1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/crc32c.h> 30 #include <linux/slab.h> 31 #include <linux/migrate.h> 32 #include <linux/ratelimit.h> 33 #include <linux/uuid.h> 34 #include <asm/unaligned.h> 35 #include "compat.h" 36 #include "ctree.h" 37 #include "disk-io.h" 38 #include "transaction.h" 39 #include "btrfs_inode.h" 40 #include "volumes.h" 41 #include "print-tree.h" 42 #include "async-thread.h" 43 #include "locking.h" 44 #include "tree-log.h" 45 #include "free-space-cache.h" 46 #include "inode-map.h" 47 #include "check-integrity.h" 48 #include "rcu-string.h" 49 #include "dev-replace.h" 50 #include "raid56.h" 51 52 #ifdef CONFIG_X86 53 #include <asm/cpufeature.h> 54 #endif 55 56 static struct extent_io_ops btree_extent_io_ops; 57 static void end_workqueue_fn(struct btrfs_work *work); 58 static void free_fs_root(struct btrfs_root *root); 59 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 60 int read_only); 61 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t, 62 struct btrfs_root *root); 63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 65 struct btrfs_root *root); 66 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t); 67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 68 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 69 struct extent_io_tree *dirty_pages, 70 int mark); 71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 72 struct extent_io_tree *pinned_extents); 73 static int btrfs_cleanup_transaction(struct btrfs_root *root); 74 static void btrfs_error_commit_super(struct btrfs_root *root); 75 76 /* 77 * end_io_wq structs are used to do processing in task context when an IO is 78 * complete. This is used during reads to verify checksums, and it is used 79 * by writes to insert metadata for new file extents after IO is complete. 80 */ 81 struct end_io_wq { 82 struct bio *bio; 83 bio_end_io_t *end_io; 84 void *private; 85 struct btrfs_fs_info *info; 86 int error; 87 int metadata; 88 struct list_head list; 89 struct btrfs_work work; 90 }; 91 92 /* 93 * async submit bios are used to offload expensive checksumming 94 * onto the worker threads. They checksum file and metadata bios 95 * just before they are sent down the IO stack. 96 */ 97 struct async_submit_bio { 98 struct inode *inode; 99 struct bio *bio; 100 struct list_head list; 101 extent_submit_bio_hook_t *submit_bio_start; 102 extent_submit_bio_hook_t *submit_bio_done; 103 int rw; 104 int mirror_num; 105 unsigned long bio_flags; 106 /* 107 * bio_offset is optional, can be used if the pages in the bio 108 * can't tell us where in the file the bio should go 109 */ 110 u64 bio_offset; 111 struct btrfs_work work; 112 int error; 113 }; 114 115 /* 116 * Lockdep class keys for extent_buffer->lock's in this root. For a given 117 * eb, the lockdep key is determined by the btrfs_root it belongs to and 118 * the level the eb occupies in the tree. 119 * 120 * Different roots are used for different purposes and may nest inside each 121 * other and they require separate keysets. As lockdep keys should be 122 * static, assign keysets according to the purpose of the root as indicated 123 * by btrfs_root->objectid. This ensures that all special purpose roots 124 * have separate keysets. 125 * 126 * Lock-nesting across peer nodes is always done with the immediate parent 127 * node locked thus preventing deadlock. As lockdep doesn't know this, use 128 * subclass to avoid triggering lockdep warning in such cases. 129 * 130 * The key is set by the readpage_end_io_hook after the buffer has passed 131 * csum validation but before the pages are unlocked. It is also set by 132 * btrfs_init_new_buffer on freshly allocated blocks. 133 * 134 * We also add a check to make sure the highest level of the tree is the 135 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 136 * needs update as well. 137 */ 138 #ifdef CONFIG_DEBUG_LOCK_ALLOC 139 # if BTRFS_MAX_LEVEL != 8 140 # error 141 # endif 142 143 static struct btrfs_lockdep_keyset { 144 u64 id; /* root objectid */ 145 const char *name_stem; /* lock name stem */ 146 char names[BTRFS_MAX_LEVEL + 1][20]; 147 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 148 } btrfs_lockdep_keysets[] = { 149 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 150 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 151 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 152 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 153 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 154 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 155 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 156 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 157 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 158 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 159 { .id = 0, .name_stem = "tree" }, 160 }; 161 162 void __init btrfs_init_lockdep(void) 163 { 164 int i, j; 165 166 /* initialize lockdep class names */ 167 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 168 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 169 170 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 171 snprintf(ks->names[j], sizeof(ks->names[j]), 172 "btrfs-%s-%02d", ks->name_stem, j); 173 } 174 } 175 176 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 177 int level) 178 { 179 struct btrfs_lockdep_keyset *ks; 180 181 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 182 183 /* find the matching keyset, id 0 is the default entry */ 184 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 185 if (ks->id == objectid) 186 break; 187 188 lockdep_set_class_and_name(&eb->lock, 189 &ks->keys[level], ks->names[level]); 190 } 191 192 #endif 193 194 /* 195 * extents on the btree inode are pretty simple, there's one extent 196 * that covers the entire device 197 */ 198 static struct extent_map *btree_get_extent(struct inode *inode, 199 struct page *page, size_t pg_offset, u64 start, u64 len, 200 int create) 201 { 202 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 203 struct extent_map *em; 204 int ret; 205 206 read_lock(&em_tree->lock); 207 em = lookup_extent_mapping(em_tree, start, len); 208 if (em) { 209 em->bdev = 210 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 211 read_unlock(&em_tree->lock); 212 goto out; 213 } 214 read_unlock(&em_tree->lock); 215 216 em = alloc_extent_map(); 217 if (!em) { 218 em = ERR_PTR(-ENOMEM); 219 goto out; 220 } 221 em->start = 0; 222 em->len = (u64)-1; 223 em->block_len = (u64)-1; 224 em->block_start = 0; 225 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 226 227 write_lock(&em_tree->lock); 228 ret = add_extent_mapping(em_tree, em, 0); 229 if (ret == -EEXIST) { 230 free_extent_map(em); 231 em = lookup_extent_mapping(em_tree, start, len); 232 if (!em) 233 em = ERR_PTR(-EIO); 234 } else if (ret) { 235 free_extent_map(em); 236 em = ERR_PTR(ret); 237 } 238 write_unlock(&em_tree->lock); 239 240 out: 241 return em; 242 } 243 244 u32 btrfs_csum_data(char *data, u32 seed, size_t len) 245 { 246 return crc32c(seed, data, len); 247 } 248 249 void btrfs_csum_final(u32 crc, char *result) 250 { 251 put_unaligned_le32(~crc, result); 252 } 253 254 /* 255 * compute the csum for a btree block, and either verify it or write it 256 * into the csum field of the block. 257 */ 258 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 259 int verify) 260 { 261 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 262 char *result = NULL; 263 unsigned long len; 264 unsigned long cur_len; 265 unsigned long offset = BTRFS_CSUM_SIZE; 266 char *kaddr; 267 unsigned long map_start; 268 unsigned long map_len; 269 int err; 270 u32 crc = ~(u32)0; 271 unsigned long inline_result; 272 273 len = buf->len - offset; 274 while (len > 0) { 275 err = map_private_extent_buffer(buf, offset, 32, 276 &kaddr, &map_start, &map_len); 277 if (err) 278 return 1; 279 cur_len = min(len, map_len - (offset - map_start)); 280 crc = btrfs_csum_data(kaddr + offset - map_start, 281 crc, cur_len); 282 len -= cur_len; 283 offset += cur_len; 284 } 285 if (csum_size > sizeof(inline_result)) { 286 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 287 if (!result) 288 return 1; 289 } else { 290 result = (char *)&inline_result; 291 } 292 293 btrfs_csum_final(crc, result); 294 295 if (verify) { 296 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 297 u32 val; 298 u32 found = 0; 299 memcpy(&found, result, csum_size); 300 301 read_extent_buffer(buf, &val, 0, csum_size); 302 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify " 303 "failed on %llu wanted %X found %X " 304 "level %d\n", 305 root->fs_info->sb->s_id, 306 (unsigned long long)buf->start, val, found, 307 btrfs_header_level(buf)); 308 if (result != (char *)&inline_result) 309 kfree(result); 310 return 1; 311 } 312 } else { 313 write_extent_buffer(buf, result, 0, csum_size); 314 } 315 if (result != (char *)&inline_result) 316 kfree(result); 317 return 0; 318 } 319 320 /* 321 * we can't consider a given block up to date unless the transid of the 322 * block matches the transid in the parent node's pointer. This is how we 323 * detect blocks that either didn't get written at all or got written 324 * in the wrong place. 325 */ 326 static int verify_parent_transid(struct extent_io_tree *io_tree, 327 struct extent_buffer *eb, u64 parent_transid, 328 int atomic) 329 { 330 struct extent_state *cached_state = NULL; 331 int ret; 332 333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 334 return 0; 335 336 if (atomic) 337 return -EAGAIN; 338 339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 340 0, &cached_state); 341 if (extent_buffer_uptodate(eb) && 342 btrfs_header_generation(eb) == parent_transid) { 343 ret = 0; 344 goto out; 345 } 346 printk_ratelimited("parent transid verify failed on %llu wanted %llu " 347 "found %llu\n", 348 (unsigned long long)eb->start, 349 (unsigned long long)parent_transid, 350 (unsigned long long)btrfs_header_generation(eb)); 351 ret = 1; 352 clear_extent_buffer_uptodate(eb); 353 out: 354 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 355 &cached_state, GFP_NOFS); 356 return ret; 357 } 358 359 /* 360 * Return 0 if the superblock checksum type matches the checksum value of that 361 * algorithm. Pass the raw disk superblock data. 362 */ 363 static int btrfs_check_super_csum(char *raw_disk_sb) 364 { 365 struct btrfs_super_block *disk_sb = 366 (struct btrfs_super_block *)raw_disk_sb; 367 u16 csum_type = btrfs_super_csum_type(disk_sb); 368 int ret = 0; 369 370 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 371 u32 crc = ~(u32)0; 372 const int csum_size = sizeof(crc); 373 char result[csum_size]; 374 375 /* 376 * The super_block structure does not span the whole 377 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 378 * is filled with zeros and is included in the checkum. 379 */ 380 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 381 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 382 btrfs_csum_final(crc, result); 383 384 if (memcmp(raw_disk_sb, result, csum_size)) 385 ret = 1; 386 387 if (ret && btrfs_super_generation(disk_sb) < 10) { 388 printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n"); 389 ret = 0; 390 } 391 } 392 393 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 394 printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n", 395 csum_type); 396 ret = 1; 397 } 398 399 return ret; 400 } 401 402 /* 403 * helper to read a given tree block, doing retries as required when 404 * the checksums don't match and we have alternate mirrors to try. 405 */ 406 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 407 struct extent_buffer *eb, 408 u64 start, u64 parent_transid) 409 { 410 struct extent_io_tree *io_tree; 411 int failed = 0; 412 int ret; 413 int num_copies = 0; 414 int mirror_num = 0; 415 int failed_mirror = 0; 416 417 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 418 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 419 while (1) { 420 ret = read_extent_buffer_pages(io_tree, eb, start, 421 WAIT_COMPLETE, 422 btree_get_extent, mirror_num); 423 if (!ret) { 424 if (!verify_parent_transid(io_tree, eb, 425 parent_transid, 0)) 426 break; 427 else 428 ret = -EIO; 429 } 430 431 /* 432 * This buffer's crc is fine, but its contents are corrupted, so 433 * there is no reason to read the other copies, they won't be 434 * any less wrong. 435 */ 436 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 437 break; 438 439 num_copies = btrfs_num_copies(root->fs_info, 440 eb->start, eb->len); 441 if (num_copies == 1) 442 break; 443 444 if (!failed_mirror) { 445 failed = 1; 446 failed_mirror = eb->read_mirror; 447 } 448 449 mirror_num++; 450 if (mirror_num == failed_mirror) 451 mirror_num++; 452 453 if (mirror_num > num_copies) 454 break; 455 } 456 457 if (failed && !ret && failed_mirror) 458 repair_eb_io_failure(root, eb, failed_mirror); 459 460 return ret; 461 } 462 463 /* 464 * checksum a dirty tree block before IO. This has extra checks to make sure 465 * we only fill in the checksum field in the first page of a multi-page block 466 */ 467 468 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 469 { 470 struct extent_io_tree *tree; 471 u64 start = page_offset(page); 472 u64 found_start; 473 struct extent_buffer *eb; 474 475 tree = &BTRFS_I(page->mapping->host)->io_tree; 476 477 eb = (struct extent_buffer *)page->private; 478 if (page != eb->pages[0]) 479 return 0; 480 found_start = btrfs_header_bytenr(eb); 481 if (found_start != start) { 482 WARN_ON(1); 483 return 0; 484 } 485 if (!PageUptodate(page)) { 486 WARN_ON(1); 487 return 0; 488 } 489 csum_tree_block(root, eb, 0); 490 return 0; 491 } 492 493 static int check_tree_block_fsid(struct btrfs_root *root, 494 struct extent_buffer *eb) 495 { 496 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 497 u8 fsid[BTRFS_UUID_SIZE]; 498 int ret = 1; 499 500 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb), 501 BTRFS_FSID_SIZE); 502 while (fs_devices) { 503 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 504 ret = 0; 505 break; 506 } 507 fs_devices = fs_devices->seed; 508 } 509 return ret; 510 } 511 512 #define CORRUPT(reason, eb, root, slot) \ 513 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \ 514 "root=%llu, slot=%d\n", reason, \ 515 (unsigned long long)btrfs_header_bytenr(eb), \ 516 (unsigned long long)root->objectid, slot) 517 518 static noinline int check_leaf(struct btrfs_root *root, 519 struct extent_buffer *leaf) 520 { 521 struct btrfs_key key; 522 struct btrfs_key leaf_key; 523 u32 nritems = btrfs_header_nritems(leaf); 524 int slot; 525 526 if (nritems == 0) 527 return 0; 528 529 /* Check the 0 item */ 530 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 531 BTRFS_LEAF_DATA_SIZE(root)) { 532 CORRUPT("invalid item offset size pair", leaf, root, 0); 533 return -EIO; 534 } 535 536 /* 537 * Check to make sure each items keys are in the correct order and their 538 * offsets make sense. We only have to loop through nritems-1 because 539 * we check the current slot against the next slot, which verifies the 540 * next slot's offset+size makes sense and that the current's slot 541 * offset is correct. 