1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/scatterlist.h> 9 #include <linux/swap.h> 10 #include <linux/radix-tree.h> 11 #include <linux/writeback.h> 12 #include <linux/buffer_head.h> 13 #include <linux/workqueue.h> 14 #include <linux/kthread.h> 15 #include <linux/slab.h> 16 #include <linux/migrate.h> 17 #include <linux/ratelimit.h> 18 #include <linux/uuid.h> 19 #include <linux/semaphore.h> 20 #include <linux/error-injection.h> 21 #include <linux/crc32c.h> 22 #include <asm/unaligned.h> 23 #include "ctree.h" 24 #include "disk-io.h" 25 #include "transaction.h" 26 #include "btrfs_inode.h" 27 #include "volumes.h" 28 #include "print-tree.h" 29 #include "locking.h" 30 #include "tree-log.h" 31 #include "free-space-cache.h" 32 #include "free-space-tree.h" 33 #include "inode-map.h" 34 #include "check-integrity.h" 35 #include "rcu-string.h" 36 #include "dev-replace.h" 37 #include "raid56.h" 38 #include "sysfs.h" 39 #include "qgroup.h" 40 #include "compression.h" 41 #include "tree-checker.h" 42 #include "ref-verify.h" 43 44 #ifdef CONFIG_X86 45 #include <asm/cpufeature.h> 46 #endif 47 48 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 49 BTRFS_HEADER_FLAG_RELOC |\ 50 BTRFS_SUPER_FLAG_ERROR |\ 51 BTRFS_SUPER_FLAG_SEEDING |\ 52 BTRFS_SUPER_FLAG_METADUMP |\ 53 BTRFS_SUPER_FLAG_METADUMP_V2) 54 55 static const struct extent_io_ops btree_extent_io_ops; 56 static void end_workqueue_fn(struct btrfs_work *work); 57 static void free_fs_root(struct btrfs_root *root); 58 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info); 59 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 60 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 61 struct btrfs_fs_info *fs_info); 62 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 63 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 64 struct extent_io_tree *dirty_pages, 65 int mark); 66 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 67 struct extent_io_tree *pinned_extents); 68 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 69 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 70 71 /* 72 * btrfs_end_io_wq structs are used to do processing in task context when an IO 73 * is complete. This is used during reads to verify checksums, and it is used 74 * by writes to insert metadata for new file extents after IO is complete. 75 */ 76 struct btrfs_end_io_wq { 77 struct bio *bio; 78 bio_end_io_t *end_io; 79 void *private; 80 struct btrfs_fs_info *info; 81 blk_status_t status; 82 enum btrfs_wq_endio_type metadata; 83 struct btrfs_work work; 84 }; 85 86 static struct kmem_cache *btrfs_end_io_wq_cache; 87 88 int __init btrfs_end_io_wq_init(void) 89 { 90 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 91 sizeof(struct btrfs_end_io_wq), 92 0, 93 SLAB_MEM_SPREAD, 94 NULL); 95 if (!btrfs_end_io_wq_cache) 96 return -ENOMEM; 97 return 0; 98 } 99 100 void __cold btrfs_end_io_wq_exit(void) 101 { 102 kmem_cache_destroy(btrfs_end_io_wq_cache); 103 } 104 105 /* 106 * async submit bios are used to offload expensive checksumming 107 * onto the worker threads. They checksum file and metadata bios 108 * just before they are sent down the IO stack. 109 */ 110 struct async_submit_bio { 111 void *private_data; 112 struct btrfs_fs_info *fs_info; 113 struct bio *bio; 114 extent_submit_bio_start_t *submit_bio_start; 115 extent_submit_bio_done_t *submit_bio_done; 116 int mirror_num; 117 unsigned long bio_flags; 118 /* 119 * bio_offset is optional, can be used if the pages in the bio 120 * can't tell us where in the file the bio should go 121 */ 122 u64 bio_offset; 123 struct btrfs_work work; 124 blk_status_t status; 125 }; 126 127 /* 128 * Lockdep class keys for extent_buffer->lock's in this root. For a given 129 * eb, the lockdep key is determined by the btrfs_root it belongs to and 130 * the level the eb occupies in the tree. 131 * 132 * Different roots are used for different purposes and may nest inside each 133 * other and they require separate keysets. As lockdep keys should be 134 * static, assign keysets according to the purpose of the root as indicated 135 * by btrfs_root->objectid. This ensures that all special purpose roots 136 * have separate keysets. 137 * 138 * Lock-nesting across peer nodes is always done with the immediate parent 139 * node locked thus preventing deadlock. As lockdep doesn't know this, use 140 * subclass to avoid triggering lockdep warning in such cases. 141 * 142 * The key is set by the readpage_end_io_hook after the buffer has passed 143 * csum validation but before the pages are unlocked. It is also set by 144 * btrfs_init_new_buffer on freshly allocated blocks. 145 * 146 * We also add a check to make sure the highest level of the tree is the 147 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 148 * needs update as well. 149 */ 150 #ifdef CONFIG_DEBUG_LOCK_ALLOC 151 # if BTRFS_MAX_LEVEL != 8 152 # error 153 # endif 154 155 static struct btrfs_lockdep_keyset { 156 u64 id; /* root objectid */ 157 const char *name_stem; /* lock name stem */ 158 char names[BTRFS_MAX_LEVEL + 1][20]; 159 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 160 } btrfs_lockdep_keysets[] = { 161 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 162 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 163 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 164 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 165 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 166 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 167 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 168 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 169 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 170 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 171 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 172 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 173 { .id = 0, .name_stem = "tree" }, 174 }; 175 176 void __init btrfs_init_lockdep(void) 177 { 178 int i, j; 179 180 /* initialize lockdep class names */ 181 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 182 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 183 184 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 185 snprintf(ks->names[j], sizeof(ks->names[j]), 186 "btrfs-%s-%02d", ks->name_stem, j); 187 } 188 } 189 190 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 191 int level) 192 { 193 struct btrfs_lockdep_keyset *ks; 194 195 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 196 197 /* find the matching keyset, id 0 is the default entry */ 198 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 199 if (ks->id == objectid) 200 break; 201 202 lockdep_set_class_and_name(&eb->lock, 203 &ks->keys[level], ks->names[level]); 204 } 205 206 #endif 207 208 /* 209 * extents on the btree inode are pretty simple, there's one extent 210 * that covers the entire device 211 */ 212 struct extent_map *btree_get_extent(struct btrfs_inode *inode, 213 struct page *page, size_t pg_offset, u64 start, u64 len, 214 int create) 215 { 216 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 217 struct extent_map_tree *em_tree = &inode->extent_tree; 218 struct extent_map *em; 219 int ret; 220 221 read_lock(&em_tree->lock); 222 em = lookup_extent_mapping(em_tree, start, len); 223 if (em) { 224 em->bdev = fs_info->fs_devices->latest_bdev; 225 read_unlock(&em_tree->lock); 226 goto out; 227 } 228 read_unlock(&em_tree->lock); 229 230 em = alloc_extent_map(); 231 if (!em) { 232 em = ERR_PTR(-ENOMEM); 233 goto out; 234 } 235 em->start = 0; 236 em->len = (u64)-1; 237 em->block_len = (u64)-1; 238 em->block_start = 0; 239 em->bdev = fs_info->fs_devices->latest_bdev; 240 241 write_lock(&em_tree->lock); 242 ret = add_extent_mapping(em_tree, em, 0); 243 if (ret == -EEXIST) { 244 free_extent_map(em); 245 em = lookup_extent_mapping(em_tree, start, len); 246 if (!em) 247 em = ERR_PTR(-EIO); 248 } else if (ret) { 249 free_extent_map(em); 250 em = ERR_PTR(ret); 251 } 252 write_unlock(&em_tree->lock); 253 254 out: 255 return em; 256 } 257 258 u32 btrfs_csum_data(const char *data, u32 seed, size_t len) 259 { 260 return crc32c(seed, data, len); 261 } 262 263 void btrfs_csum_final(u32 crc, u8 *result) 264 { 265 put_unaligned_le32(~crc, result); 266 } 267 268 /* 269 * compute the csum for a btree block, and either verify it or write it 270 * into the csum field of the block. 271 */ 272 static int csum_tree_block(struct btrfs_fs_info *fs_info, 273 struct extent_buffer *buf, 274 int verify) 275 { 276 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 277 char result[BTRFS_CSUM_SIZE]; 278 unsigned long len; 279 unsigned long cur_len; 280 unsigned long offset = BTRFS_CSUM_SIZE; 281 char *kaddr; 282 unsigned long map_start; 283 unsigned long map_len; 284 int err; 285 u32 crc = ~(u32)0; 286 287 len = buf->len - offset; 288 while (len > 0) { 289 err = map_private_extent_buffer(buf, offset, 32, 290 &kaddr, &map_start, &map_len); 291 if (err) 292 return err; 293 cur_len = min(len, map_len - (offset - map_start)); 294 crc = btrfs_csum_data(kaddr + offset - map_start, 295 crc, cur_len); 296 len -= cur_len; 297 offset += cur_len; 298 } 299 memset(result, 0, BTRFS_CSUM_SIZE); 300 301 btrfs_csum_final(crc, result); 302 303 if (verify) { 304 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 305 u32 val; 306 u32 found = 0; 307 memcpy(&found, result, csum_size); 308 309 read_extent_buffer(buf, &val, 0, csum_size); 310 btrfs_warn_rl(fs_info, 311 "%s checksum verify failed on %llu wanted %X found %X level %d", 312 fs_info->sb->s_id, buf->start, 313 val, found, btrfs_header_level(buf)); 314 return -EUCLEAN; 315 } 316 } else { 317 write_extent_buffer(buf, result, 0, csum_size); 318 } 319 320 return 0; 321 } 322 323 /* 324 * we can't consider a given block up to date unless the transid of the 325 * block matches the transid in the parent node's pointer. This is how we 326 * detect blocks that either didn't get written at all or got written 327 * in the wrong place. 328 */ 329 static int verify_parent_transid(struct extent_io_tree *io_tree, 330 struct extent_buffer *eb, u64 parent_transid, 331 int atomic) 332 { 333 struct extent_state *cached_state = NULL; 334 int ret; 335 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 336 337 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 338 return 0; 339 340 if (atomic) 341 return -EAGAIN; 342 343 if (need_lock) { 344 btrfs_tree_read_lock(eb); 345 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 346 } 347 348 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 349 &cached_state); 350 if (extent_buffer_uptodate(eb) && 351 btrfs_header_generation(eb) == parent_transid) { 352 ret = 0; 353 goto out; 354 } 355 btrfs_err_rl(eb->fs_info, 356 "parent transid verify failed on %llu wanted %llu found %llu", 357 eb->start, 358 parent_transid, btrfs_header_generation(eb)); 359 ret = 1; 360 361 /* 362 * Things reading via commit roots that don't have normal protection, 363 * like send, can have a really old block in cache that may point at a 364 * block that has been freed and re-allocated. So don't clear uptodate 365 * if we find an eb that is under IO (dirty/writeback) because we could 366 * end up reading in the stale data and then writing it back out and 367 * making everybody very sad. 368 */ 369 if (!extent_buffer_under_io(eb)) 370 clear_extent_buffer_uptodate(eb); 371 out: 372 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 373 &cached_state); 374 if (need_lock) 375 btrfs_tree_read_unlock_blocking(eb); 376 return ret; 377 } 378 379 /* 380 * Return 0 if the superblock checksum type matches the checksum value of that 381 * algorithm. Pass the raw disk superblock data. 382 */ 383 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 384 char *raw_disk_sb) 385 { 386 struct btrfs_super_block *disk_sb = 387 (struct btrfs_super_block *)raw_disk_sb; 388 u16 csum_type = btrfs_super_csum_type(disk_sb); 389 int ret = 0; 390 391 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 392 u32 crc = ~(u32)0; 393 char result[sizeof(crc)]; 394 395 /* 396 * The super_block structure does not span the whole 397 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 398 * is filled with zeros and is included in the checksum. 399 */ 400 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 401 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 402 btrfs_csum_final(crc, result); 403 404 if (memcmp(raw_disk_sb, result, sizeof(result))) 405 ret = 1; 406 } 407 408 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 409 btrfs_err(fs_info, "unsupported checksum algorithm %u", 410 csum_type); 411 ret = 1; 412 } 413 414 return ret; 415 } 416 417 static int verify_level_key(struct btrfs_fs_info *fs_info, 418 struct extent_buffer *eb, int level, 419 struct btrfs_key *first_key) 420 { 421 int found_level; 422 struct btrfs_key found_key; 423 int ret; 424 425 found_level = btrfs_header_level(eb); 426 if (found_level != level) { 427 #ifdef CONFIG_BTRFS_DEBUG 428 WARN_ON(1); 429 btrfs_err(fs_info, 430 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 431 eb->start, level, found_level); 432 #endif 433 return -EIO; 434 } 435 436 if (!first_key) 437 return 0; 438 439 /* 440 * For live tree block (new tree blocks in current transaction), 441 * we need proper lock context to avoid race, which is impossible here. 442 * So we only checks tree blocks which is read from disk, whose 443 * generation <= fs_info->last_trans_committed. 444 */ 445 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 446 return 0; 447 if (found_level) 448 btrfs_node_key_to_cpu(eb, &found_key, 0); 449 else 450 btrfs_item_key_to_cpu(eb, &found_key, 0); 451 ret = btrfs_comp_cpu_keys(first_key, &found_key); 452 453 #ifdef CONFIG_BTRFS_DEBUG 454 if (ret) { 455 WARN_ON(1); 456 btrfs_err(fs_info, 457 "tree first key mismatch detected, bytenr=%llu key expected=(%llu, %u, %llu) has=(%llu, %u, %llu)", 458 eb->start, first_key->objectid, first_key->type, 459 first_key->offset, found_key.objectid, 460 found_key.type, found_key.offset); 461 } 462 #endif 463 return ret; 464 } 465 466 /* 467 * helper to read a given tree block, doing retries as required when 468 * the checksums don't match and we have alternate mirrors to try. 469 * 470 * @parent_transid: expected transid, skip check if 0 471 * @level: expected level, mandatory check 472 * @first_key: expected key of first slot, skip check if NULL 473 */ 474 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info, 475 struct extent_buffer *eb, 476 u64 parent_transid, int level, 477 struct btrfs_key *first_key) 478 { 479 struct extent_io_tree *io_tree; 480 int failed = 0; 481 int ret; 482 int num_copies = 0; 483 int mirror_num = 0; 484 int failed_mirror = 0; 485 486 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 487 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 488 while (1) { 489 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE, 490 mirror_num); 491 if (!ret) { 492 if (verify_parent_transid(io_tree, eb, 493 parent_transid, 0)) 494 ret = -EIO; 495 else if (verify_level_key(fs_info, eb, level, 496 first_key)) 497 ret = -EUCLEAN; 498 else 499 break; 500 } 501 502 /* 503 * This buffer's crc is fine, but its contents are corrupted, so 504 * there is no reason to read the other copies, they won't be 505 * any less wrong. 506 */ 507 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags) || 508 ret == -EUCLEAN) 509 break; 510 511 num_copies = btrfs_num_copies(fs_info, 512 eb->start, eb->len); 513 if (num_copies == 1) 514 break; 515 516 if (!failed_mirror) { 517 failed = 1; 518 failed_mirror = eb->read_mirror; 519 } 520 521 mirror_num++; 522 if (mirror_num == failed_mirror) 523 mirror_num++; 524 525 if (mirror_num > num_copies) 526 break; 527 } 528 529 if (failed && !ret && failed_mirror) 530 repair_eb_io_failure(fs_info, eb, failed_mirror); 531 532 return ret; 533 } 534 535 /* 536 * checksum a dirty tree block before IO. This has extra checks to make sure 537 * we only fill in the checksum field in the first page of a multi-page block 538 */ 539 540 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 541 { 542 u64 start = page_offset(page); 543 u64 found_start; 544 struct extent_buffer *eb; 545 546 eb = (struct extent_buffer *)page->private; 547 if (page != eb->pages[0]) 548 return 0; 549 550 found_start = btrfs_header_bytenr(eb); 551 /* 552 * Please do not consolidate these warnings into a single if. 553 * It is useful to know what went wrong. 