xref: /openbmc/linux/fs/btrfs/disk-io.c (revision 4e5e4705)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <linux/uuid.h>
34 #include <linux/semaphore.h>
35 #include <asm/unaligned.h>
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51 
52 #ifdef CONFIG_X86
53 #include <asm/cpufeature.h>
54 #endif
55 
56 static struct extent_io_ops btree_extent_io_ops;
57 static void end_workqueue_fn(struct btrfs_work *work);
58 static void free_fs_root(struct btrfs_root *root);
59 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
60 				    int read_only);
61 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
62 					     struct btrfs_root *root);
63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
65 				      struct btrfs_root *root);
66 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
67 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
68 					struct extent_io_tree *dirty_pages,
69 					int mark);
70 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
71 				       struct extent_io_tree *pinned_extents);
72 static int btrfs_cleanup_transaction(struct btrfs_root *root);
73 static void btrfs_error_commit_super(struct btrfs_root *root);
74 
75 /*
76  * end_io_wq structs are used to do processing in task context when an IO is
77  * complete.  This is used during reads to verify checksums, and it is used
78  * by writes to insert metadata for new file extents after IO is complete.
79  */
80 struct end_io_wq {
81 	struct bio *bio;
82 	bio_end_io_t *end_io;
83 	void *private;
84 	struct btrfs_fs_info *info;
85 	int error;
86 	int metadata;
87 	struct list_head list;
88 	struct btrfs_work work;
89 };
90 
91 /*
92  * async submit bios are used to offload expensive checksumming
93  * onto the worker threads.  They checksum file and metadata bios
94  * just before they are sent down the IO stack.
95  */
96 struct async_submit_bio {
97 	struct inode *inode;
98 	struct bio *bio;
99 	struct list_head list;
100 	extent_submit_bio_hook_t *submit_bio_start;
101 	extent_submit_bio_hook_t *submit_bio_done;
102 	int rw;
103 	int mirror_num;
104 	unsigned long bio_flags;
105 	/*
106 	 * bio_offset is optional, can be used if the pages in the bio
107 	 * can't tell us where in the file the bio should go
108 	 */
109 	u64 bio_offset;
110 	struct btrfs_work work;
111 	int error;
112 };
113 
114 /*
115  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
116  * eb, the lockdep key is determined by the btrfs_root it belongs to and
117  * the level the eb occupies in the tree.
118  *
119  * Different roots are used for different purposes and may nest inside each
120  * other and they require separate keysets.  As lockdep keys should be
121  * static, assign keysets according to the purpose of the root as indicated
122  * by btrfs_root->objectid.  This ensures that all special purpose roots
123  * have separate keysets.
124  *
125  * Lock-nesting across peer nodes is always done with the immediate parent
126  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
127  * subclass to avoid triggering lockdep warning in such cases.
128  *
129  * The key is set by the readpage_end_io_hook after the buffer has passed
130  * csum validation but before the pages are unlocked.  It is also set by
131  * btrfs_init_new_buffer on freshly allocated blocks.
132  *
133  * We also add a check to make sure the highest level of the tree is the
134  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
135  * needs update as well.
136  */
137 #ifdef CONFIG_DEBUG_LOCK_ALLOC
138 # if BTRFS_MAX_LEVEL != 8
139 #  error
140 # endif
141 
142 static struct btrfs_lockdep_keyset {
143 	u64			id;		/* root objectid */
144 	const char		*name_stem;	/* lock name stem */
145 	char			names[BTRFS_MAX_LEVEL + 1][20];
146 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
147 } btrfs_lockdep_keysets[] = {
148 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
149 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
150 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
151 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
152 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
153 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
154 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
155 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
156 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
157 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
158 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
159 	{ .id = 0,				.name_stem = "tree"	},
160 };
161 
162 void __init btrfs_init_lockdep(void)
163 {
164 	int i, j;
165 
166 	/* initialize lockdep class names */
167 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
168 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
169 
170 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
171 			snprintf(ks->names[j], sizeof(ks->names[j]),
172 				 "btrfs-%s-%02d", ks->name_stem, j);
173 	}
174 }
175 
176 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
177 				    int level)
178 {
179 	struct btrfs_lockdep_keyset *ks;
180 
181 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
182 
183 	/* find the matching keyset, id 0 is the default entry */
184 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
185 		if (ks->id == objectid)
186 			break;
187 
188 	lockdep_set_class_and_name(&eb->lock,
189 				   &ks->keys[level], ks->names[level]);
190 }
191 
192 #endif
193 
194 /*
195  * extents on the btree inode are pretty simple, there's one extent
196  * that covers the entire device
197  */
198 static struct extent_map *btree_get_extent(struct inode *inode,
199 		struct page *page, size_t pg_offset, u64 start, u64 len,
200 		int create)
201 {
202 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
203 	struct extent_map *em;
204 	int ret;
205 
206 	read_lock(&em_tree->lock);
207 	em = lookup_extent_mapping(em_tree, start, len);
208 	if (em) {
209 		em->bdev =
210 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
211 		read_unlock(&em_tree->lock);
212 		goto out;
213 	}
214 	read_unlock(&em_tree->lock);
215 
216 	em = alloc_extent_map();
217 	if (!em) {
218 		em = ERR_PTR(-ENOMEM);
219 		goto out;
220 	}
221 	em->start = 0;
222 	em->len = (u64)-1;
223 	em->block_len = (u64)-1;
224 	em->block_start = 0;
225 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
226 
227 	write_lock(&em_tree->lock);
228 	ret = add_extent_mapping(em_tree, em, 0);
229 	if (ret == -EEXIST) {
230 		free_extent_map(em);
231 		em = lookup_extent_mapping(em_tree, start, len);
232 		if (!em)
233 			em = ERR_PTR(-EIO);
234 	} else if (ret) {
235 		free_extent_map(em);
236 		em = ERR_PTR(ret);
237 	}
238 	write_unlock(&em_tree->lock);
239 
240 out:
241 	return em;
242 }
243 
244 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
245 {
246 	return crc32c(seed, data, len);
247 }
248 
249 void btrfs_csum_final(u32 crc, char *result)
250 {
251 	put_unaligned_le32(~crc, result);
252 }
253 
254 /*
255  * compute the csum for a btree block, and either verify it or write it
256  * into the csum field of the block.
257  */
258 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
259 			   int verify)
260 {
261 	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
262 	char *result = NULL;
263 	unsigned long len;
264 	unsigned long cur_len;
265 	unsigned long offset = BTRFS_CSUM_SIZE;
266 	char *kaddr;
267 	unsigned long map_start;
268 	unsigned long map_len;
269 	int err;
270 	u32 crc = ~(u32)0;
271 	unsigned long inline_result;
272 
273 	len = buf->len - offset;
274 	while (len > 0) {
275 		err = map_private_extent_buffer(buf, offset, 32,
276 					&kaddr, &map_start, &map_len);
277 		if (err)
278 			return 1;
279 		cur_len = min(len, map_len - (offset - map_start));
280 		crc = btrfs_csum_data(kaddr + offset - map_start,
281 				      crc, cur_len);
282 		len -= cur_len;
283 		offset += cur_len;
284 	}
285 	if (csum_size > sizeof(inline_result)) {
286 		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
287 		if (!result)
288 			return 1;
289 	} else {
290 		result = (char *)&inline_result;
291 	}
292 
293 	btrfs_csum_final(crc, result);
294 
295 	if (verify) {
296 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
297 			u32 val;
298 			u32 found = 0;
299 			memcpy(&found, result, csum_size);
300 
301 			read_extent_buffer(buf, &val, 0, csum_size);
302 			printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
303 				       "failed on %llu wanted %X found %X "
304 				       "level %d\n",
305 				       root->fs_info->sb->s_id, buf->start,
306 				       val, found, btrfs_header_level(buf));
307 			if (result != (char *)&inline_result)
308 				kfree(result);
309 			return 1;
310 		}
311 	} else {
312 		write_extent_buffer(buf, result, 0, csum_size);
313 	}
314 	if (result != (char *)&inline_result)
315 		kfree(result);
316 	return 0;
317 }
318 
319 /*
320  * we can't consider a given block up to date unless the transid of the
321  * block matches the transid in the parent node's pointer.  This is how we
322  * detect blocks that either didn't get written at all or got written
323  * in the wrong place.
324  */
325 static int verify_parent_transid(struct extent_io_tree *io_tree,
326 				 struct extent_buffer *eb, u64 parent_transid,
327 				 int atomic)
328 {
329 	struct extent_state *cached_state = NULL;
330 	int ret;
331 
332 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
333 		return 0;
334 
335 	if (atomic)
336 		return -EAGAIN;
337 
338 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
339 			 0, &cached_state);
340 	if (extent_buffer_uptodate(eb) &&
341 	    btrfs_header_generation(eb) == parent_transid) {
342 		ret = 0;
343 		goto out;
344 	}
345 	printk_ratelimited("parent transid verify failed on %llu wanted %llu "
346 		       "found %llu\n",
347 		       eb->start, parent_transid, btrfs_header_generation(eb));
348 	ret = 1;
349 	clear_extent_buffer_uptodate(eb);
350 out:
351 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
352 			     &cached_state, GFP_NOFS);
353 	return ret;
354 }
355 
356 /*
357  * Return 0 if the superblock checksum type matches the checksum value of that
358  * algorithm. Pass the raw disk superblock data.
359  */
360 static int btrfs_check_super_csum(char *raw_disk_sb)
361 {
362 	struct btrfs_super_block *disk_sb =
363 		(struct btrfs_super_block *)raw_disk_sb;
364 	u16 csum_type = btrfs_super_csum_type(disk_sb);
365 	int ret = 0;
366 
367 	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
368 		u32 crc = ~(u32)0;
369 		const int csum_size = sizeof(crc);
370 		char result[csum_size];
371 
372 		/*
373 		 * The super_block structure does not span the whole
374 		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
375 		 * is filled with zeros and is included in the checkum.
376 		 */
377 		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
378 				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
379 		btrfs_csum_final(crc, result);
380 
381 		if (memcmp(raw_disk_sb, result, csum_size))
382 			ret = 1;
383 
384 		if (ret && btrfs_super_generation(disk_sb) < 10) {
385 			printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
386 			ret = 0;
387 		}
388 	}
389 
390 	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
391 		printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
392 				csum_type);
393 		ret = 1;
394 	}
395 
396 	return ret;
397 }
398 
399 /*
400  * helper to read a given tree block, doing retries as required when
401  * the checksums don't match and we have alternate mirrors to try.
402  */
403 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
404 					  struct extent_buffer *eb,
405 					  u64 start, u64 parent_transid)
406 {
407 	struct extent_io_tree *io_tree;
408 	int failed = 0;
409 	int ret;
410 	int num_copies = 0;
411 	int mirror_num = 0;
412 	int failed_mirror = 0;
413 
414 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
415 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
416 	while (1) {
417 		ret = read_extent_buffer_pages(io_tree, eb, start,
418 					       WAIT_COMPLETE,
419 					       btree_get_extent, mirror_num);
420 		if (!ret) {
421 			if (!verify_parent_transid(io_tree, eb,
422 						   parent_transid, 0))
423 				break;
424 			else
425 				ret = -EIO;
426 		}
427 
428 		/*
429 		 * This buffer's crc is fine, but its contents are corrupted, so
430 		 * there is no reason to read the other copies, they won't be
431 		 * any less wrong.
432 		 */
433 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
434 			break;
435 
436 		num_copies = btrfs_num_copies(root->fs_info,
437 					      eb->start, eb->len);
438 		if (num_copies == 1)
439 			break;
440 
441 		if (!failed_mirror) {
442 			failed = 1;
443 			failed_mirror = eb->read_mirror;
444 		}
445 
446 		mirror_num++;
447 		if (mirror_num == failed_mirror)
448 			mirror_num++;
449 
450 		if (mirror_num > num_copies)
451 			break;
452 	}
453 
454 	if (failed && !ret && failed_mirror)
455 		repair_eb_io_failure(root, eb, failed_mirror);
456 
457 	return ret;
458 }
459 
460 /*
461  * checksum a dirty tree block before IO.  This has extra checks to make sure
462  * we only fill in the checksum field in the first page of a multi-page block
463  */
464 
465 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
466 {
467 	struct extent_io_tree *tree;
468 	u64 start = page_offset(page);
469 	u64 found_start;
470 	struct extent_buffer *eb;
471 
472 	tree = &BTRFS_I(page->mapping->host)->io_tree;
473 
474 	eb = (struct extent_buffer *)page->private;
475 	if (page != eb->pages[0])
476 		return 0;
477 	found_start = btrfs_header_bytenr(eb);
478 	if (WARN_ON(found_start != start || !PageUptodate(page)))
479 		return 0;
480 	csum_tree_block(root, eb, 0);
481 	return 0;
482 }
483 
484 static int check_tree_block_fsid(struct btrfs_root *root,
485 				 struct extent_buffer *eb)
486 {
487 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
488 	u8 fsid[BTRFS_UUID_SIZE];
489 	int ret = 1;
490 
491 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
492 	while (fs_devices) {
493 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
494 			ret = 0;
495 			break;
496 		}
497 		fs_devices = fs_devices->seed;
498 	}
499 	return ret;
500 }
501 
502 #define CORRUPT(reason, eb, root, slot)				\
503 	printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu,"	\
504 	       "root=%llu, slot=%d\n", reason,			\
505 	       btrfs_header_bytenr(eb),	root->objectid, slot)
506 
507 static noinline int check_leaf(struct btrfs_root *root,
508 			       struct extent_buffer *leaf)
509 {
510 	struct btrfs_key key;
511 	struct btrfs_key leaf_key;
512 	u32 nritems = btrfs_header_nritems(leaf);
513 	int slot;
514 
515 	if (nritems == 0)
516 		return 0;
517 
518 	/* Check the 0 item */
519 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
520 	    BTRFS_LEAF_DATA_SIZE(root)) {
521 		CORRUPT("invalid item offset size pair", leaf, root, 0);
522 		return -EIO;
523 	}
524 
525 	/*
526 	 * Check to make sure each items keys are in the correct order and their
527 	 * offsets make sense.  We only have to loop through nritems-1 because
528 	 * we check the current slot against the next slot, which verifies the
529 	 * next slot's offset+size makes sense and that the current's slot
530 	 * offset is correct.
531 	 */
532 	for (slot = 0; slot < nritems - 1; slot++) {
533 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
534 		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
535 
536 		/* Make sure the keys are in the right order */
537 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
538 			CORRUPT("bad key order", leaf, root, slot);
539 			return -EIO;
540 		}
541 
542 		/*
543 		 * Make sure the offset and ends are right, remember that the
544 		 * item data starts at the end of the leaf and grows towards the
545 		 * front.
546 		 */
547 		if (btrfs_item_offset_nr(leaf, slot) !=
548 			btrfs_item_end_nr(leaf, slot + 1)) {
549 			CORRUPT("slot offset bad", leaf, root, slot);
550 			return -EIO;
551 		}
552 
553 		/*
554 		 * Check to make sure that we don't point outside of the leaf,
555 		 * just incase all the items are consistent to eachother, but
556 		 * all point outside of the leaf.
557 		 */
558 		if (btrfs_item_end_nr(leaf, slot) >
559 		    BTRFS_LEAF_DATA_SIZE(root)) {
560 			CORRUPT("slot end outside of leaf", leaf, root, slot);
561 			return -EIO;
562 		}
563 	}
564 
565 	return 0;
566 }
567 
568 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
569 				      u64 phy_offset, struct page *page,
570 				      u64 start, u64 end, int mirror)
571 {
572 	struct extent_io_tree *tree;
573 	u64 found_start;
574 	int found_level;
575 	struct extent_buffer *eb;
576 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
577 	int ret = 0;
578 	int reads_done;
579 
580 	if (!page->private)
581 		goto out;
582 
583 	tree = &BTRFS_I(page->mapping->host)->io_tree;
584 	eb = (struct extent_buffer *)page->private;
585 
586 	/* the pending IO might have been the only thing that kept this buffer
587 	 * in memory.  Make sure we have a ref for all this other checks
588 	 */
589 	extent_buffer_get(eb);
590 
591 	reads_done = atomic_dec_and_test(&eb->io_pages);
592 	if (!reads_done)
593 		goto err;
594 
595 	eb->read_mirror = mirror;
596 	if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
597 		ret = -EIO;
598 		goto err;
599 	}
600 
601 	found_start = btrfs_header_bytenr(eb);
602 	if (found_start != eb->start) {
603 		printk_ratelimited(KERN_INFO "btrfs bad tree block start "
604 			       "%llu %llu\n",
605 			       found_start, eb->start);
606 		ret = -EIO;
607 		goto err;
608 	}
609 	if (check_tree_block_fsid(root, eb)) {
610 		printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
611 			       eb->start);
612 		ret = -EIO;
613 		goto err;
614 	}
615 	found_level = btrfs_header_level(eb);
616 	if (found_level >= BTRFS_MAX_LEVEL) {
617 		btrfs_info(root->fs_info, "bad tree block level %d\n",
618 			   (int)btrfs_header_level(eb));
619 		ret = -EIO;
620 		goto err;
621 	}
622 
623 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
624 				       eb, found_level);
625 
626 	ret = csum_tree_block(root, eb, 1);
627 	if (ret) {
628 		ret = -EIO;
629 		goto err;
630 	}
631 
632 	/*
633 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
634 	 * that we don't try and read the other copies of this block, just
635 	 * return -EIO.
