xref: /openbmc/linux/fs/btrfs/disk-io.c (revision 4dc7ccf7)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include "compat.h"
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "btrfs_inode.h"
36 #include "volumes.h"
37 #include "print-tree.h"
38 #include "async-thread.h"
39 #include "locking.h"
40 #include "tree-log.h"
41 #include "free-space-cache.h"
42 
43 static struct extent_io_ops btree_extent_io_ops;
44 static void end_workqueue_fn(struct btrfs_work *work);
45 static void free_fs_root(struct btrfs_root *root);
46 
47 static atomic_t btrfs_bdi_num = ATOMIC_INIT(0);
48 
49 /*
50  * end_io_wq structs are used to do processing in task context when an IO is
51  * complete.  This is used during reads to verify checksums, and it is used
52  * by writes to insert metadata for new file extents after IO is complete.
53  */
54 struct end_io_wq {
55 	struct bio *bio;
56 	bio_end_io_t *end_io;
57 	void *private;
58 	struct btrfs_fs_info *info;
59 	int error;
60 	int metadata;
61 	struct list_head list;
62 	struct btrfs_work work;
63 };
64 
65 /*
66  * async submit bios are used to offload expensive checksumming
67  * onto the worker threads.  They checksum file and metadata bios
68  * just before they are sent down the IO stack.
69  */
70 struct async_submit_bio {
71 	struct inode *inode;
72 	struct bio *bio;
73 	struct list_head list;
74 	extent_submit_bio_hook_t *submit_bio_start;
75 	extent_submit_bio_hook_t *submit_bio_done;
76 	int rw;
77 	int mirror_num;
78 	unsigned long bio_flags;
79 	struct btrfs_work work;
80 };
81 
82 /* These are used to set the lockdep class on the extent buffer locks.
83  * The class is set by the readpage_end_io_hook after the buffer has
84  * passed csum validation but before the pages are unlocked.
85  *
86  * The lockdep class is also set by btrfs_init_new_buffer on freshly
87  * allocated blocks.
88  *
89  * The class is based on the level in the tree block, which allows lockdep
90  * to know that lower nodes nest inside the locks of higher nodes.
91  *
92  * We also add a check to make sure the highest level of the tree is
93  * the same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this
94  * code needs update as well.
95  */
96 #ifdef CONFIG_DEBUG_LOCK_ALLOC
97 # if BTRFS_MAX_LEVEL != 8
98 #  error
99 # endif
100 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
101 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
102 	/* leaf */
103 	"btrfs-extent-00",
104 	"btrfs-extent-01",
105 	"btrfs-extent-02",
106 	"btrfs-extent-03",
107 	"btrfs-extent-04",
108 	"btrfs-extent-05",
109 	"btrfs-extent-06",
110 	"btrfs-extent-07",
111 	/* highest possible level */
112 	"btrfs-extent-08",
113 };
114 #endif
115 
116 /*
117  * extents on the btree inode are pretty simple, there's one extent
118  * that covers the entire device
119  */
120 static struct extent_map *btree_get_extent(struct inode *inode,
121 		struct page *page, size_t page_offset, u64 start, u64 len,
122 		int create)
123 {
124 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
125 	struct extent_map *em;
126 	int ret;
127 
128 	read_lock(&em_tree->lock);
129 	em = lookup_extent_mapping(em_tree, start, len);
130 	if (em) {
131 		em->bdev =
132 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
133 		read_unlock(&em_tree->lock);
134 		goto out;
135 	}
136 	read_unlock(&em_tree->lock);
137 
138 	em = alloc_extent_map(GFP_NOFS);
139 	if (!em) {
140 		em = ERR_PTR(-ENOMEM);
141 		goto out;
142 	}
143 	em->start = 0;
144 	em->len = (u64)-1;
145 	em->block_len = (u64)-1;
146 	em->block_start = 0;
147 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
148 
149 	write_lock(&em_tree->lock);
150 	ret = add_extent_mapping(em_tree, em);
151 	if (ret == -EEXIST) {
152 		u64 failed_start = em->start;
153 		u64 failed_len = em->len;
154 
155 		free_extent_map(em);
156 		em = lookup_extent_mapping(em_tree, start, len);
157 		if (em) {
158 			ret = 0;
159 		} else {
160 			em = lookup_extent_mapping(em_tree, failed_start,
161 						   failed_len);
162 			ret = -EIO;
163 		}
164 	} else if (ret) {
165 		free_extent_map(em);
166 		em = NULL;
167 	}
168 	write_unlock(&em_tree->lock);
169 
170 	if (ret)
171 		em = ERR_PTR(ret);
172 out:
173 	return em;
174 }
175 
176 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
177 {
178 	return crc32c(seed, data, len);
179 }
180 
181 void btrfs_csum_final(u32 crc, char *result)
182 {
183 	*(__le32 *)result = ~cpu_to_le32(crc);
184 }
185 
186 /*
187  * compute the csum for a btree block, and either verify it or write it
188  * into the csum field of the block.
189  */
190 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
191 			   int verify)
192 {
193 	u16 csum_size =
194 		btrfs_super_csum_size(&root->fs_info->super_copy);
195 	char *result = NULL;
196 	unsigned long len;
197 	unsigned long cur_len;
198 	unsigned long offset = BTRFS_CSUM_SIZE;
199 	char *map_token = NULL;
200 	char *kaddr;
201 	unsigned long map_start;
202 	unsigned long map_len;
203 	int err;
204 	u32 crc = ~(u32)0;
205 	unsigned long inline_result;
206 
207 	len = buf->len - offset;
208 	while (len > 0) {
209 		err = map_private_extent_buffer(buf, offset, 32,
210 					&map_token, &kaddr,
211 					&map_start, &map_len, KM_USER0);
212 		if (err)
213 			return 1;
214 		cur_len = min(len, map_len - (offset - map_start));
215 		crc = btrfs_csum_data(root, kaddr + offset - map_start,
216 				      crc, cur_len);
217 		len -= cur_len;
218 		offset += cur_len;
219 		unmap_extent_buffer(buf, map_token, KM_USER0);
220 	}
221 	if (csum_size > sizeof(inline_result)) {
222 		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
223 		if (!result)
224 			return 1;
225 	} else {
226 		result = (char *)&inline_result;
227 	}
228 
229 	btrfs_csum_final(crc, result);
230 
231 	if (verify) {
232 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
233 			u32 val;
234 			u32 found = 0;
235 			memcpy(&found, result, csum_size);
236 
237 			read_extent_buffer(buf, &val, 0, csum_size);
238 			if (printk_ratelimit()) {
239 				printk(KERN_INFO "btrfs: %s checksum verify "
240 				       "failed on %llu wanted %X found %X "
241 				       "level %d\n",
242 				       root->fs_info->sb->s_id,
243 				       (unsigned long long)buf->start, val, found,
244 				       btrfs_header_level(buf));
245 			}
246 			if (result != (char *)&inline_result)
247 				kfree(result);
248 			return 1;
249 		}
250 	} else {
251 		write_extent_buffer(buf, result, 0, csum_size);
252 	}
253 	if (result != (char *)&inline_result)
254 		kfree(result);
255 	return 0;
256 }
257 
258 /*
259  * we can't consider a given block up to date unless the transid of the
260  * block matches the transid in the parent node's pointer.  This is how we
261  * detect blocks that either didn't get written at all or got written
262  * in the wrong place.
263  */
264 static int verify_parent_transid(struct extent_io_tree *io_tree,
265 				 struct extent_buffer *eb, u64 parent_transid)
266 {
267 	struct extent_state *cached_state = NULL;
268 	int ret;
269 
270 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
271 		return 0;
272 
273 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
274 			 0, &cached_state, GFP_NOFS);
275 	if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
276 	    btrfs_header_generation(eb) == parent_transid) {
277 		ret = 0;
278 		goto out;
279 	}
280 	if (printk_ratelimit()) {
281 		printk("parent transid verify failed on %llu wanted %llu "
282 		       "found %llu\n",
283 		       (unsigned long long)eb->start,
284 		       (unsigned long long)parent_transid,
285 		       (unsigned long long)btrfs_header_generation(eb));
286 	}
287 	ret = 1;
288 	clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
289 out:
290 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
291 			     &cached_state, GFP_NOFS);
292 	return ret;
293 }
294 
295 /*
296  * helper to read a given tree block, doing retries as required when
297  * the checksums don't match and we have alternate mirrors to try.
