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 3264 if (ret) 3265 goto out; 3266 } 3267 3268 ret = btrfs_resume_balance_async(fs_info); 3269 if (ret) 3270 goto out; 3271 3272 ret = btrfs_resume_dev_replace_async(fs_info); 3273 if (ret) { 3274 btrfs_warn(fs_info, "failed to resume dev_replace"); 3275 goto out; 3276 } 3277 3278 btrfs_qgroup_rescan_resume(fs_info); 3279 3280 if (!fs_info->uuid_root) { 3281 btrfs_info(fs_info, "creating UUID tree"); 3282 ret = btrfs_create_uuid_tree(fs_info); 3283 if (ret) { 3284 btrfs_warn(fs_info, 3285 "failed to create the UUID tree %d", ret); 3286 goto out; 3287 } 3288 } 3289 3290 out: 3291 return ret; 3292 } 3293 3294 /* 3295 * Do various sanity and dependency checks of different features. 3296 * 3297 * This is the place for less strict checks (like for subpage or artificial 3298 * feature dependencies). 3299 * 3300 * For strict checks or possible corruption detection, see 3301 * btrfs_validate_super(). 3302 * 3303 * This should be called after btrfs_parse_options(), as some mount options 3304 * (space cache related) can modify on-disk format like free space tree and 3305 * screw up certain feature dependencies. 3306 */ 3307 int btrfs_check_features(struct btrfs_fs_info *fs_info, struct super_block *sb) 3308 { 3309 struct btrfs_super_block *disk_super = fs_info->super_copy; 3310 u64 incompat = btrfs_super_incompat_flags(disk_super); 3311 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super); 3312 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); 3313 3314 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 3315 btrfs_err(fs_info, 3316 "cannot mount because of unknown incompat features (0x%llx)", 3317 incompat); 3318 return -EINVAL; 3319 } 3320 3321 /* Runtime limitation for mixed block groups. */ 3322 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3323 (fs_info->sectorsize != fs_info->nodesize)) { 3324 btrfs_err(fs_info, 3325 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3326 fs_info->nodesize, fs_info->sectorsize); 3327 return -EINVAL; 3328 } 3329 3330 /* Mixed backref is an always-enabled feature. */ 3331 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3332 3333 /* Set compression related flags just in case. */ 3334 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3335 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3336 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3337 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3338 3339 /* 3340 * An ancient flag, which should really be marked deprecated. 3341 * Such runtime limitation doesn't really need a incompat flag. 3342 */ 3343 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) 3344 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3345 3346 if (compat_ro_unsupp && !sb_rdonly(sb)) { 3347 btrfs_err(fs_info, 3348 "cannot mount read-write because of unknown compat_ro features (0x%llx)", 3349 compat_ro); 3350 return -EINVAL; 3351 } 3352 3353 /* 3354 * We have unsupported RO compat features, although RO mounted, we 3355 * should not cause any metadata writes, including log replay. 3356 * Or we could screw up whatever the new feature requires. 3357 */ 3358 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) && 3359 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3360 btrfs_err(fs_info, 3361 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", 3362 compat_ro); 3363 return -EINVAL; 3364 } 3365 3366 /* 3367 * Artificial limitations for block group tree, to force 3368 * block-group-tree to rely on no-holes and free-space-tree. 3369 */ 3370 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 3371 (!btrfs_fs_incompat(fs_info, NO_HOLES) || 3372 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { 3373 btrfs_err(fs_info, 3374 "block-group-tree feature requires no-holes and free-space-tree features"); 3375 return -EINVAL; 3376 } 3377 3378 /* 3379 * Subpage runtime limitation on v1 cache. 3380 * 3381 * V1 space cache still has some hard codeed PAGE_SIZE usage, while 3382 * we're already defaulting to v2 cache, no need to bother v1 as it's 3383 * going to be deprecated anyway. 3384 */ 3385 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { 3386 btrfs_warn(fs_info, 3387 "v1 space cache is not supported for page size %lu with sectorsize %u", 3388 PAGE_SIZE, fs_info->sectorsize); 3389 return -EINVAL; 3390 } 3391 3392 /* This can be called by remount, we need to protect the super block. */ 3393 spin_lock(&fs_info->super_lock); 3394 btrfs_set_super_incompat_flags(disk_super, incompat); 3395 spin_unlock(&fs_info->super_lock); 3396 3397 return 0; 3398 } 3399 3400 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 3401 char *options) 3402 { 3403 u32 sectorsize; 3404 u32 nodesize; 3405 u32 stripesize; 3406 u64 generation; 3407 u64 features; 3408 u16 csum_type; 3409 struct btrfs_super_block *disk_super; 3410 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3411 struct btrfs_root *tree_root; 3412 struct btrfs_root *chunk_root; 3413 int ret; 3414 int err = -EINVAL; 3415 int level; 3416 3417 ret = init_mount_fs_info(fs_info, sb); 3418 if (ret) { 3419 err = ret; 3420 goto fail; 3421 } 3422 3423 /* These need to be init'ed before we start creating inodes and such. */ 3424 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3425 GFP_KERNEL); 3426 fs_info->tree_root = tree_root; 3427 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3428 GFP_KERNEL); 3429 fs_info->chunk_root = chunk_root; 3430 if (!tree_root || !chunk_root) { 3431 err = -ENOMEM; 3432 goto fail; 3433 } 3434 3435 fs_info->btree_inode = new_inode(sb); 3436 if (!fs_info->btree_inode) { 3437 err = -ENOMEM; 3438 goto fail; 3439 } 3440 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 3441 btrfs_init_btree_inode(fs_info); 3442 3443 invalidate_bdev(fs_devices->latest_dev->bdev); 3444 3445 /* 3446 * Read super block and check the signature bytes only 3447 */ 3448 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev); 3449 if (IS_ERR(disk_super)) { 3450 err = PTR_ERR(disk_super); 3451 goto fail_alloc; 3452 } 3453 3454 /* 3455 * Verify the type first, if that or the checksum value are 3456 * corrupted, we'll find out 3457 */ 3458 csum_type = btrfs_super_csum_type(disk_super); 3459 if (!btrfs_supported_super_csum(csum_type)) { 3460 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3461 csum_type); 3462 err = -EINVAL; 3463 btrfs_release_disk_super(disk_super); 3464 goto fail_alloc; 3465 } 3466 3467 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3468 3469 ret = btrfs_init_csum_hash(fs_info, csum_type); 3470 if (ret) { 3471 err = ret; 3472 btrfs_release_disk_super(disk_super); 3473 goto fail_alloc; 3474 } 3475 3476 /* 3477 * We want to check superblock checksum, the type is stored inside. 3478 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3479 */ 3480 if (btrfs_check_super_csum(fs_info, disk_super)) { 3481 btrfs_err(fs_info, "superblock checksum mismatch"); 3482 err = -EINVAL; 3483 btrfs_release_disk_super(disk_super); 3484 goto fail_alloc; 3485 } 3486 3487 /* 3488 * super_copy is zeroed at allocation time and we never touch the 3489 * following bytes up to INFO_SIZE, the checksum is calculated from 3490 * the whole block of INFO_SIZE 3491 */ 3492 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3493 btrfs_release_disk_super(disk_super); 3494 3495 disk_super = fs_info->super_copy; 3496 3497 3498 features = btrfs_super_flags(disk_super); 3499 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 3500 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 3501 btrfs_set_super_flags(disk_super, features); 3502 btrfs_info(fs_info, 3503 "found metadata UUID change in progress flag, clearing"); 3504 } 3505 3506 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3507 sizeof(*fs_info->super_for_commit)); 3508 3509 ret = btrfs_validate_mount_super(fs_info); 3510 if (ret) { 3511 btrfs_err(fs_info, "superblock contains fatal errors"); 3512 err = -EINVAL; 3513 goto fail_alloc; 3514 } 3515 3516 if (!btrfs_super_root(disk_super)) 3517 goto fail_alloc; 3518 3519 /* check FS state, whether FS is broken. */ 3520 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3521 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 3522 3523 /* 3524 * In the long term, we'll store the compression type in the super 3525 * block, and it'll be used for per file compression control. 