xref: /openbmc/linux/fs/btrfs/disk-io.c (revision 4a3fad70)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "hash.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "compression.h"
53 #include "tree-checker.h"
54 #include "ref-verify.h"
55 
56 #ifdef CONFIG_X86
57 #include <asm/cpufeature.h>
58 #endif
59 
60 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
61 				 BTRFS_HEADER_FLAG_RELOC |\
62 				 BTRFS_SUPER_FLAG_ERROR |\
63 				 BTRFS_SUPER_FLAG_SEEDING |\
64 				 BTRFS_SUPER_FLAG_METADUMP)
65 
66 static const struct extent_io_ops btree_extent_io_ops;
67 static void end_workqueue_fn(struct btrfs_work *work);
68 static void free_fs_root(struct btrfs_root *root);
69 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
70 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
71 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
72 				      struct btrfs_fs_info *fs_info);
73 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
74 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
75 					struct extent_io_tree *dirty_pages,
76 					int mark);
77 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
78 				       struct extent_io_tree *pinned_extents);
79 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
80 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
81 
82 /*
83  * btrfs_end_io_wq structs are used to do processing in task context when an IO
84  * is complete.  This is used during reads to verify checksums, and it is used
85  * by writes to insert metadata for new file extents after IO is complete.
86  */
87 struct btrfs_end_io_wq {
88 	struct bio *bio;
89 	bio_end_io_t *end_io;
90 	void *private;
91 	struct btrfs_fs_info *info;
92 	blk_status_t status;
93 	enum btrfs_wq_endio_type metadata;
94 	struct btrfs_work work;
95 };
96 
97 static struct kmem_cache *btrfs_end_io_wq_cache;
98 
99 int __init btrfs_end_io_wq_init(void)
100 {
101 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102 					sizeof(struct btrfs_end_io_wq),
103 					0,
104 					SLAB_MEM_SPREAD,
105 					NULL);
106 	if (!btrfs_end_io_wq_cache)
107 		return -ENOMEM;
108 	return 0;
109 }
110 
111 void btrfs_end_io_wq_exit(void)
112 {
113 	kmem_cache_destroy(btrfs_end_io_wq_cache);
114 }
115 
116 /*
117  * async submit bios are used to offload expensive checksumming
118  * onto the worker threads.  They checksum file and metadata bios
119  * just before they are sent down the IO stack.
120  */
121 struct async_submit_bio {
122 	void *private_data;
123 	struct btrfs_fs_info *fs_info;
124 	struct bio *bio;
125 	extent_submit_bio_hook_t *submit_bio_start;
126 	extent_submit_bio_hook_t *submit_bio_done;
127 	int mirror_num;
128 	unsigned long bio_flags;
129 	/*
130 	 * bio_offset is optional, can be used if the pages in the bio
131 	 * can't tell us where in the file the bio should go
132 	 */
133 	u64 bio_offset;
134 	struct btrfs_work work;
135 	blk_status_t status;
136 };
137 
138 /*
139  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
140  * eb, the lockdep key is determined by the btrfs_root it belongs to and
141  * the level the eb occupies in the tree.
142  *
143  * Different roots are used for different purposes and may nest inside each
144  * other and they require separate keysets.  As lockdep keys should be
145  * static, assign keysets according to the purpose of the root as indicated
146  * by btrfs_root->objectid.  This ensures that all special purpose roots
147  * have separate keysets.
148  *
149  * Lock-nesting across peer nodes is always done with the immediate parent
150  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
151  * subclass to avoid triggering lockdep warning in such cases.
152  *
153  * The key is set by the readpage_end_io_hook after the buffer has passed
154  * csum validation but before the pages are unlocked.  It is also set by
155  * btrfs_init_new_buffer on freshly allocated blocks.
156  *
157  * We also add a check to make sure the highest level of the tree is the
158  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
159  * needs update as well.
160  */
161 #ifdef CONFIG_DEBUG_LOCK_ALLOC
162 # if BTRFS_MAX_LEVEL != 8
163 #  error
164 # endif
165 
166 static struct btrfs_lockdep_keyset {
167 	u64			id;		/* root objectid */
168 	const char		*name_stem;	/* lock name stem */
169 	char			names[BTRFS_MAX_LEVEL + 1][20];
170 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
171 } btrfs_lockdep_keysets[] = {
172 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
173 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
174 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
175 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
176 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
177 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
178 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
179 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
180 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
181 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
182 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
183 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
184 	{ .id = 0,				.name_stem = "tree"	},
185 };
186 
187 void __init btrfs_init_lockdep(void)
188 {
189 	int i, j;
190 
191 	/* initialize lockdep class names */
192 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
193 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
194 
195 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
196 			snprintf(ks->names[j], sizeof(ks->names[j]),
197 				 "btrfs-%s-%02d", ks->name_stem, j);
198 	}
199 }
200 
201 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
202 				    int level)
203 {
204 	struct btrfs_lockdep_keyset *ks;
205 
206 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
207 
208 	/* find the matching keyset, id 0 is the default entry */
209 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
210 		if (ks->id == objectid)
211 			break;
212 
213 	lockdep_set_class_and_name(&eb->lock,
214 				   &ks->keys[level], ks->names[level]);
215 }
216 
217 #endif
218 
219 /*
220  * extents on the btree inode are pretty simple, there's one extent
221  * that covers the entire device
222  */
223 static struct extent_map *btree_get_extent(struct btrfs_inode *inode,
224 		struct page *page, size_t pg_offset, u64 start, u64 len,
225 		int create)
226 {
227 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
228 	struct extent_map_tree *em_tree = &inode->extent_tree;
229 	struct extent_map *em;
230 	int ret;
231 
232 	read_lock(&em_tree->lock);
233 	em = lookup_extent_mapping(em_tree, start, len);
234 	if (em) {
235 		em->bdev = fs_info->fs_devices->latest_bdev;
236 		read_unlock(&em_tree->lock);
237 		goto out;
238 	}
239 	read_unlock(&em_tree->lock);
240 
241 	em = alloc_extent_map();
242 	if (!em) {
243 		em = ERR_PTR(-ENOMEM);
244 		goto out;
245 	}
246 	em->start = 0;
247 	em->len = (u64)-1;
248 	em->block_len = (u64)-1;
249 	em->block_start = 0;
250 	em->bdev = fs_info->fs_devices->latest_bdev;
251 
252 	write_lock(&em_tree->lock);
253 	ret = add_extent_mapping(em_tree, em, 0);
254 	if (ret == -EEXIST) {
255 		free_extent_map(em);
256 		em = lookup_extent_mapping(em_tree, start, len);
257 		if (!em)
258 			em = ERR_PTR(-EIO);
259 	} else if (ret) {
260 		free_extent_map(em);
261 		em = ERR_PTR(ret);
262 	}
263 	write_unlock(&em_tree->lock);
264 
265 out:
266 	return em;
267 }
268 
269 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
270 {
271 	return btrfs_crc32c(seed, data, len);
272 }
273 
274 void btrfs_csum_final(u32 crc, u8 *result)
275 {
276 	put_unaligned_le32(~crc, result);
277 }
278 
279 /*
280  * compute the csum for a btree block, and either verify it or write it
281  * into the csum field of the block.