636 	 */
637 	if (found_level == 0 && check_leaf(root, eb)) {
638 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
639 		ret = -EIO;
640 	}
641 
642 	if (!ret)
643 		set_extent_buffer_uptodate(eb);
644 err:
645 	if (reads_done &&
646 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
647 		btree_readahead_hook(root, eb, eb->start, ret);
648 
649 	if (ret) {
650 		/*
651 		 * our io error hook is going to dec the io pages
652 		 * again, we have to make sure it has something
653 		 * to decrement
654 		 */
655 		atomic_inc(&eb->io_pages);
656 		clear_extent_buffer_uptodate(eb);
657 	}
658 	free_extent_buffer(eb);
659 out:
660 	return ret;
661 }
662 
663 static int btree_io_failed_hook(struct page *page, int failed_mirror)
664 {
665 	struct extent_buffer *eb;
666 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
667 
668 	eb = (struct extent_buffer *)page->private;
669 	set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
670 	eb->read_mirror = failed_mirror;
671 	atomic_dec(&eb->io_pages);
672 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
673 		btree_readahead_hook(root, eb, eb->start, -EIO);
674 	return -EIO;	/* we fixed nothing */
675 }
676 
677 static void end_workqueue_bio(struct bio *bio, int err)
678 {
679 	struct end_io_wq *end_io_wq = bio->bi_private;
680 	struct btrfs_fs_info *fs_info;
681 
682 	fs_info = end_io_wq->info;
683 	end_io_wq->error = err;
684 	end_io_wq->work.func = end_workqueue_fn;
685 	end_io_wq->work.flags = 0;
686 
687 	if (bio->bi_rw & REQ_WRITE) {
688 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
689 			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
690 					   &end_io_wq->work);
691 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
692 			btrfs_queue_worker(&fs_info->endio_freespace_worker,
693 					   &end_io_wq->work);
694 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
695 			btrfs_queue_worker(&fs_info->endio_raid56_workers,
696 					   &end_io_wq->work);
697 		else
698 			btrfs_queue_worker(&fs_info->endio_write_workers,
699 					   &end_io_wq->work);
700 	} else {
701 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
702 			btrfs_queue_worker(&fs_info->endio_raid56_workers,
703 					   &end_io_wq->work);
704 		else if (end_io_wq->metadata)
705 			btrfs_queue_worker(&fs_info->endio_meta_workers,
706 					   &end_io_wq->work);
707 		else
708 			btrfs_queue_worker(&fs_info->endio_workers,
709 					   &end_io_wq->work);
710 	}
711 }
712 
713 /*
714  * For the metadata arg you want
715  *
716  * 0 - if data
717  * 1 - if normal metadta
718  * 2 - if writing to the free space cache area
719  * 3 - raid parity work
720  */
721 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
722 			int metadata)
723 {
724 	struct end_io_wq *end_io_wq;
725 	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
726 	if (!end_io_wq)
727 		return -ENOMEM;
728 
729 	end_io_wq->private = bio->bi_private;
730 	end_io_wq->end_io = bio->bi_end_io;
731 	end_io_wq->info = info;
732 	end_io_wq->error = 0;
733 	end_io_wq->bio = bio;
734 	end_io_wq->metadata = metadata;
735 
736 	bio->bi_private = end_io_wq;
737 	bio->bi_end_io = end_workqueue_bio;
738 	return 0;
739 }
740 
741 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
742 {
743 	unsigned long limit = min_t(unsigned long,
744 				    info->workers.max_workers,
745 				    info->fs_devices->open_devices);
746 	return 256 * limit;
747 }
748 
749 static void run_one_async_start(struct btrfs_work *work)
750 {
751 	struct async_submit_bio *async;
752 	int ret;
753 
754 	async = container_of(work, struct  async_submit_bio, work);
755 	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
756 				      async->mirror_num, async->bio_flags,
757 				      async->bio_offset);
758 	if (ret)
759 		async->error = ret;
760 }
761 
762 static void run_one_async_done(struct btrfs_work *work)
763 {
764 	struct btrfs_fs_info *fs_info;
765 	struct async_submit_bio *async;
766 	int limit;
767 
768 	async = container_of(work, struct  async_submit_bio, work);
769 	fs_info = BTRFS_I(async->inode)->root->fs_info;
770 
771 	limit = btrfs_async_submit_limit(fs_info);
772 	limit = limit * 2 / 3;
773 
774 	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
775 	    waitqueue_active(&fs_info->async_submit_wait))
776 		wake_up(&fs_info->async_submit_wait);
777 
778 	/* If an error occured we just want to clean up the bio and move on */
779 	if (async->error) {
780 		bio_endio(async->bio, async->error);
781 		return;
782 	}
783 
784 	async->submit_bio_done(async->inode, async->rw, async->bio,
785 			       async->mirror_num, async->bio_flags,
786 			       async->bio_offset);
787 }
788 
789 static void run_one_async_free(struct btrfs_work *work)
790 {
791 	struct async_submit_bio *async;
792 
793 	async = container_of(work, struct  async_submit_bio, work);
794 	kfree(async);
795 }
796 
797 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
798 			int rw, struct bio *bio, int mirror_num,
799 			unsigned long bio_flags,
800 			u64 bio_offset,
801 			extent_submit_bio_hook_t *submit_bio_start,
802 			extent_submit_bio_hook_t *submit_bio_done)
803 {
804 	struct async_submit_bio *async;
805 
806 	async = kmalloc(sizeof(*async), GFP_NOFS);
807 	if (!async)
808 		return -ENOMEM;
809 
810 	async->inode = inode;
811 	async->rw = rw;
812 	async->bio = bio;
813 	async->mirror_num = mirror_num;
814 	async->submit_bio_start = submit_bio_start;
815 	async->submit_bio_done = submit_bio_done;
816 
817 	async->work.func = run_one_async_start;
818 	async->work.ordered_func = run_one_async_done;
819 	async->work.ordered_free = run_one_async_free;
820 
821 	async->work.flags = 0;
822 	async->bio_flags = bio_flags;
823 	async->bio_offset = bio_offset;
824 
825 	async->error = 0;
826 
827 	atomic_inc(&fs_info->nr_async_submits);
828 
829 	if (rw & REQ_SYNC)
830 		btrfs_set_work_high_prio(&async->work);
831 
832 	btrfs_queue_worker(&fs_info->workers, &async->work);
833 
834 	while (atomic_read(&fs_info->async_submit_draining) &&
835 	      atomic_read(&fs_info->nr_async_submits)) {
836 		wait_event(fs_info->async_submit_wait,
837 			   (atomic_read(&fs_info->nr_async_submits) == 0));
838 	}
839 
840 	return 0;
841 }
842 
843 static int btree_csum_one_bio(struct bio *bio)
844 {
845 	struct bio_vec *bvec = bio->bi_io_vec;
846 	int bio_index = 0;
847 	struct btrfs_root *root;
848 	int ret = 0;
849 
850 	WARN_ON(bio->bi_vcnt <= 0);
851 	while (bio_index < bio->bi_vcnt) {
852 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
853 		ret = csum_dirty_buffer(root, bvec->bv_page);
854 		if (ret)
855 			break;
856 		bio_index++;
857 		bvec++;
858 	}
859 	return ret;
860 }
861 
862 static int __btree_submit_bio_start(struct inode *inode, int rw,
863 				    struct bio *bio, int mirror_num,
864 				    unsigned long bio_flags,
865 				    u64 bio_offset)
866 {
867 	/*
868 	 * when we're called for a write, we're already in the async
869 	 * submission context.  Just jump into btrfs_map_bio
870 	 */
871 	return btree_csum_one_bio(bio);
872 }
873 
874 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
875 				 int mirror_num, unsigned long bio_flags,
876 				 u64 bio_offset)
877 {
878 	int ret;
879 
880 	/*
881 	 * when we're called for a write, we're already in the async
882 	 * submission context.  Just jump into btrfs_map_bio
883 	 */
884 	ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
885 	if (ret)
886 		bio_endio(bio, ret);
887 	return ret;
888 }
889 
890 static int check_async_write(struct inode *inode, unsigned long bio_flags)
891 {
892 	if (bio_flags & EXTENT_BIO_TREE_LOG)
893 		return 0;
894 #ifdef CONFIG_X86
895 	if (cpu_has_xmm4_2)
896 		return 0;
897 #endif
898 	return 1;
899 }
900 
901 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
902 				 int mirror_num, unsigned long bio_flags,
903 				 u64 bio_offset)
904 {
905 	int async = check_async_write(inode, bio_flags);
906 	int ret;
907 
908 	if (!(rw & REQ_WRITE)) {
909 		/*
910 		 * called for a read, do the setup so that checksum validation
911 		 * can happen in the async kernel threads
912 		 */
913 		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
914 					  bio, 1);
915 		if (ret)
916 			goto out_w_error;
917 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
918 				    mirror_num, 0);
919 	} else if (!async) {
920 		ret = btree_csum_one_bio(bio);
921 		if (ret)
922 			goto out_w_error;
923 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
924 				    mirror_num, 0);
925 	} else {
926 		/*
927 		 * kthread helpers are used to submit writes so that
928 		 * checksumming can happen in parallel across all CPUs
929 		 */
930 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
931 					  inode, rw, bio, mirror_num, 0,
932 					  bio_offset,
933 					  __btree_submit_bio_start,
934 					  __btree_submit_bio_done);
935 	}
936 
937 	if (ret) {
938 out_w_error:
939 		bio_endio(bio, ret);
940 	}
941 	return ret;
942 }
943 
944 #ifdef CONFIG_MIGRATION
945 static int btree_migratepage(struct address_space *mapping,
946 			struct page *newpage, struct page *page,
947 			enum migrate_mode mode)
948 {
949 	/*
950 	 * we can't safely write a btree page from here,
951 	 * we haven't done the locking hook
952 	 */
953 	if (PageDirty(page))
954 		return -EAGAIN;
955 	/*
956 	 * Buffers may be managed in a filesystem specific way.
957 	 * We must have no buffers or drop them.
958 	 */
959 	if (page_has_private(page) &&
960 	    !try_to_release_page(page, GFP_KERNEL))
961 		return -EAGAIN;
962 	return migrate_page(mapping, newpage, page, mode);
963 }
964 #endif
965 
966 
967 static int btree_writepages(struct address_space *mapping,
968 			    struct writeback_control *wbc)
969 {
970 	struct extent_io_tree *tree;
971 	struct btrfs_fs_info *fs_info;
972 	int ret;
973 
974 	tree = &BTRFS_I(mapping->host)->io_tree;
975 	if (wbc->sync_mode == WB_SYNC_NONE) {
976 
977 		if (wbc->for_kupdate)
978 			return 0;
979 
980 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
981 		/* this is a bit racy, but that's ok */
982 		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
983 					     BTRFS_DIRTY_METADATA_THRESH);
984 		if (ret < 0)
985 			return 0;
986 	}
987 	return btree_write_cache_pages(mapping, wbc);
988 }
989 
990 static int btree_readpage(struct file *file, struct page *page)
991 {
992 	struct extent_io_tree *tree;
993 	tree = &BTRFS_I(page->mapping->host)->io_tree;
994 	return extent_read_full_page(tree, page, btree_get_extent, 0);
995 }
996 
997 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
998 {
999 	if (PageWriteback(page) || PageDirty(page))
1000 		return 0;
1001 
1002 	return try_release_extent_buffer(page);
1003 }
1004 
1005 static void btree_invalidatepage(struct page *page, unsigned int offset,
1006 				 unsigned int length)
1007 {
1008 	struct extent_io_tree *tree;
1009 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1010 	extent_invalidatepage(tree, page, offset);
1011 	btree_releasepage(page, GFP_NOFS);
1012 	if (PagePrivate(page)) {
1013 		printk(KERN_WARNING "btrfs warning page private not zero "
1014 		       "on page %llu\n", (unsigned long long)page_offset(page));
1015 		ClearPagePrivate(page);
1016 		set_page_private(page, 0);
1017 		page_cache_release(page);
1018 	}
1019 }
1020 
1021 static int btree_set_page_dirty(struct page *page)
1022 {
1023 #ifdef DEBUG
1024 	struct extent_buffer *eb;
1025 
1026 	BUG_ON(!PagePrivate(page));
1027 	eb = (struct extent_buffer *)page->private;
1028 	BUG_ON(!eb);
1029 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1030 	BUG_ON(!atomic_read(&eb->refs));
1031 	btrfs_assert_tree_locked(eb);
1032 #endif
1033 	return __set_page_dirty_nobuffers(page);
1034 }
1035 
1036 static const struct address_space_operations btree_aops = {
1037 	.readpage	= btree_readpage,
1038 	.writepages	= btree_writepages,
1039 	.releasepage	= btree_releasepage,
1040 	.invalidatepage = btree_invalidatepage,
1041 #ifdef CONFIG_MIGRATION
1042 	.migratepage	= btree_migratepage,
1043 #endif
1044 	.set_page_dirty = btree_set_page_dirty,
1045 };
1046 
1047 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1048 			 u64 parent_transid)
1049 {
1050 	struct extent_buffer *buf = NULL;
1051 	struct inode *btree_inode = root->fs_info->btree_inode;
1052 	int ret = 0;
1053 
1054 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1055 	if (!buf)
1056 		return 0;
1057 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1058 				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1059 	free_extent_buffer(buf);
1060 	return ret;
1061 }
1062 
1063 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1064 			 int mirror_num, struct extent_buffer **eb)
1065 {
1066 	struct extent_buffer *buf = NULL;
1067 	struct inode *btree_inode = root->fs_info->btree_inode;
1068 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1069 	int ret;
1070 
1071 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1072 	if (!buf)
1073 		return 0;
1074 
1075 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1076 
1077 	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1078 				       btree_get_extent, mirror_num);
1079 	if (ret) {
1080 		free_extent_buffer(buf);
1081 		return ret;
1082 	}
1083 
1084 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1085 		free_extent_buffer(buf);
1086 		return -EIO;
1087 	} else if (extent_buffer_uptodate(buf)) {
1088 		*eb = buf;
1089 	} else {
1090 		free_extent_buffer(buf);
1091 	}
1092 	return 0;
1093 }
1094 
1095 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1096 					    u64 bytenr, u32 blocksize)
1097 {
1098 	struct inode *btree_inode = root->fs_info->btree_inode;
1099 	struct extent_buffer *eb;
1100 	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, bytenr);
1101 	return eb;
1102 }
1103 
1104 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1105 						 u64 bytenr, u32 blocksize)
1106 {
1107 	struct inode *btree_inode = root->fs_info->btree_inode;
1108 	struct extent_buffer *eb;
1109 
1110 	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1111 				 bytenr, blocksize);
1112 	return eb;
1113 }
1114 
1115 
1116 int btrfs_write_tree_block(struct extent_buffer *buf)
1117 {
1118 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1119 					buf->start + buf->len - 1);
1120 }
1121 
1122 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1123 {
1124 	return filemap_fdatawait_range(buf->pages[0]->mapping,
1125 				       buf->start, buf->start + buf->len - 1);
1126 }
1127 
1128 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1129 				      u32 blocksize, u64 parent_transid)
1130 {
1131 	struct extent_buffer *buf = NULL;
1132 	int ret;
1133 
1134 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1135 	if (!buf)
1136 		return NULL;
1137 
1138 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1139 	if (ret) {
1140 		free_extent_buffer(buf);
1141 		return NULL;
1142 	}
1143 	return buf;
1144 
1145 }
1146 
1147 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1148 		      struct extent_buffer *buf)
1149 {
1150 	struct btrfs_fs_info *fs_info = root->fs_info;
1151 
1152 	if (btrfs_header_generation(buf) ==
1153 	    fs_info->running_transaction->transid) {
1154 		btrfs_assert_tree_locked(buf);
1155 
1156 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1157 			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
1158 					     -buf->len,
1159 					     fs_info->dirty_metadata_batch);