298  */
299 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
300 					  struct extent_buffer *eb,
301 					  u64 start, u64 parent_transid)
302 {
303 	struct extent_io_tree *io_tree;
304 	int ret;
305 	int num_copies = 0;
306 	int mirror_num = 0;
307 
308 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
309 	while (1) {
310 		ret = read_extent_buffer_pages(io_tree, eb, start, 1,
311 					       btree_get_extent, mirror_num);
312 		if (!ret &&
313 		    !verify_parent_transid(io_tree, eb, parent_transid))
314 			return ret;
315 
316 		num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
317 					      eb->start, eb->len);
318 		if (num_copies == 1)
319 			return ret;
320 
321 		mirror_num++;
322 		if (mirror_num > num_copies)
323 			return ret;
324 	}
325 	return -EIO;
326 }
327 
328 /*
329  * checksum a dirty tree block before IO.  This has extra checks to make sure
330  * we only fill in the checksum field in the first page of a multi-page block
331  */
332 
333 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
334 {
335 	struct extent_io_tree *tree;
336 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
337 	u64 found_start;
338 	int found_level;
339 	unsigned long len;
340 	struct extent_buffer *eb;
341 	int ret;
342 
343 	tree = &BTRFS_I(page->mapping->host)->io_tree;
344 
345 	if (page->private == EXTENT_PAGE_PRIVATE)
346 		goto out;
347 	if (!page->private)
348 		goto out;
349 	len = page->private >> 2;
350 	WARN_ON(len == 0);
351 
352 	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
353 	ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
354 					     btrfs_header_generation(eb));
355 	BUG_ON(ret);
356 	found_start = btrfs_header_bytenr(eb);
357 	if (found_start != start) {
358 		WARN_ON(1);
359 		goto err;
360 	}
361 	if (eb->first_page != page) {
362 		WARN_ON(1);
363 		goto err;
364 	}
365 	if (!PageUptodate(page)) {
366 		WARN_ON(1);
367 		goto err;
368 	}
369 	found_level = btrfs_header_level(eb);
370 
371 	csum_tree_block(root, eb, 0);
372 err:
373 	free_extent_buffer(eb);
374 out:
375 	return 0;
376 }
377 
378 static int check_tree_block_fsid(struct btrfs_root *root,
379 				 struct extent_buffer *eb)
380 {
381 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
382 	u8 fsid[BTRFS_UUID_SIZE];
383 	int ret = 1;
384 
385 	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
386 			   BTRFS_FSID_SIZE);
387 	while (fs_devices) {
388 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
389 			ret = 0;
390 			break;
391 		}
392 		fs_devices = fs_devices->seed;
393 	}
394 	return ret;
395 }
396 
397 #ifdef CONFIG_DEBUG_LOCK_ALLOC
398 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
399 {
400 	lockdep_set_class_and_name(&eb->lock,
401 			   &btrfs_eb_class[level],
402 			   btrfs_eb_name[level]);
403 }
404 #endif
405 
406 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
407 			       struct extent_state *state)
408 {
409 	struct extent_io_tree *tree;
410 	u64 found_start;
411 	int found_level;
412 	unsigned long len;
413 	struct extent_buffer *eb;
414 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
415 	int ret = 0;
416 
417 	tree = &BTRFS_I(page->mapping->host)->io_tree;
418 	if (page->private == EXTENT_PAGE_PRIVATE)
419 		goto out;
420 	if (!page->private)
421 		goto out;
422 
423 	len = page->private >> 2;
424 	WARN_ON(len == 0);
425 
426 	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
427 
428 	found_start = btrfs_header_bytenr(eb);
429 	if (found_start != start) {
430 		if (printk_ratelimit()) {
431 			printk(KERN_INFO "btrfs bad tree block start "
432 			       "%llu %llu\n",
433 			       (unsigned long long)found_start,
434 			       (unsigned long long)eb->start);
435 		}
436 		ret = -EIO;
437 		goto err;
438 	}
439 	if (eb->first_page != page) {
440 		printk(KERN_INFO "btrfs bad first page %lu %lu\n",
441 		       eb->first_page->index, page->index);
442 		WARN_ON(1);
443 		ret = -EIO;
444 		goto err;
445 	}
446 	if (check_tree_block_fsid(root, eb)) {
447 		if (printk_ratelimit()) {
448 			printk(KERN_INFO "btrfs bad fsid on block %llu\n",
449 			       (unsigned long long)eb->start);
450 		}
451 		ret = -EIO;
452 		goto err;
453 	}
454 	found_level = btrfs_header_level(eb);
455 
456 	btrfs_set_buffer_lockdep_class(eb, found_level);
457 
458 	ret = csum_tree_block(root, eb, 1);
459 	if (ret)
460 		ret = -EIO;
461 
462 	end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
463 	end = eb->start + end - 1;
464 err:
465 	free_extent_buffer(eb);
466 out:
467 	return ret;
468 }
469 
470 static void end_workqueue_bio(struct bio *bio, int err)
471 {
472 	struct end_io_wq *end_io_wq = bio->bi_private;
473 	struct btrfs_fs_info *fs_info;
474 
475 	fs_info = end_io_wq->info;
476 	end_io_wq->error = err;
477 	end_io_wq->work.func = end_workqueue_fn;
478 	end_io_wq->work.flags = 0;
479 
480 	if (bio->bi_rw & (1 << BIO_RW)) {
481 		if (end_io_wq->metadata)
482 			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
483 					   &end_io_wq->work);
484 		else
485 			btrfs_queue_worker(&fs_info->endio_write_workers,
486 					   &end_io_wq->work);
487 	} else {
488 		if (end_io_wq->metadata)
489 			btrfs_queue_worker(&fs_info->endio_meta_workers,
490 					   &end_io_wq->work);
491 		else
492 			btrfs_queue_worker(&fs_info->endio_workers,
493 					   &end_io_wq->work);
494 	}
495 }
496 
497 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
498 			int metadata)
499 {
500 	struct end_io_wq *end_io_wq;
501 	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
502 	if (!end_io_wq)
503 		return -ENOMEM;
504 
505 	end_io_wq->private = bio->bi_private;
506 	end_io_wq->end_io = bio->bi_end_io;
507 	end_io_wq->info = info;
508 	end_io_wq->error = 0;
509 	end_io_wq->bio = bio;
510 	end_io_wq->metadata = metadata;
511 
512 	bio->bi_private = end_io_wq;
513 	bio->bi_end_io = end_workqueue_bio;
514 	return 0;
515 }
516 
517 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
518 {
519 	unsigned long limit = min_t(unsigned long,
520 				    info->workers.max_workers,
521 				    info->fs_devices->open_devices);
522 	return 256 * limit;
523 }
524 
525 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
526 {
527 	return atomic_read(&info->nr_async_bios) >
528 		btrfs_async_submit_limit(info);
529 }
530 
531 static void run_one_async_start(struct btrfs_work *work)
532 {
533 	struct btrfs_fs_info *fs_info;
534 	struct async_submit_bio *async;
535 
536 	async = container_of(work, struct  async_submit_bio, work);
537 	fs_info = BTRFS_I(async->inode)->root->fs_info;
538 	async->submit_bio_start(async->inode, async->rw, async->bio,
539 			       async->mirror_num, async->bio_flags);
540 }
541 
542 static void run_one_async_done(struct btrfs_work *work)
543 {
544 	struct btrfs_fs_info *fs_info;
545 	struct async_submit_bio *async;
546 	int limit;
547 
548 	async = container_of(work, struct  async_submit_bio, work);
549 	fs_info = BTRFS_I(async->inode)->root->fs_info;
550 
551 	limit = btrfs_async_submit_limit(fs_info);
552 	limit = limit * 2 / 3;
553 
554 	atomic_dec(&fs_info->nr_async_submits);
555 
556 	if (atomic_read(&fs_info->nr_async_submits) < limit &&
557 	    waitqueue_active(&fs_info->async_submit_wait))
558 		wake_up(&fs_info->async_submit_wait);
559 
560 	async->submit_bio_done(async->inode, async->rw, async->bio,
561 			       async->mirror_num, async->bio_flags);
562 }
563 
564 static void run_one_async_free(struct btrfs_work *work)
565 {
566 	struct async_submit_bio *async;
567 
568 	async = container_of(work, struct  async_submit_bio, work);
569 	kfree(async);
570 }
571 
572 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
573 			int rw, struct bio *bio, int mirror_num,
574 			unsigned long bio_flags,
575 			extent_submit_bio_hook_t *submit_bio_start,
576 			extent_submit_bio_hook_t *submit_bio_done)
577 {
578 	struct async_submit_bio *async;
579 
580 	async = kmalloc(sizeof(*async), GFP_NOFS);
581 	if (!async)
582 		return -ENOMEM;
583 
584 	async->inode = inode;
585 	async->rw = rw;
586 	async->bio = bio;
587 	async->mirror_num = mirror_num;
588 	async->submit_bio_start = submit_bio_start;
589 	async->submit_bio_done = submit_bio_done;
590 
591 	async->work.func = run_one_async_start;
592 	async->work.ordered_func = run_one_async_done;
593 	async->work.ordered_free = run_one_async_free;
594 
595 	async->work.flags = 0;
596 	async->bio_flags = bio_flags;
597 
598 	atomic_inc(&fs_info->nr_async_submits);
599 
600 	if (rw & (1 << BIO_RW_SYNCIO))
601 		btrfs_set_work_high_prio(&async->work);
602 
603 	btrfs_queue_worker(&fs_info->workers, &async->work);
604 
605 	while (atomic_read(&fs_info->async_submit_draining) &&
606 	      atomic_read(&fs_info->nr_async_submits)) {
607 		wait_event(fs_info->async_submit_wait,
608 			   (atomic_read(&fs_info->nr_async_submits) == 0));
609 	}
610 
611 	return 0;
612 }
613 
614 static int btree_csum_one_bio(struct bio *bio)
615 {
616 	struct bio_vec *bvec = bio->bi_io_vec;
617 	int bio_index = 0;
618 	struct btrfs_root *root;
619 
620 	WARN_ON(bio->bi_vcnt <= 0);
621 	while (bio_index < bio->bi_vcnt) {
622 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
623 		csum_dirty_buffer(root, bvec->bv_page);
624 		bio_index++;
625 		bvec++;
626 	}
627 	return 0;
628 }
629 
630 static int __btree_submit_bio_start(struct inode *inode, int rw,
631 				    struct bio *bio, int mirror_num,
632 				    unsigned long bio_flags)
633 {
634 	/*
635 	 * when we're called for a write, we're already in the async
636 	 * submission context.  Just jump into btrfs_map_bio
637 	 */
638 	btree_csum_one_bio(bio);
639 	return 0;
640 }
641 
642 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
643 				 int mirror_num, unsigned long bio_flags)
644 {
645 	/*
646 	 * when we're called for a write, we're already in the async
647 	 * submission context.  Just jump into btrfs_map_bio
648 	 */
649 	return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
650 }
651 
652 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
653 				 int mirror_num, unsigned long bio_flags)
654 {
655 	int ret;
656 
657 	ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
658 					  bio, 1);
659 	BUG_ON(ret);
660 
661 	if (!(rw & (1 << BIO_RW))) {
662 		/*
663 		 * called for a read, do the setup so that checksum validation
664 		 * can happen in the async kernel threads
665 		 */
666 		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
667 				     mirror_num, 0);
668 	}
669 
670 	/*
671 	 * kthread helpers are used to submit writes so that checksumming
672 	 * can happen in parallel across all CPUs
673 	 */
674 	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
675 				   inode, rw, bio, mirror_num, 0,
676 				   __btree_submit_bio_start,
677 				   __btree_submit_bio_done);
678 }
679 
680 static int btree_writepage(struct page *page, struct writeback_control *wbc)
681 {
682 	struct extent_io_tree *tree;
683 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
684 	struct extent_buffer *eb;