282  */
283 static int csum_tree_block(struct btrfs_fs_info *fs_info,
284 			   struct extent_buffer *buf,
285 			   int verify)
286 {
287 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
288 	char *result = NULL;
289 	unsigned long len;
290 	unsigned long cur_len;
291 	unsigned long offset = BTRFS_CSUM_SIZE;
292 	char *kaddr;
293 	unsigned long map_start;
294 	unsigned long map_len;
295 	int err;
296 	u32 crc = ~(u32)0;
297 	unsigned long inline_result;
298 
299 	len = buf->len - offset;
300 	while (len > 0) {
301 		err = map_private_extent_buffer(buf, offset, 32,
302 					&kaddr, &map_start, &map_len);
303 		if (err)
304 			return err;
305 		cur_len = min(len, map_len - (offset - map_start));
306 		crc = btrfs_csum_data(kaddr + offset - map_start,
307 				      crc, cur_len);
308 		len -= cur_len;
309 		offset += cur_len;
310 	}
311 	if (csum_size > sizeof(inline_result)) {
312 		result = kzalloc(csum_size, GFP_NOFS);
313 		if (!result)
314 			return -ENOMEM;
315 	} else {
316 		result = (char *)&inline_result;
317 	}
318 
319 	btrfs_csum_final(crc, result);
320 
321 	if (verify) {
322 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
323 			u32 val;
324 			u32 found = 0;
325 			memcpy(&found, result, csum_size);
326 
327 			read_extent_buffer(buf, &val, 0, csum_size);
328 			btrfs_warn_rl(fs_info,
329 				"%s checksum verify failed on %llu wanted %X found %X level %d",
330 				fs_info->sb->s_id, buf->start,
331 				val, found, btrfs_header_level(buf));
332 			if (result != (char *)&inline_result)
333 				kfree(result);
334 			return -EUCLEAN;
335 		}
336 	} else {
337 		write_extent_buffer(buf, result, 0, csum_size);
338 	}
339 	if (result != (char *)&inline_result)
340 		kfree(result);
341 	return 0;
342 }
343 
344 /*
345  * we can't consider a given block up to date unless the transid of the
346  * block matches the transid in the parent node's pointer.  This is how we
347  * detect blocks that either didn't get written at all or got written
348  * in the wrong place.
349  */
350 static int verify_parent_transid(struct extent_io_tree *io_tree,
351 				 struct extent_buffer *eb, u64 parent_transid,
352 				 int atomic)
353 {
354 	struct extent_state *cached_state = NULL;
355 	int ret;
356 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
357 
358 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
359 		return 0;
360 
361 	if (atomic)
362 		return -EAGAIN;
363 
364 	if (need_lock) {
365 		btrfs_tree_read_lock(eb);
366 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
367 	}
368 
369 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
370 			 &cached_state);
371 	if (extent_buffer_uptodate(eb) &&
372 	    btrfs_header_generation(eb) == parent_transid) {
373 		ret = 0;
374 		goto out;
375 	}
376 	btrfs_err_rl(eb->fs_info,
377 		"parent transid verify failed on %llu wanted %llu found %llu",
378 			eb->start,
379 			parent_transid, btrfs_header_generation(eb));
380 	ret = 1;
381 
382 	/*
383 	 * Things reading via commit roots that don't have normal protection,
384 	 * like send, can have a really old block in cache that may point at a
385 	 * block that has been freed and re-allocated.  So don't clear uptodate
386 	 * if we find an eb that is under IO (dirty/writeback) because we could
387 	 * end up reading in the stale data and then writing it back out and
388 	 * making everybody very sad.
389 	 */
390 	if (!extent_buffer_under_io(eb))
391 		clear_extent_buffer_uptodate(eb);
392 out:
393 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
394 			     &cached_state, GFP_NOFS);
395 	if (need_lock)
396 		btrfs_tree_read_unlock_blocking(eb);
397 	return ret;
398 }
399 
400 /*
401  * Return 0 if the superblock checksum type matches the checksum value of that
402  * algorithm. Pass the raw disk superblock data.
403  */
404 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
405 				  char *raw_disk_sb)
406 {
407 	struct btrfs_super_block *disk_sb =
408 		(struct btrfs_super_block *)raw_disk_sb;
409 	u16 csum_type = btrfs_super_csum_type(disk_sb);
410 	int ret = 0;
411 
412 	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
413 		u32 crc = ~(u32)0;
414 		const int csum_size = sizeof(crc);
415 		char result[csum_size];
416 
417 		/*
418 		 * The super_block structure does not span the whole
419 		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
420 		 * is filled with zeros and is included in the checksum.
421 		 */
422 		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
423 				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
424 		btrfs_csum_final(crc, result);
425 
426 		if (memcmp(raw_disk_sb, result, csum_size))
427 			ret = 1;
428 	}
429 
430 	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
431 		btrfs_err(fs_info, "unsupported checksum algorithm %u",
432 				csum_type);
433 		ret = 1;
434 	}
435 
436 	return ret;
437 }
438 
439 /*
440  * helper to read a given tree block, doing retries as required when
441  * the checksums don't match and we have alternate mirrors to try.
442  */
443 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
444 					  struct extent_buffer *eb,
445 					  u64 parent_transid)
446 {
447 	struct extent_io_tree *io_tree;
448 	int failed = 0;
449 	int ret;
450 	int num_copies = 0;
451 	int mirror_num = 0;
452 	int failed_mirror = 0;
453 
454 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
455 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
456 	while (1) {
457 		ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
458 					       btree_get_extent, mirror_num);
459 		if (!ret) {
460 			if (!verify_parent_transid(io_tree, eb,
461 						   parent_transid, 0))
462 				break;
463 			else
464 				ret = -EIO;
465 		}
466 
467 		/*
468 		 * This buffer's crc is fine, but its contents are corrupted, so
469 		 * there is no reason to read the other copies, they won't be
470 		 * any less wrong.
471 		 */
472 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
473 			break;
474 
475 		num_copies = btrfs_num_copies(fs_info,
476 					      eb->start, eb->len);
477 		if (num_copies == 1)
478 			break;
479 
480 		if (!failed_mirror) {
481 			failed = 1;
482 			failed_mirror = eb->read_mirror;
483 		}
484 
485 		mirror_num++;
486 		if (mirror_num == failed_mirror)
487 			mirror_num++;
488 
489 		if (mirror_num > num_copies)
490 			break;
491 	}
492 
493 	if (failed && !ret && failed_mirror)
494 		repair_eb_io_failure(fs_info, eb, failed_mirror);
495 
496 	return ret;
497 }
498 
499 /*
500  * checksum a dirty tree block before IO.  This has extra checks to make sure
501  * we only fill in the checksum field in the first page of a multi-page block
502  */
503 
504 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
505 {
506 	u64 start = page_offset(page);
507 	u64 found_start;
508 	struct extent_buffer *eb;
509 
510 	eb = (struct extent_buffer *)page->private;
511 	if (page != eb->pages[0])
512 		return 0;
513 
514 	found_start = btrfs_header_bytenr(eb);
515 	/*
516 	 * Please do not consolidate these warnings into a single if.
517 	 * It is useful to know what went wrong.
518 	 */
519 	if (WARN_ON(found_start != start))
520 		return -EUCLEAN;
521 	if (WARN_ON(!PageUptodate(page)))
522 		return -EUCLEAN;
523 
524 	ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
525 			btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
526 
527 	return csum_tree_block(fs_info, eb, 0);
528 }
529 
530 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
531 				 struct extent_buffer *eb)
532 {
533 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
534 	u8 fsid[BTRFS_FSID_SIZE];
535 	int ret = 1;
536 
537 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
538 	while (fs_devices) {
539 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
540 			ret = 0;
541 			break;
542 		}
543 		fs_devices = fs_devices->seed;
544 	}
545 	return ret;
546 }
547 
548 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
549 				      u64 phy_offset, struct page *page,
550 				      u64 start, u64 end, int mirror)
551 {
552 	u64 found_start;
553 	int found_level;
554 	struct extent_buffer *eb;
555 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
556 	struct btrfs_fs_info *fs_info = root->fs_info;
557 	int ret = 0;
558 	int reads_done;
559 
560 	if (!page->private)
561 		goto out;
562 
563 	eb = (struct extent_buffer *)page->private;
564 
565 	/* the pending IO might have been the only thing that kept this buffer
566 	 * in memory.  Make sure we have a ref for all this other checks
567 	 */
568 	extent_buffer_get(eb);
569 
570 	reads_done = atomic_dec_and_test(&eb->io_pages);
571 	if (!reads_done)
572 		goto err;
573 
574 	eb->read_mirror = mirror;
575 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
576 		ret = -EIO;
577 		goto err;
578 	}
579 
580 	found_start = btrfs_header_bytenr(eb);
581 	if (found_start != eb->start) {
582 		btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
583 			     found_start, eb->start);
584 		ret = -EIO;
585 		goto err;
586 	}
587 	if (check_tree_block_fsid(fs_info, eb)) {
588 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
589 			     eb->start);
590 		ret = -EIO;
591 		goto err;
592 	}
593 	found_level = btrfs_header_level(eb);
594 	if (found_level >= BTRFS_MAX_LEVEL) {
595 		btrfs_err(fs_info, "bad tree block level %d",
596 			  (int)btrfs_header_level(eb));
597 		ret = -EIO;
598 		goto err;
599 	}
600 
601 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
602 				       eb, found_level);
603 
604 	ret = csum_tree_block(fs_info, eb, 1);
605 	if (ret)
606 		goto err;
607 
608 	/*
609 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
610 	 * that we don't try and read the other copies of this block, just
611 	 * return -EIO.