1160 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1161 			btrfs_set_lock_blocking(buf);
1162 			clear_extent_buffer_dirty(buf);
1163 		}
1164 	}
1165 }
1166 
1167 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1168 			 u32 stripesize, struct btrfs_root *root,
1169 			 struct btrfs_fs_info *fs_info,
1170 			 u64 objectid)
1171 {
1172 	root->node = NULL;
1173 	root->commit_root = NULL;
1174 	root->sectorsize = sectorsize;
1175 	root->nodesize = nodesize;
1176 	root->leafsize = leafsize;
1177 	root->stripesize = stripesize;
1178 	root->ref_cows = 0;
1179 	root->track_dirty = 0;
1180 	root->in_radix = 0;
1181 	root->orphan_item_inserted = 0;
1182 	root->orphan_cleanup_state = 0;
1183 
1184 	root->objectid = objectid;
1185 	root->last_trans = 0;
1186 	root->highest_objectid = 0;
1187 	root->nr_delalloc_inodes = 0;
1188 	root->nr_ordered_extents = 0;
1189 	root->name = NULL;
1190 	root->inode_tree = RB_ROOT;
1191 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1192 	root->block_rsv = NULL;
1193 	root->orphan_block_rsv = NULL;
1194 
1195 	INIT_LIST_HEAD(&root->dirty_list);
1196 	INIT_LIST_HEAD(&root->root_list);
1197 	INIT_LIST_HEAD(&root->delalloc_inodes);
1198 	INIT_LIST_HEAD(&root->delalloc_root);
1199 	INIT_LIST_HEAD(&root->ordered_extents);
1200 	INIT_LIST_HEAD(&root->ordered_root);
1201 	INIT_LIST_HEAD(&root->logged_list[0]);
1202 	INIT_LIST_HEAD(&root->logged_list[1]);
1203 	spin_lock_init(&root->orphan_lock);
1204 	spin_lock_init(&root->inode_lock);
1205 	spin_lock_init(&root->delalloc_lock);
1206 	spin_lock_init(&root->ordered_extent_lock);
1207 	spin_lock_init(&root->accounting_lock);
1208 	spin_lock_init(&root->log_extents_lock[0]);
1209 	spin_lock_init(&root->log_extents_lock[1]);
1210 	mutex_init(&root->objectid_mutex);
1211 	mutex_init(&root->log_mutex);
1212 	init_waitqueue_head(&root->log_writer_wait);
1213 	init_waitqueue_head(&root->log_commit_wait[0]);
1214 	init_waitqueue_head(&root->log_commit_wait[1]);
1215 	atomic_set(&root->log_commit[0], 0);
1216 	atomic_set(&root->log_commit[1], 0);
1217 	atomic_set(&root->log_writers, 0);
1218 	atomic_set(&root->log_batch, 0);
1219 	atomic_set(&root->orphan_inodes, 0);
1220 	atomic_set(&root->refs, 1);
1221 	root->log_transid = 0;
1222 	root->last_log_commit = 0;
1223 	if (fs_info)
1224 		extent_io_tree_init(&root->dirty_log_pages,
1225 				     fs_info->btree_inode->i_mapping);
1226 
1227 	memset(&root->root_key, 0, sizeof(root->root_key));
1228 	memset(&root->root_item, 0, sizeof(root->root_item));
1229 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1230 	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1231 	if (fs_info)
1232 		root->defrag_trans_start = fs_info->generation;
1233 	else
1234 		root->defrag_trans_start = 0;
1235 	init_completion(&root->kobj_unregister);
1236 	root->defrag_running = 0;
1237 	root->root_key.objectid = objectid;
1238 	root->anon_dev = 0;
1239 
1240 	spin_lock_init(&root->root_item_lock);
1241 }
1242 
1243 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1244 {
1245 	struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1246 	if (root)
1247 		root->fs_info = fs_info;
1248 	return root;
1249 }
1250 
1251 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1252 /* Should only be used by the testing infrastructure */
1253 struct btrfs_root *btrfs_alloc_dummy_root(void)
1254 {
1255 	struct btrfs_root *root;
1256 
1257 	root = btrfs_alloc_root(NULL);
1258 	if (!root)
1259 		return ERR_PTR(-ENOMEM);
1260 	__setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1261 	root->dummy_root = 1;
1262 
1263 	return root;
1264 }
1265 #endif
1266 
1267 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1268 				     struct btrfs_fs_info *fs_info,
1269 				     u64 objectid)
1270 {
1271 	struct extent_buffer *leaf;
1272 	struct btrfs_root *tree_root = fs_info->tree_root;
1273 	struct btrfs_root *root;
1274 	struct btrfs_key key;
1275 	int ret = 0;
1276 	u64 bytenr;
1277 	uuid_le uuid;
1278 
1279 	root = btrfs_alloc_root(fs_info);
1280 	if (!root)
1281 		return ERR_PTR(-ENOMEM);
1282 
1283 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1284 		     tree_root->sectorsize, tree_root->stripesize,
1285 		     root, fs_info, objectid);
1286 	root->root_key.objectid = objectid;
1287 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1288 	root->root_key.offset = 0;
1289 
1290 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1291 				      0, objectid, NULL, 0, 0, 0);
1292 	if (IS_ERR(leaf)) {
1293 		ret = PTR_ERR(leaf);
1294 		leaf = NULL;
1295 		goto fail;
1296 	}
1297 
1298 	bytenr = leaf->start;
1299 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1300 	btrfs_set_header_bytenr(leaf, leaf->start);
1301 	btrfs_set_header_generation(leaf, trans->transid);
1302 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1303 	btrfs_set_header_owner(leaf, objectid);
1304 	root->node = leaf;
1305 
1306 	write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1307 			    BTRFS_FSID_SIZE);
1308 	write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1309 			    btrfs_header_chunk_tree_uuid(leaf),
1310 			    BTRFS_UUID_SIZE);
1311 	btrfs_mark_buffer_dirty(leaf);
1312 
1313 	root->commit_root = btrfs_root_node(root);
1314 	root->track_dirty = 1;
1315 
1316 
1317 	root->root_item.flags = 0;
1318 	root->root_item.byte_limit = 0;
1319 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1320 	btrfs_set_root_generation(&root->root_item, trans->transid);
1321 	btrfs_set_root_level(&root->root_item, 0);
1322 	btrfs_set_root_refs(&root->root_item, 1);
1323 	btrfs_set_root_used(&root->root_item, leaf->len);
1324 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1325 	btrfs_set_root_dirid(&root->root_item, 0);
1326 	uuid_le_gen(&uuid);
1327 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1328 	root->root_item.drop_level = 0;
1329 
1330 	key.objectid = objectid;
1331 	key.type = BTRFS_ROOT_ITEM_KEY;
1332 	key.offset = 0;
1333 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1334 	if (ret)
1335 		goto fail;
1336 
1337 	btrfs_tree_unlock(leaf);
1338 
1339 	return root;
1340 
1341 fail:
1342 	if (leaf) {
1343 		btrfs_tree_unlock(leaf);
1344 		free_extent_buffer(leaf);
1345 	}
1346 	kfree(root);
1347 
1348 	return ERR_PTR(ret);
1349 }
1350 
1351 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1352 					 struct btrfs_fs_info *fs_info)
1353 {
1354 	struct btrfs_root *root;
1355 	struct btrfs_root *tree_root = fs_info->tree_root;
1356 	struct extent_buffer *leaf;
1357 
1358 	root = btrfs_alloc_root(fs_info);
1359 	if (!root)
1360 		return ERR_PTR(-ENOMEM);
1361 
1362 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1363 		     tree_root->sectorsize, tree_root->stripesize,
1364 		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1365 
1366 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1367 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1368 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1369 	/*
1370 	 * log trees do not get reference counted because they go away
1371 	 * before a real commit is actually done.  They do store pointers
1372 	 * to file data extents, and those reference counts still get
1373 	 * updated (along with back refs to the log tree).
1374 	 */
1375 	root->ref_cows = 0;
1376 
1377 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1378 				      BTRFS_TREE_LOG_OBJECTID, NULL,
1379 				      0, 0, 0);
1380 	if (IS_ERR(leaf)) {
1381 		kfree(root);
1382 		return ERR_CAST(leaf);
1383 	}
1384 
1385 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1386 	btrfs_set_header_bytenr(leaf, leaf->start);
1387 	btrfs_set_header_generation(leaf, trans->transid);
1388 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1389 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1390 	root->node = leaf;
1391 
1392 	write_extent_buffer(root->node, root->fs_info->fsid,
1393 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
1394 	btrfs_mark_buffer_dirty(root->node);
1395 	btrfs_tree_unlock(root->node);
1396 	return root;
1397 }
1398 
1399 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1400 			     struct btrfs_fs_info *fs_info)
1401 {
1402 	struct btrfs_root *log_root;
1403 
1404 	log_root = alloc_log_tree(trans, fs_info);
1405 	if (IS_ERR(log_root))
1406 		return PTR_ERR(log_root);
1407 	WARN_ON(fs_info->log_root_tree);
1408 	fs_info->log_root_tree = log_root;
1409 	return 0;
1410 }
1411 
1412 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1413 		       struct btrfs_root *root)
1414 {
1415 	struct btrfs_root *log_root;
1416 	struct btrfs_inode_item *inode_item;
1417 
1418 	log_root = alloc_log_tree(trans, root->fs_info);
1419 	if (IS_ERR(log_root))
1420 		return PTR_ERR(log_root);
1421 
1422 	log_root->last_trans = trans->transid;
1423 	log_root->root_key.offset = root->root_key.objectid;
1424 
1425 	inode_item = &log_root->root_item.inode;
1426 	btrfs_set_stack_inode_generation(inode_item, 1);
1427 	btrfs_set_stack_inode_size(inode_item, 3);
1428 	btrfs_set_stack_inode_nlink(inode_item, 1);
1429 	btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1430 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1431 
1432 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1433 
1434 	WARN_ON(root->log_root);
1435 	root->log_root = log_root;
1436 	root->log_transid = 0;
1437 	root->last_log_commit = 0;
1438 	return 0;
1439 }
1440 
1441 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1442 					       struct btrfs_key *key)
1443 {
1444 	struct btrfs_root *root;
1445 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1446 	struct btrfs_path *path;
1447 	u64 generation;
1448 	u32 blocksize;
1449 	int ret;
1450 
1451 	path = btrfs_alloc_path();
1452 	if (!path)
1453 		return ERR_PTR(-ENOMEM);
1454 
1455 	root = btrfs_alloc_root(fs_info);
1456 	if (!root) {
1457 		ret = -ENOMEM;
1458 		goto alloc_fail;
1459 	}
1460 
1461 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1462 		     tree_root->sectorsize, tree_root->stripesize,
1463 		     root, fs_info, key->objectid);
1464 
1465 	ret = btrfs_find_root(tree_root, key, path,
1466 			      &root->root_item, &root->root_key);
1467 	if (ret) {
1468 		if (ret > 0)
1469 			ret = -ENOENT;
1470 		goto find_fail;
1471 	}
1472 
1473 	generation = btrfs_root_generation(&root->root_item);
1474 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1475 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1476 				     blocksize, generation);
1477 	if (!root->node) {
1478 		ret = -ENOMEM;
1479 		goto find_fail;
1480 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1481 		ret = -EIO;
1482 		goto read_fail;
1483 	}
1484 	root->commit_root = btrfs_root_node(root);
1485 out:
1486 	btrfs_free_path(path);
1487 	return root;
1488 
1489 read_fail:
1490 	free_extent_buffer(root->node);
1491 find_fail:
1492 	kfree(root);
1493 alloc_fail:
1494 	root = ERR_PTR(ret);
1495 	goto out;
1496 }
1497 
1498 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1499 				      struct btrfs_key *location)
1500 {
1501 	struct btrfs_root *root;
1502 
1503 	root = btrfs_read_tree_root(tree_root, location);
1504 	if (IS_ERR(root))
1505 		return root;
1506 
1507 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1508 		root->ref_cows = 1;
1509 		btrfs_check_and_init_root_item(&root->root_item);
1510 	}
1511 
1512 	return root;
1513 }
1514 
1515 int btrfs_init_fs_root(struct btrfs_root *root)
1516 {
1517 	int ret;
1518 
1519 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1520 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1521 					GFP_NOFS);
1522 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1523 		ret = -ENOMEM;
1524 		goto fail;
1525 	}
1526 
1527 	btrfs_init_free_ino_ctl(root);
1528 	mutex_init(&root->fs_commit_mutex);
1529 	spin_lock_init(&root->cache_lock);
1530 	init_waitqueue_head(&root->cache_wait);
1531 
1532 	ret = get_anon_bdev(&root->anon_dev);
1533 	if (ret)
1534 		goto fail;
1535 	return 0;
1536 fail:
1537 	kfree(root->free_ino_ctl);
1538 	kfree(root->free_ino_pinned);
1539 	return ret;
1540 }
1541 
1542 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1543 					       u64 root_id)
1544 {
1545 	struct btrfs_root *root;
1546 
1547 	spin_lock(&fs_info->fs_roots_radix_lock);
1548 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1549 				 (unsigned long)root_id);
1550 	spin_unlock(&fs_info->fs_roots_radix_lock);
1551 	return root;
1552 }
1553 
1554 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1555 			 struct btrfs_root *root)
1556 {
1557 	int ret;
1558 
1559 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1560 	if (ret)
1561 		return ret;
1562 
1563 	spin_lock(&fs_info->fs_roots_radix_lock);
1564 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1565 				(unsigned long)root->root_key.objectid,
1566 				root);
1567 	if (ret == 0)
1568 		root->in_radix = 1;
1569 	spin_unlock(&fs_info->fs_roots_radix_lock);
1570 	radix_tree_preload_end();
1571 
1572 	return ret;
1573 }
1574 
1575 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1576 				     struct btrfs_key *location,
1577 				     bool check_ref)
1578 {
1579 	struct btrfs_root *root;
1580 	int ret;
1581 
1582 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1583 		return fs_info->tree_root;
1584 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1585 		return fs_info->extent_root;
1586 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1587 		return fs_info->chunk_root;
1588 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1589 		return fs_info->dev_root;
1590 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1591 		return fs_info->csum_root;
1592 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1593 		return fs_info->quota_root ? fs_info->quota_root :
1594 					     ERR_PTR(-ENOENT);
1595 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1596 		return fs_info->uuid_root ? fs_info->uuid_root :
1597 					    ERR_PTR(-ENOENT);
1598 again:
1599 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1600 	if (root) {
1601 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1602 			return ERR_PTR(-ENOENT);
1603 		return root;
1604 	}
1605 
1606 	root = btrfs_read_fs_root(fs_info->tree_root, location);
1607 	if (IS_ERR(root))
1608 		return root;
1609 
1610 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1611 		ret = -ENOENT;
1612 		goto fail;
1613 	}
1614 
1615 	ret = btrfs_init_fs_root(root);
1616 	if (ret)
1617 		goto fail;
1618 
1619 	ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1620 	if (ret < 0)
1621 		goto fail;
1622 	if (ret == 0)
1623 		root->orphan_item_inserted = 1;
1624 
1625 	ret = btrfs_insert_fs_root(fs_info, root);
1626 	if (ret) {
1627 		if (ret == -EEXIST) {
1628 			free_fs_root(root);
1629 			goto again;
1630 		}
1631 		goto fail;
1632 	}
1633 	return root;
1634 fail:
1635 	free_fs_root(root);
1636 	return ERR_PTR(ret);
1637 }
1638 
1639 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1640 {
1641 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1642 	int ret = 0;
1643 	struct btrfs_device *device;
1644 	struct backing_dev_info *bdi;
1645 
1646 	rcu_read_lock();
1647 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1648 		if (!device->bdev)
1649 			continue;
1650 		bdi = blk_get_backing_dev_info(device->bdev);
1651 		if (bdi && bdi_congested(bdi, bdi_bits)) {
1652 			ret = 1;
1653 			break;
1654 		}
1655 	}
1656 	rcu_read_unlock();
1657 	return ret;
1658 }
1659 
1660 /*
1661  * If this fails, caller must call bdi_destroy() to get rid of the
1662  * bdi again.