3526 */ 3527 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 3528 3529 3530 /* Set up fs_info before parsing mount options */ 3531 nodesize = btrfs_super_nodesize(disk_super); 3532 sectorsize = btrfs_super_sectorsize(disk_super); 3533 stripesize = sectorsize; 3534 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3535 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3536 3537 fs_info->nodesize = nodesize; 3538 fs_info->sectorsize = sectorsize; 3539 fs_info->sectorsize_bits = ilog2(sectorsize); 3540 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3541 fs_info->stripesize = stripesize; 3542 3543 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 3544 if (ret) { 3545 err = ret; 3546 goto fail_alloc; 3547 } 3548 3549 ret = btrfs_check_features(fs_info, sb); 3550 if (ret < 0) { 3551 err = ret; 3552 goto fail_alloc; 3553 } 3554 3555 if (sectorsize < PAGE_SIZE) { 3556 struct btrfs_subpage_info *subpage_info; 3557 3558 /* 3559 * V1 space cache has some hardcoded PAGE_SIZE usage, and is 3560 * going to be deprecated. 3561 * 3562 * Force to use v2 cache for subpage case. 3563 */ 3564 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 3565 btrfs_set_and_info(fs_info, FREE_SPACE_TREE, 3566 "forcing free space tree for sector size %u with page size %lu", 3567 sectorsize, PAGE_SIZE); 3568 3569 btrfs_warn(fs_info, 3570 "read-write for sector size %u with page size %lu is experimental", 3571 sectorsize, PAGE_SIZE); 3572 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL); 3573 if (!subpage_info) 3574 goto fail_alloc; 3575 btrfs_init_subpage_info(subpage_info, sectorsize); 3576 fs_info->subpage_info = subpage_info; 3577 } 3578 3579 ret = btrfs_init_workqueues(fs_info); 3580 if (ret) { 3581 err = ret; 3582 goto fail_sb_buffer; 3583 } 3584 3585 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3586 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3587 3588 sb->s_blocksize = sectorsize; 3589 sb->s_blocksize_bits = blksize_bits(sectorsize); 3590 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3591 3592 mutex_lock(&fs_info->chunk_mutex); 3593 ret = btrfs_read_sys_array(fs_info); 3594 mutex_unlock(&fs_info->chunk_mutex); 3595 if (ret) { 3596 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3597 goto fail_sb_buffer; 3598 } 3599 3600 generation = btrfs_super_chunk_root_generation(disk_super); 3601 level = btrfs_super_chunk_root_level(disk_super); 3602 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super), 3603 generation, level); 3604 if (ret) { 3605 btrfs_err(fs_info, "failed to read chunk root"); 3606 goto fail_tree_roots; 3607 } 3608 3609 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3610 offsetof(struct btrfs_header, chunk_tree_uuid), 3611 BTRFS_UUID_SIZE); 3612 3613 ret = btrfs_read_chunk_tree(fs_info); 3614 if (ret) { 3615 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3616 goto fail_tree_roots; 3617 } 3618 3619 /* 3620 * At this point we know all the devices that make this filesystem, 3621 * including the seed devices but we don't know yet if the replace 3622 * target is required. So free devices that are not part of this 3623 * filesystem but skip the replace target device which is checked 3624 * below in btrfs_init_dev_replace(). 3625 */ 3626 btrfs_free_extra_devids(fs_devices); 3627 if (!fs_devices->latest_dev->bdev) { 3628 btrfs_err(fs_info, "failed to read devices"); 3629 goto fail_tree_roots; 3630 } 3631 3632 ret = init_tree_roots(fs_info); 3633 if (ret) 3634 goto fail_tree_roots; 3635 3636 /* 3637 * Get zone type information of zoned block devices. This will also 3638 * handle emulation of a zoned filesystem if a regular device has the 3639 * zoned incompat feature flag set. 3640 */ 3641 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3642 if (ret) { 3643 btrfs_err(fs_info, 3644 "zoned: failed to read device zone info: %d", 3645 ret); 3646 goto fail_block_groups; 3647 } 3648 3649 /* 3650 * If we have a uuid root and we're not being told to rescan we need to 3651 * check the generation here so we can set the 3652 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3653 * transaction during a balance or the log replay without updating the 3654 * uuid generation, and then if we crash we would rescan the uuid tree, 3655 * even though it was perfectly fine. 3656 */ 3657 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3658 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3659 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3660 3661 ret = btrfs_verify_dev_extents(fs_info); 3662 if (ret) { 3663 btrfs_err(fs_info, 3664 "failed to verify dev extents against chunks: %d", 3665 ret); 3666 goto fail_block_groups; 3667 } 3668 ret = btrfs_recover_balance(fs_info); 3669 if (ret) { 3670 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3671 goto fail_block_groups; 3672 } 3673 3674 ret = btrfs_init_dev_stats(fs_info); 3675 if (ret) { 3676 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3677 goto fail_block_groups; 3678 } 3679 3680 ret = btrfs_init_dev_replace(fs_info); 3681 if (ret) { 3682 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3683 goto fail_block_groups; 3684 } 3685 3686 ret = btrfs_check_zoned_mode(fs_info); 3687 if (ret) { 3688 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3689 ret); 3690 goto fail_block_groups; 3691 } 3692 3693 ret = btrfs_sysfs_add_fsid(fs_devices); 3694 if (ret) { 3695 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3696 ret); 3697 goto fail_block_groups; 3698 } 3699 3700 ret = btrfs_sysfs_add_mounted(fs_info); 3701 if (ret) { 3702 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3703 goto fail_fsdev_sysfs; 3704 } 3705 3706 ret = btrfs_init_space_info(fs_info); 3707 if (ret) { 3708 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3709 goto fail_sysfs; 3710 } 3711 3712 ret = btrfs_read_block_groups(fs_info); 3713 if (ret) { 3714 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3715 goto fail_sysfs; 3716 } 3717 3718 btrfs_free_zone_cache(fs_info); 3719 3720 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && 3721 !btrfs_check_rw_degradable(fs_info, NULL)) { 3722 btrfs_warn(fs_info, 3723 "writable mount is not allowed due to too many missing devices"); 3724 goto fail_sysfs; 3725 } 3726 3727 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, 3728 "btrfs-cleaner"); 3729 if (IS_ERR(fs_info->cleaner_kthread)) 3730 goto fail_sysfs; 3731 3732 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3733 tree_root, 3734 "btrfs-transaction"); 3735 if (IS_ERR(fs_info->transaction_kthread)) 3736 goto fail_cleaner; 3737 3738 if (!btrfs_test_opt(fs_info, NOSSD) && 3739 !fs_info->fs_devices->rotating) { 3740 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3741 } 3742 3743 /* 3744 * Mount does not set all options immediately, we can do it now and do 3745 * not have to wait for transaction commit 3746 */ 3747 btrfs_apply_pending_changes(fs_info); 3748 3749 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3750 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3751 ret = btrfsic_mount(fs_info, fs_devices, 3752 btrfs_test_opt(fs_info, 3753 CHECK_INTEGRITY_DATA) ? 