612 	 */
613 	if (found_level == 0 && btrfs_check_leaf_full(root, eb)) {
614 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
615 		ret = -EIO;
616 	}
617 
618 	if (found_level > 0 && btrfs_check_node(root, eb))
619 		ret = -EIO;
620 
621 	if (!ret)
622 		set_extent_buffer_uptodate(eb);
623 err:
624 	if (reads_done &&
625 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
626 		btree_readahead_hook(eb, ret);
627 
628 	if (ret) {
629 		/*
630 		 * our io error hook is going to dec the io pages
631 		 * again, we have to make sure it has something
632 		 * to decrement
633 		 */
634 		atomic_inc(&eb->io_pages);
635 		clear_extent_buffer_uptodate(eb);
636 	}
637 	free_extent_buffer(eb);
638 out:
639 	return ret;
640 }
641 
642 static int btree_io_failed_hook(struct page *page, int failed_mirror)
643 {
644 	struct extent_buffer *eb;
645 
646 	eb = (struct extent_buffer *)page->private;
647 	set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
648 	eb->read_mirror = failed_mirror;
649 	atomic_dec(&eb->io_pages);
650 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
651 		btree_readahead_hook(eb, -EIO);
652 	return -EIO;	/* we fixed nothing */
653 }
654 
655 static void end_workqueue_bio(struct bio *bio)
656 {
657 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
658 	struct btrfs_fs_info *fs_info;
659 	struct btrfs_workqueue *wq;
660 	btrfs_work_func_t func;
661 
662 	fs_info = end_io_wq->info;
663 	end_io_wq->status = bio->bi_status;
664 
665 	if (bio_op(bio) == REQ_OP_WRITE) {
666 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
667 			wq = fs_info->endio_meta_write_workers;
668 			func = btrfs_endio_meta_write_helper;
669 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
670 			wq = fs_info->endio_freespace_worker;
671 			func = btrfs_freespace_write_helper;
672 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
673 			wq = fs_info->endio_raid56_workers;
674 			func = btrfs_endio_raid56_helper;
675 		} else {
676 			wq = fs_info->endio_write_workers;
677 			func = btrfs_endio_write_helper;
678 		}
679 	} else {
680 		if (unlikely(end_io_wq->metadata ==
681 			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
682 			wq = fs_info->endio_repair_workers;
683 			func = btrfs_endio_repair_helper;
684 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
685 			wq = fs_info->endio_raid56_workers;
686 			func = btrfs_endio_raid56_helper;
687 		} else if (end_io_wq->metadata) {
688 			wq = fs_info->endio_meta_workers;
689 			func = btrfs_endio_meta_helper;
690 		} else {
691 			wq = fs_info->endio_workers;
692 			func = btrfs_endio_helper;
693 		}
694 	}
695 
696 	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
697 	btrfs_queue_work(wq, &end_io_wq->work);
698 }
699 
700 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
701 			enum btrfs_wq_endio_type metadata)
702 {
703 	struct btrfs_end_io_wq *end_io_wq;
704 
705 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
706 	if (!end_io_wq)
707 		return BLK_STS_RESOURCE;
708 
709 	end_io_wq->private = bio->bi_private;
710 	end_io_wq->end_io = bio->bi_end_io;
711 	end_io_wq->info = info;
712 	end_io_wq->status = 0;
713 	end_io_wq->bio = bio;
714 	end_io_wq->metadata = metadata;
715 
716 	bio->bi_private = end_io_wq;
717 	bio->bi_end_io = end_workqueue_bio;
718 	return 0;
719 }
720 
721 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
722 {
723 	unsigned long limit = min_t(unsigned long,
724 				    info->thread_pool_size,
725 				    info->fs_devices->open_devices);
726 	return 256 * limit;
727 }
728 
729 static void run_one_async_start(struct btrfs_work *work)
730 {
731 	struct async_submit_bio *async;
732 	blk_status_t ret;
733 
734 	async = container_of(work, struct  async_submit_bio, work);
735 	ret = async->submit_bio_start(async->private_data, async->bio,
736 				      async->mirror_num, async->bio_flags,
737 				      async->bio_offset);
738 	if (ret)
739 		async->status = ret;
740 }
741 
742 static void run_one_async_done(struct btrfs_work *work)
743 {
744 	struct async_submit_bio *async;
745 
746 	async = container_of(work, struct  async_submit_bio, work);
747 
748 	/* If an error occurred we just want to clean up the bio and move on */
749 	if (async->status) {
750 		async->bio->bi_status = async->status;
751 		bio_endio(async->bio);
752 		return;
753 	}
754 
755 	async->submit_bio_done(async->private_data, async->bio, async->mirror_num,
756 			       async->bio_flags, async->bio_offset);
757 }
758 
759 static void run_one_async_free(struct btrfs_work *work)
760 {
761 	struct async_submit_bio *async;
762 
763 	async = container_of(work, struct  async_submit_bio, work);
764 	kfree(async);
765 }
766 
767 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
768 				 int mirror_num, unsigned long bio_flags,
769 				 u64 bio_offset, void *private_data,
770 				 extent_submit_bio_hook_t *submit_bio_start,
771 				 extent_submit_bio_hook_t *submit_bio_done)
772 {
773 	struct async_submit_bio *async;
774 
775 	async = kmalloc(sizeof(*async), GFP_NOFS);
776 	if (!async)
777 		return BLK_STS_RESOURCE;
778 
779 	async->private_data = private_data;
780 	async->fs_info = fs_info;
781 	async->bio = bio;
782 	async->mirror_num = mirror_num;
783 	async->submit_bio_start = submit_bio_start;
784 	async->submit_bio_done = submit_bio_done;
785 
786 	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
787 			run_one_async_done, run_one_async_free);
788 
789 	async->bio_flags = bio_flags;
790 	async->bio_offset = bio_offset;
791 
792 	async->status = 0;
793 
794 	if (op_is_sync(bio->bi_opf))
795 		btrfs_set_work_high_priority(&async->work);
796 
797 	btrfs_queue_work(fs_info->workers, &async->work);
798 	return 0;
799 }
800 
801 static blk_status_t btree_csum_one_bio(struct bio *bio)
802 {
803 	struct bio_vec *bvec;
804 	struct btrfs_root *root;
805 	int i, ret = 0;
806 
807 	ASSERT(!bio_flagged(bio, BIO_CLONED));
808 	bio_for_each_segment_all(bvec, bio, i) {
809 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
810 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
811 		if (ret)
812 			break;
813 	}
814 
815 	return errno_to_blk_status(ret);
816 }
817 
818 static blk_status_t __btree_submit_bio_start(void *private_data, struct bio *bio,
819 					     int mirror_num, unsigned long bio_flags,
820 					     u64 bio_offset)
821 {
822 	/*
823 	 * when we're called for a write, we're already in the async
824 	 * submission context.  Just jump into btrfs_map_bio
825 	 */
826 	return btree_csum_one_bio(bio);
827 }
828 
829 static blk_status_t __btree_submit_bio_done(void *private_data, struct bio *bio,
830 					    int mirror_num, unsigned long bio_flags,
831 					    u64 bio_offset)
832 {
833 	struct inode *inode = private_data;
834 	blk_status_t ret;
835 
836 	/*
837 	 * when we're called for a write, we're already in the async
838 	 * submission context.  Just jump into btrfs_map_bio
839 	 */
840 	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
841 	if (ret) {
842 		bio->bi_status = ret;
843 		bio_endio(bio);
844 	}
845 	return ret;
846 }
847 
848 static int check_async_write(struct btrfs_inode *bi)
849 {
850 	if (atomic_read(&bi->sync_writers))
851 		return 0;
852 #ifdef CONFIG_X86
853 	if (static_cpu_has(X86_FEATURE_XMM4_2))
854 		return 0;
855 #endif
856 	return 1;
857 }
858 
859 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
860 					  int mirror_num, unsigned long bio_flags,
861 					  u64 bio_offset)
862 {
863 	struct inode *inode = private_data;
864 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
865 	int async = check_async_write(BTRFS_I(inode));
866 	blk_status_t ret;
867 
868 	if (bio_op(bio) != REQ_OP_WRITE) {
869 		/*
870 		 * called for a read, do the setup so that checksum validation
871 		 * can happen in the async kernel threads
872 		 */
873 		ret = btrfs_bio_wq_end_io(fs_info, bio,
874 					  BTRFS_WQ_ENDIO_METADATA);
875 		if (ret)
876 			goto out_w_error;
877 		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
878 	} else if (!async) {
879 		ret = btree_csum_one_bio(bio);
880 		if (ret)
881 			goto out_w_error;
882 		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
883 	} else {
884 		/*
885 		 * kthread helpers are used to submit writes so that
886 		 * checksumming can happen in parallel across all CPUs
887 		 */
888 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
889 					  bio_offset, private_data,
890 					  __btree_submit_bio_start,
891 					  __btree_submit_bio_done);
892 	}
893 
894 	if (ret)
895 		goto out_w_error;
896 	return 0;
897 
898 out_w_error:
899 	bio->bi_status = ret;
900 	bio_endio(bio);
901 	return ret;
902 }
903 
904 #ifdef CONFIG_MIGRATION
905 static int btree_migratepage(struct address_space *mapping,
906 			struct page *newpage, struct page *page,
907 			enum migrate_mode mode)
908 {
909 	/*
910 	 * we can't safely write a btree page from here,
911 	 * we haven't done the locking hook
912 	 */
913 	if (PageDirty(page))
914 		return -EAGAIN;
915 	/*
916 	 * Buffers may be managed in a filesystem specific way.
