1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/slab.h> 29 #include <linux/migrate.h> 30 #include <linux/ratelimit.h> 31 #include <linux/uuid.h> 32 #include <linux/semaphore.h> 33 #include <asm/unaligned.h> 34 #include "ctree.h" 35 #include "disk-io.h" 36 #include "hash.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "volumes.h" 40 #include "print-tree.h" 41 #include "locking.h" 42 #include "tree-log.h" 43 #include "free-space-cache.h" 44 #include "free-space-tree.h" 45 #include "inode-map.h" 46 #include "check-integrity.h" 47 #include "rcu-string.h" 48 #include "dev-replace.h" 49 #include "raid56.h" 50 #include "sysfs.h" 51 #include "qgroup.h" 52 #include "compression.h" 53 #include "tree-checker.h" 54 #include "ref-verify.h" 55 56 #ifdef CONFIG_X86 57 #include <asm/cpufeature.h> 58 #endif 59 60 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 61 BTRFS_HEADER_FLAG_RELOC |\ 62 BTRFS_SUPER_FLAG_ERROR |\ 63 BTRFS_SUPER_FLAG_SEEDING |\ 64 BTRFS_SUPER_FLAG_METADUMP) 65 66 static const struct extent_io_ops btree_extent_io_ops; 67 static void end_workqueue_fn(struct btrfs_work *work); 68 static void free_fs_root(struct btrfs_root *root); 69 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info); 70 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 71 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 72 struct btrfs_fs_info *fs_info); 73 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 74 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 75 struct extent_io_tree *dirty_pages, 76 int mark); 77 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 78 struct extent_io_tree *pinned_extents); 79 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 80 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 81 82 /* 83 * btrfs_end_io_wq structs are used to do processing in task context when an IO 84 * is complete. This is used during reads to verify checksums, and it is used 85 * by writes to insert metadata for new file extents after IO is complete. 86 */ 87 struct btrfs_end_io_wq { 88 struct bio *bio; 89 bio_end_io_t *end_io; 90 void *private; 91 struct btrfs_fs_info *info; 92 blk_status_t status; 93 enum btrfs_wq_endio_type metadata; 94 struct btrfs_work work; 95 }; 96 97 static struct kmem_cache *btrfs_end_io_wq_cache; 98 99 int __init btrfs_end_io_wq_init(void) 100 { 101 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 102 sizeof(struct btrfs_end_io_wq), 103 0, 104 SLAB_MEM_SPREAD, 105 NULL); 106 if (!btrfs_end_io_wq_cache) 107 return -ENOMEM; 108 return 0; 109 } 110 111 void btrfs_end_io_wq_exit(void) 112 { 113 kmem_cache_destroy(btrfs_end_io_wq_cache); 114 } 115 116 /* 117 * async submit bios are used to offload expensive checksumming 118 * onto the worker threads. They checksum file and metadata bios 119 * just before they are sent down the IO stack. 120 */ 121 struct async_submit_bio { 122 void *private_data; 123 struct btrfs_fs_info *fs_info; 124 struct bio *bio; 125 extent_submit_bio_hook_t *submit_bio_start; 126 extent_submit_bio_hook_t *submit_bio_done; 127 int mirror_num; 128 unsigned long bio_flags; 129 /* 130 * bio_offset is optional, can be used if the pages in the bio 131 * can't tell us where in the file the bio should go 132 */ 133 u64 bio_offset; 134 struct btrfs_work work; 135 blk_status_t status; 136 }; 137 138 /* 139 * Lockdep class keys for extent_buffer->lock's in this root. For a given 140 * eb, the lockdep key is determined by the btrfs_root it belongs to and 141 * the level the eb occupies in the tree. 142 * 143 * Different roots are used for different purposes and may nest inside each 144 * other and they require separate keysets. As lockdep keys should be 145 * static, assign keysets according to the purpose of the root as indicated 146 * by btrfs_root->objectid. This ensures that all special purpose roots 147 * have separate keysets. 148 * 149 * Lock-nesting across peer nodes is always done with the immediate parent 150 * node locked thus preventing deadlock. As lockdep doesn't know this, use 151 * subclass to avoid triggering lockdep warning in such cases. 152 * 153 * The key is set by the readpage_end_io_hook after the buffer has passed 154 * csum validation but before the pages are unlocked. It is also set by 155 * btrfs_init_new_buffer on freshly allocated blocks. 156 * 157 * We also add a check to make sure the highest level of the tree is the 158 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 159 * needs update as well. 160 */ 161 #ifdef CONFIG_DEBUG_LOCK_ALLOC 162 # if BTRFS_MAX_LEVEL != 8 163 # error 164 # endif 165 166 static struct btrfs_lockdep_keyset { 167 u64 id; /* root objectid */ 168 const char *name_stem; /* lock name stem */ 169 char names[BTRFS_MAX_LEVEL + 1][20]; 170 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 171 } btrfs_lockdep_keysets[] = { 172 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 173 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 174 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 175 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 176 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 177 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 178 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 179 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 180 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 181 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 182 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 183 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 184 { .id = 0, .name_stem = "tree" }, 185 }; 186 187 void __init btrfs_init_lockdep(void) 188 { 189 int i, j; 190 191 /* initialize lockdep class names */ 192 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 193 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 194 195 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 196 snprintf(ks->names[j], sizeof(ks->names[j]), 197 "btrfs-%s-%02d", ks->name_stem, j); 198 } 199 } 200 201 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 202 int level) 203 { 204 struct btrfs_lockdep_keyset *ks; 205 206 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 207 208 /* find the matching keyset, id 0 is the default entry */ 209 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 210 if (ks->id == objectid) 211 break; 212 213 lockdep_set_class_and_name(&eb->lock, 214 &ks->keys[level], ks->names[level]); 215 } 216 217 #endif 218 219 /* 220 * extents on the btree inode are pretty simple, there's one extent 221 * that covers the entire device 222 */ 223 static struct extent_map *btree_get_extent(struct btrfs_inode *inode, 224 struct page *page, size_t pg_offset, u64 start, u64 len, 225 int create) 226 { 227 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 228 struct extent_map_tree *em_tree = &inode->extent_tree; 229 struct extent_map *em; 230 int ret; 231 232 read_lock(&em_tree->lock); 233 em = lookup_extent_mapping(em_tree, start, len); 234 if (em) { 235 em->bdev = fs_info->fs_devices->latest_bdev; 236 read_unlock(&em_tree->lock); 237 goto out; 238 } 239 read_unlock(&em_tree->lock); 240 241 em = alloc_extent_map(); 242 if (!em) { 243 em = ERR_PTR(-ENOMEM); 244 goto out; 245 } 246 em->start = 0; 247 em->len = (u64)-1; 248 em->block_len = (u64)-1; 249 em->block_start = 0; 250 em->bdev = fs_info->fs_devices->latest_bdev; 251 252 write_lock(&em_tree->lock); 253 ret = add_extent_mapping(em_tree, em, 0); 254 if (ret == -EEXIST) { 255 free_extent_map(em); 256 em = lookup_extent_mapping(em_tree, start, len); 257 if (!em) 258 em = ERR_PTR(-EIO); 259 } else if (ret) { 260 free_extent_map(em); 261 em = ERR_PTR(ret); 262 } 263 write_unlock(&em_tree->lock); 264 265 out: 266 return em; 267 } 268 269 u32 btrfs_csum_data(const char *data, u32 seed, size_t len) 270 { 271 return btrfs_crc32c(seed, data, len); 272 } 273 274 void btrfs_csum_final(u32 crc, u8 *result) 275 { 276 put_unaligned_le32(~crc, result); 277 } 278 279 /* 280 * compute the csum for a btree block, and either verify it or write it 281 * into the csum field of the block. 282 */ 283 static int csum_tree_block(struct btrfs_fs_info *fs_info, 284 struct extent_buffer *buf, 285 int verify) 286 { 287 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 288 char *result = NULL; 289 unsigned long len; 290 unsigned long cur_len; 291 unsigned long offset = BTRFS_CSUM_SIZE; 292 char *kaddr; 293 unsigned long map_start; 294 unsigned long map_len; 295 int err; 296 u32 crc = ~(u32)0; 297 unsigned long inline_result; 298 299 len = buf->len - offset; 300 while (len > 0) { 301 err = map_private_extent_buffer(buf, offset, 32, 302 &kaddr, &map_start, &map_len); 303 if (err) 304 return err; 305 cur_len = min(len, map_len - (offset - map_start)); 306 crc = btrfs_csum_data(kaddr + offset - map_start, 307 crc, cur_len); 308 len -= cur_len; 309 offset += cur_len; 310 } 311 if (csum_size > sizeof(inline_result)) { 312 result = kzalloc(csum_size, GFP_NOFS); 313 if (!result) 314 return -ENOMEM; 315 } else { 316 result = (char *)&inline_result; 317 } 318 319 btrfs_csum_final(crc, result); 320 321 if (verify) { 322 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 323 u32 val; 324 u32 found = 0; 325 memcpy(&found, result, csum_size); 326 327 read_extent_buffer(buf, &val, 0, csum_size); 328 btrfs_warn_rl(fs_info, 329 "%s checksum verify failed on %llu wanted %X found %X level %d", 330 fs_info->sb->s_id, buf->start, 331 val, found, btrfs_header_level(buf)); 332 if (result != (char *)&inline_result) 333 kfree(result); 334 return -EUCLEAN; 335 } 336 } else { 337 write_extent_buffer(buf, result, 0, csum_size); 338 } 339 if (result != (char *)&inline_result) 340 kfree(result); 341 return 0; 342 } 343 344 /* 345 * we can't consider a given block up to date unless the transid of the 346 * block matches the transid in the parent node's pointer. This is how we 347 * detect blocks that either didn't get written at all or got written 348 * in the wrong place. 349 */ 350 static int verify_parent_transid(struct extent_io_tree *io_tree, 351 struct extent_buffer *eb, u64 parent_transid, 352 int atomic) 353 { 354 struct extent_state *cached_state = NULL; 355 int ret; 356 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 357 358 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 359 return 0; 360 361 if (atomic) 362 return -EAGAIN; 363 364 if (need_lock) { 365 btrfs_tree_read_lock(eb); 366 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 367 } 368 369 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 370 &cached_state); 371 if (extent_buffer_uptodate(eb) && 372 btrfs_header_generation(eb) == parent_transid) { 373 ret = 0; 374 goto out; 375 } 376 btrfs_err_rl(eb->fs_info, 377 "parent transid verify failed on %llu wanted %llu found %llu", 378 eb->start, 379 parent_transid, btrfs_header_generation(eb)); 380 ret = 1; 381 382 /* 383 * Things reading via commit roots that don't have normal protection, 384 * like send, can have a really old block in cache that may point at a 385 * block that has been freed and re-allocated. So don't clear uptodate 386 * if we find an eb that is under IO (dirty/writeback) because we could 387 * end up reading in the stale data and then writing it back out and 388 * making everybody very sad. 389 */ 390 if (!extent_buffer_under_io(eb)) 391 clear_extent_buffer_uptodate(eb); 392 out: 393 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 394 &cached_state, GFP_NOFS); 395 if (need_lock) 396 btrfs_tree_read_unlock_blocking(eb); 397 return ret; 398 } 399 400 /* 401 * Return 0 if the superblock checksum type matches the checksum value of that 402 * algorithm. Pass the raw disk superblock data. 403 */ 404 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 405 char *raw_disk_sb) 406 { 407 struct btrfs_super_block *disk_sb = 408 (struct btrfs_super_block *)raw_disk_sb; 409 u16 csum_type = btrfs_super_csum_type(disk_sb); 410 int ret = 0; 411 412 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 413 u32 crc = ~(u32)0; 414 const int csum_size = sizeof(crc); 415 char result[csum_size]; 416 417 /* 418 * The super_block structure does not span the whole 419 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 420 * is filled with zeros and is included in the checksum. 421 */ 422 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 423 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 424 btrfs_csum_final(crc, result); 425 426 if (memcmp(raw_disk_sb, result, csum_size)) 427 ret = 1; 428 } 429 430 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 431 btrfs_err(fs_info, "unsupported checksum algorithm %u", 432 csum_type); 433 ret = 1; 434 } 435 436 return ret; 437 } 438 439 /* 440 * helper to read a given tree block, doing retries as required when 441 * the checksums don't match and we have alternate mirrors to try. 442 */ 443 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info, 444 struct extent_buffer *eb, 445 u64 parent_transid) 446 { 447 struct extent_io_tree *io_tree; 448 int failed = 0; 449 int ret; 450 int num_copies = 0; 451 int mirror_num = 0; 452 int failed_mirror = 0; 453 454 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 455 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 456 while (1) { 457 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE, 458 btree_get_extent, mirror_num); 459 if (!ret) { 460 if (!verify_parent_transid(io_tree, eb, 461 parent_transid, 0)) 462 break; 463 else 464 ret = -EIO; 465 } 466 467 /* 468 * This buffer's crc is fine, but its contents are corrupted, so 469 * there is no reason to read the other copies, they won't be 470 * any less wrong. 471 */ 472 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 473 break; 474 475 num_copies = btrfs_num_copies(fs_info, 476 eb->start, eb->len); 477 if (num_copies == 1) 478 break; 479 480 if (!failed_mirror) { 481 failed = 1; 482 failed_mirror = eb->read_mirror; 483 } 484 485 mirror_num++; 486 if (mirror_num == failed_mirror) 487 mirror_num++; 488 489 if (mirror_num > num_copies) 490 break; 491 } 492 493 if (failed && !ret && failed_mirror) 494 repair_eb_io_failure(fs_info, eb, failed_mirror); 495 496 return ret; 497 } 498 499 /* 500 * checksum a dirty tree block before IO. This has extra checks to make sure 501 * we only fill in the checksum field in the first page of a multi-page block 502 */ 503 504 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 505 { 506 u64 start = page_offset(page); 507 u64 found_start; 508 struct extent_buffer *eb; 509 510 eb = (struct extent_buffer *)page->private; 511 if (page != eb->pages[0]) 512 return 0; 513 514 found_start = btrfs_header_bytenr(eb); 515 /* 516 * Please do not consolidate these warnings into a single if. 517 * It is useful to know what went wrong. 