542 */ 543 for (slot = 0; slot < nritems - 1; slot++) { 544 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 545 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 546 547 /* Make sure the keys are in the right order */ 548 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 549 CORRUPT("bad key order", leaf, root, slot); 550 return -EIO; 551 } 552 553 /* 554 * Make sure the offset and ends are right, remember that the 555 * item data starts at the end of the leaf and grows towards the 556 * front. 557 */ 558 if (btrfs_item_offset_nr(leaf, slot) != 559 btrfs_item_end_nr(leaf, slot + 1)) { 560 CORRUPT("slot offset bad", leaf, root, slot); 561 return -EIO; 562 } 563 564 /* 565 * Check to make sure that we don't point outside of the leaf, 566 * just incase all the items are consistent to eachother, but 567 * all point outside of the leaf. 568 */ 569 if (btrfs_item_end_nr(leaf, slot) > 570 BTRFS_LEAF_DATA_SIZE(root)) { 571 CORRUPT("slot end outside of leaf", leaf, root, slot); 572 return -EIO; 573 } 574 } 575 576 return 0; 577 } 578 579 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, 580 struct extent_state *state, int mirror) 581 { 582 struct extent_io_tree *tree; 583 u64 found_start; 584 int found_level; 585 struct extent_buffer *eb; 586 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 587 int ret = 0; 588 int reads_done; 589 590 if (!page->private) 591 goto out; 592 593 tree = &BTRFS_I(page->mapping->host)->io_tree; 594 eb = (struct extent_buffer *)page->private; 595 596 /* the pending IO might have been the only thing that kept this buffer 597 * in memory. Make sure we have a ref for all this other checks 598 */ 599 extent_buffer_get(eb); 600 601 reads_done = atomic_dec_and_test(&eb->io_pages); 602 if (!reads_done) 603 goto err; 604 605 eb->read_mirror = mirror; 606 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) { 607 ret = -EIO; 608 goto err; 609 } 610 611 found_start = btrfs_header_bytenr(eb); 612 if (found_start != eb->start) { 613 printk_ratelimited(KERN_INFO "btrfs bad tree block start " 614 "%llu %llu\n", 615 (unsigned long long)found_start, 616 (unsigned long long)eb->start); 617 ret = -EIO; 618 goto err; 619 } 620 if (check_tree_block_fsid(root, eb)) { 621 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n", 622 (unsigned long long)eb->start); 623 ret = -EIO; 624 goto err; 625 } 626 found_level = btrfs_header_level(eb); 627 if (found_level >= BTRFS_MAX_LEVEL) { 628 btrfs_info(root->fs_info, "bad tree block level %d\n", 629 (int)btrfs_header_level(eb)); 630 ret = -EIO; 631 goto err; 632 } 633 634 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 635 eb, found_level); 636 637 ret = csum_tree_block(root, eb, 1); 638 if (ret) { 639 ret = -EIO; 640 goto err; 641 } 642 643 /* 644 * If this is a leaf block and it is corrupt, set the corrupt bit so 645 * that we don't try and read the other copies of this block, just 646 * return -EIO. 647 */ 648 if (found_level == 0 && check_leaf(root, eb)) { 649 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 650 ret = -EIO; 651 } 652 653 if (!ret) 654 set_extent_buffer_uptodate(eb); 655 err: 656 if (reads_done && 657 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 658 btree_readahead_hook(root, eb, eb->start, ret); 659 660 if (ret) { 661 /* 662 * our io error hook is going to dec the io pages 663 * again, we have to make sure it has something 664 * to decrement 665 */ 666 atomic_inc(&eb->io_pages); 667 clear_extent_buffer_uptodate(eb); 668 } 669 free_extent_buffer(eb); 670 out: 671 return ret; 672 } 673 674 static int btree_io_failed_hook(struct page *page, int failed_mirror) 675 { 676 struct extent_buffer *eb; 677 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 678 679 eb = (struct extent_buffer *)page->private; 680 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 681 eb->read_mirror = failed_mirror; 682 atomic_dec(&eb->io_pages); 683 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 684 btree_readahead_hook(root, eb, eb->start, -EIO); 685 return -EIO; /* we fixed nothing */ 686 } 687 688 static void end_workqueue_bio(struct bio *bio, int err) 689 { 690 struct end_io_wq *end_io_wq = bio->bi_private; 691 struct btrfs_fs_info *fs_info; 692 693 fs_info = end_io_wq->info; 694 end_io_wq->error = err; 695 end_io_wq->work.func = end_workqueue_fn; 696 end_io_wq->work.flags = 0; 697 698 if (bio->bi_rw & REQ_WRITE) { 699 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) 700 btrfs_queue_worker(&fs_info->endio_meta_write_workers, 701 &end_io_wq->work); 702 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) 703 btrfs_queue_worker(&fs_info->endio_freespace_worker, 704 &end_io_wq->work); 705 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 706 btrfs_queue_worker(&fs_info->endio_raid56_workers, 707 &end_io_wq->work); 708 else 709 btrfs_queue_worker(&fs_info->endio_write_workers, 710 &end_io_wq->work); 711 } else { 712 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 713 btrfs_queue_worker(&fs_info->endio_raid56_workers, 714 &end_io_wq->work); 715 else if (end_io_wq->metadata) 716 btrfs_queue_worker(&fs_info->endio_meta_workers, 717 &end_io_wq->work); 718 else 719 btrfs_queue_worker(&fs_info->endio_workers, 720 &end_io_wq->work); 721 } 722 } 723 724 /* 725 * For the metadata arg you want 726 * 727 * 0 - if data 728 * 1 - if normal metadta 729 * 2 - if writing to the free space cache area 730 * 3 - raid parity work 731 */ 732 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 733 int metadata) 734 { 735 struct end_io_wq *end_io_wq; 736 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 737 if (!end_io_wq) 738 return -ENOMEM; 739 740 end_io_wq->private = bio->bi_private; 741 end_io_wq->end_io = bio->bi_end_io; 742 end_io_wq->info = info; 743 end_io_wq->error = 0; 744 end_io_wq->bio = bio; 745 end_io_wq->metadata = metadata; 746 747 bio->bi_private = end_io_wq; 748 bio->bi_end_io = end_workqueue_bio; 749 return 0; 750 } 751 752 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 753 { 754 unsigned long limit = min_t(unsigned long, 755 info->workers.max_workers, 756 info->fs_devices->open_devices); 757 return 256 * limit; 758 } 759 760 static void run_one_async_start(struct btrfs_work *work) 761 { 762 struct async_submit_bio *async; 763 int ret; 764 765 async = container_of(work, struct async_submit_bio, work); 766 ret = async->submit_bio_start(async->inode, async->rw, async->bio, 767 async->mirror_num, async->bio_flags, 768 async->bio_offset); 769 if (ret) 770 async->error = ret; 771 } 772 773 static void run_one_async_done(struct btrfs_work *work) 774 { 775 struct btrfs_fs_info *fs_info; 776 struct async_submit_bio *async; 777 int limit; 778 779 async = container_of(work, struct async_submit_bio, work); 780 fs_info = BTRFS_I(async->inode)->root->fs_info; 781 782 limit = btrfs_async_submit_limit(fs_info); 783 limit = limit * 2 / 3; 784 785 if (atomic_dec_return(&fs_info->nr_async_submits) < limit && 786 waitqueue_active(&fs_info->async_submit_wait)) 787 wake_up(&fs_info->async_submit_wait); 788 789 /* If an error occured we just want to clean up the bio and move on */ 790 if (async->error) { 791 bio_endio(async->bio, async->error); 792 return; 793 } 794 795 async->submit_bio_done(async->inode, async->rw, async->bio, 796 async->mirror_num, async->bio_flags, 797 async->bio_offset); 798 } 799 800 static void run_one_async_free(struct btrfs_work *work) 801 { 802 struct async_submit_bio *async; 803 804 async = container_of(work, struct async_submit_bio, work); 805 kfree(async); 806 } 807 808 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 809 int rw, struct bio *bio, int mirror_num, 810 unsigned long bio_flags, 811 u64 bio_offset, 812 extent_submit_bio_hook_t *submit_bio_start, 813 extent_submit_bio_hook_t *submit_bio_done) 814 { 815 struct async_submit_bio *async; 816 817 async = kmalloc(sizeof(*async), GFP_NOFS); 818 if (!async) 819 return -ENOMEM; 820 821 async->inode = inode; 822 async->rw = rw; 823 async->bio = bio; 824 async->mirror_num = mirror_num; 825 async->submit_bio_start = submit_bio_start; 826 async->submit_bio_done = submit_bio_done; 827 828 async->work.func = run_one_async_start; 829 async->work.ordered_func = run_one_async_done; 830 async->work.ordered_free = run_one_async_free; 831 832 async->work.flags = 0; 833 async->bio_flags = bio_flags; 834 async->bio_offset = bio_offset; 835 836 async->error = 0; 837 838 atomic_inc(&fs_info->nr_async_submits); 839 840 if (rw & REQ_SYNC) 841 btrfs_set_work_high_prio(&async->work); 842 843 btrfs_queue_worker(&fs_info->workers, &async->work); 844 845 while (atomic_read(&fs_info->async_submit_draining) && 846 atomic_read(&fs_info->nr_async_submits)) { 847 wait_event(fs_info->async_submit_wait, 848 (atomic_read(&fs_info->nr_async_submits) == 0)); 849 } 850 851 return 0; 852 } 853 854 static int btree_csum_one_bio(struct bio *bio) 855 { 856 struct bio_vec *bvec = bio->bi_io_vec; 857 int bio_index = 0; 858 struct btrfs_root *root; 859 int ret = 0; 860 861 WARN_ON(bio->bi_vcnt <= 0); 862 while (bio_index < bio->bi_vcnt) { 863 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 864 ret = csum_dirty_buffer(root, bvec->bv_page); 865 if (ret) 866 break; 867 bio_index++; 868 bvec++; 869 } 870 return ret; 871 } 872 873 static int __btree_submit_bio_start(struct inode *inode, int rw, 874 struct bio *bio, int mirror_num, 875 unsigned long bio_flags, 876 u64 bio_offset) 877 { 878 /* 879 * when we're called for a write, we're already in the async 880 * submission context. Just jump into btrfs_map_bio 881 */ 882 return btree_csum_one_bio(bio); 883 } 884 885 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 886 int mirror_num, unsigned long bio_flags, 887 u64 bio_offset) 888 { 889 int ret; 890 891 /* 892 * when we're called for a write, we're already in the async 893 * submission context. Just jump into btrfs_map_bio 894 */ 895 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 896 if (ret) 897 bio_endio(bio, ret); 898 return ret; 899 } 900 901 static int check_async_write(struct inode *inode, unsigned long bio_flags) 902 { 903 if (bio_flags & EXTENT_BIO_TREE_LOG) 904 return 0; 905 #ifdef CONFIG_X86 906 if (cpu_has_xmm4_2) 907 return 0; 908 #endif 909 return 1; 910 } 911 912 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 913 int mirror_num, unsigned long bio_flags, 914 u64 bio_offset) 915 { 916 int async = check_async_write(inode, bio_flags); 917 int ret; 918 919 if (!(rw & REQ_WRITE)) { 920 /* 921 * called for a read, do the setup so that checksum validation 922 * can happen in the async kernel threads 923 */ 924 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 925 bio, 1); 926 if (ret) 927 goto out_w_error; 928 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 929 mirror_num, 0); 930 } else if (!async) { 931 ret = btree_csum_one_bio(bio); 932 if (ret) 933 goto out_w_error; 934 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 935 mirror_num, 0); 936 } else { 937 /* 938 * kthread helpers are used to submit writes so that 939 * checksumming can happen in parallel across all CPUs 940 */ 941 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 942 inode, rw, bio, mirror_num, 0, 943 bio_offset, 944 __btree_submit_bio_start, 945 __btree_submit_bio_done); 946 } 947 948 if (ret) { 949 out_w_error: 950 bio_endio(bio, ret); 951 } 952 return ret; 953 } 954 955 #ifdef CONFIG_MIGRATION 956 static int btree_migratepage(struct address_space *mapping, 957 struct page *newpage, struct page *page, 958 enum migrate_mode mode) 959 { 960 /* 961 * we can't safely write a btree page from here, 962 * we haven't done the locking hook 963 */ 964 if (PageDirty(page)) 965 return -EAGAIN; 966 /* 967 * Buffers may be managed in a filesystem specific way. 968 * We must have no buffers or drop them. 969 */ 970 if (page_has_private(page) && 971 !try_to_release_page(page, GFP_KERNEL)) 972 return -EAGAIN; 973 return migrate_page(mapping, newpage, page, mode); 974 } 975 #endif 976 977 978 static int btree_writepages(struct address_space *mapping, 979 struct writeback_control *wbc) 980 { 981 struct extent_io_tree *tree; 982 struct btrfs_fs_info *fs_info; 983 int ret; 984 985 tree = &BTRFS_I(mapping->host)->io_tree; 986 if (wbc->sync_mode == WB_SYNC_NONE) { 987 988 if (wbc->for_kupdate) 989 return 0; 990 991 fs_info = BTRFS_I(mapping->host)->root->fs_info; 992 /* this is a bit racy, but that's ok */ 993 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 994 BTRFS_DIRTY_METADATA_THRESH); 995 if (ret < 0) 996 return 0; 997 } 998 return btree_write_cache_pages(mapping, wbc); 999 } 1000 1001 static int btree_readpage(struct file *file, struct page *page) 1002 { 1003 struct extent_io_tree *tree; 1004 tree = &BTRFS_I(page->mapping->host)->io_tree; 1005 return extent_read_full_page(tree, page, btree_get_extent, 0); 1006 } 1007 1008 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 1009 { 1010 if (PageWriteback(page) || PageDirty(page)) 1011 return 0; 1012 1013 return try_release_extent_buffer(page); 1014 } 1015 1016 static void btree_invalidatepage(struct page *page, unsigned int offset, 1017 unsigned int length) 1018 { 1019 struct extent_io_tree *tree; 1020 tree = &BTRFS_I(page->mapping->host)->io_tree; 1021 extent_invalidatepage(tree, page, offset); 1022 btree_releasepage(page, GFP_NOFS); 1023 if (PagePrivate(page)) { 1024 printk(KERN_WARNING "btrfs warning page private not zero " 1025 "on page %llu\n", (unsigned long long)page_offset(page)); 1026 ClearPagePrivate(page); 1027 set_page_private(page, 0); 1028 page_cache_release(page); 1029 } 1030 } 1031 1032 static int btree_set_page_dirty(struct page *page) 1033 { 1034 #ifdef DEBUG 1035 struct extent_buffer *eb; 1036 1037 BUG_ON(!PagePrivate(page)); 1038 eb = (struct extent_buffer *)page->private; 1039 BUG_ON(!eb); 1040 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1041 BUG_ON(!atomic_read(&eb->refs)); 1042 btrfs_assert_tree_locked(eb); 1043 #endif 1044 return __set_page_dirty_nobuffers(page); 1045 } 1046 1047 static const struct address_space_operations btree_aops = { 1048 .readpage = btree_readpage, 1049 .writepages = btree_writepages, 1050 .releasepage = btree_releasepage, 1051 .invalidatepage = btree_invalidatepage, 1052 #ifdef CONFIG_MIGRATION 1053 .migratepage = btree_migratepage, 1054 #endif 1055 .set_page_dirty = btree_set_page_dirty, 1056 }; 1057 1058 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1059 u64 parent_transid) 1060 { 1061 struct extent_buffer *buf = NULL; 1062 struct inode *btree_inode = root->fs_info->btree_inode; 1063 int ret = 0; 1064 1065 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1066 if (!buf) 1067 return 0; 1068 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1069 buf, 0, WAIT_NONE, btree_get_extent, 0); 1070 free_extent_buffer(buf); 1071 return ret; 1072 } 1073 1074 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1075 int mirror_num, struct extent_buffer **eb) 1076 { 1077 struct extent_buffer *buf = NULL; 1078 struct inode *btree_inode = root->fs_info->btree_inode; 1079 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1080 int ret; 1081 1082 