554 */ 555 if (WARN_ON(found_start != start)) 556 return -EUCLEAN; 557 if (WARN_ON(!PageUptodate(page))) 558 return -EUCLEAN; 559 560 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid, 561 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0); 562 563 return csum_tree_block(fs_info, eb, 0); 564 } 565 566 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info, 567 struct extent_buffer *eb) 568 { 569 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 570 u8 fsid[BTRFS_FSID_SIZE]; 571 int ret = 1; 572 573 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 574 while (fs_devices) { 575 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 576 ret = 0; 577 break; 578 } 579 fs_devices = fs_devices->seed; 580 } 581 return ret; 582 } 583 584 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 585 u64 phy_offset, struct page *page, 586 u64 start, u64 end, int mirror) 587 { 588 u64 found_start; 589 int found_level; 590 struct extent_buffer *eb; 591 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 592 struct btrfs_fs_info *fs_info = root->fs_info; 593 int ret = 0; 594 int reads_done; 595 596 if (!page->private) 597 goto out; 598 599 eb = (struct extent_buffer *)page->private; 600 601 /* the pending IO might have been the only thing that kept this buffer 602 * in memory. Make sure we have a ref for all this other checks 603 */ 604 extent_buffer_get(eb); 605 606 reads_done = atomic_dec_and_test(&eb->io_pages); 607 if (!reads_done) 608 goto err; 609 610 eb->read_mirror = mirror; 611 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 612 ret = -EIO; 613 goto err; 614 } 615 616 found_start = btrfs_header_bytenr(eb); 617 if (found_start != eb->start) { 618 btrfs_err_rl(fs_info, "bad tree block start %llu %llu", 619 found_start, eb->start); 620 ret = -EIO; 621 goto err; 622 } 623 if (check_tree_block_fsid(fs_info, eb)) { 624 btrfs_err_rl(fs_info, "bad fsid on block %llu", 625 eb->start); 626 ret = -EIO; 627 goto err; 628 } 629 found_level = btrfs_header_level(eb); 630 if (found_level >= BTRFS_MAX_LEVEL) { 631 btrfs_err(fs_info, "bad tree block level %d", 632 (int)btrfs_header_level(eb)); 633 ret = -EIO; 634 goto err; 635 } 636 637 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 638 eb, found_level); 639 640 ret = csum_tree_block(fs_info, eb, 1); 641 if (ret) 642 goto err; 643 644 /* 645 * If this is a leaf block and it is corrupt, set the corrupt bit so 646 * that we don't try and read the other copies of this block, just 647 * return -EIO. 648 */ 649 if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) { 650 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 651 ret = -EIO; 652 } 653 654 if (found_level > 0 && btrfs_check_node(fs_info, eb)) 655 ret = -EIO; 656 657 if (!ret) 658 set_extent_buffer_uptodate(eb); 659 err: 660 if (reads_done && 661 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 662 btree_readahead_hook(eb, ret); 663 664 if (ret) { 665 /* 666 * our io error hook is going to dec the io pages 667 * again, we have to make sure it has something 668 * to decrement 669 */ 670 atomic_inc(&eb->io_pages); 671 clear_extent_buffer_uptodate(eb); 672 } 673 free_extent_buffer(eb); 674 out: 675 return ret; 676 } 677 678 static int btree_io_failed_hook(struct page *page, int failed_mirror) 679 { 680 struct extent_buffer *eb; 681 682 eb = (struct extent_buffer *)page->private; 683 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 684 eb->read_mirror = failed_mirror; 685 atomic_dec(&eb->io_pages); 686 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 687 btree_readahead_hook(eb, -EIO); 688 return -EIO; /* we fixed nothing */ 689 } 690 691 static void end_workqueue_bio(struct bio *bio) 692 { 693 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 694 struct btrfs_fs_info *fs_info; 695 struct btrfs_workqueue *wq; 696 btrfs_work_func_t func; 697 698 fs_info = end_io_wq->info; 699 end_io_wq->status = bio->bi_status; 700 701 if (bio_op(bio) == REQ_OP_WRITE) { 702 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 703 wq = fs_info->endio_meta_write_workers; 704 func = btrfs_endio_meta_write_helper; 705 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 706 wq = fs_info->endio_freespace_worker; 707 func = btrfs_freespace_write_helper; 708 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 709 wq = fs_info->endio_raid56_workers; 710 func = btrfs_endio_raid56_helper; 711 } else { 712 wq = fs_info->endio_write_workers; 713 func = btrfs_endio_write_helper; 714 } 715 } else { 716 if (unlikely(end_io_wq->metadata == 717 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 718 wq = fs_info->endio_repair_workers; 719 func = btrfs_endio_repair_helper; 720 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 721 wq = fs_info->endio_raid56_workers; 722 func = btrfs_endio_raid56_helper; 723 } else if (end_io_wq->metadata) { 724 wq = fs_info->endio_meta_workers; 725 func = btrfs_endio_meta_helper; 726 } else { 727 wq = fs_info->endio_workers; 728 func = btrfs_endio_helper; 729 } 730 } 731 732 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 733 btrfs_queue_work(wq, &end_io_wq->work); 734 } 735 736 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 737 enum btrfs_wq_endio_type metadata) 738 { 739 struct btrfs_end_io_wq *end_io_wq; 740 741 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 742 if (!end_io_wq) 743 return BLK_STS_RESOURCE; 744 745 end_io_wq->private = bio->bi_private; 746 end_io_wq->end_io = bio->bi_end_io; 747 end_io_wq->info = info; 748 end_io_wq->status = 0; 749 end_io_wq->bio = bio; 750 end_io_wq->metadata = metadata; 751 752 bio->bi_private = end_io_wq; 753 bio->bi_end_io = end_workqueue_bio; 754 return 0; 755 } 756 757 static void run_one_async_start(struct btrfs_work *work) 758 { 759 struct async_submit_bio *async; 760 blk_status_t ret; 761 762 async = container_of(work, struct async_submit_bio, work); 763 ret = async->submit_bio_start(async->private_data, async->bio, 764 async->bio_offset); 765 if (ret) 766 async->status = ret; 767 } 768 769 static void run_one_async_done(struct btrfs_work *work) 770 { 771 struct async_submit_bio *async; 772 773 async = container_of(work, struct async_submit_bio, work); 774 775 /* If an error occurred we just want to clean up the bio and move on */ 776 if (async->status) { 777 async->bio->bi_status = async->status; 778 bio_endio(async->bio); 779 return; 780 } 781 782 async->submit_bio_done(async->private_data, async->bio, async->mirror_num); 783 } 784 785 static void run_one_async_free(struct btrfs_work *work) 786 { 787 struct async_submit_bio *async; 788 789 async = container_of(work, struct async_submit_bio, work); 790 kfree(async); 791 } 792 793 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 794 int mirror_num, unsigned long bio_flags, 795 u64 bio_offset, void *private_data, 796 extent_submit_bio_start_t *submit_bio_start, 797 extent_submit_bio_done_t *submit_bio_done) 798 { 799 struct async_submit_bio *async; 800 801 async = kmalloc(sizeof(*async), GFP_NOFS); 802 if (!async) 803 return BLK_STS_RESOURCE; 804 805 async->private_data = private_data; 806 async->fs_info = fs_info; 807 async->bio = bio; 808 async->mirror_num = mirror_num; 809 async->submit_bio_start = submit_bio_start; 810 async->submit_bio_done = submit_bio_done; 811 812 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 813 run_one_async_done, run_one_async_free); 814 815 async->bio_flags = bio_flags; 816 async->bio_offset = bio_offset; 817 818 async->status = 0; 819 820 if (op_is_sync(bio->bi_opf)) 821 btrfs_set_work_high_priority(&async->work); 822 823 btrfs_queue_work(fs_info->workers, &async->work); 824 return 0; 825 } 826 827 static blk_status_t btree_csum_one_bio(struct bio *bio) 828 { 829 struct bio_vec *bvec; 830 struct btrfs_root *root; 831 int i, ret = 0; 832 833 ASSERT(!bio_flagged(bio, BIO_CLONED)); 834 bio_for_each_segment_all(bvec, bio, i) { 835 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 836 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 837 if (ret) 838 break; 839 } 840 841 return errno_to_blk_status(ret); 842 } 843 844 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio, 845 u64 bio_offset) 846 { 847 /* 848 * when we're called for a write, we're already in the async 849 * submission context. Just jump into btrfs_map_bio 850 */ 851 return btree_csum_one_bio(bio); 852 } 853 854 static blk_status_t btree_submit_bio_done(void *private_data, struct bio *bio, 855 int mirror_num) 856 { 857 struct inode *inode = private_data; 858 blk_status_t ret; 859 860 /* 861 * when we're called for a write, we're already in the async 862 * submission context. Just jump into btrfs_map_bio 863 */ 864 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1); 865 if (ret) { 866 bio->bi_status = ret; 867 bio_endio(bio); 868 } 869 return ret; 870 } 871 872 static int check_async_write(struct btrfs_inode *bi) 873 { 874 if (atomic_read(&bi->sync_writers)) 875 return 0; 876 #ifdef CONFIG_X86 877 if (static_cpu_has(X86_FEATURE_XMM4_2)) 878 return 0; 879 #endif 880 return 1; 881 } 882 883 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio, 884 int mirror_num, unsigned long bio_flags, 885 u64 bio_offset) 886 { 887 struct inode *inode = private_data; 888 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 889 int async = check_async_write(BTRFS_I(inode)); 890 blk_status_t ret; 891 892 if (bio_op(bio) != REQ_OP_WRITE) { 893 /* 894 * called for a read, do the setup so that checksum validation 895 * can happen in the async kernel threads 896 */ 897 ret = btrfs_bio_wq_end_io(fs_info, bio, 898 BTRFS_WQ_ENDIO_METADATA); 899 if (ret) 900 goto out_w_error; 901 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 902 } else if (!async) { 903 ret = btree_csum_one_bio(bio); 904 if (ret) 905 goto out_w_error; 906 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 907 } else { 908 /* 909 * kthread helpers are used to submit writes so that 910 * checksumming can happen in parallel across all CPUs 911 */ 912 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0, 913 bio_offset, private_data, 914 btree_submit_bio_start, 915 btree_submit_bio_done); 916 } 917 918 if (ret) 919 goto out_w_error; 920 return 0; 921 922 out_w_error: 923 bio->bi_status = ret; 924 bio_endio(bio); 925 return ret; 926 } 927 928 #ifdef CONFIG_MIGRATION 929 static int btree_migratepage(struct address_space *mapping, 930 struct page *newpage, struct page *page, 931 enum migrate_mode mode) 932 { 933 /* 934 * we can't safely write a btree page from here, 935 * we haven't done the locking hook 936 */ 937 if (PageDirty(page)) 938 return -EAGAIN; 939 /* 940 * Buffers may be managed in a filesystem specific way. 941 * We must have no buffers or drop them. 942 */ 943 if (page_has_private(page) && 944 !try_to_release_page(page, GFP_KERNEL)) 945 return -EAGAIN; 946 return migrate_page(mapping, newpage, page, mode); 947 } 948 #endif 949 950 951 static int btree_writepages(struct address_space *mapping, 952 struct writeback_control *wbc) 953 { 954 struct btrfs_fs_info *fs_info; 955 int ret; 956 957 if (wbc->sync_mode == WB_SYNC_NONE) { 958 959 if (wbc->for_kupdate) 960 return 0; 961 962 fs_info = BTRFS_I(mapping->host)->root->fs_info; 963 /* this is a bit racy, but that's ok */ 964 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 965 BTRFS_DIRTY_METADATA_THRESH); 966 if (ret < 0) 967 return 0; 968 } 969 return btree_write_cache_pages(mapping, wbc); 970 } 971 972 static int btree_readpage(struct file *file, struct page *page) 973 { 974 struct extent_io_tree *tree; 975 tree = &BTRFS_I(page->mapping->host)->io_tree; 976 return extent_read_full_page(tree, page, btree_get_extent, 0); 977 } 978 979 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 980 { 981 if (PageWriteback(page) || PageDirty(page)) 982 return 0; 983 984 return try_release_extent_buffer(page); 985 } 986 987 static void btree_invalidatepage(struct page *page, unsigned int offset, 988 unsigned int length) 989 { 990 struct extent_io_tree *tree; 991 tree = &BTRFS_I(page->mapping->host)->io_tree; 992 extent_invalidatepage(tree, page, offset); 993 btree_releasepage(page, GFP_NOFS); 994 if (PagePrivate(page)) { 995 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 996 "page private not zero on page %llu", 997 (unsigned long long)page_offset(page)); 998 ClearPagePrivate(page); 999 set_page_private(page, 0); 1000 put_page(page); 1001 } 1002 } 1003 1004 static int btree_set_page_dirty(struct page *page) 1005 { 1006 #ifdef DEBUG 1007 struct extent_buffer *eb; 1008 1009 BUG_ON(!PagePrivate(page)); 1010 eb = (struct extent_buffer *)page->private; 1011 BUG_ON(!eb); 1012 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1013 BUG_ON(!atomic_read(&eb->refs)); 1014 btrfs_assert_tree_locked(eb); 1015 #endif 1016 return __set_page_dirty_nobuffers(page); 1017 } 1018 1019 static const struct address_space_operations btree_aops = { 1020 .readpage = btree_readpage, 1021 .writepages = btree_writepages, 1022 .releasepage = btree_releasepage, 1023 .invalidatepage = btree_invalidatepage, 1024 #ifdef CONFIG_MIGRATION 1025 .migratepage = btree_migratepage, 1026 #endif 1027 .set_page_dirty = btree_set_page_dirty, 1028 }; 1029 1030 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr) 1031 { 1032 struct extent_buffer *buf = NULL; 1033 struct inode *btree_inode = fs_info->btree_inode; 1034 1035 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1036 if (IS_ERR(buf)) 1037 return; 1038 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1039 buf, WAIT_NONE, 0); 1040 free_extent_buffer(buf); 1041 } 1042 1043 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr, 1044 int mirror_num, struct extent_buffer **eb) 1045 { 1046 struct extent_buffer *buf = NULL; 1047 struct inode *btree_inode = fs_info->btree_inode; 1048 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1049 int ret; 1050 1051 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1052 if (IS_ERR(buf)) 1053 return 0; 1054 1055 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1056 1057 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK, 1058 mirror_num); 1059 if (ret) { 1060 free_extent_buffer(buf); 1061 return ret; 1062 } 1063 1064 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1065 free_extent_buffer(buf); 1066 return -EIO; 1067 } else if (extent_buffer_uptodate(buf)) { 1068 *eb = buf; 1069 } else { 1070 free_extent_buffer(buf); 1071 } 1072 return 0; 1073 } 1074 1075 struct extent_buffer *btrfs_find_create_tree_block( 1076 struct btrfs_fs_info *fs_info, 1077 u64 bytenr) 1078 { 1079 if (btrfs_is_testing(fs_info)) 1080 return alloc_test_extent_buffer(fs_info, bytenr); 1081 return alloc_extent_buffer(fs_info, bytenr); 1082 } 1083 1084 1085 int btrfs_write_tree_block(struct extent_buffer *buf) 1086 { 1087 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1088 buf->start + buf->len - 1); 1089 } 1090 1091 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1092 { 1093 filemap_fdatawait_range(buf->pages[0]->mapping, 1094 buf->start, buf->start + buf->len - 1); 1095 } 1096 1097 /* 1098 * Read tree block at logical address @bytenr and do variant basic but critical 1099 * verification. 1100 * 1101 * @parent_transid: expected transid of this tree block, skip check if 0 1102 * @level: expected level, mandatory check 1103 * @first_key: expected key in slot 0, skip check if NULL 1104 */ 1105 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 1106 u64 parent_transid, int level, 1107 struct btrfs_key *first_key) 1108 { 1109 struct extent_buffer *buf = NULL; 1110 int ret; 1111 1112 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1113 if (IS_ERR(buf)) 1114 return buf; 1115 1116 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid, 1117 level, first_key); 1118 if (ret) { 1119 free_extent_buffer(buf); 1120 return ERR_PTR(ret); 1121 } 1122 return buf; 1123 1124 } 1125 1126 void clean_tree_block(struct btrfs_fs_info *fs_info, 1127 struct extent_buffer *buf) 1128 { 1129 if (btrfs_header_generation(buf) == 1130 fs_info->running_transaction->transid) { 1131 btrfs_assert_tree_locked(buf); 1132 1133 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1134 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1135 -buf->len, 1136 fs_info->dirty_metadata_batch); 1137 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1138 btrfs_set_lock_blocking(buf); 1139 clear_extent_buffer_dirty(buf); 1140 } 1141 } 1142 } 1143 1144 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1145 { 1146 struct btrfs_subvolume_writers *writers; 1147 int ret; 1148 1149 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1150 if (!writers) 1151 return ERR_PTR(-ENOMEM); 1152 1153 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS); 1154 if (ret < 0) { 1155 kfree(writers); 1156 return ERR_PTR(ret); 1157 } 1158 1159 init_waitqueue_head(&writers->wait); 1160 return writers; 1161 } 1162 1163 static void 1164 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1165 { 1166 percpu_counter_destroy(&writers->counter); 1167 kfree(writers); 1168 } 1169 1170 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1171 u64 objectid) 1172 { 1173 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1174 root->node = NULL; 1175 root->commit_root = NULL; 1176 root->state = 0; 1177 root->orphan_cleanup_state = 0; 1178 1179 root->objectid = objectid; 1180 root->last_trans = 0; 1181 root->highest_objectid = 0; 1182 root->nr_delalloc_inodes = 0; 1183 root->nr_ordered_extents = 0; 1184 root->name = NULL; 1185 root->inode_tree = RB_ROOT; 1186 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1187 root->block_rsv = NULL; 1188 root->orphan_block_rsv = NULL; 1189 1190 INIT_LIST_HEAD(&root->dirty_list); 1191 INIT_LIST_HEAD(&root->root_list); 1192 INIT_LIST_HEAD(&root->delalloc_inodes); 1193 INIT_LIST_HEAD(&root->delalloc_root); 1194 INIT_LIST_HEAD(&root->ordered_extents); 1195 INIT_LIST_HEAD(&root->ordered_root); 1196 INIT_LIST_HEAD(&root->logged_list[0]); 1197 INIT_LIST_HEAD(&root->logged_list[1]); 1198 spin_lock_init(&root->orphan_lock); 