685 	int was_dirty;
686 
687 	tree = &BTRFS_I(page->mapping->host)->io_tree;
688 	if (!(current->flags & PF_MEMALLOC)) {
689 		return extent_write_full_page(tree, page,
690 					      btree_get_extent, wbc);
691 	}
692 
693 	redirty_page_for_writepage(wbc, page);
694 	eb = btrfs_find_tree_block(root, page_offset(page),
695 				      PAGE_CACHE_SIZE);
696 	WARN_ON(!eb);
697 
698 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
699 	if (!was_dirty) {
700 		spin_lock(&root->fs_info->delalloc_lock);
701 		root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
702 		spin_unlock(&root->fs_info->delalloc_lock);
703 	}
704 	free_extent_buffer(eb);
705 
706 	unlock_page(page);
707 	return 0;
708 }
709 
710 static int btree_writepages(struct address_space *mapping,
711 			    struct writeback_control *wbc)
712 {
713 	struct extent_io_tree *tree;
714 	tree = &BTRFS_I(mapping->host)->io_tree;
715 	if (wbc->sync_mode == WB_SYNC_NONE) {
716 		struct btrfs_root *root = BTRFS_I(mapping->host)->root;
717 		u64 num_dirty;
718 		unsigned long thresh = 32 * 1024 * 1024;
719 
720 		if (wbc->for_kupdate)
721 			return 0;
722 
723 		/* this is a bit racy, but that's ok */
724 		num_dirty = root->fs_info->dirty_metadata_bytes;
725 		if (num_dirty < thresh)
726 			return 0;
727 	}
728 	return extent_writepages(tree, mapping, btree_get_extent, wbc);
729 }
730 
731 static int btree_readpage(struct file *file, struct page *page)
732 {
733 	struct extent_io_tree *tree;
734 	tree = &BTRFS_I(page->mapping->host)->io_tree;
735 	return extent_read_full_page(tree, page, btree_get_extent);
736 }
737 
738 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
739 {
740 	struct extent_io_tree *tree;
741 	struct extent_map_tree *map;
742 	int ret;
743 
744 	if (PageWriteback(page) || PageDirty(page))
745 		return 0;
746 
747 	tree = &BTRFS_I(page->mapping->host)->io_tree;
748 	map = &BTRFS_I(page->mapping->host)->extent_tree;
749 
750 	ret = try_release_extent_state(map, tree, page, gfp_flags);
751 	if (!ret)
752 		return 0;
753 
754 	ret = try_release_extent_buffer(tree, page);
755 	if (ret == 1) {
756 		ClearPagePrivate(page);
757 		set_page_private(page, 0);
758 		page_cache_release(page);
759 	}
760 
761 	return ret;
762 }
763 
764 static void btree_invalidatepage(struct page *page, unsigned long offset)
765 {
766 	struct extent_io_tree *tree;
767 	tree = &BTRFS_I(page->mapping->host)->io_tree;
768 	extent_invalidatepage(tree, page, offset);
769 	btree_releasepage(page, GFP_NOFS);
770 	if (PagePrivate(page)) {
771 		printk(KERN_WARNING "btrfs warning page private not zero "
772 		       "on page %llu\n", (unsigned long long)page_offset(page));
773 		ClearPagePrivate(page);
774 		set_page_private(page, 0);
775 		page_cache_release(page);
776 	}
777 }
778 
779 static const struct address_space_operations btree_aops = {
780 	.readpage	= btree_readpage,
781 	.writepage	= btree_writepage,
782 	.writepages	= btree_writepages,
783 	.releasepage	= btree_releasepage,
784 	.invalidatepage = btree_invalidatepage,
785 	.sync_page	= block_sync_page,
786 };
787 
788 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
789 			 u64 parent_transid)
790 {
791 	struct extent_buffer *buf = NULL;
792 	struct inode *btree_inode = root->fs_info->btree_inode;
793 	int ret = 0;
794 
795 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
796 	if (!buf)
797 		return 0;
798 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
799 				 buf, 0, 0, btree_get_extent, 0);
800 	free_extent_buffer(buf);
801 	return ret;
802 }
803 
804 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
805 					    u64 bytenr, u32 blocksize)
806 {
807 	struct inode *btree_inode = root->fs_info->btree_inode;
808 	struct extent_buffer *eb;
809 	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
810 				bytenr, blocksize, GFP_NOFS);
811 	return eb;
812 }
813 
814 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
815 						 u64 bytenr, u32 blocksize)
816 {
817 	struct inode *btree_inode = root->fs_info->btree_inode;
818 	struct extent_buffer *eb;
819 
820 	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
821 				 bytenr, blocksize, NULL, GFP_NOFS);
822 	return eb;
823 }
824 
825 
826 int btrfs_write_tree_block(struct extent_buffer *buf)
827 {
828 	return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
829 					buf->start + buf->len - 1);
830 }
831 
832 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
833 {
834 	return filemap_fdatawait_range(buf->first_page->mapping,
835 				       buf->start, buf->start + buf->len - 1);
836 }
837 
838 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
839 				      u32 blocksize, u64 parent_transid)
840 {
841 	struct extent_buffer *buf = NULL;
842 	struct inode *btree_inode = root->fs_info->btree_inode;
843 	struct extent_io_tree *io_tree;
844 	int ret;
845 
846 	io_tree = &BTRFS_I(btree_inode)->io_tree;
847 
848 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
849 	if (!buf)
850 		return NULL;
851 
852 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
853 
854 	if (ret == 0)
855 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
856 	return buf;
857 
858 }
859 
860 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
861 		     struct extent_buffer *buf)
862 {
863 	struct inode *btree_inode = root->fs_info->btree_inode;
864 	if (btrfs_header_generation(buf) ==
865 	    root->fs_info->running_transaction->transid) {
866 		btrfs_assert_tree_locked(buf);
867 
868 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
869 			spin_lock(&root->fs_info->delalloc_lock);
870 			if (root->fs_info->dirty_metadata_bytes >= buf->len)
871 				root->fs_info->dirty_metadata_bytes -= buf->len;
872 			else
873 				WARN_ON(1);
874 			spin_unlock(&root->fs_info->delalloc_lock);
875 		}
876 
877 		/* ugh, clear_extent_buffer_dirty needs to lock the page */
878 		btrfs_set_lock_blocking(buf);
879 		clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
880 					  buf);
881 	}
882 	return 0;
883 }
884 
885 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
886 			u32 stripesize, struct btrfs_root *root,
887 			struct btrfs_fs_info *fs_info,
888 			u64 objectid)
889 {
890 	root->node = NULL;
891 	root->commit_root = NULL;
892 	root->sectorsize = sectorsize;
893 	root->nodesize = nodesize;
894 	root->leafsize = leafsize;
895 	root->stripesize = stripesize;
896 	root->ref_cows = 0;
897 	root->track_dirty = 0;
898 	root->in_radix = 0;
899 	root->clean_orphans = 0;
900 
901 	root->fs_info = fs_info;
902 	root->objectid = objectid;
903 	root->last_trans = 0;
904 	root->highest_objectid = 0;
905 	root->name = NULL;
906 	root->in_sysfs = 0;
907 	root->inode_tree = RB_ROOT;
908 
909 	INIT_LIST_HEAD(&root->dirty_list);
910 	INIT_LIST_HEAD(&root->orphan_list);
911 	INIT_LIST_HEAD(&root->root_list);
912 	spin_lock_init(&root->node_lock);
913 	spin_lock_init(&root->list_lock);
914 	spin_lock_init(&root->inode_lock);
915 	mutex_init(&root->objectid_mutex);
916 	mutex_init(&root->log_mutex);
917 	init_waitqueue_head(&root->log_writer_wait);
918 	init_waitqueue_head(&root->log_commit_wait[0]);
919 	init_waitqueue_head(&root->log_commit_wait[1]);
920 	atomic_set(&root->log_commit[0], 0);
921 	atomic_set(&root->log_commit[1], 0);
922 	atomic_set(&root->log_writers, 0);
923 	root->log_batch = 0;
924 	root->log_transid = 0;
925 	root->last_log_commit = 0;
926 	extent_io_tree_init(&root->dirty_log_pages,
927 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
928 
929 	memset(&root->root_key, 0, sizeof(root->root_key));
930 	memset(&root->root_item, 0, sizeof(root->root_item));
931 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
932 	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
933 	root->defrag_trans_start = fs_info->generation;
934 	init_completion(&root->kobj_unregister);
935 	root->defrag_running = 0;
936 	root->root_key.objectid = objectid;
937 	root->anon_super.s_root = NULL;
938 	root->anon_super.s_dev = 0;
939 	INIT_LIST_HEAD(&root->anon_super.s_list);
940 	INIT_LIST_HEAD(&root->anon_super.s_instances);
941 	init_rwsem(&root->anon_super.s_umount);
942 
943 	return 0;
944 }
945 
946 static int find_and_setup_root(struct btrfs_root *tree_root,
947 			       struct btrfs_fs_info *fs_info,
948 			       u64 objectid,
949 			       struct btrfs_root *root)
950 {
951 	int ret;
952 	u32 blocksize;
953 	u64 generation;
954 
955 	__setup_root(tree_root->nodesize, tree_root->leafsize,
956 		     tree_root->sectorsize, tree_root->stripesize,
957 		     root, fs_info, objectid);
958 	ret = btrfs_find_last_root(tree_root, objectid,
959 				   &root->root_item, &root->root_key);
960 	if (ret > 0)
961 		return -ENOENT;
962 	BUG_ON(ret);
963 
964 	generation = btrfs_root_generation(&root->root_item);
965 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
966 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
967 				     blocksize, generation);
968 	BUG_ON(!root->node);
969 	root->commit_root = btrfs_root_node(root);
970 	return 0;
971 }
972 
973 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
974 			     struct btrfs_fs_info *fs_info)
975 {
976 	struct extent_buffer *eb;
977 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
978 	u64 start = 0;
979 	u64 end = 0;
980 	int ret;
981 
982 	if (!log_root_tree)
983 		return 0;
984 
985 	while (1) {
986 		ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
987 				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
988 		if (ret)
989 			break;
990 
991 		clear_extent_bits(&log_root_tree->dirty_log_pages, start, end,
992 				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
993 	}
994 	eb = fs_info->log_root_tree->node;
995 
996 	WARN_ON(btrfs_header_level(eb) != 0);
997 	WARN_ON(btrfs_header_nritems(eb) != 0);
998 
999 	ret = btrfs_free_reserved_extent(fs_info->tree_root,
1000 				eb->start, eb->len);
1001 	BUG_ON(ret);
1002 
1003 	free_extent_buffer(eb);
1004 	kfree(fs_info->log_root_tree);
1005 	fs_info->log_root_tree = NULL;
1006 	return 0;
1007 }
1008 
1009 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1010 					 struct btrfs_fs_info *fs_info)
1011 {
1012 	struct btrfs_root *root;
1013 	struct btrfs_root *tree_root = fs_info->tree_root;
1014 	struct extent_buffer *leaf;
1015 
1016 	root = kzalloc(sizeof(*root), GFP_NOFS);
1017 	if (!root)
1018 		return ERR_PTR(-ENOMEM);
1019 
1020 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1021 		     tree_root->sectorsize, tree_root->stripesize,
1022 		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1023 
1024 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1025 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1026 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1027 	/*
1028 	 * log trees do not get reference counted because they go away
1029 	 * before a real commit is actually done.  They do store pointers
1030 	 * to file data extents, and those reference counts still get
1031 	 * updated (along with back refs to the log tree).