1663  */
1664 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1665 {
1666 	int err;
1667 
1668 	bdi->capabilities = BDI_CAP_MAP_COPY;
1669 	err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1670 	if (err)
1671 		return err;
1672 
1673 	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1674 	bdi->congested_fn	= btrfs_congested_fn;
1675 	bdi->congested_data	= info;
1676 	return 0;
1677 }
1678 
1679 /*
1680  * called by the kthread helper functions to finally call the bio end_io
1681  * functions.  This is where read checksum verification actually happens
1682  */
1683 static void end_workqueue_fn(struct btrfs_work *work)
1684 {
1685 	struct bio *bio;
1686 	struct end_io_wq *end_io_wq;
1687 	struct btrfs_fs_info *fs_info;
1688 	int error;
1689 
1690 	end_io_wq = container_of(work, struct end_io_wq, work);
1691 	bio = end_io_wq->bio;
1692 	fs_info = end_io_wq->info;
1693 
1694 	error = end_io_wq->error;
1695 	bio->bi_private = end_io_wq->private;
1696 	bio->bi_end_io = end_io_wq->end_io;
1697 	kfree(end_io_wq);
1698 	bio_endio(bio, error);
1699 }
1700 
1701 static int cleaner_kthread(void *arg)
1702 {
1703 	struct btrfs_root *root = arg;
1704 	int again;
1705 
1706 	do {
1707 		again = 0;
1708 
1709 		/* Make the cleaner go to sleep early. */
1710 		if (btrfs_need_cleaner_sleep(root))
1711 			goto sleep;
1712 
1713 		if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1714 			goto sleep;
1715 
1716 		/*
1717 		 * Avoid the problem that we change the status of the fs
1718 		 * during the above check and trylock.
1719 		 */
1720 		if (btrfs_need_cleaner_sleep(root)) {
1721 			mutex_unlock(&root->fs_info->cleaner_mutex);
1722 			goto sleep;
1723 		}
1724 
1725 		btrfs_run_delayed_iputs(root);
1726 		again = btrfs_clean_one_deleted_snapshot(root);
1727 		mutex_unlock(&root->fs_info->cleaner_mutex);
1728 
1729 		/*
1730 		 * The defragger has dealt with the R/O remount and umount,
1731 		 * needn't do anything special here.
1732 		 */
1733 		btrfs_run_defrag_inodes(root->fs_info);
1734 sleep:
1735 		if (!try_to_freeze() && !again) {
1736 			set_current_state(TASK_INTERRUPTIBLE);
1737 			if (!kthread_should_stop())
1738 				schedule();
1739 			__set_current_state(TASK_RUNNING);
1740 		}
1741 	} while (!kthread_should_stop());
1742 	return 0;
1743 }
1744 
1745 static int transaction_kthread(void *arg)
1746 {
1747 	struct btrfs_root *root = arg;
1748 	struct btrfs_trans_handle *trans;
1749 	struct btrfs_transaction *cur;
1750 	u64 transid;
1751 	unsigned long now;
1752 	unsigned long delay;
1753 	bool cannot_commit;
1754 
1755 	do {
1756 		cannot_commit = false;
1757 		delay = HZ * root->fs_info->commit_interval;
1758 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1759 
1760 		spin_lock(&root->fs_info->trans_lock);
1761 		cur = root->fs_info->running_transaction;
1762 		if (!cur) {
1763 			spin_unlock(&root->fs_info->trans_lock);
1764 			goto sleep;
1765 		}
1766 
1767 		now = get_seconds();
1768 		if (cur->state < TRANS_STATE_BLOCKED &&
1769 		    (now < cur->start_time ||
1770 		     now - cur->start_time < root->fs_info->commit_interval)) {
1771 			spin_unlock(&root->fs_info->trans_lock);
1772 			delay = HZ * 5;
1773 			goto sleep;
1774 		}
1775 		transid = cur->transid;
1776 		spin_unlock(&root->fs_info->trans_lock);
1777 
1778 		/* If the file system is aborted, this will always fail. */
1779 		trans = btrfs_attach_transaction(root);
1780 		if (IS_ERR(trans)) {
1781 			if (PTR_ERR(trans) != -ENOENT)
1782 				cannot_commit = true;
1783 			goto sleep;
1784 		}
1785 		if (transid == trans->transid) {
1786 			btrfs_commit_transaction(trans, root);
1787 		} else {
1788 			btrfs_end_transaction(trans, root);
1789 		}
1790 sleep:
1791 		wake_up_process(root->fs_info->cleaner_kthread);
1792 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1793 
1794 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1795 				      &root->fs_info->fs_state)))
1796 			btrfs_cleanup_transaction(root);
1797 		if (!try_to_freeze()) {
1798 			set_current_state(TASK_INTERRUPTIBLE);
1799 			if (!kthread_should_stop() &&
1800 			    (!btrfs_transaction_blocked(root->fs_info) ||
1801 			     cannot_commit))
1802 				schedule_timeout(delay);
1803 			__set_current_state(TASK_RUNNING);
1804 		}
1805 	} while (!kthread_should_stop());
1806 	return 0;
1807 }
1808 
1809 /*
1810  * this will find the highest generation in the array of
1811  * root backups.  The index of the highest array is returned,
1812  * or -1 if we can't find anything.
1813  *
1814  * We check to make sure the array is valid by comparing the
1815  * generation of the latest  root in the array with the generation
1816  * in the super block.  If they don't match we pitch it.
1817  */
1818 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1819 {
1820 	u64 cur;
1821 	int newest_index = -1;
1822 	struct btrfs_root_backup *root_backup;
1823 	int i;
1824 
1825 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1826 		root_backup = info->super_copy->super_roots + i;
1827 		cur = btrfs_backup_tree_root_gen(root_backup);
1828 		if (cur == newest_gen)
1829 			newest_index = i;
1830 	}
1831 
1832 	/* check to see if we actually wrapped around */
1833 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1834 		root_backup = info->super_copy->super_roots;
1835 		cur = btrfs_backup_tree_root_gen(root_backup);
1836 		if (cur == newest_gen)
1837 			newest_index = 0;
1838 	}
1839 	return newest_index;
1840 }
1841 
1842 
1843 /*
1844  * find the oldest backup so we know where to store new entries
1845  * in the backup array.  This will set the backup_root_index
1846  * field in the fs_info struct
1847  */
1848 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1849 				     u64 newest_gen)
1850 {
1851 	int newest_index = -1;
1852 
1853 	newest_index = find_newest_super_backup(info, newest_gen);
1854 	/* if there was garbage in there, just move along */
1855 	if (newest_index == -1) {
1856 		info->backup_root_index = 0;
1857 	} else {
1858 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1859 	}
1860 }
1861 
1862 /*
1863  * copy all the root pointers into the super backup array.
1864  * this will bump the backup pointer by one when it is
1865  * done
1866  */
1867 static void backup_super_roots(struct btrfs_fs_info *info)
1868 {
1869 	int next_backup;
1870 	struct btrfs_root_backup *root_backup;
1871 	int last_backup;
1872 
1873 	next_backup = info->backup_root_index;
1874 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1875 		BTRFS_NUM_BACKUP_ROOTS;
1876 
1877 	/*
1878 	 * just overwrite the last backup if we're at the same generation
1879 	 * this happens only at umount
1880 	 */
1881 	root_backup = info->super_for_commit->super_roots + last_backup;
1882 	if (btrfs_backup_tree_root_gen(root_backup) ==
1883 	    btrfs_header_generation(info->tree_root->node))
1884 		next_backup = last_backup;
1885 
1886 	root_backup = info->super_for_commit->super_roots + next_backup;
1887 
1888 	/*
1889 	 * make sure all of our padding and empty slots get zero filled
1890 	 * regardless of which ones we use today
1891 	 */
1892 	memset(root_backup, 0, sizeof(*root_backup));
1893 
1894 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1895 
1896 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1897 	btrfs_set_backup_tree_root_gen(root_backup,
1898 			       btrfs_header_generation(info->tree_root->node));
1899 
1900 	btrfs_set_backup_tree_root_level(root_backup,
1901 			       btrfs_header_level(info->tree_root->node));
1902 
1903 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1904 	btrfs_set_backup_chunk_root_gen(root_backup,
1905 			       btrfs_header_generation(info->chunk_root->node));
1906 	btrfs_set_backup_chunk_root_level(root_backup,
1907 			       btrfs_header_level(info->chunk_root->node));
1908 
1909 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1910 	btrfs_set_backup_extent_root_gen(root_backup,
1911 			       btrfs_header_generation(info->extent_root->node));
1912 	btrfs_set_backup_extent_root_level(root_backup,
1913 			       btrfs_header_level(info->extent_root->node));
1914 
1915 	/*
1916 	 * we might commit during log recovery, which happens before we set
1917 	 * the fs_root.  Make sure it is valid before we fill it in.
1918 	 */
1919 	if (info->fs_root && info->fs_root->node) {
1920 		btrfs_set_backup_fs_root(root_backup,
1921 					 info->fs_root->node->start);
1922 		btrfs_set_backup_fs_root_gen(root_backup,
1923 			       btrfs_header_generation(info->fs_root->node));
1924 		btrfs_set_backup_fs_root_level(root_backup,
1925 			       btrfs_header_level(info->fs_root->node));
1926 	}
1927 
1928 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1929 	btrfs_set_backup_dev_root_gen(root_backup,
1930 			       btrfs_header_generation(info->dev_root->node));
1931 	btrfs_set_backup_dev_root_level(root_backup,
1932 				       btrfs_header_level(info->dev_root->node));
1933 
1934 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1935 	btrfs_set_backup_csum_root_gen(root_backup,
1936 			       btrfs_header_generation(info->csum_root->node));
1937 	btrfs_set_backup_csum_root_level(root_backup,
1938 			       btrfs_header_level(info->csum_root->node));
1939 
1940 	btrfs_set_backup_total_bytes(root_backup,
1941 			     btrfs_super_total_bytes(info->super_copy));
1942 	btrfs_set_backup_bytes_used(root_backup,
1943 			     btrfs_super_bytes_used(info->super_copy));
1944 	btrfs_set_backup_num_devices(root_backup,
1945 			     btrfs_super_num_devices(info->super_copy));
1946 
1947 	/*
1948 	 * if we don't copy this out to the super_copy, it won't get remembered
1949 	 * for the next commit
1950 	 */
1951 	memcpy(&info->super_copy->super_roots,
1952 	       &info->super_for_commit->super_roots,
1953 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1954 }
1955 
1956 /*
1957  * this copies info out of the root backup array and back into
1958  * the in-memory super block.  It is meant to help iterate through
1959  * the array, so you send it the number of backups you've already
1960  * tried and the last backup index you used.
1961  *
1962  * this returns -1 when it has tried all the backups
1963  */
1964 static noinline int next_root_backup(struct btrfs_fs_info *info,
1965 				     struct btrfs_super_block *super,
1966 				     int *num_backups_tried, int *backup_index)
1967 {
1968 	struct btrfs_root_backup *root_backup;
1969 	int newest = *backup_index;
1970 
1971 	if (*num_backups_tried == 0) {
1972 		u64 gen = btrfs_super_generation(super);
1973 
1974 		newest = find_newest_super_backup(info, gen);
1975 		if (newest == -1)
1976 			return -1;
1977 
1978 		*backup_index = newest;
1979 		*num_backups_tried = 1;
1980 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1981 		/* we've tried all the backups, all done */
1982 		return -1;
1983 	} else {
1984 		/* jump to the next oldest backup */
1985 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1986 			BTRFS_NUM_BACKUP_ROOTS;
1987 		*backup_index = newest;
1988 		*num_backups_tried += 1;
1989 	}
1990 	root_backup = super->super_roots + newest;
1991 
1992 	btrfs_set_super_generation(super,
1993 				   btrfs_backup_tree_root_gen(root_backup));
1994 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1995 	btrfs_set_super_root_level(super,
1996 				   btrfs_backup_tree_root_level(root_backup));
1997 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1998 
1999 	/*
2000 	 * fixme: the total bytes and num_devices need to match or we should
2001 	 * need a fsck
2002 	 */
2003 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2004 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2005 	return 0;
2006 }
2007 
2008 /* helper to cleanup workers */
2009 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2010 {
2011 	btrfs_stop_workers(&fs_info->generic_worker);
2012 	btrfs_stop_workers(&fs_info->fixup_workers);
2013 	btrfs_stop_workers(&fs_info->delalloc_workers);
2014 	btrfs_stop_workers(&fs_info->workers);
2015 	btrfs_stop_workers(&fs_info->endio_workers);
2016 	btrfs_stop_workers(&fs_info->endio_meta_workers);
2017 	btrfs_stop_workers(&fs_info->endio_raid56_workers);
2018 	btrfs_stop_workers(&fs_info->rmw_workers);
2019 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2020 	btrfs_stop_workers(&fs_info->endio_write_workers);
2021 	btrfs_stop_workers(&fs_info->endio_freespace_worker);
2022 	btrfs_stop_workers(&fs_info->submit_workers);
2023 	btrfs_stop_workers(&fs_info->delayed_workers);
2024 	btrfs_stop_workers(&fs_info->caching_workers);
2025 	btrfs_stop_workers(&fs_info->readahead_workers);
2026 	btrfs_stop_workers(&fs_info->flush_workers);
2027 	btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
2028 }
2029 
2030 static void free_root_extent_buffers(struct btrfs_root *root)
2031 {
2032 	if (root) {
2033 		free_extent_buffer(root->node);
2034 		free_extent_buffer(root->commit_root);
2035 		root->node = NULL;
2036 		root->commit_root = NULL;
2037 	}
2038 }
2039 
2040 /* helper to cleanup tree roots */
2041 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2042 {
2043 	free_root_extent_buffers(info->tree_root);
2044 
2045 	free_root_extent_buffers(info->dev_root);
2046 	free_root_extent_buffers(info->extent_root);
2047 	free_root_extent_buffers(info->csum_root);
2048 	free_root_extent_buffers(info->quota_root);
2049 	free_root_extent_buffers(info->uuid_root);
2050 	if (chunk_root)
2051 		free_root_extent_buffers(info->chunk_root);
2052 }
2053 
2054 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2055 {
2056 	int ret;
2057 	struct btrfs_root *gang[8];
2058 	int i;
2059 
2060 	while (!list_empty(&fs_info->dead_roots)) {
2061 		gang[0] = list_entry(fs_info->dead_roots.next,
2062 				     struct btrfs_root, root_list);
2063 		list_del(&gang[0]->root_list);
2064 
2065 		if (gang[0]->in_radix) {
2066 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2067 		} else {
2068 			free_extent_buffer(gang[0]->node);
2069 			free_extent_buffer(gang[0]->commit_root);
2070 			btrfs_put_fs_root(gang[0]);
2071 		}
2072 	}
2073 
2074 	while (1) {
2075 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2076 					     (void **)gang, 0,
2077 					     ARRAY_SIZE(gang));
2078 		if (!ret)
2079 			break;
2080 		for (i = 0; i < ret; i++)
2081 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2082 	}
2083 }
2084 
2085 int open_ctree(struct super_block *sb,
2086 	       struct btrfs_fs_devices *fs_devices,
2087 	       char *options)
2088 {
2089 	u32 sectorsize;
2090 	u32 nodesize;
2091 	u32 leafsize;
2092 	u32 blocksize;
2093 	u32 stripesize;
2094 	u64 generation;
2095 	u64 features;
2096 	struct btrfs_key location;
2097 	struct buffer_head *bh;
2098 	struct btrfs_super_block *disk_super;
2099 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2100 	struct btrfs_root *tree_root;
2101 	struct btrfs_root *extent_root;
2102 	struct btrfs_root *csum_root;
2103 	struct btrfs_root *chunk_root;
2104 	struct btrfs_root *dev_root;
2105 	struct btrfs_root *quota_root;
2106 	struct btrfs_root *uuid_root;
2107 	struct btrfs_root *log_tree_root;
2108 	int ret;
2109 	int err = -EINVAL;
2110 	int num_backups_tried = 0;
2111 	int backup_index = 0;
2112 	bool create_uuid_tree;
2113 	bool check_uuid_tree;
2114 
2115 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2116 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2117 	if (!tree_root || !chunk_root) {
2118 		err = -ENOMEM;
2119 		goto fail;
2120 	}
2121 
2122 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2123 	if (ret) {
2124 		err = ret;
2125 		goto fail;
2126 	}
2127 
2128 	ret = setup_bdi(fs_info, &fs_info->bdi);
2129 	if (ret) {
2130 		err = ret;
2131 		goto fail_srcu;
2132 	}
2133 
2134 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2135 	if (ret) {
2136 		err = ret;
2137 		goto fail_bdi;
2138 	}
2139 	fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2140 					(1 + ilog2(nr_cpu_ids));
2141 
2142 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2143 	if (ret) {
2144 		err = ret;
2145 		goto fail_dirty_metadata_bytes;
2146 	}
2147 
2148 	fs_info->btree_inode = new_inode(sb);
2149 	if (!fs_info->btree_inode) {
2150 		err = -ENOMEM;
2151 		goto fail_delalloc_bytes;
2152 	}
2153 
2154 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2155 
2156 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2157 	INIT_LIST_HEAD(&fs_info->trans_list);
2158 	INIT_LIST_HEAD(&fs_info->dead_roots);
2159 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2160 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2161 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2162 	spin_lock_init(&fs_info->delalloc_root_lock);
2163 	spin_lock_init(&fs_info->trans_lock);
2164 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2165 	spin_lock_init(&fs_info->delayed_iput_lock);
2166 	spin_lock_init(&fs_info->defrag_inodes_lock);
2167 	spin_lock_init(&fs_info->free_chunk_lock);
2168 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2169 	spin_lock_init(&fs_info->super_lock);
2170 	rwlock_init(&fs_info->tree_mod_log_lock);
2171 	mutex_init(&fs_info->reloc_mutex);
2172 	seqlock_init(&fs_info->profiles_lock);
2173 
2174 	init_completion(&fs_info->kobj_unregister);
2175 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2176 	INIT_LIST_HEAD(&fs_info->space_info);
2177 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2178 	btrfs_mapping_init(&fs_info->mapping_tree);
2179 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2180 			     BTRFS_BLOCK_RSV_GLOBAL);
2181 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2182 			     BTRFS_BLOCK_RSV_DELALLOC);
2183 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2184 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2185 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2186 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2187 			     BTRFS_BLOCK_RSV_DELOPS);
2188 	atomic_set(&fs_info->nr_async_submits, 0);
2189 	atomic_set(&fs_info->async_delalloc_pages, 0);
2190 	atomic_set(&fs_info->async_submit_draining, 0);
2191 	atomic_set(&fs_info->nr_async_bios, 0);
2192 	atomic_set(&fs_info->defrag_running, 0);
2193 	atomic64_set(&fs_info->tree_mod_seq, 0);
2194 	fs_info->sb = sb;
2195 	fs_info->max_inline = 8192 * 1024;
2196 	fs_info->metadata_ratio = 0;
2197 	fs_info->defrag_inodes = RB_ROOT;
2198 	fs_info->free_chunk_space = 0;
2199 	fs_info->tree_mod_log = RB_ROOT;
2200 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2201 
2202 	/* readahead state */
2203 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2204 	spin_lock_init(&fs_info->reada_lock);
2205 
2206 	fs_info->thread_pool_size = min_t(unsigned long,
2207 					  num_online_cpus() + 2, 8);
2208 
2209 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2210 	spin_lock_init(&fs_info->ordered_root_lock);
2211 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2212 					GFP_NOFS);
2213 	if (!fs_info->delayed_root) {
2214 		err = -ENOMEM;
2215 		goto fail_iput;
2216 	}
2217 	btrfs_init_delayed_root(fs_info->delayed_root);
2218 
2219 	mutex_init(&fs_info->scrub_lock);
2220 	atomic_set(&fs_info->scrubs_running, 0);
2221 	atomic_set(&fs_info->scrub_pause_req, 0);
2222 	atomic_set(&fs_info->scrubs_paused, 0);
2223 	atomic_set(&fs_info->scrub_cancel_req, 0);
2224 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2225 	fs_info->scrub_workers_refcnt = 0;
2226 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2227 	fs_info->check_integrity_print_mask = 0;
2228 #endif
2229 
2230 	spin_lock_init(&fs_info->balance_lock);
2231 	mutex_init(&fs_info->balance_mutex);
2232 	atomic_set(&fs_info->balance_running, 0);
2233 	atomic_set(&fs_info->balance_pause_req, 0);
2234 	atomic_set(&fs_info->balance_cancel_req, 0);
2235 	fs_info->balance_ctl = NULL;
2236 	init_waitqueue_head(&fs_info->balance_wait_q);
2237 
2238 	sb->s_blocksize = 4096;
2239 	sb->s_blocksize_bits = blksize_bits(4096);
2240 	sb->s_bdi = &fs_info->bdi;
2241 
2242 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2243 	set_nlink(fs_info->btree_inode, 1);
2244 	/*
2245 	 * we set the i_size on the btree inode to the max possible int.