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1083 if (!buf) 1084 return 0; 1085 1086 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1087 1088 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1089 btree_get_extent, mirror_num); 1090 if (ret) { 1091 free_extent_buffer(buf); 1092 return ret; 1093 } 1094 1095 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1096 free_extent_buffer(buf); 1097 return -EIO; 1098 } else if (extent_buffer_uptodate(buf)) { 1099 *eb = buf; 1100 } else { 1101 free_extent_buffer(buf); 1102 } 1103 return 0; 1104 } 1105 1106 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 1107 u64 bytenr, u32 blocksize) 1108 { 1109 struct inode *btree_inode = root->fs_info->btree_inode; 1110 struct extent_buffer *eb; 1111 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 1112 bytenr, blocksize); 1113 return eb; 1114 } 1115 1116 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1117 u64 bytenr, u32 blocksize) 1118 { 1119 struct inode *btree_inode = root->fs_info->btree_inode; 1120 struct extent_buffer *eb; 1121 1122 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 1123 bytenr, blocksize); 1124 return eb; 1125 } 1126 1127 1128 int btrfs_write_tree_block(struct extent_buffer *buf) 1129 { 1130 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1131 buf->start + buf->len - 1); 1132 } 1133 1134 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1135 { 1136 return filemap_fdatawait_range(buf->pages[0]->mapping, 1137 buf->start, buf->start + buf->len - 1); 1138 } 1139 1140 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1141 u32 blocksize, u64 parent_transid) 1142 { 1143 struct extent_buffer *buf = NULL; 1144 int ret; 1145 1146 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1147 if (!buf) 1148 return NULL; 1149 1150 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1151 return buf; 1152 1153 } 1154 1155 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1156 struct extent_buffer *buf) 1157 { 1158 struct btrfs_fs_info *fs_info = root->fs_info; 1159 1160 if (btrfs_header_generation(buf) == 1161 fs_info->running_transaction->transid) { 1162 btrfs_assert_tree_locked(buf); 1163 1164 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1165 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 1166 -buf->len, 1167 fs_info->dirty_metadata_batch); 1168 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1169 btrfs_set_lock_blocking(buf); 1170 clear_extent_buffer_dirty(buf); 1171 } 1172 } 1173 } 1174 1175 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 1176 u32 stripesize, struct btrfs_root *root, 1177 struct btrfs_fs_info *fs_info, 1178 u64 objectid) 1179 { 1180 root->node = NULL; 1181 root->commit_root = NULL; 1182 root->sectorsize = sectorsize; 1183 root->nodesize = nodesize; 1184 root->leafsize = leafsize; 1185 root->stripesize = stripesize; 1186 root->ref_cows = 0; 1187 root->track_dirty = 0; 1188 root->in_radix = 0; 1189 root->orphan_item_inserted = 0; 1190 root->orphan_cleanup_state = 0; 1191 1192 root->objectid = objectid; 1193 root->last_trans = 0; 1194 root->highest_objectid = 0; 1195 root->nr_delalloc_inodes = 0; 1196 root->nr_ordered_extents = 0; 1197 root->name = NULL; 1198 root->inode_tree = RB_ROOT; 1199 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1200 root->block_rsv = NULL; 1201 root->orphan_block_rsv = NULL; 1202 1203 INIT_LIST_HEAD(&root->dirty_list); 1204 INIT_LIST_HEAD(&root->root_list); 1205 INIT_LIST_HEAD(&root->delalloc_inodes); 1206 INIT_LIST_HEAD(&root->delalloc_root); 1207 INIT_LIST_HEAD(&root->ordered_extents); 1208 INIT_LIST_HEAD(&root->ordered_root); 1209 INIT_LIST_HEAD(&root->logged_list[0]); 1210 INIT_LIST_HEAD(&root->logged_list[1]); 1211 spin_lock_init(&root->orphan_lock); 1212 spin_lock_init(&root->inode_lock); 1213 spin_lock_init(&root->delalloc_lock); 1214 spin_lock_init(&root->ordered_extent_lock); 1215 spin_lock_init(&root->accounting_lock); 1216 spin_lock_init(&root->log_extents_lock[0]); 1217 spin_lock_init(&root->log_extents_lock[1]); 1218 mutex_init(&root->objectid_mutex); 1219 mutex_init(&root->log_mutex); 1220 init_waitqueue_head(&root->log_writer_wait); 1221 init_waitqueue_head(&root->log_commit_wait[0]); 1222 init_waitqueue_head(&root->log_commit_wait[1]); 1223 atomic_set(&root->log_commit[0], 0); 1224 atomic_set(&root->log_commit[1], 0); 1225 atomic_set(&root->log_writers, 0); 1226 atomic_set(&root->log_batch, 0); 1227 atomic_set(&root->orphan_inodes, 0); 1228 atomic_set(&root->refs, 1); 1229 root->log_transid = 0; 1230 root->last_log_commit = 0; 1231 extent_io_tree_init(&root->dirty_log_pages, 1232 fs_info->btree_inode->i_mapping); 1233 1234 memset(&root->root_key, 0, sizeof(root->root_key)); 1235 memset(&root->root_item, 0, sizeof(root->root_item)); 1236 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1237 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 1238 root->defrag_trans_start = fs_info->generation; 1239 init_completion(&root->kobj_unregister); 1240 root->defrag_running = 0; 1241 root->root_key.objectid = objectid; 1242 root->anon_dev = 0; 1243 1244 spin_lock_init(&root->root_item_lock); 1245 } 1246 1247 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info) 1248 { 1249 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS); 1250 if (root) 1251 root->fs_info = fs_info; 1252 return root; 1253 } 1254 1255 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1256 struct btrfs_fs_info *fs_info, 1257 u64 objectid) 1258 { 1259 struct extent_buffer *leaf; 1260 struct btrfs_root *tree_root = fs_info->tree_root; 1261 struct btrfs_root *root; 1262 struct btrfs_key key; 1263 int ret = 0; 1264 u64 bytenr; 1265 uuid_le uuid; 1266 1267 root = btrfs_alloc_root(fs_info); 1268 if (!root) 1269 return ERR_PTR(-ENOMEM); 1270 1271 __setup_root(tree_root->nodesize, tree_root->leafsize, 1272 tree_root->sectorsize, tree_root->stripesize, 1273 root, fs_info, objectid); 1274 root->root_key.objectid = objectid; 1275 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1276 root->root_key.offset = 0; 1277 1278 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 1279 0, objectid, NULL, 0, 0, 0); 1280 if (IS_ERR(leaf)) { 1281 ret = PTR_ERR(leaf); 1282 leaf = NULL; 1283 goto fail; 1284 } 1285 1286 bytenr = leaf->start; 1287 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1288 btrfs_set_header_bytenr(leaf, leaf->start); 1289 btrfs_set_header_generation(leaf, trans->transid); 1290 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1291 btrfs_set_header_owner(leaf, objectid); 1292 root->node = leaf; 1293 1294 write_extent_buffer(leaf, fs_info->fsid, 1295 (unsigned long)btrfs_header_fsid(leaf), 1296 BTRFS_FSID_SIZE); 1297 write_extent_buffer(leaf, fs_info->chunk_tree_uuid, 1298 (unsigned long)btrfs_header_chunk_tree_uuid(leaf), 1299 BTRFS_UUID_SIZE); 1300 btrfs_mark_buffer_dirty(leaf); 1301 1302 root->commit_root = btrfs_root_node(root); 1303 root->track_dirty = 1; 1304 1305 1306 root->root_item.flags = 0; 1307 root->root_item.byte_limit = 0; 1308 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1309 btrfs_set_root_generation(&root->root_item, trans->transid); 1310 btrfs_set_root_level(&root->root_item, 0); 1311 btrfs_set_root_refs(&root->root_item, 1); 1312 btrfs_set_root_used(&root->root_item, leaf->len); 1313 btrfs_set_root_last_snapshot(&root->root_item, 0); 1314 btrfs_set_root_dirid(&root->root_item, 0); 1315 uuid_le_gen(&uuid); 1316 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1317 root->root_item.drop_level = 0; 1318 1319 key.objectid = objectid; 1320 key.type = BTRFS_ROOT_ITEM_KEY; 1321 key.offset = 0; 1322 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1323 if (ret) 1324 goto fail; 1325 1326 btrfs_tree_unlock(leaf); 1327 1328 return root; 1329 1330 fail: 1331 if (leaf) { 1332 btrfs_tree_unlock(leaf); 1333 free_extent_buffer(leaf); 1334 } 1335 kfree(root); 1336 1337 return ERR_PTR(ret); 1338 } 1339 1340 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1341 struct btrfs_fs_info *fs_info) 1342 { 1343 struct btrfs_root *root; 1344 struct btrfs_root *tree_root = fs_info->tree_root; 1345 struct extent_buffer *leaf; 1346 1347 root = btrfs_alloc_root(fs_info); 1348 if (!root) 1349 return ERR_PTR(-ENOMEM); 1350 1351 __setup_root(tree_root->nodesize, tree_root->leafsize, 1352 tree_root->sectorsize, tree_root->stripesize, 1353 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1354 1355 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1356 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1357 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1358 /* 1359 * log trees do not get reference counted because they go away 1360 * before a real commit is actually done. They do store pointers 1361 * to file data extents, and those reference counts still get 1362 * updated (along with back refs to the log tree). 1363 */ 1364 root->ref_cows = 0; 1365 1366 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 1367 BTRFS_TREE_LOG_OBJECTID, NULL, 1368 0, 0, 0); 1369 if (IS_ERR(leaf)) { 1370 kfree(root); 1371 return ERR_CAST(leaf); 1372 } 1373 1374 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1375 btrfs_set_header_bytenr(leaf, leaf->start); 1376 btrfs_set_header_generation(leaf, trans->transid); 1377 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1378 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1379 root->node = leaf; 1380 1381 write_extent_buffer(root->node, root->fs_info->fsid, 1382 (unsigned long)btrfs_header_fsid(root->node), 1383 BTRFS_FSID_SIZE); 1384 btrfs_mark_buffer_dirty(root->node); 1385 btrfs_tree_unlock(root->node); 1386 return root; 1387 } 1388 1389 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1390 struct btrfs_fs_info *fs_info) 1391 { 1392 struct btrfs_root *log_root; 1393 1394 log_root = alloc_log_tree(trans, fs_info); 1395 if (IS_ERR(log_root)) 1396 return PTR_ERR(log_root); 1397 WARN_ON(fs_info->log_root_tree); 1398 fs_info->log_root_tree = log_root; 1399 return 0; 1400 } 1401 1402 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1403 struct btrfs_root *root) 1404 { 1405 struct btrfs_root *log_root; 1406 struct btrfs_inode_item *inode_item; 1407 1408 log_root = alloc_log_tree(trans, root->fs_info); 1409 if (IS_ERR(log_root)) 1410 return PTR_ERR(log_root); 1411 1412 log_root->last_trans = trans->transid; 1413 log_root->root_key.offset = root->root_key.objectid; 1414 1415 inode_item = &log_root->root_item.inode; 1416 inode_item->generation = cpu_to_le64(1); 1417 inode_item->size = cpu_to_le64(3); 1418 inode_item->nlink = cpu_to_le32(1); 1419 inode_item->nbytes = cpu_to_le64(root->leafsize); 1420 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 1421 1422 btrfs_set_root_node(&log_root->root_item, log_root->node); 1423 1424 WARN_ON(root->log_root); 1425 root->log_root = log_root; 1426 root->log_transid = 0; 1427 root->last_log_commit = 0; 1428 return 0; 1429 } 1430 1431 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1432 struct btrfs_key *key) 1433 { 1434 struct btrfs_root *root; 1435 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1436 struct btrfs_path *path; 1437 u64 generation; 1438 u32 blocksize; 1439 int ret; 1440 1441 path = btrfs_alloc_path(); 1442 if (!path) 1443 return ERR_PTR(-ENOMEM); 1444 1445 root = btrfs_alloc_root(fs_info); 1446 if (!root) { 1447 ret = -ENOMEM; 1448 goto alloc_fail; 1449 } 1450 1451 __setup_root(tree_root->nodesize, tree_root->leafsize, 1452 tree_root->sectorsize, tree_root->stripesize, 1453 root, fs_info, key->objectid); 1454 1455 ret = btrfs_find_root(tree_root, key, path, 1456 &root->root_item, &root->root_key); 1457 if (ret) { 1458 if (ret > 0) 1459 ret = -ENOENT; 1460 goto find_fail; 1461 } 1462 1463 generation = btrfs_root_generation(&root->root_item); 1464 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1465 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1466 blocksize, generation); 1467 if (!root->node) { 1468 ret = -ENOMEM; 1469 goto find_fail; 1470 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1471 ret = -EIO; 1472 goto read_fail; 1473 } 1474 root->commit_root = btrfs_root_node(root); 1475 out: 1476 btrfs_free_path(path); 1477 return root; 1478 1479 read_fail: 1480 free_extent_buffer(root->node); 1481 find_fail: 1482 kfree(root); 1483 alloc_fail: 1484 root = ERR_PTR(ret); 1485 goto out; 1486 } 1487 1488 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1489 struct btrfs_key *location) 1490 { 1491 struct btrfs_root *root; 1492 1493 root = btrfs_read_tree_root(tree_root, location); 1494 if (IS_ERR(root)) 1495 return root; 1496 1497 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1498 root->ref_cows = 1; 1499 btrfs_check_and_init_root_item(&root->root_item); 1500 } 1501 1502 return root; 1503 } 1504 1505 int btrfs_init_fs_root(struct btrfs_root *root) 1506 { 1507 int ret; 1508 1509 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1510 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1511 GFP_NOFS); 1512 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1513 ret = -ENOMEM; 1514 goto fail; 1515 } 1516 1517 btrfs_init_free_ino_ctl(root); 1518 mutex_init(&root->fs_commit_mutex); 1519 spin_lock_init(&root->cache_lock); 1520 init_waitqueue_head(&root->cache_wait); 1521 1522 ret = get_anon_bdev(&root->anon_dev); 1523 if (ret) 1524 goto fail; 1525 return 0; 1526 fail: 1527 kfree(root->free_ino_ctl); 1528 kfree(root->free_ino_pinned); 1529 return ret; 1530 } 1531 1532 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1533 u64 root_id) 1534 { 1535 struct btrfs_root *root; 1536 1537 spin_lock(&fs_info->fs_roots_radix_lock); 1538 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1539 (unsigned long)root_id); 1540 spin_unlock(&fs_info->fs_roots_radix_lock); 1541 return root; 1542 } 1543 1544 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1545 struct btrfs_root *root) 1546 { 1547 int ret; 1548 1549 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1550 if (ret) 1551 return ret; 1552 1553 spin_lock(&fs_info->fs_roots_radix_lock); 1554 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1555 (unsigned long)root->root_key.objectid, 1556 root); 1557 if (ret == 0) 1558 root->in_radix = 1; 1559 spin_unlock(&fs_info->fs_roots_radix_lock); 1560 radix_tree_preload_end(); 1561 1562 return ret; 1563 } 1564 1565 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, 1566 struct btrfs_key *location) 1567 { 1568 struct btrfs_root *root; 1569 int ret; 1570 1571 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1572 return fs_info->tree_root; 1573 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1574 return fs_info->extent_root; 1575 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1576 return fs_info->chunk_root; 1577 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1578 return fs_info->dev_root; 1579 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1580 return fs_info->csum_root; 1581 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1582 return fs_info->quota_root ? fs_info->quota_root : 1583 ERR_PTR(-ENOENT); 1584 again: 1585 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1586 if (root) 1587 return root; 1588 1589 root = btrfs_read_fs_root(fs_info->tree_root, location); 1590 if (IS_ERR(root)) 1591 return root; 1592 1593 if (btrfs_root_refs(&root->root_item) == 0) { 1594 ret = -ENOENT; 1595 goto fail; 1596 } 1597 1598 ret = btrfs_init_fs_root(root); 1599 if (ret) 1600 goto fail; 1601 1602 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid); 1603 if (ret < 0) 1604 goto fail; 1605 if (ret == 0) 1606 root->orphan_item_inserted = 1; 1607 1608 ret = btrfs_insert_fs_root(fs_info, root); 1609 if (ret) { 1610 if (ret == -EEXIST) { 1611 free_fs_root(root); 1612 goto again; 1613 } 1614 goto fail; 1615 } 1616 return root; 1617 fail: 1618 free_fs_root(root); 1619 return ERR_PTR(ret); 1620 } 1621 1622 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1623 { 1624 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1625 int ret = 0; 1626 struct btrfs_device *device; 1627 struct backing_dev_info *bdi; 1628 1629 rcu_read_lock(); 1630 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1631 if (!device->bdev) 1632 continue; 1633 bdi = blk_get_backing_dev_info(device->bdev); 1634 if (bdi && bdi_congested(bdi, bdi_bits)) { 1635 ret = 1; 1636 break; 1637 } 1638 } 1639 rcu_read_unlock(); 1640 return ret; 1641 } 1642 1643 /* 1644 * If this fails, caller must call bdi_destroy() to get rid of the 1645 * bdi again. 