1199 spin_lock_init(&root->inode_lock); 1200 spin_lock_init(&root->delalloc_lock); 1201 spin_lock_init(&root->ordered_extent_lock); 1202 spin_lock_init(&root->accounting_lock); 1203 spin_lock_init(&root->log_extents_lock[0]); 1204 spin_lock_init(&root->log_extents_lock[1]); 1205 spin_lock_init(&root->qgroup_meta_rsv_lock); 1206 mutex_init(&root->objectid_mutex); 1207 mutex_init(&root->log_mutex); 1208 mutex_init(&root->ordered_extent_mutex); 1209 mutex_init(&root->delalloc_mutex); 1210 init_waitqueue_head(&root->log_writer_wait); 1211 init_waitqueue_head(&root->log_commit_wait[0]); 1212 init_waitqueue_head(&root->log_commit_wait[1]); 1213 INIT_LIST_HEAD(&root->log_ctxs[0]); 1214 INIT_LIST_HEAD(&root->log_ctxs[1]); 1215 atomic_set(&root->log_commit[0], 0); 1216 atomic_set(&root->log_commit[1], 0); 1217 atomic_set(&root->log_writers, 0); 1218 atomic_set(&root->log_batch, 0); 1219 atomic_set(&root->orphan_inodes, 0); 1220 refcount_set(&root->refs, 1); 1221 atomic_set(&root->will_be_snapshotted, 0); 1222 root->log_transid = 0; 1223 root->log_transid_committed = -1; 1224 root->last_log_commit = 0; 1225 if (!dummy) 1226 extent_io_tree_init(&root->dirty_log_pages, NULL); 1227 1228 memset(&root->root_key, 0, sizeof(root->root_key)); 1229 memset(&root->root_item, 0, sizeof(root->root_item)); 1230 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1231 if (!dummy) 1232 root->defrag_trans_start = fs_info->generation; 1233 else 1234 root->defrag_trans_start = 0; 1235 root->root_key.objectid = objectid; 1236 root->anon_dev = 0; 1237 1238 spin_lock_init(&root->root_item_lock); 1239 } 1240 1241 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1242 gfp_t flags) 1243 { 1244 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1245 if (root) 1246 root->fs_info = fs_info; 1247 return root; 1248 } 1249 1250 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1251 /* Should only be used by the testing infrastructure */ 1252 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1253 { 1254 struct btrfs_root *root; 1255 1256 if (!fs_info) 1257 return ERR_PTR(-EINVAL); 1258 1259 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1260 if (!root) 1261 return ERR_PTR(-ENOMEM); 1262 1263 /* We don't use the stripesize in selftest, set it as sectorsize */ 1264 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 1265 root->alloc_bytenr = 0; 1266 1267 return root; 1268 } 1269 #endif 1270 1271 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1272 struct btrfs_fs_info *fs_info, 1273 u64 objectid) 1274 { 1275 struct extent_buffer *leaf; 1276 struct btrfs_root *tree_root = fs_info->tree_root; 1277 struct btrfs_root *root; 1278 struct btrfs_key key; 1279 int ret = 0; 1280 uuid_le uuid = NULL_UUID_LE; 1281 1282 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1283 if (!root) 1284 return ERR_PTR(-ENOMEM); 1285 1286 __setup_root(root, fs_info, objectid); 1287 root->root_key.objectid = objectid; 1288 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1289 root->root_key.offset = 0; 1290 1291 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1292 if (IS_ERR(leaf)) { 1293 ret = PTR_ERR(leaf); 1294 leaf = NULL; 1295 goto fail; 1296 } 1297 1298 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header)); 1299 btrfs_set_header_bytenr(leaf, leaf->start); 1300 btrfs_set_header_generation(leaf, trans->transid); 1301 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1302 btrfs_set_header_owner(leaf, objectid); 1303 root->node = leaf; 1304 1305 write_extent_buffer_fsid(leaf, fs_info->fsid); 1306 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid); 1307 btrfs_mark_buffer_dirty(leaf); 1308 1309 root->commit_root = btrfs_root_node(root); 1310 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1311 1312 root->root_item.flags = 0; 1313 root->root_item.byte_limit = 0; 1314 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1315 btrfs_set_root_generation(&root->root_item, trans->transid); 1316 btrfs_set_root_level(&root->root_item, 0); 1317 btrfs_set_root_refs(&root->root_item, 1); 1318 btrfs_set_root_used(&root->root_item, leaf->len); 1319 btrfs_set_root_last_snapshot(&root->root_item, 0); 1320 btrfs_set_root_dirid(&root->root_item, 0); 1321 if (is_fstree(objectid)) 1322 uuid_le_gen(&uuid); 1323 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1324 root->root_item.drop_level = 0; 1325 1326 key.objectid = objectid; 1327 key.type = BTRFS_ROOT_ITEM_KEY; 1328 key.offset = 0; 1329 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1330 if (ret) 1331 goto fail; 1332 1333 btrfs_tree_unlock(leaf); 1334 1335 return root; 1336 1337 fail: 1338 if (leaf) { 1339 btrfs_tree_unlock(leaf); 1340 free_extent_buffer(root->commit_root); 1341 free_extent_buffer(leaf); 1342 } 1343 kfree(root); 1344 1345 return ERR_PTR(ret); 1346 } 1347 1348 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1349 struct btrfs_fs_info *fs_info) 1350 { 1351 struct btrfs_root *root; 1352 struct extent_buffer *leaf; 1353 1354 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1355 if (!root) 1356 return ERR_PTR(-ENOMEM); 1357 1358 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1359 1360 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1361 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1362 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1363 1364 /* 1365 * DON'T set REF_COWS for log trees 1366 * 1367 * log trees do not get reference counted because they go away 1368 * before a real commit is actually done. They do store pointers 1369 * to file data extents, and those reference counts still get 1370 * updated (along with back refs to the log tree). 1371 */ 1372 1373 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1374 NULL, 0, 0, 0); 1375 if (IS_ERR(leaf)) { 1376 kfree(root); 1377 return ERR_CAST(leaf); 1378 } 1379 1380 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header)); 1381 btrfs_set_header_bytenr(leaf, leaf->start); 1382 btrfs_set_header_generation(leaf, trans->transid); 1383 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1384 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1385 root->node = leaf; 1386 1387 write_extent_buffer_fsid(root->node, fs_info->fsid); 1388 btrfs_mark_buffer_dirty(root->node); 1389 btrfs_tree_unlock(root->node); 1390 return root; 1391 } 1392 1393 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1394 struct btrfs_fs_info *fs_info) 1395 { 1396 struct btrfs_root *log_root; 1397 1398 log_root = alloc_log_tree(trans, fs_info); 1399 if (IS_ERR(log_root)) 1400 return PTR_ERR(log_root); 1401 WARN_ON(fs_info->log_root_tree); 1402 fs_info->log_root_tree = log_root; 1403 return 0; 1404 } 1405 1406 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1407 struct btrfs_root *root) 1408 { 1409 struct btrfs_fs_info *fs_info = root->fs_info; 1410 struct btrfs_root *log_root; 1411 struct btrfs_inode_item *inode_item; 1412 1413 log_root = alloc_log_tree(trans, fs_info); 1414 if (IS_ERR(log_root)) 1415 return PTR_ERR(log_root); 1416 1417 log_root->last_trans = trans->transid; 1418 log_root->root_key.offset = root->root_key.objectid; 1419 1420 inode_item = &log_root->root_item.inode; 1421 btrfs_set_stack_inode_generation(inode_item, 1); 1422 btrfs_set_stack_inode_size(inode_item, 3); 1423 btrfs_set_stack_inode_nlink(inode_item, 1); 1424 btrfs_set_stack_inode_nbytes(inode_item, 1425 fs_info->nodesize); 1426 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1427 1428 btrfs_set_root_node(&log_root->root_item, log_root->node); 1429 1430 WARN_ON(root->log_root); 1431 root->log_root = log_root; 1432 root->log_transid = 0; 1433 root->log_transid_committed = -1; 1434 root->last_log_commit = 0; 1435 return 0; 1436 } 1437 1438 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1439 struct btrfs_key *key) 1440 { 1441 struct btrfs_root *root; 1442 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1443 struct btrfs_path *path; 1444 u64 generation; 1445 int ret; 1446 int level; 1447 1448 path = btrfs_alloc_path(); 1449 if (!path) 1450 return ERR_PTR(-ENOMEM); 1451 1452 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1453 if (!root) { 1454 ret = -ENOMEM; 1455 goto alloc_fail; 1456 } 1457 1458 __setup_root(root, fs_info, key->objectid); 1459 1460 ret = btrfs_find_root(tree_root, key, path, 1461 &root->root_item, &root->root_key); 1462 if (ret) { 1463 if (ret > 0) 1464 ret = -ENOENT; 1465 goto find_fail; 1466 } 1467 1468 generation = btrfs_root_generation(&root->root_item); 1469 level = btrfs_root_level(&root->root_item); 1470 root->node = read_tree_block(fs_info, 1471 btrfs_root_bytenr(&root->root_item), 1472 generation, level, NULL); 1473 if (IS_ERR(root->node)) { 1474 ret = PTR_ERR(root->node); 1475 goto find_fail; 1476 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1477 ret = -EIO; 1478 free_extent_buffer(root->node); 1479 goto find_fail; 1480 } 1481 root->commit_root = btrfs_root_node(root); 1482 out: 1483 btrfs_free_path(path); 1484 return root; 1485 1486 find_fail: 1487 kfree(root); 1488 alloc_fail: 1489 root = ERR_PTR(ret); 1490 goto out; 1491 } 1492 1493 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1494 struct btrfs_key *location) 1495 { 1496 struct btrfs_root *root; 1497 1498 root = btrfs_read_tree_root(tree_root, location); 1499 if (IS_ERR(root)) 1500 return root; 1501 1502 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1503 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1504 btrfs_check_and_init_root_item(&root->root_item); 1505 } 1506 1507 return root; 1508 } 1509 1510 int btrfs_init_fs_root(struct btrfs_root *root) 1511 { 1512 int ret; 1513 struct btrfs_subvolume_writers *writers; 1514 1515 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1516 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1517 GFP_NOFS); 1518 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1519 ret = -ENOMEM; 1520 goto fail; 1521 } 1522 1523 writers = btrfs_alloc_subvolume_writers(); 1524 if (IS_ERR(writers)) { 1525 ret = PTR_ERR(writers); 1526 goto fail; 1527 } 1528 root->subv_writers = writers; 1529 1530 btrfs_init_free_ino_ctl(root); 1531 spin_lock_init(&root->ino_cache_lock); 1532 init_waitqueue_head(&root->ino_cache_wait); 1533 1534 ret = get_anon_bdev(&root->anon_dev); 1535 if (ret) 1536 goto fail; 1537 1538 mutex_lock(&root->objectid_mutex); 1539 ret = btrfs_find_highest_objectid(root, 1540 &root->highest_objectid); 1541 if (ret) { 1542 mutex_unlock(&root->objectid_mutex); 1543 goto fail; 1544 } 1545 1546 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1547 1548 mutex_unlock(&root->objectid_mutex); 1549 1550 return 0; 1551 fail: 1552 /* the caller is responsible to call free_fs_root */ 1553 return ret; 1554 } 1555 1556 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1557 u64 root_id) 1558 { 1559 struct btrfs_root *root; 1560 1561 spin_lock(&fs_info->fs_roots_radix_lock); 1562 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1563 (unsigned long)root_id); 1564 spin_unlock(&fs_info->fs_roots_radix_lock); 1565 return root; 1566 } 1567 1568 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1569 struct btrfs_root *root) 1570 { 1571 int ret; 1572 1573 ret = radix_tree_preload(GFP_NOFS); 1574 if (ret) 1575 return ret; 1576 1577 spin_lock(&fs_info->fs_roots_radix_lock); 1578 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1579 (unsigned long)root->root_key.objectid, 1580 root); 1581 if (ret == 0) 1582 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1583 spin_unlock(&fs_info->fs_roots_radix_lock); 1584 radix_tree_preload_end(); 1585 1586 return ret; 1587 } 1588 1589 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1590 struct btrfs_key *location, 1591 bool check_ref) 1592 { 1593 struct btrfs_root *root; 1594 struct btrfs_path *path; 1595 struct btrfs_key key; 1596 int ret; 1597 1598 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1599 return fs_info->tree_root; 1600 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1601 return fs_info->extent_root; 1602 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1603 return fs_info->chunk_root; 1604 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1605 return fs_info->dev_root; 1606 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1607 return fs_info->csum_root; 1608 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1609 return fs_info->quota_root ? fs_info->quota_root : 1610 ERR_PTR(-ENOENT); 1611 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1612 return fs_info->uuid_root ? fs_info->uuid_root : 1613 ERR_PTR(-ENOENT); 1614 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1615 return fs_info->free_space_root ? fs_info->free_space_root : 1616 ERR_PTR(-ENOENT); 1617 again: 1618 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1619 if (root) { 1620 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1621 return ERR_PTR(-ENOENT); 1622 return root; 1623 } 1624 1625 root = btrfs_read_fs_root(fs_info->tree_root, location); 1626 if (IS_ERR(root)) 1627 return root; 1628 1629 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1630 ret = -ENOENT; 1631 goto fail; 1632 } 1633 1634 ret = btrfs_init_fs_root(root); 1635 if (ret) 1636 goto fail; 1637 1638 path = btrfs_alloc_path(); 1639 if (!path) { 1640 ret = -ENOMEM; 1641 goto fail; 1642 } 1643 key.objectid = BTRFS_ORPHAN_OBJECTID; 1644 key.type = BTRFS_ORPHAN_ITEM_KEY; 1645 key.offset = location->objectid; 1646 1647 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1648 btrfs_free_path(path); 1649 if (ret < 0) 1650 goto fail; 1651 if (ret == 0) 1652 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1653 1654 ret = btrfs_insert_fs_root(fs_info, root); 1655 if (ret) { 1656 if (ret == -EEXIST) { 1657 free_fs_root(root); 1658 goto again; 1659 } 1660 goto fail; 1661 } 1662 return root; 1663 fail: 1664 free_fs_root(root); 1665 return ERR_PTR(ret); 1666 } 1667 1668 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1669 { 1670 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1671 int ret = 0; 1672 struct btrfs_device *device; 1673 struct backing_dev_info *bdi; 1674 1675 rcu_read_lock(); 1676 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1677 if (!device->bdev) 1678 continue; 1679 bdi = device->bdev->bd_bdi; 1680 if (bdi_congested(bdi, bdi_bits)) { 1681 ret = 1; 1682 break; 1683 } 1684 } 1685 rcu_read_unlock(); 1686 return ret; 1687 } 1688 1689 /* 1690 * called by the kthread helper functions to finally call the bio end_io 1691 * functions. This is where read checksum verification actually happens 1692 */ 1693 static void end_workqueue_fn(struct btrfs_work *work) 1694 { 1695 struct bio *bio; 1696 struct btrfs_end_io_wq *end_io_wq; 1697 1698 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1699 bio = end_io_wq->bio; 1700 1701 bio->bi_status = end_io_wq->status; 1702 bio->bi_private = end_io_wq->private; 1703 bio->bi_end_io = end_io_wq->end_io; 1704 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1705 bio_endio(bio); 1706 } 1707 1708 static int cleaner_kthread(void *arg) 1709 { 1710 struct btrfs_root *root = arg; 1711 struct btrfs_fs_info *fs_info = root->fs_info; 1712 int again; 1713 struct btrfs_trans_handle *trans; 1714 1715 do { 1716 again = 0; 1717 1718 /* Make the cleaner go to sleep early. */ 1719 if (btrfs_need_cleaner_sleep(fs_info)) 1720 goto sleep; 1721 1722 /* 1723 * Do not do anything if we might cause open_ctree() to block 1724 * before we have finished mounting the filesystem. 1725 */ 1726 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1727 goto sleep; 1728 1729 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1730 goto sleep; 1731 1732 /* 1733 * Avoid the problem that we change the status of the fs 1734 * during the above check and trylock. 1735 */ 1736 if (btrfs_need_cleaner_sleep(fs_info)) { 1737 mutex_unlock(&fs_info->cleaner_mutex); 1738 goto sleep; 1739 } 1740 1741 mutex_lock(&fs_info->cleaner_delayed_iput_mutex); 1742 btrfs_run_delayed_iputs(fs_info); 1743 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex); 1744 1745 again = btrfs_clean_one_deleted_snapshot(root); 1746 mutex_unlock(&fs_info->cleaner_mutex); 1747 1748 /* 1749 * The defragger has dealt with the R/O remount and umount, 1750 * needn't do anything special here. 1751 */ 1752 btrfs_run_defrag_inodes(fs_info); 1753 1754 /* 1755 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1756 * with relocation (btrfs_relocate_chunk) and relocation 1757 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1758 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1759 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1760 * unused block groups. 