917 	 * We must have no buffers or drop them.
918 	 */
919 	if (page_has_private(page) &&
920 	    !try_to_release_page(page, GFP_KERNEL))
921 		return -EAGAIN;
922 	return migrate_page(mapping, newpage, page, mode);
923 }
924 #endif
925 
926 
927 static int btree_writepages(struct address_space *mapping,
928 			    struct writeback_control *wbc)
929 {
930 	struct btrfs_fs_info *fs_info;
931 	int ret;
932 
933 	if (wbc->sync_mode == WB_SYNC_NONE) {
934 
935 		if (wbc->for_kupdate)
936 			return 0;
937 
938 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
939 		/* this is a bit racy, but that's ok */
940 		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
941 					     BTRFS_DIRTY_METADATA_THRESH);
942 		if (ret < 0)
943 			return 0;
944 	}
945 	return btree_write_cache_pages(mapping, wbc);
946 }
947 
948 static int btree_readpage(struct file *file, struct page *page)
949 {
950 	struct extent_io_tree *tree;
951 	tree = &BTRFS_I(page->mapping->host)->io_tree;
952 	return extent_read_full_page(tree, page, btree_get_extent, 0);
953 }
954 
955 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
956 {
957 	if (PageWriteback(page) || PageDirty(page))
958 		return 0;
959 
960 	return try_release_extent_buffer(page);
961 }
962 
963 static void btree_invalidatepage(struct page *page, unsigned int offset,
964 				 unsigned int length)
965 {
966 	struct extent_io_tree *tree;
967 	tree = &BTRFS_I(page->mapping->host)->io_tree;
968 	extent_invalidatepage(tree, page, offset);
969 	btree_releasepage(page, GFP_NOFS);
970 	if (PagePrivate(page)) {
971 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
972 			   "page private not zero on page %llu",
973 			   (unsigned long long)page_offset(page));
974 		ClearPagePrivate(page);
975 		set_page_private(page, 0);
976 		put_page(page);
977 	}
978 }
979 
980 static int btree_set_page_dirty(struct page *page)
981 {
982 #ifdef DEBUG
983 	struct extent_buffer *eb;
984 
985 	BUG_ON(!PagePrivate(page));
986 	eb = (struct extent_buffer *)page->private;
987 	BUG_ON(!eb);
988 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
989 	BUG_ON(!atomic_read(&eb->refs));
990 	btrfs_assert_tree_locked(eb);
991 #endif
992 	return __set_page_dirty_nobuffers(page);
993 }
994 
995 static const struct address_space_operations btree_aops = {
996 	.readpage	= btree_readpage,
997 	.writepages	= btree_writepages,
998 	.releasepage	= btree_releasepage,
999 	.invalidatepage = btree_invalidatepage,
1000 #ifdef CONFIG_MIGRATION
1001 	.migratepage	= btree_migratepage,
1002 #endif
1003 	.set_page_dirty = btree_set_page_dirty,
1004 };
1005 
1006 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1007 {
1008 	struct extent_buffer *buf = NULL;
1009 	struct inode *btree_inode = fs_info->btree_inode;
1010 
1011 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1012 	if (IS_ERR(buf))
1013 		return;
1014 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1015 				 buf, WAIT_NONE, btree_get_extent, 0);
1016 	free_extent_buffer(buf);
1017 }
1018 
1019 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1020 			 int mirror_num, struct extent_buffer **eb)
1021 {
1022 	struct extent_buffer *buf = NULL;
1023 	struct inode *btree_inode = fs_info->btree_inode;
1024 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1025 	int ret;
1026 
1027 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1028 	if (IS_ERR(buf))
1029 		return 0;
1030 
1031 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1032 
1033 	ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1034 				       btree_get_extent, mirror_num);
1035 	if (ret) {
1036 		free_extent_buffer(buf);
1037 		return ret;
1038 	}
1039 
1040 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1041 		free_extent_buffer(buf);
1042 		return -EIO;
1043 	} else if (extent_buffer_uptodate(buf)) {
1044 		*eb = buf;
1045 	} else {
1046 		free_extent_buffer(buf);
1047 	}
1048 	return 0;
1049 }
1050 
1051 struct extent_buffer *btrfs_find_create_tree_block(
1052 						struct btrfs_fs_info *fs_info,
1053 						u64 bytenr)
1054 {
1055 	if (btrfs_is_testing(fs_info))
1056 		return alloc_test_extent_buffer(fs_info, bytenr);
1057 	return alloc_extent_buffer(fs_info, bytenr);
1058 }
1059 
1060 
1061 int btrfs_write_tree_block(struct extent_buffer *buf)
1062 {
1063 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1064 					buf->start + buf->len - 1);
1065 }
1066 
1067 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1068 {
1069 	filemap_fdatawait_range(buf->pages[0]->mapping,
1070 			        buf->start, buf->start + buf->len - 1);
1071 }
1072 
1073 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1074 				      u64 parent_transid)
1075 {
1076 	struct extent_buffer *buf = NULL;
1077 	int ret;
1078 
1079 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1080 	if (IS_ERR(buf))
1081 		return buf;
1082 
1083 	ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
1084 	if (ret) {
1085 		free_extent_buffer(buf);
1086 		return ERR_PTR(ret);
1087 	}
1088 	return buf;
1089 
1090 }
1091 
1092 void clean_tree_block(struct btrfs_fs_info *fs_info,
1093 		      struct extent_buffer *buf)
1094 {
1095 	if (btrfs_header_generation(buf) ==
1096 	    fs_info->running_transaction->transid) {
1097 		btrfs_assert_tree_locked(buf);
1098 
1099 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1100 			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1101 						 -buf->len,
1102 						 fs_info->dirty_metadata_batch);
1103 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1104 			btrfs_set_lock_blocking(buf);
1105 			clear_extent_buffer_dirty(buf);
1106 		}
1107 	}
1108 }
1109 
1110 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1111 {
1112 	struct btrfs_subvolume_writers *writers;
1113 	int ret;
1114 
1115 	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1116 	if (!writers)
1117 		return ERR_PTR(-ENOMEM);
1118 
1119 	ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1120 	if (ret < 0) {
1121 		kfree(writers);
1122 		return ERR_PTR(ret);
1123 	}
1124 
1125 	init_waitqueue_head(&writers->wait);
1126 	return writers;
1127 }
1128 
1129 static void
1130 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1131 {
1132 	percpu_counter_destroy(&writers->counter);
1133 	kfree(writers);
1134 }
1135 
1136 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1137 			 u64 objectid)
1138 {
1139 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1140 	root->node = NULL;
1141 	root->commit_root = NULL;
1142 	root->state = 0;
1143 	root->orphan_cleanup_state = 0;
1144 