1646 */ 1647 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1648 { 1649 int err; 1650 1651 bdi->capabilities = BDI_CAP_MAP_COPY; 1652 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY); 1653 if (err) 1654 return err; 1655 1656 bdi->ra_pages = default_backing_dev_info.ra_pages; 1657 bdi->congested_fn = btrfs_congested_fn; 1658 bdi->congested_data = info; 1659 return 0; 1660 } 1661 1662 /* 1663 * called by the kthread helper functions to finally call the bio end_io 1664 * functions. This is where read checksum verification actually happens 1665 */ 1666 static void end_workqueue_fn(struct btrfs_work *work) 1667 { 1668 struct bio *bio; 1669 struct end_io_wq *end_io_wq; 1670 struct btrfs_fs_info *fs_info; 1671 int error; 1672 1673 end_io_wq = container_of(work, struct end_io_wq, work); 1674 bio = end_io_wq->bio; 1675 fs_info = end_io_wq->info; 1676 1677 error = end_io_wq->error; 1678 bio->bi_private = end_io_wq->private; 1679 bio->bi_end_io = end_io_wq->end_io; 1680 kfree(end_io_wq); 1681 bio_endio(bio, error); 1682 } 1683 1684 static int cleaner_kthread(void *arg) 1685 { 1686 struct btrfs_root *root = arg; 1687 int again; 1688 1689 do { 1690 again = 0; 1691 1692 /* Make the cleaner go to sleep early. */ 1693 if (btrfs_need_cleaner_sleep(root)) 1694 goto sleep; 1695 1696 if (!mutex_trylock(&root->fs_info->cleaner_mutex)) 1697 goto sleep; 1698 1699 /* 1700 * Avoid the problem that we change the status of the fs 1701 * during the above check and trylock. 1702 */ 1703 if (btrfs_need_cleaner_sleep(root)) { 1704 mutex_unlock(&root->fs_info->cleaner_mutex); 1705 goto sleep; 1706 } 1707 1708 btrfs_run_delayed_iputs(root); 1709 again = btrfs_clean_one_deleted_snapshot(root); 1710 mutex_unlock(&root->fs_info->cleaner_mutex); 1711 1712 /* 1713 * The defragger has dealt with the R/O remount and umount, 1714 * needn't do anything special here. 1715 */ 1716 btrfs_run_defrag_inodes(root->fs_info); 1717 sleep: 1718 if (!try_to_freeze() && !again) { 1719 set_current_state(TASK_INTERRUPTIBLE); 1720 if (!kthread_should_stop()) 1721 schedule(); 1722 __set_current_state(TASK_RUNNING); 1723 } 1724 } while (!kthread_should_stop()); 1725 return 0; 1726 } 1727 1728 static int transaction_kthread(void *arg) 1729 { 1730 struct btrfs_root *root = arg; 1731 struct btrfs_trans_handle *trans; 1732 struct btrfs_transaction *cur; 1733 u64 transid; 1734 unsigned long now; 1735 unsigned long delay; 1736 bool cannot_commit; 1737 1738 do { 1739 cannot_commit = false; 1740 delay = HZ * 30; 1741 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1742 1743 spin_lock(&root->fs_info->trans_lock); 1744 cur = root->fs_info->running_transaction; 1745 if (!cur) { 1746 spin_unlock(&root->fs_info->trans_lock); 1747 goto sleep; 1748 } 1749 1750 now = get_seconds(); 1751 if (cur->state < TRANS_STATE_BLOCKED && 1752 (now < cur->start_time || now - cur->start_time < 30)) { 1753 spin_unlock(&root->fs_info->trans_lock); 1754 delay = HZ * 5; 1755 goto sleep; 1756 } 1757 transid = cur->transid; 1758 spin_unlock(&root->fs_info->trans_lock); 1759 1760 /* If the file system is aborted, this will always fail. */ 1761 trans = btrfs_attach_transaction(root); 1762 if (IS_ERR(trans)) { 1763 if (PTR_ERR(trans) != -ENOENT) 1764 cannot_commit = true; 1765 goto sleep; 1766 } 1767 if (transid == trans->transid) { 1768 btrfs_commit_transaction(trans, root); 1769 } else { 1770 btrfs_end_transaction(trans, root); 1771 } 1772 sleep: 1773 wake_up_process(root->fs_info->cleaner_kthread); 1774 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1775 1776 if (!try_to_freeze()) { 1777 set_current_state(TASK_INTERRUPTIBLE); 1778 if (!kthread_should_stop() && 1779 (!btrfs_transaction_blocked(root->fs_info) || 1780 cannot_commit)) 1781 schedule_timeout(delay); 1782 __set_current_state(TASK_RUNNING); 1783 } 1784 } while (!kthread_should_stop()); 1785 return 0; 1786 } 1787 1788 /* 1789 * this will find the highest generation in the array of 1790 * root backups. The index of the highest array is returned, 1791 * or -1 if we can't find anything. 1792 * 1793 * We check to make sure the array is valid by comparing the 1794 * generation of the latest root in the array with the generation 1795 * in the super block. If they don't match we pitch it. 1796 */ 1797 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1798 { 1799 u64 cur; 1800 int newest_index = -1; 1801 struct btrfs_root_backup *root_backup; 1802 int i; 1803 1804 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1805 root_backup = info->super_copy->super_roots + i; 1806 cur = btrfs_backup_tree_root_gen(root_backup); 1807 if (cur == newest_gen) 1808 newest_index = i; 1809 } 1810 1811 /* check to see if we actually wrapped around */ 1812 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1813 root_backup = info->super_copy->super_roots; 1814 cur = btrfs_backup_tree_root_gen(root_backup); 1815 if (cur == newest_gen) 1816 newest_index = 0; 1817 } 1818 return newest_index; 1819 } 1820 1821 1822 /* 1823 * find the oldest backup so we know where to store new entries 1824 * in the backup array. This will set the backup_root_index 1825 * field in the fs_info struct 1826 */ 1827 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1828 u64 newest_gen) 1829 { 1830 int newest_index = -1; 1831 1832 newest_index = find_newest_super_backup(info, newest_gen); 1833 /* if there was garbage in there, just move along */ 1834 if (newest_index == -1) { 1835 info->backup_root_index = 0; 1836 } else { 1837 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1838 } 1839 } 1840 1841 /* 1842 * copy all the root pointers into the super backup array. 1843 * this will bump the backup pointer by one when it is 1844 * done 1845 */ 1846 static void backup_super_roots(struct btrfs_fs_info *info) 1847 { 1848 int next_backup; 1849 struct btrfs_root_backup *root_backup; 1850 int last_backup; 1851 1852 next_backup = info->backup_root_index; 1853 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1854 BTRFS_NUM_BACKUP_ROOTS; 1855 1856 /* 1857 * just overwrite the last backup if we're at the same generation 1858 * this happens only at umount 1859 */ 1860 root_backup = info->super_for_commit->super_roots + last_backup; 1861 if (btrfs_backup_tree_root_gen(root_backup) == 1862 btrfs_header_generation(info->tree_root->node)) 1863 next_backup = last_backup; 1864 1865 root_backup = info->super_for_commit->super_roots + next_backup; 1866 1867 /* 1868 * make sure all of our padding and empty slots get zero filled 1869 * regardless of which ones we use today 1870 */ 1871 memset(root_backup, 0, sizeof(*root_backup)); 1872 1873 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1874 1875 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1876 btrfs_set_backup_tree_root_gen(root_backup, 1877 btrfs_header_generation(info->tree_root->node)); 1878 1879 btrfs_set_backup_tree_root_level(root_backup, 1880 btrfs_header_level(info->tree_root->node)); 1881 1882 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1883 btrfs_set_backup_chunk_root_gen(root_backup, 1884 btrfs_header_generation(info->chunk_root->node)); 1885 btrfs_set_backup_chunk_root_level(root_backup, 1886 btrfs_header_level(info->chunk_root->node)); 1887 1888 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1889 btrfs_set_backup_extent_root_gen(root_backup, 1890 btrfs_header_generation(info->extent_root->node)); 1891 btrfs_set_backup_extent_root_level(root_backup, 1892 btrfs_header_level(info->extent_root->node)); 1893 1894 /* 1895 * we might commit during log recovery, which happens before we set 1896 * the fs_root. Make sure it is valid before we fill it in. 1897 */ 1898 if (info->fs_root && info->fs_root->node) { 1899 btrfs_set_backup_fs_root(root_backup, 1900 info->fs_root->node->start); 1901 btrfs_set_backup_fs_root_gen(root_backup, 1902 btrfs_header_generation(info->fs_root->node)); 1903 btrfs_set_backup_fs_root_level(root_backup, 1904 btrfs_header_level(info->fs_root->node)); 1905 } 1906 1907 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1908 btrfs_set_backup_dev_root_gen(root_backup, 1909 btrfs_header_generation(info->dev_root->node)); 1910 btrfs_set_backup_dev_root_level(root_backup, 1911 btrfs_header_level(info->dev_root->node)); 1912 1913 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1914 btrfs_set_backup_csum_root_gen(root_backup, 1915 btrfs_header_generation(info->csum_root->node)); 1916 btrfs_set_backup_csum_root_level(root_backup, 1917 btrfs_header_level(info->csum_root->node)); 1918 1919 btrfs_set_backup_total_bytes(root_backup, 1920 btrfs_super_total_bytes(info->super_copy)); 1921 btrfs_set_backup_bytes_used(root_backup, 1922 btrfs_super_bytes_used(info->super_copy)); 1923 btrfs_set_backup_num_devices(root_backup, 1924 btrfs_super_num_devices(info->super_copy)); 1925 1926 /* 1927 * if we don't copy this out to the super_copy, it won't get remembered 1928 * for the next commit 1929 */ 1930 memcpy(&info->super_copy->super_roots, 1931 &info->super_for_commit->super_roots, 1932 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1933 } 1934 1935 /* 1936 * this copies info out of the root backup array and back into 1937 * the in-memory super block. It is meant to help iterate through 1938 * the array, so you send it the number of backups you've already 1939 * tried and the last backup index you used. 1940 * 1941 * this returns -1 when it has tried all the backups 1942 */ 1943 static noinline int next_root_backup(struct btrfs_fs_info *info, 1944 struct btrfs_super_block *super, 1945 int *num_backups_tried, int *backup_index) 1946 { 1947 struct btrfs_root_backup *root_backup; 1948 int newest = *backup_index; 1949 1950 if (*num_backups_tried == 0) { 1951 u64 gen = btrfs_super_generation(super); 1952 1953 newest = find_newest_super_backup(info, gen); 1954 if (newest == -1) 1955 return -1; 1956 1957 *backup_index = newest; 1958 *num_backups_tried = 1; 1959 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 1960 /* we've tried all the backups, all done */ 1961 return -1; 1962 } else { 1963 /* jump to the next oldest backup */ 1964 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 1965 BTRFS_NUM_BACKUP_ROOTS; 1966 *backup_index = newest; 1967 *num_backups_tried += 1; 1968 } 1969 root_backup = super->super_roots + newest; 1970 1971 btrfs_set_super_generation(super, 1972 btrfs_backup_tree_root_gen(root_backup)); 1973 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1974 btrfs_set_super_root_level(super, 1975 btrfs_backup_tree_root_level(root_backup)); 1976 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1977 1978 /* 1979 * fixme: the total bytes and num_devices need to match or we should 1980 * need a fsck 1981 */ 1982 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1983 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1984 return 0; 1985 } 1986 1987 /* helper to cleanup workers */ 1988 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1989 { 1990 btrfs_stop_workers(&fs_info->generic_worker); 1991 btrfs_stop_workers(&fs_info->fixup_workers); 1992 btrfs_stop_workers(&fs_info->delalloc_workers); 1993 btrfs_stop_workers(&fs_info->workers); 1994 btrfs_stop_workers(&fs_info->endio_workers); 1995 btrfs_stop_workers(&fs_info->endio_meta_workers); 1996 btrfs_stop_workers(&fs_info->endio_raid56_workers); 1997 btrfs_stop_workers(&fs_info->rmw_workers); 1998 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 1999 btrfs_stop_workers(&fs_info->endio_write_workers); 2000 btrfs_stop_workers(&fs_info->endio_freespace_worker); 2001 btrfs_stop_workers(&fs_info->submit_workers); 2002 btrfs_stop_workers(&fs_info->delayed_workers); 2003 btrfs_stop_workers(&fs_info->caching_workers); 2004 btrfs_stop_workers(&fs_info->readahead_workers); 2005 btrfs_stop_workers(&fs_info->flush_workers); 2006 btrfs_stop_workers(&fs_info->qgroup_rescan_workers); 2007 } 2008 2009 /* helper to cleanup tree roots */ 2010 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2011 { 2012 free_extent_buffer(info->tree_root->node); 2013 free_extent_buffer(info->tree_root->commit_root); 2014 info->tree_root->node = NULL; 2015 info->tree_root->commit_root = NULL; 2016 2017 if (info->dev_root) { 2018 free_extent_buffer(info->dev_root->node); 2019 free_extent_buffer(info->dev_root->commit_root); 2020 info->dev_root->node = NULL; 2021 info->dev_root->commit_root = NULL; 2022 } 2023 if (info->extent_root) { 2024 free_extent_buffer(info->extent_root->node); 2025 free_extent_buffer(info->extent_root->commit_root); 2026 info->extent_root->node = NULL; 2027 info->extent_root->commit_root = NULL; 2028 } 2029 if (info->csum_root) { 2030 free_extent_buffer(info->csum_root->node); 2031 free_extent_buffer(info->csum_root->commit_root); 2032 info->csum_root->node = NULL; 2033 info->csum_root->commit_root = NULL; 2034 } 2035 if (info->quota_root) { 2036 free_extent_buffer(info->quota_root->node); 2037 free_extent_buffer(info->quota_root->commit_root); 2038 info->quota_root->node = NULL; 2039 info->quota_root->commit_root = NULL; 2040 } 2041 if (chunk_root) { 2042 free_extent_buffer(info->chunk_root->node); 2043 free_extent_buffer(info->chunk_root->commit_root); 2044 info->chunk_root->node = NULL; 2045 info->chunk_root->commit_root = NULL; 2046 } 2047 } 2048 2049 static void del_fs_roots(struct btrfs_fs_info *fs_info) 2050 { 2051 int ret; 2052 struct btrfs_root *gang[8]; 2053 int i; 2054 2055 while (!list_empty(&fs_info->dead_roots)) { 2056 gang[0] = list_entry(fs_info->dead_roots.next, 2057 struct btrfs_root, root_list); 2058 list_del(&gang[0]->root_list); 2059 2060 if (gang[0]->in_radix) { 2061 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2062 } else { 2063 free_extent_buffer(gang[0]->node); 2064 free_extent_buffer(gang[0]->commit_root); 2065 btrfs_put_fs_root(gang[0]); 2066 } 2067 } 2068 2069 while (1) { 2070 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2071 (void **)gang, 0, 2072 ARRAY_SIZE(gang)); 2073 if (!ret) 2074 break; 2075 for (i = 0; i < ret; i++) 2076 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2077 } 2078 } 2079 2080 int open_ctree(struct super_block *sb, 2081 struct btrfs_fs_devices *fs_devices, 2082 char *options) 2083 { 2084 u32 sectorsize; 2085 u32 nodesize; 2086 u32 leafsize; 2087 u32 blocksize; 2088 u32 stripesize; 2089 u64 generation; 2090 u64 features; 2091 struct btrfs_key location; 2092 struct buffer_head *bh; 2093 struct btrfs_super_block *disk_super; 2094 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2095 struct btrfs_root *tree_root; 2096 struct btrfs_root *extent_root; 2097 struct btrfs_root *csum_root; 2098 struct btrfs_root *chunk_root; 2099 struct btrfs_root *dev_root; 2100 struct btrfs_root *quota_root; 2101 struct btrfs_root *log_tree_root; 2102 int ret; 2103 int err = -EINVAL; 2104 int num_backups_tried = 0; 2105 int backup_index = 0; 2106 2107 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info); 2108 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info); 2109 if (!tree_root || !chunk_root) { 2110 err = -ENOMEM; 2111 goto fail; 2112 } 2113 2114 ret = init_srcu_struct(&fs_info->subvol_srcu); 2115 if (ret) { 2116 err = ret; 2117 goto fail; 2118 } 2119 2120 ret = setup_bdi(fs_info, &fs_info->bdi); 2121 if (ret) { 2122 err = ret; 2123 goto fail_srcu; 2124 } 2125 2126 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0); 2127 if (ret) { 2128 err = ret; 2129 goto fail_bdi; 2130 } 2131 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE * 2132 (1 + ilog2(nr_cpu_ids)); 2133 2134 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0); 2135 if (ret) { 2136 err = ret; 2137 goto fail_dirty_metadata_bytes; 2138 } 2139 2140 fs_info->btree_inode = new_inode(sb); 2141 if (!fs_info->btree_inode) { 2142 err = -ENOMEM; 2143 goto fail_delalloc_bytes; 2144 } 2145 2146 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2147 2148 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2149 INIT_LIST_HEAD(&fs_info->trans_list); 2150 INIT_LIST_HEAD(&fs_info->dead_roots); 2151 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2152 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2153 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2154 spin_lock_init(&fs_info->delalloc_root_lock); 2155 spin_lock_init(&fs_info->trans_lock); 2156 spin_lock_init(&fs_info->fs_roots_radix_lock); 2157 spin_lock_init(&fs_info->delayed_iput_lock); 2158 spin_lock_init(&fs_info->defrag_inodes_lock); 2159 spin_lock_init(&fs_info->free_chunk_lock); 2160 spin_lock_init(&fs_info->tree_mod_seq_lock); 2161 spin_lock_init(&fs_info->super_lock); 2162 rwlock_init(&fs_info->tree_mod_log_lock); 2163 mutex_init(&fs_info->reloc_mutex); 2164 seqlock_init(&fs_info->profiles_lock); 2165 2166 init_completion(&fs_info->kobj_unregister); 2167 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2168 INIT_LIST_HEAD(&fs_info->space_info); 2169 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2170 btrfs_mapping_init(&fs_info->mapping_tree); 2171 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2172 BTRFS_BLOCK_RSV_GLOBAL); 2173 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, 2174 BTRFS_BLOCK_RSV_DELALLOC); 2175 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2176 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2177 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2178 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2179 BTRFS_BLOCK_RSV_DELOPS); 2180 atomic_set(&fs_info->nr_async_submits, 0); 2181 atomic_set(&fs_info->async_delalloc_pages, 0); 2182 atomic_set(&fs_info->async_submit_draining, 0); 2183 atomic_set(&fs_info->nr_async_bios, 0); 2184 atomic_set(&fs_info->defrag_running, 0); 2185 atomic64_set(&fs_info->tree_mod_seq, 0); 2186 fs_info->sb = sb; 2187 fs_info->max_inline = 8192 * 1024; 2188 fs_info->metadata_ratio = 0; 2189 fs_info->defrag_inodes = RB_ROOT; 2190 fs_info->free_chunk_space = 0; 2191 fs_info->tree_mod_log = RB_ROOT; 2192 2193 /* readahead state */ 2194 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT); 2195 spin_lock_init(&fs_info->reada_lock); 2196 2197 fs_info->thread_pool_size = min_t(unsigned long, 2198 num_online_cpus() + 2, 8); 2199 2200 INIT_LIST_HEAD(&fs_info->ordered_roots); 2201 spin_lock_init(&fs_info->ordered_root_lock); 2202 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2203 GFP_NOFS); 2204 if (!fs_info->delayed_root) { 2205 err = -ENOMEM; 2206 goto fail_iput; 2207 } 2208 btrfs_init_delayed_root(fs_info->delayed_root); 2209 2210 mutex_init(&fs_info->scrub_lock); 2211 atomic_set(&fs_info->scrubs_running, 0); 2212 atomic_set(&fs_info->scrub_pause_req, 0); 2213 atomic_set(&fs_info->scrubs_paused, 0); 2214 atomic_set(&fs_info->scrub_cancel_req, 0); 2215 init_waitqueue_head(&fs_info->scrub_pause_wait); 2216 init_rwsem(&fs_info->scrub_super_lock); 2217 fs_info->scrub_workers_refcnt = 0; 2218 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2219 fs_info->check_integrity_print_mask = 0; 2220 #endif 2221 2222 spin_lock_init(&fs_info->balance_lock); 2223 mutex_init(&fs_info->balance_mutex); 2224 atomic_set(&fs_info->balance_running, 0); 2225 atomic_set(&fs_info->balance_pause_req, 0); 2226 atomic_set(&fs_info->balance_cancel_req, 0); 2227 fs_info->balance_ctl = NULL; 2228 init_waitqueue_head(&fs_info->balance_wait_q); 2229 2230 sb->s_blocksize = 4096; 2231 sb->s_blocksize_bits = blksize_bits(4096); 2232 sb->s_bdi = &fs_info->bdi; 2233 2234 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2235 set_nlink(fs_info->btree_inode, 1); 2236 /* 2237 * we set the i_size on the btree inode to the max possible int. 2238 * the real end of the address space is determined by all of 2239 * the devices in the system 2240 */ 2241 fs_info->btree_inode->i_size = OFFSET_MAX; 2242 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 2243 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 2244 2245 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2246 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2247 fs_info->btree_inode->i_mapping); 2248 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0; 2249 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2250 2251 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2252 2253 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2254 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2255 sizeof(struct btrfs_key)); 2256 set_bit(BTRFS_INODE_DUMMY, 2257 &BTRFS_I(fs_info->btree_inode)->runtime_flags); 2258 insert_inode_hash(fs_info->btree_inode); 2259 2260 spin_lock_init(&fs_info->block_group_cache_lock); 2261 fs_info->block_group_cache_tree = RB_ROOT; 2262 fs_info->first_logical_byte = (u64)-1; 2263 2264 extent_io_tree_init(&fs_info->freed_extents[0], 2265 fs_info->btree_inode->i_mapping); 2266 extent_io_tree_init(&fs_info->freed_extents[1], 2267 fs_info->btree_inode->i_mapping); 2268 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2269 fs_info->do_barriers = 1; 2270 2271 2272 mutex_init(&fs_info->ordered_operations_mutex); 2273 mutex_init(&fs_info->tree_log_mutex); 2274 mutex_init(&fs_info->chunk_mutex); 2275 mutex_init(&fs_info->transaction_kthread_mutex); 2276 mutex_init(&fs_info->cleaner_mutex); 2277 mutex_init(&fs_info->volume_mutex); 2278 init_rwsem(&fs_info->extent_commit_sem); 2279 init_rwsem(&fs_info->cleanup_work_sem); 2280 init_rwsem(&fs_info->subvol_sem); 2281 fs_info->dev_replace.lock_owner = 0; 2282 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2283 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2284 mutex_init(&fs_info->dev_replace.lock_management_lock); 2285 mutex_init(&fs_info->dev_replace.lock); 2286 2287 spin_lock_init(&fs_info->qgroup_lock); 2288 mutex_init(&fs_info->qgroup_ioctl_lock); 2289 fs_info->qgroup_tree = RB_ROOT; 2290 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2291 fs_info->qgroup_seq = 1; 2292 fs_info->quota_enabled = 0; 2293 fs_info->pending_quota_state = 0; 2294 fs_info->qgroup_ulist = NULL; 2295 mutex_init(&fs_info->qgroup_rescan_lock); 2296 2297 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2298 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2299 2300 init_waitqueue_head(&fs_info->transaction_throttle); 2301 init_waitqueue_head(&fs_info->transaction_wait); 2302 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2303 init_waitqueue_head(&fs_info->async_submit_wait); 2304 2305 ret = btrfs_alloc_stripe_hash_table(fs_info); 2306 if (ret) { 2307 err = ret; 2308 goto fail_alloc; 2309 } 2310 2311 __setup_root(4096, 4096, 4096, 4096, tree_root, 2312 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2313 2314 invalidate_bdev(fs_devices->latest_bdev); 2315 2316 /* 2317 * Read super block and check the signature bytes only 2318 */ 2319 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2320 if (!bh) { 2321 err = -EINVAL; 2322 goto fail_alloc; 2323 } 2324 2325 /* 2326 * We want to check superblock checksum, the type is stored inside. 2327 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2328 */ 2329 if (btrfs_check_super_csum(bh->b_data)) { 2330 printk(KERN_ERR "btrfs: superblock checksum mismatch\n"); 2331 err = -EINVAL; 2332 goto fail_alloc; 2333 } 2334 2335 /* 2336 * super_copy is zeroed at allocation time and we never touch the 2337 * following bytes up to INFO_SIZE, the checksum is calculated from 2338 * the whole block of INFO_SIZE 2339 */ 2340 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2341 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2342 sizeof(*fs_info->super_for_commit)); 2343 brelse(bh); 2344 2345 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2346 2347 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2348 if (ret) { 2349 printk(KERN_ERR "btrfs: superblock contains fatal errors\n"); 2350 err = -EINVAL; 2351 goto fail_alloc; 2352 } 2353 2354 disk_super = fs_info->super_copy; 2355 if (!btrfs_super_root(disk_super)) 2356 goto fail_alloc; 2357 2358 /* check FS state, whether FS is broken. */ 2359 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2360 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2361 2362 /* 2363 * run through our array of backup supers and setup 2364 * our ring pointer to the oldest one 2365 */ 2366 generation = btrfs_super_generation(disk_super); 2367 find_oldest_super_backup(fs_info, generation); 2368 2369 /* 2370 * In the long term, we'll store the compression type in the super 2371 * block, and it'll be used for per file compression control. 2372 */ 2373 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2374 2375 ret = btrfs_parse_options(tree_root, options); 2376 if (ret) { 2377 err = ret; 2378 goto fail_alloc; 2379 } 2380 2381 features = btrfs_super_incompat_flags(disk_super) & 2382 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2383 if (features) { 2384 printk(KERN_ERR "BTRFS: couldn't mount because of " 2385 "unsupported optional features (%Lx).\n", 2386 (unsigned long long)features); 2387 err = -EINVAL; 2388 goto fail_alloc; 2389 } 2390 2391 if (btrfs_super_leafsize(disk_super) != 2392 btrfs_super_nodesize(disk_super)) { 2393 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2394 "blocksizes don't match. node %d leaf %d\n", 2395 btrfs_super_nodesize(disk_super), 2396 btrfs_super_leafsize(disk_super)); 2397 err = -EINVAL; 2398 goto fail_alloc; 2399 } 2400 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) { 2401 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2402 "blocksize (%d) was too large\n", 2403 btrfs_super_leafsize(disk_super)); 2404 err = -EINVAL; 2405 goto fail_alloc; 2406 } 2407 2408 features = btrfs_super_incompat_flags(disk_super); 2409 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2410 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 2411 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2412 2413 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2414 printk(KERN_ERR "btrfs: has skinny extents\n"); 2415 2416 /* 2417 * flag our filesystem as having big metadata blocks if 2418 * they are bigger than the page size 2419 */ 2420 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) { 2421 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2422 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n"); 2423 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2424 } 2425 2426 nodesize = btrfs_super_nodesize(disk_super); 2427 leafsize = btrfs_super_leafsize(disk_super); 2428 sectorsize = btrfs_super_sectorsize(disk_super); 2429 stripesize = btrfs_super_stripesize(disk_super); 2430 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids)); 2431 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2432 2433 /* 2434 * mixed block groups end up with duplicate but slightly offset 2435 * extent buffers for the same range. It leads to corruptions 2436 */ 2437 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2438 (sectorsize != leafsize)) { 2439 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes " 2440 "are not allowed for mixed block groups on %s\n", 2441 sb->s_id); 2442 goto fail_alloc; 2443 } 2444 2445 /* 2446 * Needn't use the lock because there is no other task which will 2447 * update the flag. 2448 */ 2449 btrfs_set_super_incompat_flags(disk_super, features); 2450 2451 features = btrfs_super_compat_ro_flags(disk_super) & 2452 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2453 if (!(sb->s_flags & MS_RDONLY) && features) { 2454 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 2455 "unsupported option features (%Lx).