1761 */ 1762 btrfs_delete_unused_bgs(fs_info); 1763 sleep: 1764 if (!again) { 1765 set_current_state(TASK_INTERRUPTIBLE); 1766 if (!kthread_should_stop()) 1767 schedule(); 1768 __set_current_state(TASK_RUNNING); 1769 } 1770 } while (!kthread_should_stop()); 1771 1772 /* 1773 * Transaction kthread is stopped before us and wakes us up. 1774 * However we might have started a new transaction and COWed some 1775 * tree blocks when deleting unused block groups for example. So 1776 * make sure we commit the transaction we started to have a clean 1777 * shutdown when evicting the btree inode - if it has dirty pages 1778 * when we do the final iput() on it, eviction will trigger a 1779 * writeback for it which will fail with null pointer dereferences 1780 * since work queues and other resources were already released and 1781 * destroyed by the time the iput/eviction/writeback is made. 1782 */ 1783 trans = btrfs_attach_transaction(root); 1784 if (IS_ERR(trans)) { 1785 if (PTR_ERR(trans) != -ENOENT) 1786 btrfs_err(fs_info, 1787 "cleaner transaction attach returned %ld", 1788 PTR_ERR(trans)); 1789 } else { 1790 int ret; 1791 1792 ret = btrfs_commit_transaction(trans); 1793 if (ret) 1794 btrfs_err(fs_info, 1795 "cleaner open transaction commit returned %d", 1796 ret); 1797 } 1798 1799 return 0; 1800 } 1801 1802 static int transaction_kthread(void *arg) 1803 { 1804 struct btrfs_root *root = arg; 1805 struct btrfs_fs_info *fs_info = root->fs_info; 1806 struct btrfs_trans_handle *trans; 1807 struct btrfs_transaction *cur; 1808 u64 transid; 1809 unsigned long now; 1810 unsigned long delay; 1811 bool cannot_commit; 1812 1813 do { 1814 cannot_commit = false; 1815 delay = HZ * fs_info->commit_interval; 1816 mutex_lock(&fs_info->transaction_kthread_mutex); 1817 1818 spin_lock(&fs_info->trans_lock); 1819 cur = fs_info->running_transaction; 1820 if (!cur) { 1821 spin_unlock(&fs_info->trans_lock); 1822 goto sleep; 1823 } 1824 1825 now = get_seconds(); 1826 if (cur->state < TRANS_STATE_BLOCKED && 1827 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) && 1828 (now < cur->start_time || 1829 now - cur->start_time < fs_info->commit_interval)) { 1830 spin_unlock(&fs_info->trans_lock); 1831 delay = HZ * 5; 1832 goto sleep; 1833 } 1834 transid = cur->transid; 1835 spin_unlock(&fs_info->trans_lock); 1836 1837 /* If the file system is aborted, this will always fail. */ 1838 trans = btrfs_attach_transaction(root); 1839 if (IS_ERR(trans)) { 1840 if (PTR_ERR(trans) != -ENOENT) 1841 cannot_commit = true; 1842 goto sleep; 1843 } 1844 if (transid == trans->transid) { 1845 btrfs_commit_transaction(trans); 1846 } else { 1847 btrfs_end_transaction(trans); 1848 } 1849 sleep: 1850 wake_up_process(fs_info->cleaner_kthread); 1851 mutex_unlock(&fs_info->transaction_kthread_mutex); 1852 1853 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1854 &fs_info->fs_state))) 1855 btrfs_cleanup_transaction(fs_info); 1856 if (!kthread_should_stop() && 1857 (!btrfs_transaction_blocked(fs_info) || 1858 cannot_commit)) 1859 schedule_timeout_interruptible(delay); 1860 } while (!kthread_should_stop()); 1861 return 0; 1862 } 1863 1864 /* 1865 * this will find the highest generation in the array of 1866 * root backups. The index of the highest array is returned, 1867 * or -1 if we can't find anything. 1868 * 1869 * We check to make sure the array is valid by comparing the 1870 * generation of the latest root in the array with the generation 1871 * in the super block. If they don't match we pitch it. 1872 */ 1873 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1874 { 1875 u64 cur; 1876 int newest_index = -1; 1877 struct btrfs_root_backup *root_backup; 1878 int i; 1879 1880 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1881 root_backup = info->super_copy->super_roots + i; 1882 cur = btrfs_backup_tree_root_gen(root_backup); 1883 if (cur == newest_gen) 1884 newest_index = i; 1885 } 1886 1887 /* check to see if we actually wrapped around */ 1888 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1889 root_backup = info->super_copy->super_roots; 1890 cur = btrfs_backup_tree_root_gen(root_backup); 1891 if (cur == newest_gen) 1892 newest_index = 0; 1893 } 1894 return newest_index; 1895 } 1896 1897 1898 /* 1899 * find the oldest backup so we know where to store new entries 1900 * in the backup array. This will set the backup_root_index 1901 * field in the fs_info struct 1902 */ 1903 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1904 u64 newest_gen) 1905 { 1906 int newest_index = -1; 1907 1908 newest_index = find_newest_super_backup(info, newest_gen); 1909 /* if there was garbage in there, just move along */ 1910 if (newest_index == -1) { 1911 info->backup_root_index = 0; 1912 } else { 1913 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1914 } 1915 } 1916 1917 /* 1918 * copy all the root pointers into the super backup array. 1919 * this will bump the backup pointer by one when it is 1920 * done 1921 */ 1922 static void backup_super_roots(struct btrfs_fs_info *info) 1923 { 1924 int next_backup; 1925 struct btrfs_root_backup *root_backup; 1926 int last_backup; 1927 1928 next_backup = info->backup_root_index; 1929 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1930 BTRFS_NUM_BACKUP_ROOTS; 1931 1932 /* 1933 * just overwrite the last backup if we're at the same generation 1934 * this happens only at umount 1935 */ 1936 root_backup = info->super_for_commit->super_roots + last_backup; 1937 if (btrfs_backup_tree_root_gen(root_backup) == 1938 btrfs_header_generation(info->tree_root->node)) 1939 next_backup = last_backup; 1940 1941 root_backup = info->super_for_commit->super_roots + next_backup; 1942 1943 /* 1944 * make sure all of our padding and empty slots get zero filled 1945 * regardless of which ones we use today 1946 */ 1947 memset(root_backup, 0, sizeof(*root_backup)); 1948 1949 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1950 1951 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1952 btrfs_set_backup_tree_root_gen(root_backup, 1953 btrfs_header_generation(info->tree_root->node)); 1954 1955 btrfs_set_backup_tree_root_level(root_backup, 1956 btrfs_header_level(info->tree_root->node)); 1957 1958 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1959 btrfs_set_backup_chunk_root_gen(root_backup, 1960 btrfs_header_generation(info->chunk_root->node)); 1961 btrfs_set_backup_chunk_root_level(root_backup, 1962 btrfs_header_level(info->chunk_root->node)); 1963 1964 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1965 btrfs_set_backup_extent_root_gen(root_backup, 1966 btrfs_header_generation(info->extent_root->node)); 1967 btrfs_set_backup_extent_root_level(root_backup, 1968 btrfs_header_level(info->extent_root->node)); 1969 1970 /* 1971 * we might commit during log recovery, which happens before we set 1972 * the fs_root. Make sure it is valid before we fill it in. 1973 */ 1974 if (info->fs_root && info->fs_root->node) { 1975 btrfs_set_backup_fs_root(root_backup, 1976 info->fs_root->node->start); 1977 btrfs_set_backup_fs_root_gen(root_backup, 1978 btrfs_header_generation(info->fs_root->node)); 1979 btrfs_set_backup_fs_root_level(root_backup, 1980 btrfs_header_level(info->fs_root->node)); 1981 } 1982 1983 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1984 btrfs_set_backup_dev_root_gen(root_backup, 1985 btrfs_header_generation(info->dev_root->node)); 1986 btrfs_set_backup_dev_root_level(root_backup, 1987 btrfs_header_level(info->dev_root->node)); 1988 1989 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1990 btrfs_set_backup_csum_root_gen(root_backup, 1991 btrfs_header_generation(info->csum_root->node)); 1992 btrfs_set_backup_csum_root_level(root_backup, 1993 btrfs_header_level(info->csum_root->node)); 1994 1995 btrfs_set_backup_total_bytes(root_backup, 1996 btrfs_super_total_bytes(info->super_copy)); 1997 btrfs_set_backup_bytes_used(root_backup, 1998 btrfs_super_bytes_used(info->super_copy)); 1999 btrfs_set_backup_num_devices(root_backup, 2000 btrfs_super_num_devices(info->super_copy)); 2001 2002 /* 2003 * if we don't copy this out to the super_copy, it won't get remembered 2004 * for the next commit 2005 */ 2006 memcpy(&info->super_copy->super_roots, 2007 &info->super_for_commit->super_roots, 2008 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 2009 } 2010 2011 /* 2012 * this copies info out of the root backup array and back into 2013 * the in-memory super block. It is meant to help iterate through 2014 * the array, so you send it the number of backups you've already 2015 * tried and the last backup index you used. 2016 * 2017 * this returns -1 when it has tried all the backups 2018 */ 2019 static noinline int next_root_backup(struct btrfs_fs_info *info, 2020 struct btrfs_super_block *super, 2021 int *num_backups_tried, int *backup_index) 2022 { 2023 struct btrfs_root_backup *root_backup; 2024 int newest = *backup_index; 2025 2026 if (*num_backups_tried == 0) { 2027 u64 gen = btrfs_super_generation(super); 2028 2029 newest = find_newest_super_backup(info, gen); 2030 if (newest == -1) 2031 return -1; 2032 2033 *backup_index = newest; 2034 *num_backups_tried = 1; 2035 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 2036 /* we've tried all the backups, all done */ 2037 return -1; 2038 } else { 2039 /* jump to the next oldest backup */ 2040 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 2041 BTRFS_NUM_BACKUP_ROOTS; 2042 *backup_index = newest; 2043 *num_backups_tried += 1; 2044 } 2045 root_backup = super->super_roots + newest; 2046 2047 btrfs_set_super_generation(super, 2048 btrfs_backup_tree_root_gen(root_backup)); 2049 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2050 btrfs_set_super_root_level(super, 2051 btrfs_backup_tree_root_level(root_backup)); 2052 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2053 2054 /* 2055 * fixme: the total bytes and num_devices need to match or we should 2056 * need a fsck 2057 */ 2058 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2059 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2060 return 0; 2061 } 2062 2063 /* helper to cleanup workers */ 2064 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2065 { 2066 btrfs_destroy_workqueue(fs_info->fixup_workers); 2067 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2068 btrfs_destroy_workqueue(fs_info->workers); 2069 btrfs_destroy_workqueue(fs_info->endio_workers); 2070 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2071 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 2072 btrfs_destroy_workqueue(fs_info->rmw_workers); 2073 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2074 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2075 btrfs_destroy_workqueue(fs_info->submit_workers); 2076 btrfs_destroy_workqueue(fs_info->delayed_workers); 2077 btrfs_destroy_workqueue(fs_info->caching_workers); 2078 btrfs_destroy_workqueue(fs_info->readahead_workers); 2079 btrfs_destroy_workqueue(fs_info->flush_workers); 2080 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2081 btrfs_destroy_workqueue(fs_info->extent_workers); 2082 /* 2083 * Now that all other work queues are destroyed, we can safely destroy 2084 * the queues used for metadata I/O, since tasks from those other work 2085 * queues can do metadata I/O operations. 2086 */ 2087 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2088 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2089 } 2090 2091 static void free_root_extent_buffers(struct btrfs_root *root) 2092 { 2093 if (root) { 2094 free_extent_buffer(root->node); 2095 free_extent_buffer(root->commit_root); 2096 root->node = NULL; 2097 root->commit_root = NULL; 2098 } 2099 } 2100 2101 /* helper to cleanup tree roots */ 2102 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2103 { 2104 free_root_extent_buffers(info->tree_root); 2105 2106 free_root_extent_buffers(info->dev_root); 2107 free_root_extent_buffers(info->extent_root); 2108 free_root_extent_buffers(info->csum_root); 2109 free_root_extent_buffers(info->quota_root); 2110 free_root_extent_buffers(info->uuid_root); 2111 if (chunk_root) 2112 free_root_extent_buffers(info->chunk_root); 2113 free_root_extent_buffers(info->free_space_root); 2114 } 2115 2116 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2117 { 2118 int ret; 2119 struct btrfs_root *gang[8]; 2120 int i; 2121 2122 while (!list_empty(&fs_info->dead_roots)) { 2123 gang[0] = list_entry(fs_info->dead_roots.next, 2124 struct btrfs_root, root_list); 2125 list_del(&gang[0]->root_list); 2126 2127 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2128 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2129 } else { 2130 free_extent_buffer(gang[0]->node); 2131 free_extent_buffer(gang[0]->commit_root); 2132 btrfs_put_fs_root(gang[0]); 2133 } 2134 } 2135 2136 while (1) { 2137 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2138 (void **)gang, 0, 2139 ARRAY_SIZE(gang)); 2140 if (!ret) 2141 break; 2142 for (i = 0; i < ret; i++) 2143 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2144 } 2145 2146 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2147 btrfs_free_log_root_tree(NULL, fs_info); 2148 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 2149 } 2150 } 2151 2152 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2153 { 2154 mutex_init(&fs_info->scrub_lock); 2155 atomic_set(&fs_info->scrubs_running, 0); 2156 atomic_set(&fs_info->scrub_pause_req, 0); 2157 atomic_set(&fs_info->scrubs_paused, 0); 2158 atomic_set(&fs_info->scrub_cancel_req, 0); 2159 init_waitqueue_head(&fs_info->scrub_pause_wait); 2160 fs_info->scrub_workers_refcnt = 0; 2161 } 2162 2163 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2164 { 2165 spin_lock_init(&fs_info->balance_lock); 2166 mutex_init(&fs_info->balance_mutex); 2167 atomic_set(&fs_info->balance_running, 0); 2168 atomic_set(&fs_info->balance_pause_req, 0); 2169 atomic_set(&fs_info->balance_cancel_req, 0); 2170 fs_info->balance_ctl = NULL; 2171 init_waitqueue_head(&fs_info->balance_wait_q); 2172 } 2173 2174 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2175 { 2176 struct inode *inode = fs_info->btree_inode; 2177 2178 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2179 set_nlink(inode, 1); 2180 /* 2181 * we set the i_size on the btree inode to the max possible int. 2182 * the real end of the address space is determined by all of 2183 * the devices in the system 2184 */ 2185 inode->i_size = OFFSET_MAX; 2186 inode->i_mapping->a_ops = &btree_aops; 2187 2188 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2189 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode); 2190 BTRFS_I(inode)->io_tree.track_uptodate = 0; 2191 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2192 2193 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops; 2194 2195 BTRFS_I(inode)->root = fs_info->tree_root; 2196 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); 2197 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2198 btrfs_insert_inode_hash(inode); 2199 } 2200 2201 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2202 { 2203 fs_info->dev_replace.lock_owner = 0; 2204 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2205 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2206 rwlock_init(&fs_info->dev_replace.lock); 2207 atomic_set(&fs_info->dev_replace.read_locks, 0); 2208 atomic_set(&fs_info->dev_replace.blocking_readers, 0); 2209 init_waitqueue_head(&fs_info->replace_wait); 2210 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq); 2211 } 2212 2213 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2214 { 2215 spin_lock_init(&fs_info->qgroup_lock); 2216 mutex_init(&fs_info->qgroup_ioctl_lock); 2217 fs_info->qgroup_tree = RB_ROOT; 2218 fs_info->qgroup_op_tree = RB_ROOT; 2219 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2220 fs_info->qgroup_seq = 1; 2221 fs_info->qgroup_ulist = NULL; 2222 fs_info->qgroup_rescan_running = false; 2223 mutex_init(&fs_info->qgroup_rescan_lock); 2224 } 2225 2226 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2227 struct btrfs_fs_devices *fs_devices) 2228 { 2229 u32 max_active = fs_info->thread_pool_size; 2230 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2231 2232 fs_info->workers = 2233 btrfs_alloc_workqueue(fs_info, "worker", 2234 flags | WQ_HIGHPRI, max_active, 16); 2235 2236 fs_info->delalloc_workers = 2237 btrfs_alloc_workqueue(fs_info, "delalloc", 2238 flags, max_active, 2); 2239 2240 fs_info->flush_workers = 2241 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2242 flags, max_active, 0); 2243 2244 fs_info->caching_workers = 2245 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2246 2247 /* 2248 * a higher idle thresh on the submit workers makes it much more 2249 * likely that bios will be send down in a sane order to the 2250 * devices 2251 */ 2252 fs_info->submit_workers = 2253 btrfs_alloc_workqueue(fs_info, "submit", flags, 2254 min_t(u64, fs_devices->num_devices, 2255 max_active), 64); 2256 2257 fs_info->fixup_workers = 2258 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2259 2260 /* 2261 * endios are largely parallel and should have a very 2262 * low idle thresh 2263 */ 2264 fs_info->endio_workers = 2265 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2266 fs_info->endio_meta_workers = 2267 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2268 max_active, 4); 2269 fs_info->endio_meta_write_workers = 2270 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2271 max_active, 2); 2272 fs_info->endio_raid56_workers = 2273 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2274 max_active, 4); 2275 fs_info->endio_repair_workers = 2276 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0); 2277 fs_info->rmw_workers = 2278 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2279 fs_info->endio_write_workers = 2280 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2281 max_active, 2); 2282 fs_info->endio_freespace_worker = 2283 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2284 max_active, 0); 2285 fs_info->delayed_workers = 2286 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2287 max_active, 0); 2288 fs_info->readahead_workers = 2289 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2290 max_active, 2); 2291 fs_info->qgroup_rescan_workers = 2292 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2293 fs_info->extent_workers = 2294 btrfs_alloc_workqueue(fs_info, "extent-refs", flags, 2295 min_t(u64, fs_devices->num_devices, 2296 max_active), 8); 2297 2298 if (!