2246 	 * the real end of the address space is determined by all of
2247 	 * the devices in the system
2248 	 */
2249 	fs_info->btree_inode->i_size = OFFSET_MAX;
2250 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2251 	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2252 
2253 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2254 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2255 			     fs_info->btree_inode->i_mapping);
2256 	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2257 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2258 
2259 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2260 
2261 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2262 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2263 	       sizeof(struct btrfs_key));
2264 	set_bit(BTRFS_INODE_DUMMY,
2265 		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2266 	btrfs_insert_inode_hash(fs_info->btree_inode);
2267 
2268 	spin_lock_init(&fs_info->block_group_cache_lock);
2269 	fs_info->block_group_cache_tree = RB_ROOT;
2270 	fs_info->first_logical_byte = (u64)-1;
2271 
2272 	extent_io_tree_init(&fs_info->freed_extents[0],
2273 			     fs_info->btree_inode->i_mapping);
2274 	extent_io_tree_init(&fs_info->freed_extents[1],
2275 			     fs_info->btree_inode->i_mapping);
2276 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2277 	fs_info->do_barriers = 1;
2278 
2279 
2280 	mutex_init(&fs_info->ordered_operations_mutex);
2281 	mutex_init(&fs_info->ordered_extent_flush_mutex);
2282 	mutex_init(&fs_info->tree_log_mutex);
2283 	mutex_init(&fs_info->chunk_mutex);
2284 	mutex_init(&fs_info->transaction_kthread_mutex);
2285 	mutex_init(&fs_info->cleaner_mutex);
2286 	mutex_init(&fs_info->volume_mutex);
2287 	init_rwsem(&fs_info->extent_commit_sem);
2288 	init_rwsem(&fs_info->cleanup_work_sem);
2289 	init_rwsem(&fs_info->subvol_sem);
2290 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2291 	fs_info->dev_replace.lock_owner = 0;
2292 	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2293 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2294 	mutex_init(&fs_info->dev_replace.lock_management_lock);
2295 	mutex_init(&fs_info->dev_replace.lock);
2296 
2297 	spin_lock_init(&fs_info->qgroup_lock);
2298 	mutex_init(&fs_info->qgroup_ioctl_lock);
2299 	fs_info->qgroup_tree = RB_ROOT;
2300 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2301 	fs_info->qgroup_seq = 1;
2302 	fs_info->quota_enabled = 0;
2303 	fs_info->pending_quota_state = 0;
2304 	fs_info->qgroup_ulist = NULL;
2305 	mutex_init(&fs_info->qgroup_rescan_lock);
2306 
2307 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2308 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2309 
2310 	init_waitqueue_head(&fs_info->transaction_throttle);
2311 	init_waitqueue_head(&fs_info->transaction_wait);
2312 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2313 	init_waitqueue_head(&fs_info->async_submit_wait);
2314 
2315 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2316 	if (ret) {
2317 		err = ret;
2318 		goto fail_alloc;
2319 	}
2320 
2321 	__setup_root(4096, 4096, 4096, 4096, tree_root,
2322 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2323 
2324 	invalidate_bdev(fs_devices->latest_bdev);
2325 
2326 	/*
2327 	 * Read super block and check the signature bytes only
2328 	 */
2329 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2330 	if (!bh) {
2331 		err = -EINVAL;
2332 		goto fail_alloc;
2333 	}
2334 
2335 	/*
2336 	 * We want to check superblock checksum, the type is stored inside.
2337 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2338 	 */
2339 	if (btrfs_check_super_csum(bh->b_data)) {
2340 		printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
2341 		err = -EINVAL;
2342 		goto fail_alloc;
2343 	}
2344 
2345 	/*
2346 	 * super_copy is zeroed at allocation time and we never touch the
2347 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2348 	 * the whole block of INFO_SIZE
2349 	 */
2350 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2351 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2352 	       sizeof(*fs_info->super_for_commit));
2353 	brelse(bh);
2354 
2355 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2356 
2357 	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2358 	if (ret) {
2359 		printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2360 		err = -EINVAL;
2361 		goto fail_alloc;
2362 	}
2363 
2364 	disk_super = fs_info->super_copy;
2365 	if (!btrfs_super_root(disk_super))
2366 		goto fail_alloc;
2367 
2368 	/* check FS state, whether FS is broken. */
2369 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2370 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2371 
2372 	/*
2373 	 * run through our array of backup supers and setup
2374 	 * our ring pointer to the oldest one
2375 	 */
2376 	generation = btrfs_super_generation(disk_super);
2377 	find_oldest_super_backup(fs_info, generation);
2378 
2379 	/*
2380 	 * In the long term, we'll store the compression type in the super
2381 	 * block, and it'll be used for per file compression control.
2382 	 */
2383 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2384 
2385 	ret = btrfs_parse_options(tree_root, options);
2386 	if (ret) {
2387 		err = ret;
2388 		goto fail_alloc;
2389 	}
2390 
2391 	features = btrfs_super_incompat_flags(disk_super) &
2392 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2393 	if (features) {
2394 		printk(KERN_ERR "BTRFS: couldn't mount because of "
2395 		       "unsupported optional features (%Lx).\n",
2396 		       features);
2397 		err = -EINVAL;
2398 		goto fail_alloc;
2399 	}
2400 
2401 	if (btrfs_super_leafsize(disk_super) !=
2402 	    btrfs_super_nodesize(disk_super)) {
2403 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2404 		       "blocksizes don't match.  node %d leaf %d\n",
2405 		       btrfs_super_nodesize(disk_super),
2406 		       btrfs_super_leafsize(disk_super));
2407 		err = -EINVAL;
2408 		goto fail_alloc;
2409 	}
2410 	if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2411 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2412 		       "blocksize (%d) was too large\n",
2413 		       btrfs_super_leafsize(disk_super));
2414 		err = -EINVAL;
2415 		goto fail_alloc;
2416 	}
2417 
2418 	features = btrfs_super_incompat_flags(disk_super);
2419 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2420 	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2421 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2422 
2423 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2424 		printk(KERN_ERR "btrfs: has skinny extents\n");
2425 
2426 	/*
2427 	 * flag our filesystem as having big metadata blocks if
2428 	 * they are bigger than the page size
2429 	 */
2430 	if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2431 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2432 			printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2433 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2434 	}
2435 
2436 	nodesize = btrfs_super_nodesize(disk_super);
2437 	leafsize = btrfs_super_leafsize(disk_super);
2438 	sectorsize = btrfs_super_sectorsize(disk_super);
2439 	stripesize = btrfs_super_stripesize(disk_super);
2440 	fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2441 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2442 
2443 	/*
2444 	 * mixed block groups end up with duplicate but slightly offset
2445 	 * extent buffers for the same range.  It leads to corruptions
2446 	 */
2447 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2448 	    (sectorsize != leafsize)) {
2449 		printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2450 				"are not allowed for mixed block groups on %s\n",
2451 				sb->s_id);
2452 		goto fail_alloc;
2453 	}
2454 
2455 	/*
2456 	 * Needn't use the lock because there is no other task which will
2457 	 * update the flag.
2458 	 */
2459 	btrfs_set_super_incompat_flags(disk_super, features);
2460 
2461 	features = btrfs_super_compat_ro_flags(disk_super) &
2462 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2463 	if (!(sb->s_flags & MS_RDONLY) && features) {
2464 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2465 		       "unsupported option features (%Lx).\n",
2466 		       features);
2467 		err = -EINVAL;
2468 		goto fail_alloc;
2469 	}
2470 
2471 	btrfs_init_workers(&fs_info->generic_worker,
2472 			   "genwork", 1, NULL);
2473 
2474 	btrfs_init_workers(&fs_info->workers, "worker",
2475 			   fs_info->thread_pool_size,
2476 			   &fs_info->generic_worker);
2477 
2478 	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2479 			   fs_info->thread_pool_size, NULL);
2480 
2481 	btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2482 			   fs_info->thread_pool_size, NULL);
2483 
2484 	btrfs_init_workers(&fs_info->submit_workers, "submit",
2485 			   min_t(u64, fs_devices->num_devices,
2486 			   fs_info->thread_pool_size), NULL);
2487 
2488 	btrfs_init_workers(&fs_info->caching_workers, "cache",
2489 			   fs_info->thread_pool_size, NULL);
2490 
2491 	/* a higher idle thresh on the submit workers makes it much more
2492 	 * likely that bios will be send down in a sane order to the
2493 	 * devices
2494 	 */
2495 	fs_info->submit_workers.idle_thresh = 64;
2496 
2497 	fs_info->workers.idle_thresh = 16;
2498 	fs_info->workers.ordered = 1;
2499 
2500 	fs_info->delalloc_workers.idle_thresh = 2;
2501 	fs_info->delalloc_workers.ordered = 1;
2502 
2503 	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2504 			   &fs_info->generic_worker);
2505 	btrfs_init_workers(&fs_info->endio_workers, "endio",
2506 			   fs_info->thread_pool_size,
2507 			   &fs_info->generic_worker);
2508 	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2509 			   fs_info->thread_pool_size,
2510 			   &fs_info->generic_worker);
2511 	btrfs_init_workers(&fs_info->endio_meta_write_workers,
2512 			   "endio-meta-write", fs_info->thread_pool_size,
2513 			   &fs_info->generic_worker);
2514 	btrfs_init_workers(&fs_info->endio_raid56_workers,
2515 			   "endio-raid56", fs_info->thread_pool_size,
2516 			   &fs_info->generic_worker);
2517 	btrfs_init_workers(&fs_info->rmw_workers,
2518 			   "rmw", fs_info->thread_pool_size,
2519 			   &fs_info->generic_worker);
2520 	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2521 			   fs_info->thread_pool_size,
2522 			   &fs_info->generic_worker);
2523 	btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2524 			   1, &fs_info->generic_worker);
2525 	btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2526 			   fs_info->thread_pool_size,
2527 			   &fs_info->generic_worker);
2528 	btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2529 			   fs_info->thread_pool_size,
2530 			   &fs_info->generic_worker);
2531 	btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2532 			   &fs_info->generic_worker);
2533 
2534 	/*
2535 	 * endios are largely parallel and should have a very
2536 	 * low idle thresh
2537 	 */
2538 	fs_info->endio_workers.idle_thresh = 4;
2539 	fs_info->endio_meta_workers.idle_thresh = 4;
2540 	fs_info->endio_raid56_workers.idle_thresh = 4;
2541 	fs_info->rmw_workers.idle_thresh = 2;
2542 
2543 	fs_info->endio_write_workers.idle_thresh = 2;
2544 	fs_info->endio_meta_write_workers.idle_thresh = 2;
2545 	fs_info->readahead_workers.idle_thresh = 2;
2546 
2547 	/*
2548 	 * btrfs_start_workers can really only fail because of ENOMEM so just
2549 	 * return -ENOMEM if any of these fail.