\n", 2456 (unsigned long long)features); 2457 err = -EINVAL; 2458 goto fail_alloc; 2459 } 2460 2461 btrfs_init_workers(&fs_info->generic_worker, 2462 "genwork", 1, NULL); 2463 2464 btrfs_init_workers(&fs_info->workers, "worker", 2465 fs_info->thread_pool_size, 2466 &fs_info->generic_worker); 2467 2468 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", 2469 fs_info->thread_pool_size, 2470 &fs_info->generic_worker); 2471 2472 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc", 2473 fs_info->thread_pool_size, 2474 &fs_info->generic_worker); 2475 2476 btrfs_init_workers(&fs_info->submit_workers, "submit", 2477 min_t(u64, fs_devices->num_devices, 2478 fs_info->thread_pool_size), 2479 &fs_info->generic_worker); 2480 2481 btrfs_init_workers(&fs_info->caching_workers, "cache", 2482 2, &fs_info->generic_worker); 2483 2484 /* a higher idle thresh on the submit workers makes it much more 2485 * likely that bios will be send down in a sane order to the 2486 * devices 2487 */ 2488 fs_info->submit_workers.idle_thresh = 64; 2489 2490 fs_info->workers.idle_thresh = 16; 2491 fs_info->workers.ordered = 1; 2492 2493 fs_info->delalloc_workers.idle_thresh = 2; 2494 fs_info->delalloc_workers.ordered = 1; 2495 2496 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1, 2497 &fs_info->generic_worker); 2498 btrfs_init_workers(&fs_info->endio_workers, "endio", 2499 fs_info->thread_pool_size, 2500 &fs_info->generic_worker); 2501 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", 2502 fs_info->thread_pool_size, 2503 &fs_info->generic_worker); 2504 btrfs_init_workers(&fs_info->endio_meta_write_workers, 2505 "endio-meta-write", fs_info->thread_pool_size, 2506 &fs_info->generic_worker); 2507 btrfs_init_workers(&fs_info->endio_raid56_workers, 2508 "endio-raid56", fs_info->thread_pool_size, 2509 &fs_info->generic_worker); 2510 btrfs_init_workers(&fs_info->rmw_workers, 2511 "rmw", fs_info->thread_pool_size, 2512 &fs_info->generic_worker); 2513 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", 2514 fs_info->thread_pool_size, 2515 &fs_info->generic_worker); 2516 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write", 2517 1, &fs_info->generic_worker); 2518 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta", 2519 fs_info->thread_pool_size, 2520 &fs_info->generic_worker); 2521 btrfs_init_workers(&fs_info->readahead_workers, "readahead", 2522 fs_info->thread_pool_size, 2523 &fs_info->generic_worker); 2524 btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1, 2525 &fs_info->generic_worker); 2526 2527 /* 2528 * endios are largely parallel and should have a very 2529 * low idle thresh 2530 */ 2531 fs_info->endio_workers.idle_thresh = 4; 2532 fs_info->endio_meta_workers.idle_thresh = 4; 2533 fs_info->endio_raid56_workers.idle_thresh = 4; 2534 fs_info->rmw_workers.idle_thresh = 2; 2535 2536 fs_info->endio_write_workers.idle_thresh = 2; 2537 fs_info->endio_meta_write_workers.idle_thresh = 2; 2538 fs_info->readahead_workers.idle_thresh = 2; 2539 2540 /* 2541 * btrfs_start_workers can really only fail because of ENOMEM so just 2542 * return -ENOMEM if any of these fail. 2543 */ 2544 ret = btrfs_start_workers(&fs_info->workers); 2545 ret |= btrfs_start_workers(&fs_info->generic_worker); 2546 ret |= btrfs_start_workers(&fs_info->submit_workers); 2547 ret |= btrfs_start_workers(&fs_info->delalloc_workers); 2548 ret |= btrfs_start_workers(&fs_info->fixup_workers); 2549 ret |= btrfs_start_workers(&fs_info->endio_workers); 2550 ret |= btrfs_start_workers(&fs_info->endio_meta_workers); 2551 ret |= btrfs_start_workers(&fs_info->rmw_workers); 2552 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers); 2553 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers); 2554 ret |= btrfs_start_workers(&fs_info->endio_write_workers); 2555 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker); 2556 ret |= btrfs_start_workers(&fs_info->delayed_workers); 2557 ret |= btrfs_start_workers(&fs_info->caching_workers); 2558 ret |= btrfs_start_workers(&fs_info->readahead_workers); 2559 ret |= btrfs_start_workers(&fs_info->flush_workers); 2560 ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers); 2561 if (ret) { 2562 err = -ENOMEM; 2563 goto fail_sb_buffer; 2564 } 2565 2566 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2567 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2568 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 2569 2570 tree_root->nodesize = nodesize; 2571 tree_root->leafsize = leafsize; 2572 tree_root->sectorsize = sectorsize; 2573 tree_root->stripesize = stripesize; 2574 2575 sb->s_blocksize = sectorsize; 2576 sb->s_blocksize_bits = blksize_bits(sectorsize); 2577 2578 if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) { 2579 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); 2580 goto fail_sb_buffer; 2581 } 2582 2583 if (sectorsize != PAGE_SIZE) { 2584 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) " 2585 "found on %s\n", (unsigned long)sectorsize, sb->s_id); 2586 goto fail_sb_buffer; 2587 } 2588 2589 mutex_lock(&fs_info->chunk_mutex); 2590 ret = btrfs_read_sys_array(tree_root); 2591 mutex_unlock(&fs_info->chunk_mutex); 2592 if (ret) { 2593 printk(KERN_WARNING "btrfs: failed to read the system " 2594 "array on %s\n", sb->s_id); 2595 goto fail_sb_buffer; 2596 } 2597 2598 blocksize = btrfs_level_size(tree_root, 2599 btrfs_super_chunk_root_level(disk_super)); 2600 generation = btrfs_super_chunk_root_generation(disk_super); 2601 2602 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2603 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2604 2605 chunk_root->node = read_tree_block(chunk_root, 2606 btrfs_super_chunk_root(disk_super), 2607 blocksize, generation); 2608 if (!chunk_root->node || 2609 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { 2610 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n", 2611 sb->s_id); 2612 goto fail_tree_roots; 2613 } 2614 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2615 chunk_root->commit_root = btrfs_root_node(chunk_root); 2616 2617 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2618 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), 2619 BTRFS_UUID_SIZE); 2620 2621 ret = btrfs_read_chunk_tree(chunk_root); 2622 if (ret) { 2623 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", 2624 sb->s_id); 2625 goto fail_tree_roots; 2626 } 2627 2628 /* 2629 * keep the device that is marked to be the target device for the 2630 * dev_replace procedure 2631 */ 2632 btrfs_close_extra_devices(fs_info, fs_devices, 0); 2633 2634 if (!fs_devices->latest_bdev) { 2635 printk(KERN_CRIT "btrfs: failed to read devices on %s\n", 2636 sb->s_id); 2637 goto fail_tree_roots; 2638 } 2639 2640 retry_root_backup: 2641 blocksize = btrfs_level_size(tree_root, 2642 btrfs_super_root_level(disk_super)); 2643 generation = btrfs_super_generation(disk_super); 2644 2645 tree_root->node = read_tree_block(tree_root, 2646 btrfs_super_root(disk_super), 2647 blocksize, generation); 2648 if (!tree_root->node || 2649 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { 2650 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n", 2651 sb->s_id); 2652 2653 goto recovery_tree_root; 2654 } 2655 2656 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2657 tree_root->commit_root = btrfs_root_node(tree_root); 2658 2659 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2660 location.type = BTRFS_ROOT_ITEM_KEY; 2661 location.offset = 0; 2662 2663 extent_root = btrfs_read_tree_root(tree_root, &location); 2664 if (IS_ERR(extent_root)) { 2665 ret = PTR_ERR(extent_root); 2666 goto recovery_tree_root; 2667 } 2668 extent_root->track_dirty = 1; 2669 fs_info->extent_root = extent_root; 2670 2671 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2672 dev_root = btrfs_read_tree_root(tree_root, &location); 2673 if (IS_ERR(dev_root)) { 2674 ret = PTR_ERR(dev_root); 2675 goto recovery_tree_root; 2676 } 2677 dev_root->track_dirty = 1; 2678 fs_info->dev_root = dev_root; 2679 btrfs_init_devices_late(fs_info); 2680 2681 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2682 csum_root = btrfs_read_tree_root(tree_root, &location); 2683 if (IS_ERR(csum_root)) { 2684 ret = PTR_ERR(csum_root); 2685 goto recovery_tree_root; 2686 } 2687 csum_root->track_dirty = 1; 2688 fs_info->csum_root = csum_root; 2689 2690 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2691 quota_root = btrfs_read_tree_root(tree_root, &location); 2692 if (!IS_ERR(quota_root)) { 2693 quota_root->track_dirty = 1; 2694 fs_info->quota_enabled = 1; 2695 fs_info->pending_quota_state = 1; 2696 fs_info->quota_root = quota_root; 2697 } 2698 2699 fs_info->generation = generation; 2700 fs_info->last_trans_committed = generation; 2701 2702 ret = btrfs_recover_balance(fs_info); 2703 if (ret) { 2704 printk(KERN_WARNING "btrfs: failed to recover balance\n"); 2705 goto fail_block_groups; 2706 } 2707 2708 ret = btrfs_init_dev_stats(fs_info); 2709 if (ret) { 2710 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n", 2711 ret); 2712 goto fail_block_groups; 2713 } 2714 2715 ret = btrfs_init_dev_replace(fs_info); 2716 if (ret) { 2717 pr_err("btrfs: failed to init dev_replace: %d\n", ret); 2718 goto fail_block_groups; 2719 } 2720 2721 btrfs_close_extra_devices(fs_info, fs_devices, 1); 2722 2723 ret = btrfs_init_space_info(fs_info); 2724 if (ret) { 2725 printk(KERN_ERR "Failed to initial space info: %d\n", ret); 2726 goto fail_block_groups; 2727 } 2728 2729 ret = btrfs_read_block_groups(extent_root); 2730 if (ret) { 2731 printk(KERN_ERR "Failed to read block groups: %d\n", ret); 2732 goto fail_block_groups; 2733 } 2734 fs_info->num_tolerated_disk_barrier_failures = 2735 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 2736 if (fs_info->fs_devices->missing_devices > 2737 fs_info->num_tolerated_disk_barrier_failures && 2738 !(sb->s_flags & MS_RDONLY)) { 2739 printk(KERN_WARNING 2740 "Btrfs: too many missing devices, writeable mount is not allowed\n"); 2741 goto fail_block_groups; 2742 } 2743 2744 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2745 "btrfs-cleaner"); 2746 if (IS_ERR(fs_info->cleaner_kthread)) 2747 goto fail_block_groups; 2748 2749 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2750 tree_root, 2751 "btrfs-transaction"); 2752 if (IS_ERR(fs_info->transaction_kthread)) 2753 goto fail_cleaner; 2754 2755 if (!btrfs_test_opt(tree_root, SSD) && 2756 !btrfs_test_opt(tree_root, NOSSD) && 2757 !fs_info->fs_devices->rotating) { 2758 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD " 2759 "mode\n"); 2760 btrfs_set_opt(fs_info->mount_opt, SSD); 2761 } 2762 2763 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2764 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) { 2765 ret = btrfsic_mount(tree_root, fs_devices, 2766 btrfs_test_opt(tree_root, 2767 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 2768 1 : 0, 2769 fs_info->check_integrity_print_mask); 2770 if (ret) 2771 printk(KERN_WARNING "btrfs: failed to initialize" 2772 " integrity check module %s\n", sb->s_id); 2773 } 2774 #endif 2775 ret = btrfs_read_qgroup_config(fs_info); 2776 if (ret) 2777 goto fail_trans_kthread; 2778 2779 /* do not make disk changes in broken FS */ 2780 if (btrfs_super_log_root(disk_super) != 0) { 2781 u64 bytenr = btrfs_super_log_root(disk_super); 2782 2783 if (fs_devices->rw_devices == 0) { 2784 printk(KERN_WARNING "Btrfs log replay required " 2785 "on RO media\n"); 2786 err = -EIO; 2787 goto fail_qgroup; 2788 } 2789 blocksize = 2790 btrfs_level_size(tree_root, 2791 btrfs_super_log_root_level(disk_super)); 2792 2793 log_tree_root = btrfs_alloc_root(fs_info); 2794 if (!log_tree_root) { 2795 err = -ENOMEM; 2796 goto fail_qgroup; 2797 } 2798 2799 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2800 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2801 2802 log_tree_root->node = read_tree_block(tree_root, bytenr, 2803 blocksize, 2804 generation + 1); 2805 if (!log_tree_root->node || 2806 !extent_buffer_uptodate(log_tree_root->node)) { 2807 printk(KERN_ERR "btrfs: failed to read log tree\n"); 2808 free_extent_buffer(log_tree_root->node); 2809 kfree(log_tree_root); 2810 goto fail_trans_kthread; 2811 } 2812 /* returns with log_tree_root freed on success */ 2813 ret = btrfs_recover_log_trees(log_tree_root); 2814 if (ret) { 2815 btrfs_error(tree_root->fs_info, ret, 2816 "Failed to recover log tree"); 2817 free_extent_buffer(log_tree_root->node); 2818 kfree(log_tree_root); 2819 goto fail_trans_kthread; 2820 } 2821 2822 if (sb->s_flags & MS_RDONLY) { 2823 ret = btrfs_commit_super(tree_root); 2824 if (ret) 2825 goto fail_trans_kthread; 2826 } 2827 } 2828 2829 ret = btrfs_find_orphan_roots(tree_root); 2830 if (ret) 2831 goto fail_trans_kthread; 2832 2833 if (!(sb->s_flags & MS_RDONLY)) { 2834 ret = btrfs_cleanup_fs_roots(fs_info); 2835 if (ret) 2836 goto fail_trans_kthread; 2837 2838 ret = btrfs_recover_relocation(tree_root); 2839 if (ret < 0) { 2840 printk(KERN_WARNING 2841 "btrfs: failed to recover relocation\n"); 2842 err = -EINVAL; 2843 goto fail_qgroup; 2844 } 2845 } 2846 2847 location.objectid = BTRFS_FS_TREE_OBJECTID; 2848 location.type = BTRFS_ROOT_ITEM_KEY; 2849 location.offset = 0; 2850 2851 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 2852 if (IS_ERR(fs_info->fs_root)) { 2853 err = PTR_ERR(fs_info->fs_root); 2854 goto fail_qgroup; 2855 } 2856 2857 if (sb->s_flags & MS_RDONLY) 2858 return 0; 2859 2860 down_read(&fs_info->cleanup_work_sem); 2861 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 2862 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 2863 up_read(&fs_info->cleanup_work_sem); 2864 close_ctree(tree_root); 2865 return ret; 2866 } 2867 up_read(&fs_info->cleanup_work_sem); 2868 2869 ret = btrfs_resume_balance_async(fs_info); 2870 if (ret) { 2871 printk(KERN_WARNING "btrfs: failed to resume balance\n"); 2872 close_ctree(tree_root); 2873 return ret; 2874 } 2875 2876 ret = btrfs_resume_dev_replace_async(fs_info); 2877 if (ret) { 2878 pr_warn("btrfs: failed to resume dev_replace\n"); 2879 close_ctree(tree_root); 2880 return ret; 2881 } 2882 2883 btrfs_qgroup_rescan_resume(fs_info); 2884 2885 return 0; 2886 2887 fail_qgroup: 2888 btrfs_free_qgroup_config(fs_info); 2889 fail_trans_kthread: 2890 kthread_stop(fs_info->transaction_kthread); 2891 btrfs_cleanup_transaction(fs_info->tree_root); 2892 del_fs_roots(fs_info); 2893 fail_cleaner: 2894 kthread_stop(fs_info->cleaner_kthread); 2895 2896 /* 2897 * make sure we're done with the btree inode before we stop our 2898 * kthreads 2899 */ 2900 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 2901 2902 fail_block_groups: 2903 btrfs_put_block_group_cache(fs_info); 2904 btrfs_free_block_groups(fs_info); 2905 2906 fail_tree_roots: 2907 free_root_pointers(fs_info, 1); 2908 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2909 2910 fail_sb_buffer: 2911 btrfs_stop_all_workers(fs_info); 2912 fail_alloc: 2913 fail_iput: 2914 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2915 2916 iput(fs_info->btree_inode); 2917 fail_delalloc_bytes: 2918 percpu_counter_destroy(&fs_info->delalloc_bytes); 2919 fail_dirty_metadata_bytes: 2920 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 2921 fail_bdi: 2922 bdi_destroy(&fs_info->bdi); 2923 fail_srcu: 2924 cleanup_srcu_struct(&fs_info->subvol_srcu); 2925 fail: 2926 btrfs_free_stripe_hash_table(fs_info); 2927 btrfs_close_devices(fs_info->fs_devices); 2928 return err; 2929 2930 recovery_tree_root: 2931 if (!btrfs_test_opt(tree_root, RECOVERY)) 2932 goto fail_tree_roots; 2933 2934 free_root_pointers(fs_info, 0); 2935 2936 /* don't use the log in recovery mode, it won't be valid */ 2937 btrfs_set_super_log_root(disk_super, 0); 2938 2939 /* we can't trust the free space cache either */ 2940 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2941 2942 ret = next_root_backup(fs_info, fs_info->super_copy, 2943 &num_backups_tried, &backup_index); 2944 if (ret == -1) 2945 goto fail_block_groups; 2946 goto retry_root_backup; 2947 } 2948 2949 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 2950 { 2951 if (uptodate) { 2952 set_buffer_uptodate(bh); 2953 } else { 2954 struct btrfs_device *device = (struct btrfs_device *) 2955 bh->b_private; 2956 2957 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to " 2958 "I/O error on %s\n", 2959 rcu_str_deref(device->name)); 2960 /* note, we dont' set_buffer_write_io_error because we have 2961 * our own ways of dealing with the IO errors 2962 */ 2963 clear_buffer_uptodate(bh); 2964 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 2965 } 2966 unlock_buffer(bh); 2967 put_bh(bh); 2968 } 2969 2970 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 2971 { 2972 struct buffer_head *bh; 2973 struct buffer_head *latest = NULL; 2974 struct btrfs_super_block *super; 2975 int i; 2976 u64 transid = 0; 2977 u64 bytenr; 2978 2979 /* we would like to check all the supers, but that would make 2980 * a btrfs mount succeed after a mkfs from a different FS. 2981 * So, we need to add a special mount option to scan for 2982 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 2983 */ 2984 for (i = 0; i < 1; i++) { 2985 bytenr = btrfs_sb_offset(i); 2986 if (bytenr + 4096 >= i_size_read(bdev->bd_inode)) 2987 break; 2988 bh = __bread(bdev, bytenr / 4096, 4096); 2989 if (!bh) 2990 continue; 2991 2992 super = (struct btrfs_super_block *)bh->b_data; 2993 if (btrfs_super_bytenr(super) != bytenr || 2994 super->magic != cpu_to_le64(BTRFS_MAGIC)) { 2995 brelse(bh); 2996 continue; 2997 } 2998 2999 if (!latest || btrfs_super_generation(super) > transid) { 3000 brelse(latest); 3001 latest = bh; 3002 transid = btrfs_super_generation(super); 3003 } else { 3004 brelse(bh); 3005 } 3006 } 3007 return latest; 3008 } 3009 3010 /* 3011 * this should be called twice, once with wait == 0 and 3012 * once with wait == 1. When wait == 0 is done, all the buffer heads 3013 * we write are pinned. 