1 : 0, 3754 fs_info->check_integrity_print_mask); 3755 if (ret) 3756 btrfs_warn(fs_info, 3757 "failed to initialize integrity check module: %d", 3758 ret); 3759 } 3760 #endif 3761 ret = btrfs_read_qgroup_config(fs_info); 3762 if (ret) 3763 goto fail_trans_kthread; 3764 3765 if (btrfs_build_ref_tree(fs_info)) 3766 btrfs_err(fs_info, "couldn't build ref tree"); 3767 3768 /* do not make disk changes in broken FS or nologreplay is given */ 3769 if (btrfs_super_log_root(disk_super) != 0 && 3770 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3771 btrfs_info(fs_info, "start tree-log replay"); 3772 ret = btrfs_replay_log(fs_info, fs_devices); 3773 if (ret) { 3774 err = ret; 3775 goto fail_qgroup; 3776 } 3777 } 3778 3779 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3780 if (IS_ERR(fs_info->fs_root)) { 3781 err = PTR_ERR(fs_info->fs_root); 3782 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3783 fs_info->fs_root = NULL; 3784 goto fail_qgroup; 3785 } 3786 3787 if (sb_rdonly(sb)) 3788 goto clear_oneshot; 3789 3790 ret = btrfs_start_pre_rw_mount(fs_info); 3791 if (ret) { 3792 close_ctree(fs_info); 3793 return ret; 3794 } 3795 btrfs_discard_resume(fs_info); 3796 3797 if (fs_info->uuid_root && 3798 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3799 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3800 btrfs_info(fs_info, "checking UUID tree"); 3801 ret = btrfs_check_uuid_tree(fs_info); 3802 if (ret) { 3803 btrfs_warn(fs_info, 3804 "failed to check the UUID tree: %d", ret); 3805 close_ctree(fs_info); 3806 return ret; 3807 } 3808 } 3809 3810 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3811 3812 /* Kick the cleaner thread so it'll start deleting snapshots. */ 3813 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) 3814 wake_up_process(fs_info->cleaner_kthread); 3815 3816 clear_oneshot: 3817 btrfs_clear_oneshot_options(fs_info); 3818 return 0; 3819 3820 fail_qgroup: 3821 btrfs_free_qgroup_config(fs_info); 3822 fail_trans_kthread: 3823 kthread_stop(fs_info->transaction_kthread); 3824 btrfs_cleanup_transaction(fs_info); 3825 btrfs_free_fs_roots(fs_info); 3826 fail_cleaner: 3827 kthread_stop(fs_info->cleaner_kthread); 3828 3829 /* 3830 * make sure we're done with the btree inode before we stop our 3831 * kthreads 3832 */ 3833 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3834 3835 fail_sysfs: 3836 btrfs_sysfs_remove_mounted(fs_info); 3837 3838 fail_fsdev_sysfs: 3839 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3840 3841 fail_block_groups: 3842 btrfs_put_block_group_cache(fs_info); 3843 3844 fail_tree_roots: 3845 if (fs_info->data_reloc_root) 3846 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3847 free_root_pointers(fs_info, true); 3848 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3849 3850 fail_sb_buffer: 3851 btrfs_stop_all_workers(fs_info); 3852 btrfs_free_block_groups(fs_info); 3853 fail_alloc: 3854 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3855 3856 iput(fs_info->btree_inode); 3857 fail: 3858 btrfs_close_devices(fs_info->fs_devices); 3859 return err; 3860 } 3861 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3862 3863 static void btrfs_end_super_write(struct bio *bio) 3864 { 3865 struct btrfs_device *device = bio->bi_private; 3866 struct bio_vec *bvec; 3867 struct bvec_iter_all iter_all; 3868 struct page *page; 3869 3870 bio_for_each_segment_all(bvec, bio, iter_all) { 3871 page = bvec->bv_page; 3872 3873 if (bio->bi_status) { 3874 btrfs_warn_rl_in_rcu(device->fs_info, 3875 "lost page write due to IO error on %s (%d)", 3876 rcu_str_deref(device->name), 3877 blk_status_to_errno(bio->bi_status)); 3878 ClearPageUptodate(page); 3879 SetPageError(page); 3880 btrfs_dev_stat_inc_and_print(device, 3881 BTRFS_DEV_STAT_WRITE_ERRS); 3882 } else { 3883 SetPageUptodate(page); 3884 } 3885 3886 put_page(page); 3887 unlock_page(page); 3888 } 3889 3890 bio_put(bio); 3891 } 3892 3893 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3894 int copy_num, bool drop_cache) 3895 { 3896 struct btrfs_super_block *super; 3897 struct page *page; 3898 u64 bytenr, bytenr_orig; 3899 struct address_space *mapping = bdev->bd_inode->i_mapping; 3900 int ret; 3901 3902 bytenr_orig = btrfs_sb_offset(copy_num); 3903 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 3904 if (ret == -ENOENT) 3905 return ERR_PTR(-EINVAL); 3906 else if (ret) 3907 return ERR_PTR(ret); 3908 3909 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) 3910 return ERR_PTR(-EINVAL); 3911 3912 if (drop_cache) { 3913 /* This should only be called with the primary sb. */ 3914 ASSERT(copy_num == 0); 3915 3916 /* 3917 * Drop the page of the primary superblock, so later read will 3918 * always read from the device. 3919 */ 3920 invalidate_inode_pages2_range(mapping, 3921 bytenr >> PAGE_SHIFT, 3922 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT); 3923 } 3924 3925 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 3926 if (IS_ERR(page)) 3927 return ERR_CAST(page); 3928 3929 super = page_address(page); 3930 if (btrfs_super_magic(super) != BTRFS_MAGIC) { 3931 btrfs_release_disk_super(super); 3932 return ERR_PTR(-ENODATA); 3933 } 3934 3935 if (btrfs_super_bytenr(super) != bytenr_orig) { 3936 btrfs_release_disk_super(super); 3937 return ERR_PTR(-EINVAL); 3938 } 3939 3940 return super; 3941 } 3942 3943 3944 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 3945 { 3946 struct btrfs_super_block *super, *latest = NULL; 3947 int i; 3948 u64 transid = 0; 3949 3950 /* we would like to check all the supers, but that would make 3951 * a btrfs mount succeed after a mkfs from a different FS. 3952 * So, we need to add a special mount option to scan for 3953 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3954 */ 3955 for (i = 0; i < 1; i++) { 3956 super = btrfs_read_dev_one_super(bdev, i, false); 3957 if (IS_ERR(super)) 3958 continue; 3959 3960 if (!latest || btrfs_super_generation(super) > transid) { 3961 if (latest) 3962 btrfs_release_disk_super(super); 3963 3964 latest = super; 3965 transid = btrfs_super_generation(super); 3966 } 3967 } 3968 3969 return super; 3970 } 3971 3972 /* 3973 * Write superblock @sb to the @device. Do not wait for completion, all the 3974 * pages we use for writing are locked. 3975 * 3976 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3977 * the expected device size at commit time. Note that max_mirrors must be 3978 * same for write and wait phases. 3979 * 3980 * Return number of errors when page is not found or submission fails. 3981 */ 3982 static int write_dev_supers(struct btrfs_device *device, 3983 struct btrfs_super_block *sb, int max_mirrors) 3984 { 3985 struct btrfs_fs_info *fs_info = device->fs_info; 3986 struct address_space *mapping = device->bdev->bd_inode->i_mapping; 3987 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3988 int i; 3989 int errors = 0; 3990 int ret; 3991 u64 bytenr, bytenr_orig; 3992 3993 if (max_mirrors == 0) 3994 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3995 3996 shash->tfm = fs_info->csum_shash; 3997 3998 for (i = 0; i < max_mirrors; i++) { 3999 struct page *page; 4000 struct bio *bio; 4001 struct btrfs_super_block *disk_super; 4002 4003 bytenr_orig = btrfs_sb_offset(i); 4004 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 4005 if (ret == -ENOENT) { 4006 continue; 4007 } else if (ret < 0) { 4008 btrfs_err(device->fs_info, 4009 "couldn't get super block location for mirror %d", 4010 i); 4011 errors++; 4012 continue; 4013 } 4014 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 4015 device->commit_total_bytes) 4016 break; 4017 4018 btrfs_set_super_bytenr(sb, bytenr_orig); 4019 4020 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 4021 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 4022 sb->csum); 4023 4024 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT, 4025 GFP_NOFS); 4026 if (!page) { 4027 btrfs_err(device->fs_info, 4028 "couldn't get super block page for bytenr %llu", 4029 bytenr); 4030 errors++; 4031 continue; 4032 } 4033 4034 /* Bump the refcount for wait_dev_supers() */ 4035 get_page(page); 4036 4037 disk_super = page_address(page); 4038 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 4039 4040 /* 4041 * Directly use bios here instead of relying on the page cache 4042 * to do I/O, so we don't lose the ability to do integrity 4043 * checking. 