518 */ 519 if (WARN_ON(found_start != start)) 520 return -EUCLEAN; 521 if (WARN_ON(!PageUptodate(page))) 522 return -EUCLEAN; 523 524 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid, 525 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0); 526 527 return csum_tree_block(fs_info, eb, 0); 528 } 529 530 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info, 531 struct extent_buffer *eb) 532 { 533 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 534 u8 fsid[BTRFS_FSID_SIZE]; 535 int ret = 1; 536 537 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 538 while (fs_devices) { 539 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 540 ret = 0; 541 break; 542 } 543 fs_devices = fs_devices->seed; 544 } 545 return ret; 546 } 547 548 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 549 u64 phy_offset, struct page *page, 550 u64 start, u64 end, int mirror) 551 { 552 u64 found_start; 553 int found_level; 554 struct extent_buffer *eb; 555 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 556 struct btrfs_fs_info *fs_info = root->fs_info; 557 int ret = 0; 558 int reads_done; 559 560 if (!page->private) 561 goto out; 562 563 eb = (struct extent_buffer *)page->private; 564 565 /* the pending IO might have been the only thing that kept this buffer 566 * in memory. Make sure we have a ref for all this other checks 567 */ 568 extent_buffer_get(eb); 569 570 reads_done = atomic_dec_and_test(&eb->io_pages); 571 if (!reads_done) 572 goto err; 573 574 eb->read_mirror = mirror; 575 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 576 ret = -EIO; 577 goto err; 578 } 579 580 found_start = btrfs_header_bytenr(eb); 581 if (found_start != eb->start) { 582 btrfs_err_rl(fs_info, "bad tree block start %llu %llu", 583 found_start, eb->start); 584 ret = -EIO; 585 goto err; 586 } 587 if (check_tree_block_fsid(fs_info, eb)) { 588 btrfs_err_rl(fs_info, "bad fsid on block %llu", 589 eb->start); 590 ret = -EIO; 591 goto err; 592 } 593 found_level = btrfs_header_level(eb); 594 if (found_level >= BTRFS_MAX_LEVEL) { 595 btrfs_err(fs_info, "bad tree block level %d", 596 (int)btrfs_header_level(eb)); 597 ret = -EIO; 598 goto err; 599 } 600 601 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 602 eb, found_level); 603 604 ret = csum_tree_block(fs_info, eb, 1); 605 if (ret) 606 goto err; 607 608 /* 609 * If this is a leaf block and it is corrupt, set the corrupt bit so 610 * that we don't try and read the other copies of this block, just 611 * return -EIO. 612 */ 613 if (found_level == 0 && btrfs_check_leaf_full(root, eb)) { 614 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 615 ret = -EIO; 616 } 617 618 if (found_level > 0 && btrfs_check_node(root, eb)) 619 ret = -EIO; 620 621 if (!ret) 622 set_extent_buffer_uptodate(eb); 623 err: 624 if (reads_done && 625 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 626 btree_readahead_hook(eb, ret); 627 628 if (ret) { 629 /* 630 * our io error hook is going to dec the io pages 631 * again, we have to make sure it has something 632 * to decrement 633 */ 634 atomic_inc(&eb->io_pages); 635 clear_extent_buffer_uptodate(eb); 636 } 637 free_extent_buffer(eb); 638 out: 639 return ret; 640 } 641 642 static int btree_io_failed_hook(struct page *page, int failed_mirror) 643 { 644 struct extent_buffer *eb; 645 646 eb = (struct extent_buffer *)page->private; 647 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 648 eb->read_mirror = failed_mirror; 649 atomic_dec(&eb->io_pages); 650 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 651 btree_readahead_hook(eb, -EIO); 652 return -EIO; /* we fixed nothing */ 653 } 654 655 static void end_workqueue_bio(struct bio *bio) 656 { 657 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 658 struct btrfs_fs_info *fs_info; 659 struct btrfs_workqueue *wq; 660 btrfs_work_func_t func; 661 662 fs_info = end_io_wq->info; 663 end_io_wq->status = bio->bi_status; 664 665 if (bio_op(bio) == REQ_OP_WRITE) { 666 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 667 wq = fs_info->endio_meta_write_workers; 668 func = btrfs_endio_meta_write_helper; 669 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 670 wq = fs_info->endio_freespace_worker; 671 func = btrfs_freespace_write_helper; 672 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 673 wq = fs_info->endio_raid56_workers; 674 func = btrfs_endio_raid56_helper; 675 } else { 676 wq = fs_info->endio_write_workers; 677 func = btrfs_endio_write_helper; 678 } 679 } else { 680 if (unlikely(end_io_wq->metadata == 681 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 682 wq = fs_info->endio_repair_workers; 683 func = btrfs_endio_repair_helper; 684 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 685 wq = fs_info->endio_raid56_workers; 686 func = btrfs_endio_raid56_helper; 687 } else if (end_io_wq->metadata) { 688 wq = fs_info->endio_meta_workers; 689 func = btrfs_endio_meta_helper; 690 } else { 691 wq = fs_info->endio_workers; 692 func = btrfs_endio_helper; 693 } 694 } 695 696 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 697 btrfs_queue_work(wq, &end_io_wq->work); 698 } 699 700 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 701 enum btrfs_wq_endio_type metadata) 702 { 703 struct btrfs_end_io_wq *end_io_wq; 704 705 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 706 if (!end_io_wq) 707 return BLK_STS_RESOURCE; 708 709 end_io_wq->private = bio->bi_private; 710 end_io_wq->end_io = bio->bi_end_io; 711 end_io_wq->info = info; 712 end_io_wq->status = 0; 713 end_io_wq->bio = bio; 714 end_io_wq->metadata = metadata; 715 716 bio->bi_private = end_io_wq; 717 bio->bi_end_io = end_workqueue_bio; 718 return 0; 719 } 720 721 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 722 { 723 unsigned long limit = min_t(unsigned long, 724 info->thread_pool_size, 725 info->fs_devices->open_devices); 726 return 256 * limit; 727 } 728 729 static void run_one_async_start(struct btrfs_work *work) 730 { 731 struct async_submit_bio *async; 732 blk_status_t ret; 733 734 async = container_of(work, struct async_submit_bio, work); 735 ret = async->submit_bio_start(async->private_data, async->bio, 736 async->mirror_num, async->bio_flags, 737 async->bio_offset); 738 if (ret) 739 async->status = ret; 740 } 741 742 static void run_one_async_done(struct btrfs_work *work) 743 { 744 struct async_submit_bio *async; 745 746 async = container_of(work, struct async_submit_bio, work); 747 748 /* If an error occurred we just want to clean up the bio and move on */ 749 if (async->status) { 750 async->bio->bi_status = async->status; 751 bio_endio(async->bio); 752 return; 753 } 754 755 async->submit_bio_done(async->private_data, async->bio, async->mirror_num, 756 async->bio_flags, async->bio_offset); 757 } 758 759 static void run_one_async_free(struct btrfs_work *work) 760 { 761 struct async_submit_bio *async; 762 763 async = container_of(work, struct async_submit_bio, work); 764 kfree(async); 765 } 766 767 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 768 int mirror_num, unsigned long bio_flags, 769 u64 bio_offset, void *private_data, 770 extent_submit_bio_hook_t *submit_bio_start, 771 extent_submit_bio_hook_t *submit_bio_done) 772 { 773 struct async_submit_bio *async; 774 775 async = kmalloc(sizeof(*async), GFP_NOFS); 776 if (!async) 777 return BLK_STS_RESOURCE; 778 779 async->private_data = private_data; 780 async->fs_info = fs_info; 781 async->bio = bio; 782 async->mirror_num = mirror_num; 783 async->submit_bio_start = submit_bio_start; 784 async->submit_bio_done = submit_bio_done; 785 786 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 787 run_one_async_done, run_one_async_free); 788 789 async->bio_flags = bio_flags; 790 async->bio_offset = bio_offset; 791 792 async->status = 0; 793 794 if (op_is_sync(bio->bi_opf)) 795 btrfs_set_work_high_priority(&async->work); 796 797 btrfs_queue_work(fs_info->workers, &async->work); 798 return 0; 799 } 800 801 static blk_status_t btree_csum_one_bio(struct bio *bio) 802 { 803 struct bio_vec *bvec; 804 struct btrfs_root *root; 805 int i, ret = 0; 806 807 ASSERT(!bio_flagged(bio, BIO_CLONED)); 808 bio_for_each_segment_all(bvec, bio, i) { 809 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 810 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 811 if (ret) 812 break; 813 } 814 815 return errno_to_blk_status(ret); 816 } 817 818 static blk_status_t __btree_submit_bio_start(void *private_data, struct bio *bio, 819 int mirror_num, unsigned long bio_flags, 820 u64 bio_offset) 821 { 822 /* 823 * when we're called for a write, we're already in the async 824 * submission context. Just jump into btrfs_map_bio 825 */ 826 return btree_csum_one_bio(bio); 827 } 828 829 static blk_status_t __btree_submit_bio_done(void *private_data, struct bio *bio, 830 int mirror_num, unsigned long bio_flags, 831 u64 bio_offset) 832 { 833 struct inode *inode = private_data; 834 blk_status_t ret; 835 836 /* 837 * when we're called for a write, we're already in the async 838 * submission context. Just jump into btrfs_map_bio 839 */ 840 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1); 841 if (ret) { 842 bio->bi_status = ret; 843 bio_endio(bio); 844 } 845 return ret; 846 } 847 848 static int check_async_write(struct btrfs_inode *bi) 849 { 850 if (atomic_read(&bi->sync_writers)) 851 return 0; 852 #ifdef CONFIG_X86 853 if (static_cpu_has(X86_FEATURE_XMM4_2)) 854 return 0; 855 #endif 856 return 1; 857 } 858 859 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio, 860 int mirror_num, unsigned long bio_flags, 861 u64 bio_offset) 862 { 863 struct inode *inode = private_data; 864 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 865 int async = check_async_write(BTRFS_I(inode)); 866 blk_status_t ret; 867 868 if (bio_op(bio) != REQ_OP_WRITE) { 869 /* 870 * called for a read, do the setup so that checksum validation 871 * can happen in the async kernel threads 872 */ 873 ret = btrfs_bio_wq_end_io(fs_info, bio, 874 BTRFS_WQ_ENDIO_METADATA); 875 if (ret) 876 goto out_w_error; 877 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 878 } else if (!async) { 879 ret = btree_csum_one_bio(bio); 880 if (ret) 881 goto out_w_error; 882 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 883 } else { 884 /* 885 * kthread helpers are used to submit writes so that 886 * checksumming can happen in parallel across all CPUs 887 */ 888 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0, 889 bio_offset, private_data, 890 __btree_submit_bio_start, 891 __btree_submit_bio_done); 892 } 893 894 if (ret) 895 goto out_w_error; 896 return 0; 897 898 out_w_error: 899 bio->bi_status = ret; 900 bio_endio(bio); 901 return ret; 902 } 903 904 #ifdef CONFIG_MIGRATION 905 static int btree_migratepage(struct address_space *mapping, 906 struct page *newpage, struct page *page, 907 enum migrate_mode mode) 908 { 909 /* 910 * we can't safely write a btree page from here, 911 * we haven't done the locking hook 912 */ 913 if (PageDirty(page)) 914 return -EAGAIN; 915 /* 916 * Buffers may be managed in a filesystem specific way. 917 * We must have no buffers or drop them. 918 */ 919 if (page_has_private(page) && 920 !try_to_release_page(page, GFP_KERNEL)) 921 return -EAGAIN; 922 return migrate_page(mapping, newpage, page, mode); 923 } 924 #endif 925 926 927 static int btree_writepages(struct address_space *mapping, 928 struct writeback_control *wbc) 929 { 930 struct btrfs_fs_info *fs_info; 931 int ret; 932 933 if (wbc->sync_mode == WB_SYNC_NONE) { 934 935 if (wbc->for_kupdate) 936 return 0; 937 938 fs_info = BTRFS_I(mapping->host)->root->fs_info; 939 /* this is a bit racy, but that's ok */ 940 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 941 BTRFS_DIRTY_METADATA_THRESH); 942 if (ret < 0) 943 return 0; 944 } 945 return btree_write_cache_pages(mapping, wbc); 946 } 947 948 static int btree_readpage(struct file *file, struct page *page) 949 { 950 struct extent_io_tree *tree; 951 tree = &BTRFS_I(page->mapping->host)->io_tree; 952 return extent_read_full_page(tree, page, btree_get_extent, 0); 953 } 954 955 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 956 { 957 if (PageWriteback(page) || PageDirty(page)) 958 return 0; 959 960 return try_release_extent_buffer(page); 961 } 962 963 static void btree_invalidatepage(struct page *page, unsigned int offset, 964 unsigned int length) 965 { 966 struct extent_io_tree *tree; 967 tree = &BTRFS_I(page->mapping->host)->io_tree; 968 extent_invalidatepage(tree, page, offset); 969 btree_releasepage(page, GFP_NOFS); 970 if (PagePrivate(page)) { 971 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 972 "page private not zero on page %llu", 973 (unsigned long long)page_offset(page)); 974 ClearPagePrivate(page); 975 set_page_private(page, 0); 976 put_page(page); 977 } 978 } 979 980 static int btree_set_page_dirty(struct page *page) 981 { 982 #ifdef DEBUG 983 struct extent_buffer *eb; 984 985 BUG_ON(!PagePrivate(page)); 986 eb = (struct extent_buffer *)page->private; 987 BUG_ON(!eb); 988 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 989 BUG_ON(!atomic_read(&eb->refs)); 990 btrfs_assert_tree_locked(eb); 991 #endif 992 return __set_page_dirty_nobuffers(page); 993 } 994 995 static const struct address_space_operations btree_aops = { 996 .readpage = btree_readpage, 997 .writepages = btree_writepages, 998 .releasepage = btree_releasepage, 999 .invalidatepage = btree_invalidatepage, 1000 #ifdef CONFIG_MIGRATION 1001 .migratepage = btree_migratepage, 1002 #endif 1003 .set_page_dirty = btree_set_page_dirty, 1004 }; 1005 1006 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr) 1007 { 1008 struct extent_buffer *buf = NULL; 1009 struct inode *btree_inode = fs_info->btree_inode; 1010 1011 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1012 if (IS_ERR(buf)) 1013 return; 1014 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1015 buf, WAIT_NONE, btree_get_extent, 0); 1016 free_extent_buffer(buf); 1017 } 1018 1019 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr, 1020 int mirror_num, struct extent_buffer **eb) 1021 { 1022 struct extent_buffer *buf = NULL; 1023 struct inode *btree_inode = fs_info->btree_inode; 1024 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1025 int ret; 1026 1027 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1028 if (IS_ERR(buf)) 1029 return 0; 1030 1031 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1032 1033 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK, 1034 btree_get_extent, mirror_num); 1035 if (ret) { 1036 free_extent_buffer(buf); 1037 return ret; 1038 } 1039 1040 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1041 free_extent_buffer(buf); 1042 return -EIO; 1043 } else if (extent_buffer_uptodate(buf)) { 1044 *eb = buf; 1045 } else { 1046 free_extent_buffer(buf); 1047 } 1048 return 0; 1049 } 1050 1051 struct extent_buffer *btrfs_find_create_tree_block( 1052 struct btrfs_fs_info *fs_info, 1053 u64 bytenr) 1054 { 1055 if (btrfs_is_testing(fs_info)) 1056 return alloc_test_extent_buffer(fs_info, bytenr); 1057 return alloc_extent_buffer(fs_info, bytenr); 1058 } 1059 1060 1061 int btrfs_write_tree_block(struct extent_buffer *buf) 1062 { 1063 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1064 buf->start + buf->len - 1); 1065 } 1066 1067 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1068 { 1069 filemap_fdatawait_range(buf->pages[0]->mapping, 1070 buf->start, buf->start + buf->len - 1); 1071 } 1072 1073 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 1074 u64 parent_transid) 1075 { 1076 struct extent_buffer *buf = NULL; 1077 int ret; 1078 1079 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1080 if (IS_ERR(buf)) 1081 return buf; 1082 1083 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid); 1084 if (ret) { 1085 free_extent_buffer(buf); 1086 return ERR_PTR(ret); 1087 } 1088 return buf; 1089 1090 } 1091 1092 void clean_tree_block(struct btrfs_fs_info *fs_info, 1093 struct extent_buffer *buf) 1094 { 1095 if (btrfs_header_generation(buf) == 1096 fs_info->running_transaction->transid) { 1097 btrfs_assert_tree_locked(buf); 1098 1099 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1100 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1101 -buf->len, 1102 fs_info->dirty_metadata_batch); 1103 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1104 btrfs_set_lock_blocking(buf); 1105 clear_extent_buffer_dirty(buf); 1106 } 1107 } 1108 } 1109 1110 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1111 { 1112 struct btrfs_subvolume_writers *writers; 1113 int ret; 1114 1115 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1116 if (!writers) 1117 return ERR_PTR(-ENOMEM); 1118 1119 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL); 1120 if (ret < 0) { 1121 kfree(writers); 1122 return ERR_PTR(ret); 1123 } 1124 1125 init_waitqueue_head(&writers->wait); 1126 return writers; 1127 } 1128 1129 static void 1130 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1131 { 1132 percpu_counter_destroy(&writers->counter); 1133 kfree(writers); 1134 } 1135 1136 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1137 u64 objectid) 1138 { 1139 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1140 root->node = NULL; 1141 root->commit_root = NULL; 1142 root->state = 0; 1143 root->orphan_cleanup_state = 0; 1144 1145 root->objectid = objectid; 1146 root->last_trans = 0; 1147 root->highest_objectid = 0; 1148 root->nr_delalloc_inodes = 0; 1149 root->nr_ordered_extents = 0; 1150 root->name = NULL; 1151 root->inode_tree = RB_ROOT; 1152 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1153 root->block_rsv = NULL; 1154 root->orphan_block_rsv = NULL; 1155 1156 INIT_LIST_HEAD(&root->dirty_list); 1157 INIT_LIST_HEAD(&root->root_list); 1158 INIT_LIST_HEAD(&root->delalloc_inodes); 1159 INIT_LIST_HEAD(&root->delalloc_root); 1160 INIT_LIST_HEAD(&root->ordered_extents); 1161 INIT_LIST_HEAD(&root->ordered_root); 1162 INIT_LIST_HEAD(&root->logged_list[0]); 1163 INIT_LIST_HEAD(&root->logged_list[1]); 1164 spin_lock_init(&root->orphan_lock); 1165 spin_lock_init(&root->inode_lock); 1166 spin_lock_init(&root->delalloc_lock); 1167 spin_lock_init(&root->ordered_extent_lock); 1168 spin_lock_init(&root->accounting_lock); 1169 spin_lock_init(&root->log_extents_lock[0]); 1170 spin_lock_init(&root->log_extents_lock[1]); 1171 mutex_init(&root->objectid_mutex); 1172 mutex_init(&root->log_mutex); 1173 mutex_init(&root->ordered_extent_mutex); 1174 mutex_init(&root->delalloc_mutex); 1175 init_waitqueue_head(&root->log_writer_wait); 1176 init_waitqueue_head(&root->log_commit_wait[0]); 1177 init_waitqueue_head(&root->log_commit_wait[1]); 1178 INIT_LIST_HEAD(&root->log_ctxs[0]); 1179 INIT_LIST_HEAD(&root->log_ctxs[1]); 1180 atomic_set(&root->log_commit[0], 0); 1181 atomic_set(&root->log_commit[1], 0); 1182 atomic_set(&root->log_writers, 0); 1183 atomic_set(&root->log_batch, 0); 1184 atomic_set(&root->orphan_inodes, 