3014 * 3015 * They are released when wait == 1 is done. 3016 * max_mirrors must be the same for both runs, and it indicates how 3017 * many supers on this one device should be written. 3018 * 3019 * max_mirrors == 0 means to write them all. 3020 */ 3021 static int write_dev_supers(struct btrfs_device *device, 3022 struct btrfs_super_block *sb, 3023 int do_barriers, int wait, int max_mirrors) 3024 { 3025 struct buffer_head *bh; 3026 int i; 3027 int ret; 3028 int errors = 0; 3029 u32 crc; 3030 u64 bytenr; 3031 3032 if (max_mirrors == 0) 3033 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3034 3035 for (i = 0; i < max_mirrors; i++) { 3036 bytenr = btrfs_sb_offset(i); 3037 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 3038 break; 3039 3040 if (wait) { 3041 bh = __find_get_block(device->bdev, bytenr / 4096, 3042 BTRFS_SUPER_INFO_SIZE); 3043 if (!bh) { 3044 errors++; 3045 continue; 3046 } 3047 wait_on_buffer(bh); 3048 if (!buffer_uptodate(bh)) 3049 errors++; 3050 3051 /* drop our reference */ 3052 brelse(bh); 3053 3054 /* drop the reference from the wait == 0 run */ 3055 brelse(bh); 3056 continue; 3057 } else { 3058 btrfs_set_super_bytenr(sb, bytenr); 3059 3060 crc = ~(u32)0; 3061 crc = btrfs_csum_data((char *)sb + 3062 BTRFS_CSUM_SIZE, crc, 3063 BTRFS_SUPER_INFO_SIZE - 3064 BTRFS_CSUM_SIZE); 3065 btrfs_csum_final(crc, sb->csum); 3066 3067 /* 3068 * one reference for us, and we leave it for the 3069 * caller 3070 */ 3071 bh = __getblk(device->bdev, bytenr / 4096, 3072 BTRFS_SUPER_INFO_SIZE); 3073 if (!bh) { 3074 printk(KERN_ERR "btrfs: couldn't get super " 3075 "buffer head for bytenr %Lu\n", bytenr); 3076 errors++; 3077 continue; 3078 } 3079 3080 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3081 3082 /* one reference for submit_bh */ 3083 get_bh(bh); 3084 3085 set_buffer_uptodate(bh); 3086 lock_buffer(bh); 3087 bh->b_end_io = btrfs_end_buffer_write_sync; 3088 bh->b_private = device; 3089 } 3090 3091 /* 3092 * we fua the first super. The others we allow 3093 * to go down lazy. 3094 */ 3095 ret = btrfsic_submit_bh(WRITE_FUA, bh); 3096 if (ret) 3097 errors++; 3098 } 3099 return errors < i ? 0 : -1; 3100 } 3101 3102 /* 3103 * endio for the write_dev_flush, this will wake anyone waiting 3104 * for the barrier when it is done 3105 */ 3106 static void btrfs_end_empty_barrier(struct bio *bio, int err) 3107 { 3108 if (err) { 3109 if (err == -EOPNOTSUPP) 3110 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 3111 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3112 } 3113 if (bio->bi_private) 3114 complete(bio->bi_private); 3115 bio_put(bio); 3116 } 3117 3118 /* 3119 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 3120 * sent down. With wait == 1, it waits for the previous flush. 3121 * 3122 * any device where the flush fails with eopnotsupp are flagged as not-barrier 3123 * capable 3124 */ 3125 static int write_dev_flush(struct btrfs_device *device, int wait) 3126 { 3127 struct bio *bio; 3128 int ret = 0; 3129 3130 if (device->nobarriers) 3131 return 0; 3132 3133 if (wait) { 3134 bio = device->flush_bio; 3135 if (!bio) 3136 return 0; 3137 3138 wait_for_completion(&device->flush_wait); 3139 3140 if (bio_flagged(bio, BIO_EOPNOTSUPP)) { 3141 printk_in_rcu("btrfs: disabling barriers on dev %s\n", 3142 rcu_str_deref(device->name)); 3143 device->nobarriers = 1; 3144 } else if (!bio_flagged(bio, BIO_UPTODATE)) { 3145 ret = -EIO; 3146 btrfs_dev_stat_inc_and_print(device, 3147 BTRFS_DEV_STAT_FLUSH_ERRS); 3148 } 3149 3150 /* drop the reference from the wait == 0 run */ 3151 bio_put(bio); 3152 device->flush_bio = NULL; 3153 3154 return ret; 3155 } 3156 3157 /* 3158 * one reference for us, and we leave it for the 3159 * caller 3160 */ 3161 device->flush_bio = NULL; 3162 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 3163 if (!bio) 3164 return -ENOMEM; 3165 3166 bio->bi_end_io = btrfs_end_empty_barrier; 3167 bio->bi_bdev = device->bdev; 3168 init_completion(&device->flush_wait); 3169 bio->bi_private = &device->flush_wait; 3170 device->flush_bio = bio; 3171 3172 bio_get(bio); 3173 btrfsic_submit_bio(WRITE_FLUSH, bio); 3174 3175 return 0; 3176 } 3177 3178 /* 3179 * send an empty flush down to each device in parallel, 3180 * then wait for them 3181 */ 3182 static int barrier_all_devices(struct btrfs_fs_info *info) 3183 { 3184 struct list_head *head; 3185 struct btrfs_device *dev; 3186 int errors_send = 0; 3187 int errors_wait = 0; 3188 int ret; 3189 3190 /* send down all the barriers */ 3191 head = &info->fs_devices->devices; 3192 list_for_each_entry_rcu(dev, head, dev_list) { 3193 if (!dev->bdev) { 3194 errors_send++; 3195 continue; 3196 } 3197 if (!dev->in_fs_metadata || !dev->writeable) 3198 continue; 3199 3200 ret = write_dev_flush(dev, 0); 3201 if (ret) 3202 errors_send++; 3203 } 3204 3205 /* wait for all the barriers */ 3206 list_for_each_entry_rcu(dev, head, dev_list) { 3207 if (!dev->bdev) { 3208 errors_wait++; 3209 continue; 3210 } 3211 if (!dev->in_fs_metadata || !dev->writeable) 3212 continue; 3213 3214 ret = write_dev_flush(dev, 1); 3215 if (ret) 3216 errors_wait++; 3217 } 3218 if (errors_send > info->num_tolerated_disk_barrier_failures || 3219 errors_wait > info->num_tolerated_disk_barrier_failures) 3220 return -EIO; 3221 return 0; 3222 } 3223 3224 int btrfs_calc_num_tolerated_disk_barrier_failures( 3225 struct btrfs_fs_info *fs_info) 3226 { 3227 struct btrfs_ioctl_space_info space; 3228 struct btrfs_space_info *sinfo; 3229 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3230 BTRFS_BLOCK_GROUP_SYSTEM, 3231 BTRFS_BLOCK_GROUP_METADATA, 3232 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3233 int num_types = 4; 3234 int i; 3235 int c; 3236 int num_tolerated_disk_barrier_failures = 3237 (int)fs_info->fs_devices->num_devices; 3238 3239 for (i = 0; i < num_types; i++) { 3240 struct btrfs_space_info *tmp; 3241 3242 sinfo = NULL; 3243 rcu_read_lock(); 3244 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) { 3245 if (tmp->flags == types[i]) { 3246 sinfo = tmp; 3247 break; 3248 } 3249 } 3250 rcu_read_unlock(); 3251 3252 if (!sinfo) 3253 continue; 3254 3255 down_read(&sinfo->groups_sem); 3256 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3257 if (!list_empty(&sinfo->block_groups[c])) { 3258 u64 flags; 3259 3260 btrfs_get_block_group_info( 3261 &sinfo->block_groups[c], &space); 3262 if (space.total_bytes == 0 || 3263 space.used_bytes == 0) 3264 continue; 3265 flags = space.flags; 3266 /* 3267 * return 3268 * 0: if dup, single or RAID0 is configured for 3269 * any of metadata, system or data, else 3270 * 1: if RAID5 is configured, or if RAID1 or 3271 * RAID10 is configured and only two mirrors 3272 * are used, else 3273 * 2: if RAID6 is configured, else 3274 * num_mirrors - 1: if RAID1 or RAID10 is 3275 * configured and more than 3276 * 2 mirrors are used. 3277 */ 3278 if (num_tolerated_disk_barrier_failures > 0 && 3279 ((flags & (BTRFS_BLOCK_GROUP_DUP | 3280 BTRFS_BLOCK_GROUP_RAID0)) || 3281 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) 3282 == 0))) 3283 num_tolerated_disk_barrier_failures = 0; 3284 else if (num_tolerated_disk_barrier_failures > 1) { 3285 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 3286 BTRFS_BLOCK_GROUP_RAID5 | 3287 BTRFS_BLOCK_GROUP_RAID10)) { 3288 num_tolerated_disk_barrier_failures = 1; 3289 } else if (flags & 3290 BTRFS_BLOCK_GROUP_RAID6) { 3291 num_tolerated_disk_barrier_failures = 2; 3292 } 3293 } 3294 } 3295 } 3296 up_read(&sinfo->groups_sem); 3297 } 3298 3299 return num_tolerated_disk_barrier_failures; 3300 } 3301 3302 static int write_all_supers(struct btrfs_root *root, int max_mirrors) 3303 { 3304 struct list_head *head; 3305 struct btrfs_device *dev; 3306 struct btrfs_super_block *sb; 3307 struct btrfs_dev_item *dev_item; 3308 int ret; 3309 int do_barriers; 3310 int max_errors; 3311 int total_errors = 0; 3312 u64 flags; 3313 3314 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 3315 do_barriers = !btrfs_test_opt(root, NOBARRIER); 3316 backup_super_roots(root->fs_info); 3317 3318 sb = root->fs_info->super_for_commit; 3319 dev_item = &sb->dev_item; 3320 3321 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 3322 head = &root->fs_info->fs_devices->devices; 3323 3324 if (do_barriers) { 3325 ret = barrier_all_devices(root->fs_info); 3326 if (ret) { 3327 mutex_unlock( 3328 &root->fs_info->fs_devices->device_list_mutex); 3329 btrfs_error(root->fs_info, ret, 3330 "errors while submitting device barriers."); 3331 return ret; 3332 } 3333 } 3334 3335 list_for_each_entry_rcu(dev, head, dev_list) { 3336 if (!dev->bdev) { 3337 total_errors++; 3338 continue; 3339 } 3340 if (!dev->in_fs_metadata || !dev->writeable) 3341 continue; 3342 3343 btrfs_set_stack_device_generation(dev_item, 0); 3344 btrfs_set_stack_device_type(dev_item, dev->type); 3345 btrfs_set_stack_device_id(dev_item, dev->devid); 3346 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 3347 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 3348 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3349 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3350 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3351 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3352 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 3353 3354 flags = btrfs_super_flags(sb); 3355 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3356 3357 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 3358 if (ret) 3359 total_errors++; 3360 } 3361 if (total_errors > max_errors) { 3362 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 3363 total_errors); 3364 3365 /* This shouldn't happen. FUA is masked off if unsupported */ 3366 BUG(); 3367 } 3368 3369 total_errors = 0; 3370 list_for_each_entry_rcu(dev, head, dev_list) { 3371 if (!dev->bdev) 3372 continue; 3373 if (!dev->in_fs_metadata || !dev->writeable) 3374 continue; 3375 3376 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 3377 if (ret) 3378 total_errors++; 3379 } 3380 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3381 if (total_errors > max_errors) { 3382 btrfs_error(root->fs_info, -EIO, 3383 "%d errors while writing supers", total_errors); 3384 return -EIO; 3385 } 3386 return 0; 3387 } 3388 3389 int write_ctree_super(struct btrfs_trans_handle *trans, 3390 struct btrfs_root *root, int max_mirrors) 3391 { 3392 int ret; 3393 3394 ret = write_all_supers(root, max_mirrors); 3395 return ret; 3396 } 3397 3398 /* Drop a fs root from the radix tree and free it. */ 3399 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3400 struct btrfs_root *root) 3401 { 3402 spin_lock(&fs_info->fs_roots_radix_lock); 3403 radix_tree_delete(&fs_info->fs_roots_radix, 3404 (unsigned long)root->root_key.objectid); 3405 spin_unlock(&fs_info->fs_roots_radix_lock); 3406 3407 if (btrfs_root_refs(&root->root_item) == 0) 3408 synchronize_srcu(&fs_info->subvol_srcu); 3409 3410 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3411 btrfs_free_log(NULL, root); 3412 btrfs_free_log_root_tree(NULL, fs_info); 3413 } 3414 3415 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3416 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3417 free_fs_root(root); 3418 } 3419 3420 static void free_fs_root(struct btrfs_root *root) 3421 { 3422 iput(root->cache_inode); 3423 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3424 if (root->anon_dev) 3425 free_anon_bdev(root->anon_dev); 3426 free_extent_buffer(root->node); 3427 free_extent_buffer(root->commit_root); 3428 kfree(root->free_ino_ctl); 3429 kfree(root->free_ino_pinned); 3430 kfree(root->name); 3431 btrfs_put_fs_root(root); 3432 } 3433 3434 void btrfs_free_fs_root(struct btrfs_root *root) 3435 { 3436 free_fs_root(root); 3437 } 3438 3439 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3440 { 3441 u64 root_objectid = 0; 3442 struct btrfs_root *gang[8]; 3443 int i; 3444 int ret; 3445 3446 while (1) { 3447 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3448 (void **)gang, root_objectid, 3449 ARRAY_SIZE(gang)); 3450 if (!ret) 3451 break; 3452 3453 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3454 for (i = 0; i < ret; i++) { 3455 int err; 3456 3457 root_objectid = gang[i]->root_key.objectid; 3458 err = btrfs_orphan_cleanup(gang[i]); 3459 if (err) 3460 return err; 3461 } 3462 root_objectid++; 3463 } 3464 return 0; 3465 } 3466 3467 int btrfs_commit_super(struct btrfs_root *root) 3468 { 3469 struct btrfs_trans_handle *trans; 3470 int ret; 3471 3472 mutex_lock(&root->fs_info->cleaner_mutex); 3473 btrfs_run_delayed_iputs(root); 3474 mutex_unlock(&root->fs_info->cleaner_mutex); 3475 wake_up_process(root->fs_info->cleaner_kthread); 3476 3477 /* wait until ongoing cleanup work done */ 3478 down_write(&root->fs_info->cleanup_work_sem); 3479 up_write(&root->fs_info->cleanup_work_sem); 3480 3481 trans = btrfs_join_transaction(root); 3482 if (IS_ERR(trans)) 3483 return PTR_ERR(trans); 3484 ret = btrfs_commit_transaction(trans, root); 3485 if (ret) 3486 return ret; 3487 /* run commit again to drop the original snapshot */ 3488 trans = btrfs_join_transaction(root); 3489 if (IS_ERR(trans)) 3490 return PTR_ERR(trans); 3491 ret = btrfs_commit_transaction(trans, root); 3492 if (ret) 3493 return ret; 3494 ret = btrfs_write_and_wait_transaction(NULL, root); 3495 if (ret) { 3496 btrfs_error(root->fs_info, ret, 3497 "Failed to sync btree inode to disk."); 3498 return ret; 3499 } 3500 3501 ret = write_ctree_super(NULL, root, 0); 3502 return ret; 3503 } 3504 3505 int close_ctree(struct btrfs_root *root) 3506 { 3507 struct btrfs_fs_info *fs_info = root->fs_info; 3508 int ret; 3509 3510 fs_info->closing = 1; 3511 smp_mb(); 3512 3513 /* pause restriper - we want to resume on mount */ 3514 btrfs_pause_balance(fs_info); 3515 3516 btrfs_dev_replace_suspend_for_unmount(fs_info); 3517 3518 btrfs_scrub_cancel(fs_info); 3519 3520 /* wait for any defraggers to finish */ 3521 wait_event(fs_info->transaction_wait, 3522 (atomic_read(&fs_info->defrag_running) == 0)); 3523 3524 /* clear out the rbtree of defraggable inodes */ 3525 btrfs_cleanup_defrag_inodes(fs_info); 