4044 */ 4045 bio = bio_alloc(device->bdev, 1, 4046 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, 4047 GFP_NOFS); 4048 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 4049 bio->bi_private = device; 4050 bio->bi_end_io = btrfs_end_super_write; 4051 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE, 4052 offset_in_page(bytenr)); 4053 4054 /* 4055 * We FUA only the first super block. The others we allow to 4056 * go down lazy and there's a short window where the on-disk 4057 * copies might still contain the older version. 4058 */ 4059 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 4060 bio->bi_opf |= REQ_FUA; 4061 4062 btrfsic_check_bio(bio); 4063 submit_bio(bio); 4064 4065 if (btrfs_advance_sb_log(device, i)) 4066 errors++; 4067 } 4068 return errors < i ? 0 : -1; 4069 } 4070 4071 /* 4072 * Wait for write completion of superblocks done by write_dev_supers, 4073 * @max_mirrors same for write and wait phases. 4074 * 4075 * Return number of errors when page is not found or not marked up to 4076 * date. 4077 */ 4078 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 4079 { 4080 int i; 4081 int errors = 0; 4082 bool primary_failed = false; 4083 int ret; 4084 u64 bytenr; 4085 4086 if (max_mirrors == 0) 4087 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 4088 4089 for (i = 0; i < max_mirrors; i++) { 4090 struct page *page; 4091 4092 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 4093 if (ret == -ENOENT) { 4094 break; 4095 } else if (ret < 0) { 4096 errors++; 4097 if (i == 0) 4098 primary_failed = true; 4099 continue; 4100 } 4101 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 4102 device->commit_total_bytes) 4103 break; 4104 4105 page = find_get_page(device->bdev->bd_inode->i_mapping, 4106 bytenr >> PAGE_SHIFT); 4107 if (!page) { 4108 errors++; 4109 if (i == 0) 4110 primary_failed = true; 4111 continue; 4112 } 4113 /* Page is submitted locked and unlocked once the IO completes */ 4114 wait_on_page_locked(page); 4115 if (PageError(page)) { 4116 errors++; 4117 if (i == 0) 4118 primary_failed = true; 4119 } 4120 4121 /* Drop our reference */ 4122 put_page(page); 4123 4124 /* Drop the reference from the writing run */ 4125 put_page(page); 4126 } 4127 4128 /* log error, force error return */ 4129 if (primary_failed) { 4130 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 4131 device->devid); 4132 return -1; 4133 } 4134 4135 return errors < i ? 0 : -1; 4136 } 4137 4138 /* 4139 * endio for the write_dev_flush, this will wake anyone waiting 4140 * for the barrier when it is done 4141 */ 4142 static void btrfs_end_empty_barrier(struct bio *bio) 4143 { 4144 bio_uninit(bio); 4145 complete(bio->bi_private); 4146 } 4147 4148 /* 4149 * Submit a flush request to the device if it supports it. Error handling is 4150 * done in the waiting counterpart. 4151 */ 4152 static void write_dev_flush(struct btrfs_device *device) 4153 { 4154 struct bio *bio = &device->flush_bio; 4155 4156 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4157 /* 4158 * When a disk has write caching disabled, we skip submission of a bio 4159 * with flush and sync requests before writing the superblock, since 4160 * it's not needed. However when the integrity checker is enabled, this 4161 * results in reports that there are metadata blocks referred by a 4162 * superblock that were not properly flushed. So don't skip the bio 4163 * submission only when the integrity checker is enabled for the sake 4164 * of simplicity, since this is a debug tool and not meant for use in 4165 * non-debug builds. 4166 */ 4167 if (!bdev_write_cache(device->bdev)) 4168 return; 4169 #endif 4170 4171 bio_init(bio, device->bdev, NULL, 0, 4172 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); 4173 bio->bi_end_io = btrfs_end_empty_barrier; 4174 init_completion(&device->flush_wait); 4175 bio->bi_private = &device->flush_wait; 4176 4177 btrfsic_check_bio(bio); 4178 submit_bio(bio); 4179 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 4180 } 4181 4182 /* 4183 * If the flush bio has been submitted by write_dev_flush, wait for it. 4184 */ 4185 static blk_status_t wait_dev_flush(struct btrfs_device *device) 4186 { 4187 struct bio *bio = &device->flush_bio; 4188 4189 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 4190 return BLK_STS_OK; 4191 4192 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 4193 wait_for_completion_io(&device->flush_wait); 4194 4195 return bio->bi_status; 4196 } 4197 4198 static int check_barrier_error(struct btrfs_fs_info *fs_info) 4199 { 4200 if (!btrfs_check_rw_degradable(fs_info, NULL)) 4201 return -EIO; 4202 return 0; 4203 } 4204 4205 /* 4206 * send an empty flush down to each device in parallel, 4207 * then wait for them 4208 */ 4209 static int barrier_all_devices(struct btrfs_fs_info *info) 4210 { 4211 struct list_head *head; 4212 struct btrfs_device *dev; 4213 int errors_wait = 0; 4214 blk_status_t ret; 4215 4216 lockdep_assert_held(&info->fs_devices->device_list_mutex); 4217 /* send down all the barriers */ 4218 head = &info->fs_devices->devices; 4219 list_for_each_entry(dev, head, dev_list) { 4220 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 4221 continue; 4222 if (!dev->bdev) 4223 continue; 4224 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4225 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4226 continue; 4227 4228 write_dev_flush(dev); 4229 dev->last_flush_error = BLK_STS_OK; 4230 } 4231 4232 /* wait for all the barriers */ 4233 list_for_each_entry(dev, head, dev_list) { 4234 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 4235 continue; 4236 if (!dev->bdev) { 4237 errors_wait++; 4238 continue; 4239 } 4240 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4241 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4242 continue; 4243 4244 ret = wait_dev_flush(dev); 4245 if (ret) { 4246 dev->last_flush_error = ret; 4247 btrfs_dev_stat_inc_and_print(dev, 4248 BTRFS_DEV_STAT_FLUSH_ERRS); 4249 errors_wait++; 4250 } 4251 } 4252 4253 if (errors_wait) { 4254 /* 4255 * At some point we need the status of all disks 4256 * to arrive at the volume status. So error checking 4257 * is being pushed to a separate loop. 4258 */ 4259 return check_barrier_error(info); 4260 } 4261 return 0; 4262 } 4263 4264 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 4265 { 4266 int raid_type; 4267 int min_tolerated = INT_MAX; 4268 4269 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 4270 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 4271 min_tolerated = min_t(int, min_tolerated, 4272 btrfs_raid_array[BTRFS_RAID_SINGLE]. 4273 tolerated_failures); 4274 4275 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4276 if (raid_type == BTRFS_RAID_SINGLE) 4277 continue; 4278 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 4279 continue; 4280 min_tolerated = min_t(int, min_tolerated, 4281 btrfs_raid_array[raid_type]. 