0); 1185 refcount_set(&root->refs, 1); 1186 atomic_set(&root->will_be_snapshotted, 0); 1187 atomic64_set(&root->qgroup_meta_rsv, 0); 1188 root->log_transid = 0; 1189 root->log_transid_committed = -1; 1190 root->last_log_commit = 0; 1191 if (!dummy) 1192 extent_io_tree_init(&root->dirty_log_pages, NULL); 1193 1194 memset(&root->root_key, 0, sizeof(root->root_key)); 1195 memset(&root->root_item, 0, sizeof(root->root_item)); 1196 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1197 if (!dummy) 1198 root->defrag_trans_start = fs_info->generation; 1199 else 1200 root->defrag_trans_start = 0; 1201 root->root_key.objectid = objectid; 1202 root->anon_dev = 0; 1203 1204 spin_lock_init(&root->root_item_lock); 1205 } 1206 1207 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1208 gfp_t flags) 1209 { 1210 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1211 if (root) 1212 root->fs_info = fs_info; 1213 return root; 1214 } 1215 1216 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1217 /* Should only be used by the testing infrastructure */ 1218 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1219 { 1220 struct btrfs_root *root; 1221 1222 if (!fs_info) 1223 return ERR_PTR(-EINVAL); 1224 1225 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1226 if (!root) 1227 return ERR_PTR(-ENOMEM); 1228 1229 /* We don't use the stripesize in selftest, set it as sectorsize */ 1230 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 1231 root->alloc_bytenr = 0; 1232 1233 return root; 1234 } 1235 #endif 1236 1237 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1238 struct btrfs_fs_info *fs_info, 1239 u64 objectid) 1240 { 1241 struct extent_buffer *leaf; 1242 struct btrfs_root *tree_root = fs_info->tree_root; 1243 struct btrfs_root *root; 1244 struct btrfs_key key; 1245 int ret = 0; 1246 uuid_le uuid; 1247 1248 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1249 if (!root) 1250 return ERR_PTR(-ENOMEM); 1251 1252 __setup_root(root, fs_info, objectid); 1253 root->root_key.objectid = objectid; 1254 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1255 root->root_key.offset = 0; 1256 1257 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1258 if (IS_ERR(leaf)) { 1259 ret = PTR_ERR(leaf); 1260 leaf = NULL; 1261 goto fail; 1262 } 1263 1264 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header)); 1265 btrfs_set_header_bytenr(leaf, leaf->start); 1266 btrfs_set_header_generation(leaf, trans->transid); 1267 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1268 btrfs_set_header_owner(leaf, objectid); 1269 root->node = leaf; 1270 1271 write_extent_buffer_fsid(leaf, fs_info->fsid); 1272 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid); 1273 btrfs_mark_buffer_dirty(leaf); 1274 1275 root->commit_root = btrfs_root_node(root); 1276 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1277 1278 root->root_item.flags = 0; 1279 root->root_item.byte_limit = 0; 1280 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1281 btrfs_set_root_generation(&root->root_item, trans->transid); 1282 btrfs_set_root_level(&root->root_item, 0); 1283 btrfs_set_root_refs(&root->root_item, 1); 1284 btrfs_set_root_used(&root->root_item, leaf->len); 1285 btrfs_set_root_last_snapshot(&root->root_item, 0); 1286 btrfs_set_root_dirid(&root->root_item, 0); 1287 uuid_le_gen(&uuid); 1288 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1289 root->root_item.drop_level = 0; 1290 1291 key.objectid = objectid; 1292 key.type = BTRFS_ROOT_ITEM_KEY; 1293 key.offset = 0; 1294 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1295 if (ret) 1296 goto fail; 1297 1298 btrfs_tree_unlock(leaf); 1299 1300 return root; 1301 1302 fail: 1303 if (leaf) { 1304 btrfs_tree_unlock(leaf); 1305 free_extent_buffer(root->commit_root); 1306 free_extent_buffer(leaf); 1307 } 1308 kfree(root); 1309 1310 return ERR_PTR(ret); 1311 } 1312 1313 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1314 struct btrfs_fs_info *fs_info) 1315 { 1316 struct btrfs_root *root; 1317 struct extent_buffer *leaf; 1318 1319 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1320 if (!root) 1321 return ERR_PTR(-ENOMEM); 1322 1323 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1324 1325 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1326 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1327 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1328 1329 /* 1330 * DON'T set REF_COWS for log trees 1331 * 1332 * log trees do not get reference counted because they go away 1333 * before a real commit is actually done. They do store pointers 1334 * to file data extents, and those reference counts still get 1335 * updated (along with back refs to the log tree). 1336 */ 1337 1338 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1339 NULL, 0, 0, 0); 1340 if (IS_ERR(leaf)) { 1341 kfree(root); 1342 return ERR_CAST(leaf); 1343 } 1344 1345 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header)); 1346 btrfs_set_header_bytenr(leaf, leaf->start); 1347 btrfs_set_header_generation(leaf, trans->transid); 1348 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1349 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1350 root->node = leaf; 1351 1352 write_extent_buffer_fsid(root->node, fs_info->fsid); 1353 btrfs_mark_buffer_dirty(root->node); 1354 btrfs_tree_unlock(root->node); 1355 return root; 1356 } 1357 1358 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1359 struct btrfs_fs_info *fs_info) 1360 { 1361 struct btrfs_root *log_root; 1362 1363 log_root = alloc_log_tree(trans, fs_info); 1364 if (IS_ERR(log_root)) 1365 return PTR_ERR(log_root); 1366 WARN_ON(fs_info->log_root_tree); 1367 fs_info->log_root_tree = log_root; 1368 return 0; 1369 } 1370 1371 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1372 struct btrfs_root *root) 1373 { 1374 struct btrfs_fs_info *fs_info = root->fs_info; 1375 struct btrfs_root *log_root; 1376 struct btrfs_inode_item *inode_item; 1377 1378 log_root = alloc_log_tree(trans, fs_info); 1379 if (IS_ERR(log_root)) 1380 return PTR_ERR(log_root); 1381 1382 log_root->last_trans = trans->transid; 1383 log_root->root_key.offset = root->root_key.objectid; 1384 1385 inode_item = &log_root->root_item.inode; 1386 btrfs_set_stack_inode_generation(inode_item, 1); 1387 btrfs_set_stack_inode_size(inode_item, 3); 1388 btrfs_set_stack_inode_nlink(inode_item, 1); 1389 btrfs_set_stack_inode_nbytes(inode_item, 1390 fs_info->nodesize); 1391 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1392 1393 btrfs_set_root_node(&log_root->root_item, log_root->node); 1394 1395 WARN_ON(root->log_root); 1396 root->log_root = log_root; 1397 root->log_transid = 0; 1398 root->log_transid_committed = -1; 1399 root->last_log_commit = 0; 1400 return 0; 1401 } 1402 1403 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1404 struct btrfs_key *key) 1405 { 1406 struct btrfs_root *root; 1407 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1408 struct btrfs_path *path; 1409 u64 generation; 1410 int ret; 1411 1412 path = btrfs_alloc_path(); 1413 if (!path) 1414 return ERR_PTR(-ENOMEM); 1415 1416 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1417 if (!root) { 1418 ret = -ENOMEM; 1419 goto alloc_fail; 1420 } 1421 1422 __setup_root(root, fs_info, key->objectid); 1423 1424 ret = btrfs_find_root(tree_root, key, path, 1425 &root->root_item, &root->root_key); 1426 if (ret) { 1427 if (ret > 0) 1428 ret = -ENOENT; 1429 goto find_fail; 1430 } 1431 1432 generation = btrfs_root_generation(&root->root_item); 1433 root->node = read_tree_block(fs_info, 1434 btrfs_root_bytenr(&root->root_item), 1435 generation); 1436 if (IS_ERR(root->node)) { 1437 ret = PTR_ERR(root->node); 1438 goto find_fail; 1439 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1440 ret = -EIO; 1441 free_extent_buffer(root->node); 1442 goto find_fail; 1443 } 1444 root->commit_root = btrfs_root_node(root); 1445 out: 1446 btrfs_free_path(path); 1447 return root; 1448 1449 find_fail: 1450 kfree(root); 1451 alloc_fail: 1452 root = ERR_PTR(ret); 1453 goto out; 1454 } 1455 1456 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1457 struct btrfs_key *location) 1458 { 1459 struct btrfs_root *root; 1460 1461 root = btrfs_read_tree_root(tree_root, location); 1462 if (IS_ERR(root)) 1463 return root; 1464 1465 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1466 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1467 btrfs_check_and_init_root_item(&root->root_item); 1468 } 1469 1470 return root; 1471 } 1472 1473 int btrfs_init_fs_root(struct btrfs_root *root) 1474 { 1475 int ret; 1476 struct btrfs_subvolume_writers *writers; 1477 1478 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1479 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1480 GFP_NOFS); 1481 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1482 ret = -ENOMEM; 1483 goto fail; 1484 } 1485 1486 writers = btrfs_alloc_subvolume_writers(); 1487 if (IS_ERR(writers)) { 1488 ret = PTR_ERR(writers); 1489 goto fail; 1490 } 1491 root->subv_writers = writers; 1492 1493 btrfs_init_free_ino_ctl(root); 1494 spin_lock_init(&root->ino_cache_lock); 1495 init_waitqueue_head(&root->ino_cache_wait); 1496 1497 ret = get_anon_bdev(&root->anon_dev); 1498 if (ret) 1499 goto fail; 1500 1501 mutex_lock(&root->objectid_mutex); 1502 ret = btrfs_find_highest_objectid(root, 1503 &root->highest_objectid); 1504 if (ret) { 1505 mutex_unlock(&root->objectid_mutex); 1506 goto fail; 1507 } 1508 1509 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1510 1511 mutex_unlock(&root->objectid_mutex); 1512 1513 return 0; 1514 fail: 1515 /* the caller is responsible to call free_fs_root */ 1516 return ret; 1517 } 1518 1519 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1520 u64 root_id) 1521 { 1522 struct btrfs_root *root; 1523 1524 spin_lock(&fs_info->fs_roots_radix_lock); 1525 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1526 (unsigned long)root_id); 1527 spin_unlock(&fs_info->fs_roots_radix_lock); 1528 return root; 1529 } 1530 1531 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1532 struct btrfs_root *root) 1533 { 1534 int ret; 1535 1536 ret = radix_tree_preload(GFP_NOFS); 1537 if (ret) 1538 return ret; 1539 1540 spin_lock(&fs_info->fs_roots_radix_lock); 1541 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1542 (unsigned long)root->root_key.objectid, 1543 root); 1544 if (ret == 0) 1545 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1546 spin_unlock(&fs_info->fs_roots_radix_lock); 1547 radix_tree_preload_end(); 1548 1549 return ret; 1550 } 1551 1552 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1553 struct btrfs_key *location, 1554 bool check_ref) 1555 { 1556 struct btrfs_root *root; 1557 struct btrfs_path *path; 1558 struct btrfs_key key; 1559 int ret; 1560 1561 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1562 return fs_info->tree_root; 1563 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1564 return fs_info->extent_root; 1565 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1566 return fs_info->chunk_root; 1567 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1568 return fs_info->dev_root; 1569 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1570 return fs_info->csum_root; 1571 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1572 return fs_info->quota_root ? fs_info->quota_root : 1573 ERR_PTR(-ENOENT); 1574 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1575 return fs_info->uuid_root ? fs_info->uuid_root : 1576 ERR_PTR(-ENOENT); 1577 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1578 return fs_info->free_space_root ? fs_info->free_space_root : 1579 ERR_PTR(-ENOENT); 1580 again: 1581 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1582 if (root) { 1583 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1584 return ERR_PTR(-ENOENT); 1585 return root; 1586 } 1587 1588 root = btrfs_read_fs_root(fs_info->tree_root, location); 1589 if (IS_ERR(root)) 1590 return root; 1591 1592 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1593 ret = -ENOENT; 1594 goto fail; 1595 } 1596 1597 ret = btrfs_init_fs_root(root); 1598 if (ret) 1599 goto fail; 1600 1601 path = btrfs_alloc_path(); 1602 if (!path) { 1603 ret = -ENOMEM; 1604 goto fail; 1605 } 1606 key.objectid = BTRFS_ORPHAN_OBJECTID; 1607 key.type = BTRFS_ORPHAN_ITEM_KEY; 1608 key.offset = location->objectid; 1609 1610 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1611 btrfs_free_path(path); 1612 if (ret < 0) 1613 goto fail; 1614 if (ret == 0) 1615 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1616 1617 ret = btrfs_insert_fs_root(fs_info, root); 1618 if (ret) { 1619 if (ret == -EEXIST) { 1620 free_fs_root(root); 1621 goto again; 1622 } 1623 goto fail; 1624 } 1625 return root; 1626 fail: 1627 free_fs_root(root); 1628 return ERR_PTR(ret); 1629 } 1630 1631 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1632 { 1633 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1634 int ret = 0; 1635 struct btrfs_device *device; 1636 struct backing_dev_info *bdi; 1637 1638 rcu_read_lock(); 1639 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1640 if (!device->bdev) 1641 continue; 1642 bdi = device->bdev->bd_bdi; 1643 if (bdi_congested(bdi, bdi_bits)) { 1644 ret = 1; 1645 break; 1646 } 1647 } 1648 rcu_read_unlock(); 1649 return ret; 1650 } 1651 1652 /* 1653 * called by the kthread helper functions to finally call the bio end_io 1654 * functions. This is where read checksum verification actually happens 1655 */ 1656 static void end_workqueue_fn(struct btrfs_work *work) 1657 { 1658 struct bio *bio; 1659 struct btrfs_end_io_wq *end_io_wq; 1660 1661 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1662 bio = end_io_wq->bio; 1663 1664 bio->bi_status = end_io_wq->status; 1665 bio->bi_private = end_io_wq->private; 1666 bio->bi_end_io = end_io_wq->end_io; 1667 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1668 bio_endio(bio); 1669 } 1670 1671 static int cleaner_kthread(void *arg) 1672 { 1673 struct btrfs_root *root = arg; 1674 struct btrfs_fs_info *fs_info = root->fs_info; 1675 int again; 1676 struct btrfs_trans_handle *trans; 1677 1678 do { 1679 again = 0; 1680 1681 /* Make the cleaner go to sleep early. */ 1682 if (btrfs_need_cleaner_sleep(fs_info)) 1683 goto sleep; 1684 1685 /* 1686 * Do not do anything if we might cause open_ctree() to block 1687 * before we have finished mounting the filesystem. 1688 */ 1689 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1690 goto sleep; 1691 1692 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1693 goto sleep; 1694 1695 /* 1696 * Avoid the problem that we change the status of the fs 1697 * during the above check and trylock. 1698 */ 1699 if (btrfs_need_cleaner_sleep(fs_info)) { 1700 mutex_unlock(&fs_info->cleaner_mutex); 1701 goto sleep; 1702 } 1703 1704 mutex_lock(&fs_info->cleaner_delayed_iput_mutex); 1705 btrfs_run_delayed_iputs(fs_info); 1706 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex); 1707 1708 again = btrfs_clean_one_deleted_snapshot(root); 1709 mutex_unlock(&fs_info->cleaner_mutex); 1710 1711 /* 1712 * The defragger has dealt with the R/O remount and umount, 1713 * needn't do anything special here. 1714 */ 1715 btrfs_run_defrag_inodes(fs_info); 1716 1717 /* 1718 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1719 * with relocation (btrfs_relocate_chunk) and relocation 1720 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1721 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1722 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1723 * unused block groups. 