2550 	 */
2551 	ret = btrfs_start_workers(&fs_info->workers);
2552 	ret |= btrfs_start_workers(&fs_info->generic_worker);
2553 	ret |= btrfs_start_workers(&fs_info->submit_workers);
2554 	ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2555 	ret |= btrfs_start_workers(&fs_info->fixup_workers);
2556 	ret |= btrfs_start_workers(&fs_info->endio_workers);
2557 	ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2558 	ret |= btrfs_start_workers(&fs_info->rmw_workers);
2559 	ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2560 	ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2561 	ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2562 	ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2563 	ret |= btrfs_start_workers(&fs_info->delayed_workers);
2564 	ret |= btrfs_start_workers(&fs_info->caching_workers);
2565 	ret |= btrfs_start_workers(&fs_info->readahead_workers);
2566 	ret |= btrfs_start_workers(&fs_info->flush_workers);
2567 	ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2568 	if (ret) {
2569 		err = -ENOMEM;
2570 		goto fail_sb_buffer;
2571 	}
2572 
2573 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2574 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2575 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2576 
2577 	tree_root->nodesize = nodesize;
2578 	tree_root->leafsize = leafsize;
2579 	tree_root->sectorsize = sectorsize;
2580 	tree_root->stripesize = stripesize;
2581 
2582 	sb->s_blocksize = sectorsize;
2583 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2584 
2585 	if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2586 		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2587 		goto fail_sb_buffer;
2588 	}
2589 
2590 	if (sectorsize != PAGE_SIZE) {
2591 		printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2592 		       "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2593 		goto fail_sb_buffer;
2594 	}
2595 
2596 	mutex_lock(&fs_info->chunk_mutex);
2597 	ret = btrfs_read_sys_array(tree_root);
2598 	mutex_unlock(&fs_info->chunk_mutex);
2599 	if (ret) {
2600 		printk(KERN_WARNING "btrfs: failed to read the system "
2601 		       "array on %s\n", sb->s_id);
2602 		goto fail_sb_buffer;
2603 	}
2604 
2605 	blocksize = btrfs_level_size(tree_root,
2606 				     btrfs_super_chunk_root_level(disk_super));
2607 	generation = btrfs_super_chunk_root_generation(disk_super);
2608 
2609 	__setup_root(nodesize, leafsize, sectorsize, stripesize,
2610 		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2611 
2612 	chunk_root->node = read_tree_block(chunk_root,
2613 					   btrfs_super_chunk_root(disk_super),
2614 					   blocksize, generation);
2615 	if (!chunk_root->node ||
2616 	    !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2617 		printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2618 		       sb->s_id);
2619 		goto fail_tree_roots;
2620 	}
2621 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2622 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2623 
2624 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2625 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2626 
2627 	ret = btrfs_read_chunk_tree(chunk_root);
2628 	if (ret) {
2629 		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2630 		       sb->s_id);
2631 		goto fail_tree_roots;
2632 	}
2633 
2634 	/*
2635 	 * keep the device that is marked to be the target device for the
2636 	 * dev_replace procedure
2637 	 */
2638 	btrfs_close_extra_devices(fs_info, fs_devices, 0);
2639 
2640 	if (!fs_devices->latest_bdev) {
2641 		printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2642 		       sb->s_id);
2643 		goto fail_tree_roots;
2644 	}
2645 
2646 retry_root_backup:
2647 	blocksize = btrfs_level_size(tree_root,
2648 				     btrfs_super_root_level(disk_super));
2649 	generation = btrfs_super_generation(disk_super);
2650 
2651 	tree_root->node = read_tree_block(tree_root,
2652 					  btrfs_super_root(disk_super),
2653 					  blocksize, generation);
2654 	if (!tree_root->node ||
2655 	    !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2656 		printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2657 		       sb->s_id);
2658 
2659 		goto recovery_tree_root;
2660 	}
2661 
2662 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2663 	tree_root->commit_root = btrfs_root_node(tree_root);
2664 	btrfs_set_root_refs(&tree_root->root_item, 1);
2665 
2666 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2667 	location.type = BTRFS_ROOT_ITEM_KEY;
2668 	location.offset = 0;
2669 
2670 	extent_root = btrfs_read_tree_root(tree_root, &location);
2671 	if (IS_ERR(extent_root)) {
2672 		ret = PTR_ERR(extent_root);
2673 		goto recovery_tree_root;
2674 	}
2675 	extent_root->track_dirty = 1;
2676 	fs_info->extent_root = extent_root;
2677 
2678 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2679 	dev_root = btrfs_read_tree_root(tree_root, &location);
2680 	if (IS_ERR(dev_root)) {
2681 		ret = PTR_ERR(dev_root);
2682 		goto recovery_tree_root;
2683 	}
2684 	dev_root->track_dirty = 1;
2685 	fs_info->dev_root = dev_root;
2686 	btrfs_init_devices_late(fs_info);
2687 
2688 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2689 	csum_root = btrfs_read_tree_root(tree_root, &location);
2690 	if (IS_ERR(csum_root)) {
2691 		ret = PTR_ERR(csum_root);
2692 		goto recovery_tree_root;
2693 	}
2694 	csum_root->track_dirty = 1;
2695 	fs_info->csum_root = csum_root;
2696 
2697 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2698 	quota_root = btrfs_read_tree_root(tree_root, &location);
2699 	if (!IS_ERR(quota_root)) {
2700 		quota_root->track_dirty = 1;
2701 		fs_info->quota_enabled = 1;
2702 		fs_info->pending_quota_state = 1;
2703 		fs_info->quota_root = quota_root;
2704 	}
2705 
2706 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2707 	uuid_root = btrfs_read_tree_root(tree_root, &location);
2708 	if (IS_ERR(uuid_root)) {
2709 		ret = PTR_ERR(uuid_root);
2710 		if (ret != -ENOENT)
2711 			goto recovery_tree_root;
2712 		create_uuid_tree = true;
2713 		check_uuid_tree = false;
2714 	} else {
2715 		uuid_root->track_dirty = 1;
2716 		fs_info->uuid_root = uuid_root;
2717 		create_uuid_tree = false;
2718 		check_uuid_tree =
2719 		    generation != btrfs_super_uuid_tree_generation(disk_super);
2720 	}
2721 
2722 	fs_info->generation = generation;
2723 	fs_info->last_trans_committed = generation;
2724 
2725 	ret = btrfs_recover_balance(fs_info);
2726 	if (ret) {
2727 		printk(KERN_WARNING "btrfs: failed to recover balance\n");
2728 		goto fail_block_groups;
2729 	}
2730 
2731 	ret = btrfs_init_dev_stats(fs_info);
2732 	if (ret) {
2733 		printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2734 		       ret);
2735 		goto fail_block_groups;
2736 	}
2737 
2738 	ret = btrfs_init_dev_replace(fs_info);
2739 	if (ret) {
2740 		pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2741 		goto fail_block_groups;
2742 	}
2743 
2744 	btrfs_close_extra_devices(fs_info, fs_devices, 1);
2745 
2746 	ret = btrfs_init_space_info(fs_info);
2747 	if (ret) {
2748 		printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2749 		goto fail_block_groups;
2750 	}
2751 
2752 	ret = btrfs_read_block_groups(extent_root);
2753 	if (ret) {
2754 		printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2755 		goto fail_block_groups;
2756 	}
2757 	fs_info->num_tolerated_disk_barrier_failures =
2758 		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2759 	if (fs_info->fs_devices->missing_devices >
2760 	     fs_info->num_tolerated_disk_barrier_failures &&
2761 	    !(sb->s_flags & MS_RDONLY)) {
2762 		printk(KERN_WARNING
2763 		       "Btrfs: too many missing devices, writeable mount is not allowed\n");
2764 		goto fail_block_groups;
2765 	}
2766 
2767 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2768 					       "btrfs-cleaner");
2769 	if (IS_ERR(fs_info->cleaner_kthread))
2770 		goto fail_block_groups;
2771 
2772 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2773 						   tree_root,
2774 						   "btrfs-transaction");
2775 	if (IS_ERR(fs_info->transaction_kthread))
2776 		goto fail_cleaner;
2777 
2778 	if (!btrfs_test_opt(tree_root, SSD) &&
2779 	    !btrfs_test_opt(tree_root, NOSSD) &&
2780 	    !fs_info->fs_devices->rotating) {
2781 		printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2782 		       "mode\n");
2783 		btrfs_set_opt(fs_info->mount_opt, SSD);
2784 	}
2785 
2786 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2787 	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2788 		ret = btrfsic_mount(tree_root, fs_devices,
2789 				    btrfs_test_opt(tree_root,
2790 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2791 				    1 : 0,
2792 				    fs_info->check_integrity_print_mask);
2793 		if (ret)
2794 			printk(KERN_WARNING "btrfs: failed to initialize"
2795 			       " integrity check module %s\n", sb->s_id);
2796 	}
2797 #endif
2798 	ret = btrfs_read_qgroup_config(fs_info);
2799 	if (ret)
2800 		goto fail_trans_kthread;
2801 
2802 	/* do not make disk changes in broken FS */
2803 	if (btrfs_super_log_root(disk_super) != 0) {
2804 		u64 bytenr = btrfs_super_log_root(disk_super);
2805 
2806 		if (fs_devices->rw_devices == 0) {
2807 			printk(KERN_WARNING "Btrfs log replay required "
2808 			       "on RO media\n");
2809 			err = -EIO;
2810 			goto fail_qgroup;
2811 		}
2812 		blocksize =
2813 		     btrfs_level_size(tree_root,
2814 				      btrfs_super_log_root_level(disk_super));
2815 
2816 		log_tree_root = btrfs_alloc_root(fs_info);
2817 		if (!log_tree_root) {
2818 			err = -ENOMEM;
2819 			goto fail_qgroup;
2820 		}
2821 
2822 		__setup_root(nodesize, leafsize, sectorsize, stripesize,
2823 			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2824 
2825 		log_tree_root->node = read_tree_block(tree_root, bytenr,
2826 						      blocksize,
2827 						      generation + 1);
2828 		if (!log_tree_root->node ||
2829 		    !extent_buffer_uptodate(log_tree_root->node)) {
2830 			printk(KERN_ERR "btrfs: failed to read log tree\n");
2831 			free_extent_buffer(log_tree_root->node);
2832 			kfree(log_tree_root);
2833 			goto fail_trans_kthread;
2834 		}
2835 		/* returns with log_tree_root freed on success */
2836 		ret = btrfs_recover_log_trees(log_tree_root);
2837 		if (ret) {
2838 			btrfs_error(tree_root->fs_info, ret,
2839 				    "Failed to recover log tree");
2840 			free_extent_buffer(log_tree_root->node);
2841 			kfree(log_tree_root);
2842 			goto fail_trans_kthread;
2843 		}
2844 
2845 		if (sb->s_flags & MS_RDONLY) {
2846 			ret = btrfs_commit_super(tree_root);
2847 			if (ret)
2848 				goto fail_trans_kthread;
2849 		}
2850 	}
2851 
2852 	ret = btrfs_find_orphan_roots(tree_root);
2853 	if (ret)
2854 		goto fail_trans_kthread;
2855 
2856 	if (!(sb->s_flags & MS_RDONLY)) {
2857 		ret = btrfs_cleanup_fs_roots(fs_info);
2858 		if (ret)
2859 			goto fail_trans_kthread;
2860 
2861 		ret = btrfs_recover_relocation(tree_root);
2862 		if (ret < 0) {
2863 			printk(KERN_WARNING
2864 			       "btrfs: failed to recover relocation\n");
2865 			err = -EINVAL;
2866 			goto fail_qgroup;
2867 		}
2868 	}
2869 
2870 	location.objectid = BTRFS_FS_TREE_OBJECTID;
2871 	location.type = BTRFS_ROOT_ITEM_KEY;
2872 	location.offset = 0;
2873 
2874 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2875 	if (IS_ERR(fs_info->fs_root)) {
2876 		err = PTR_ERR(fs_info->fs_root);
2877 		goto fail_qgroup;
2878 	}
2879 
2880 	if (sb->s_flags & MS_RDONLY)
2881 		return 0;
2882 
2883 	down_read(&fs_info->cleanup_work_sem);
2884 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2885 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2886 		up_read(&fs_info->cleanup_work_sem);
2887 		close_ctree(tree_root);
2888 		return ret;
2889 	}
2890 	up_read(&fs_info->cleanup_work_sem);
2891 
2892 	ret = btrfs_resume_balance_async(fs_info);
2893 	if (ret) {
2894 		printk(KERN_WARNING "btrfs: failed to resume balance\n");
2895 		close_ctree(tree_root);
2896 		return ret;
2897 	}
2898 
2899 	ret = btrfs_resume_dev_replace_async(fs_info);
2900 	if (ret) {
2901 		pr_warn("btrfs: failed to resume dev_replace\n");
2902 		close_ctree(tree_root);
2903 		return ret;
2904 	}
2905 
2906 	btrfs_qgroup_rescan_resume(fs_info);
2907 
2908 	if (create_uuid_tree) {
2909 		pr_info("btrfs: creating UUID tree\n");
2910 		ret = btrfs_create_uuid_tree(fs_info);
2911 		if (ret) {
2912 			pr_warn("btrfs: failed to create the UUID tree %d\n",
2913 				ret);
2914 			close_ctree(tree_root);
2915 			return ret;
2916 		}
2917 	} else if (check_uuid_tree ||
2918 		   btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2919 		pr_info("btrfs: checking UUID tree\n");
2920 		ret = btrfs_check_uuid_tree(fs_info);
2921 		if (ret) {
2922 			pr_warn("btrfs: failed to check the UUID tree %d\n",
2923 				ret);
2924 			close_ctree(tree_root);
2925 			return ret;
2926 		}
2927 	} else {
2928 		fs_info->update_uuid_tree_gen = 1;
2929 	}
2930 
2931 	return 0;
2932 
2933 fail_qgroup:
2934 	btrfs_free_qgroup_config(fs_info);
2935 fail_trans_kthread:
2936 	kthread_stop(fs_info->transaction_kthread);
2937 	btrfs_cleanup_transaction(fs_info->tree_root);
2938 	del_fs_roots(fs_info);
2939 fail_cleaner:
2940 	kthread_stop(fs_info->cleaner_kthread);
2941 
2942 	/*
2943 	 * make sure we're done with the btree inode before we stop our
2944 	 * kthreads
2945 	 */
2946 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2947 
2948 fail_block_groups:
2949 	btrfs_put_block_group_cache(fs_info);
2950 	btrfs_free_block_groups(fs_info);
2951 
2952 fail_tree_roots:
2953 	free_root_pointers(fs_info, 1);
2954 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2955 
2956 fail_sb_buffer:
2957 	btrfs_stop_all_workers(fs_info);
2958 fail_alloc:
2959 fail_iput:
2960 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2961 
2962 	iput(fs_info->btree_inode);
2963 fail_delalloc_bytes:
2964 	percpu_counter_destroy(&fs_info->delalloc_bytes);
2965 fail_dirty_metadata_bytes:
2966 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2967 fail_bdi:
2968 	bdi_destroy(&fs_info->bdi);
2969 fail_srcu:
2970 	cleanup_srcu_struct(&fs_info->subvol_srcu);
2971 fail:
2972 	btrfs_free_stripe_hash_table(fs_info);
2973 	btrfs_close_devices(fs_info->fs_devices);
2974 	return err;
2975 
2976 recovery_tree_root:
2977 	if (!btrfs_test_opt(tree_root, RECOVERY))
2978 		goto fail_tree_roots;
2979 
2980 	free_root_pointers(fs_info, 0);
2981 
2982 	/* don't use the log in recovery mode, it won't be valid */
2983 	btrfs_set_super_log_root(disk_super, 0);
2984 
2985 	/* we can't trust the free space cache either */
2986 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2987 
2988 	ret = next_root_backup(fs_info, fs_info->super_copy,
2989 			       &num_backups_tried, &backup_index);
2990 	if (ret == -1)
2991 		goto fail_block_groups;
2992 	goto retry_root_backup;
2993 }
2994 
2995 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2996 {
2997 	if (uptodate) {
2998 		set_buffer_uptodate(bh);
2999 	} else {
3000 		struct btrfs_device *device = (struct btrfs_device *)
3001 			bh->b_private;
3002 
3003 		printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
3004 					  "I/O error on %s\n",
3005 					  rcu_str_deref(device->name));
3006 		/* note, we dont' set_buffer_write_io_error because we have
3007 		 * our own ways of dealing with the IO errors
3008 		 */
3009 		clear_buffer_uptodate(bh);
3010 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3011 	}
3012 	unlock_buffer(bh);
3013 	put_bh(bh);
3014 }
3015 
3016 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3017 {
3018 	struct buffer_head *bh;
3019 	struct buffer_head *latest = NULL;
3020 	struct btrfs_super_block *super;
3021 	int i;
3022 	u64 transid = 0;
3023 	u64 bytenr;
3024 
3025 	/* we would like to check all the supers, but that would make
3026 	 * a btrfs mount succeed after a mkfs from a different FS.
3027 	 * So, we need to add a special mount option to scan for
3028 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3029 	 */
3030 	for (i = 0; i < 1; i++) {
3031 		bytenr = btrfs_sb_offset(i);
3032 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3033 					i_size_read(bdev->bd_inode))
3034 			break;
3035 		bh = __bread(bdev, bytenr / 4096,
3036 					BTRFS_SUPER_INFO_SIZE);
3037 		if (!bh)
3038 			continue;
3039 
3040 		super = (struct btrfs_super_block *)bh->b_data;
3041 		if (btrfs_super_bytenr(super) != bytenr ||
3042 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3043 			brelse(bh);
3044 			continue;
3045 		}
3046 
3047 		if (!latest || btrfs_super_generation(super) > transid) {
3048 			brelse(latest);
3049 			latest = bh;
3050 			transid = btrfs_super_generation(super);
3051 		} else {
3052 			brelse(bh);
3053 		}
3054 	}
3055 	return latest;
3056 }
3057 
3058 /*
3059  * this should be called twice, once with wait == 0 and
3060  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3061  * we write are pinned.
3062  *
3063  * They are released when wait == 1 is done.
3064  * max_mirrors must be the same for both runs, and it indicates how
3065  * many supers on this one device should be written.
3066  *
3067  * max_mirrors == 0 means to write them all.