(fs_info->workers && fs_info->delalloc_workers && 2299 fs_info->submit_workers && fs_info->flush_workers && 2300 fs_info->endio_workers && fs_info->endio_meta_workers && 2301 fs_info->endio_meta_write_workers && 2302 fs_info->endio_repair_workers && 2303 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2304 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2305 fs_info->caching_workers && fs_info->readahead_workers && 2306 fs_info->fixup_workers && fs_info->delayed_workers && 2307 fs_info->extent_workers && 2308 fs_info->qgroup_rescan_workers)) { 2309 return -ENOMEM; 2310 } 2311 2312 return 0; 2313 } 2314 2315 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2316 struct btrfs_fs_devices *fs_devices) 2317 { 2318 int ret; 2319 struct btrfs_root *log_tree_root; 2320 struct btrfs_super_block *disk_super = fs_info->super_copy; 2321 u64 bytenr = btrfs_super_log_root(disk_super); 2322 int level = btrfs_super_log_root_level(disk_super); 2323 2324 if (fs_devices->rw_devices == 0) { 2325 btrfs_warn(fs_info, "log replay required on RO media"); 2326 return -EIO; 2327 } 2328 2329 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2330 if (!log_tree_root) 2331 return -ENOMEM; 2332 2333 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2334 2335 log_tree_root->node = read_tree_block(fs_info, bytenr, 2336 fs_info->generation + 1, 2337 level, NULL); 2338 if (IS_ERR(log_tree_root->node)) { 2339 btrfs_warn(fs_info, "failed to read log tree"); 2340 ret = PTR_ERR(log_tree_root->node); 2341 kfree(log_tree_root); 2342 return ret; 2343 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2344 btrfs_err(fs_info, "failed to read log tree"); 2345 free_extent_buffer(log_tree_root->node); 2346 kfree(log_tree_root); 2347 return -EIO; 2348 } 2349 /* returns with log_tree_root freed on success */ 2350 ret = btrfs_recover_log_trees(log_tree_root); 2351 if (ret) { 2352 btrfs_handle_fs_error(fs_info, ret, 2353 "Failed to recover log tree"); 2354 free_extent_buffer(log_tree_root->node); 2355 kfree(log_tree_root); 2356 return ret; 2357 } 2358 2359 if (sb_rdonly(fs_info->sb)) { 2360 ret = btrfs_commit_super(fs_info); 2361 if (ret) 2362 return ret; 2363 } 2364 2365 return 0; 2366 } 2367 2368 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2369 { 2370 struct btrfs_root *tree_root = fs_info->tree_root; 2371 struct btrfs_root *root; 2372 struct btrfs_key location; 2373 int ret; 2374 2375 BUG_ON(!fs_info->tree_root); 2376 2377 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2378 location.type = BTRFS_ROOT_ITEM_KEY; 2379 location.offset = 0; 2380 2381 root = btrfs_read_tree_root(tree_root, &location); 2382 if (IS_ERR(root)) { 2383 ret = PTR_ERR(root); 2384 goto out; 2385 } 2386 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2387 fs_info->extent_root = root; 2388 2389 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2390 root = btrfs_read_tree_root(tree_root, &location); 2391 if (IS_ERR(root)) { 2392 ret = PTR_ERR(root); 2393 goto out; 2394 } 2395 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2396 fs_info->dev_root = root; 2397 btrfs_init_devices_late(fs_info); 2398 2399 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2400 root = btrfs_read_tree_root(tree_root, &location); 2401 if (IS_ERR(root)) { 2402 ret = PTR_ERR(root); 2403 goto out; 2404 } 2405 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2406 fs_info->csum_root = root; 2407 2408 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2409 root = btrfs_read_tree_root(tree_root, &location); 2410 if (!IS_ERR(root)) { 2411 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2412 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2413 fs_info->quota_root = root; 2414 } 2415 2416 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2417 root = btrfs_read_tree_root(tree_root, &location); 2418 if (IS_ERR(root)) { 2419 ret = PTR_ERR(root); 2420 if (ret != -ENOENT) 2421 goto out; 2422 } else { 2423 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2424 fs_info->uuid_root = root; 2425 } 2426 2427 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2428 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2429 root = btrfs_read_tree_root(tree_root, &location); 2430 if (IS_ERR(root)) { 2431 ret = PTR_ERR(root); 2432 goto out; 2433 } 2434 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2435 fs_info->free_space_root = root; 2436 } 2437 2438 return 0; 2439 out: 2440 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2441 location.objectid, ret); 2442 return ret; 2443 } 2444 2445 int open_ctree(struct super_block *sb, 2446 struct btrfs_fs_devices *fs_devices, 2447 char *options) 2448 { 2449 u32 sectorsize; 2450 u32 nodesize; 2451 u32 stripesize; 2452 u64 generation; 2453 u64 features; 2454 struct btrfs_key location; 2455 struct buffer_head *bh; 2456 struct btrfs_super_block *disk_super; 2457 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2458 struct btrfs_root *tree_root; 2459 struct btrfs_root *chunk_root; 2460 int ret; 2461 int err = -EINVAL; 2462 int num_backups_tried = 0; 2463 int backup_index = 0; 2464 int clear_free_space_tree = 0; 2465 int level; 2466 2467 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2468 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2469 if (!tree_root || !chunk_root) { 2470 err = -ENOMEM; 2471 goto fail; 2472 } 2473 2474 ret = init_srcu_struct(&fs_info->subvol_srcu); 2475 if (ret) { 2476 err = ret; 2477 goto fail; 2478 } 2479 2480 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2481 if (ret) { 2482 err = ret; 2483 goto fail_srcu; 2484 } 2485 fs_info->dirty_metadata_batch = PAGE_SIZE * 2486 (1 + ilog2(nr_cpu_ids)); 2487 2488 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2489 if (ret) { 2490 err = ret; 2491 goto fail_dirty_metadata_bytes; 2492 } 2493 2494 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL); 2495 if (ret) { 2496 err = ret; 2497 goto fail_delalloc_bytes; 2498 } 2499 2500 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2501 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2502 INIT_LIST_HEAD(&fs_info->trans_list); 2503 INIT_LIST_HEAD(&fs_info->dead_roots); 2504 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2505 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2506 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2507 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs); 2508 spin_lock_init(&fs_info->pending_raid_kobjs_lock); 2509 spin_lock_init(&fs_info->delalloc_root_lock); 2510 spin_lock_init(&fs_info->trans_lock); 2511 spin_lock_init(&fs_info->fs_roots_radix_lock); 2512 spin_lock_init(&fs_info->delayed_iput_lock); 2513 spin_lock_init(&fs_info->defrag_inodes_lock); 2514 spin_lock_init(&fs_info->tree_mod_seq_lock); 2515 spin_lock_init(&fs_info->super_lock); 2516 spin_lock_init(&fs_info->qgroup_op_lock); 2517 spin_lock_init(&fs_info->buffer_lock); 2518 spin_lock_init(&fs_info->unused_bgs_lock); 2519 rwlock_init(&fs_info->tree_mod_log_lock); 2520 mutex_init(&fs_info->unused_bg_unpin_mutex); 2521 mutex_init(&fs_info->delete_unused_bgs_mutex); 2522 mutex_init(&fs_info->reloc_mutex); 2523 mutex_init(&fs_info->delalloc_root_mutex); 2524 mutex_init(&fs_info->cleaner_delayed_iput_mutex); 2525 seqlock_init(&fs_info->profiles_lock); 2526 2527 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2528 INIT_LIST_HEAD(&fs_info->space_info); 2529 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2530 INIT_LIST_HEAD(&fs_info->unused_bgs); 2531 btrfs_mapping_init(&fs_info->mapping_tree); 2532 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2533 BTRFS_BLOCK_RSV_GLOBAL); 2534 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2535 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2536 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2537 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2538 BTRFS_BLOCK_RSV_DELOPS); 2539 atomic_set(&fs_info->async_delalloc_pages, 0); 2540 atomic_set(&fs_info->defrag_running, 0); 2541 atomic_set(&fs_info->qgroup_op_seq, 0); 2542 atomic_set(&fs_info->reada_works_cnt, 0); 2543 atomic64_set(&fs_info->tree_mod_seq, 0); 2544 fs_info->sb = sb; 2545 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2546 fs_info->metadata_ratio = 0; 2547 fs_info->defrag_inodes = RB_ROOT; 2548 atomic64_set(&fs_info->free_chunk_space, 0); 2549 fs_info->tree_mod_log = RB_ROOT; 2550 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2551 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2552 /* readahead state */ 2553 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2554 spin_lock_init(&fs_info->reada_lock); 2555 btrfs_init_ref_verify(fs_info); 2556 2557 fs_info->thread_pool_size = min_t(unsigned long, 2558 num_online_cpus() + 2, 8); 2559 2560 INIT_LIST_HEAD(&fs_info->ordered_roots); 2561 spin_lock_init(&fs_info->ordered_root_lock); 2562 2563 fs_info->btree_inode = new_inode(sb); 2564 if (!fs_info->btree_inode) { 2565 err = -ENOMEM; 2566 goto fail_bio_counter; 2567 } 2568 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2569 2570 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2571 GFP_KERNEL); 2572 if (!fs_info->delayed_root) { 2573 err = -ENOMEM; 2574 goto fail_iput; 2575 } 2576 btrfs_init_delayed_root(fs_info->delayed_root); 2577 2578 btrfs_init_scrub(fs_info); 2579 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2580 fs_info->check_integrity_print_mask = 0; 2581 #endif 2582 btrfs_init_balance(fs_info); 2583 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2584 2585 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2586 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2587 2588 btrfs_init_btree_inode(fs_info); 2589 2590 spin_lock_init(&fs_info->block_group_cache_lock); 2591 fs_info->block_group_cache_tree = RB_ROOT; 2592 fs_info->first_logical_byte = (u64)-1; 2593 2594 extent_io_tree_init(&fs_info->freed_extents[0], NULL); 2595 extent_io_tree_init(&fs_info->freed_extents[1], NULL); 2596 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2597 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2598 2599 mutex_init(&fs_info->ordered_operations_mutex); 2600 mutex_init(&fs_info->tree_log_mutex); 2601 mutex_init(&fs_info->chunk_mutex); 2602 mutex_init(&fs_info->transaction_kthread_mutex); 2603 mutex_init(&fs_info->cleaner_mutex); 2604 mutex_init(&fs_info->volume_mutex); 2605 mutex_init(&fs_info->ro_block_group_mutex); 2606 init_rwsem(&fs_info->commit_root_sem); 2607 init_rwsem(&fs_info->cleanup_work_sem); 2608 init_rwsem(&fs_info->subvol_sem); 2609 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2610 2611 btrfs_init_dev_replace_locks(fs_info); 2612 btrfs_init_qgroup(fs_info); 2613 2614 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2615 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2616 2617 init_waitqueue_head(&fs_info->transaction_throttle); 2618 init_waitqueue_head(&fs_info->transaction_wait); 2619 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2620 init_waitqueue_head(&fs_info->async_submit_wait); 2621 2622 INIT_LIST_HEAD(&fs_info->pinned_chunks); 2623 2624 /* Usable values until the real ones are cached from the superblock */ 2625 fs_info->nodesize = 4096; 2626 fs_info->sectorsize = 4096; 2627 fs_info->stripesize = 4096; 2628 2629 ret = btrfs_alloc_stripe_hash_table(fs_info); 2630 if (ret) { 2631 err = ret; 2632 goto fail_alloc; 2633 } 2634 2635 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 2636 2637 invalidate_bdev(fs_devices->latest_bdev); 2638 2639 /* 2640 * Read super block and check the signature bytes only 2641 */ 2642 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2643 if (IS_ERR(bh)) { 2644 err = PTR_ERR(bh); 2645 goto fail_alloc; 2646 } 2647 2648 /* 2649 * We want to check superblock checksum, the type is stored inside. 2650 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2651 */ 2652 if (btrfs_check_super_csum(fs_info, bh->b_data)) { 2653 btrfs_err(fs_info, "superblock checksum mismatch"); 2654 err = -EINVAL; 2655 brelse(bh); 2656 goto fail_alloc; 2657 } 2658 2659 /* 2660 * super_copy is zeroed at allocation time and we never touch the 2661 * following bytes up to INFO_SIZE, the checksum is calculated from 2662 * the whole block of INFO_SIZE 2663 */ 2664 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2665 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2666 sizeof(*fs_info->super_for_commit)); 2667 brelse(bh); 2668 2669 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2670 2671 ret = btrfs_check_super_valid(fs_info); 2672 if (ret) { 2673 btrfs_err(fs_info, "superblock contains fatal errors"); 2674 err = -EINVAL; 2675 goto fail_alloc; 2676 } 2677 2678 disk_super = fs_info->super_copy; 2679 if (!btrfs_super_root(disk_super)) 2680 goto fail_alloc; 2681 2682 /* check FS state, whether FS is broken. */ 2683 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2684 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2685 2686 /* 2687 * run through our array of backup supers and setup 2688 * our ring pointer to the oldest one 2689 */ 2690 generation = btrfs_super_generation(disk_super); 2691 find_oldest_super_backup(fs_info, generation); 2692 2693 /* 2694 * In the long term, we'll store the compression type in the super 2695 * block, and it'll be used for per file compression control. 2696 */ 2697 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2698 2699 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 2700 if (ret) { 2701 err = ret; 2702 goto fail_alloc; 2703 } 2704 2705 features = btrfs_super_incompat_flags(disk_super) & 2706 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2707 if (features) { 2708 btrfs_err(fs_info, 2709 "cannot mount because of unsupported optional features (%llx)", 2710 features); 2711 err = -EINVAL; 2712 goto fail_alloc; 2713 } 2714 2715 features = btrfs_super_incompat_flags(disk_super); 2716 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2717 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 2718 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2719 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 2720 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 2721 2722 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2723 btrfs_info(fs_info, "has skinny extents"); 2724 2725 /* 2726 * flag our filesystem as having big metadata blocks if 2727 * they are bigger than the page size 2728 */ 2729 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 2730 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2731 btrfs_info(fs_info, 2732 "flagging fs with big metadata feature"); 2733 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2734 } 2735 2736 nodesize = btrfs_super_nodesize(disk_super); 2737 sectorsize = btrfs_super_sectorsize(disk_super); 2738 stripesize = sectorsize; 2739 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2740 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2741 2742 /* Cache block sizes */ 2743 fs_info->nodesize = nodesize; 2744 fs_info->sectorsize = sectorsize; 2745 fs_info->stripesize = stripesize; 2746 2747 /* 2748 * mixed block groups end up with duplicate but slightly offset 2749 * extent buffers for the same range. It leads to corruptions 2750 */ 2751 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2752 (sectorsize != nodesize)) { 2753 btrfs_err(fs_info, 2754 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 2755 nodesize, sectorsize); 2756 goto fail_alloc; 2757 } 2758 2759 /* 2760 * Needn't use the lock because there is no other task which will 2761 * update the flag. 2762 */ 2763 btrfs_set_super_incompat_flags(disk_super, features); 2764 2765 features = btrfs_super_compat_ro_flags(disk_super) & 2766 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2767 if (!sb_rdonly(sb) && features) { 2768 btrfs_err(fs_info, 2769 "cannot mount read-write because of unsupported optional features (%llx)", 2770 features); 2771 err = -EINVAL; 2772 goto fail_alloc; 2773 } 2774 2775 ret = btrfs_init_workqueues(fs_info, fs_devices); 2776 if (ret) { 2777 err = ret; 2778 goto fail_sb_buffer; 2779 } 2780 2781 sb->s_bdi->congested_fn = btrfs_congested_fn; 2782 sb->s_bdi->congested_data = fs_info; 2783 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 2784 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE; 2785 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 2786 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 2787 2788 sb->s_blocksize = sectorsize; 2789 sb->s_blocksize_bits = blksize_bits(sectorsize); 2790 memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE); 2791 2792 mutex_lock(&fs_info->chunk_mutex); 2793 ret = btrfs_read_sys_array(fs_info); 2794 mutex_unlock(&fs_info->chunk_mutex); 