4282 tolerated_failures); 4283 } 4284 4285 if (min_tolerated == INT_MAX) { 4286 pr_warn("BTRFS: unknown raid flag: %llu", flags); 4287 min_tolerated = 0; 4288 } 4289 4290 return min_tolerated; 4291 } 4292 4293 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 4294 { 4295 struct list_head *head; 4296 struct btrfs_device *dev; 4297 struct btrfs_super_block *sb; 4298 struct btrfs_dev_item *dev_item; 4299 int ret; 4300 int do_barriers; 4301 int max_errors; 4302 int total_errors = 0; 4303 u64 flags; 4304 4305 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 4306 4307 /* 4308 * max_mirrors == 0 indicates we're from commit_transaction, 4309 * not from fsync where the tree roots in fs_info have not 4310 * been consistent on disk. 4311 */ 4312 if (max_mirrors == 0) 4313 backup_super_roots(fs_info); 4314 4315 sb = fs_info->super_for_commit; 4316 dev_item = &sb->dev_item; 4317 4318 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4319 head = &fs_info->fs_devices->devices; 4320 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4321 4322 if (do_barriers) { 4323 ret = barrier_all_devices(fs_info); 4324 if (ret) { 4325 mutex_unlock( 4326 &fs_info->fs_devices->device_list_mutex); 4327 btrfs_handle_fs_error(fs_info, ret, 4328 "errors while submitting device barriers."); 4329 return ret; 4330 } 4331 } 4332 4333 list_for_each_entry(dev, head, dev_list) { 4334 if (!dev->bdev) { 4335 total_errors++; 4336 continue; 4337 } 4338 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4339 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4340 continue; 4341 4342 btrfs_set_stack_device_generation(dev_item, 0); 4343 btrfs_set_stack_device_type(dev_item, dev->type); 4344 btrfs_set_stack_device_id(dev_item, dev->devid); 4345 btrfs_set_stack_device_total_bytes(dev_item, 4346 dev->commit_total_bytes); 4347 btrfs_set_stack_device_bytes_used(dev_item, 4348 dev->commit_bytes_used); 4349 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4350 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4351 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4352 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4353 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4354 BTRFS_FSID_SIZE); 4355 4356 flags = btrfs_super_flags(sb); 4357 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4358 4359 ret = btrfs_validate_write_super(fs_info, sb); 4360 if (ret < 0) { 4361 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4362 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4363 "unexpected superblock corruption detected"); 4364 return -EUCLEAN; 4365 } 4366 4367 ret = write_dev_supers(dev, sb, max_mirrors); 4368 if (ret) 4369 total_errors++; 4370 } 4371 if (total_errors > max_errors) { 4372 btrfs_err(fs_info, "%d errors while writing supers", 4373 total_errors); 4374 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4375 4376 /* FUA is masked off if unsupported and can't be the reason */ 4377 btrfs_handle_fs_error(fs_info, -EIO, 4378 "%d errors while writing supers", 4379 total_errors); 4380 return -EIO; 4381 } 4382 4383 total_errors = 0; 4384 list_for_each_entry(dev, head, dev_list) { 4385 if (!dev->bdev) 4386 continue; 4387 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4388 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4389 continue; 4390 4391 ret = wait_dev_supers(dev, max_mirrors); 4392 if (ret) 4393 total_errors++; 4394 } 4395 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4396 if (total_errors > max_errors) { 4397 btrfs_handle_fs_error(fs_info, -EIO, 4398 "%d errors while writing supers", 4399 total_errors); 4400 return -EIO; 4401 } 4402 return 0; 4403 } 4404 4405 /* Drop a fs root from the radix tree and free it. */ 4406 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4407 struct btrfs_root *root) 4408 { 4409 bool drop_ref = false; 4410 4411 spin_lock(&fs_info->fs_roots_radix_lock); 4412 radix_tree_delete(&fs_info->fs_roots_radix, 4413 (unsigned long)root->root_key.objectid); 4414 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4415 drop_ref = true; 4416 spin_unlock(&fs_info->fs_roots_radix_lock); 4417 4418 if (BTRFS_FS_ERROR(fs_info)) { 4419 ASSERT(root->log_root == NULL); 4420 if (root->reloc_root) { 4421 btrfs_put_root(root->reloc_root); 4422 root->reloc_root = NULL; 4423 } 4424 } 4425 4426 if (drop_ref) 4427 btrfs_put_root(root); 4428 } 4429 4430 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 4431 { 4432 u64 root_objectid = 0; 4433 struct btrfs_root *gang[8]; 4434 int i = 0; 4435 int err = 0; 4436 unsigned int ret = 0; 4437 4438 while (1) { 4439 spin_lock(&fs_info->fs_roots_radix_lock); 4440 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4441 (void **)gang, root_objectid, 4442 ARRAY_SIZE(gang)); 4443 if (!ret) { 4444 spin_unlock(&fs_info->fs_roots_radix_lock); 4445 break; 4446 } 4447 root_objectid = gang[ret - 1]->root_key.objectid + 1; 4448 4449 for (i = 0; i < ret; i++) { 4450 /* Avoid to grab roots in dead_roots */ 4451 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 4452 gang[i] = NULL; 4453 continue; 4454 } 4455 /* grab all the search result for later use */ 4456 gang[i] = btrfs_grab_root(gang[i]); 4457 } 4458 spin_unlock(&fs_info->fs_roots_radix_lock); 4459 4460 for (i = 0; i < ret; i++) { 4461 if (!gang[i]) 4462 continue; 4463 root_objectid = gang[i]->root_key.objectid; 4464 err = btrfs_orphan_cleanup(gang[i]); 4465 if (err) 4466 break; 4467 btrfs_put_root(gang[i]); 4468 } 4469 root_objectid++; 4470 } 4471 4472 /* release the uncleaned roots due to error */ 4473 for (; i < ret; i++) { 4474 if (gang[i]) 4475 btrfs_put_root(gang[i]); 4476 } 4477 return err; 4478 } 4479 4480 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4481 { 4482 struct btrfs_root *root = fs_info->tree_root; 4483 struct btrfs_trans_handle *trans; 4484 4485 mutex_lock(&fs_info->cleaner_mutex); 4486 btrfs_run_delayed_iputs(fs_info); 4487 mutex_unlock(&fs_info->cleaner_mutex); 4488 wake_up_process(fs_info->cleaner_kthread); 4489 4490 /* wait until ongoing cleanup work done */ 4491 down_write(&fs_info->cleanup_work_sem); 4492 up_write(&fs_info->cleanup_work_sem); 4493 4494 trans = btrfs_join_transaction(root); 4495 if (IS_ERR(trans)) 4496 return PTR_ERR(trans); 4497 return btrfs_commit_transaction(trans); 4498 } 4499 4500 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) 4501 { 4502 struct btrfs_transaction *trans; 4503 struct btrfs_transaction *tmp; 4504 bool found = false; 4505 4506 if (list_empty(&fs_info->trans_list)) 4507 return; 4508 4509 /* 4510 * This function is only called at the very end of close_ctree(), 4511 * thus no other running transaction, no need to take trans_lock. 4512 */ 4513 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); 4514 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { 4515 struct extent_state *cached = NULL; 4516 u64 dirty_bytes = 0; 4517 u64 cur = 0; 4518 u64 found_start; 4519 u64 found_end; 4520 4521 found = true; 4522 while (!find_first_extent_bit(&trans->dirty_pages, cur, 4523 &found_start, &found_end, EXTENT_DIRTY, &cached)) { 4524 dirty_bytes += found_end + 1 - found_start; 4525 cur = found_end + 1; 4526 } 4527 btrfs_warn(fs_info, 4528 "transaction %llu (with %llu dirty metadata bytes) is not committed", 4529 trans->transid, dirty_bytes); 4530 btrfs_cleanup_one_transaction(trans, fs_info); 4531 4532 if (trans == fs_info->running_transaction) 4533 fs_info->running_transaction = NULL; 4534 list_del_init(&trans->list); 4535 4536 btrfs_put_transaction(trans); 4537 trace_btrfs_transaction_commit(fs_info); 4538 } 4539 ASSERT(!found); 4540 } 4541 4542 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4543 { 4544 int ret; 4545 4546 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4547 4548 /* 4549 * If we had UNFINISHED_DROPS we could still be processing them, so 4550 * clear that bit and wake up relocation so it can stop. 4551 * We must do this before stopping the block group reclaim task, because 4552 * at btrfs_relocate_block_group() we wait for this bit, and after the 4553 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we 4554 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will 4555 * return 1. 