1032 	 */
1033 	root->ref_cows = 0;
1034 
1035 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1036 				      BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1037 	if (IS_ERR(leaf)) {
1038 		kfree(root);
1039 		return ERR_CAST(leaf);
1040 	}
1041 
1042 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1043 	btrfs_set_header_bytenr(leaf, leaf->start);
1044 	btrfs_set_header_generation(leaf, trans->transid);
1045 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1046 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1047 	root->node = leaf;
1048 
1049 	write_extent_buffer(root->node, root->fs_info->fsid,
1050 			    (unsigned long)btrfs_header_fsid(root->node),
1051 			    BTRFS_FSID_SIZE);
1052 	btrfs_mark_buffer_dirty(root->node);
1053 	btrfs_tree_unlock(root->node);
1054 	return root;
1055 }
1056 
1057 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1058 			     struct btrfs_fs_info *fs_info)
1059 {
1060 	struct btrfs_root *log_root;
1061 
1062 	log_root = alloc_log_tree(trans, fs_info);
1063 	if (IS_ERR(log_root))
1064 		return PTR_ERR(log_root);
1065 	WARN_ON(fs_info->log_root_tree);
1066 	fs_info->log_root_tree = log_root;
1067 	return 0;
1068 }
1069 
1070 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1071 		       struct btrfs_root *root)
1072 {
1073 	struct btrfs_root *log_root;
1074 	struct btrfs_inode_item *inode_item;
1075 
1076 	log_root = alloc_log_tree(trans, root->fs_info);
1077 	if (IS_ERR(log_root))
1078 		return PTR_ERR(log_root);
1079 
1080 	log_root->last_trans = trans->transid;
1081 	log_root->root_key.offset = root->root_key.objectid;
1082 
1083 	inode_item = &log_root->root_item.inode;
1084 	inode_item->generation = cpu_to_le64(1);
1085 	inode_item->size = cpu_to_le64(3);
1086 	inode_item->nlink = cpu_to_le32(1);
1087 	inode_item->nbytes = cpu_to_le64(root->leafsize);
1088 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1089 
1090 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1091 
1092 	WARN_ON(root->log_root);
1093 	root->log_root = log_root;
1094 	root->log_transid = 0;
1095 	root->last_log_commit = 0;
1096 	return 0;
1097 }
1098 
1099 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1100 					       struct btrfs_key *location)
1101 {
1102 	struct btrfs_root *root;
1103 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1104 	struct btrfs_path *path;
1105 	struct extent_buffer *l;
1106 	u64 generation;
1107 	u32 blocksize;
1108 	int ret = 0;
1109 
1110 	root = kzalloc(sizeof(*root), GFP_NOFS);
1111 	if (!root)
1112 		return ERR_PTR(-ENOMEM);
1113 	if (location->offset == (u64)-1) {
1114 		ret = find_and_setup_root(tree_root, fs_info,
1115 					  location->objectid, root);
1116 		if (ret) {
1117 			kfree(root);
1118 			return ERR_PTR(ret);
1119 		}
1120 		goto out;
1121 	}
1122 
1123 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1124 		     tree_root->sectorsize, tree_root->stripesize,
1125 		     root, fs_info, location->objectid);
1126 
1127 	path = btrfs_alloc_path();
1128 	BUG_ON(!path);
1129 	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1130 	if (ret == 0) {
1131 		l = path->nodes[0];
1132 		read_extent_buffer(l, &root->root_item,
1133 				btrfs_item_ptr_offset(l, path->slots[0]),
1134 				sizeof(root->root_item));
1135 		memcpy(&root->root_key, location, sizeof(*location));
1136 	}
1137 	btrfs_free_path(path);
1138 	if (ret) {
1139 		if (ret > 0)
1140 			ret = -ENOENT;
1141 		return ERR_PTR(ret);
1142 	}
1143 
1144 	generation = btrfs_root_generation(&root->root_item);
1145 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1146 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1147 				     blocksize, generation);
1148 	root->commit_root = btrfs_root_node(root);
1149 	BUG_ON(!root->node);
1150 out:
1151 	if (location->objectid != BTRFS_TREE_LOG_OBJECTID)
1152 		root->ref_cows = 1;
1153 
1154 	return root;
1155 }
1156 
1157 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1158 					u64 root_objectid)
1159 {
1160 	struct btrfs_root *root;
1161 
1162 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1163 		return fs_info->tree_root;
1164 	if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1165 		return fs_info->extent_root;
1166 
1167 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1168 				 (unsigned long)root_objectid);
1169 	return root;
1170 }
1171 
1172 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1173 					      struct btrfs_key *location)
1174 {
1175 	struct btrfs_root *root;
1176 	int ret;
1177 
1178 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1179 		return fs_info->tree_root;
1180 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1181 		return fs_info->extent_root;
1182 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1183 		return fs_info->chunk_root;
1184 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1185 		return fs_info->dev_root;
1186 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1187 		return fs_info->csum_root;
1188 again:
1189 	spin_lock(&fs_info->fs_roots_radix_lock);
1190 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1191 				 (unsigned long)location->objectid);
1192 	spin_unlock(&fs_info->fs_roots_radix_lock);
1193 	if (root)
1194 		return root;
1195 
1196 	ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1197 	if (ret == 0)
1198 		ret = -ENOENT;
1199 	if (ret < 0)
1200 		return ERR_PTR(ret);
1201 
1202 	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1203 	if (IS_ERR(root))
1204 		return root;
1205 
1206 	WARN_ON(btrfs_root_refs(&root->root_item) == 0);
1207 	set_anon_super(&root->anon_super, NULL);
1208 
1209 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1210 	if (ret)
1211 		goto fail;
1212 
1213 	spin_lock(&fs_info->fs_roots_radix_lock);
1214 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1215 				(unsigned long)root->root_key.objectid,
1216 				root);
1217 	if (ret == 0) {
1218 		root->in_radix = 1;
1219 		root->clean_orphans = 1;
1220 	}
1221 	spin_unlock(&fs_info->fs_roots_radix_lock);
1222 	radix_tree_preload_end();
1223 	if (ret) {
1224 		if (ret == -EEXIST) {
1225 			free_fs_root(root);
1226 			goto again;
1227 		}
1228 		goto fail;
1229 	}
1230 
1231 	ret = btrfs_find_dead_roots(fs_info->tree_root,
1232 				    root->root_key.objectid);
1233 	WARN_ON(ret);
1234 	return root;
1235 fail:
1236 	free_fs_root(root);
1237 	return ERR_PTR(ret);
1238 }
1239 
1240 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1241 				      struct btrfs_key *location,
1242 				      const char *name, int namelen)
1243 {
1244 	return btrfs_read_fs_root_no_name(fs_info, location);
1245 #if 0
1246 	struct btrfs_root *root;
1247 	int ret;
1248 
1249 	root = btrfs_read_fs_root_no_name(fs_info, location);
1250 	if (!root)
1251 		return NULL;
1252 
1253 	if (root->in_sysfs)
1254 		return root;
1255 
1256 	ret = btrfs_set_root_name(root, name, namelen);
1257 	if (ret) {
1258 		free_extent_buffer(root->node);
1259 		kfree(root);
1260 		return ERR_PTR(ret);
1261 	}
1262 
1263 	ret = btrfs_sysfs_add_root(root);
1264 	if (ret) {
1265 		free_extent_buffer(root->node);
1266 		kfree(root->name);
1267 		kfree(root);
1268 		return ERR_PTR(ret);
1269 	}
1270 	root->in_sysfs = 1;
1271 	return root;
1272 #endif
1273 }
1274 
1275 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1276 {
1277 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1278 	int ret = 0;
1279 	struct btrfs_device *device;
1280 	struct backing_dev_info *bdi;
1281 
1282 	list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1283 		if (!device->bdev)
1284 			continue;
1285 		bdi = blk_get_backing_dev_info(device->bdev);
1286 		if (bdi && bdi_congested(bdi, bdi_bits)) {
1287 			ret = 1;
1288 			break;
1289 		}
1290 	}
1291 	return ret;
1292 }
1293 
1294 /*
1295  * this unplugs every device on the box, and it is only used when page
1296  * is null
1297  */
1298 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1299 {
1300 	struct btrfs_device *device;
1301 	struct btrfs_fs_info *info;
1302 
1303 	info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1304 	list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1305 		if (!device->bdev)
1306 			continue;
1307 
1308 		bdi = blk_get_backing_dev_info(device->bdev);
1309 		if (bdi->unplug_io_fn)
1310 			bdi->unplug_io_fn(bdi, page);
1311 	}
1312 }
1313 
1314 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1315 {
1316 	struct inode *inode;
1317 	struct extent_map_tree *em_tree;
1318 	struct extent_map *em;
1319 	struct address_space *mapping;
1320 	u64 offset;
1321 
1322 	/* the generic O_DIRECT read code does this */
1323 	if (1 || !page) {
1324 		__unplug_io_fn(bdi, page);
1325 		return;
1326 	}
1327 
1328 	/*
1329 	 * page->mapping may change at any time.  Get a consistent copy
1330 	 * and use that for everything below
1331 	 */
1332 	smp_mb();
1333 	mapping = page->mapping;
1334 	if (!mapping)
1335 		return;
1336 
1337 	inode = mapping->host;
1338 
1339 	/*
1340 	 * don't do the expensive searching for a small number of
1341 	 * devices
1342 	 */
1343 	if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1344 		__unplug_io_fn(bdi, page);
1345 		return;
1346 	}
1347 
1348 	offset = page_offset(page);
1349 
1350 	em_tree = &BTRFS_I(inode)->extent_tree;
1351 	read_lock(&em_tree->lock);
1352 	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1353 	read_unlock(&em_tree->lock);
1354 	if (!em) {
1355 		__unplug_io_fn(bdi, page);
1356 		return;
1357 	}
1358 
1359 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1360 		free_extent_map(em);
1361 		__unplug_io_fn(bdi, page);
1362 		return;
1363 	}
1364 	offset = offset - em->start;
1365 	btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1366 			  em->block_start + offset, page);
1367 	free_extent_map(em);
1368 }
1369 
1370 /*
1371  * If this fails, caller must call bdi_destroy() to get rid of the
1372  * bdi again.