1145 	root->objectid = objectid;
1146 	root->last_trans = 0;
1147 	root->highest_objectid = 0;
1148 	root->nr_delalloc_inodes = 0;
1149 	root->nr_ordered_extents = 0;
1150 	root->name = NULL;
1151 	root->inode_tree = RB_ROOT;
1152 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1153 	root->block_rsv = NULL;
1154 	root->orphan_block_rsv = NULL;
1155 
1156 	INIT_LIST_HEAD(&root->dirty_list);
1157 	INIT_LIST_HEAD(&root->root_list);
1158 	INIT_LIST_HEAD(&root->delalloc_inodes);
1159 	INIT_LIST_HEAD(&root->delalloc_root);
1160 	INIT_LIST_HEAD(&root->ordered_extents);
1161 	INIT_LIST_HEAD(&root->ordered_root);
1162 	INIT_LIST_HEAD(&root->logged_list[0]);
1163 	INIT_LIST_HEAD(&root->logged_list[1]);
1164 	spin_lock_init(&root->orphan_lock);
1165 	spin_lock_init(&root->inode_lock);
1166 	spin_lock_init(&root->delalloc_lock);
1167 	spin_lock_init(&root->ordered_extent_lock);
1168 	spin_lock_init(&root->accounting_lock);
1169 	spin_lock_init(&root->log_extents_lock[0]);
1170 	spin_lock_init(&root->log_extents_lock[1]);
1171 	mutex_init(&root->objectid_mutex);
1172 	mutex_init(&root->log_mutex);
1173 	mutex_init(&root->ordered_extent_mutex);
1174 	mutex_init(&root->delalloc_mutex);
1175 	init_waitqueue_head(&root->log_writer_wait);
1176 	init_waitqueue_head(&root->log_commit_wait[0]);
1177 	init_waitqueue_head(&root->log_commit_wait[1]);
1178 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1179 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1180 	atomic_set(&root->log_commit[0], 0);
1181 	atomic_set(&root->log_commit[1], 0);
1182 	atomic_set(&root->log_writers, 0);
1183 	atomic_set(&root->log_batch, 0);
1184 	atomic_set(&root->orphan_inodes, 0);
1185 	refcount_set(&root->refs, 1);
1186 	atomic_set(&root->will_be_snapshotted, 0);
1187 	atomic64_set(&root->qgroup_meta_rsv, 0);
1188 	root->log_transid = 0;
1189 	root->log_transid_committed = -1;
1190 	root->last_log_commit = 0;
1191 	if (!dummy)
1192 		extent_io_tree_init(&root->dirty_log_pages, NULL);
1193 
1194 	memset(&root->root_key, 0, sizeof(root->root_key));
1195 	memset(&root->root_item, 0, sizeof(root->root_item));
1196 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1197 	if (!dummy)
1198 		root->defrag_trans_start = fs_info->generation;
1199 	else
1200 		root->defrag_trans_start = 0;
1201 	root->root_key.objectid = objectid;
1202 	root->anon_dev = 0;
1203 
1204 	spin_lock_init(&root->root_item_lock);
1205 }
1206 
1207 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1208 		gfp_t flags)
1209 {
1210 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1211 	if (root)
1212 		root->fs_info = fs_info;
1213 	return root;
1214 }
1215 
1216 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1217 /* Should only be used by the testing infrastructure */
1218 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1219 {
1220 	struct btrfs_root *root;
1221 
1222 	if (!fs_info)
1223 		return ERR_PTR(-EINVAL);
1224 
1225 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1226 	if (!root)
1227 		return ERR_PTR(-ENOMEM);
1228 
1229 	/* We don't use the stripesize in selftest, set it as sectorsize */
1230 	__setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1231 	root->alloc_bytenr = 0;
1232 
1233 	return root;
1234 }
1235 #endif
1236 
1237 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1238 				     struct btrfs_fs_info *fs_info,
1239 				     u64 objectid)
1240 {
1241 	struct extent_buffer *leaf;
1242 	struct btrfs_root *tree_root = fs_info->tree_root;
1243 	struct btrfs_root *root;
1244 	struct btrfs_key key;
1245 	int ret = 0;
1246 	uuid_le uuid;
1247 
1248 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1249 	if (!root)
1250 		return ERR_PTR(-ENOMEM);
1251 
1252 	__setup_root(root, fs_info, objectid);
1253 	root->root_key.objectid = objectid;
1254 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1255 	root->root_key.offset = 0;
1256 
1257 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1258 	if (IS_ERR(leaf)) {
1259 		ret = PTR_ERR(leaf);
1260 		leaf = NULL;
1261 		goto fail;
1262 	}
1263 
1264 	memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1265 	btrfs_set_header_bytenr(leaf, leaf->start);
1266 	btrfs_set_header_generation(leaf, trans->transid);
1267 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1268 	btrfs_set_header_owner(leaf, objectid);
1269 	root->node = leaf;
1270 
1271 	write_extent_buffer_fsid(leaf, fs_info->fsid);
1272 	write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1273 	btrfs_mark_buffer_dirty(leaf);
1274 
1275 	root->commit_root = btrfs_root_node(root);
1276 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1277 
1278 	root->root_item.flags = 0;
1279 	root->root_item.byte_limit = 0;
1280 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1281 	btrfs_set_root_generation(&root->root_item, trans->transid);
1282 	btrfs_set_root_level(&root->root_item, 0);
1283 	btrfs_set_root_refs(&root->root_item, 1);
1284 	btrfs_set_root_used(&root->root_item, leaf->len);
1285 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1286 	btrfs_set_root_dirid(&root->root_item, 0);
1287 	uuid_le_gen(&uuid);
1288 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1289 	root->root_item.drop_level = 0;
1290 
1291 	key.objectid = objectid;
1292 	key.type = BTRFS_ROOT_ITEM_KEY;
1293 	key.offset = 0;
1294 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1295 	if (ret)
1296 		goto fail;
1297 
1298 	btrfs_tree_unlock(leaf);
1299 
1300 	return root;
1301 
1302 fail:
1303 	if (leaf) {
1304 		btrfs_tree_unlock(leaf);
1305 		free_extent_buffer(root->commit_root);
1306 		free_extent_buffer(leaf);
1307 	}
1308 	kfree(root);
1309 
1310 	return ERR_PTR(ret);
1311 }
1312 
1313 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1314 					 struct btrfs_fs_info *fs_info)
1315 {
1316 	struct btrfs_root *root;
1317 	struct extent_buffer *leaf;
1318 
1319 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1320 	if (!root)
1321 		return ERR_PTR(-ENOMEM);
1322 
1323 	__setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1324 
1325 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1326 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1327 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1328 
1329 	/*
1330 	 * DON'T set REF_COWS for log trees
1331 	 *
1332 	 * log trees do not get reference counted because they go away
1333 	 * before a real commit is actually done.  They do store pointers
1334 	 * to file data extents, and those reference counts still get
1335 	 * updated (along with back refs to the log tree).