2795 if (ret) { 2796 btrfs_err(fs_info, "failed to read the system array: %d", ret); 2797 goto fail_sb_buffer; 2798 } 2799 2800 generation = btrfs_super_chunk_root_generation(disk_super); 2801 level = btrfs_super_chunk_root_level(disk_super); 2802 2803 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2804 2805 chunk_root->node = read_tree_block(fs_info, 2806 btrfs_super_chunk_root(disk_super), 2807 generation, level, NULL); 2808 if (IS_ERR(chunk_root->node) || 2809 !extent_buffer_uptodate(chunk_root->node)) { 2810 btrfs_err(fs_info, "failed to read chunk root"); 2811 if (!IS_ERR(chunk_root->node)) 2812 free_extent_buffer(chunk_root->node); 2813 chunk_root->node = NULL; 2814 goto fail_tree_roots; 2815 } 2816 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2817 chunk_root->commit_root = btrfs_root_node(chunk_root); 2818 2819 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2820 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2821 2822 ret = btrfs_read_chunk_tree(fs_info); 2823 if (ret) { 2824 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 2825 goto fail_tree_roots; 2826 } 2827 2828 /* 2829 * Keep the devid that is marked to be the target device for the 2830 * device replace procedure 2831 */ 2832 btrfs_free_extra_devids(fs_devices, 0); 2833 2834 if (!fs_devices->latest_bdev) { 2835 btrfs_err(fs_info, "failed to read devices"); 2836 goto fail_tree_roots; 2837 } 2838 2839 retry_root_backup: 2840 generation = btrfs_super_generation(disk_super); 2841 level = btrfs_super_root_level(disk_super); 2842 2843 tree_root->node = read_tree_block(fs_info, 2844 btrfs_super_root(disk_super), 2845 generation, level, NULL); 2846 if (IS_ERR(tree_root->node) || 2847 !extent_buffer_uptodate(tree_root->node)) { 2848 btrfs_warn(fs_info, "failed to read tree root"); 2849 if (!IS_ERR(tree_root->node)) 2850 free_extent_buffer(tree_root->node); 2851 tree_root->node = NULL; 2852 goto recovery_tree_root; 2853 } 2854 2855 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2856 tree_root->commit_root = btrfs_root_node(tree_root); 2857 btrfs_set_root_refs(&tree_root->root_item, 1); 2858 2859 mutex_lock(&tree_root->objectid_mutex); 2860 ret = btrfs_find_highest_objectid(tree_root, 2861 &tree_root->highest_objectid); 2862 if (ret) { 2863 mutex_unlock(&tree_root->objectid_mutex); 2864 goto recovery_tree_root; 2865 } 2866 2867 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 2868 2869 mutex_unlock(&tree_root->objectid_mutex); 2870 2871 ret = btrfs_read_roots(fs_info); 2872 if (ret) 2873 goto recovery_tree_root; 2874 2875 fs_info->generation = generation; 2876 fs_info->last_trans_committed = generation; 2877 2878 ret = btrfs_recover_balance(fs_info); 2879 if (ret) { 2880 btrfs_err(fs_info, "failed to recover balance: %d", ret); 2881 goto fail_block_groups; 2882 } 2883 2884 ret = btrfs_init_dev_stats(fs_info); 2885 if (ret) { 2886 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 2887 goto fail_block_groups; 2888 } 2889 2890 ret = btrfs_init_dev_replace(fs_info); 2891 if (ret) { 2892 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 2893 goto fail_block_groups; 2894 } 2895 2896 btrfs_free_extra_devids(fs_devices, 1); 2897 2898 ret = btrfs_sysfs_add_fsid(fs_devices, NULL); 2899 if (ret) { 2900 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 2901 ret); 2902 goto fail_block_groups; 2903 } 2904 2905 ret = btrfs_sysfs_add_device(fs_devices); 2906 if (ret) { 2907 btrfs_err(fs_info, "failed to init sysfs device interface: %d", 2908 ret); 2909 goto fail_fsdev_sysfs; 2910 } 2911 2912 ret = btrfs_sysfs_add_mounted(fs_info); 2913 if (ret) { 2914 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 2915 goto fail_fsdev_sysfs; 2916 } 2917 2918 ret = btrfs_init_space_info(fs_info); 2919 if (ret) { 2920 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 2921 goto fail_sysfs; 2922 } 2923 2924 ret = btrfs_read_block_groups(fs_info); 2925 if (ret) { 2926 btrfs_err(fs_info, "failed to read block groups: %d", ret); 2927 goto fail_sysfs; 2928 } 2929 2930 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) { 2931 btrfs_warn(fs_info, 2932 "writeable mount is not allowed due to too many missing devices"); 2933 goto fail_sysfs; 2934 } 2935 2936 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2937 "btrfs-cleaner"); 2938 if (IS_ERR(fs_info->cleaner_kthread)) 2939 goto fail_sysfs; 2940 2941 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2942 tree_root, 2943 "btrfs-transaction"); 2944 if (IS_ERR(fs_info->transaction_kthread)) 2945 goto fail_cleaner; 2946 2947 if (!btrfs_test_opt(fs_info, NOSSD) && 2948 !fs_info->fs_devices->rotating) { 2949 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 2950 } 2951 2952 /* 2953 * Mount does not set all options immediately, we can do it now and do 2954 * not have to wait for transaction commit 2955 */ 2956 btrfs_apply_pending_changes(fs_info); 2957 2958 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2959 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 2960 ret = btrfsic_mount(fs_info, fs_devices, 2961 btrfs_test_opt(fs_info, 2962 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 2963 1 : 0, 2964 fs_info->check_integrity_print_mask); 2965 if (ret) 2966 btrfs_warn(fs_info, 2967 "failed to initialize integrity check module: %d", 2968 ret); 2969 } 2970 #endif 2971 ret = btrfs_read_qgroup_config(fs_info); 2972 if (ret) 2973 goto fail_trans_kthread; 2974 2975 if (btrfs_build_ref_tree(fs_info)) 2976 btrfs_err(fs_info, "couldn't build ref tree"); 2977 2978 /* do not make disk changes in broken FS or nologreplay is given */ 2979 if (btrfs_super_log_root(disk_super) != 0 && 2980 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 2981 ret = btrfs_replay_log(fs_info, fs_devices); 2982 if (ret) { 2983 err = ret; 2984 goto fail_qgroup; 2985 } 2986 } 2987 2988 ret = btrfs_find_orphan_roots(fs_info); 2989 if (ret) 2990 goto fail_qgroup; 2991 2992 if (!sb_rdonly(sb)) { 2993 ret = btrfs_cleanup_fs_roots(fs_info); 2994 if (ret) 2995 goto fail_qgroup; 2996 2997 mutex_lock(&fs_info->cleaner_mutex); 2998 ret = btrfs_recover_relocation(tree_root); 2999 mutex_unlock(&fs_info->cleaner_mutex); 3000 if (ret < 0) { 3001 btrfs_warn(fs_info, "failed to recover relocation: %d", 3002 ret); 3003 err = -EINVAL; 3004 goto fail_qgroup; 3005 } 3006 } 3007 3008 location.objectid = BTRFS_FS_TREE_OBJECTID; 3009 location.type = BTRFS_ROOT_ITEM_KEY; 3010 location.offset = 0; 3011 3012 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 3013 if (IS_ERR(fs_info->fs_root)) { 3014 err = PTR_ERR(fs_info->fs_root); 3015 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3016 goto fail_qgroup; 3017 } 3018 3019 if (sb_rdonly(sb)) 3020 return 0; 3021 3022 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3023 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3024 clear_free_space_tree = 1; 3025 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3026 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3027 btrfs_warn(fs_info, "free space tree is invalid"); 3028 clear_free_space_tree = 1; 3029 } 3030 3031 if (clear_free_space_tree) { 3032 btrfs_info(fs_info, "clearing free space tree"); 3033 ret = btrfs_clear_free_space_tree(fs_info); 3034 if (ret) { 3035 btrfs_warn(fs_info, 3036 "failed to clear free space tree: %d", ret); 3037 close_ctree(fs_info); 3038 return ret; 3039 } 3040 } 3041 3042 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3043 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3044 btrfs_info(fs_info, "creating free space tree"); 3045 ret = btrfs_create_free_space_tree(fs_info); 3046 if (ret) { 3047 btrfs_warn(fs_info, 3048 "failed to create free space tree: %d", ret); 3049 close_ctree(fs_info); 3050 return ret; 3051 } 3052 } 3053 3054 down_read(&fs_info->cleanup_work_sem); 3055 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3056 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3057 up_read(&fs_info->cleanup_work_sem); 3058 close_ctree(fs_info); 3059 return ret; 3060 } 3061 up_read(&fs_info->cleanup_work_sem); 3062 3063 ret = btrfs_resume_balance_async(fs_info); 3064 if (ret) { 3065 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3066 close_ctree(fs_info); 3067 return ret; 3068 } 3069 3070 ret = btrfs_resume_dev_replace_async(fs_info); 3071 if (ret) { 3072 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3073 close_ctree(fs_info); 3074 return ret; 3075 } 3076 3077 btrfs_qgroup_rescan_resume(fs_info); 3078 3079 if (!fs_info->uuid_root) { 3080 btrfs_info(fs_info, "creating UUID tree"); 3081 ret = btrfs_create_uuid_tree(fs_info); 3082 if (ret) { 3083 btrfs_warn(fs_info, 3084 "failed to create the UUID tree: %d", ret); 3085 close_ctree(fs_info); 3086 return ret; 3087 } 3088 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3089 fs_info->generation != 3090 btrfs_super_uuid_tree_generation(disk_super)) { 3091 btrfs_info(fs_info, "checking UUID tree"); 3092 ret = btrfs_check_uuid_tree(fs_info); 3093 if (ret) { 3094 btrfs_warn(fs_info, 3095 "failed to check the UUID tree: %d", ret); 3096 close_ctree(fs_info); 3097 return ret; 3098 } 3099 } else { 3100 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3101 } 3102 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3103 3104 /* 3105 * backuproot only affect mount behavior, and if open_ctree succeeded, 3106 * no need to keep the flag 3107 */ 3108 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3109 3110 return 0; 3111 3112 fail_qgroup: 3113 btrfs_free_qgroup_config(fs_info); 3114 fail_trans_kthread: 3115 kthread_stop(fs_info->transaction_kthread); 3116 btrfs_cleanup_transaction(fs_info); 3117 btrfs_free_fs_roots(fs_info); 3118 fail_cleaner: 3119 kthread_stop(fs_info->cleaner_kthread); 3120 3121 /* 3122 * make sure we're done with the btree inode before we stop our 3123 * kthreads 3124 */ 3125 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3126 3127 fail_sysfs: 3128 btrfs_sysfs_remove_mounted(fs_info); 3129 3130 fail_fsdev_sysfs: 3131 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3132 3133 fail_block_groups: 3134 btrfs_put_block_group_cache(fs_info); 3135 3136 fail_tree_roots: 3137 free_root_pointers(fs_info, 1); 3138 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3139 3140 fail_sb_buffer: 3141 btrfs_stop_all_workers(fs_info); 3142 btrfs_free_block_groups(fs_info); 3143 fail_alloc: 3144 fail_iput: 3145 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3146 3147 iput(fs_info->btree_inode); 3148 fail_bio_counter: 3149 percpu_counter_destroy(&fs_info->bio_counter); 3150 fail_delalloc_bytes: 3151 percpu_counter_destroy(&fs_info->delalloc_bytes); 3152 fail_dirty_metadata_bytes: 3153 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3154 fail_srcu: 3155 cleanup_srcu_struct(&fs_info->subvol_srcu); 3156 fail: 3157 btrfs_free_stripe_hash_table(fs_info); 3158 btrfs_close_devices(fs_info->fs_devices); 3159 return err; 3160 3161 recovery_tree_root: 3162 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 3163 goto fail_tree_roots; 3164 3165 free_root_pointers(fs_info, 0); 3166 3167 /* don't use the log in recovery mode, it won't be valid */ 3168 btrfs_set_super_log_root(disk_super, 0); 3169 3170 /* we can't trust the free space cache either */ 3171 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3172 3173 ret = next_root_backup(fs_info, fs_info->super_copy, 3174 &num_backups_tried, &backup_index); 3175 if (ret == -1) 3176 goto fail_block_groups; 3177 goto retry_root_backup; 3178 } 3179 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3180 3181 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3182 { 3183 if (uptodate) { 3184 set_buffer_uptodate(bh); 3185 } else { 3186 struct btrfs_device *device = (struct btrfs_device *) 3187 bh->b_private; 3188 3189 btrfs_warn_rl_in_rcu(device->fs_info, 3190 "lost page write due to IO error on %s", 3191 rcu_str_deref(device->name)); 3192 /* note, we don't set_buffer_write_io_error because we have 3193 * our own ways of dealing with the IO errors 3194 */ 3195 clear_buffer_uptodate(bh); 3196 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3197 } 3198 unlock_buffer(bh); 3199 put_bh(bh); 3200 } 3201 3202 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, 3203 struct buffer_head **bh_ret) 3204 { 3205 struct buffer_head *bh; 3206 struct btrfs_super_block *super; 3207 u64 bytenr; 3208 3209 bytenr = btrfs_sb_offset(copy_num); 3210 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3211 return -EINVAL; 3212 3213 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE); 3214 /* 3215 * If we fail to read from the underlying devices, as of now 3216 * the best option we have is to mark it EIO. 3217 */ 3218 if (!bh) 3219 return -EIO; 3220 3221 super = (struct btrfs_super_block *)bh->b_data; 3222 if (btrfs_super_bytenr(super) != bytenr || 3223 btrfs_super_magic(super) != BTRFS_MAGIC) { 3224 brelse(bh); 3225 return -EINVAL; 3226 } 3227 3228 *bh_ret = bh; 3229 return 0; 3230 } 3231 3232 3233 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3234 { 3235 struct buffer_head *bh; 3236 struct buffer_head *latest = NULL; 3237 struct btrfs_super_block *super; 3238 int i; 3239 u64 transid = 0; 3240 int ret = -EINVAL; 3241 3242 /* we would like to check all the supers, but that would make 3243 * a btrfs mount succeed after a mkfs from a different FS. 3244 * So, we need to add a special mount option to scan for 3245 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3246 */ 3247 for (i = 0; i < 1; i++) { 3248 ret = btrfs_read_dev_one_super(bdev, i, &bh); 3249 if (ret) 3250 continue; 3251 3252 super = (struct btrfs_super_block *)bh->b_data; 3253 3254 if (!latest || btrfs_super_generation(super) > transid) { 3255 brelse(latest); 3256 latest = bh; 3257 transid = btrfs_super_generation(super); 3258 } else { 3259 brelse(bh); 3260 } 3261 } 3262 3263 if (!latest) 3264 return ERR_PTR(ret); 3265 3266 return latest; 3267 } 3268 3269 /* 3270 * Write superblock @sb to the @device. Do not wait for completion, all the 3271 * buffer heads we write are pinned. 3272 * 3273 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3274 * the expected device size at commit time. Note that max_mirrors must be 3275 * same for write and wait phases. 3276 * 3277 * Return number of errors when buffer head is not found or submission fails. 3278 */ 3279 static int write_dev_supers(struct btrfs_device *device, 3280 struct btrfs_super_block *sb, int max_mirrors) 3281 { 3282 struct buffer_head *bh; 3283 int i; 3284 int ret; 3285 int errors = 0; 3286 u32 crc; 3287 u64 bytenr; 3288 int op_flags; 3289 3290 if (max_mirrors == 0) 3291 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3292 3293 for (i = 0; i < max_mirrors; i++) { 3294 bytenr = btrfs_sb_offset(i); 3295 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3296 device->commit_total_bytes) 3297 break; 3298 3299 btrfs_set_super_bytenr(sb, bytenr); 3300 3301 crc = ~(u32)0; 3302 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc, 3303 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 3304 btrfs_csum_final(crc, sb->csum); 3305 3306 /* One reference for us, and we leave it for the caller */ 3307 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, 3308 BTRFS_SUPER_INFO_SIZE); 3309 if (!bh) { 3310 btrfs_err(device->fs_info, 3311 "couldn't get super buffer head for bytenr %llu", 3312 bytenr); 3313 errors++; 3314 continue; 3315 } 3316 3317 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3318 3319 /* one reference for submit_bh */ 3320 get_bh(bh); 3321 3322 set_buffer_uptodate(bh); 3323 lock_buffer(bh); 3324 bh->b_end_io = btrfs_end_buffer_write_sync; 3325 bh->b_private = device; 3326 3327 /* 3328 * we fua the first super. The others we allow 3329 * to go down lazy. 3330 */ 3331 op_flags = REQ_SYNC | REQ_META | REQ_PRIO; 3332 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3333 op_flags |= REQ_FUA; 3334 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh); 3335 if (ret) 3336 errors++; 3337 } 3338 return errors < i ? 0 : -1; 3339 } 3340 3341 /* 3342 * Wait for write completion of superblocks done by write_dev_supers, 3343 * @max_mirrors same for write and wait phases. 3344 * 3345 * Return number of errors when buffer head is not found or not marked up to 3346 * date. 3347 */ 3348 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3349 { 3350 struct buffer_head *bh; 3351 int i; 3352 int errors = 0; 3353 bool primary_failed = false; 3354 u64 bytenr; 3355 3356 if (max_mirrors == 0) 3357 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3358 3359 for (i = 0; i < max_mirrors; i++) { 3360 bytenr = btrfs_sb_offset(i); 3361 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3362 device->commit_total_bytes) 3363 break; 3364 3365 bh = __find_get_block(device->bdev, 3366 bytenr / BTRFS_BDEV_BLOCKSIZE, 3367 BTRFS_SUPER_INFO_SIZE); 3368 if (!bh) { 3369 errors++; 3370 if (i == 0) 3371 primary_failed = true; 3372 continue; 3373 } 3374 wait_on_buffer(bh); 3375 if (!buffer_uptodate(bh)) { 3376 errors++; 3377 if (i == 0) 3378 primary_failed = true; 3379 } 3380 3381 /* drop our reference */ 3382 brelse(bh); 3383 3384 /* drop the reference from the writing run */ 3385 brelse(bh); 3386 } 3387 3388 /* log error, force error return */ 3389 if (primary_failed) { 3390 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3391 device->devid); 3392 return -1; 3393 } 3394 3395 return errors < i ? 