4556 */ 4557 btrfs_wake_unfinished_drop(fs_info); 4558 4559 /* 4560 * We may have the reclaim task running and relocating a data block group, 4561 * in which case it may create delayed iputs. So stop it before we park 4562 * the cleaner kthread otherwise we can get new delayed iputs after 4563 * parking the cleaner, and that can make the async reclaim task to hang 4564 * if it's waiting for delayed iputs to complete, since the cleaner is 4565 * parked and can not run delayed iputs - this will make us hang when 4566 * trying to stop the async reclaim task. 4567 */ 4568 cancel_work_sync(&fs_info->reclaim_bgs_work); 4569 /* 4570 * We don't want the cleaner to start new transactions, add more delayed 4571 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4572 * because that frees the task_struct, and the transaction kthread might 4573 * still try to wake up the cleaner. 4574 */ 4575 kthread_park(fs_info->cleaner_kthread); 4576 4577 /* wait for the qgroup rescan worker to stop */ 4578 btrfs_qgroup_wait_for_completion(fs_info, false); 4579 4580 /* wait for the uuid_scan task to finish */ 4581 down(&fs_info->uuid_tree_rescan_sem); 4582 /* avoid complains from lockdep et al., set sem back to initial state */ 4583 up(&fs_info->uuid_tree_rescan_sem); 4584 4585 /* pause restriper - we want to resume on mount */ 4586 btrfs_pause_balance(fs_info); 4587 4588 btrfs_dev_replace_suspend_for_unmount(fs_info); 4589 4590 btrfs_scrub_cancel(fs_info); 4591 4592 /* wait for any defraggers to finish */ 4593 wait_event(fs_info->transaction_wait, 4594 (atomic_read(&fs_info->defrag_running) == 0)); 4595 4596 /* clear out the rbtree of defraggable inodes */ 4597 btrfs_cleanup_defrag_inodes(fs_info); 4598 4599 /* 4600 * After we parked the cleaner kthread, ordered extents may have 4601 * completed and created new delayed iputs. If one of the async reclaim 4602 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we 4603 * can hang forever trying to stop it, because if a delayed iput is 4604 * added after it ran btrfs_run_delayed_iputs() and before it called 4605 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is 4606 * no one else to run iputs. 4607 * 4608 * So wait for all ongoing ordered extents to complete and then run 4609 * delayed iputs. This works because once we reach this point no one 4610 * can either create new ordered extents nor create delayed iputs 4611 * through some other means. 4612 * 4613 * Also note that btrfs_wait_ordered_roots() is not safe here, because 4614 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, 4615 * but the delayed iput for the respective inode is made only when doing 4616 * the final btrfs_put_ordered_extent() (which must happen at 4617 * btrfs_finish_ordered_io() when we are unmounting). 4618 */ 4619 btrfs_flush_workqueue(fs_info->endio_write_workers); 4620 /* Ordered extents for free space inodes. */ 4621 btrfs_flush_workqueue(fs_info->endio_freespace_worker); 4622 btrfs_run_delayed_iputs(fs_info); 4623 4624 cancel_work_sync(&fs_info->async_reclaim_work); 4625 cancel_work_sync(&fs_info->async_data_reclaim_work); 4626 cancel_work_sync(&fs_info->preempt_reclaim_work); 4627 4628 /* Cancel or finish ongoing discard work */ 4629 btrfs_discard_cleanup(fs_info); 4630 4631 if (!sb_rdonly(fs_info->sb)) { 4632 /* 4633 * The cleaner kthread is stopped, so do one final pass over 4634 * unused block groups. 4635 */ 4636 btrfs_delete_unused_bgs(fs_info); 4637 4638 /* 4639 * There might be existing delayed inode workers still running 4640 * and holding an empty delayed inode item. We must wait for 4641 * them to complete first because they can create a transaction. 4642 * This happens when someone calls btrfs_balance_delayed_items() 4643 * and then a transaction commit runs the same delayed nodes 4644 * before any delayed worker has done something with the nodes. 4645 * We must wait for any worker here and not at transaction 4646 * commit time since that could cause a deadlock. 4647 * This is a very rare case. 4648 */ 4649 btrfs_flush_workqueue(fs_info->delayed_workers); 4650 4651 ret = btrfs_commit_super(fs_info); 4652 if (ret) 4653 btrfs_err(fs_info, "commit super ret %d", ret); 4654 } 4655 4656 if (BTRFS_FS_ERROR(fs_info)) 4657 btrfs_error_commit_super(fs_info); 4658 4659 kthread_stop(fs_info->transaction_kthread); 4660 kthread_stop(fs_info->cleaner_kthread); 4661 4662 ASSERT(list_empty(&fs_info->delayed_iputs)); 4663 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4664 4665 if (btrfs_check_quota_leak(fs_info)) { 4666 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4667 btrfs_err(fs_info, "qgroup reserved space leaked"); 4668 } 4669 4670 btrfs_free_qgroup_config(fs_info); 4671 ASSERT(list_empty(&fs_info->delalloc_roots)); 4672 4673 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4674 btrfs_info(fs_info, "at unmount delalloc count %lld", 4675 percpu_counter_sum(&fs_info->delalloc_bytes)); 4676 } 4677 4678 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4679 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4680 percpu_counter_sum(&fs_info->ordered_bytes)); 4681 4682 btrfs_sysfs_remove_mounted(fs_info); 4683 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4684 4685 btrfs_put_block_group_cache(fs_info); 4686 4687 /* 4688 * we must make sure there is not any read request to 4689 * submit after we stopping all workers. 4690 */ 4691 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4692 btrfs_stop_all_workers(fs_info); 4693 4694 /* We shouldn't have any transaction open at this point */ 4695 warn_about_uncommitted_trans(fs_info); 4696 4697 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4698 free_root_pointers(fs_info, true); 4699 btrfs_free_fs_roots(fs_info); 4700 4701 /* 4702 * We must free the block groups after dropping the fs_roots as we could 4703 * have had an IO error and have left over tree log blocks that aren't 4704 * cleaned up until the fs roots are freed. This makes the block group 4705 * accounting appear to be wrong because there's pending reserved bytes, 4706 * so make sure we do the block group cleanup afterwards. 4707 */ 4708 btrfs_free_block_groups(fs_info); 4709 4710 iput(fs_info->btree_inode); 4711 4712 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4713 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4714 btrfsic_unmount(fs_info->fs_devices); 4715 #endif 4716 4717 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4718 btrfs_close_devices(fs_info->fs_devices); 4719 } 4720 4721 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4722 int atomic) 4723 { 4724 int ret; 4725 struct inode *btree_inode = buf->pages[0]->mapping->host; 4726 4727 ret = extent_buffer_uptodate(buf); 4728 if (!ret) 4729 return ret; 4730 4731 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4732 parent_transid, atomic); 4733 if (ret == -EAGAIN) 4734 return ret; 4735 return !ret; 4736 } 4737 4738 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4739 { 4740 struct btrfs_fs_info *fs_info = buf->fs_info; 4741 u64 transid = btrfs_header_generation(buf); 4742 int was_dirty; 4743 4744 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4745 /* 4746 * This is a fast path so only do this check if we have sanity tests 4747 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4748 * outside of the sanity tests. 4749 */ 4750 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4751 return; 4752 #endif 4753 btrfs_assert_tree_write_locked(buf); 4754 if (transid != fs_info->generation) 4755 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4756 buf->start, transid, fs_info->generation); 4757 was_dirty = set_extent_buffer_dirty(buf); 4758 if (!was_dirty) 4759 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4760 buf->len, 4761 fs_info->dirty_metadata_batch); 4762 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4763 /* 4764 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4765 * but item data not updated. 