1336 	 */
1337 
1338 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1339 			NULL, 0, 0, 0);
1340 	if (IS_ERR(leaf)) {
1341 		kfree(root);
1342 		return ERR_CAST(leaf);
1343 	}
1344 
1345 	memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1346 	btrfs_set_header_bytenr(leaf, leaf->start);
1347 	btrfs_set_header_generation(leaf, trans->transid);
1348 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1349 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1350 	root->node = leaf;
1351 
1352 	write_extent_buffer_fsid(root->node, fs_info->fsid);
1353 	btrfs_mark_buffer_dirty(root->node);
1354 	btrfs_tree_unlock(root->node);
1355 	return root;
1356 }
1357 
1358 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1359 			     struct btrfs_fs_info *fs_info)
1360 {
1361 	struct btrfs_root *log_root;
1362 
1363 	log_root = alloc_log_tree(trans, fs_info);
1364 	if (IS_ERR(log_root))
1365 		return PTR_ERR(log_root);
1366 	WARN_ON(fs_info->log_root_tree);
1367 	fs_info->log_root_tree = log_root;
1368 	return 0;
1369 }
1370 
1371 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1372 		       struct btrfs_root *root)
1373 {
1374 	struct btrfs_fs_info *fs_info = root->fs_info;
1375 	struct btrfs_root *log_root;
1376 	struct btrfs_inode_item *inode_item;
1377 
1378 	log_root = alloc_log_tree(trans, fs_info);
1379 	if (IS_ERR(log_root))
1380 		return PTR_ERR(log_root);
1381 
1382 	log_root->last_trans = trans->transid;
1383 	log_root->root_key.offset = root->root_key.objectid;
1384 
1385 	inode_item = &log_root->root_item.inode;
1386 	btrfs_set_stack_inode_generation(inode_item, 1);
1387 	btrfs_set_stack_inode_size(inode_item, 3);
1388 	btrfs_set_stack_inode_nlink(inode_item, 1);
1389 	btrfs_set_stack_inode_nbytes(inode_item,
1390 				     fs_info->nodesize);
1391 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1392 
1393 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1394 
1395 	WARN_ON(root->log_root);
1396 	root->log_root = log_root;
1397 	root->log_transid = 0;
1398 	root->log_transid_committed = -1;
1399 	root->last_log_commit = 0;
1400 	return 0;
1401 }
1402 
1403 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1404 					       struct btrfs_key *key)
1405 {
1406 	struct btrfs_root *root;
1407 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1408 	struct btrfs_path *path;
1409 	u64 generation;
1410 	int ret;
1411 
1412 	path = btrfs_alloc_path();
1413 	if (!path)
1414 		return ERR_PTR(-ENOMEM);
1415 
1416 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1417 	if (!root) {
1418 		ret = -ENOMEM;
1419 		goto alloc_fail;
1420 	}
1421 
1422 	__setup_root(root, fs_info, key->objectid);
1423 
1424 	ret = btrfs_find_root(tree_root, key, path,
1425 			      &root->root_item, &root->root_key);
1426 	if (ret) {
1427 		if (ret > 0)
1428 			ret = -ENOENT;
1429 		goto find_fail;
1430 	}
1431 
1432 	generation = btrfs_root_generation(&root->root_item);
1433 	root->node = read_tree_block(fs_info,
1434 				     btrfs_root_bytenr(&root->root_item),
1435 				     generation);
1436 	if (IS_ERR(root->node)) {
1437 		ret = PTR_ERR(root->node);
1438 		goto find_fail;
1439 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1440 		ret = -EIO;
1441 		free_extent_buffer(root->node);
1442 		goto find_fail;
1443 	}
1444 	root->commit_root = btrfs_root_node(root);
1445 out:
1446 	btrfs_free_path(path);
1447 	return root;
1448 
1449 find_fail:
1450 	kfree(root);
1451 alloc_fail:
1452 	root = ERR_PTR(ret);
1453 	goto out;
1454 }
1455 
1456 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1457 				      struct btrfs_key *location)
1458 {
1459 	struct btrfs_root *root;
1460 
1461 	root = btrfs_read_tree_root(tree_root, location);
1462 	if (IS_ERR(root))
1463 		return root;
1464 
1465 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1466 		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1467 		btrfs_check_and_init_root_item(&root->root_item);
1468 	}
1469 
1470 	return root;
1471 }
1472 
1473 int btrfs_init_fs_root(struct btrfs_root *root)
1474 {
1475 	int ret;
1476 	struct btrfs_subvolume_writers *writers;
1477 
1478 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1479 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1480 					GFP_NOFS);
1481 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1482 		ret = -ENOMEM;
1483 		goto fail;
1484 	}
1485 
1486 	writers = btrfs_alloc_subvolume_writers();
1487 	if (IS_ERR(writers)) {
1488 		ret = PTR_ERR(writers);
1489 		goto fail;
1490 	}
1491 	root->subv_writers = writers;
1492 
1493 	btrfs_init_free_ino_ctl(root);
1494 	spin_lock_init(&root->ino_cache_lock);
1495 	init_waitqueue_head(&root->ino_cache_wait);
1496 
1497 	ret = get_anon_bdev(&root->anon_dev);
1498 	if (ret)
1499 		goto fail;
1500 
1501 	mutex_lock(&root->objectid_mutex);
1502 	ret = btrfs_find_highest_objectid(root,
1503 					&root->highest_objectid);
1504 	if (ret) {
1505 		mutex_unlock(&root->objectid_mutex);
1506 		goto fail;
1507 	}
1508 
1509 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1510 
1511 	mutex_unlock(&root->objectid_mutex);
1512 
1513 	return 0;
1514 fail:
1515 	/* the caller is responsible to call free_fs_root */
1516 	return ret;
1517 }
1518 
1519 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1520 					u64 root_id)
1521 {
1522 	struct btrfs_root *root;
1523 
1524 	spin_lock(&fs_info->fs_roots_radix_lock);
1525 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1526 				 (unsigned long)root_id);
1527 	spin_unlock(&fs_info->fs_roots_radix_lock);
1528 	return root;
1529 }
1530 
1531 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1532 			 struct btrfs_root *root)
1533 {
1534 	int ret;
1535 
1536 	ret = radix_tree_preload(GFP_NOFS);
1537 	if (ret)
1538 		return ret;
1539 
1540 	spin_lock(&fs_info->fs_roots_radix_lock);
1541 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1542 				(unsigned long)root->root_key.objectid,
1543 				root);
1544 	if (ret == 0)
1545 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1546 	spin_unlock(&fs_info->fs_roots_radix_lock);
1547 	radix_tree_preload_end();
1548 
1549 	return ret;
1550 }
1551 
1552 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1553 				     struct btrfs_key *location,
1554 				     bool check_ref)
1555 {
1556 	struct btrfs_root *root;
1557 	struct btrfs_path *path;
1558 	struct btrfs_key key;
1559 	int ret;
1560 
1561 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1562 		return fs_info->tree_root;
1563 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1564 		return fs_info->extent_root;
1565 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1566 		return fs_info->chunk_root;
1567 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1568 		return fs_info->dev_root;
1569 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1570 		return fs_info->csum_root;
1571 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1572 		return fs_info->quota_root ? fs_info->quota_root :
1573 					     ERR_PTR(-ENOENT);
1574 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1575 		return fs_info->uuid_root ? fs_info->uuid_root :
1576 					    ERR_PTR(-ENOENT);
1577 	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1578 		return fs_info->free_space_root ? fs_info->free_space_root :
1579 						  ERR_PTR(-ENOENT);
1580 again:
1581 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1582 	if (root) {
1583 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1584 			return ERR_PTR(-ENOENT);
1585 		return root;
1586 	}
1587 
1588 	root = btrfs_read_fs_root(fs_info->tree_root, location);
1589 	if (IS_ERR(root))
1590 		return root;
1591 
1592 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1593 		ret = -ENOENT;
1594 		goto fail;
1595 	}
1596 
1597 	ret = btrfs_init_fs_root(root);
1598 	if (ret)
1599 		goto fail;
1600 
1601 	path = btrfs_alloc_path();
1602 	if (!path) {
1603 		ret = -ENOMEM;
1604 		goto fail;
1605 	}
1606 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1607 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1608 	key.offset = location->objectid;
1609 
1610 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1611 	btrfs_free_path(path);
1612 	if (ret < 0)
1613 		goto fail;
1614 	if (ret == 0)
1615 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1616 
1617 	ret = btrfs_insert_fs_root(fs_info, root);
1618 	if (ret) {
1619 		if (ret == -EEXIST) {
1620 			free_fs_root(root);
1621 			goto again;
1622 		}
1623 		goto fail;
1624 	}
1625 	return root;
1626 fail:
1627 	free_fs_root(root);
1628 	return ERR_PTR(ret);
1629 }
1630 
1631 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1632 {
1633 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1634 	int ret = 0;
1635 	struct btrfs_device *device;
1636 	struct backing_dev_info *bdi;
1637 
1638 	rcu_read_lock();
1639 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1640 		if (!device->bdev)
1641 			continue;
1642 		bdi = device->bdev->bd_bdi;
1643 		if (bdi_congested(bdi, bdi_bits)) {
1644 			ret = 1;
1645 			break;
1646 		}
1647 	}
1648 	rcu_read_unlock();
1649 	return ret;
1650 }
1651 
1652 /*
1653  * called by the kthread helper functions to finally call the bio end_io
1654  * functions.  This is where read checksum verification actually happens
1655  */
1656 static void end_workqueue_fn(struct btrfs_work *work)
1657 {
1658 	struct bio *bio;
1659 	struct btrfs_end_io_wq *end_io_wq;
1660 
1661 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1662 	bio = end_io_wq->bio;
1663 
1664 	bio->bi_status = end_io_wq->status;
1665 	bio->bi_private = end_io_wq->private;
1666 	bio->bi_end_io = end_io_wq->end_io;
1667 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1668 	bio_endio(bio);
1669 }
1670 
1671 static int cleaner_kthread(void *arg)
1672 {
1673 	struct btrfs_root *root = arg;
1674 	struct btrfs_fs_info *fs_info = root->fs_info;
1675 	int again;
1676 	struct btrfs_trans_handle *trans;
1677 
1678 	do {
1679 		again = 0;
1680 
1681 		/* Make the cleaner go to sleep early. */
1682 		if (btrfs_need_cleaner_sleep(fs_info))
1683 			goto sleep;
1684 
1685 		/*
1686 		 * Do not do anything if we might cause open_ctree() to block
1687 		 * before we have finished mounting the filesystem.