1724 */ 1725 btrfs_delete_unused_bgs(fs_info); 1726 sleep: 1727 if (!again) { 1728 set_current_state(TASK_INTERRUPTIBLE); 1729 if (!kthread_should_stop()) 1730 schedule(); 1731 __set_current_state(TASK_RUNNING); 1732 } 1733 } while (!kthread_should_stop()); 1734 1735 /* 1736 * Transaction kthread is stopped before us and wakes us up. 1737 * However we might have started a new transaction and COWed some 1738 * tree blocks when deleting unused block groups for example. So 1739 * make sure we commit the transaction we started to have a clean 1740 * shutdown when evicting the btree inode - if it has dirty pages 1741 * when we do the final iput() on it, eviction will trigger a 1742 * writeback for it which will fail with null pointer dereferences 1743 * since work queues and other resources were already released and 1744 * destroyed by the time the iput/eviction/writeback is made. 1745 */ 1746 trans = btrfs_attach_transaction(root); 1747 if (IS_ERR(trans)) { 1748 if (PTR_ERR(trans) != -ENOENT) 1749 btrfs_err(fs_info, 1750 "cleaner transaction attach returned %ld", 1751 PTR_ERR(trans)); 1752 } else { 1753 int ret; 1754 1755 ret = btrfs_commit_transaction(trans); 1756 if (ret) 1757 btrfs_err(fs_info, 1758 "cleaner open transaction commit returned %d", 1759 ret); 1760 } 1761 1762 return 0; 1763 } 1764 1765 static int transaction_kthread(void *arg) 1766 { 1767 struct btrfs_root *root = arg; 1768 struct btrfs_fs_info *fs_info = root->fs_info; 1769 struct btrfs_trans_handle *trans; 1770 struct btrfs_transaction *cur; 1771 u64 transid; 1772 unsigned long now; 1773 unsigned long delay; 1774 bool cannot_commit; 1775 1776 do { 1777 cannot_commit = false; 1778 delay = HZ * fs_info->commit_interval; 1779 mutex_lock(&fs_info->transaction_kthread_mutex); 1780 1781 spin_lock(&fs_info->trans_lock); 1782 cur = fs_info->running_transaction; 1783 if (!cur) { 1784 spin_unlock(&fs_info->trans_lock); 1785 goto sleep; 1786 } 1787 1788 now = get_seconds(); 1789 if (cur->state < TRANS_STATE_BLOCKED && 1790 (now < cur->start_time || 1791 now - cur->start_time < fs_info->commit_interval)) { 1792 spin_unlock(&fs_info->trans_lock); 1793 delay = HZ * 5; 1794 goto sleep; 1795 } 1796 transid = cur->transid; 1797 spin_unlock(&fs_info->trans_lock); 1798 1799 /* If the file system is aborted, this will always fail. */ 1800 trans = btrfs_attach_transaction(root); 1801 if (IS_ERR(trans)) { 1802 if (PTR_ERR(trans) != -ENOENT) 1803 cannot_commit = true; 1804 goto sleep; 1805 } 1806 if (transid == trans->transid) { 1807 btrfs_commit_transaction(trans); 1808 } else { 1809 btrfs_end_transaction(trans); 1810 } 1811 sleep: 1812 wake_up_process(fs_info->cleaner_kthread); 1813 mutex_unlock(&fs_info->transaction_kthread_mutex); 1814 1815 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1816 &fs_info->fs_state))) 1817 btrfs_cleanup_transaction(fs_info); 1818 set_current_state(TASK_INTERRUPTIBLE); 1819 if (!kthread_should_stop() && 1820 (!btrfs_transaction_blocked(fs_info) || 1821 cannot_commit)) 1822 schedule_timeout(delay); 1823 __set_current_state(TASK_RUNNING); 1824 } while (!kthread_should_stop()); 1825 return 0; 1826 } 1827 1828 /* 1829 * this will find the highest generation in the array of 1830 * root backups. The index of the highest array is returned, 1831 * or -1 if we can't find anything. 1832 * 1833 * We check to make sure the array is valid by comparing the 1834 * generation of the latest root in the array with the generation 1835 * in the super block. If they don't match we pitch it. 1836 */ 1837 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1838 { 1839 u64 cur; 1840 int newest_index = -1; 1841 struct btrfs_root_backup *root_backup; 1842 int i; 1843 1844 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1845 root_backup = info->super_copy->super_roots + i; 1846 cur = btrfs_backup_tree_root_gen(root_backup); 1847 if (cur == newest_gen) 1848 newest_index = i; 1849 } 1850 1851 /* check to see if we actually wrapped around */ 1852 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1853 root_backup = info->super_copy->super_roots; 1854 cur = btrfs_backup_tree_root_gen(root_backup); 1855 if (cur == newest_gen) 1856 newest_index = 0; 1857 } 1858 return newest_index; 1859 } 1860 1861 1862 /* 1863 * find the oldest backup so we know where to store new entries 1864 * in the backup array. This will set the backup_root_index 1865 * field in the fs_info struct 1866 */ 1867 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1868 u64 newest_gen) 1869 { 1870 int newest_index = -1; 1871 1872 newest_index = find_newest_super_backup(info, newest_gen); 1873 /* if there was garbage in there, just move along */ 1874 if (newest_index == -1) { 1875 info->backup_root_index = 0; 1876 } else { 1877 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1878 } 1879 } 1880 1881 /* 1882 * copy all the root pointers into the super backup array. 1883 * this will bump the backup pointer by one when it is 1884 * done 1885 */ 1886 static void backup_super_roots(struct btrfs_fs_info *info) 1887 { 1888 int next_backup; 1889 struct btrfs_root_backup *root_backup; 1890 int last_backup; 1891 1892 next_backup = info->backup_root_index; 1893 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1894 BTRFS_NUM_BACKUP_ROOTS; 1895 1896 /* 1897 * just overwrite the last backup if we're at the same generation 1898 * this happens only at umount 1899 */ 1900 root_backup = info->super_for_commit->super_roots + last_backup; 1901 if (btrfs_backup_tree_root_gen(root_backup) == 1902 btrfs_header_generation(info->tree_root->node)) 1903 next_backup = last_backup; 1904 1905 root_backup = info->super_for_commit->super_roots + next_backup; 1906 1907 /* 1908 * make sure all of our padding and empty slots get zero filled 1909 * regardless of which ones we use today 1910 */ 1911 memset(root_backup, 0, sizeof(*root_backup)); 1912 1913 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1914 1915 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1916 btrfs_set_backup_tree_root_gen(root_backup, 1917 btrfs_header_generation(info->tree_root->node)); 1918 1919 btrfs_set_backup_tree_root_level(root_backup, 1920 btrfs_header_level(info->tree_root->node)); 1921 1922 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1923 btrfs_set_backup_chunk_root_gen(root_backup, 1924 btrfs_header_generation(info->chunk_root->node)); 1925 btrfs_set_backup_chunk_root_level(root_backup, 1926 btrfs_header_level(info->chunk_root->node)); 1927 1928 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1929 btrfs_set_backup_extent_root_gen(root_backup, 1930 btrfs_header_generation(info->extent_root->node)); 1931 btrfs_set_backup_extent_root_level(root_backup, 1932 btrfs_header_level(info->extent_root->node)); 1933 1934 /* 1935 * we might commit during log recovery, which happens before we set 1936 * the fs_root. Make sure it is valid before we fill it in. 1937 */ 1938 if (info->fs_root && info->fs_root->node) { 1939 btrfs_set_backup_fs_root(root_backup, 1940 info->fs_root->node->start); 1941 btrfs_set_backup_fs_root_gen(root_backup, 1942 btrfs_header_generation(info->fs_root->node)); 1943 btrfs_set_backup_fs_root_level(root_backup, 1944 btrfs_header_level(info->fs_root->node)); 1945 } 1946 1947 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1948 btrfs_set_backup_dev_root_gen(root_backup, 1949 btrfs_header_generation(info->dev_root->node)); 1950 btrfs_set_backup_dev_root_level(root_backup, 1951 btrfs_header_level(info->dev_root->node)); 1952 1953 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1954 btrfs_set_backup_csum_root_gen(root_backup, 1955 btrfs_header_generation(info->csum_root->node)); 1956 btrfs_set_backup_csum_root_level(root_backup, 1957 btrfs_header_level(info->csum_root->node)); 1958 1959 btrfs_set_backup_total_bytes(root_backup, 1960 btrfs_super_total_bytes(info->super_copy)); 1961 btrfs_set_backup_bytes_used(root_backup, 1962 btrfs_super_bytes_used(info->super_copy)); 1963 btrfs_set_backup_num_devices(root_backup, 1964 btrfs_super_num_devices(info->super_copy)); 1965 1966 /* 1967 * if we don't copy this out to the super_copy, it won't get remembered 1968 * for the next commit 1969 */ 1970 memcpy(&info->super_copy->super_roots, 1971 &info->super_for_commit->super_roots, 1972 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1973 } 1974 1975 /* 1976 * this copies info out of the root backup array and back into 1977 * the in-memory super block. It is meant to help iterate through 1978 * the array, so you send it the number of backups you've already 1979 * tried and the last backup index you used. 1980 * 1981 * this returns -1 when it has tried all the backups 1982 */ 1983 static noinline int next_root_backup(struct btrfs_fs_info *info, 1984 struct btrfs_super_block *super, 1985 int *num_backups_tried, int *backup_index) 1986 { 1987 struct btrfs_root_backup *root_backup; 1988 int newest = *backup_index; 1989 1990 if (*num_backups_tried == 0) { 1991 u64 gen = btrfs_super_generation(super); 1992 1993 newest = find_newest_super_backup(info, gen); 1994 if (newest == -1) 1995 return -1; 1996 1997 *backup_index = newest; 1998 *num_backups_tried = 1; 1999 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 2000 /* we've tried all the backups, all done */ 2001 return -1; 2002 } else { 2003 /* jump to the next oldest backup */ 2004 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 2005 BTRFS_NUM_BACKUP_ROOTS; 2006 *backup_index = newest; 2007 *num_backups_tried += 1; 2008 } 2009 root_backup = super->super_roots + newest; 2010 2011 btrfs_set_super_generation(super, 2012 btrfs_backup_tree_root_gen(root_backup)); 2013 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2014 btrfs_set_super_root_level(super, 2015 btrfs_backup_tree_root_level(root_backup)); 2016 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2017 2018 /* 2019 * fixme: the total bytes and num_devices need to match or we should 2020 * need a fsck 2021 */ 2022 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2023 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2024 return 0; 2025 } 2026 2027 /* helper to cleanup workers */ 2028 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2029 { 2030 btrfs_destroy_workqueue(fs_info->fixup_workers); 2031 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2032 btrfs_destroy_workqueue(fs_info->workers); 2033 btrfs_destroy_workqueue(fs_info->endio_workers); 2034 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2035 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 2036 btrfs_destroy_workqueue(fs_info->rmw_workers); 2037 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2038 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2039 btrfs_destroy_workqueue(fs_info->submit_workers); 2040 btrfs_destroy_workqueue(fs_info->delayed_workers); 2041 btrfs_destroy_workqueue(fs_info->caching_workers); 2042 btrfs_destroy_workqueue(fs_info->readahead_workers); 2043 btrfs_destroy_workqueue(fs_info->flush_workers); 2044 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2045 btrfs_destroy_workqueue(fs_info->extent_workers); 2046 /* 2047 * Now that all other work queues are destroyed, we can safely destroy 2048 * the queues used for metadata I/O, since tasks from those other work 2049 * queues can do metadata I/O operations. 2050 */ 2051 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2052 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2053 } 2054 2055 static void free_root_extent_buffers(struct btrfs_root *root) 2056 { 2057 if (root) { 2058 free_extent_buffer(root->node); 2059 free_extent_buffer(root->commit_root); 2060 root->node = NULL; 2061 root->commit_root = NULL; 2062 } 2063 } 2064 2065 /* helper to cleanup tree roots */ 2066 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2067 { 2068 free_root_extent_buffers(info->tree_root); 2069 2070 free_root_extent_buffers(info->dev_root); 2071 free_root_extent_buffers(info->extent_root); 2072 free_root_extent_buffers(info->csum_root); 2073 free_root_extent_buffers(info->quota_root); 2074 free_root_extent_buffers(info->uuid_root); 2075 if (chunk_root) 2076 free_root_extent_buffers(info->chunk_root); 2077 free_root_extent_buffers(info->free_space_root); 2078 } 2079 2080 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2081 { 2082 int ret; 2083 struct btrfs_root *gang[8]; 2084 int i; 2085 2086 while (!list_empty(&fs_info->dead_roots)) { 2087 gang[0] = list_entry(fs_info->dead_roots.next, 2088 struct btrfs_root, root_list); 2089 list_del(&gang[0]->root_list); 2090 2091 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2092 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2093 } else { 2094 free_extent_buffer(gang[0]->node); 2095 free_extent_buffer(gang[0]->commit_root); 2096 btrfs_put_fs_root(gang[0]); 2097 } 2098 } 2099 2100 while (1) { 2101 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2102 (void **)gang, 0, 2103 ARRAY_SIZE(gang)); 2104 if (!ret) 2105 break; 2106 for (i = 0; i < ret; i++) 2107 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2108 } 2109 2110 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2111 btrfs_free_log_root_tree(NULL, fs_info); 2112 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 2113 } 2114 } 2115 2116 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2117 { 2118 mutex_init(&fs_info->scrub_lock); 2119 atomic_set(&fs_info->scrubs_running, 0); 2120 atomic_set(&fs_info->scrub_pause_req, 0); 2121 atomic_set(&fs_info->scrubs_paused, 0); 2122 atomic_set(&fs_info->scrub_cancel_req, 0); 2123 init_waitqueue_head(&fs_info->scrub_pause_wait); 2124 fs_info->scrub_workers_refcnt = 0; 2125 } 2126 2127 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2128 { 2129 spin_lock_init(&fs_info->balance_lock); 2130 mutex_init(&fs_info->balance_mutex); 2131 atomic_set(&fs_info->balance_running, 0); 2132 atomic_set(&fs_info->balance_pause_req, 0); 2133 atomic_set(&fs_info->balance_cancel_req, 0); 2134 fs_info->balance_ctl = NULL; 2135 init_waitqueue_head(&fs_info->balance_wait_q); 2136 } 2137 2138 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2139 { 2140 struct inode *inode = fs_info->btree_inode; 2141 2142 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2143 set_nlink(inode, 1); 2144 /* 2145 * we set the i_size on the btree inode to the max possible int. 2146 * the real end of the address space is determined by all of 2147 * the devices in the system 2148 */ 2149 inode->i_size = OFFSET_MAX; 2150 inode->i_mapping->a_ops = &btree_aops; 2151 2152 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2153 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode); 2154 BTRFS_I(inode)->io_tree.track_uptodate = 0; 2155 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2156 2157 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops; 2158 2159 BTRFS_I(inode)->root = fs_info->tree_root; 2160 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); 2161 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2162 btrfs_insert_inode_hash(inode); 2163 } 2164 2165 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2166 { 2167 fs_info->dev_replace.lock_owner = 0; 2168 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2169 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2170 rwlock_init(&fs_info->dev_replace.lock); 2171 atomic_set(&fs_info->dev_replace.read_locks, 0); 2172 atomic_set(&fs_info->dev_replace.blocking_readers, 0); 2173 init_waitqueue_head(&fs_info->replace_wait); 2174 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq); 2175 } 2176 2177 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2178 { 2179 spin_lock_init(&fs_info->qgroup_lock); 2180 mutex_init(&fs_info->qgroup_ioctl_lock); 2181 fs_info->qgroup_tree = RB_ROOT; 2182 fs_info->qgroup_op_tree = RB_ROOT; 2183 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2184 fs_info->qgroup_seq = 1; 2185 fs_info->qgroup_ulist = NULL; 2186 fs_info->qgroup_rescan_running = false; 2187 mutex_init(&fs_info->qgroup_rescan_lock); 2188 } 2189 2190 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2191 struct btrfs_fs_devices *fs_devices) 2192 { 2193 int max_active = fs_info->thread_pool_size; 2194 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2195 2196 fs_info->workers = 2197 btrfs_alloc_workqueue(fs_info, "worker", 2198 flags | WQ_HIGHPRI, max_active, 16); 2199 2200 fs_info->delalloc_workers = 2201 btrfs_alloc_workqueue(fs_info, "delalloc", 2202 flags, max_active, 2); 2203 2204 fs_info->flush_workers = 2205 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2206 flags, max_active, 0); 2207 2208 fs_info->caching_workers = 2209 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2210 2211 /* 2212 * a higher idle thresh on the submit workers makes it much more 2213 * likely that bios will be send down in a sane order to the 2214 * devices 2215 */ 2216 fs_info->submit_workers = 2217 btrfs_alloc_workqueue(fs_info, "submit", flags, 2218 min_t(u64, fs_devices->num_devices, 2219 max_active), 64); 2220 2221 fs_info->fixup_workers = 2222 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2223 2224 /* 2225 * endios are largely parallel and should have a very 2226 * low idle thresh 2227 */ 2228 fs_info->endio_workers = 2229 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2230 fs_info->endio_meta_workers = 2231 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2232 max_active, 4); 2233 fs_info->endio_meta_write_workers = 2234 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2235 max_active, 2); 2236 fs_info->endio_raid56_workers = 2237 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2238 max_active, 4); 2239 fs_info->endio_repair_workers = 2240 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0); 2241 fs_info->rmw_workers = 2242 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2243 fs_info->endio_write_workers = 2244 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2245 max_active, 2); 2246 fs_info->endio_freespace_worker = 2247 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2248 max_active, 0); 2249 fs_info->delayed_workers = 2250 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2251 max_active, 0); 2252 fs_info->readahead_workers = 2253 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2254 max_active, 2); 2255 fs_info->qgroup_rescan_workers = 2256 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2257 fs_info->extent_workers = 2258 btrfs_alloc_workqueue(fs_info, "extent-refs", flags, 2259 min_t(u64, fs_devices->num_devices, 2260 max_active), 8); 2261 2262 if (!