4766 * So here we should only check item pointers, not item data. 4767 */ 4768 if (btrfs_header_level(buf) == 0 && 4769 btrfs_check_leaf_relaxed(buf)) { 4770 btrfs_print_leaf(buf); 4771 ASSERT(0); 4772 } 4773 #endif 4774 } 4775 4776 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4777 int flush_delayed) 4778 { 4779 /* 4780 * looks as though older kernels can get into trouble with 4781 * this code, they end up stuck in balance_dirty_pages forever 4782 */ 4783 int ret; 4784 4785 if (current->flags & PF_MEMALLOC) 4786 return; 4787 4788 if (flush_delayed) 4789 btrfs_balance_delayed_items(fs_info); 4790 4791 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4792 BTRFS_DIRTY_METADATA_THRESH, 4793 fs_info->dirty_metadata_batch); 4794 if (ret > 0) { 4795 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4796 } 4797 } 4798 4799 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4800 { 4801 __btrfs_btree_balance_dirty(fs_info, 1); 4802 } 4803 4804 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4805 { 4806 __btrfs_btree_balance_dirty(fs_info, 0); 4807 } 4808 4809 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4810 { 4811 /* cleanup FS via transaction */ 4812 btrfs_cleanup_transaction(fs_info); 4813 4814 mutex_lock(&fs_info->cleaner_mutex); 4815 btrfs_run_delayed_iputs(fs_info); 4816 mutex_unlock(&fs_info->cleaner_mutex); 4817 4818 down_write(&fs_info->cleanup_work_sem); 4819 up_write(&fs_info->cleanup_work_sem); 4820 } 4821 4822 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4823 { 4824 struct btrfs_root *gang[8]; 4825 u64 root_objectid = 0; 4826 int ret; 4827 4828 spin_lock(&fs_info->fs_roots_radix_lock); 4829 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4830 (void **)gang, root_objectid, 4831 ARRAY_SIZE(gang))) != 0) { 4832 int i; 4833 4834 for (i = 0; i < ret; i++) 4835 gang[i] = btrfs_grab_root(gang[i]); 4836 spin_unlock(&fs_info->fs_roots_radix_lock); 4837 4838 for (i = 0; i < ret; i++) { 4839 if (!gang[i]) 4840 continue; 4841 root_objectid = gang[i]->root_key.objectid; 4842 btrfs_free_log(NULL, gang[i]); 4843 btrfs_put_root(gang[i]); 4844 } 4845 root_objectid++; 4846 spin_lock(&fs_info->fs_roots_radix_lock); 4847 } 4848 spin_unlock(&fs_info->fs_roots_radix_lock); 4849 btrfs_free_log_root_tree(NULL, fs_info); 4850 } 4851 4852 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4853 { 4854 struct btrfs_ordered_extent *ordered; 4855 4856 spin_lock(&root->ordered_extent_lock); 4857 /* 4858 * This will just short circuit the ordered completion stuff which will 4859 * make sure the ordered extent gets properly cleaned up. 4860 */ 4861 list_for_each_entry(ordered, &root->ordered_extents, 4862 root_extent_list) 4863 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4864 spin_unlock(&root->ordered_extent_lock); 4865 } 4866 4867 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4868 { 4869 struct btrfs_root *root; 4870 struct list_head splice; 4871 4872 INIT_LIST_HEAD(&splice); 4873 4874 spin_lock(&fs_info->ordered_root_lock); 4875 list_splice_init(&fs_info->ordered_roots, &splice); 4876 while (!list_empty(&splice)) { 4877 root = list_first_entry(&splice, struct btrfs_root, 4878 ordered_root); 4879 list_move_tail(&root->ordered_root, 4880 &fs_info->ordered_roots); 4881 4882 spin_unlock(&fs_info->ordered_root_lock); 4883 btrfs_destroy_ordered_extents(root); 4884 4885 cond_resched(); 4886 spin_lock(&fs_info->ordered_root_lock); 4887 } 4888 spin_unlock(&fs_info->ordered_root_lock); 4889 4890 /* 4891 * We need this here because if we've been flipped read-only we won't 4892 * get sync() from the umount, so we need to make sure any ordered 4893 * extents that haven't had their dirty pages IO start writeout yet 4894 * actually get run and error out properly. 4895 */ 4896 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4897 } 4898 4899 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4900 struct btrfs_fs_info *fs_info) 4901 { 4902 struct rb_node *node; 4903 struct btrfs_delayed_ref_root *delayed_refs; 4904 struct btrfs_delayed_ref_node *ref; 4905 int ret = 0; 4906 4907 delayed_refs = &trans->delayed_refs; 4908 4909 spin_lock(&delayed_refs->lock); 4910 if (atomic_read(&delayed_refs->num_entries) == 0) { 4911 spin_unlock(&delayed_refs->lock); 4912 btrfs_debug(fs_info, "delayed_refs has NO entry"); 4913 return ret; 4914 } 4915 4916 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4917 struct btrfs_delayed_ref_head *head; 4918 struct rb_node *n; 4919 bool pin_bytes = false; 4920 4921 head = rb_entry(node, struct btrfs_delayed_ref_head, 4922 href_node); 4923 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4924 continue; 4925 4926 spin_lock(&head->lock); 4927 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4928 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4929 ref_node); 4930 ref->in_tree = 0; 4931 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4932 RB_CLEAR_NODE(&ref->ref_node); 4933 if (!list_empty(&ref->add_list)) 4934 list_del(&ref->add_list); 4935 atomic_dec(&delayed_refs->num_entries); 4936 btrfs_put_delayed_ref(ref); 4937 } 4938 if (head->must_insert_reserved) 4939 pin_bytes = true; 4940 btrfs_free_delayed_extent_op(head->extent_op); 4941 btrfs_delete_ref_head(delayed_refs, head); 4942 spin_unlock(&head->lock); 4943 spin_unlock(&delayed_refs->lock); 4944 mutex_unlock(&head->mutex); 4945 4946 if (pin_bytes) { 4947 struct btrfs_block_group *cache; 4948 4949 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 4950 BUG_ON(!cache); 4951 4952 spin_lock(&cache->space_info->lock); 4953 spin_lock(&cache->lock); 4954 cache->pinned += head->num_bytes; 4955 btrfs_space_info_update_bytes_pinned(fs_info, 4956 cache->space_info, head->num_bytes); 4957 cache->reserved -= head->num_bytes; 4958 cache->space_info->bytes_reserved -= head->num_bytes; 4959 spin_unlock(&cache->lock); 4960 spin_unlock(&cache->space_info->lock); 4961 4962 btrfs_put_block_group(cache); 4963 4964 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 4965 head->bytenr + head->num_bytes - 1); 4966 } 4967 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4968 btrfs_put_delayed_ref_head(head); 4969 cond_resched(); 4970 spin_lock(&delayed_refs->lock); 4971 } 4972 btrfs_qgroup_destroy_extent_records(trans); 4973 4974 spin_unlock(&delayed_refs->lock); 4975 4976 return ret; 4977 } 4978 4979 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4980 { 4981 struct btrfs_inode *btrfs_inode; 4982 struct list_head splice; 4983 4984 INIT_LIST_HEAD(&splice); 4985 4986 spin_lock(&root->delalloc_lock); 4987 list_splice_init(&root->delalloc_inodes, &splice); 4988 4989 while (!list_empty(&splice)) { 4990 struct inode *inode = NULL; 4991 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4992 delalloc_inodes); 4993 __btrfs_del_delalloc_inode(root, btrfs_inode); 4994 spin_unlock(&root->delalloc_lock); 4995 4996 /* 4997 * Make sure we get a live inode and that it'll not disappear 4998 * meanwhile. 