3068  */
3069 static int write_dev_supers(struct btrfs_device *device,
3070 			    struct btrfs_super_block *sb,
3071 			    int do_barriers, int wait, int max_mirrors)
3072 {
3073 	struct buffer_head *bh;
3074 	int i;
3075 	int ret;
3076 	int errors = 0;
3077 	u32 crc;
3078 	u64 bytenr;
3079 
3080 	if (max_mirrors == 0)
3081 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3082 
3083 	for (i = 0; i < max_mirrors; i++) {
3084 		bytenr = btrfs_sb_offset(i);
3085 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3086 			break;
3087 
3088 		if (wait) {
3089 			bh = __find_get_block(device->bdev, bytenr / 4096,
3090 					      BTRFS_SUPER_INFO_SIZE);
3091 			if (!bh) {
3092 				errors++;
3093 				continue;
3094 			}
3095 			wait_on_buffer(bh);
3096 			if (!buffer_uptodate(bh))
3097 				errors++;
3098 
3099 			/* drop our reference */
3100 			brelse(bh);
3101 
3102 			/* drop the reference from the wait == 0 run */
3103 			brelse(bh);
3104 			continue;
3105 		} else {
3106 			btrfs_set_super_bytenr(sb, bytenr);
3107 
3108 			crc = ~(u32)0;
3109 			crc = btrfs_csum_data((char *)sb +
3110 					      BTRFS_CSUM_SIZE, crc,
3111 					      BTRFS_SUPER_INFO_SIZE -
3112 					      BTRFS_CSUM_SIZE);
3113 			btrfs_csum_final(crc, sb->csum);
3114 
3115 			/*
3116 			 * one reference for us, and we leave it for the
3117 			 * caller
3118 			 */
3119 			bh = __getblk(device->bdev, bytenr / 4096,
3120 				      BTRFS_SUPER_INFO_SIZE);
3121 			if (!bh) {
3122 				printk(KERN_ERR "btrfs: couldn't get super "
3123 				       "buffer head for bytenr %Lu\n", bytenr);
3124 				errors++;
3125 				continue;
3126 			}
3127 
3128 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3129 
3130 			/* one reference for submit_bh */
3131 			get_bh(bh);
3132 
3133 			set_buffer_uptodate(bh);
3134 			lock_buffer(bh);
3135 			bh->b_end_io = btrfs_end_buffer_write_sync;
3136 			bh->b_private = device;
3137 		}
3138 
3139 		/*
3140 		 * we fua the first super.  The others we allow
3141 		 * to go down lazy.
3142 		 */
3143 		ret = btrfsic_submit_bh(WRITE_FUA, bh);
3144 		if (ret)
3145 			errors++;
3146 	}
3147 	return errors < i ? 0 : -1;
3148 }
3149 
3150 /*
3151  * endio for the write_dev_flush, this will wake anyone waiting
3152  * for the barrier when it is done
3153  */
3154 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3155 {
3156 	if (err) {
3157 		if (err == -EOPNOTSUPP)
3158 			set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3159 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
3160 	}
3161 	if (bio->bi_private)
3162 		complete(bio->bi_private);
3163 	bio_put(bio);
3164 }
3165 
3166 /*
3167  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3168  * sent down.  With wait == 1, it waits for the previous flush.
3169  *
3170  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3171  * capable
3172  */
3173 static int write_dev_flush(struct btrfs_device *device, int wait)
3174 {
3175 	struct bio *bio;
3176 	int ret = 0;
3177 
3178 	if (device->nobarriers)
3179 		return 0;
3180 
3181 	if (wait) {
3182 		bio = device->flush_bio;
3183 		if (!bio)
3184 			return 0;
3185 
3186 		wait_for_completion(&device->flush_wait);
3187 
3188 		if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3189 			printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3190 				      rcu_str_deref(device->name));
3191 			device->nobarriers = 1;
3192 		} else if (!bio_flagged(bio, BIO_UPTODATE)) {
3193 			ret = -EIO;
3194 			btrfs_dev_stat_inc_and_print(device,
3195 				BTRFS_DEV_STAT_FLUSH_ERRS);
3196 		}
3197 
3198 		/* drop the reference from the wait == 0 run */
3199 		bio_put(bio);
3200 		device->flush_bio = NULL;
3201 
3202 		return ret;
3203 	}
3204 
3205 	/*
3206 	 * one reference for us, and we leave it for the
3207 	 * caller
3208 	 */
3209 	device->flush_bio = NULL;
3210 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3211 	if (!bio)
3212 		return -ENOMEM;
3213 
3214 	bio->bi_end_io = btrfs_end_empty_barrier;
3215 	bio->bi_bdev = device->bdev;
3216 	init_completion(&device->flush_wait);
3217 	bio->bi_private = &device->flush_wait;
3218 	device->flush_bio = bio;
3219 
3220 	bio_get(bio);
3221 	btrfsic_submit_bio(WRITE_FLUSH, bio);
3222 
3223 	return 0;
3224 }
3225 
3226 /*
3227  * send an empty flush down to each device in parallel,
3228  * then wait for them
3229  */
3230 static int barrier_all_devices(struct btrfs_fs_info *info)
3231 {
3232 	struct list_head *head;
3233 	struct btrfs_device *dev;
3234 	int errors_send = 0;
3235 	int errors_wait = 0;
3236 	int ret;
3237 
3238 	/* send down all the barriers */
3239 	head = &info->fs_devices->devices;
3240 	list_for_each_entry_rcu(dev, head, dev_list) {
3241 		if (!dev->bdev) {
3242 			errors_send++;
3243 			continue;
3244 		}
3245 		if (!dev->in_fs_metadata || !dev->writeable)
3246 			continue;
3247 
3248 		ret = write_dev_flush(dev, 0);
3249 		if (ret)
3250 			errors_send++;
3251 	}
3252 
3253 	/* wait for all the barriers */
3254 	list_for_each_entry_rcu(dev, head, dev_list) {
3255 		if (!dev->bdev) {
3256 			errors_wait++;
3257 			continue;
3258 		}
3259 		if (!dev->in_fs_metadata || !dev->writeable)
3260 			continue;
3261 
3262 		ret = write_dev_flush(dev, 1);
3263 		if (ret)
3264 			errors_wait++;
3265 	}
3266 	if (errors_send > info->num_tolerated_disk_barrier_failures ||
3267 	    errors_wait > info->num_tolerated_disk_barrier_failures)
3268 		return -EIO;
3269 	return 0;
3270 }
3271 
3272 int btrfs_calc_num_tolerated_disk_barrier_failures(
3273 	struct btrfs_fs_info *fs_info)
3274 {
3275 	struct btrfs_ioctl_space_info space;
3276 	struct btrfs_space_info *sinfo;
3277 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3278 		       BTRFS_BLOCK_GROUP_SYSTEM,
3279 		       BTRFS_BLOCK_GROUP_METADATA,
3280 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3281 	int num_types = 4;
3282 	int i;
3283 	int c;
3284 	int num_tolerated_disk_barrier_failures =
3285 		(int)fs_info->fs_devices->num_devices;
3286 
3287 	for (i = 0; i < num_types; i++) {
3288 		struct btrfs_space_info *tmp;
3289 
3290 		sinfo = NULL;
3291 		rcu_read_lock();
3292 		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3293 			if (tmp->flags == types[i]) {
3294 				sinfo = tmp;
3295 				break;
3296 			}
3297 		}
3298 		rcu_read_unlock();
3299 
3300 		if (!sinfo)
3301 			continue;
3302 
3303 		down_read(&sinfo->groups_sem);
3304 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3305 			if (!list_empty(&sinfo->block_groups[c])) {
3306 				u64 flags;
3307 
3308 				btrfs_get_block_group_info(
3309 					&sinfo->block_groups[c], &space);
3310 				if (space.total_bytes == 0 ||
3311 				    space.used_bytes == 0)
3312 					continue;
3313 				flags = space.flags;
3314 				/*
3315 				 * return
3316 				 * 0: if dup, single or RAID0 is configured for
3317 				 *    any of metadata, system or data, else
3318 				 * 1: if RAID5 is configured, or if RAID1 or
3319 				 *    RAID10 is configured and only two mirrors
3320 				 *    are used, else
3321 				 * 2: if RAID6 is configured, else
3322 				 * num_mirrors - 1: if RAID1 or RAID10 is
3323 				 *                  configured and more than
3324 				 *                  2 mirrors are used.
3325 				 */
3326 				if (num_tolerated_disk_barrier_failures > 0 &&
3327 				    ((flags & (BTRFS_BLOCK_GROUP_DUP |
3328 					       BTRFS_BLOCK_GROUP_RAID0)) ||
3329 				     ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3330 				      == 0)))
3331 					num_tolerated_disk_barrier_failures = 0;
3332 				else if (num_tolerated_disk_barrier_failures > 1) {
3333 					if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3334 					    BTRFS_BLOCK_GROUP_RAID5 |
3335 					    BTRFS_BLOCK_GROUP_RAID10)) {
3336 						num_tolerated_disk_barrier_failures = 1;
3337 					} else if (flags &
3338 						   BTRFS_BLOCK_GROUP_RAID6) {
3339 						num_tolerated_disk_barrier_failures = 2;
3340 					}
3341 				}
3342 			}
3343 		}
3344 		up_read(&sinfo->groups_sem);
3345 	}
3346 
3347 	return num_tolerated_disk_barrier_failures;
3348 }
3349 
3350 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3351 {
3352 	struct list_head *head;
3353 	struct btrfs_device *dev;
3354 	struct btrfs_super_block *sb;
3355 	struct btrfs_dev_item *dev_item;
3356 	int ret;
3357 	int do_barriers;
3358 	int max_errors;
3359 	int total_errors = 0;
3360 	u64 flags;
3361 
3362 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
3363 	backup_super_roots(root->fs_info);
3364 
3365 	sb = root->fs_info->super_for_commit;
3366 	dev_item = &sb->dev_item;
3367 
3368 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3369 	head = &root->fs_info->fs_devices->devices;
3370 	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3371 
3372 	if (do_barriers) {
3373 		ret = barrier_all_devices(root->fs_info);
3374 		if (ret) {
3375 			mutex_unlock(
3376 				&root->fs_info->fs_devices->device_list_mutex);
3377 			btrfs_error(root->fs_info, ret,
3378 				    "errors while submitting device barriers.");
3379 			return ret;
3380 		}
3381 	}
3382 
3383 	list_for_each_entry_rcu(dev, head, dev_list) {
3384 		if (!dev->bdev) {
3385 			total_errors++;
3386 			continue;
3387 		}
3388 		if (!dev->in_fs_metadata || !dev->writeable)
3389 			continue;
3390 
3391 		btrfs_set_stack_device_generation(dev_item, 0);
3392 		btrfs_set_stack_device_type(dev_item, dev->type);
3393 		btrfs_set_stack_device_id(dev_item, dev->devid);
3394 		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3395 		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3396 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3397 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3398 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3399 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3400 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3401 
3402 		flags = btrfs_super_flags(sb);
3403 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3404 
3405 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3406 		if (ret)
3407 			total_errors++;
3408 	}
3409 	if (total_errors > max_errors) {
3410 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3411 		       total_errors);
3412 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3413 
3414 		/* FUA is masked off if unsupported and can't be the reason */
3415 		btrfs_error(root->fs_info, -EIO,
3416 			    "%d errors while writing supers", total_errors);
3417 		return -EIO;
3418 	}
3419 
3420 	total_errors = 0;
3421 	list_for_each_entry_rcu(dev, head, dev_list) {
3422 		if (!dev->bdev)
3423 			continue;
3424 		if (!dev->in_fs_metadata || !dev->writeable)
3425 			continue;
3426 
3427 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3428 		if (ret)
3429 			total_errors++;
3430 	}
3431 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3432 	if (total_errors > max_errors) {
3433 		btrfs_error(root->fs_info, -EIO,
3434 			    "%d errors while writing supers", total_errors);
3435 		return -EIO;
3436 	}
3437 	return 0;
3438 }
3439 
3440 int write_ctree_super(struct btrfs_trans_handle *trans,
3441 		      struct btrfs_root *root, int max_mirrors)
3442 {
3443 	return write_all_supers(root, max_mirrors);
3444 }
3445 
3446 /* Drop a fs root from the radix tree and free it. */
3447 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3448 				  struct btrfs_root *root)
3449 {
3450 	spin_lock(&fs_info->fs_roots_radix_lock);
3451 	radix_tree_delete(&fs_info->fs_roots_radix,
3452 			  (unsigned long)root->root_key.objectid);
3453 	spin_unlock(&fs_info->fs_roots_radix_lock);
3454 
3455 	if (btrfs_root_refs(&root->root_item) == 0)
3456 		synchronize_srcu(&fs_info->subvol_srcu);
3457 
3458 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3459 		btrfs_free_log(NULL, root);
3460 		btrfs_free_log_root_tree(NULL, fs_info);
3461 	}
3462 
3463 	__btrfs_remove_free_space_cache(root->free_ino_pinned);
3464 	__btrfs_remove_free_space_cache(root->free_ino_ctl);
3465 	free_fs_root(root);
3466 }
3467 
3468 static void free_fs_root(struct btrfs_root *root)
3469 {
3470 	iput(root->cache_inode);
3471 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3472 	btrfs_free_block_rsv(root, root->orphan_block_rsv);
3473 	root->orphan_block_rsv = NULL;
3474 	if (root->anon_dev)
3475 		free_anon_bdev(root->anon_dev);
3476 	free_extent_buffer(root->node);
3477 	free_extent_buffer(root->commit_root);
3478 	kfree(root->free_ino_ctl);
3479 	kfree(root->free_ino_pinned);
3480 	kfree(root->name);
3481 	btrfs_put_fs_root(root);
3482 }
3483 
3484 void btrfs_free_fs_root(struct btrfs_root *root)
3485 {
3486 	free_fs_root(root);
3487 }
3488 
3489 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3490 {
3491 	u64 root_objectid = 0;
3492 	struct btrfs_root *gang[8];
3493 	int i;
3494 	int ret;
3495 
3496 	while (1) {
3497 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3498 					     (void **)gang, root_objectid,
3499 					     ARRAY_SIZE(gang));
3500 		if (!ret)
3501 			break;
3502 
3503 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3504 		for (i = 0; i < ret; i++) {
3505 			int err;
3506 
3507 			root_objectid = gang[i]->root_key.objectid;
3508 			err = btrfs_orphan_cleanup(gang[i]);
3509 			if (err)
3510 				return err;
3511 		}
3512 		root_objectid++;
3513 	}
3514 	return 0;
3515 }
3516 
3517 int btrfs_commit_super(struct btrfs_root *root)
3518 {
3519 	struct btrfs_trans_handle *trans;
3520 
3521 	mutex_lock(&root->fs_info->cleaner_mutex);
3522 	btrfs_run_delayed_iputs(root);
3523 	mutex_unlock(&root->fs_info->cleaner_mutex);
3524 	wake_up_process(root->fs_info->cleaner_kthread);
3525 
3526 	/* wait until ongoing cleanup work done */
3527 	down_write(&root->fs_info->cleanup_work_sem);
3528 	up_write(&root->fs_info->cleanup_work_sem);
3529 
3530 	trans = btrfs_join_transaction(root);
3531 	if (IS_ERR(trans))
3532 		return PTR_ERR(trans);
3533 	return btrfs_commit_transaction(trans, root);
3534 }
3535 
3536 int close_ctree(struct btrfs_root *root)
3537 {
3538 	struct btrfs_fs_info *fs_info = root->fs_info;
3539 	int ret;
3540 
3541 	fs_info->closing = 1;
3542 	smp_mb();
3543 
3544 	/* wait for the uuid_scan task to finish */
3545 	down(&fs_info->uuid_tree_rescan_sem);
3546 	/* avoid complains from lockdep et al., set sem back to initial state */
3547 	up(&fs_info->uuid_tree_rescan_sem);
3548 
3549 	/* pause restriper - we want to resume on mount */
3550 	btrfs_pause_balance(fs_info);
3551 
3552 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3553 
3554 	btrfs_scrub_cancel(fs_info);
3555 
3556 	/* wait for any defraggers to finish */
3557 	wait_event(fs_info->transaction_wait,
3558 		   (atomic_read(&fs_info->defrag_running) == 0));
3559 
3560 	/* clear out the rbtree of defraggable inodes */
3561 	btrfs_cleanup_defrag_inodes(fs_info);
3562 
3563 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3564 		ret = btrfs_commit_super(root);
3565 		if (ret)
3566 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3567 	}
3568 
3569 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3570 		btrfs_error_commit_super(root);
3571 
3572 	btrfs_put_block_group_cache(fs_info);
3573 
3574 	kthread_stop(fs_info->transaction_kthread);
3575 	kthread_stop(fs_info->cleaner_kthread);
3576 
3577 	fs_info->closing = 2;
3578 	smp_mb();
3579 
3580 	btrfs_free_qgroup_config(root->fs_info);
3581 
3582 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3583 		printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3584 		       percpu_counter_sum(&fs_info->delalloc_bytes));
3585 	}
3586 
3587 	del_fs_roots(fs_info);
3588 
3589 	btrfs_free_block_groups(fs_info);
3590 
3591 	btrfs_stop_all_workers(fs_info);
3592 
3593 	free_root_pointers(fs_info, 1);
3594 
3595 	iput(fs_info->btree_inode);
3596 
3597 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3598 	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3599 		btrfsic_unmount(root, fs_info->fs_devices);
3600 #endif
3601 
3602 	btrfs_close_devices(fs_info->fs_devices);
3603 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3604 
3605 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3606 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3607 	bdi_destroy(&fs_info->bdi);
3608 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3609 
3610 	btrfs_free_stripe_hash_table(fs_info);
3611 
3612 	btrfs_free_block_rsv(root, root->orphan_block_rsv);
3613 	root->orphan_block_rsv = NULL;
3614 
3615 	return 0;
3616 }
3617 
3618 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3619 			  int atomic)
3620 {
3621 	int ret;
3622 	struct inode *btree_inode = buf->pages[0]->mapping->host;
3623 
3624 	ret = extent_buffer_uptodate(buf);
3625 	if (!ret)
3626 		return ret;
3627 
3628 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3629 				    parent_transid, atomic);
3630 	if (ret == -EAGAIN)
3631 		return ret;
3632 	return !ret;
3633 }
3634 
3635 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3636 {
3637 	return set_extent_buffer_uptodate(buf);
3638 }
3639 
3640 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3641 {
3642 	struct btrfs_root *root;
3643 	u64 transid = btrfs_header_generation(buf);
3644 	int was_dirty;
3645 
3646 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3647 	/*
3648 	 * This is a fast path so only do this check if we have sanity tests
3649 	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3650 	 * outside of the sanity tests.