(fs_info->workers && fs_info->delalloc_workers && 2263 fs_info->submit_workers && fs_info->flush_workers && 2264 fs_info->endio_workers && fs_info->endio_meta_workers && 2265 fs_info->endio_meta_write_workers && 2266 fs_info->endio_repair_workers && 2267 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2268 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2269 fs_info->caching_workers && fs_info->readahead_workers && 2270 fs_info->fixup_workers && fs_info->delayed_workers && 2271 fs_info->extent_workers && 2272 fs_info->qgroup_rescan_workers)) { 2273 return -ENOMEM; 2274 } 2275 2276 return 0; 2277 } 2278 2279 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2280 struct btrfs_fs_devices *fs_devices) 2281 { 2282 int ret; 2283 struct btrfs_root *log_tree_root; 2284 struct btrfs_super_block *disk_super = fs_info->super_copy; 2285 u64 bytenr = btrfs_super_log_root(disk_super); 2286 2287 if (fs_devices->rw_devices == 0) { 2288 btrfs_warn(fs_info, "log replay required on RO media"); 2289 return -EIO; 2290 } 2291 2292 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2293 if (!log_tree_root) 2294 return -ENOMEM; 2295 2296 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2297 2298 log_tree_root->node = read_tree_block(fs_info, bytenr, 2299 fs_info->generation + 1); 2300 if (IS_ERR(log_tree_root->node)) { 2301 btrfs_warn(fs_info, "failed to read log tree"); 2302 ret = PTR_ERR(log_tree_root->node); 2303 kfree(log_tree_root); 2304 return ret; 2305 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2306 btrfs_err(fs_info, "failed to read log tree"); 2307 free_extent_buffer(log_tree_root->node); 2308 kfree(log_tree_root); 2309 return -EIO; 2310 } 2311 /* returns with log_tree_root freed on success */ 2312 ret = btrfs_recover_log_trees(log_tree_root); 2313 if (ret) { 2314 btrfs_handle_fs_error(fs_info, ret, 2315 "Failed to recover log tree"); 2316 free_extent_buffer(log_tree_root->node); 2317 kfree(log_tree_root); 2318 return ret; 2319 } 2320 2321 if (sb_rdonly(fs_info->sb)) { 2322 ret = btrfs_commit_super(fs_info); 2323 if (ret) 2324 return ret; 2325 } 2326 2327 return 0; 2328 } 2329 2330 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2331 { 2332 struct btrfs_root *tree_root = fs_info->tree_root; 2333 struct btrfs_root *root; 2334 struct btrfs_key location; 2335 int ret; 2336 2337 BUG_ON(!fs_info->tree_root); 2338 2339 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2340 location.type = BTRFS_ROOT_ITEM_KEY; 2341 location.offset = 0; 2342 2343 root = btrfs_read_tree_root(tree_root, &location); 2344 if (IS_ERR(root)) 2345 return PTR_ERR(root); 2346 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2347 fs_info->extent_root = root; 2348 2349 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2350 root = btrfs_read_tree_root(tree_root, &location); 2351 if (IS_ERR(root)) 2352 return PTR_ERR(root); 2353 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2354 fs_info->dev_root = root; 2355 btrfs_init_devices_late(fs_info); 2356 2357 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2358 root = btrfs_read_tree_root(tree_root, &location); 2359 if (IS_ERR(root)) 2360 return PTR_ERR(root); 2361 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2362 fs_info->csum_root = root; 2363 2364 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2365 root = btrfs_read_tree_root(tree_root, &location); 2366 if (!IS_ERR(root)) { 2367 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2368 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2369 fs_info->quota_root = root; 2370 } 2371 2372 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2373 root = btrfs_read_tree_root(tree_root, &location); 2374 if (IS_ERR(root)) { 2375 ret = PTR_ERR(root); 2376 if (ret != -ENOENT) 2377 return ret; 2378 } else { 2379 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2380 fs_info->uuid_root = root; 2381 } 2382 2383 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2384 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2385 root = btrfs_read_tree_root(tree_root, &location); 2386 if (IS_ERR(root)) 2387 return PTR_ERR(root); 2388 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2389 fs_info->free_space_root = root; 2390 } 2391 2392 return 0; 2393 } 2394 2395 int open_ctree(struct super_block *sb, 2396 struct btrfs_fs_devices *fs_devices, 2397 char *options) 2398 { 2399 u32 sectorsize; 2400 u32 nodesize; 2401 u32 stripesize; 2402 u64 generation; 2403 u64 features; 2404 struct btrfs_key location; 2405 struct buffer_head *bh; 2406 struct btrfs_super_block *disk_super; 2407 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2408 struct btrfs_root *tree_root; 2409 struct btrfs_root *chunk_root; 2410 int ret; 2411 int err = -EINVAL; 2412 int num_backups_tried = 0; 2413 int backup_index = 0; 2414 int max_active; 2415 int clear_free_space_tree = 0; 2416 2417 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2418 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2419 if (!tree_root || !chunk_root) { 2420 err = -ENOMEM; 2421 goto fail; 2422 } 2423 2424 ret = init_srcu_struct(&fs_info->subvol_srcu); 2425 if (ret) { 2426 err = ret; 2427 goto fail; 2428 } 2429 2430 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2431 if (ret) { 2432 err = ret; 2433 goto fail_srcu; 2434 } 2435 fs_info->dirty_metadata_batch = PAGE_SIZE * 2436 (1 + ilog2(nr_cpu_ids)); 2437 2438 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2439 if (ret) { 2440 err = ret; 2441 goto fail_dirty_metadata_bytes; 2442 } 2443 2444 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL); 2445 if (ret) { 2446 err = ret; 2447 goto fail_delalloc_bytes; 2448 } 2449 2450 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2451 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2452 INIT_LIST_HEAD(&fs_info->trans_list); 2453 INIT_LIST_HEAD(&fs_info->dead_roots); 2454 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2455 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2456 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2457 spin_lock_init(&fs_info->delalloc_root_lock); 2458 spin_lock_init(&fs_info->trans_lock); 2459 spin_lock_init(&fs_info->fs_roots_radix_lock); 2460 spin_lock_init(&fs_info->delayed_iput_lock); 2461 spin_lock_init(&fs_info->defrag_inodes_lock); 2462 spin_lock_init(&fs_info->tree_mod_seq_lock); 2463 spin_lock_init(&fs_info->super_lock); 2464 spin_lock_init(&fs_info->qgroup_op_lock); 2465 spin_lock_init(&fs_info->buffer_lock); 2466 spin_lock_init(&fs_info->unused_bgs_lock); 2467 rwlock_init(&fs_info->tree_mod_log_lock); 2468 mutex_init(&fs_info->unused_bg_unpin_mutex); 2469 mutex_init(&fs_info->delete_unused_bgs_mutex); 2470 mutex_init(&fs_info->reloc_mutex); 2471 mutex_init(&fs_info->delalloc_root_mutex); 2472 mutex_init(&fs_info->cleaner_delayed_iput_mutex); 2473 seqlock_init(&fs_info->profiles_lock); 2474 2475 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2476 INIT_LIST_HEAD(&fs_info->space_info); 2477 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2478 INIT_LIST_HEAD(&fs_info->unused_bgs); 2479 btrfs_mapping_init(&fs_info->mapping_tree); 2480 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2481 BTRFS_BLOCK_RSV_GLOBAL); 2482 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2483 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2484 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2485 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2486 BTRFS_BLOCK_RSV_DELOPS); 2487 atomic_set(&fs_info->async_delalloc_pages, 0); 2488 atomic_set(&fs_info->defrag_running, 0); 2489 atomic_set(&fs_info->qgroup_op_seq, 0); 2490 atomic_set(&fs_info->reada_works_cnt, 0); 2491 atomic64_set(&fs_info->tree_mod_seq, 0); 2492 fs_info->sb = sb; 2493 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2494 fs_info->metadata_ratio = 0; 2495 fs_info->defrag_inodes = RB_ROOT; 2496 atomic64_set(&fs_info->free_chunk_space, 0); 2497 fs_info->tree_mod_log = RB_ROOT; 2498 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2499 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2500 /* readahead state */ 2501 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2502 spin_lock_init(&fs_info->reada_lock); 2503 btrfs_init_ref_verify(fs_info); 2504 2505 fs_info->thread_pool_size = min_t(unsigned long, 2506 num_online_cpus() + 2, 8); 2507 2508 INIT_LIST_HEAD(&fs_info->ordered_roots); 2509 spin_lock_init(&fs_info->ordered_root_lock); 2510 2511 fs_info->btree_inode = new_inode(sb); 2512 if (!fs_info->btree_inode) { 2513 err = -ENOMEM; 2514 goto fail_bio_counter; 2515 } 2516 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2517 2518 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2519 GFP_KERNEL); 2520 if (!fs_info->delayed_root) { 2521 err = -ENOMEM; 2522 goto fail_iput; 2523 } 2524 btrfs_init_delayed_root(fs_info->delayed_root); 2525 2526 btrfs_init_scrub(fs_info); 2527 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2528 fs_info->check_integrity_print_mask = 0; 2529 #endif 2530 btrfs_init_balance(fs_info); 2531 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2532 2533 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2534 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2535 2536 btrfs_init_btree_inode(fs_info); 2537 2538 spin_lock_init(&fs_info->block_group_cache_lock); 2539 fs_info->block_group_cache_tree = RB_ROOT; 2540 fs_info->first_logical_byte = (u64)-1; 2541 2542 extent_io_tree_init(&fs_info->freed_extents[0], NULL); 2543 extent_io_tree_init(&fs_info->freed_extents[1], NULL); 2544 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2545 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2546 2547 mutex_init(&fs_info->ordered_operations_mutex); 2548 mutex_init(&fs_info->tree_log_mutex); 2549 mutex_init(&fs_info->chunk_mutex); 2550 mutex_init(&fs_info->transaction_kthread_mutex); 2551 mutex_init(&fs_info->cleaner_mutex); 2552 mutex_init(&fs_info->volume_mutex); 2553 mutex_init(&fs_info->ro_block_group_mutex); 2554 init_rwsem(&fs_info->commit_root_sem); 2555 init_rwsem(&fs_info->cleanup_work_sem); 2556 init_rwsem(&fs_info->subvol_sem); 2557 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2558 2559 btrfs_init_dev_replace_locks(fs_info); 2560 btrfs_init_qgroup(fs_info); 2561 2562 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2563 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2564 2565 init_waitqueue_head(&fs_info->transaction_throttle); 2566 init_waitqueue_head(&fs_info->transaction_wait); 2567 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2568 init_waitqueue_head(&fs_info->async_submit_wait); 2569 2570 INIT_LIST_HEAD(&fs_info->pinned_chunks); 2571 2572 /* Usable values until the real ones are cached from the superblock */ 2573 fs_info->nodesize = 4096; 2574 fs_info->sectorsize = 4096; 2575 fs_info->stripesize = 4096; 2576 2577 ret = btrfs_alloc_stripe_hash_table(fs_info); 2578 if (ret) { 2579 err = ret; 2580 goto fail_alloc; 2581 } 2582 2583 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 2584 2585 invalidate_bdev(fs_devices->latest_bdev); 2586 2587 /* 2588 * Read super block and check the signature bytes only 2589 */ 2590 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2591 if (IS_ERR(bh)) { 2592 err = PTR_ERR(bh); 2593 goto fail_alloc; 2594 } 2595 2596 /* 2597 * We want to check superblock checksum, the type is stored inside. 2598 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2599 */ 2600 if (btrfs_check_super_csum(fs_info, bh->b_data)) { 2601 btrfs_err(fs_info, "superblock checksum mismatch"); 2602 err = -EINVAL; 2603 brelse(bh); 2604 goto fail_alloc; 2605 } 2606 2607 /* 2608 * super_copy is zeroed at allocation time and we never touch the 2609 * following bytes up to INFO_SIZE, the checksum is calculated from 2610 * the whole block of INFO_SIZE 2611 */ 2612 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2613 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2614 sizeof(*fs_info->super_for_commit)); 2615 brelse(bh); 2616 2617 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2618 2619 ret = btrfs_check_super_valid(fs_info); 2620 if (ret) { 2621 btrfs_err(fs_info, "superblock contains fatal errors"); 2622 err = -EINVAL; 2623 goto fail_alloc; 2624 } 2625 2626 disk_super = fs_info->super_copy; 2627 if (!btrfs_super_root(disk_super)) 2628 goto fail_alloc; 2629 2630 /* check FS state, whether FS is broken. */ 2631 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2632 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2633 2634 /* 2635 * run through our array of backup supers and setup 2636 * our ring pointer to the oldest one 2637 */ 2638 generation = btrfs_super_generation(disk_super); 2639 find_oldest_super_backup(fs_info, generation); 2640 2641 /* 2642 * In the long term, we'll store the compression type in the super 2643 * block, and it'll be used for per file compression control. 2644 */ 2645 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2646 2647 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 2648 if (ret) { 2649 err = ret; 2650 goto fail_alloc; 2651 } 2652 2653 features = btrfs_super_incompat_flags(disk_super) & 2654 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2655 if (features) { 2656 btrfs_err(fs_info, 2657 "cannot mount because of unsupported optional features (%llx)", 2658 features); 2659 err = -EINVAL; 2660 goto fail_alloc; 2661 } 2662 2663 features = btrfs_super_incompat_flags(disk_super); 2664 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2665 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 2666 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2667 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 2668 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 2669 2670 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2671 btrfs_info(fs_info, "has skinny extents"); 2672 2673 /* 2674 * flag our filesystem as having big metadata blocks if 2675 * they are bigger than the page size 2676 */ 2677 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 2678 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2679 btrfs_info(fs_info, 2680 "flagging fs with big metadata feature"); 2681 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2682 } 2683 2684 nodesize = btrfs_super_nodesize(disk_super); 2685 sectorsize = btrfs_super_sectorsize(disk_super); 2686 stripesize = sectorsize; 2687 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2688 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2689 2690 /* Cache block sizes */ 2691 fs_info->nodesize = nodesize; 2692 fs_info->sectorsize = sectorsize; 2693 fs_info->stripesize = stripesize; 2694 2695 /* 2696 * mixed block groups end up with duplicate but slightly offset 2697 * extent buffers for the same range. It leads to corruptions 2698 */ 2699 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2700 (sectorsize != nodesize)) { 2701 btrfs_err(fs_info, 2702 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 2703 nodesize, sectorsize); 2704 goto fail_alloc; 2705 } 2706 2707 /* 2708 * Needn't use the lock because there is no other task which will 2709 * update the flag. 2710 */ 2711 btrfs_set_super_incompat_flags(disk_super, features); 2712 2713 features = btrfs_super_compat_ro_flags(disk_super) & 2714 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2715 if (!sb_rdonly(sb) && features) { 2716 btrfs_err(fs_info, 2717 "cannot mount read-write because of unsupported optional features (%llx)", 2718 features); 2719 err = -EINVAL; 2720 goto fail_alloc; 2721 } 2722 2723 max_active = fs_info->thread_pool_size; 2724 2725 ret = btrfs_init_workqueues(fs_info, fs_devices); 2726 if (ret) { 2727 err = ret; 2728 goto fail_sb_buffer; 2729 } 2730 2731 sb->s_bdi->congested_fn = btrfs_congested_fn; 2732 sb->s_bdi->congested_data = fs_info; 2733 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 2734 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE; 2735 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 2736 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 2737 2738 sb->s_blocksize = sectorsize; 2739 sb->s_blocksize_bits = blksize_bits(sectorsize); 2740 memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE); 2741 2742 mutex_lock(&fs_info->chunk_mutex); 2743 ret = btrfs_read_sys_array(fs_info); 2744 mutex_unlock(&fs_info->chunk_mutex); 2745 if (ret) { 2746 btrfs_err(fs_info, "failed to read the system array: %d", ret); 2747 goto fail_sb_buffer; 2748 } 2749 2750 generation = btrfs_super_chunk_root_generation(disk_super); 2751 2752 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2753 2754 chunk_root->node = read_tree_block(fs_info, 2755 btrfs_super_chunk_root(disk_super), 2756 generation); 2757 if (IS_ERR(chunk_root->node) || 2758 !extent_buffer_uptodate(chunk_root->node)) { 2759 btrfs_err(fs_info, "failed to read chunk root"); 2760 if (!IS_ERR(chunk_root->node)) 2761 free_extent_buffer(chunk_root->node); 2762 chunk_root->node = NULL; 2763 goto fail_tree_roots; 2764 } 2765 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2766 chunk_root->commit_root = btrfs_root_node(chunk_root); 2767 2768 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2769 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2770 2771 ret = btrfs_read_chunk_tree(fs_info); 2772 if (ret) { 2773 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 2774 goto fail_tree_roots; 2775 } 2776 2777 /* 2778 * keep the device that is marked to be the target device for the 2779 * dev_replace procedure 2780 */ 2781 btrfs_close_extra_devices(fs_devices, 0); 2782 2783 if (!fs_devices->latest_bdev) { 2784 btrfs_err(fs_info, "failed to read devices"); 2785 goto fail_tree_roots; 2786 } 2787 2788 retry_root_backup: 2789 generation = btrfs_super_generation(disk_super); 2790 2791 tree_root->node = read_tree_block(fs_info, 2792 btrfs_super_root(disk_super), 2793 generation); 2794 if (IS_ERR(tree_root->node) || 2795 !extent_buffer_uptodate(tree_root->node)) { 2796 btrfs_warn(fs_info, "failed to read tree root"); 2797 if (!IS_ERR(tree_root->node)) 2798 free_extent_buffer(tree_root->node); 2799 tree_root->node = NULL; 2800 goto recovery_tree_root; 2801 } 2802 2803 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2804 tree_root->commit_root = btrfs_root_node(tree_root); 2805 btrfs_set_root_refs(&tree_root->root_item, 1); 2806 2807 mutex_lock(&tree_root->objectid_mutex); 2808 ret = btrfs_find_highest_objectid(tree_root, 2809 &tree_root->highest_objectid); 2810 if (ret) { 2811 mutex_unlock(&tree_root->objectid_mutex); 2812 goto recovery_tree_root; 2813 } 2814 2815 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 2816 2817 mutex_unlock(&tree_root->objectid_mutex); 2818 2819 ret = btrfs_read_roots(fs_info); 2820 if (ret) 2821 goto recovery_tree_root; 2822 2823 fs_info->generation = generation; 2824 fs_info->last_trans_committed = generation; 2825 2826 ret = btrfs_recover_balance(fs_info); 2827 if (ret) { 2828 btrfs_err(fs_info, "failed to recover balance: %d", ret); 2829 goto fail_block_groups; 2830 } 2831 2832 ret = btrfs_init_dev_stats(fs_info); 2833 if (ret) { 2834 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 2835 goto fail_block_groups; 2836 } 2837 2838 ret = btrfs_init_dev_replace(fs_info); 2839 if (ret) { 2840 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 2841 goto fail_block_groups; 2842 } 2843 2844 btrfs_close_extra_devices(fs_devices, 1); 2845 2846 ret = btrfs_sysfs_add_fsid(fs_devices, NULL); 2847 if (ret) { 2848 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 2849 ret); 2850 goto fail_block_groups; 2851 } 2852 2853 ret = btrfs_sysfs_add_device(fs_devices); 2854 if (ret) { 2855 btrfs_err(fs_info, "failed to init sysfs device interface: %d", 2856 ret); 2857 goto fail_fsdev_sysfs; 2858 } 2859 2860 ret = btrfs_sysfs_add_mounted(fs_info); 2861 if (ret) { 2862 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 2863 goto fail_fsdev_sysfs; 2864 } 2865 2866 ret = btrfs_init_space_info(fs_info); 2867 if (ret) { 2868 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 2869 goto fail_sysfs; 2870 } 2871 2872 ret = btrfs_read_block_groups(fs_info); 2873 if (ret) { 2874 btrfs_err(fs_info, "failed to read block groups: %d", ret); 2875 goto fail_sysfs; 2876 } 2877 2878 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info)) { 2879 btrfs_warn(fs_info, 2880 "writeable mount is not allowed due to too many missing devices"); 2881 goto fail_sysfs; 2882 } 2883 2884 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2885 "btrfs-cleaner"); 2886 if (IS_ERR(fs_info->cleaner_kthread)) 2887 goto fail_sysfs; 2888 2889 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2890 tree_root, 2891 "btrfs-transaction"); 2892 if (IS_ERR(fs_info->transaction_kthread)) 2893 goto fail_cleaner; 2894 2895 if (!btrfs_test_opt(fs_info, NOSSD) && 2896 !fs_info->fs_devices->rotating) { 2897 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 2898 } 2899 2900 /* 2901 * Mount does not set all options immediately, we can do it now and do 2902 * not have to wait for transaction commit 2903 */ 2904 btrfs_apply_pending_changes(fs_info); 2905 2906 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2907 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 2908 ret = btrfsic_mount(fs_info, fs_devices, 2909 btrfs_test_opt(fs_info, 2910 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 2911 1 : 0, 2912 fs_info->check_integrity_print_mask); 2913 if (ret) 2914 btrfs_warn(fs_info, 2915 "failed to initialize integrity check module: %d", 2916 ret); 2917 } 2918 #endif 2919 ret = btrfs_read_qgroup_config(fs_info); 2920 if (ret) 2921 goto fail_trans_kthread; 2922 2923 if (btrfs_build_ref_tree(fs_info)) 2924 btrfs_err(fs_info, "couldn't build ref tree"); 2925 2926 /* do not make disk changes in broken FS or nologreplay is given */ 2927 if (btrfs_super_log_root(disk_super) != 0 && 2928 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 2929 ret = btrfs_replay_log(fs_info, fs_devices); 2930 if (ret) { 2931 err = ret; 2932 goto fail_qgroup; 2933 } 2934 } 2935 2936 ret = btrfs_find_orphan_roots(fs_info); 2937 if (ret) 2938 goto fail_qgroup; 2939 2940 if (!sb_rdonly(sb)) { 2941 ret = btrfs_cleanup_fs_roots(fs_info); 2942 if (ret) 2943 goto fail_qgroup; 2944 2945 mutex_lock(&fs_info->cleaner_mutex); 2946 ret = btrfs_recover_relocation(tree_root); 2947 mutex_unlock(&fs_info->cleaner_mutex); 2948 if (ret < 0) { 2949 btrfs_warn(fs_info, "failed to recover relocation: %d", 2950 ret); 2951 err = -EINVAL; 2952 goto fail_qgroup; 2953 } 2954 } 2955 2956 location.objectid = BTRFS_FS_TREE_OBJECTID; 2957 location.type = BTRFS_ROOT_ITEM_KEY; 2958 location.offset = 0; 2959 2960 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 2961 if (IS_ERR(fs_info->fs_root)) { 2962 err = PTR_ERR(fs_info->fs_root); 2963 goto fail_qgroup; 2964 } 2965 2966 if (sb_rdonly(sb)) 2967 return 0; 2968 2969 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 2970 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2971 clear_free_space_tree = 1; 2972 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 2973 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 2974 btrfs_warn(fs_info, "free space tree is invalid"); 2975 clear_free_space_tree = 1; 2976 } 2977 2978 if (clear_free_space_tree) { 2979 btrfs_info(fs_info, "clearing free space tree"); 2980 ret = btrfs_clear_free_space_tree(fs_info); 2981 if (ret) { 2982 btrfs_warn(fs_info, 2983 "failed to clear free space tree: %d", ret); 2984 close_ctree(fs_info); 2985 return ret; 2986 } 2987 } 2988 2989 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 2990 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2991 btrfs_info(fs_info, "creating free space tree"); 2992 ret = btrfs_create_free_space_tree(fs_info); 2993 if (ret) { 2994 btrfs_warn(fs_info, 2995 "failed to create free space tree: %d", ret); 2996 close_ctree(fs_info); 2997 return ret; 2998 } 2999 } 3000 3001 down_read(&fs_info->cleanup_work_sem); 3002 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3003 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3004 up_read(&fs_info->cleanup_work_sem); 3005 close_ctree(fs_info); 3006 return ret; 3007 } 3008 up_read(&fs_info->cleanup_work_sem); 3009 3010 ret = btrfs_resume_balance_async(fs_info); 3011 if (ret) { 3012 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3013 close_ctree(fs_info); 3014 return ret; 3015 } 3016 3017 ret = btrfs_resume_dev_replace_async(fs_info); 3018 if (ret) { 3019 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3020 close_ctree(fs_info); 3021 return ret; 3022 } 3023 3024 btrfs_qgroup_rescan_resume(fs_info); 3025 3026 if (!fs_info->uuid_root) { 3027 btrfs_info(fs_info, "creating UUID tree"); 3028 ret = btrfs_create_uuid_tree(fs_info); 3029 if (ret) { 3030 btrfs_warn(fs_info, 3031 "failed to create the UUID tree: %d", ret); 3032 close_ctree(fs_info); 3033 return ret; 3034 } 3035 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3036 fs_info->generation != 3037 btrfs_super_uuid_tree_generation(disk_super)) { 3038 btrfs_info(fs_info, "checking UUID tree"); 3039 ret = btrfs_check_uuid_tree(fs_info); 3040 if (ret) { 3041 btrfs_warn(fs_info, 3042 "failed to check the UUID tree: %d", ret); 3043 close_ctree(fs_info); 3044 return ret; 3045 } 3046 } else { 3047 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3048 } 3049 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3050 3051 /* 3052 * backuproot only affect mount behavior, and if open_ctree succeeded, 3053 * no need to keep the flag 3054 */ 3055 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3056 3057 return 0; 3058 3059 fail_qgroup: 3060 btrfs_free_qgroup_config(fs_info); 3061 fail_trans_kthread: 3062 kthread_stop(fs_info->transaction_kthread); 3063 btrfs_cleanup_transaction(fs_info); 3064 btrfs_free_fs_roots(fs_info); 3065 fail_cleaner: 3066 kthread_stop(fs_info->cleaner_kthread); 3067 3068 /* 3069 * make sure we're done with the btree inode before we stop our 3070 * kthreads 3071 */ 3072 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3073 3074 fail_sysfs: 3075 btrfs_sysfs_remove_mounted(fs_info); 3076 3077 fail_fsdev_sysfs: 3078 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3079 3080 fail_block_groups: 3081 btrfs_put_block_group_cache(fs_info); 3082 3083 fail_tree_roots: 3084 free_root_pointers(fs_info, 1); 3085 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3086 3087 fail_sb_buffer: 3088 btrfs_stop_all_workers(fs_info); 3089 btrfs_free_block_groups(fs_info); 3090 fail_alloc: 3091 fail_iput: 3092 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3093 3094 iput(fs_info->btree_inode); 3095 fail_bio_counter: 3096 percpu_counter_destroy(&fs_info->bio_counter); 3097 fail_delalloc_bytes: 3098 percpu_counter_destroy(&fs_info->delalloc_bytes); 3099 fail_dirty_metadata_bytes: 3100 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3101 fail_srcu: 3102 cleanup_srcu_struct(&fs_info->subvol_srcu); 3103 fail: 3104 btrfs_free_stripe_hash_table(fs_info); 3105 btrfs_close_devices(fs_info->fs_devices); 3106 return err; 3107 3108 recovery_tree_root: 3109 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 3110 goto fail_tree_roots; 3111 3112 free_root_pointers(fs_info, 0); 3113 3114 /* don't use the log in recovery mode, it won't be valid */ 3115 btrfs_set_super_log_root(disk_super, 0); 3116 3117 /* we can't trust the free space cache either */ 3118 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3119 3120 ret = next_root_backup(fs_info, fs_info->super_copy, 3121 &num_backups_tried, &backup_index); 3122 if (ret == -1) 3123 goto fail_block_groups; 3124 goto retry_root_backup; 3125 } 3126 3127 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3128 { 3129 if (uptodate) { 3130 set_buffer_uptodate(bh); 3131 } else { 3132 struct btrfs_device *device = (struct btrfs_device *) 3133 bh->b_private; 3134 3135 btrfs_warn_rl_in_rcu(device->fs_info, 3136 "lost page write due to IO error on %s", 3137 rcu_str_deref(device->name)); 3138 /* note, we don't set_buffer_write_io_error because we have 3139 * our own ways of dealing with the IO errors 3140 */ 3141 clear_buffer_uptodate(bh); 3142 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3143 } 3144 unlock_buffer(bh); 3145 put_bh(bh); 3146 } 3147 3148 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, 3149 struct buffer_head **bh_ret) 3150 { 3151 struct buffer_head *bh; 3152 struct btrfs_super_block *super; 3153 u64 bytenr; 3154 3155 bytenr = btrfs_sb_offset(copy_num); 3156 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3157 return -EINVAL; 3158 3159 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE); 3160 /* 3161 * If we fail to read from the underlying devices, as of now 3162 * the best option we have is to mark it EIO. 3163 */ 3164 if (!bh) 3165 return -EIO; 3166 3167 super = (struct btrfs_super_block *)bh->b_data; 3168 if (btrfs_super_bytenr(super) != bytenr || 3169 btrfs_super_magic(super) != BTRFS_MAGIC) { 3170 brelse(bh); 3171 return -EINVAL; 3172 } 3173 3174 *bh_ret = bh; 3175 return 0; 3176 } 3177 3178 3179 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3180 { 3181 struct buffer_head *bh; 3182 struct buffer_head *latest = NULL; 3183 struct btrfs_super_block *super; 3184 int i; 3185 u64 transid = 0; 3186 int ret = -EINVAL; 3187 3188 /* we would like to check all the supers, but that would make 3189 * a btrfs mount succeed after a mkfs from a different FS. 3190 * So, we need to add a special mount option to scan for 3191 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3192 */ 3193 for (i = 0; i < 1; i++) { 3194 ret = btrfs_read_dev_one_super(bdev, i, &bh); 3195 if (ret) 3196 continue; 3197 3198 super = (struct btrfs_super_block *)bh->b_data; 3199 3200 if (!latest || btrfs_super_generation(super) > transid) { 3201 brelse(latest); 3202 latest = bh; 3203 transid = btrfs_super_generation(super); 3204 } else { 3205 brelse(bh); 3206 } 3207 } 3208 3209 if (!latest) 3210 return ERR_PTR(ret); 3211 3212 return latest; 3213 } 3214 3215 /* 3216 * Write superblock @sb to the @device. Do not wait for completion, all the 3217 * buffer heads we write are pinned. 3218 * 3219 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3220 * the expected device size at commit time. Note that max_mirrors must be 3221 * same for write and wait phases. 3222 * 3223 * Return number of errors when buffer head is not found or submission fails. 3224 */ 3225 static int write_dev_supers(struct btrfs_device *device, 3226 struct btrfs_super_block *sb, int max_mirrors) 3227 { 3228 struct buffer_head *bh; 3229 int i; 3230 int ret; 3231 int errors = 0; 3232 u32 crc; 3233 u64 bytenr; 3234 int op_flags; 3235 3236 if (max_mirrors == 0) 3237 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3238 3239 for (i = 0; i < max_mirrors; i++) { 3240 bytenr = btrfs_sb_offset(i); 3241 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3242 device->commit_total_bytes) 3243 break; 3244 3245 btrfs_set_super_bytenr(sb, bytenr); 3246 3247 crc = ~(u32)0; 3248 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc, 3249 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 3250 btrfs_csum_final(crc, sb->csum); 3251 3252 /* One reference for us, and we leave it for the caller */ 3253 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, 3254 BTRFS_SUPER_INFO_SIZE); 3255 if (!bh) { 3256 btrfs_err(device->fs_info, 3257 "couldn't get super buffer head for bytenr %llu", 3258 bytenr); 3259 errors++; 3260 continue; 3261 } 3262 3263 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3264 3265 /* one reference for submit_bh */ 3266 get_bh(bh); 3267 3268 set_buffer_uptodate(bh); 3269 lock_buffer(bh); 3270 bh->b_end_io = btrfs_end_buffer_write_sync; 3271 bh->b_private = device; 3272 3273 /* 3274 * we fua the first super. The others we allow 3275 * to go down lazy. 3276 */ 3277 op_flags = REQ_SYNC | REQ_META | REQ_PRIO; 3278 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3279 op_flags |= REQ_FUA; 3280 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh); 3281 if (ret) 3282 errors++; 3283 } 3284 return errors < i ? 0 : -1; 3285 } 3286 3287 /* 3288 * Wait for write completion of superblocks done by write_dev_supers, 3289 * @max_mirrors same for write and wait phases. 3290 * 3291 * Return number of errors when buffer head is not found or not marked up to 3292 * date. 3293 */ 3294 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3295 { 3296 struct buffer_head *bh; 3297 int i; 3298 int errors = 0; 3299 u64 bytenr; 3300 3301 if (max_mirrors == 0) 3302 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3303 3304 for (i = 0; i < max_mirrors; i++) { 3305 bytenr = btrfs_sb_offset(i); 3306 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3307 device->commit_total_bytes) 3308 break; 3309 3310 bh = __find_get_block(device->bdev, 3311 bytenr / BTRFS_BDEV_BLOCKSIZE, 3312 BTRFS_SUPER_INFO_SIZE); 3313 if (!bh) { 3314 errors++; 3315 continue; 3316 } 3317 wait_on_buffer(bh); 3318 if (!buffer_uptodate(bh)) 3319 errors++; 3320 3321 /* drop our reference */ 3322 brelse(bh); 3323 3324 /* drop the reference from the writing run */ 3325 brelse(bh); 3326 } 3327 3328 return errors < i ? 