1373  */
1374 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1375 {
1376 	int err;
1377 
1378 	bdi->name = "btrfs";
1379 	bdi->capabilities = BDI_CAP_MAP_COPY;
1380 	err = bdi_init(bdi);
1381 	if (err)
1382 		return err;
1383 
1384 	err = bdi_register(bdi, NULL, "btrfs-%d",
1385 				atomic_inc_return(&btrfs_bdi_num));
1386 	if (err) {
1387 		bdi_destroy(bdi);
1388 		return err;
1389 	}
1390 
1391 	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1392 	bdi->unplug_io_fn	= btrfs_unplug_io_fn;
1393 	bdi->unplug_io_data	= info;
1394 	bdi->congested_fn	= btrfs_congested_fn;
1395 	bdi->congested_data	= info;
1396 	return 0;
1397 }
1398 
1399 static int bio_ready_for_csum(struct bio *bio)
1400 {
1401 	u64 length = 0;
1402 	u64 buf_len = 0;
1403 	u64 start = 0;
1404 	struct page *page;
1405 	struct extent_io_tree *io_tree = NULL;
1406 	struct btrfs_fs_info *info = NULL;
1407 	struct bio_vec *bvec;
1408 	int i;
1409 	int ret;
1410 
1411 	bio_for_each_segment(bvec, bio, i) {
1412 		page = bvec->bv_page;
1413 		if (page->private == EXTENT_PAGE_PRIVATE) {
1414 			length += bvec->bv_len;
1415 			continue;
1416 		}
1417 		if (!page->private) {
1418 			length += bvec->bv_len;
1419 			continue;
1420 		}
1421 		length = bvec->bv_len;
1422 		buf_len = page->private >> 2;
1423 		start = page_offset(page) + bvec->bv_offset;
1424 		io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1425 		info = BTRFS_I(page->mapping->host)->root->fs_info;
1426 	}
1427 	/* are we fully contained in this bio? */
1428 	if (buf_len <= length)
1429 		return 1;
1430 
1431 	ret = extent_range_uptodate(io_tree, start + length,
1432 				    start + buf_len - 1);
1433 	return ret;
1434 }
1435 
1436 /*
1437  * called by the kthread helper functions to finally call the bio end_io
1438  * functions.  This is where read checksum verification actually happens
1439  */
1440 static void end_workqueue_fn(struct btrfs_work *work)
1441 {
1442 	struct bio *bio;
1443 	struct end_io_wq *end_io_wq;
1444 	struct btrfs_fs_info *fs_info;
1445 	int error;
1446 
1447 	end_io_wq = container_of(work, struct end_io_wq, work);
1448 	bio = end_io_wq->bio;
1449 	fs_info = end_io_wq->info;
1450 
1451 	/* metadata bio reads are special because the whole tree block must
1452 	 * be checksummed at once.  This makes sure the entire block is in
1453 	 * ram and up to date before trying to verify things.  For
1454 	 * blocksize <= pagesize, it is basically a noop
1455 	 */
1456 	if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
1457 	    !bio_ready_for_csum(bio)) {
1458 		btrfs_queue_worker(&fs_info->endio_meta_workers,
1459 				   &end_io_wq->work);
1460 		return;
1461 	}
1462 	error = end_io_wq->error;
1463 	bio->bi_private = end_io_wq->private;
1464 	bio->bi_end_io = end_io_wq->end_io;
1465 	kfree(end_io_wq);
1466 	bio_endio(bio, error);
1467 }
1468 
1469 static int cleaner_kthread(void *arg)
1470 {
1471 	struct btrfs_root *root = arg;
1472 
1473 	do {
1474 		smp_mb();
1475 		if (root->fs_info->closing)
1476 			break;
1477 
1478 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1479 
1480 		if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1481 		    mutex_trylock(&root->fs_info->cleaner_mutex)) {
1482 			btrfs_run_delayed_iputs(root);
1483 			btrfs_clean_old_snapshots(root);
1484 			mutex_unlock(&root->fs_info->cleaner_mutex);
1485 		}
1486 
1487 		if (freezing(current)) {
1488 			refrigerator();
1489 		} else {
1490 			smp_mb();
1491 			if (root->fs_info->closing)
1492 				break;
1493 			set_current_state(TASK_INTERRUPTIBLE);
1494 			schedule();
1495 			__set_current_state(TASK_RUNNING);
1496 		}
1497 	} while (!kthread_should_stop());
1498 	return 0;
1499 }
1500 
1501 static int transaction_kthread(void *arg)
1502 {
1503 	struct btrfs_root *root = arg;
1504 	struct btrfs_trans_handle *trans;
1505 	struct btrfs_transaction *cur;
1506 	unsigned long now;
1507 	unsigned long delay;
1508 	int ret;
1509 
1510 	do {
1511 		smp_mb();
1512 		if (root->fs_info->closing)
1513 			break;
1514 
1515 		delay = HZ * 30;
1516 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1517 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1518 
1519 		mutex_lock(&root->fs_info->trans_mutex);
1520 		cur = root->fs_info->running_transaction;
1521 		if (!cur) {
1522 			mutex_unlock(&root->fs_info->trans_mutex);
1523 			goto sleep;
1524 		}
1525 
1526 		now = get_seconds();
1527 		if (now < cur->start_time || now - cur->start_time < 30) {
1528 			mutex_unlock(&root->fs_info->trans_mutex);
1529 			delay = HZ * 5;
1530 			goto sleep;
1531 		}
1532 		mutex_unlock(&root->fs_info->trans_mutex);
1533 		trans = btrfs_start_transaction(root, 1);
1534 		ret = btrfs_commit_transaction(trans, root);
1535 
1536 sleep:
1537 		wake_up_process(root->fs_info->cleaner_kthread);
1538 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1539 
1540 		if (freezing(current)) {
1541 			refrigerator();
1542 		} else {
1543 			if (root->fs_info->closing)
1544 				break;
1545 			set_current_state(TASK_INTERRUPTIBLE);
1546 			schedule_timeout(delay);
1547 			__set_current_state(TASK_RUNNING);
1548 		}
1549 	} while (!kthread_should_stop());
1550 	return 0;
1551 }
1552 
1553 struct btrfs_root *open_ctree(struct super_block *sb,
1554 			      struct btrfs_fs_devices *fs_devices,
1555 			      char *options)
1556 {
1557 	u32 sectorsize;
1558 	u32 nodesize;
1559 	u32 leafsize;
1560 	u32 blocksize;
1561 	u32 stripesize;
1562 	u64 generation;
1563 	u64 features;
1564 	struct btrfs_key location;
1565 	struct buffer_head *bh;
1566 	struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1567 						 GFP_NOFS);
1568 	struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1569 						 GFP_NOFS);
1570 	struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
1571 					       GFP_NOFS);
1572 	struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1573 						GFP_NOFS);
1574 	struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1575 						GFP_NOFS);
1576 	struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1577 					      GFP_NOFS);
1578 	struct btrfs_root *log_tree_root;
1579 
1580 	int ret;
1581 	int err = -EINVAL;
1582 
1583 	struct btrfs_super_block *disk_super;
1584 
1585 	if (!extent_root || !tree_root || !fs_info ||
1586 	    !chunk_root || !dev_root || !csum_root) {
1587 		err = -ENOMEM;
1588 		goto fail;
1589 	}
1590 
1591 	ret = init_srcu_struct(&fs_info->subvol_srcu);
1592 	if (ret) {
1593 		err = ret;
1594 		goto fail;
1595 	}
1596 
1597 	ret = setup_bdi(fs_info, &fs_info->bdi);
1598 	if (ret) {
1599 		err = ret;
1600 		goto fail_srcu;
1601 	}
1602 
1603 	fs_info->btree_inode = new_inode(sb);
1604 	if (!fs_info->btree_inode) {
1605 		err = -ENOMEM;
1606 		goto fail_bdi;
1607 	}
1608 
1609 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1610 	INIT_LIST_HEAD(&fs_info->trans_list);
1611 	INIT_LIST_HEAD(&fs_info->dead_roots);
1612 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
1613 	INIT_LIST_HEAD(&fs_info->hashers);
1614 	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1615 	INIT_LIST_HEAD(&fs_info->ordered_operations);
1616 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
1617 	spin_lock_init(&fs_info->delalloc_lock);
1618 	spin_lock_init(&fs_info->new_trans_lock);
1619 	spin_lock_init(&fs_info->ref_cache_lock);
1620 	spin_lock_init(&fs_info->fs_roots_radix_lock);
1621 	spin_lock_init(&fs_info->delayed_iput_lock);
1622 
1623 	init_completion(&fs_info->kobj_unregister);
1624 	fs_info->tree_root = tree_root;
1625 	fs_info->extent_root = extent_root;
1626 	fs_info->csum_root = csum_root;
1627 	fs_info->chunk_root = chunk_root;
1628 	fs_info->dev_root = dev_root;
1629 	fs_info->fs_devices = fs_devices;
1630 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1631 	INIT_LIST_HEAD(&fs_info->space_info);
1632 	btrfs_mapping_init(&fs_info->mapping_tree);
1633 	atomic_set(&fs_info->nr_async_submits, 0);
1634 	atomic_set(&fs_info->async_delalloc_pages, 0);
1635 	atomic_set(&fs_info->async_submit_draining, 0);
1636 	atomic_set(&fs_info->nr_async_bios, 0);
1637 	fs_info->sb = sb;
1638 	fs_info->max_inline = 8192 * 1024;
1639 	fs_info->metadata_ratio = 0;
1640 
1641 	fs_info->thread_pool_size = min_t(unsigned long,
1642 					  num_online_cpus() + 2, 8);
1643 
1644 	INIT_LIST_HEAD(&fs_info->ordered_extents);
1645 	spin_lock_init(&fs_info->ordered_extent_lock);
1646 
1647 	sb->s_blocksize = 4096;
1648 	sb->s_blocksize_bits = blksize_bits(4096);
1649 	sb->s_bdi = &fs_info->bdi;
1650 
1651 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1652 	fs_info->btree_inode->i_nlink = 1;
1653 	/*
1654 	 * we set the i_size on the btree inode to the max possible int.