4999 */ 5000 inode = igrab(&btrfs_inode->vfs_inode); 5001 if (inode) { 5002 invalidate_inode_pages2(inode->i_mapping); 5003 iput(inode); 5004 } 5005 spin_lock(&root->delalloc_lock); 5006 } 5007 spin_unlock(&root->delalloc_lock); 5008 } 5009 5010 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 5011 { 5012 struct btrfs_root *root; 5013 struct list_head splice; 5014 5015 INIT_LIST_HEAD(&splice); 5016 5017 spin_lock(&fs_info->delalloc_root_lock); 5018 list_splice_init(&fs_info->delalloc_roots, &splice); 5019 while (!list_empty(&splice)) { 5020 root = list_first_entry(&splice, struct btrfs_root, 5021 delalloc_root); 5022 root = btrfs_grab_root(root); 5023 BUG_ON(!root); 5024 spin_unlock(&fs_info->delalloc_root_lock); 5025 5026 btrfs_destroy_delalloc_inodes(root); 5027 btrfs_put_root(root); 5028 5029 spin_lock(&fs_info->delalloc_root_lock); 5030 } 5031 spin_unlock(&fs_info->delalloc_root_lock); 5032 } 5033 5034 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 5035 struct extent_io_tree *dirty_pages, 5036 int mark) 5037 { 5038 int ret; 5039 struct extent_buffer *eb; 5040 u64 start = 0; 5041 u64 end; 5042 5043 while (1) { 5044 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 5045 mark, NULL); 5046 if (ret) 5047 break; 5048 5049 clear_extent_bits(dirty_pages, start, end, mark); 5050 while (start <= end) { 5051 eb = find_extent_buffer(fs_info, start); 5052 start += fs_info->nodesize; 5053 if (!eb) 5054 continue; 5055 wait_on_extent_buffer_writeback(eb); 5056 5057 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 5058 &eb->bflags)) 5059 clear_extent_buffer_dirty(eb); 5060 free_extent_buffer_stale(eb); 5061 } 5062 } 5063 5064 return ret; 5065 } 5066 5067 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 5068 struct extent_io_tree *unpin) 5069 { 5070 u64 start; 5071 u64 end; 5072 int ret; 5073 5074 while (1) { 5075 struct extent_state *cached_state = NULL; 5076 5077 /* 5078 * The btrfs_finish_extent_commit() may get the same range as 5079 * ours between find_first_extent_bit and clear_extent_dirty. 5080 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 5081 * the same extent range. 5082 */ 5083 mutex_lock(&fs_info->unused_bg_unpin_mutex); 5084 ret = find_first_extent_bit(unpin, 0, &start, &end, 5085 EXTENT_DIRTY, &cached_state); 5086 if (ret) { 5087 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 5088 break; 5089 } 5090 5091 clear_extent_dirty(unpin, start, end, &cached_state); 5092 free_extent_state(cached_state); 5093 btrfs_error_unpin_extent_range(fs_info, start, end); 5094 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 5095 cond_resched(); 5096 } 5097 5098 return 0; 5099 } 5100 5101 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 5102 { 5103 struct inode *inode; 5104 5105 inode = cache->io_ctl.inode; 5106 if (inode) { 5107 invalidate_inode_pages2(inode->i_mapping); 5108 BTRFS_I(inode)->generation = 0; 5109 cache->io_ctl.inode = NULL; 5110 iput(inode); 5111 } 5112 ASSERT(cache->io_ctl.pages == NULL); 5113 btrfs_put_block_group(cache); 5114 } 5115 5116 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 5117 struct btrfs_fs_info *fs_info) 5118 { 5119 struct btrfs_block_group *cache; 5120 5121 spin_lock(&cur_trans->dirty_bgs_lock); 5122 while (!list_empty(&cur_trans->dirty_bgs)) { 5123 cache = list_first_entry(&cur_trans->dirty_bgs, 5124 struct btrfs_block_group, 5125 dirty_list); 5126 5127 if (!list_empty(&cache->io_list)) { 5128 spin_unlock(&cur_trans->dirty_bgs_lock); 5129 list_del_init(&cache->io_list); 5130 btrfs_cleanup_bg_io(cache); 5131 spin_lock(&cur_trans->dirty_bgs_lock); 5132 } 5133 5134 list_del_init(&cache->dirty_list); 5135 spin_lock(&cache->lock); 5136 cache->disk_cache_state = BTRFS_DC_ERROR; 5137 spin_unlock(&cache->lock); 5138 5139 spin_unlock(&cur_trans->dirty_bgs_lock); 5140 btrfs_put_block_group(cache); 5141 btrfs_delayed_refs_rsv_release(fs_info, 1); 5142 spin_lock(&cur_trans->dirty_bgs_lock); 5143 } 5144 spin_unlock(&cur_trans->dirty_bgs_lock); 5145 5146 /* 5147 * Refer to the definition of io_bgs member for details why it's safe 5148 * to use it without any locking 5149 */ 5150 while (!list_empty(&cur_trans->io_bgs)) { 5151 cache = list_first_entry(&cur_trans->io_bgs, 5152 struct btrfs_block_group, 5153 io_list); 5154 5155 list_del_init(&cache->io_list); 5156 spin_lock(&cache->lock); 5157 cache->disk_cache_state = BTRFS_DC_ERROR; 5158 spin_unlock(&cache->lock); 5159 btrfs_cleanup_bg_io(cache); 5160 } 5161 } 5162 5163 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 5164 struct btrfs_fs_info *fs_info) 5165 { 5166 struct btrfs_device *dev, *tmp; 5167 5168 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 5169 ASSERT(list_empty(&cur_trans->dirty_bgs)); 5170 ASSERT(list_empty(&cur_trans->io_bgs)); 5171 5172 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 5173 post_commit_list) { 5174 list_del_init(&dev->post_commit_list); 5175 } 5176 5177 btrfs_destroy_delayed_refs(cur_trans, fs_info); 5178 5179 cur_trans->state = TRANS_STATE_COMMIT_START; 5180 wake_up(&fs_info->transaction_blocked_wait); 5181 5182 cur_trans->state = TRANS_STATE_UNBLOCKED; 5183 wake_up(&fs_info->transaction_wait); 5184 5185 btrfs_destroy_delayed_inodes(fs_info); 5186 5187 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 5188 EXTENT_DIRTY); 5189 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 5190 5191 btrfs_free_redirty_list(cur_trans); 5192 5193 cur_trans->state =TRANS_STATE_COMPLETED; 5194 wake_up(&cur_trans->commit_wait); 5195 } 5196 5197 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 5198 { 5199 struct btrfs_transaction *t; 5200 5201 mutex_lock(&fs_info->transaction_kthread_mutex); 5202 5203 spin_lock(&fs_info->trans_lock); 5204 while (!list_empty(&fs_info->trans_list)) { 5205 t = list_first_entry(&fs_info->trans_list, 5206 struct btrfs_transaction, list); 5207 if (t->state >= TRANS_STATE_COMMIT_START) { 5208 refcount_inc(&t->use_count); 5209 spin_unlock(&fs_info->trans_lock); 5210 btrfs_wait_for_commit(fs_info, t->transid); 5211 btrfs_put_transaction(t); 5212 spin_lock(&fs_info->trans_lock); 5213 continue; 5214 } 5215 if (t == fs_info->running_transaction) { 5216 t->state = TRANS_STATE_COMMIT_DOING; 5217 spin_unlock(&fs_info->trans_lock); 5218 /* 5219 * We wait for 0 num_writers since we don't hold a trans 5220 * handle open currently for this transaction. 5221 */ 5222 wait_event(t->writer_wait, 5223 atomic_read(&t->num_writers) == 0); 5224 } else { 5225 spin_unlock(&fs_info->trans_lock); 5226 } 5227 btrfs_cleanup_one_transaction(t, fs_info); 5228 5229 spin_lock(&fs_info->trans_lock); 5230 if (t == fs_info->running_transaction) 5231 fs_info->running_transaction = NULL; 5232 list_del_init(&t->list); 5233 spin_unlock(&fs_info->trans_lock); 5234 5235 btrfs_put_transaction(t); 5236 trace_btrfs_transaction_commit(fs_info); 5237 spin_lock(&fs_info->trans_lock); 5238 } 5239 spin_unlock(&fs_info->trans_lock); 5240 btrfs_destroy_all_ordered_extents(fs_info); 5241 btrfs_destroy_delayed_inodes(fs_info); 5242 btrfs_assert_delayed_root_empty(fs_info); 5243 btrfs_destroy_all_delalloc_inodes(fs_info); 5244 btrfs_drop_all_logs(fs_info); 5245 mutex_unlock(&fs_info->transaction_kthread_mutex); 5246 5247 return 0; 5248 } 5249 5250 int btrfs_init_root_free_objectid(struct btrfs_root *root) 5251 { 5252 struct btrfs_path *path; 5253 int ret; 5254 struct extent_buffer *l; 5255 struct btrfs_key search_key; 5256 struct btrfs_key found_key; 5257 int slot; 5258 5259 path = btrfs_alloc_path(); 5260 if (!path) 5261 return -ENOMEM; 5262 5263 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 5264 search_key.type = -1; 5265 search_key.offset = (u64)-1; 5266 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 5267 if (ret < 0) 5268 goto error; 5269 BUG_ON(ret == 0); /* Corruption */ 5270 if (path->slots[0] > 0) { 5271 slot = path->slots[0] - 1; 5272 l = path->nodes[0]; 5273 btrfs_item_key_to_cpu(l, &found_key, slot); 5274 root->free_objectid = max_t(u64, found_key.objectid + 1, 5275 BTRFS_FIRST_FREE_OBJECTID); 5276 } else { 5277 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 5278 } 5279 ret = 0; 5280 error: 5281 btrfs_free_path(path); 5282 return ret; 5283 } 5284 5285 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 5286 { 5287 int ret; 5288 mutex_lock(&root->objectid_mutex); 5289 5290 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 5291 btrfs_warn(root->fs_info, 5292 "the objectid of root %llu reaches its highest value", 5293 root->root_key.objectid); 5294 ret = -ENOSPC; 5295 goto out; 5296 } 5297 5298 *objectid = root->free_objectid++; 5299 ret = 0; 5300 out: 5301 mutex_unlock(&root->objectid_mutex); 5302 return ret; 5303 } 5304