0 : -1; 3329 } 3330 3331 /* 3332 * endio for the write_dev_flush, this will wake anyone waiting 3333 * for the barrier when it is done 3334 */ 3335 static void btrfs_end_empty_barrier(struct bio *bio) 3336 { 3337 complete(bio->bi_private); 3338 } 3339 3340 /* 3341 * Submit a flush request to the device if it supports it. Error handling is 3342 * done in the waiting counterpart. 3343 */ 3344 static void write_dev_flush(struct btrfs_device *device) 3345 { 3346 struct request_queue *q = bdev_get_queue(device->bdev); 3347 struct bio *bio = device->flush_bio; 3348 3349 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 3350 return; 3351 3352 bio_reset(bio); 3353 bio->bi_end_io = btrfs_end_empty_barrier; 3354 bio_set_dev(bio, device->bdev); 3355 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 3356 init_completion(&device->flush_wait); 3357 bio->bi_private = &device->flush_wait; 3358 3359 btrfsic_submit_bio(bio); 3360 device->flush_bio_sent = 1; 3361 } 3362 3363 /* 3364 * If the flush bio has been submitted by write_dev_flush, wait for it. 3365 */ 3366 static blk_status_t wait_dev_flush(struct btrfs_device *device) 3367 { 3368 struct bio *bio = device->flush_bio; 3369 3370 if (!device->flush_bio_sent) 3371 return BLK_STS_OK; 3372 3373 device->flush_bio_sent = 0; 3374 wait_for_completion_io(&device->flush_wait); 3375 3376 return bio->bi_status; 3377 } 3378 3379 static int check_barrier_error(struct btrfs_fs_info *fs_info) 3380 { 3381 if (!btrfs_check_rw_degradable(fs_info)) 3382 return -EIO; 3383 return 0; 3384 } 3385 3386 /* 3387 * send an empty flush down to each device in parallel, 3388 * then wait for them 3389 */ 3390 static int barrier_all_devices(struct btrfs_fs_info *info) 3391 { 3392 struct list_head *head; 3393 struct btrfs_device *dev; 3394 int errors_wait = 0; 3395 blk_status_t ret; 3396 3397 /* send down all the barriers */ 3398 head = &info->fs_devices->devices; 3399 list_for_each_entry_rcu(dev, head, dev_list) { 3400 if (dev->missing) 3401 continue; 3402 if (!dev->bdev) 3403 continue; 3404 if (!dev->in_fs_metadata || !dev->writeable) 3405 continue; 3406 3407 write_dev_flush(dev); 3408 dev->last_flush_error = BLK_STS_OK; 3409 } 3410 3411 /* wait for all the barriers */ 3412 list_for_each_entry_rcu(dev, head, dev_list) { 3413 if (dev->missing) 3414 continue; 3415 if (!dev->bdev) { 3416 errors_wait++; 3417 continue; 3418 } 3419 if (!dev->in_fs_metadata || !dev->writeable) 3420 continue; 3421 3422 ret = wait_dev_flush(dev); 3423 if (ret) { 3424 dev->last_flush_error = ret; 3425 btrfs_dev_stat_inc_and_print(dev, 3426 BTRFS_DEV_STAT_FLUSH_ERRS); 3427 errors_wait++; 3428 } 3429 } 3430 3431 if (errors_wait) { 3432 /* 3433 * At some point we need the status of all disks 3434 * to arrive at the volume status. So error checking 3435 * is being pushed to a separate loop. 3436 */ 3437 return check_barrier_error(info); 3438 } 3439 return 0; 3440 } 3441 3442 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3443 { 3444 int raid_type; 3445 int min_tolerated = INT_MAX; 3446 3447 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3448 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3449 min_tolerated = min(min_tolerated, 3450 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3451 tolerated_failures); 3452 3453 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3454 if (raid_type == BTRFS_RAID_SINGLE) 3455 continue; 3456 if (!(flags & btrfs_raid_group[raid_type])) 3457 continue; 3458 min_tolerated = min(min_tolerated, 3459 btrfs_raid_array[raid_type]. 3460 tolerated_failures); 3461 } 3462 3463 if (min_tolerated == INT_MAX) { 3464 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3465 min_tolerated = 0; 3466 } 3467 3468 return min_tolerated; 3469 } 3470 3471 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3472 { 3473 struct list_head *head; 3474 struct btrfs_device *dev; 3475 struct btrfs_super_block *sb; 3476 struct btrfs_dev_item *dev_item; 3477 int ret; 3478 int do_barriers; 3479 int max_errors; 3480 int total_errors = 0; 3481 u64 flags; 3482 3483 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 3484 3485 /* 3486 * max_mirrors == 0 indicates we're from commit_transaction, 3487 * not from fsync where the tree roots in fs_info have not 3488 * been consistent on disk. 3489 */ 3490 if (max_mirrors == 0) 3491 backup_super_roots(fs_info); 3492 3493 sb = fs_info->super_for_commit; 3494 dev_item = &sb->dev_item; 3495 3496 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3497 head = &fs_info->fs_devices->devices; 3498 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 3499 3500 if (do_barriers) { 3501 ret = barrier_all_devices(fs_info); 3502 if (ret) { 3503 mutex_unlock( 3504 &fs_info->fs_devices->device_list_mutex); 3505 btrfs_handle_fs_error(fs_info, ret, 3506 "errors while submitting device barriers."); 3507 return ret; 3508 } 3509 } 3510 3511 list_for_each_entry_rcu(dev, head, dev_list) { 3512 if (!dev->bdev) { 3513 total_errors++; 3514 continue; 3515 } 3516 if (!dev->in_fs_metadata || !dev->writeable) 3517 continue; 3518 3519 btrfs_set_stack_device_generation(dev_item, 0); 3520 btrfs_set_stack_device_type(dev_item, dev->type); 3521 btrfs_set_stack_device_id(dev_item, dev->devid); 3522 btrfs_set_stack_device_total_bytes(dev_item, 3523 dev->commit_total_bytes); 3524 btrfs_set_stack_device_bytes_used(dev_item, 3525 dev->commit_bytes_used); 3526 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3527 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3528 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3529 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3530 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE); 3531 3532 flags = btrfs_super_flags(sb); 3533 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3534 3535 ret = write_dev_supers(dev, sb, max_mirrors); 3536 if (ret) 3537 total_errors++; 3538 } 3539 if (total_errors > max_errors) { 3540 btrfs_err(fs_info, "%d errors while writing supers", 3541 total_errors); 3542 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3543 3544 /* FUA is masked off if unsupported and can't be the reason */ 3545 btrfs_handle_fs_error(fs_info, -EIO, 3546 "%d errors while writing supers", 3547 total_errors); 3548 return -EIO; 3549 } 3550 3551 total_errors = 0; 3552 list_for_each_entry_rcu(dev, head, dev_list) { 3553 if (!dev->bdev) 3554 continue; 3555 if (!dev->in_fs_metadata || !dev->writeable) 3556 continue; 3557 3558 ret = wait_dev_supers(dev, max_mirrors); 3559 if (ret) 3560 total_errors++; 3561 } 3562 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3563 if (total_errors > max_errors) { 3564 btrfs_handle_fs_error(fs_info, -EIO, 3565 "%d errors while writing supers", 3566 total_errors); 3567 return -EIO; 3568 } 3569 return 0; 3570 } 3571 3572 /* Drop a fs root from the radix tree and free it. */ 3573 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3574 struct btrfs_root *root) 3575 { 3576 spin_lock(&fs_info->fs_roots_radix_lock); 3577 radix_tree_delete(&fs_info->fs_roots_radix, 3578 (unsigned long)root->root_key.objectid); 3579 spin_unlock(&fs_info->fs_roots_radix_lock); 3580 3581 if (btrfs_root_refs(&root->root_item) == 0) 3582 synchronize_srcu(&fs_info->subvol_srcu); 3583 3584 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3585 btrfs_free_log(NULL, root); 3586 if (root->reloc_root) { 3587 free_extent_buffer(root->reloc_root->node); 3588 free_extent_buffer(root->reloc_root->commit_root); 3589 btrfs_put_fs_root(root->reloc_root); 3590 root->reloc_root = NULL; 3591 } 3592 } 3593 3594 if (root->free_ino_pinned) 3595 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3596 if (root->free_ino_ctl) 3597 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3598 free_fs_root(root); 3599 } 3600 3601 static void free_fs_root(struct btrfs_root *root) 3602 { 3603 iput(root->ino_cache_inode); 3604 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3605 btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv); 3606 root->orphan_block_rsv = NULL; 3607 if (root->anon_dev) 3608 free_anon_bdev(root->anon_dev); 3609 if (root->subv_writers) 3610 btrfs_free_subvolume_writers(root->subv_writers); 3611 free_extent_buffer(root->node); 3612 free_extent_buffer(root->commit_root); 3613 kfree(root->free_ino_ctl); 3614 kfree(root->free_ino_pinned); 3615 kfree(root->name); 3616 btrfs_put_fs_root(root); 3617 } 3618 3619 void btrfs_free_fs_root(struct btrfs_root *root) 3620 { 3621 free_fs_root(root); 3622 } 3623 3624 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3625 { 3626 u64 root_objectid = 0; 3627 struct btrfs_root *gang[8]; 3628 int i = 0; 3629 int err = 0; 3630 unsigned int ret = 0; 3631 int index; 3632 3633 while (1) { 3634 index = srcu_read_lock(&fs_info->subvol_srcu); 3635 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3636 (void **)gang, root_objectid, 3637 ARRAY_SIZE(gang)); 3638 if (!ret) { 3639 srcu_read_unlock(&fs_info->subvol_srcu, index); 3640 break; 3641 } 3642 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3643 3644 for (i = 0; i < ret; i++) { 3645 /* Avoid to grab roots in dead_roots */ 3646 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3647 gang[i] = NULL; 3648 continue; 3649 } 3650 /* grab all the search result for later use */ 3651 gang[i] = btrfs_grab_fs_root(gang[i]); 3652 } 3653 srcu_read_unlock(&fs_info->subvol_srcu, index); 3654 3655 for (i = 0; i < ret; i++) { 3656 if (!gang[i]) 3657 continue; 3658 root_objectid = gang[i]->root_key.objectid; 3659 err = btrfs_orphan_cleanup(gang[i]); 3660 if (err) 3661 break; 3662 btrfs_put_fs_root(gang[i]); 3663 } 3664 root_objectid++; 3665 } 3666 3667 /* release the uncleaned roots due to error */ 3668 for (; i < ret; i++) { 3669 if (gang[i]) 3670 btrfs_put_fs_root(gang[i]); 3671 } 3672 return err; 3673 } 3674 3675 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 3676 { 3677 struct btrfs_root *root = fs_info->tree_root; 3678 struct btrfs_trans_handle *trans; 3679 3680 mutex_lock(&fs_info->cleaner_mutex); 3681 btrfs_run_delayed_iputs(fs_info); 3682 mutex_unlock(&fs_info->cleaner_mutex); 3683 wake_up_process(fs_info->cleaner_kthread); 3684 3685 /* wait until ongoing cleanup work done */ 3686 down_write(&fs_info->cleanup_work_sem); 3687 up_write(&fs_info->cleanup_work_sem); 3688 3689 trans = btrfs_join_transaction(root); 3690 if (IS_ERR(trans)) 3691 return PTR_ERR(trans); 3692 return btrfs_commit_transaction(trans); 3693 } 3694 3695 void close_ctree(struct btrfs_fs_info *fs_info) 3696 { 3697 struct btrfs_root *root = fs_info->tree_root; 3698 int ret; 3699 3700 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 3701 3702 /* wait for the qgroup rescan worker to stop */ 3703 btrfs_qgroup_wait_for_completion(fs_info, false); 3704 3705 /* wait for the uuid_scan task to finish */ 3706 down(&fs_info->uuid_tree_rescan_sem); 3707 /* avoid complains from lockdep et al., set sem back to initial state */ 3708 up(&fs_info->uuid_tree_rescan_sem); 3709 3710 /* pause restriper - we want to resume on mount */ 3711 btrfs_pause_balance(fs_info); 3712 3713 btrfs_dev_replace_suspend_for_unmount(fs_info); 3714 3715 btrfs_scrub_cancel(fs_info); 3716 3717 /* wait for any defraggers to finish */ 3718 wait_event(fs_info->transaction_wait, 3719 (atomic_read(&fs_info->defrag_running) == 0)); 3720 3721 /* clear out the rbtree of defraggable inodes */ 3722 btrfs_cleanup_defrag_inodes(fs_info); 3723 3724 cancel_work_sync(&fs_info->async_reclaim_work); 3725 3726 if (!sb_rdonly(fs_info->sb)) { 3727 /* 3728 * If the cleaner thread is stopped and there are 3729 * block groups queued for removal, the deletion will be 3730 * skipped when we quit the cleaner thread. 3731 */ 3732 btrfs_delete_unused_bgs(fs_info); 3733 3734 ret = btrfs_commit_super(fs_info); 3735 if (ret) 3736 btrfs_err(fs_info, "commit super ret %d", ret); 3737 } 3738 3739 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3740 btrfs_error_commit_super(fs_info); 3741 3742 kthread_stop(fs_info->transaction_kthread); 3743 kthread_stop(fs_info->cleaner_kthread); 3744 3745 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 3746 3747 btrfs_free_qgroup_config(fs_info); 3748 3749 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3750 btrfs_info(fs_info, "at unmount delalloc count %lld", 3751 percpu_counter_sum(&fs_info->delalloc_bytes)); 3752 } 3753 3754 btrfs_sysfs_remove_mounted(fs_info); 3755 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3756 3757 btrfs_free_fs_roots(fs_info); 3758 3759 btrfs_put_block_group_cache(fs_info); 3760 3761 /* 3762 * we must make sure there is not any read request to 3763 * submit after we stopping all workers. 3764 */ 3765 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3766 btrfs_stop_all_workers(fs_info); 3767 3768 btrfs_free_block_groups(fs_info); 3769 3770 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 3771 free_root_pointers(fs_info, 1); 3772 3773 iput(fs_info->btree_inode); 3774 3775 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3776 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 3777 btrfsic_unmount(fs_info->fs_devices); 3778 #endif 3779 3780 btrfs_close_devices(fs_info->fs_devices); 3781 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3782 3783 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3784 percpu_counter_destroy(&fs_info->delalloc_bytes); 3785 percpu_counter_destroy(&fs_info->bio_counter); 3786 cleanup_srcu_struct(&fs_info->subvol_srcu); 3787 3788 btrfs_free_stripe_hash_table(fs_info); 3789 btrfs_free_ref_cache(fs_info); 3790 3791 __btrfs_free_block_rsv(root->orphan_block_rsv); 3792 root->orphan_block_rsv = NULL; 3793 3794 while (!list_empty(&fs_info->pinned_chunks)) { 3795 struct extent_map *em; 3796 3797 em = list_first_entry(&fs_info->pinned_chunks, 3798 struct extent_map, list); 3799 list_del_init(&em->list); 3800 free_extent_map(em); 3801 } 3802 } 3803 3804 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 3805 int atomic) 3806 { 3807 int ret; 3808 struct inode *btree_inode = buf->pages[0]->mapping->host; 3809 3810 ret = extent_buffer_uptodate(buf); 3811 if (!ret) 3812 return ret; 3813 3814 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3815 parent_transid, atomic); 3816 if (ret == -EAGAIN) 3817 return ret; 3818 return !ret; 3819 } 3820 3821 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3822 { 3823 struct btrfs_fs_info *fs_info; 3824 struct btrfs_root *root; 3825 u64 transid = btrfs_header_generation(buf); 3826 int was_dirty; 3827 3828 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3829 /* 3830 * This is a fast path so only do this check if we have sanity tests 3831 * enabled. Normal people shouldn't be marking dummy buffers as dirty 3832 * outside of the sanity tests. 3833 */ 3834 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags))) 3835 return; 3836 #endif 3837 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3838 fs_info = root->fs_info; 3839 btrfs_assert_tree_locked(buf); 3840 if (transid != fs_info->generation) 3841 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 3842 buf->start, transid, fs_info->generation); 3843 was_dirty = set_extent_buffer_dirty(buf); 3844 if (!was_dirty) 3845 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 3846 buf->len, 3847 fs_info->dirty_metadata_batch); 3848 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3849 /* 3850 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 3851 * but item data not updated. 