3526 3527 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3528 ret = btrfs_commit_super(root); 3529 if (ret) 3530 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 3531 } 3532 3533 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3534 btrfs_error_commit_super(root); 3535 3536 btrfs_put_block_group_cache(fs_info); 3537 3538 kthread_stop(fs_info->transaction_kthread); 3539 kthread_stop(fs_info->cleaner_kthread); 3540 3541 fs_info->closing = 2; 3542 smp_mb(); 3543 3544 btrfs_free_qgroup_config(root->fs_info); 3545 3546 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3547 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n", 3548 percpu_counter_sum(&fs_info->delalloc_bytes)); 3549 } 3550 3551 btrfs_free_block_groups(fs_info); 3552 3553 btrfs_stop_all_workers(fs_info); 3554 3555 del_fs_roots(fs_info); 3556 3557 free_root_pointers(fs_info, 1); 3558 3559 iput(fs_info->btree_inode); 3560 3561 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3562 if (btrfs_test_opt(root, CHECK_INTEGRITY)) 3563 btrfsic_unmount(root, fs_info->fs_devices); 3564 #endif 3565 3566 btrfs_close_devices(fs_info->fs_devices); 3567 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3568 3569 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3570 percpu_counter_destroy(&fs_info->delalloc_bytes); 3571 bdi_destroy(&fs_info->bdi); 3572 cleanup_srcu_struct(&fs_info->subvol_srcu); 3573 3574 btrfs_free_stripe_hash_table(fs_info); 3575 3576 return 0; 3577 } 3578 3579 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 3580 int atomic) 3581 { 3582 int ret; 3583 struct inode *btree_inode = buf->pages[0]->mapping->host; 3584 3585 ret = extent_buffer_uptodate(buf); 3586 if (!ret) 3587 return ret; 3588 3589 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3590 parent_transid, atomic); 3591 if (ret == -EAGAIN) 3592 return ret; 3593 return !ret; 3594 } 3595 3596 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 3597 { 3598 return set_extent_buffer_uptodate(buf); 3599 } 3600 3601 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3602 { 3603 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3604 u64 transid = btrfs_header_generation(buf); 3605 int was_dirty; 3606 3607 btrfs_assert_tree_locked(buf); 3608 if (transid != root->fs_info->generation) 3609 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, " 3610 "found %llu running %llu\n", 3611 (unsigned long long)buf->start, 3612 (unsigned long long)transid, 3613 (unsigned long long)root->fs_info->generation); 3614 was_dirty = set_extent_buffer_dirty(buf); 3615 if (!was_dirty) 3616 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes, 3617 buf->len, 3618 root->fs_info->dirty_metadata_batch); 3619 } 3620 3621 static void __btrfs_btree_balance_dirty(struct btrfs_root *root, 3622 int flush_delayed) 3623 { 3624 /* 3625 * looks as though older kernels can get into trouble with 3626 * this code, they end up stuck in balance_dirty_pages forever 3627 */ 3628 int ret; 3629 3630 if (current->flags & PF_MEMALLOC) 3631 return; 3632 3633 if (flush_delayed) 3634 btrfs_balance_delayed_items(root); 3635 3636 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes, 3637 BTRFS_DIRTY_METADATA_THRESH); 3638 if (ret > 0) { 3639 balance_dirty_pages_ratelimited( 3640 root->fs_info->btree_inode->i_mapping); 3641 } 3642 return; 3643 } 3644 3645 void btrfs_btree_balance_dirty(struct btrfs_root *root) 3646 { 3647 __btrfs_btree_balance_dirty(root, 1); 3648 } 3649 3650 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root) 3651 { 3652 __btrfs_btree_balance_dirty(root, 0); 3653 } 3654 3655 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 3656 { 3657 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3658 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 3659 } 3660 3661 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 3662 int read_only) 3663 { 3664 /* 3665 * Placeholder for checks 3666 */ 3667 return 0; 3668 } 3669 3670 static void btrfs_error_commit_super(struct btrfs_root *root) 3671 { 3672 mutex_lock(&root->fs_info->cleaner_mutex); 3673 btrfs_run_delayed_iputs(root); 3674 mutex_unlock(&root->fs_info->cleaner_mutex); 3675 3676 down_write(&root->fs_info->cleanup_work_sem); 3677 up_write(&root->fs_info->cleanup_work_sem); 3678 3679 /* cleanup FS via transaction */ 3680 btrfs_cleanup_transaction(root); 3681 } 3682 3683 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t, 3684 struct btrfs_root *root) 3685 { 3686 struct btrfs_inode *btrfs_inode; 3687 struct list_head splice; 3688 3689 INIT_LIST_HEAD(&splice); 3690 3691 mutex_lock(&root->fs_info->ordered_operations_mutex); 3692 spin_lock(&root->fs_info->ordered_root_lock); 3693 3694 list_splice_init(&t->ordered_operations, &splice); 3695 while (!list_empty(&splice)) { 3696 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 3697 ordered_operations); 3698 3699 list_del_init(&btrfs_inode->ordered_operations); 3700 spin_unlock(&root->fs_info->ordered_root_lock); 3701 3702 btrfs_invalidate_inodes(btrfs_inode->root); 3703 3704 spin_lock(&root->fs_info->ordered_root_lock); 3705 } 3706 3707 spin_unlock(&root->fs_info->ordered_root_lock); 3708 mutex_unlock(&root->fs_info->ordered_operations_mutex); 3709 } 3710 3711 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 3712 { 3713 struct btrfs_ordered_extent *ordered; 3714 3715 spin_lock(&root->ordered_extent_lock); 3716 /* 3717 * This will just short circuit the ordered completion stuff which will 3718 * make sure the ordered extent gets properly cleaned up. 3719 */ 3720 list_for_each_entry(ordered, &root->ordered_extents, 3721 root_extent_list) 3722 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 3723 spin_unlock(&root->ordered_extent_lock); 3724 } 3725 3726 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 3727 { 3728 struct btrfs_root *root; 3729 struct list_head splice; 3730 3731 INIT_LIST_HEAD(&splice); 3732 3733 spin_lock(&fs_info->ordered_root_lock); 3734 list_splice_init(&fs_info->ordered_roots, &splice); 3735 while (!list_empty(&splice)) { 3736 root = list_first_entry(&splice, struct btrfs_root, 3737 ordered_root); 3738 list_del_init(&root->ordered_root); 3739 3740 btrfs_destroy_ordered_extents(root); 3741 3742 cond_resched_lock(&fs_info->ordered_root_lock); 3743 } 3744 spin_unlock(&fs_info->ordered_root_lock); 3745 } 3746 3747 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 3748 struct btrfs_root *root) 3749 { 3750 struct rb_node *node; 3751 struct btrfs_delayed_ref_root *delayed_refs; 3752 struct btrfs_delayed_ref_node *ref; 3753 int ret = 0; 3754 3755 delayed_refs = &trans->delayed_refs; 3756 3757 spin_lock(&delayed_refs->lock); 3758 if (delayed_refs->num_entries == 0) { 3759 spin_unlock(&delayed_refs->lock); 3760 printk(KERN_INFO "delayed_refs has NO entry\n"); 3761 return ret; 3762 } 3763 3764 while ((node = rb_first(&delayed_refs->root)) != NULL) { 3765 struct btrfs_delayed_ref_head *head = NULL; 3766 bool pin_bytes = false; 3767 3768 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 3769 atomic_set(&ref->refs, 1); 3770 if (btrfs_delayed_ref_is_head(ref)) { 3771 3772 head = btrfs_delayed_node_to_head(ref); 3773 if (!mutex_trylock(&head->mutex)) { 3774 atomic_inc(&ref->refs); 3775 spin_unlock(&delayed_refs->lock); 3776 3777 /* Need to wait for the delayed ref to run */ 3778 mutex_lock(&head->mutex); 3779 mutex_unlock(&head->mutex); 3780 btrfs_put_delayed_ref(ref); 3781 3782 spin_lock(&delayed_refs->lock); 3783 continue; 3784 } 3785 3786 if (head->must_insert_reserved) 3787 pin_bytes = true; 3788 btrfs_free_delayed_extent_op(head->extent_op); 3789 delayed_refs->num_heads--; 3790 if (list_empty(&head->cluster)) 3791 delayed_refs->num_heads_ready--; 3792 list_del_init(&head->cluster); 3793 } 3794 3795 ref->in_tree = 0; 3796 rb_erase(&ref->rb_node, &delayed_refs->root); 3797 delayed_refs->num_entries--; 3798 spin_unlock(&delayed_refs->lock); 3799 if (head) { 3800 if (pin_bytes) 3801 btrfs_pin_extent(root, ref->bytenr, 3802 ref->num_bytes, 1); 3803 mutex_unlock(&head->mutex); 3804 } 3805 btrfs_put_delayed_ref(ref); 3806 3807 cond_resched(); 3808 spin_lock(&delayed_refs->lock); 3809 } 3810 3811 spin_unlock(&delayed_refs->lock); 3812 3813 return ret; 3814 } 3815 3816 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t) 3817 { 3818 struct btrfs_pending_snapshot *snapshot; 3819 struct list_head splice; 3820 3821 INIT_LIST_HEAD(&splice); 3822 3823 list_splice_init(&t->pending_snapshots, &splice); 3824 3825 while (!list_empty(&splice)) { 3826 snapshot = list_entry(splice.next, 3827 struct btrfs_pending_snapshot, 3828 list); 3829 snapshot->error = -ECANCELED; 3830 list_del_init(&snapshot->list); 3831 } 3832 } 3833 3834 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 3835 { 3836 struct btrfs_inode *btrfs_inode; 3837 struct list_head splice; 3838 3839 INIT_LIST_HEAD(&splice); 3840 3841 spin_lock(&root->delalloc_lock); 3842 list_splice_init(&root->delalloc_inodes, &splice); 3843 3844 while (!list_empty(&splice)) { 3845 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 3846 delalloc_inodes); 3847 3848 list_del_init(&btrfs_inode->delalloc_inodes); 3849 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 3850 &btrfs_inode->runtime_flags); 3851 spin_unlock(&root->delalloc_lock); 3852 3853 btrfs_invalidate_inodes(btrfs_inode->root); 3854 3855 spin_lock(&root->delalloc_lock); 3856 } 3857 3858 spin_unlock(&root->delalloc_lock); 3859 } 3860 3861 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 3862 { 3863 struct btrfs_root *root; 3864 struct list_head splice; 3865 3866 INIT_LIST_HEAD(&splice); 3867 3868 spin_lock(&fs_info->delalloc_root_lock); 3869 list_splice_init(&fs_info->delalloc_roots, &splice); 3870 while (!list_empty(&splice)) { 3871 root = list_first_entry(&splice, struct btrfs_root, 3872 delalloc_root); 3873 list_del_init(&root->delalloc_root); 3874 root = btrfs_grab_fs_root(root); 3875 BUG_ON(!root); 3876 spin_unlock(&fs_info->delalloc_root_lock); 3877 3878 btrfs_destroy_delalloc_inodes(root); 3879 btrfs_put_fs_root(root); 3880 3881 spin_lock(&fs_info->delalloc_root_lock); 3882 } 3883 spin_unlock(&fs_info->delalloc_root_lock); 3884 } 3885 3886 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 3887 struct extent_io_tree *dirty_pages, 3888 int mark) 3889 { 3890 int ret; 3891 struct extent_buffer *eb; 3892 u64 start = 0; 3893 u64 end; 3894 3895 while (1) { 3896 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 3897 mark, NULL); 3898 if (ret) 3899 break; 3900 3901 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 3902 while (start <= end) { 3903 eb = btrfs_find_tree_block(root, start, 3904 root->leafsize); 3905 start += root->leafsize; 3906 if (!eb) 3907 continue; 3908 wait_on_extent_buffer_writeback(eb); 3909 3910 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 3911 &eb->bflags)) 3912 clear_extent_buffer_dirty(eb); 3913 free_extent_buffer_stale(eb); 3914 } 3915 } 3916 3917 return ret; 3918 } 3919 3920 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 3921 struct extent_io_tree *pinned_extents) 3922 { 3923 struct extent_io_tree *unpin; 3924 u64 start; 3925 u64 end; 3926 int ret; 3927 bool loop = true; 3928 3929 unpin = pinned_extents; 3930 again: 3931 while (1) { 3932 ret = find_first_extent_bit(unpin, 0, &start, &end, 3933 EXTENT_DIRTY, NULL); 3934 if (ret) 3935 break; 3936 3937 /* opt_discard */ 3938 if (btrfs_test_opt(root, DISCARD)) 3939 ret = btrfs_error_discard_extent(root, start, 3940 end + 1 - start, 3941 NULL); 3942 3943 clear_extent_dirty(unpin, start, end, GFP_NOFS); 3944 btrfs_error_unpin_extent_range(root, start, end); 3945 cond_resched(); 3946 } 3947 3948 if (loop) { 3949 if (unpin == &root->fs_info->freed_extents[0]) 3950 unpin = &root->fs_info->freed_extents[1]; 3951 else 3952 unpin = &root->fs_info->freed_extents[0]; 3953 loop = false; 3954 goto again; 3955 } 3956 3957 return 0; 3958 } 3959 3960 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 3961 struct btrfs_root *root) 3962 { 3963 btrfs_destroy_delayed_refs(cur_trans, root); 3964 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, 3965 cur_trans->dirty_pages.dirty_bytes); 3966 3967 cur_trans->state = TRANS_STATE_COMMIT_START; 3968 wake_up(&root->fs_info->transaction_blocked_wait); 3969 3970 btrfs_evict_pending_snapshots(cur_trans); 3971 3972 cur_trans->state = TRANS_STATE_UNBLOCKED; 3973 wake_up(&root->fs_info->transaction_wait); 3974 3975 btrfs_destroy_delayed_inodes(root); 3976 btrfs_assert_delayed_root_empty(root); 3977 3978 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages, 3979 EXTENT_DIRTY); 3980 btrfs_destroy_pinned_extent(root, 3981 root->fs_info->pinned_extents); 3982 3983 cur_trans->state =TRANS_STATE_COMPLETED; 3984 wake_up(&cur_trans->commit_wait); 3985 3986 /* 3987 memset(cur_trans, 0, sizeof(*cur_trans)); 3988 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 3989 */ 3990 } 3991 3992 static int btrfs_cleanup_transaction(struct btrfs_root *root) 3993 { 3994 struct btrfs_transaction *t; 3995 LIST_HEAD(list); 3996 3997 mutex_lock(&root->fs_info->transaction_kthread_mutex); 3998 3999 spin_lock(&root->fs_info->trans_lock); 4000 list_splice_init(&root->fs_info->trans_list, &list); 4001 root->fs_info->running_transaction = NULL; 4002 spin_unlock(&root->fs_info->trans_lock); 4003 4004 while (!list_empty(&list)) { 4005 t = list_entry(list.next, struct btrfs_transaction, list); 4006 4007 btrfs_destroy_ordered_operations(t, root); 4008 4009 btrfs_destroy_all_ordered_extents(root->fs_info); 4010 4011 btrfs_destroy_delayed_refs(t, root); 4012 4013 /* 4014 * FIXME: cleanup wait for commit 4015 * We needn't acquire the lock here, because we are during 4016 * the umount, there is no other task which will change it. 4017 */ 4018 t->state = TRANS_STATE_COMMIT_START; 4019 smp_mb(); 4020 if (waitqueue_active(&root->fs_info->transaction_blocked_wait)) 4021 wake_up(&root->fs_info->transaction_blocked_wait); 4022 4023 btrfs_evict_pending_snapshots(t); 4024 4025 t->state = TRANS_STATE_UNBLOCKED; 4026 smp_mb(); 4027 if (waitqueue_active(&root->fs_info->transaction_wait)) 4028 wake_up(&root->fs_info->transaction_wait); 4029 4030 btrfs_destroy_delayed_inodes(root); 4031 btrfs_assert_delayed_root_empty(root); 4032 4033 btrfs_destroy_all_delalloc_inodes(root->fs_info); 4034 4035 btrfs_destroy_marked_extents(root, &t->dirty_pages, 4036 EXTENT_DIRTY); 4037 4038 btrfs_destroy_pinned_extent(root, 4039 root->fs_info->pinned_extents); 4040 4041 t->state = TRANS_STATE_COMPLETED; 4042 smp_mb(); 4043 if (waitqueue_active(&t->commit_wait)) 4044 wake_up(&t->commit_wait); 4045 4046 atomic_set(&t->use_count, 0); 4047 list_del_init(&t->list); 4048 memset(t, 0, sizeof(*t)); 4049 kmem_cache_free(btrfs_transaction_cachep, t); 4050 } 4051 4052 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 4053 4054 return 0; 4055 } 4056 4057 static struct extent_io_ops btree_extent_io_ops = { 4058 .readpage_end_io_hook = btree_readpage_end_io_hook, 4059 .readpage_io_failed_hook = btree_io_failed_hook, 4060 .submit_bio_hook = btree_submit_bio_hook, 4061 /* note we're sharing with inode.c for the merge bio hook */ 4062 .merge_bio_hook = btrfs_merge_bio_hook, 4063 }; 4064