1655 	 * the real end of the address space is determined by all of
1656 	 * the devices in the system
1657 	 */
1658 	fs_info->btree_inode->i_size = OFFSET_MAX;
1659 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1660 	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1661 
1662 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1663 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1664 			     fs_info->btree_inode->i_mapping,
1665 			     GFP_NOFS);
1666 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1667 			     GFP_NOFS);
1668 
1669 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1670 
1671 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
1672 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1673 	       sizeof(struct btrfs_key));
1674 	BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
1675 	insert_inode_hash(fs_info->btree_inode);
1676 
1677 	spin_lock_init(&fs_info->block_group_cache_lock);
1678 	fs_info->block_group_cache_tree = RB_ROOT;
1679 
1680 	extent_io_tree_init(&fs_info->freed_extents[0],
1681 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1682 	extent_io_tree_init(&fs_info->freed_extents[1],
1683 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1684 	fs_info->pinned_extents = &fs_info->freed_extents[0];
1685 	fs_info->do_barriers = 1;
1686 
1687 
1688 	mutex_init(&fs_info->trans_mutex);
1689 	mutex_init(&fs_info->ordered_operations_mutex);
1690 	mutex_init(&fs_info->tree_log_mutex);
1691 	mutex_init(&fs_info->chunk_mutex);
1692 	mutex_init(&fs_info->transaction_kthread_mutex);
1693 	mutex_init(&fs_info->cleaner_mutex);
1694 	mutex_init(&fs_info->volume_mutex);
1695 	init_rwsem(&fs_info->extent_commit_sem);
1696 	init_rwsem(&fs_info->cleanup_work_sem);
1697 	init_rwsem(&fs_info->subvol_sem);
1698 
1699 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1700 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1701 
1702 	init_waitqueue_head(&fs_info->transaction_throttle);
1703 	init_waitqueue_head(&fs_info->transaction_wait);
1704 	init_waitqueue_head(&fs_info->async_submit_wait);
1705 
1706 	__setup_root(4096, 4096, 4096, 4096, tree_root,
1707 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
1708 
1709 
1710 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1711 	if (!bh)
1712 		goto fail_iput;
1713 
1714 	memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1715 	memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1716 	       sizeof(fs_info->super_for_commit));
1717 	brelse(bh);
1718 
1719 	memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1720 
1721 	disk_super = &fs_info->super_copy;
1722 	if (!btrfs_super_root(disk_super))
1723 		goto fail_iput;
1724 
1725 	ret = btrfs_parse_options(tree_root, options);
1726 	if (ret) {
1727 		err = ret;
1728 		goto fail_iput;
1729 	}
1730 
1731 	features = btrfs_super_incompat_flags(disk_super) &
1732 		~BTRFS_FEATURE_INCOMPAT_SUPP;
1733 	if (features) {
1734 		printk(KERN_ERR "BTRFS: couldn't mount because of "
1735 		       "unsupported optional features (%Lx).\n",
1736 		       (unsigned long long)features);
1737 		err = -EINVAL;
1738 		goto fail_iput;
1739 	}
1740 
1741 	features = btrfs_super_incompat_flags(disk_super);
1742 	if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) {
1743 		features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
1744 		btrfs_set_super_incompat_flags(disk_super, features);
1745 	}
1746 
1747 	features = btrfs_super_compat_ro_flags(disk_super) &
1748 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
1749 	if (!(sb->s_flags & MS_RDONLY) && features) {
1750 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1751 		       "unsupported option features (%Lx).\n",
1752 		       (unsigned long long)features);
1753 		err = -EINVAL;
1754 		goto fail_iput;
1755 	}
1756 
1757 	btrfs_init_workers(&fs_info->generic_worker,
1758 			   "genwork", 1, NULL);
1759 
1760 	btrfs_init_workers(&fs_info->workers, "worker",
1761 			   fs_info->thread_pool_size,
1762 			   &fs_info->generic_worker);
1763 
1764 	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1765 			   fs_info->thread_pool_size,
1766 			   &fs_info->generic_worker);
1767 
1768 	btrfs_init_workers(&fs_info->submit_workers, "submit",
1769 			   min_t(u64, fs_devices->num_devices,
1770 			   fs_info->thread_pool_size),
1771 			   &fs_info->generic_worker);
1772 	btrfs_init_workers(&fs_info->enospc_workers, "enospc",
1773 			   fs_info->thread_pool_size,
1774 			   &fs_info->generic_worker);
1775 
1776 	/* a higher idle thresh on the submit workers makes it much more
1777 	 * likely that bios will be send down in a sane order to the
1778 	 * devices
1779 	 */
1780 	fs_info->submit_workers.idle_thresh = 64;
1781 
1782 	fs_info->workers.idle_thresh = 16;
1783 	fs_info->workers.ordered = 1;
1784 
1785 	fs_info->delalloc_workers.idle_thresh = 2;
1786 	fs_info->delalloc_workers.ordered = 1;
1787 
1788 	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
1789 			   &fs_info->generic_worker);
1790 	btrfs_init_workers(&fs_info->endio_workers, "endio",
1791 			   fs_info->thread_pool_size,
1792 			   &fs_info->generic_worker);
1793 	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1794 			   fs_info->thread_pool_size,
1795 			   &fs_info->generic_worker);
1796 	btrfs_init_workers(&fs_info->endio_meta_write_workers,
1797 			   "endio-meta-write", fs_info->thread_pool_size,
1798 			   &fs_info->generic_worker);
1799 	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1800 			   fs_info->thread_pool_size,
1801 			   &fs_info->generic_worker);
1802 
1803 	/*
1804 	 * endios are largely parallel and should have a very
1805 	 * low idle thresh
1806 	 */
1807 	fs_info->endio_workers.idle_thresh = 4;
1808 	fs_info->endio_meta_workers.idle_thresh = 4;
1809 
1810 	fs_info->endio_write_workers.idle_thresh = 2;
1811 	fs_info->endio_meta_write_workers.idle_thresh = 2;
1812 
1813 	btrfs_start_workers(&fs_info->workers, 1);
1814 	btrfs_start_workers(&fs_info->generic_worker, 1);
1815 	btrfs_start_workers(&fs_info->submit_workers, 1);
1816 	btrfs_start_workers(&fs_info->delalloc_workers, 1);
1817 	btrfs_start_workers(&fs_info->fixup_workers, 1);
1818 	btrfs_start_workers(&fs_info->endio_workers, 1);
1819 	btrfs_start_workers(&fs_info->endio_meta_workers, 1);
1820 	btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
1821 	btrfs_start_workers(&fs_info->endio_write_workers, 1);
1822 	btrfs_start_workers(&fs_info->enospc_workers, 1);
1823 
1824 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1825 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1826 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1827 
1828 	nodesize = btrfs_super_nodesize(disk_super);
1829 	leafsize = btrfs_super_leafsize(disk_super);
1830 	sectorsize = btrfs_super_sectorsize(disk_super);
1831 	stripesize = btrfs_super_stripesize(disk_super);
1832 	tree_root->nodesize = nodesize;
1833 	tree_root->leafsize = leafsize;
1834 	tree_root->sectorsize = sectorsize;
1835 	tree_root->stripesize = stripesize;
1836 
1837 	sb->s_blocksize = sectorsize;
1838 	sb->s_blocksize_bits = blksize_bits(sectorsize);
1839 
1840 	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1841 		    sizeof(disk_super->magic))) {
1842 		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1843 		goto fail_sb_buffer;
1844 	}
1845 
1846 	mutex_lock(&fs_info->chunk_mutex);
1847 	ret = btrfs_read_sys_array(tree_root);
1848 	mutex_unlock(&fs_info->chunk_mutex);
1849 	if (ret) {
1850 		printk(KERN_WARNING "btrfs: failed to read the system "
1851 		       "array on %s\n", sb->s_id);
1852 		goto fail_sb_buffer;
1853 	}
1854 
1855 	blocksize = btrfs_level_size(tree_root,
1856 				     btrfs_super_chunk_root_level(disk_super));
1857 	generation = btrfs_super_chunk_root_generation(disk_super);
1858 
1859 	__setup_root(nodesize, leafsize, sectorsize, stripesize,
1860 		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1861 
1862 	chunk_root->node = read_tree_block(chunk_root,
1863 					   btrfs_super_chunk_root(disk_super),
1864 					   blocksize, generation);
1865 	BUG_ON(!chunk_root->node);
1866 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
1867 		printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
1868 		       sb->s_id);
1869 		goto fail_chunk_root;
1870 	}
1871 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
1872 	chunk_root->commit_root = btrfs_root_node(chunk_root);
1873 
1874 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1875 	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1876 	   BTRFS_UUID_SIZE);
1877 
1878 	mutex_lock(&fs_info->chunk_mutex);
1879 	ret = btrfs_read_chunk_tree(chunk_root);
1880 	mutex_unlock(&fs_info->chunk_mutex);
1881 	if (ret) {
1882 		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1883 		       sb->s_id);
1884 		goto fail_chunk_root;
1885 	}
1886 
1887 	btrfs_close_extra_devices(fs_devices);
1888 
1889 	blocksize = btrfs_level_size(tree_root,
1890 				     btrfs_super_root_level(disk_super));
1891 	generation = btrfs_super_generation(disk_super);
1892 
1893 	tree_root->node = read_tree_block(tree_root,
1894 					  btrfs_super_root(disk_super),
1895 					  blocksize, generation);
1896 	if (!tree_root->node)
1897 		goto fail_chunk_root;
1898 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
1899 		printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
1900 		       sb->s_id);
1901 		goto fail_tree_root;
1902 	}
1903 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
1904 	tree_root->commit_root = btrfs_root_node(tree_root);
1905 
1906 	ret = find_and_setup_root(tree_root, fs_info,
1907 				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1908 	if (ret)
1909 		goto fail_tree_root;
1910 	extent_root->track_dirty = 1;
1911 
1912 	ret = find_and_setup_root(tree_root, fs_info,
1913 				  BTRFS_DEV_TREE_OBJECTID, dev_root);
1914 	if (ret)
1915 		goto fail_extent_root;
1916 	dev_root->track_dirty = 1;
1917 
1918 	ret = find_and_setup_root(tree_root, fs_info,
1919 				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
1920 	if (ret)
1921 		goto fail_dev_root;
1922 
1923 	csum_root->track_dirty = 1;
1924 
1925 	ret = btrfs_read_block_groups(extent_root);
1926 	if (ret) {
1927 		printk(KERN_ERR "Failed to read block groups: %d\n", ret);
1928 		goto fail_block_groups;
1929 	}
1930 
1931 	fs_info->generation = generation;
1932 	fs_info->last_trans_committed = generation;
1933 	fs_info->data_alloc_profile = (u64)-1;
1934 	fs_info->metadata_alloc_profile = (u64)-1;
1935 	fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1936 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1937 					       "btrfs-cleaner");
1938 	if (IS_ERR(fs_info->cleaner_kthread))