3852 * So here we should only check item pointers, not item data. 3853 */ 3854 if (btrfs_header_level(buf) == 0 && 3855 btrfs_check_leaf_relaxed(root, buf)) { 3856 btrfs_print_leaf(buf); 3857 ASSERT(0); 3858 } 3859 #endif 3860 } 3861 3862 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 3863 int flush_delayed) 3864 { 3865 /* 3866 * looks as though older kernels can get into trouble with 3867 * this code, they end up stuck in balance_dirty_pages forever 3868 */ 3869 int ret; 3870 3871 if (current->flags & PF_MEMALLOC) 3872 return; 3873 3874 if (flush_delayed) 3875 btrfs_balance_delayed_items(fs_info); 3876 3877 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 3878 BTRFS_DIRTY_METADATA_THRESH); 3879 if (ret > 0) { 3880 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 3881 } 3882 } 3883 3884 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 3885 { 3886 __btrfs_btree_balance_dirty(fs_info, 1); 3887 } 3888 3889 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 3890 { 3891 __btrfs_btree_balance_dirty(fs_info, 0); 3892 } 3893 3894 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 3895 { 3896 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3897 struct btrfs_fs_info *fs_info = root->fs_info; 3898 3899 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid); 3900 } 3901 3902 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info) 3903 { 3904 struct btrfs_super_block *sb = fs_info->super_copy; 3905 u64 nodesize = btrfs_super_nodesize(sb); 3906 u64 sectorsize = btrfs_super_sectorsize(sb); 3907 int ret = 0; 3908 3909 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 3910 btrfs_err(fs_info, "no valid FS found"); 3911 ret = -EINVAL; 3912 } 3913 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) 3914 btrfs_warn(fs_info, "unrecognized super flag: %llu", 3915 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 3916 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 3917 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 3918 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 3919 ret = -EINVAL; 3920 } 3921 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 3922 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 3923 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 3924 ret = -EINVAL; 3925 } 3926 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 3927 btrfs_err(fs_info, "log_root level too big: %d >= %d", 3928 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 3929 ret = -EINVAL; 3930 } 3931 3932 /* 3933 * Check sectorsize and nodesize first, other check will need it. 3934 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 3935 */ 3936 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 3937 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 3938 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 3939 ret = -EINVAL; 3940 } 3941 /* Only PAGE SIZE is supported yet */ 3942 if (sectorsize != PAGE_SIZE) { 3943 btrfs_err(fs_info, 3944 "sectorsize %llu not supported yet, only support %lu", 3945 sectorsize, PAGE_SIZE); 3946 ret = -EINVAL; 3947 } 3948 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 3949 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 3950 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 3951 ret = -EINVAL; 3952 } 3953 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 3954 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 3955 le32_to_cpu(sb->__unused_leafsize), nodesize); 3956 ret = -EINVAL; 3957 } 3958 3959 /* Root alignment check */ 3960 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 3961 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 3962 btrfs_super_root(sb)); 3963 ret = -EINVAL; 3964 } 3965 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 3966 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 3967 btrfs_super_chunk_root(sb)); 3968 ret = -EINVAL; 3969 } 3970 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 3971 btrfs_warn(fs_info, "log_root block unaligned: %llu", 3972 btrfs_super_log_root(sb)); 3973 ret = -EINVAL; 3974 } 3975 3976 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) { 3977 btrfs_err(fs_info, 3978 "dev_item UUID does not match fsid: %pU != %pU", 3979 fs_info->fsid, sb->dev_item.fsid); 3980 ret = -EINVAL; 3981 } 3982 3983 /* 3984 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 3985 * done later 3986 */ 3987 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 3988 btrfs_err(fs_info, "bytes_used is too small %llu", 3989 btrfs_super_bytes_used(sb)); 3990 ret = -EINVAL; 3991 } 3992 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 3993 btrfs_err(fs_info, "invalid stripesize %u", 3994 btrfs_super_stripesize(sb)); 3995 ret = -EINVAL; 3996 } 3997 if (btrfs_super_num_devices(sb) > (1UL << 31)) 3998 btrfs_warn(fs_info, "suspicious number of devices: %llu", 3999 btrfs_super_num_devices(sb)); 4000 if (btrfs_super_num_devices(sb) == 0) { 4001 btrfs_err(fs_info, "number of devices is 0"); 4002 ret = -EINVAL; 4003 } 4004 4005 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) { 4006 btrfs_err(fs_info, "super offset mismatch %llu != %u", 4007 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 4008 ret = -EINVAL; 4009 } 4010 4011 /* 4012 * Obvious sys_chunk_array corruptions, it must hold at least one key 4013 * and one chunk 4014 */ 4015 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4016 btrfs_err(fs_info, "system chunk array too big %u > %u", 4017 btrfs_super_sys_array_size(sb), 4018 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 4019 ret = -EINVAL; 4020 } 4021 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 4022 + sizeof(struct btrfs_chunk)) { 4023 btrfs_err(fs_info, "system chunk array too small %u < %zu", 4024 btrfs_super_sys_array_size(sb), 4025 sizeof(struct btrfs_disk_key) 4026 + sizeof(struct btrfs_chunk)); 4027 ret = -EINVAL; 4028 } 4029 4030 /* 4031 * The generation is a global counter, we'll trust it more than the others 4032 * but it's still possible that it's the one that's wrong. 4033 */ 4034 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 4035 btrfs_warn(fs_info, 4036 "suspicious: generation < chunk_root_generation: %llu < %llu", 4037 btrfs_super_generation(sb), 4038 btrfs_super_chunk_root_generation(sb)); 4039 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 4040 && btrfs_super_cache_generation(sb) != (u64)-1) 4041 btrfs_warn(fs_info, 4042 "suspicious: generation < cache_generation: %llu < %llu", 4043 btrfs_super_generation(sb), 4044 btrfs_super_cache_generation(sb)); 4045 4046 return ret; 4047 } 4048 4049 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4050 { 4051 mutex_lock(&fs_info->cleaner_mutex); 4052 btrfs_run_delayed_iputs(fs_info); 4053 mutex_unlock(&fs_info->cleaner_mutex); 4054 4055 down_write(&fs_info->cleanup_work_sem); 4056 up_write(&fs_info->cleanup_work_sem); 4057 4058 /* cleanup FS via transaction */ 4059 btrfs_cleanup_transaction(fs_info); 4060 } 4061 4062 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4063 { 4064 struct btrfs_ordered_extent *ordered; 4065 4066 spin_lock(&root->ordered_extent_lock); 4067 /* 4068 * This will just short circuit the ordered completion stuff which will 4069 * make sure the ordered extent gets properly cleaned up. 4070 */ 4071 list_for_each_entry(ordered, &root->ordered_extents, 4072 root_extent_list) 4073 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4074 spin_unlock(&root->ordered_extent_lock); 4075 } 4076 4077 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4078 { 4079 struct btrfs_root *root; 4080 struct list_head splice; 4081 4082 INIT_LIST_HEAD(&splice); 4083 4084 spin_lock(&fs_info->ordered_root_lock); 4085 list_splice_init(&fs_info->ordered_roots, &splice); 4086 while (!list_empty(&splice)) { 4087 root = list_first_entry(&splice, struct btrfs_root, 4088 ordered_root); 4089 list_move_tail(&root->ordered_root, 4090 &fs_info->ordered_roots); 4091 4092 spin_unlock(&fs_info->ordered_root_lock); 4093 btrfs_destroy_ordered_extents(root); 4094 4095 cond_resched(); 4096 spin_lock(&fs_info->ordered_root_lock); 4097 } 4098 spin_unlock(&fs_info->ordered_root_lock); 4099 } 4100 4101 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4102 struct btrfs_fs_info *fs_info) 4103 { 4104 struct rb_node *node; 4105 struct btrfs_delayed_ref_root *delayed_refs; 4106 struct btrfs_delayed_ref_node *ref; 4107 int ret = 0; 4108 4109 delayed_refs = &trans->delayed_refs; 4110 4111 spin_lock(&delayed_refs->lock); 4112 if (atomic_read(&delayed_refs->num_entries) == 0) { 4113 spin_unlock(&delayed_refs->lock); 4114 btrfs_info(fs_info, "delayed_refs has NO entry"); 4115 return ret; 4116 } 4117 4118 while ((node = rb_first(&delayed_refs->href_root)) != NULL) { 4119 struct btrfs_delayed_ref_head *head; 4120 struct rb_node *n; 4121 bool pin_bytes = false; 4122 4123 head = rb_entry(node, struct btrfs_delayed_ref_head, 4124 href_node); 4125 if (!mutex_trylock(&head->mutex)) { 4126 refcount_inc(&head->refs); 4127 spin_unlock(&delayed_refs->lock); 4128 4129 mutex_lock(&head->mutex); 4130 mutex_unlock(&head->mutex); 4131 btrfs_put_delayed_ref_head(head); 4132 spin_lock(&delayed_refs->lock); 4133 continue; 4134 } 4135 spin_lock(&head->lock); 4136 while ((n = rb_first(&head->ref_tree)) != NULL) { 4137 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4138 ref_node); 4139 ref->in_tree = 0; 4140 rb_erase(&ref->ref_node, &head->ref_tree); 4141 RB_CLEAR_NODE(&ref->ref_node); 4142 if (!list_empty(&ref->add_list)) 4143 list_del(&ref->add_list); 4144 atomic_dec(&delayed_refs->num_entries); 4145 btrfs_put_delayed_ref(ref); 4146 } 4147 if (head->must_insert_reserved) 4148 pin_bytes = true; 4149 btrfs_free_delayed_extent_op(head->extent_op); 4150 delayed_refs->num_heads--; 4151 if (head->processing == 0) 4152 delayed_refs->num_heads_ready--; 4153 atomic_dec(&delayed_refs->num_entries); 4154 rb_erase(&head->href_node, &delayed_refs->href_root); 4155 RB_CLEAR_NODE(&head->href_node); 4156 spin_unlock(&head->lock); 4157 spin_unlock(&delayed_refs->lock); 4158 mutex_unlock(&head->mutex); 4159 4160 if (pin_bytes) 4161 btrfs_pin_extent(fs_info, head->bytenr, 4162 head->num_bytes, 1); 4163 btrfs_put_delayed_ref_head(head); 4164 cond_resched(); 4165 spin_lock(&delayed_refs->lock); 4166 } 4167 4168 spin_unlock(&delayed_refs->lock); 4169 4170 return ret; 4171 } 4172 4173 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4174 { 4175 struct btrfs_inode *btrfs_inode; 4176 struct list_head splice; 4177 4178 INIT_LIST_HEAD(&splice); 4179 4180 spin_lock(&root->delalloc_lock); 4181 list_splice_init(&root->delalloc_inodes, &splice); 4182 4183 while (!list_empty(&splice)) { 4184 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4185 delalloc_inodes); 4186 4187 list_del_init(&btrfs_inode->delalloc_inodes); 4188 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 4189 &btrfs_inode->runtime_flags); 4190 spin_unlock(&root->delalloc_lock); 4191 4192 btrfs_invalidate_inodes(btrfs_inode->root); 4193 4194 spin_lock(&root->delalloc_lock); 4195 } 4196 4197 spin_unlock(&root->delalloc_lock); 4198 } 4199 4200 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4201 { 4202 struct btrfs_root *root; 4203 struct list_head splice; 4204 4205 INIT_LIST_HEAD(&splice); 4206 4207 spin_lock(&fs_info->delalloc_root_lock); 4208 list_splice_init(&fs_info->delalloc_roots, &splice); 4209 while (!list_empty(&splice)) { 4210 root = list_first_entry(&splice, struct btrfs_root, 4211 delalloc_root); 4212 list_del_init(&root->delalloc_root); 4213 root = btrfs_grab_fs_root(root); 4214 BUG_ON(!root); 4215 spin_unlock(&fs_info->delalloc_root_lock); 4216 4217 btrfs_destroy_delalloc_inodes(root); 4218 btrfs_put_fs_root(root); 4219 4220 spin_lock(&fs_info->delalloc_root_lock); 4221 } 4222 spin_unlock(&fs_info->delalloc_root_lock); 4223 } 4224 4225 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4226 struct extent_io_tree *dirty_pages, 4227 int mark) 4228 { 4229 int ret; 4230 struct extent_buffer *eb; 4231 u64 start = 0; 4232 u64 end; 4233 4234 while (1) { 4235 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4236 mark, NULL); 4237 if (ret) 4238 break; 4239 4240 clear_extent_bits(dirty_pages, start, end, mark); 4241 while (start <= end) { 4242 eb = find_extent_buffer(fs_info, start); 4243 start += fs_info->nodesize; 4244 if (!eb) 4245 continue; 4246 wait_on_extent_buffer_writeback(eb); 4247 4248 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4249 &eb->bflags)) 4250 clear_extent_buffer_dirty(eb); 4251 free_extent_buffer_stale(eb); 4252 } 4253 } 4254 4255 return ret; 4256 } 4257 4258 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4259 struct extent_io_tree *pinned_extents) 4260 { 4261 struct extent_io_tree *unpin; 4262 u64 start; 4263 u64 end; 4264 int ret; 4265 bool loop = true; 4266 4267 unpin = pinned_extents; 4268 again: 4269 while (1) { 4270 ret = find_first_extent_bit(unpin, 0, &start, &end, 4271 EXTENT_DIRTY, NULL); 4272 if (ret) 4273 break; 4274 4275 clear_extent_dirty(unpin, start, end); 4276 btrfs_error_unpin_extent_range(fs_info, start, end); 4277 cond_resched(); 4278 } 4279 4280 if (loop) { 4281 if (unpin == &fs_info->freed_extents[0]) 4282 unpin = &fs_info->freed_extents[1]; 4283 else 4284 unpin = &fs_info->freed_extents[0]; 4285 loop = false; 4286 goto again; 4287 } 4288 4289 return 0; 4290 } 4291 4292 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache) 4293 { 4294 struct inode *inode; 4295 4296 inode = cache->io_ctl.inode; 4297 if (inode) { 4298 invalidate_inode_pages2(inode->i_mapping); 4299 BTRFS_I(inode)->generation = 0; 4300 cache->io_ctl.inode = NULL; 4301 iput(inode); 4302 } 4303 btrfs_put_block_group(cache); 4304 } 4305 4306 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4307 struct btrfs_fs_info *fs_info) 4308 { 4309 struct btrfs_block_group_cache *cache; 4310 4311 spin_lock(&cur_trans->dirty_bgs_lock); 4312 while (!list_empty(&cur_trans->dirty_bgs)) { 4313 cache = list_first_entry(&cur_trans->dirty_bgs, 4314 struct btrfs_block_group_cache, 4315 dirty_list); 4316 if (!cache) { 4317 btrfs_err(fs_info, "orphan block group dirty_bgs list"); 4318 spin_unlock(&cur_trans->dirty_bgs_lock); 4319 return; 4320 } 4321 4322 if (!list_empty(&cache->io_list)) { 4323 spin_unlock(&cur_trans->dirty_bgs_lock); 4324 list_del_init(&cache->io_list); 4325 btrfs_cleanup_bg_io(cache); 4326 spin_lock(&cur_trans->dirty_bgs_lock); 4327 } 4328 4329 list_del_init(&cache->dirty_list); 4330 spin_lock(&cache->lock); 4331 cache->disk_cache_state = BTRFS_DC_ERROR; 4332 spin_unlock(&cache->lock); 4333 4334 spin_unlock(&cur_trans->dirty_bgs_lock); 4335 btrfs_put_block_group(cache); 4336 spin_lock(&cur_trans->dirty_bgs_lock); 4337 } 4338 spin_unlock(&cur_trans->dirty_bgs_lock); 4339 4340 while (!list_empty(&cur_trans->io_bgs)) { 4341 cache = list_first_entry(&cur_trans->io_bgs, 4342 struct btrfs_block_group_cache, 4343 io_list); 4344 if (!cache) { 4345 btrfs_err(fs_info, "orphan block group on io_bgs list"); 4346 return; 4347 } 4348 4349 list_del_init(&cache->io_list); 4350 spin_lock(&cache->lock); 4351 cache->disk_cache_state = BTRFS_DC_ERROR; 4352 spin_unlock(&cache->lock); 4353 btrfs_cleanup_bg_io(cache); 4354 } 4355 } 4356 4357 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4358 struct btrfs_fs_info *fs_info) 4359 { 4360 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4361 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4362 ASSERT(list_empty(&cur_trans->io_bgs)); 4363 4364 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4365 4366 cur_trans->state = TRANS_STATE_COMMIT_START; 4367 wake_up(&fs_info->transaction_blocked_wait); 4368 4369 cur_trans->state = TRANS_STATE_UNBLOCKED; 4370 wake_up(&fs_info->transaction_wait); 4371 4372 btrfs_destroy_delayed_inodes(fs_info); 4373 btrfs_assert_delayed_root_empty(fs_info); 4374 4375 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4376 EXTENT_DIRTY); 4377 btrfs_destroy_pinned_extent(fs_info, 4378 fs_info->pinned_extents); 4379 4380 cur_trans->state =TRANS_STATE_COMPLETED; 4381 wake_up(&cur_trans->commit_wait); 4382 } 4383 4384 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4385 { 4386 struct btrfs_transaction *t; 4387 4388 mutex_lock(&fs_info->transaction_kthread_mutex); 4389 4390 spin_lock(&fs_info->trans_lock); 4391 while (!list_empty(&fs_info->trans_list)) { 4392 t = list_first_entry(&fs_info->trans_list, 4393 struct btrfs_transaction, list); 4394 if (t->state >= TRANS_STATE_COMMIT_START) { 4395 refcount_inc(&t->use_count); 4396 spin_unlock(&fs_info->trans_lock); 4397 btrfs_wait_for_commit(fs_info, t->transid); 4398 btrfs_put_transaction(t); 4399 spin_lock(&fs_info->trans_lock); 4400 continue; 4401 } 4402 if (t == fs_info->running_transaction) { 4403 t->state = TRANS_STATE_COMMIT_DOING; 4404 spin_unlock(&fs_info->trans_lock); 4405 /* 4406 * We wait for 0 num_writers since we don't hold a trans 4407 * handle open currently for this transaction. 4408 */ 4409 wait_event(t->writer_wait, 4410 atomic_read(&t->num_writers) == 0); 4411 } else { 4412 spin_unlock(&fs_info->trans_lock); 4413 } 4414 btrfs_cleanup_one_transaction(t, fs_info); 4415 4416 spin_lock(&fs_info->trans_lock); 4417 if (t == fs_info->running_transaction) 4418 fs_info->running_transaction = NULL; 4419 list_del_init(&t->list); 4420 spin_unlock(&fs_info->trans_lock); 4421 4422 btrfs_put_transaction(t); 4423 trace_btrfs_transaction_commit(fs_info->tree_root); 4424 spin_lock(&fs_info->trans_lock); 4425 } 4426 spin_unlock(&fs_info->trans_lock); 4427 btrfs_destroy_all_ordered_extents(fs_info); 4428 btrfs_destroy_delayed_inodes(fs_info); 4429 btrfs_assert_delayed_root_empty(fs_info); 4430 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 4431 btrfs_destroy_all_delalloc_inodes(fs_info); 4432 mutex_unlock(&fs_info->transaction_kthread_mutex); 4433 4434 return 0; 4435 } 4436 4437 static struct btrfs_fs_info *btree_fs_info(void *private_data) 4438 { 4439 struct inode *inode = private_data; 4440 return btrfs_sb(inode->i_sb); 4441 } 4442 4443 static const struct extent_io_ops btree_extent_io_ops = { 4444 /* mandatory callbacks */ 4445 .submit_bio_hook = btree_submit_bio_hook, 4446 .readpage_end_io_hook = btree_readpage_end_io_hook, 4447 /* note we're sharing with inode.c for the merge bio hook */ 4448 .merge_bio_hook = btrfs_merge_bio_hook, 4449 .readpage_io_failed_hook = btree_io_failed_hook, 4450 .set_range_writeback = btrfs_set_range_writeback, 4451 .tree_fs_info = btree_fs_info, 4452 4453 /* optional callbacks */ 4454 }; 4455