3651 	 */
3652 	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3653 		return;
3654 #endif
3655 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3656 	btrfs_assert_tree_locked(buf);
3657 	if (transid != root->fs_info->generation)
3658 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3659 		       "found %llu running %llu\n",
3660 			buf->start, transid, root->fs_info->generation);
3661 	was_dirty = set_extent_buffer_dirty(buf);
3662 	if (!was_dirty)
3663 		__percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3664 				     buf->len,
3665 				     root->fs_info->dirty_metadata_batch);
3666 }
3667 
3668 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3669 					int flush_delayed)
3670 {
3671 	/*
3672 	 * looks as though older kernels can get into trouble with
3673 	 * this code, they end up stuck in balance_dirty_pages forever
3674 	 */
3675 	int ret;
3676 
3677 	if (current->flags & PF_MEMALLOC)
3678 		return;
3679 
3680 	if (flush_delayed)
3681 		btrfs_balance_delayed_items(root);
3682 
3683 	ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3684 				     BTRFS_DIRTY_METADATA_THRESH);
3685 	if (ret > 0) {
3686 		balance_dirty_pages_ratelimited(
3687 				   root->fs_info->btree_inode->i_mapping);
3688 	}
3689 	return;
3690 }
3691 
3692 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3693 {
3694 	__btrfs_btree_balance_dirty(root, 1);
3695 }
3696 
3697 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3698 {
3699 	__btrfs_btree_balance_dirty(root, 0);
3700 }
3701 
3702 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3703 {
3704 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3705 	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3706 }
3707 
3708 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3709 			      int read_only)
3710 {
3711 	/*
3712 	 * Placeholder for checks
3713 	 */
3714 	return 0;
3715 }
3716 
3717 static void btrfs_error_commit_super(struct btrfs_root *root)
3718 {
3719 	mutex_lock(&root->fs_info->cleaner_mutex);
3720 	btrfs_run_delayed_iputs(root);
3721 	mutex_unlock(&root->fs_info->cleaner_mutex);
3722 
3723 	down_write(&root->fs_info->cleanup_work_sem);
3724 	up_write(&root->fs_info->cleanup_work_sem);
3725 
3726 	/* cleanup FS via transaction */
3727 	btrfs_cleanup_transaction(root);
3728 }
3729 
3730 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3731 					     struct btrfs_root *root)
3732 {
3733 	struct btrfs_inode *btrfs_inode;
3734 	struct list_head splice;
3735 
3736 	INIT_LIST_HEAD(&splice);
3737 
3738 	mutex_lock(&root->fs_info->ordered_operations_mutex);
3739 	spin_lock(&root->fs_info->ordered_root_lock);
3740 
3741 	list_splice_init(&t->ordered_operations, &splice);
3742 	while (!list_empty(&splice)) {
3743 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3744 					 ordered_operations);
3745 
3746 		list_del_init(&btrfs_inode->ordered_operations);
3747 		spin_unlock(&root->fs_info->ordered_root_lock);
3748 
3749 		btrfs_invalidate_inodes(btrfs_inode->root);
3750 
3751 		spin_lock(&root->fs_info->ordered_root_lock);
3752 	}
3753 
3754 	spin_unlock(&root->fs_info->ordered_root_lock);
3755 	mutex_unlock(&root->fs_info->ordered_operations_mutex);
3756 }
3757 
3758 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3759 {
3760 	struct btrfs_ordered_extent *ordered;
3761 
3762 	spin_lock(&root->ordered_extent_lock);
3763 	/*
3764 	 * This will just short circuit the ordered completion stuff which will
3765 	 * make sure the ordered extent gets properly cleaned up.
3766 	 */
3767 	list_for_each_entry(ordered, &root->ordered_extents,
3768 			    root_extent_list)
3769 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3770 	spin_unlock(&root->ordered_extent_lock);
3771 }
3772 
3773 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3774 {
3775 	struct btrfs_root *root;
3776 	struct list_head splice;
3777 
3778 	INIT_LIST_HEAD(&splice);
3779 
3780 	spin_lock(&fs_info->ordered_root_lock);
3781 	list_splice_init(&fs_info->ordered_roots, &splice);
3782 	while (!list_empty(&splice)) {
3783 		root = list_first_entry(&splice, struct btrfs_root,
3784 					ordered_root);
3785 		list_move_tail(&root->ordered_root,
3786 			       &fs_info->ordered_roots);
3787 
3788 		btrfs_destroy_ordered_extents(root);
3789 
3790 		cond_resched_lock(&fs_info->ordered_root_lock);
3791 	}
3792 	spin_unlock(&fs_info->ordered_root_lock);
3793 }
3794 
3795 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3796 				      struct btrfs_root *root)
3797 {
3798 	struct rb_node *node;
3799 	struct btrfs_delayed_ref_root *delayed_refs;
3800 	struct btrfs_delayed_ref_node *ref;
3801 	int ret = 0;
3802 
3803 	delayed_refs = &trans->delayed_refs;
3804 
3805 	spin_lock(&delayed_refs->lock);
3806 	if (delayed_refs->num_entries == 0) {
3807 		spin_unlock(&delayed_refs->lock);
3808 		printk(KERN_INFO "delayed_refs has NO entry\n");
3809 		return ret;
3810 	}
3811 
3812 	while ((node = rb_first(&delayed_refs->root)) != NULL) {
3813 		struct btrfs_delayed_ref_head *head = NULL;
3814 		bool pin_bytes = false;
3815 
3816 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3817 		atomic_set(&ref->refs, 1);
3818 		if (btrfs_delayed_ref_is_head(ref)) {
3819 
3820 			head = btrfs_delayed_node_to_head(ref);
3821 			if (!mutex_trylock(&head->mutex)) {
3822 				atomic_inc(&ref->refs);
3823 				spin_unlock(&delayed_refs->lock);
3824 
3825 				/* Need to wait for the delayed ref to run */
3826 				mutex_lock(&head->mutex);
3827 				mutex_unlock(&head->mutex);
3828 				btrfs_put_delayed_ref(ref);
3829 
3830 				spin_lock(&delayed_refs->lock);
3831 				continue;
3832 			}
3833 
3834 			if (head->must_insert_reserved)
3835 				pin_bytes = true;
3836 			btrfs_free_delayed_extent_op(head->extent_op);
3837 			delayed_refs->num_heads--;
3838 			if (list_empty(&head->cluster))
3839 				delayed_refs->num_heads_ready--;
3840 			list_del_init(&head->cluster);
3841 		}
3842 
3843 		ref->in_tree = 0;
3844 		rb_erase(&ref->rb_node, &delayed_refs->root);
3845 		delayed_refs->num_entries--;
3846 		spin_unlock(&delayed_refs->lock);
3847 		if (head) {
3848 			if (pin_bytes)
3849 				btrfs_pin_extent(root, ref->bytenr,
3850 						 ref->num_bytes, 1);
3851 			mutex_unlock(&head->mutex);
3852 		}
3853 		btrfs_put_delayed_ref(ref);
3854 
3855 		cond_resched();
3856 		spin_lock(&delayed_refs->lock);
3857 	}
3858 
3859 	spin_unlock(&delayed_refs->lock);
3860 
3861 	return ret;
3862 }
3863 
3864 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3865 {
3866 	struct btrfs_inode *btrfs_inode;
3867 	struct list_head splice;
3868 
3869 	INIT_LIST_HEAD(&splice);
3870 
3871 	spin_lock(&root->delalloc_lock);
3872 	list_splice_init(&root->delalloc_inodes, &splice);
3873 
3874 	while (!list_empty(&splice)) {
3875 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3876 					       delalloc_inodes);
3877 
3878 		list_del_init(&btrfs_inode->delalloc_inodes);
3879 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3880 			  &btrfs_inode->runtime_flags);
3881 		spin_unlock(&root->delalloc_lock);
3882 
3883 		btrfs_invalidate_inodes(btrfs_inode->root);
3884 
3885 		spin_lock(&root->delalloc_lock);
3886 	}
3887 
3888 	spin_unlock(&root->delalloc_lock);
3889 }
3890 
3891 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3892 {
3893 	struct btrfs_root *root;
3894 	struct list_head splice;
3895 
3896 	INIT_LIST_HEAD(&splice);
3897 
3898 	spin_lock(&fs_info->delalloc_root_lock);
3899 	list_splice_init(&fs_info->delalloc_roots, &splice);
3900 	while (!list_empty(&splice)) {
3901 		root = list_first_entry(&splice, struct btrfs_root,
3902 					 delalloc_root);
3903 		list_del_init(&root->delalloc_root);
3904 		root = btrfs_grab_fs_root(root);
3905 		BUG_ON(!root);
3906 		spin_unlock(&fs_info->delalloc_root_lock);
3907 
3908 		btrfs_destroy_delalloc_inodes(root);
3909 		btrfs_put_fs_root(root);
3910 
3911 		spin_lock(&fs_info->delalloc_root_lock);
3912 	}
3913 	spin_unlock(&fs_info->delalloc_root_lock);
3914 }
3915 
3916 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3917 					struct extent_io_tree *dirty_pages,
3918 					int mark)
3919 {
3920 	int ret;
3921 	struct extent_buffer *eb;
3922 	u64 start = 0;
3923 	u64 end;
3924 
3925 	while (1) {
3926 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3927 					    mark, NULL);
3928 		if (ret)
3929 			break;
3930 
3931 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3932 		while (start <= end) {
3933 			eb = btrfs_find_tree_block(root, start,
3934 						   root->leafsize);
3935 			start += root->leafsize;
3936 			if (!eb)
3937 				continue;
3938 			wait_on_extent_buffer_writeback(eb);
3939 
3940 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3941 					       &eb->bflags))
3942 				clear_extent_buffer_dirty(eb);
3943 			free_extent_buffer_stale(eb);
3944 		}
3945 	}
3946 
3947 	return ret;
3948 }
3949 
3950 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3951 				       struct extent_io_tree *pinned_extents)
3952 {
3953 	struct extent_io_tree *unpin;
3954 	u64 start;
3955 	u64 end;
3956 	int ret;
3957 	bool loop = true;
3958 
3959 	unpin = pinned_extents;
3960 again:
3961 	while (1) {
3962 		ret = find_first_extent_bit(unpin, 0, &start, &end,
3963 					    EXTENT_DIRTY, NULL);
3964 		if (ret)
3965 			break;
3966 
3967 		/* opt_discard */
3968 		if (btrfs_test_opt(root, DISCARD))
3969 			ret = btrfs_error_discard_extent(root, start,
3970 							 end + 1 - start,
3971 							 NULL);
3972 
3973 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
3974 		btrfs_error_unpin_extent_range(root, start, end);
3975 		cond_resched();
3976 	}
3977 
3978 	if (loop) {
3979 		if (unpin == &root->fs_info->freed_extents[0])
3980 			unpin = &root->fs_info->freed_extents[1];
3981 		else
3982 			unpin = &root->fs_info->freed_extents[0];
3983 		loop = false;
3984 		goto again;
3985 	}
3986 
3987 	return 0;
3988 }
3989 
3990 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3991 				   struct btrfs_root *root)
3992 {
3993 	btrfs_destroy_ordered_operations(cur_trans, root);
3994 
3995 	btrfs_destroy_delayed_refs(cur_trans, root);
3996 
3997 	cur_trans->state = TRANS_STATE_COMMIT_START;
3998 	wake_up(&root->fs_info->transaction_blocked_wait);
3999 
4000 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4001 	wake_up(&root->fs_info->transaction_wait);
4002 
4003 	btrfs_destroy_delayed_inodes(root);
4004 	btrfs_assert_delayed_root_empty(root);
4005 
4006 	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4007 				     EXTENT_DIRTY);
4008 	btrfs_destroy_pinned_extent(root,
4009 				    root->fs_info->pinned_extents);
4010 
4011 	cur_trans->state =TRANS_STATE_COMPLETED;
4012 	wake_up(&cur_trans->commit_wait);
4013 
4014 	/*
4015 	memset(cur_trans, 0, sizeof(*cur_trans));
4016 	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4017 	*/
4018 }
4019 
4020 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4021 {
4022 	struct btrfs_transaction *t;
4023 
4024 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
4025 
4026 	spin_lock(&root->fs_info->trans_lock);
4027 	while (!list_empty(&root->fs_info->trans_list)) {
4028 		t = list_first_entry(&root->fs_info->trans_list,
4029 				     struct btrfs_transaction, list);
4030 		if (t->state >= TRANS_STATE_COMMIT_START) {
4031 			atomic_inc(&t->use_count);
4032 			spin_unlock(&root->fs_info->trans_lock);
4033 			btrfs_wait_for_commit(root, t->transid);
4034 			btrfs_put_transaction(t);
4035 			spin_lock(&root->fs_info->trans_lock);
4036 			continue;
4037 		}
4038 		if (t == root->fs_info->running_transaction) {
4039 			t->state = TRANS_STATE_COMMIT_DOING;
4040 			spin_unlock(&root->fs_info->trans_lock);
4041 			/*
4042 			 * We wait for 0 num_writers since we don't hold a trans
4043 			 * handle open currently for this transaction.
4044 			 */
4045 			wait_event(t->writer_wait,
4046 				   atomic_read(&t->num_writers) == 0);
4047 		} else {
4048 			spin_unlock(&root->fs_info->trans_lock);
4049 		}
4050 		btrfs_cleanup_one_transaction(t, root);
4051 
4052 		spin_lock(&root->fs_info->trans_lock);
4053 		if (t == root->fs_info->running_transaction)
4054 			root->fs_info->running_transaction = NULL;
4055 		list_del_init(&t->list);
4056 		spin_unlock(&root->fs_info->trans_lock);
4057 
4058 		btrfs_put_transaction(t);
4059 		trace_btrfs_transaction_commit(root);
4060 		spin_lock(&root->fs_info->trans_lock);
4061 	}
4062 	spin_unlock(&root->fs_info->trans_lock);
4063 	btrfs_destroy_all_ordered_extents(root->fs_info);
4064 	btrfs_destroy_delayed_inodes(root);
4065 	btrfs_assert_delayed_root_empty(root);
4066 	btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4067 	btrfs_destroy_all_delalloc_inodes(root->fs_info);
4068 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4069 
4070 	return 0;
4071 }
4072 
4073 static struct extent_io_ops btree_extent_io_ops = {
4074 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4075 	.readpage_io_failed_hook = btree_io_failed_hook,
4076 	.submit_bio_hook = btree_submit_bio_hook,
4077 	/* note we're sharing with inode.c for the merge bio hook */
4078 	.merge_bio_hook = btrfs_merge_bio_hook,
4079 };
4080