1688 		 */
1689 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1690 			goto sleep;
1691 
1692 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1693 			goto sleep;
1694 
1695 		/*
1696 		 * Avoid the problem that we change the status of the fs
1697 		 * during the above check and trylock.
1698 		 */
1699 		if (btrfs_need_cleaner_sleep(fs_info)) {
1700 			mutex_unlock(&fs_info->cleaner_mutex);
1701 			goto sleep;
1702 		}
1703 
1704 		mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1705 		btrfs_run_delayed_iputs(fs_info);
1706 		mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1707 
1708 		again = btrfs_clean_one_deleted_snapshot(root);
1709 		mutex_unlock(&fs_info->cleaner_mutex);
1710 
1711 		/*
1712 		 * The defragger has dealt with the R/O remount and umount,
1713 		 * needn't do anything special here.
1714 		 */
1715 		btrfs_run_defrag_inodes(fs_info);
1716 
1717 		/*
1718 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1719 		 * with relocation (btrfs_relocate_chunk) and relocation
1720 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1721 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1722 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1723 		 * unused block groups.
1724 		 */
1725 		btrfs_delete_unused_bgs(fs_info);
1726 sleep:
1727 		if (!again) {
1728 			set_current_state(TASK_INTERRUPTIBLE);
1729 			if (!kthread_should_stop())
1730 				schedule();
1731 			__set_current_state(TASK_RUNNING);
1732 		}
1733 	} while (!kthread_should_stop());
1734 
1735 	/*
1736 	 * Transaction kthread is stopped before us and wakes us up.
1737 	 * However we might have started a new transaction and COWed some
1738 	 * tree blocks when deleting unused block groups for example. So
1739 	 * make sure we commit the transaction we started to have a clean
1740 	 * shutdown when evicting the btree inode - if it has dirty pages
1741 	 * when we do the final iput() on it, eviction will trigger a
1742 	 * writeback for it which will fail with null pointer dereferences
1743 	 * since work queues and other resources were already released and
1744 	 * destroyed by the time the iput/eviction/writeback is made.
1745 	 */
1746 	trans = btrfs_attach_transaction(root);
1747 	if (IS_ERR(trans)) {
1748 		if (PTR_ERR(trans) != -ENOENT)
1749 			btrfs_err(fs_info,
1750 				  "cleaner transaction attach returned %ld",
1751 				  PTR_ERR(trans));
1752 	} else {
1753 		int ret;
1754 
1755 		ret = btrfs_commit_transaction(trans);
1756 		if (ret)
1757 			btrfs_err(fs_info,
1758 				  "cleaner open transaction commit returned %d",
1759 				  ret);
1760 	}
1761 
1762 	return 0;
1763 }
1764 
1765 static int transaction_kthread(void *arg)
1766 {
1767 	struct btrfs_root *root = arg;
1768 	struct btrfs_fs_info *fs_info = root->fs_info;
1769 	struct btrfs_trans_handle *trans;
1770 	struct btrfs_transaction *cur;
1771 	u64 transid;
1772 	unsigned long now;
1773 	unsigned long delay;
1774 	bool cannot_commit;
1775 
1776 	do {
1777 		cannot_commit = false;
1778 		delay = HZ * fs_info->commit_interval;
1779 		mutex_lock(&fs_info->transaction_kthread_mutex);
1780 
1781 		spin_lock(&fs_info->trans_lock);
1782 		cur = fs_info->running_transaction;
1783 		if (!cur) {
1784 			spin_unlock(&fs_info->trans_lock);
1785 			goto sleep;
1786 		}
1787 
1788 		now = get_seconds();
1789 		if (cur->state < TRANS_STATE_BLOCKED &&
1790 		    (now < cur->start_time ||
1791 		     now - cur->start_time < fs_info->commit_interval)) {
1792 			spin_unlock(&fs_info->trans_lock);
1793 			delay = HZ * 5;
1794 			goto sleep;
1795 		}
1796 		transid = cur->transid;
1797 		spin_unlock(&fs_info->trans_lock);
1798 
1799 		/* If the file system is aborted, this will always fail. */
1800 		trans = btrfs_attach_transaction(root);
1801 		if (IS_ERR(trans)) {
1802 			if (PTR_ERR(trans) != -ENOENT)
1803 				cannot_commit = true;
1804 			goto sleep;
1805 		}
1806 		if (transid == trans->transid) {
1807 			btrfs_commit_transaction(trans);
1808 		} else {
1809 			btrfs_end_transaction(trans);
1810 		}
1811 sleep:
1812 		wake_up_process(fs_info->cleaner_kthread);
1813 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1814 
1815 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1816 				      &fs_info->fs_state)))
1817 			btrfs_cleanup_transaction(fs_info);
1818 		set_current_state(TASK_INTERRUPTIBLE);
1819 		if (!kthread_should_stop() &&
1820 				(!btrfs_transaction_blocked(fs_info) ||
1821 				 cannot_commit))
1822 			schedule_timeout(delay);
1823 		__set_current_state(TASK_RUNNING);
1824 	} while (!kthread_should_stop());
1825 	return 0;
1826 }
1827 
1828 /*
1829  * this will find the highest generation in the array of
1830  * root backups.  The index of the highest array is returned,
1831  * or -1 if we can't find anything.
1832  *
1833  * We check to make sure the array is valid by comparing the
1834  * generation of the latest  root in the array with the generation
1835  * in the super block.  If they don't match we pitch it.
1836  */
1837 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1838 {
1839 	u64 cur;
1840 	int newest_index = -1;
1841 	struct btrfs_root_backup *root_backup;
1842 	int i;
1843 
1844 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1845 		root_backup = info->super_copy->super_roots + i;
1846 		cur = btrfs_backup_tree_root_gen(root_backup);
1847 		if (cur == newest_gen)
1848 			newest_index = i;
1849 	}
1850 
1851 	/* check to see if we actually wrapped around */
1852 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1853 		root_backup = info->super_copy->super_roots;
1854 		cur = btrfs_backup_tree_root_gen(root_backup);
1855 		if (cur == newest_gen)
1856 			newest_index = 0;
1857 	}
1858 	return newest_index;
1859 }
1860 
1861 
1862 /*
1863  * find the oldest backup so we know where to store new entries
1864  * in the backup array.  This will set the backup_root_index
1865  * field in the fs_info struct
1866  */
1867 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1868 				     u64 newest_gen)
1869 {
1870 	int newest_index = -1;
1871 
1872 	newest_index = find_newest_super_backup(info, newest_gen);
1873 	/* if there was garbage in there, just move along */
1874 	if (newest_index == -1) {
1875 		info->backup_root_index = 0;
1876 	} else {
1877 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1878 	}
1879 }
1880 
1881 /*
1882  * copy all the root pointers into the super backup array.