1939 		goto fail_block_groups;
1940 
1941 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
1942 						   tree_root,
1943 						   "btrfs-transaction");
1944 	if (IS_ERR(fs_info->transaction_kthread))
1945 		goto fail_cleaner;
1946 
1947 	if (!btrfs_test_opt(tree_root, SSD) &&
1948 	    !btrfs_test_opt(tree_root, NOSSD) &&
1949 	    !fs_info->fs_devices->rotating) {
1950 		printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
1951 		       "mode\n");
1952 		btrfs_set_opt(fs_info->mount_opt, SSD);
1953 	}
1954 
1955 	if (btrfs_super_log_root(disk_super) != 0) {
1956 		u64 bytenr = btrfs_super_log_root(disk_super);
1957 
1958 		if (fs_devices->rw_devices == 0) {
1959 			printk(KERN_WARNING "Btrfs log replay required "
1960 			       "on RO media\n");
1961 			err = -EIO;
1962 			goto fail_trans_kthread;
1963 		}
1964 		blocksize =
1965 		     btrfs_level_size(tree_root,
1966 				      btrfs_super_log_root_level(disk_super));
1967 
1968 		log_tree_root = kzalloc(sizeof(struct btrfs_root),
1969 						      GFP_NOFS);
1970 
1971 		__setup_root(nodesize, leafsize, sectorsize, stripesize,
1972 			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1973 
1974 		log_tree_root->node = read_tree_block(tree_root, bytenr,
1975 						      blocksize,
1976 						      generation + 1);
1977 		ret = btrfs_recover_log_trees(log_tree_root);
1978 		BUG_ON(ret);
1979 
1980 		if (sb->s_flags & MS_RDONLY) {
1981 			ret =  btrfs_commit_super(tree_root);
1982 			BUG_ON(ret);
1983 		}
1984 	}
1985 
1986 	ret = btrfs_find_orphan_roots(tree_root);
1987 	BUG_ON(ret);
1988 
1989 	if (!(sb->s_flags & MS_RDONLY)) {
1990 		ret = btrfs_recover_relocation(tree_root);
1991 		if (ret < 0) {
1992 			printk(KERN_WARNING
1993 			       "btrfs: failed to recover relocation\n");
1994 			err = -EINVAL;
1995 			goto fail_trans_kthread;
1996 		}
1997 	}
1998 
1999 	location.objectid = BTRFS_FS_TREE_OBJECTID;
2000 	location.type = BTRFS_ROOT_ITEM_KEY;
2001 	location.offset = (u64)-1;
2002 
2003 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2004 	if (!fs_info->fs_root)
2005 		goto fail_trans_kthread;
2006 
2007 	if (!(sb->s_flags & MS_RDONLY)) {
2008 		down_read(&fs_info->cleanup_work_sem);
2009 		btrfs_orphan_cleanup(fs_info->fs_root);
2010 		up_read(&fs_info->cleanup_work_sem);
2011 	}
2012 
2013 	return tree_root;
2014 
2015 fail_trans_kthread:
2016 	kthread_stop(fs_info->transaction_kthread);
2017 fail_cleaner:
2018 	kthread_stop(fs_info->cleaner_kthread);
2019 
2020 	/*
2021 	 * make sure we're done with the btree inode before we stop our
2022 	 * kthreads
2023 	 */
2024 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2025 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2026 
2027 fail_block_groups:
2028 	btrfs_free_block_groups(fs_info);
2029 	free_extent_buffer(csum_root->node);
2030 	free_extent_buffer(csum_root->commit_root);
2031 fail_dev_root:
2032 	free_extent_buffer(dev_root->node);
2033 	free_extent_buffer(dev_root->commit_root);
2034 fail_extent_root:
2035 	free_extent_buffer(extent_root->node);
2036 	free_extent_buffer(extent_root->commit_root);
2037 fail_tree_root:
2038 	free_extent_buffer(tree_root->node);
2039 	free_extent_buffer(tree_root->commit_root);
2040 fail_chunk_root:
2041 	free_extent_buffer(chunk_root->node);
2042 	free_extent_buffer(chunk_root->commit_root);
2043 fail_sb_buffer:
2044 	btrfs_stop_workers(&fs_info->generic_worker);
2045 	btrfs_stop_workers(&fs_info->fixup_workers);
2046 	btrfs_stop_workers(&fs_info->delalloc_workers);
2047 	btrfs_stop_workers(&fs_info->workers);
2048 	btrfs_stop_workers(&fs_info->endio_workers);
2049 	btrfs_stop_workers(&fs_info->endio_meta_workers);
2050 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2051 	btrfs_stop_workers(&fs_info->endio_write_workers);
2052 	btrfs_stop_workers(&fs_info->submit_workers);
2053 	btrfs_stop_workers(&fs_info->enospc_workers);
2054 fail_iput:
2055 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2056 	iput(fs_info->btree_inode);
2057 
2058 	btrfs_close_devices(fs_info->fs_devices);
2059 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2060 fail_bdi:
2061 	bdi_destroy(&fs_info->bdi);
2062 fail_srcu:
2063 	cleanup_srcu_struct(&fs_info->subvol_srcu);
2064 fail:
2065 	kfree(extent_root);
2066 	kfree(tree_root);
2067 	kfree(fs_info);
2068 	kfree(chunk_root);
2069 	kfree(dev_root);
2070 	kfree(csum_root);
2071 	return ERR_PTR(err);
2072 }
2073 
2074 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2075 {
2076 	char b[BDEVNAME_SIZE];
2077 
2078 	if (uptodate) {
2079 		set_buffer_uptodate(bh);
2080 	} else {
2081 		if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
2082 			printk(KERN_WARNING "lost page write due to "
2083 					"I/O error on %s\n",
2084 				       bdevname(bh->b_bdev, b));
2085 		}
2086 		/* note, we dont' set_buffer_write_io_error because we have
2087 		 * our own ways of dealing with the IO errors
2088 		 */
2089 		clear_buffer_uptodate(bh);
2090 	}
2091 	unlock_buffer(bh);
2092 	put_bh(bh);
2093 }
2094 
2095 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2096 {
2097 	struct buffer_head *bh;
2098 	struct buffer_head *latest = NULL;
2099 	struct btrfs_super_block *super;
2100 	int i;
2101 	u64 transid = 0;
2102 	u64 bytenr;
2103 
2104 	/* we would like to check all the supers, but that would make
2105 	 * a btrfs mount succeed after a mkfs from a different FS.
2106 	 * So, we need to add a special mount option to scan for
2107 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2108 	 */
2109 	for (i = 0; i < 1; i++) {
2110 		bytenr = btrfs_sb_offset(i);
2111 		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2112 			break;
2113 		bh = __bread(bdev, bytenr / 4096, 4096);
2114 		if (!bh)
2115 			continue;
2116 
2117 		super = (struct btrfs_super_block *)bh->b_data;
2118 		if (btrfs_super_bytenr(super) != bytenr ||
2119 		    strncmp((char *)(&super->magic), BTRFS_MAGIC,
2120 			    sizeof(super->magic))) {
2121 			brelse(bh);
2122 			continue;
2123 		}
2124 
2125 		if (!latest || btrfs_super_generation(super) > transid) {
2126 			brelse(latest);
2127 			latest = bh;
2128 			transid = btrfs_super_generation(super);
2129 		} else {
2130 			brelse(bh);
2131 		}
2132 	}
2133 	return latest;
2134 }
2135 
2136 /*
2137  * this should be called twice, once with wait == 0 and
2138  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2139  * we write are pinned.
2140  *
2141  * They are released when wait == 1 is done.
2142  * max_mirrors must be the same for both runs, and it indicates how
2143  * many supers on this one device should be written.
2144  *
2145  * max_mirrors == 0 means to write them all.
2146  */
2147 static int write_dev_supers(struct btrfs_device *device,
2148 			    struct btrfs_super_block *sb,
2149 			    int do_barriers, int wait, int max_mirrors)
2150 {
2151 	struct buffer_head *bh;
2152 	int i;
2153 	int ret;
2154 	int errors = 0;
2155 	u32 crc;
2156 	u64 bytenr;
2157 	int last_barrier = 0;
2158 
2159 	if (max_mirrors == 0)
2160 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2161 
2162 	/* make sure only the last submit_bh does a barrier */
2163 	if (do_barriers) {
2164 		for (i = 0; i < max_mirrors; i++) {
2165 			bytenr = btrfs_sb_offset(i);
2166 			if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2167 			    device->total_bytes)
2168 				break;
2169 			last_barrier = i;
2170 		}
2171 	}
2172 
2173 	for (i = 0; i < max_mirrors; i++) {
2174 		bytenr = btrfs_sb_offset(i);
2175 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2176 			break;
2177 
2178 		if (wait) {
2179 			bh = __find_get_block(device->bdev, bytenr / 4096,
2180 					      BTRFS_SUPER_INFO_SIZE);
2181 			BUG_ON(!bh);
2182 			wait_on_buffer(bh);
2183 			if (!buffer_uptodate(bh))
2184 				errors++;
2185 
2186 			/* drop our reference */
2187 			brelse(bh);
2188 
2189 			/* drop the reference from the wait == 0 run */
2190 			brelse(bh);
2191 			continue;
2192 		} else {
2193 			btrfs_set_super_bytenr(sb, bytenr);
2194 
2195 			crc = ~(u32)0;
2196 			crc = btrfs_csum_data(NULL, (char *)sb +
2197 					      BTRFS_CSUM_SIZE, crc,
2198 					      BTRFS_SUPER_INFO_SIZE -
2199 					      BTRFS_CSUM_SIZE);
2200 			btrfs_csum_final(crc, sb->csum);
2201 
2202 			/*
2203 			 * one reference for us, and we leave it for the
2204 			 * caller
2205 			 */
2206 			bh = __getblk(device->bdev, bytenr / 4096,
2207 				      BTRFS_SUPER_INFO_SIZE);
2208 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2209 
2210 			/* one reference for submit_bh */
2211 			get_bh(bh);
2212 
2213 			set_buffer_uptodate(bh);
2214 			lock_buffer(bh);
2215 			bh->b_end_io = btrfs_end_buffer_write_sync;
2216 		}
2217 
2218 		if (i == last_barrier && do_barriers && device->barriers) {
2219 			ret = submit_bh(WRITE_BARRIER, bh);
2220 			if (ret == -EOPNOTSUPP) {
2221 				printk("btrfs: disabling barriers on dev %s\n",
2222 				       device->name);
2223 				set_buffer_uptodate(bh);
2224 				device->barriers = 0;
2225 				/* one reference for submit_bh */
2226 				get_bh(bh);
2227 				lock_buffer(bh);
2228 				ret = submit_bh(WRITE_SYNC, bh);
2229 			}
2230 		} else {
2231 			ret = submit_bh(WRITE_SYNC, bh);
2232 		}
2233 
2234 		if (ret)
2235 			errors++;
2236 	}
2237 	return errors < i ? 0 : -1;
2238 }
2239 
2240 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2241 {
2242 	struct list_head *head;
2243 	struct btrfs_device *dev;
2244 	struct btrfs_super_block *sb;
2245 	struct btrfs_dev_item *dev_item;
2246 	int ret;
2247 	int do_barriers;
2248 	int max_errors;
2249 	int total_errors = 0;
2250 	u64 flags;
2251 
2252 	max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2253 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
2254 
2255 	sb = &root->fs_info->super_for_commit;
2256 	dev_item = &sb->dev_item;
2257 
2258 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2259 	head = &root->fs_info->fs_devices->devices;
2260 	list_for_each_entry(dev, head, dev_list) {
2261 		if (!dev->bdev) {
2262 			total_errors++;
2263 			continue;
2264 		}
2265 		if (!dev->in_fs_metadata || !dev->writeable)
2266 			continue;
2267 
2268 		btrfs_set_stack_device_generation(dev_item, 0);
2269 		btrfs_set_stack_device_type(dev_item, dev->type);
2270 		btrfs_set_stack_device_id(dev_item, dev->devid);
2271 		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2272 		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2273 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2274 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2275 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2276 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2277 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2278 