0 : -1; 3396 } 3397 3398 /* 3399 * endio for the write_dev_flush, this will wake anyone waiting 3400 * for the barrier when it is done 3401 */ 3402 static void btrfs_end_empty_barrier(struct bio *bio) 3403 { 3404 complete(bio->bi_private); 3405 } 3406 3407 /* 3408 * Submit a flush request to the device if it supports it. Error handling is 3409 * done in the waiting counterpart. 3410 */ 3411 static void write_dev_flush(struct btrfs_device *device) 3412 { 3413 struct request_queue *q = bdev_get_queue(device->bdev); 3414 struct bio *bio = device->flush_bio; 3415 3416 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 3417 return; 3418 3419 bio_reset(bio); 3420 bio->bi_end_io = btrfs_end_empty_barrier; 3421 bio_set_dev(bio, device->bdev); 3422 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 3423 init_completion(&device->flush_wait); 3424 bio->bi_private = &device->flush_wait; 3425 3426 btrfsic_submit_bio(bio); 3427 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3428 } 3429 3430 /* 3431 * If the flush bio has been submitted by write_dev_flush, wait for it. 3432 */ 3433 static blk_status_t wait_dev_flush(struct btrfs_device *device) 3434 { 3435 struct bio *bio = device->flush_bio; 3436 3437 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3438 return BLK_STS_OK; 3439 3440 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3441 wait_for_completion_io(&device->flush_wait); 3442 3443 return bio->bi_status; 3444 } 3445 3446 static int check_barrier_error(struct btrfs_fs_info *fs_info) 3447 { 3448 if (!btrfs_check_rw_degradable(fs_info, NULL)) 3449 return -EIO; 3450 return 0; 3451 } 3452 3453 /* 3454 * send an empty flush down to each device in parallel, 3455 * then wait for them 3456 */ 3457 static int barrier_all_devices(struct btrfs_fs_info *info) 3458 { 3459 struct list_head *head; 3460 struct btrfs_device *dev; 3461 int errors_wait = 0; 3462 blk_status_t ret; 3463 3464 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3465 /* send down all the barriers */ 3466 head = &info->fs_devices->devices; 3467 list_for_each_entry(dev, head, dev_list) { 3468 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3469 continue; 3470 if (!dev->bdev) 3471 continue; 3472 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3473 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3474 continue; 3475 3476 write_dev_flush(dev); 3477 dev->last_flush_error = BLK_STS_OK; 3478 } 3479 3480 /* wait for all the barriers */ 3481 list_for_each_entry(dev, head, dev_list) { 3482 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3483 continue; 3484 if (!dev->bdev) { 3485 errors_wait++; 3486 continue; 3487 } 3488 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3489 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3490 continue; 3491 3492 ret = wait_dev_flush(dev); 3493 if (ret) { 3494 dev->last_flush_error = ret; 3495 btrfs_dev_stat_inc_and_print(dev, 3496 BTRFS_DEV_STAT_FLUSH_ERRS); 3497 errors_wait++; 3498 } 3499 } 3500 3501 if (errors_wait) { 3502 /* 3503 * At some point we need the status of all disks 3504 * to arrive at the volume status. So error checking 3505 * is being pushed to a separate loop. 3506 */ 3507 return check_barrier_error(info); 3508 } 3509 return 0; 3510 } 3511 3512 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3513 { 3514 int raid_type; 3515 int min_tolerated = INT_MAX; 3516 3517 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3518 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3519 min_tolerated = min(min_tolerated, 3520 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3521 tolerated_failures); 3522 3523 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3524 if (raid_type == BTRFS_RAID_SINGLE) 3525 continue; 3526 if (!(flags & btrfs_raid_group[raid_type])) 3527 continue; 3528 min_tolerated = min(min_tolerated, 3529 btrfs_raid_array[raid_type]. 3530 tolerated_failures); 3531 } 3532 3533 if (min_tolerated == INT_MAX) { 3534 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3535 min_tolerated = 0; 3536 } 3537 3538 return min_tolerated; 3539 } 3540 3541 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3542 { 3543 struct list_head *head; 3544 struct btrfs_device *dev; 3545 struct btrfs_super_block *sb; 3546 struct btrfs_dev_item *dev_item; 3547 int ret; 3548 int do_barriers; 3549 int max_errors; 3550 int total_errors = 0; 3551 u64 flags; 3552 3553 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 3554 3555 /* 3556 * max_mirrors == 0 indicates we're from commit_transaction, 3557 * not from fsync where the tree roots in fs_info have not 3558 * been consistent on disk. 3559 */ 3560 if (max_mirrors == 0) 3561 backup_super_roots(fs_info); 3562 3563 sb = fs_info->super_for_commit; 3564 dev_item = &sb->dev_item; 3565 3566 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3567 head = &fs_info->fs_devices->devices; 3568 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 3569 3570 if (do_barriers) { 3571 ret = barrier_all_devices(fs_info); 3572 if (ret) { 3573 mutex_unlock( 3574 &fs_info->fs_devices->device_list_mutex); 3575 btrfs_handle_fs_error(fs_info, ret, 3576 "errors while submitting device barriers."); 3577 return ret; 3578 } 3579 } 3580 3581 list_for_each_entry(dev, head, dev_list) { 3582 if (!dev->bdev) { 3583 total_errors++; 3584 continue; 3585 } 3586 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3587 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3588 continue; 3589 3590 btrfs_set_stack_device_generation(dev_item, 0); 3591 btrfs_set_stack_device_type(dev_item, dev->type); 3592 btrfs_set_stack_device_id(dev_item, dev->devid); 3593 btrfs_set_stack_device_total_bytes(dev_item, 3594 dev->commit_total_bytes); 3595 btrfs_set_stack_device_bytes_used(dev_item, 3596 dev->commit_bytes_used); 3597 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3598 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3599 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3600 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3601 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE); 3602 3603 flags = btrfs_super_flags(sb); 3604 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3605 3606 ret = write_dev_supers(dev, sb, max_mirrors); 3607 if (ret) 3608 total_errors++; 3609 } 3610 if (total_errors > max_errors) { 3611 btrfs_err(fs_info, "%d errors while writing supers", 3612 total_errors); 3613 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3614 3615 /* FUA is masked off if unsupported and can't be the reason */ 3616 btrfs_handle_fs_error(fs_info, -EIO, 3617 "%d errors while writing supers", 3618 total_errors); 3619 return -EIO; 3620 } 3621 3622 total_errors = 0; 3623 list_for_each_entry(dev, head, dev_list) { 3624 if (!dev->bdev) 3625 continue; 3626 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3627 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3628 continue; 3629 3630 ret = wait_dev_supers(dev, max_mirrors); 3631 if (ret) 3632 total_errors++; 3633 } 3634 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3635 if (total_errors > max_errors) { 3636 btrfs_handle_fs_error(fs_info, -EIO, 3637 "%d errors while writing supers", 3638 total_errors); 3639 return -EIO; 3640 } 3641 return 0; 3642 } 3643 3644 /* Drop a fs root from the radix tree and free it. */ 3645 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3646 struct btrfs_root *root) 3647 { 3648 spin_lock(&fs_info->fs_roots_radix_lock); 3649 radix_tree_delete(&fs_info->fs_roots_radix, 3650 (unsigned long)root->root_key.objectid); 3651 spin_unlock(&fs_info->fs_roots_radix_lock); 3652 3653 if (btrfs_root_refs(&root->root_item) == 0) 3654 synchronize_srcu(&fs_info->subvol_srcu); 3655 3656 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3657 btrfs_free_log(NULL, root); 3658 if (root->reloc_root) { 3659 free_extent_buffer(root->reloc_root->node); 3660 free_extent_buffer(root->reloc_root->commit_root); 3661 btrfs_put_fs_root(root->reloc_root); 3662 root->reloc_root = NULL; 3663 } 3664 } 3665 3666 if (root->free_ino_pinned) 3667 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3668 if (root->free_ino_ctl) 3669 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3670 free_fs_root(root); 3671 } 3672 3673 static void free_fs_root(struct btrfs_root *root) 3674 { 3675 iput(root->ino_cache_inode); 3676 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3677 btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv); 3678 root->orphan_block_rsv = NULL; 3679 if (root->anon_dev) 3680 free_anon_bdev(root->anon_dev); 3681 if (root->subv_writers) 3682 btrfs_free_subvolume_writers(root->subv_writers); 3683 free_extent_buffer(root->node); 3684 free_extent_buffer(root->commit_root); 3685 kfree(root->free_ino_ctl); 3686 kfree(root->free_ino_pinned); 3687 kfree(root->name); 3688 btrfs_put_fs_root(root); 3689 } 3690 3691 void btrfs_free_fs_root(struct btrfs_root *root) 3692 { 3693 free_fs_root(root); 3694 } 3695 3696 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3697 { 3698 u64 root_objectid = 0; 3699 struct btrfs_root *gang[8]; 3700 int i = 0; 3701 int err = 0; 3702 unsigned int ret = 0; 3703 int index; 3704 3705 while (1) { 3706 index = srcu_read_lock(&fs_info->subvol_srcu); 3707 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3708 (void **)gang, root_objectid, 3709 ARRAY_SIZE(gang)); 3710 if (!ret) { 3711 srcu_read_unlock(&fs_info->subvol_srcu, index); 3712 break; 3713 } 3714 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3715 3716 for (i = 0; i < ret; i++) { 3717 /* Avoid to grab roots in dead_roots */ 3718 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3719 gang[i] = NULL; 3720 continue; 3721 } 3722 /* grab all the search result for later use */ 3723 gang[i] = btrfs_grab_fs_root(gang[i]); 3724 } 3725 srcu_read_unlock(&fs_info->subvol_srcu, index); 3726 3727 for (i = 0; i < ret; i++) { 3728 if (!gang[i]) 3729 continue; 3730 root_objectid = gang[i]->root_key.objectid; 3731 err = btrfs_orphan_cleanup(gang[i]); 3732 if (err) 3733 break; 3734 btrfs_put_fs_root(gang[i]); 3735 } 3736 root_objectid++; 3737 } 3738 3739 /* release the uncleaned roots due to error */ 3740 for (; i < ret; i++) { 3741 if (gang[i]) 3742 btrfs_put_fs_root(gang[i]); 3743 } 3744 return err; 3745 } 3746 3747 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 3748 { 3749 struct btrfs_root *root = fs_info->tree_root; 3750 struct btrfs_trans_handle *trans; 3751 3752 mutex_lock(&fs_info->cleaner_mutex); 3753 btrfs_run_delayed_iputs(fs_info); 3754 mutex_unlock(&fs_info->cleaner_mutex); 3755 wake_up_process(fs_info->cleaner_kthread); 3756 3757 /* wait until ongoing cleanup work done */ 3758 down_write(&fs_info->cleanup_work_sem); 3759 up_write(&fs_info->cleanup_work_sem); 3760 3761 trans = btrfs_join_transaction(root); 3762 if (IS_ERR(trans)) 3763 return PTR_ERR(trans); 3764 return btrfs_commit_transaction(trans); 3765 } 3766 3767 void close_ctree(struct btrfs_fs_info *fs_info) 3768 { 3769 struct btrfs_root *root = fs_info->tree_root; 3770 int ret; 3771 3772 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 3773 3774 /* wait for the qgroup rescan worker to stop */ 3775 btrfs_qgroup_wait_for_completion(fs_info, false); 3776 3777 /* wait for the uuid_scan task to finish */ 3778 down(&fs_info->uuid_tree_rescan_sem); 3779 /* avoid complains from lockdep et al., set sem back to initial state */ 3780 up(&fs_info->uuid_tree_rescan_sem); 3781 3782 /* pause restriper - we want to resume on mount */ 3783 btrfs_pause_balance(fs_info); 3784 3785 btrfs_dev_replace_suspend_for_unmount(fs_info); 3786 3787 btrfs_scrub_cancel(fs_info); 3788 3789 /* wait for any defraggers to finish */ 3790 wait_event(fs_info->transaction_wait, 3791 (atomic_read(&fs_info->defrag_running) == 0)); 3792 3793 /* clear out the rbtree of defraggable inodes */ 3794 btrfs_cleanup_defrag_inodes(fs_info); 3795 3796 cancel_work_sync(&fs_info->async_reclaim_work); 3797 3798 if (!sb_rdonly(fs_info->sb)) { 3799 /* 3800 * If the cleaner thread is stopped and there are 3801 * block groups queued for removal, the deletion will be 3802 * skipped when we quit the cleaner thread. 3803 */ 3804 btrfs_delete_unused_bgs(fs_info); 3805 3806 ret = btrfs_commit_super(fs_info); 3807 if (ret) 3808 btrfs_err(fs_info, "commit super ret %d", ret); 3809 } 3810 3811 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) || 3812 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) 3813 btrfs_error_commit_super(fs_info); 3814 3815 kthread_stop(fs_info->transaction_kthread); 3816 kthread_stop(fs_info->cleaner_kthread); 3817 3818 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 3819 3820 btrfs_free_qgroup_config(fs_info); 3821 3822 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3823 btrfs_info(fs_info, "at unmount delalloc count %lld", 3824 percpu_counter_sum(&fs_info->delalloc_bytes)); 3825 } 3826 3827 btrfs_sysfs_remove_mounted(fs_info); 3828 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3829 3830 btrfs_free_fs_roots(fs_info); 3831 3832 btrfs_put_block_group_cache(fs_info); 3833 3834 /* 3835 * we must make sure there is not any read request to 3836 * submit after we stopping all workers. 3837 */ 3838 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3839 btrfs_stop_all_workers(fs_info); 3840 3841 btrfs_free_block_groups(fs_info); 3842 3843 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 3844 free_root_pointers(fs_info, 1); 3845 3846 iput(fs_info->btree_inode); 3847 3848 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3849 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 3850 btrfsic_unmount(fs_info->fs_devices); 3851 #endif 3852 3853 btrfs_close_devices(fs_info->fs_devices); 3854 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3855 3856 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3857 percpu_counter_destroy(&fs_info->delalloc_bytes); 3858 percpu_counter_destroy(&fs_info->bio_counter); 3859 cleanup_srcu_struct(&fs_info->subvol_srcu); 3860 3861 btrfs_free_stripe_hash_table(fs_info); 3862 btrfs_free_ref_cache(fs_info); 3863 3864 __btrfs_free_block_rsv(root->orphan_block_rsv); 3865 root->orphan_block_rsv = NULL; 3866 3867 while (!list_empty(&fs_info->pinned_chunks)) { 3868 struct extent_map *em; 3869 3870 em = list_first_entry(&fs_info->pinned_chunks, 3871 struct extent_map, list); 3872 list_del_init(&em->list); 3873 free_extent_map(em); 3874 } 3875 } 3876 3877 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 3878 int atomic) 3879 { 3880 int ret; 3881 struct inode *btree_inode = buf->pages[0]->mapping->host; 3882 3883 ret = extent_buffer_uptodate(buf); 3884 if (!ret) 3885 return ret; 3886 3887 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3888 parent_transid, atomic); 3889 if (ret == -EAGAIN) 3890 return ret; 3891 return !ret; 3892 } 3893 3894 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3895 { 3896 struct btrfs_fs_info *fs_info; 3897 struct btrfs_root *root; 3898 u64 transid = btrfs_header_generation(buf); 3899 int was_dirty; 3900 3901 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3902 /* 3903 * This is a fast path so only do this check if we have sanity tests 3904 * enabled. Normal people shouldn't be marking dummy buffers as dirty 3905 * outside of the sanity tests. 3906 */ 3907 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags))) 3908 return; 3909 #endif 3910 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3911 fs_info = root->fs_info; 3912 btrfs_assert_tree_locked(buf); 3913 if (transid != fs_info->generation) 3914 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 3915 buf->start, transid, fs_info->generation); 3916 was_dirty = set_extent_buffer_dirty(buf); 3917 if (!was_dirty) 3918 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 3919 buf->len, 3920 fs_info->dirty_metadata_batch); 3921 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3922 /* 3923 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 3924 * but item data not updated. 