2279 		flags = btrfs_super_flags(sb);
2280 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2281 
2282 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2283 		if (ret)
2284 			total_errors++;
2285 	}
2286 	if (total_errors > max_errors) {
2287 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2288 		       total_errors);
2289 		BUG();
2290 	}
2291 
2292 	total_errors = 0;
2293 	list_for_each_entry(dev, head, dev_list) {
2294 		if (!dev->bdev)
2295 			continue;
2296 		if (!dev->in_fs_metadata || !dev->writeable)
2297 			continue;
2298 
2299 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2300 		if (ret)
2301 			total_errors++;
2302 	}
2303 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2304 	if (total_errors > max_errors) {
2305 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2306 		       total_errors);
2307 		BUG();
2308 	}
2309 	return 0;
2310 }
2311 
2312 int write_ctree_super(struct btrfs_trans_handle *trans,
2313 		      struct btrfs_root *root, int max_mirrors)
2314 {
2315 	int ret;
2316 
2317 	ret = write_all_supers(root, max_mirrors);
2318 	return ret;
2319 }
2320 
2321 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2322 {
2323 	spin_lock(&fs_info->fs_roots_radix_lock);
2324 	radix_tree_delete(&fs_info->fs_roots_radix,
2325 			  (unsigned long)root->root_key.objectid);
2326 	spin_unlock(&fs_info->fs_roots_radix_lock);
2327 
2328 	if (btrfs_root_refs(&root->root_item) == 0)
2329 		synchronize_srcu(&fs_info->subvol_srcu);
2330 
2331 	free_fs_root(root);
2332 	return 0;
2333 }
2334 
2335 static void free_fs_root(struct btrfs_root *root)
2336 {
2337 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2338 	if (root->anon_super.s_dev) {
2339 		down_write(&root->anon_super.s_umount);
2340 		kill_anon_super(&root->anon_super);
2341 	}
2342 	free_extent_buffer(root->node);
2343 	free_extent_buffer(root->commit_root);
2344 	kfree(root->name);
2345 	kfree(root);
2346 }
2347 
2348 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2349 {
2350 	int ret;
2351 	struct btrfs_root *gang[8];
2352 	int i;
2353 
2354 	while (!list_empty(&fs_info->dead_roots)) {
2355 		gang[0] = list_entry(fs_info->dead_roots.next,
2356 				     struct btrfs_root, root_list);
2357 		list_del(&gang[0]->root_list);
2358 
2359 		if (gang[0]->in_radix) {
2360 			btrfs_free_fs_root(fs_info, gang[0]);
2361 		} else {
2362 			free_extent_buffer(gang[0]->node);
2363 			free_extent_buffer(gang[0]->commit_root);
2364 			kfree(gang[0]);
2365 		}
2366 	}
2367 
2368 	while (1) {
2369 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2370 					     (void **)gang, 0,
2371 					     ARRAY_SIZE(gang));
2372 		if (!ret)
2373 			break;
2374 		for (i = 0; i < ret; i++)
2375 			btrfs_free_fs_root(fs_info, gang[i]);
2376 	}
2377 	return 0;
2378 }
2379 
2380 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2381 {
2382 	u64 root_objectid = 0;
2383 	struct btrfs_root *gang[8];
2384 	int i;
2385 	int ret;
2386 
2387 	while (1) {
2388 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2389 					     (void **)gang, root_objectid,
2390 					     ARRAY_SIZE(gang));
2391 		if (!ret)
2392 			break;
2393 
2394 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
2395 		for (i = 0; i < ret; i++) {
2396 			root_objectid = gang[i]->root_key.objectid;
2397 			btrfs_orphan_cleanup(gang[i]);
2398 		}
2399 		root_objectid++;
2400 	}
2401 	return 0;
2402 }
2403 
2404 int btrfs_commit_super(struct btrfs_root *root)
2405 {
2406 	struct btrfs_trans_handle *trans;
2407 	int ret;
2408 
2409 	mutex_lock(&root->fs_info->cleaner_mutex);
2410 	btrfs_run_delayed_iputs(root);
2411 	btrfs_clean_old_snapshots(root);
2412 	mutex_unlock(&root->fs_info->cleaner_mutex);
2413 
2414 	/* wait until ongoing cleanup work done */
2415 	down_write(&root->fs_info->cleanup_work_sem);
2416 	up_write(&root->fs_info->cleanup_work_sem);
2417 
2418 	trans = btrfs_start_transaction(root, 1);
2419 	ret = btrfs_commit_transaction(trans, root);
2420 	BUG_ON(ret);
2421 	/* run commit again to drop the original snapshot */
2422 	trans = btrfs_start_transaction(root, 1);
2423 	btrfs_commit_transaction(trans, root);
2424 	ret = btrfs_write_and_wait_transaction(NULL, root);
2425 	BUG_ON(ret);
2426 
2427 	ret = write_ctree_super(NULL, root, 0);
2428 	return ret;
2429 }
2430 
2431 int close_ctree(struct btrfs_root *root)
2432 {
2433 	struct btrfs_fs_info *fs_info = root->fs_info;
2434 	int ret;
2435 
2436 	fs_info->closing = 1;
2437 	smp_mb();
2438 
2439 	kthread_stop(root->fs_info->transaction_kthread);
2440 	kthread_stop(root->fs_info->cleaner_kthread);
2441 
2442 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2443 		ret =  btrfs_commit_super(root);
2444 		if (ret)
2445 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2446 	}
2447 
2448 	fs_info->closing = 2;
2449 	smp_mb();
2450 
2451 	if (fs_info->delalloc_bytes) {
2452 		printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2453 		       (unsigned long long)fs_info->delalloc_bytes);
2454 	}
2455 	if (fs_info->total_ref_cache_size) {
2456 		printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2457 		       (unsigned long long)fs_info->total_ref_cache_size);
2458 	}
2459 
2460 	free_extent_buffer(fs_info->extent_root->node);
2461 	free_extent_buffer(fs_info->extent_root->commit_root);
2462 	free_extent_buffer(fs_info->tree_root->node);
2463 	free_extent_buffer(fs_info->tree_root->commit_root);
2464 	free_extent_buffer(root->fs_info->chunk_root->node);
2465 	free_extent_buffer(root->fs_info->chunk_root->commit_root);
2466 	free_extent_buffer(root->fs_info->dev_root->node);
2467 	free_extent_buffer(root->fs_info->dev_root->commit_root);
2468 	free_extent_buffer(root->fs_info->csum_root->node);
2469 	free_extent_buffer(root->fs_info->csum_root->commit_root);
2470 
2471 	btrfs_free_block_groups(root->fs_info);
2472 
2473 	del_fs_roots(fs_info);
2474 
2475 	iput(fs_info->btree_inode);
2476 
2477 	btrfs_stop_workers(&fs_info->generic_worker);
2478 	btrfs_stop_workers(&fs_info->fixup_workers);
2479 	btrfs_stop_workers(&fs_info->delalloc_workers);
2480 	btrfs_stop_workers(&fs_info->workers);
2481 	btrfs_stop_workers(&fs_info->endio_workers);
2482 	btrfs_stop_workers(&fs_info->endio_meta_workers);
2483 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2484 	btrfs_stop_workers(&fs_info->endio_write_workers);
2485 	btrfs_stop_workers(&fs_info->submit_workers);
2486 	btrfs_stop_workers(&fs_info->enospc_workers);
2487 
2488 	btrfs_close_devices(fs_info->fs_devices);
2489 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2490 
2491 	bdi_destroy(&fs_info->bdi);
2492 	cleanup_srcu_struct(&fs_info->subvol_srcu);
2493 
2494 	kfree(fs_info->extent_root);
2495 	kfree(fs_info->tree_root);
2496 	kfree(fs_info->chunk_root);
2497 	kfree(fs_info->dev_root);
2498 	kfree(fs_info->csum_root);
2499 	return 0;
2500 }
2501 
2502 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2503 {
2504 	int ret;
2505 	struct inode *btree_inode = buf->first_page->mapping->host;
2506 
2507 	ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
2508 				     NULL);
2509 	if (!ret)
2510 		return ret;
2511 
2512 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2513 				    parent_transid);
2514 	return !ret;
2515 }
2516 
2517 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2518 {
2519 	struct inode *btree_inode = buf->first_page->mapping->host;
2520 	return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2521 					  buf);
2522 }
2523 
2524 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2525 {
2526 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2527 	u64 transid = btrfs_header_generation(buf);
2528 	struct inode *btree_inode = root->fs_info->btree_inode;
2529 	int was_dirty;
2530 
2531 	btrfs_assert_tree_locked(buf);
2532 	if (transid != root->fs_info->generation) {
2533 		printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2534 		       "found %llu running %llu\n",
2535 			(unsigned long long)buf->start,
2536 			(unsigned long long)transid,
2537 			(unsigned long long)root->fs_info->generation);
2538 		WARN_ON(1);
2539 	}
2540 	was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2541 					    buf);
2542 	if (!was_dirty) {
2543 		spin_lock(&root->fs_info->delalloc_lock);
2544 		root->fs_info->dirty_metadata_bytes += buf->len;
2545 		spin_unlock(&root->fs_info->delalloc_lock);
2546 	}
2547 }
2548 
2549 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2550 {
2551 	/*
2552 	 * looks as though older kernels can get into trouble with
2553 	 * this code, they end up stuck in balance_dirty_pages forever
2554 	 */
2555 	u64 num_dirty;
2556 	unsigned long thresh = 32 * 1024 * 1024;
2557 
2558 	if (current->flags & PF_MEMALLOC)
2559 		return;
2560 
2561 	num_dirty = root->fs_info->dirty_metadata_bytes;
2562 
2563 	if (num_dirty > thresh) {
2564 		balance_dirty_pages_ratelimited_nr(
2565 				   root->fs_info->btree_inode->i_mapping, 1);
2566 	}
2567 	return;
2568 }
2569 
2570 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2571 {
2572 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2573 	int ret;
2574 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2575 	if (ret == 0)
2576 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2577 	return ret;
2578 }
2579 
2580 int btree_lock_page_hook(struct page *page)
2581 {
2582 	struct inode *inode = page->mapping->host;
2583 	struct btrfs_root *root = BTRFS_I(inode)->root;
2584 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2585 	struct extent_buffer *eb;
2586 	unsigned long len;
2587 	u64 bytenr = page_offset(page);
2588 
2589 	if (page->private == EXTENT_PAGE_PRIVATE)
2590 		goto out;
2591 
2592 	len = page->private >> 2;
2593 	eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2594 	if (!eb)
2595 		goto out;
2596 
2597 	btrfs_tree_lock(eb);
2598 	btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2599 
2600 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2601 		spin_lock(&root->fs_info->delalloc_lock);
2602 		if (root->fs_info->dirty_metadata_bytes >= eb->len)
2603 			root->fs_info->dirty_metadata_bytes -= eb->len;
2604 		else
2605 			WARN_ON(1);
2606 		spin_unlock(&root->fs_info->delalloc_lock);
2607 	}
2608 
2609 	btrfs_tree_unlock(eb);
2610 	free_extent_buffer(eb);
2611 out:
2612 	lock_page(page);
2613 	return 0;
2614 }
2615 
2616 static struct extent_io_ops btree_extent_io_ops = {
2617 	.write_cache_pages_lock_hook = btree_lock_page_hook,
2618 	.readpage_end_io_hook = btree_readpage_end_io_hook,
2619 	.submit_bio_hook = btree_submit_bio_hook,
2620 	/* note we're sharing with inode.c for the merge bio hook */
2621 	.merge_bio_hook = btrfs_merge_bio_hook,
2622 };
2623