3925 * So here we should only check item pointers, not item data. 3926 */ 3927 if (btrfs_header_level(buf) == 0 && 3928 btrfs_check_leaf_relaxed(fs_info, buf)) { 3929 btrfs_print_leaf(buf); 3930 ASSERT(0); 3931 } 3932 #endif 3933 } 3934 3935 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 3936 int flush_delayed) 3937 { 3938 /* 3939 * looks as though older kernels can get into trouble with 3940 * this code, they end up stuck in balance_dirty_pages forever 3941 */ 3942 int ret; 3943 3944 if (current->flags & PF_MEMALLOC) 3945 return; 3946 3947 if (flush_delayed) 3948 btrfs_balance_delayed_items(fs_info); 3949 3950 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 3951 BTRFS_DIRTY_METADATA_THRESH); 3952 if (ret > 0) { 3953 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 3954 } 3955 } 3956 3957 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 3958 { 3959 __btrfs_btree_balance_dirty(fs_info, 1); 3960 } 3961 3962 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 3963 { 3964 __btrfs_btree_balance_dirty(fs_info, 0); 3965 } 3966 3967 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level, 3968 struct btrfs_key *first_key) 3969 { 3970 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3971 struct btrfs_fs_info *fs_info = root->fs_info; 3972 3973 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid, 3974 level, first_key); 3975 } 3976 3977 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info) 3978 { 3979 struct btrfs_super_block *sb = fs_info->super_copy; 3980 u64 nodesize = btrfs_super_nodesize(sb); 3981 u64 sectorsize = btrfs_super_sectorsize(sb); 3982 int ret = 0; 3983 3984 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 3985 btrfs_err(fs_info, "no valid FS found"); 3986 ret = -EINVAL; 3987 } 3988 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 3989 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 3990 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 3991 ret = -EINVAL; 3992 } 3993 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 3994 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 3995 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 3996 ret = -EINVAL; 3997 } 3998 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 3999 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 4000 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 4001 ret = -EINVAL; 4002 } 4003 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 4004 btrfs_err(fs_info, "log_root level too big: %d >= %d", 4005 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 4006 ret = -EINVAL; 4007 } 4008 4009 /* 4010 * Check sectorsize and nodesize first, other check will need it. 4011 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 4012 */ 4013 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 4014 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 4015 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 4016 ret = -EINVAL; 4017 } 4018 /* Only PAGE SIZE is supported yet */ 4019 if (sectorsize != PAGE_SIZE) { 4020 btrfs_err(fs_info, 4021 "sectorsize %llu not supported yet, only support %lu", 4022 sectorsize, PAGE_SIZE); 4023 ret = -EINVAL; 4024 } 4025 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 4026 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 4027 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 4028 ret = -EINVAL; 4029 } 4030 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 4031 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 4032 le32_to_cpu(sb->__unused_leafsize), nodesize); 4033 ret = -EINVAL; 4034 } 4035 4036 /* Root alignment check */ 4037 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 4038 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 4039 btrfs_super_root(sb)); 4040 ret = -EINVAL; 4041 } 4042 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 4043 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 4044 btrfs_super_chunk_root(sb)); 4045 ret = -EINVAL; 4046 } 4047 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 4048 btrfs_warn(fs_info, "log_root block unaligned: %llu", 4049 btrfs_super_log_root(sb)); 4050 ret = -EINVAL; 4051 } 4052 4053 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) { 4054 btrfs_err(fs_info, 4055 "dev_item UUID does not match fsid: %pU != %pU", 4056 fs_info->fsid, sb->dev_item.fsid); 4057 ret = -EINVAL; 4058 } 4059 4060 /* 4061 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 4062 * done later 4063 */ 4064 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 4065 btrfs_err(fs_info, "bytes_used is too small %llu", 4066 btrfs_super_bytes_used(sb)); 4067 ret = -EINVAL; 4068 } 4069 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 4070 btrfs_err(fs_info, "invalid stripesize %u", 4071 btrfs_super_stripesize(sb)); 4072 ret = -EINVAL; 4073 } 4074 if (btrfs_super_num_devices(sb) > (1UL << 31)) 4075 btrfs_warn(fs_info, "suspicious number of devices: %llu", 4076 btrfs_super_num_devices(sb)); 4077 if (btrfs_super_num_devices(sb) == 0) { 4078 btrfs_err(fs_info, "number of devices is 0"); 4079 ret = -EINVAL; 4080 } 4081 4082 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) { 4083 btrfs_err(fs_info, "super offset mismatch %llu != %u", 4084 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 4085 ret = -EINVAL; 4086 } 4087 4088 /* 4089 * Obvious sys_chunk_array corruptions, it must hold at least one key 4090 * and one chunk 4091 */ 4092 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4093 btrfs_err(fs_info, "system chunk array too big %u > %u", 4094 btrfs_super_sys_array_size(sb), 4095 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 4096 ret = -EINVAL; 4097 } 4098 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 4099 + sizeof(struct btrfs_chunk)) { 4100 btrfs_err(fs_info, "system chunk array too small %u < %zu", 4101 btrfs_super_sys_array_size(sb), 4102 sizeof(struct btrfs_disk_key) 4103 + sizeof(struct btrfs_chunk)); 4104 ret = -EINVAL; 4105 } 4106 4107 /* 4108 * The generation is a global counter, we'll trust it more than the others 4109 * but it's still possible that it's the one that's wrong. 4110 */ 4111 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 4112 btrfs_warn(fs_info, 4113 "suspicious: generation < chunk_root_generation: %llu < %llu", 4114 btrfs_super_generation(sb), 4115 btrfs_super_chunk_root_generation(sb)); 4116 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 4117 && btrfs_super_cache_generation(sb) != (u64)-1) 4118 btrfs_warn(fs_info, 4119 "suspicious: generation < cache_generation: %llu < %llu", 4120 btrfs_super_generation(sb), 4121 btrfs_super_cache_generation(sb)); 4122 4123 return ret; 4124 } 4125 4126 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4127 { 4128 mutex_lock(&fs_info->cleaner_mutex); 4129 btrfs_run_delayed_iputs(fs_info); 4130 mutex_unlock(&fs_info->cleaner_mutex); 4131 4132 down_write(&fs_info->cleanup_work_sem); 4133 up_write(&fs_info->cleanup_work_sem); 4134 4135 /* cleanup FS via transaction */ 4136 btrfs_cleanup_transaction(fs_info); 4137 } 4138 4139 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4140 { 4141 struct btrfs_ordered_extent *ordered; 4142 4143 spin_lock(&root->ordered_extent_lock); 4144 /* 4145 * This will just short circuit the ordered completion stuff which will 4146 * make sure the ordered extent gets properly cleaned up. 4147 */ 4148 list_for_each_entry(ordered, &root->ordered_extents, 4149 root_extent_list) 4150 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4151 spin_unlock(&root->ordered_extent_lock); 4152 } 4153 4154 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4155 { 4156 struct btrfs_root *root; 4157 struct list_head splice; 4158 4159 INIT_LIST_HEAD(&splice); 4160 4161 spin_lock(&fs_info->ordered_root_lock); 4162 list_splice_init(&fs_info->ordered_roots, &splice); 4163 while (!list_empty(&splice)) { 4164 root = list_first_entry(&splice, struct btrfs_root, 4165 ordered_root); 4166 list_move_tail(&root->ordered_root, 4167 &fs_info->ordered_roots); 4168 4169 spin_unlock(&fs_info->ordered_root_lock); 4170 btrfs_destroy_ordered_extents(root); 4171 4172 cond_resched(); 4173 spin_lock(&fs_info->ordered_root_lock); 4174 } 4175 spin_unlock(&fs_info->ordered_root_lock); 4176 } 4177 4178 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4179 struct btrfs_fs_info *fs_info) 4180 { 4181 struct rb_node *node; 4182 struct btrfs_delayed_ref_root *delayed_refs; 4183 struct btrfs_delayed_ref_node *ref; 4184 int ret = 0; 4185 4186 delayed_refs = &trans->delayed_refs; 4187 4188 spin_lock(&delayed_refs->lock); 4189 if (atomic_read(&delayed_refs->num_entries) == 0) { 4190 spin_unlock(&delayed_refs->lock); 4191 btrfs_info(fs_info, "delayed_refs has NO entry"); 4192 return ret; 4193 } 4194 4195 while ((node = rb_first(&delayed_refs->href_root)) != NULL) { 4196 struct btrfs_delayed_ref_head *head; 4197 struct rb_node *n; 4198 bool pin_bytes = false; 4199 4200 head = rb_entry(node, struct btrfs_delayed_ref_head, 4201 href_node); 4202 if (!mutex_trylock(&head->mutex)) { 4203 refcount_inc(&head->refs); 4204 spin_unlock(&delayed_refs->lock); 4205 4206 mutex_lock(&head->mutex); 4207 mutex_unlock(&head->mutex); 4208 btrfs_put_delayed_ref_head(head); 4209 spin_lock(&delayed_refs->lock); 4210 continue; 4211 } 4212 spin_lock(&head->lock); 4213 while ((n = rb_first(&head->ref_tree)) != NULL) { 4214 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4215 ref_node); 4216 ref->in_tree = 0; 4217 rb_erase(&ref->ref_node, &head->ref_tree); 4218 RB_CLEAR_NODE(&ref->ref_node); 4219 if (!list_empty(&ref->add_list)) 4220 list_del(&ref->add_list); 4221 atomic_dec(&delayed_refs->num_entries); 4222 btrfs_put_delayed_ref(ref); 4223 } 4224 if (head->must_insert_reserved) 4225 pin_bytes = true; 4226 btrfs_free_delayed_extent_op(head->extent_op); 4227 delayed_refs->num_heads--; 4228 if (head->processing == 0) 4229 delayed_refs->num_heads_ready--; 4230 atomic_dec(&delayed_refs->num_entries); 4231 rb_erase(&head->href_node, &delayed_refs->href_root); 4232 RB_CLEAR_NODE(&head->href_node); 4233 spin_unlock(&head->lock); 4234 spin_unlock(&delayed_refs->lock); 4235 mutex_unlock(&head->mutex); 4236 4237 if (pin_bytes) 4238 btrfs_pin_extent(fs_info, head->bytenr, 4239 head->num_bytes, 1); 4240 btrfs_put_delayed_ref_head(head); 4241 cond_resched(); 4242 spin_lock(&delayed_refs->lock); 4243 } 4244 4245 spin_unlock(&delayed_refs->lock); 4246 4247 return ret; 4248 } 4249 4250 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4251 { 4252 struct btrfs_inode *btrfs_inode; 4253 struct list_head splice; 4254 4255 INIT_LIST_HEAD(&splice); 4256 4257 spin_lock(&root->delalloc_lock); 4258 list_splice_init(&root->delalloc_inodes, &splice); 4259 4260 while (!list_empty(&splice)) { 4261 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4262 delalloc_inodes); 4263 4264 list_del_init(&btrfs_inode->delalloc_inodes); 4265 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 4266 &btrfs_inode->runtime_flags); 4267 spin_unlock(&root->delalloc_lock); 4268 4269 btrfs_invalidate_inodes(btrfs_inode->root); 4270 4271 spin_lock(&root->delalloc_lock); 4272 } 4273 4274 spin_unlock(&root->delalloc_lock); 4275 } 4276 4277 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4278 { 4279 struct btrfs_root *root; 4280 struct list_head splice; 4281 4282 INIT_LIST_HEAD(&splice); 4283 4284 spin_lock(&fs_info->delalloc_root_lock); 4285 list_splice_init(&fs_info->delalloc_roots, &splice); 4286 while (!list_empty(&splice)) { 4287 root = list_first_entry(&splice, struct btrfs_root, 4288 delalloc_root); 4289 list_del_init(&root->delalloc_root); 4290 root = btrfs_grab_fs_root(root); 4291 BUG_ON(!root); 4292 spin_unlock(&fs_info->delalloc_root_lock); 4293 4294 btrfs_destroy_delalloc_inodes(root); 4295 btrfs_put_fs_root(root); 4296 4297 spin_lock(&fs_info->delalloc_root_lock); 4298 } 4299 spin_unlock(&fs_info->delalloc_root_lock); 4300 } 4301 4302 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4303 struct extent_io_tree *dirty_pages, 4304 int mark) 4305 { 4306 int ret; 4307 struct extent_buffer *eb; 4308 u64 start = 0; 4309 u64 end; 4310 4311 while (1) { 4312 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4313 mark, NULL); 4314 if (ret) 4315 break; 4316 4317 clear_extent_bits(dirty_pages, start, end, mark); 4318 while (start <= end) { 4319 eb = find_extent_buffer(fs_info, start); 4320 start += fs_info->nodesize; 4321 if (!eb) 4322 continue; 4323 wait_on_extent_buffer_writeback(eb); 4324 4325 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4326 &eb->bflags)) 4327 clear_extent_buffer_dirty(eb); 4328 free_extent_buffer_stale(eb); 4329 } 4330 } 4331 4332 return ret; 4333 } 4334 4335 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4336 struct extent_io_tree *pinned_extents) 4337 { 4338 struct extent_io_tree *unpin; 4339 u64 start; 4340 u64 end; 4341 int ret; 4342 bool loop = true; 4343 4344 unpin = pinned_extents; 4345 again: 4346 while (1) { 4347 ret = find_first_extent_bit(unpin, 0, &start, &end, 4348 EXTENT_DIRTY, NULL); 4349 if (ret) 4350 break; 4351 4352 clear_extent_dirty(unpin, start, end); 4353 btrfs_error_unpin_extent_range(fs_info, start, end); 4354 cond_resched(); 4355 } 4356 4357 if (loop) { 4358 if (unpin == &fs_info->freed_extents[0]) 4359 unpin = &fs_info->freed_extents[1]; 4360 else 4361 unpin = &fs_info->freed_extents[0]; 4362 loop = false; 4363 goto again; 4364 } 4365 4366 return 0; 4367 } 4368 4369 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache) 4370 { 4371 struct inode *inode; 4372 4373 inode = cache->io_ctl.inode; 4374 if (inode) { 4375 invalidate_inode_pages2(inode->i_mapping); 4376 BTRFS_I(inode)->generation = 0; 4377 cache->io_ctl.inode = NULL; 4378 iput(inode); 4379 } 4380 btrfs_put_block_group(cache); 4381 } 4382 4383 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4384 struct btrfs_fs_info *fs_info) 4385 { 4386 struct btrfs_block_group_cache *cache; 4387 4388 spin_lock(&cur_trans->dirty_bgs_lock); 4389 while (!list_empty(&cur_trans->dirty_bgs)) { 4390 cache = list_first_entry(&cur_trans->dirty_bgs, 4391 struct btrfs_block_group_cache, 4392 dirty_list); 4393 4394 if (!list_empty(&cache->io_list)) { 4395 spin_unlock(&cur_trans->dirty_bgs_lock); 4396 list_del_init(&cache->io_list); 4397 btrfs_cleanup_bg_io(cache); 4398 spin_lock(&cur_trans->dirty_bgs_lock); 4399 } 4400 4401 list_del_init(&cache->dirty_list); 4402 spin_lock(&cache->lock); 4403 cache->disk_cache_state = BTRFS_DC_ERROR; 4404 spin_unlock(&cache->lock); 4405 4406 spin_unlock(&cur_trans->dirty_bgs_lock); 4407 btrfs_put_block_group(cache); 4408 spin_lock(&cur_trans->dirty_bgs_lock); 4409 } 4410 spin_unlock(&cur_trans->dirty_bgs_lock); 4411 4412 /* 4413 * Refer to the definition of io_bgs member for details why it's safe 4414 * to use it without any locking 4415 */ 4416 while (!list_empty(&cur_trans->io_bgs)) { 4417 cache = list_first_entry(&cur_trans->io_bgs, 4418 struct btrfs_block_group_cache, 4419 io_list); 4420 4421 list_del_init(&cache->io_list); 4422 spin_lock(&cache->lock); 4423 cache->disk_cache_state = BTRFS_DC_ERROR; 4424 spin_unlock(&cache->lock); 4425 btrfs_cleanup_bg_io(cache); 4426 } 4427 } 4428 4429 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4430 struct btrfs_fs_info *fs_info) 4431 { 4432 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4433 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4434 ASSERT(list_empty(&cur_trans->io_bgs)); 4435 4436 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4437 4438 cur_trans->state = TRANS_STATE_COMMIT_START; 4439 wake_up(&fs_info->transaction_blocked_wait); 4440 4441 cur_trans->state = TRANS_STATE_UNBLOCKED; 4442 wake_up(&fs_info->transaction_wait); 4443 4444 btrfs_destroy_delayed_inodes(fs_info); 4445 btrfs_assert_delayed_root_empty(fs_info); 4446 4447 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4448 EXTENT_DIRTY); 4449 btrfs_destroy_pinned_extent(fs_info, 4450 fs_info->pinned_extents); 4451 4452 cur_trans->state =TRANS_STATE_COMPLETED; 4453 wake_up(&cur_trans->commit_wait); 4454 } 4455 4456 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4457 { 4458 struct btrfs_transaction *t; 4459 4460 mutex_lock(&fs_info->transaction_kthread_mutex); 4461 4462 spin_lock(&fs_info->trans_lock); 4463 while (!list_empty(&fs_info->trans_list)) { 4464 t = list_first_entry(&fs_info->trans_list, 4465 struct btrfs_transaction, list); 4466 if (t->state >= TRANS_STATE_COMMIT_START) { 4467 refcount_inc(&t->use_count); 4468 spin_unlock(&fs_info->trans_lock); 4469 btrfs_wait_for_commit(fs_info, t->transid); 4470 btrfs_put_transaction(t); 4471 spin_lock(&fs_info->trans_lock); 4472 continue; 4473 } 4474 if (t == fs_info->running_transaction) { 4475 t->state = TRANS_STATE_COMMIT_DOING; 4476 spin_unlock(&fs_info->trans_lock); 4477 /* 4478 * We wait for 0 num_writers since we don't hold a trans 4479 * handle open currently for this transaction. 4480 */ 4481 wait_event(t->writer_wait, 4482 atomic_read(&t->num_writers) == 0); 4483 } else { 4484 spin_unlock(&fs_info->trans_lock); 4485 } 4486 btrfs_cleanup_one_transaction(t, fs_info); 4487 4488 spin_lock(&fs_info->trans_lock); 4489 if (t == fs_info->running_transaction) 4490 fs_info->running_transaction = NULL; 4491 list_del_init(&t->list); 4492 spin_unlock(&fs_info->trans_lock); 4493 4494 btrfs_put_transaction(t); 4495 trace_btrfs_transaction_commit(fs_info->tree_root); 4496 spin_lock(&fs_info->trans_lock); 4497 } 4498 spin_unlock(&fs_info->trans_lock); 4499 btrfs_destroy_all_ordered_extents(fs_info); 4500 btrfs_destroy_delayed_inodes(fs_info); 4501 btrfs_assert_delayed_root_empty(fs_info); 4502 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 4503 btrfs_destroy_all_delalloc_inodes(fs_info); 4504 mutex_unlock(&fs_info->transaction_kthread_mutex); 4505 4506 return 0; 4507 } 4508 4509 static struct btrfs_fs_info *btree_fs_info(void *private_data) 4510 { 4511 struct inode *inode = private_data; 4512 return btrfs_sb(inode->i_sb); 4513 } 4514 4515 static const struct extent_io_ops btree_extent_io_ops = { 4516 /* mandatory callbacks */ 4517 .submit_bio_hook = btree_submit_bio_hook, 4518 .readpage_end_io_hook = btree_readpage_end_io_hook, 4519 /* note we're sharing with inode.c for the merge bio hook */ 4520 .merge_bio_hook = btrfs_merge_bio_hook, 4521 .readpage_io_failed_hook = btree_io_failed_hook, 4522 .set_range_writeback = btrfs_set_range_writeback, 4523 .tree_fs_info = btree_fs_info, 4524 4525 /* optional callbacks */ 4526 }; 4527