1883  * this will bump the backup pointer by one when it is
1884  * done
1885  */
1886 static void backup_super_roots(struct btrfs_fs_info *info)
1887 {
1888 	int next_backup;
1889 	struct btrfs_root_backup *root_backup;
1890 	int last_backup;
1891 
1892 	next_backup = info->backup_root_index;
1893 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1894 		BTRFS_NUM_BACKUP_ROOTS;
1895 
1896 	/*
1897 	 * just overwrite the last backup if we're at the same generation
1898 	 * this happens only at umount
1899 	 */
1900 	root_backup = info->super_for_commit->super_roots + last_backup;
1901 	if (btrfs_backup_tree_root_gen(root_backup) ==
1902 	    btrfs_header_generation(info->tree_root->node))
1903 		next_backup = last_backup;
1904 
1905 	root_backup = info->super_for_commit->super_roots + next_backup;
1906 
1907 	/*
1908 	 * make sure all of our padding and empty slots get zero filled
1909 	 * regardless of which ones we use today
1910 	 */
1911 	memset(root_backup, 0, sizeof(*root_backup));
1912 
1913 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1914 
1915 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1916 	btrfs_set_backup_tree_root_gen(root_backup,
1917 			       btrfs_header_generation(info->tree_root->node));
1918 
1919 	btrfs_set_backup_tree_root_level(root_backup,
1920 			       btrfs_header_level(info->tree_root->node));
1921 
1922 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1923 	btrfs_set_backup_chunk_root_gen(root_backup,
1924 			       btrfs_header_generation(info->chunk_root->node));
1925 	btrfs_set_backup_chunk_root_level(root_backup,
1926 			       btrfs_header_level(info->chunk_root->node));
1927 
1928 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1929 	btrfs_set_backup_extent_root_gen(root_backup,
1930 			       btrfs_header_generation(info->extent_root->node));
1931 	btrfs_set_backup_extent_root_level(root_backup,
1932 			       btrfs_header_level(info->extent_root->node));
1933 
1934 	/*
1935 	 * we might commit during log recovery, which happens before we set
1936 	 * the fs_root.  Make sure it is valid before we fill it in.
1937 	 */
1938 	if (info->fs_root && info->fs_root->node) {
1939 		btrfs_set_backup_fs_root(root_backup,
1940 					 info->fs_root->node->start);
1941 		btrfs_set_backup_fs_root_gen(root_backup,
1942 			       btrfs_header_generation(info->fs_root->node));
1943 		btrfs_set_backup_fs_root_level(root_backup,
1944 			       btrfs_header_level(info->fs_root->node));
1945 	}
1946 
1947 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1948 	btrfs_set_backup_dev_root_gen(root_backup,
1949 			       btrfs_header_generation(info->dev_root->node));
1950 	btrfs_set_backup_dev_root_level(root_backup,
1951 				       btrfs_header_level(info->dev_root->node));
1952 
1953 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1954 	btrfs_set_backup_csum_root_gen(root_backup,
1955 			       btrfs_header_generation(info->csum_root->node));
1956 	btrfs_set_backup_csum_root_level(root_backup,
1957 			       btrfs_header_level(info->csum_root->node));
1958 
1959 	btrfs_set_backup_total_bytes(root_backup,
1960 			     btrfs_super_total_bytes(info->super_copy));
1961 	btrfs_set_backup_bytes_used(root_backup,
1962 			     btrfs_super_bytes_used(info->super_copy));
1963 	btrfs_set_backup_num_devices(root_backup,
1964 			     btrfs_super_num_devices(info->super_copy));
1965 
1966 	/*
1967 	 * if we don't copy this out to the super_copy, it won't get remembered
1968 	 * for the next commit
1969 	 */
1970 	memcpy(&info->super_copy->super_roots,
1971 	       &info->super_for_commit->super_roots,
1972 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1973 }
1974 
1975 /*
1976  * this copies info out of the root backup array and back into
1977  * the in-memory super block.  It is meant to help iterate through
1978  * the array, so you send it the number of backups you've already
1979  * tried and the last backup index you used.
1980  *
1981  * this returns -1 when it has tried all the backups
1982  */
1983 static noinline int next_root_backup(struct btrfs_fs_info *info,
1984 				     struct btrfs_super_block *super,
1985 				     int *num_backups_tried, int *backup_index)
1986 {
1987 	struct btrfs_root_backup *root_backup;
1988 	int newest = *backup_index;
1989 
1990 	if (*num_backups_tried == 0) {
1991 		u64 gen = btrfs_super_generation(super);
1992 
1993 		newest = find_newest_super_backup(info, gen);
1994 		if (newest == -1)
1995 			return -1;
1996 
1997 		*backup_index = newest;
1998 		*num_backups_tried = 1;
1999 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2000 		/* we've tried all the backups, all done */
2001 		return -1;
2002 	} else {
2003 		/* jump to the next oldest backup */
2004 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2005 			BTRFS_NUM_BACKUP_ROOTS;
2006 		*backup_index = newest;
2007 		*num_backups_tried += 1;
2008 	}
2009 	root_backup = super->super_roots + newest;
2010 
2011 	btrfs_set_super_generation(super,
2012 				   btrfs_backup_tree_root_gen(root_backup));
2013 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2014 	btrfs_set_super_root_level(super,
2015 				   btrfs_backup_tree_root_level(root_backup));
2016 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2017 
2018 	/*
2019 	 * fixme: the total bytes and num_devices need to match or we should
2020 	 * need a fsck
2021 	 */
2022 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2023 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2024 	return 0;
2025 }
2026 
2027 /* helper to cleanup workers */
2028 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2029 {
2030 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2031 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2032 	btrfs_destroy_workqueue(fs_info->workers);
2033 	btrfs_destroy_workqueue(fs_info->endio_workers);
2034 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2035 	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2036 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2037 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2038 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2039 	btrfs_destroy_workqueue(fs_info->submit_workers);
2040 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2041 	btrfs_destroy_workqueue(fs_info->caching_workers);
2042 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2043 	btrfs_destroy_workqueue(fs_info->flush_workers);
2044 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2045 	btrfs_destroy_workqueue(fs_info->extent_workers);
2046 	/*
2047 	 * Now that all other work queues are destroyed, we can safely destroy
2048 	 * the queues used for metadata I/O, since tasks from those other work
2049 	 * queues can do metadata I/O operations.
2050 	 */
2051 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2052 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2053 }
2054 
2055 static void free_root_extent_buffers(struct btrfs_root *root)
2056 {
2057 	if (root) {
2058 		free_extent_buffer(root->node);
2059 		free_extent_buffer(root->commit_root);
2060 		root->node = NULL;
2061 		root->commit_root = NULL;
2062 	}
2063 }
2064 
2065 /* helper to cleanup tree roots */
2066 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2067 {
2068 	free_root_extent_buffers(info->tree_root);
2069 
2070 	free_root_extent_buffers(info->dev_root);
2071 	free_root_extent_buffers(info->extent_root);
2072 	free_root_extent_buffers(info->csum_root);
2073 	free_root_extent_buffers(info->quota_root);
2074 	free_root_extent_buffers(info->uuid_root);
2075 	if (chunk_root)
2076 		free_root_extent_buffers(info->chunk_root);
2077 	free_root_extent_buffers(info->free_space_root);
2078 }
2079 
2080 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2081 {
2082 	int ret;
2083 	struct btrfs_root *gang[8];
2084 	int i;
2085 
2086 	while (!list_empty(&fs_info->dead_roots)) {
2087 		gang[0] = list_entry(fs_info->dead_roots.next,
2088 				     struct btrfs_root, root_list);
2089 		list_del(&gang[0]->root_list);
2090 
2091 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2092 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2093 		} else {
2094 			free_extent_buffer(gang[0]->node);
2095 			free_extent_buffer(gang[0]->commit_root);
2096 			btrfs_put_fs_root(gang[0]);
2097 		}
2098 	}
2099 
2100 	while (1) {
2101 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2102 					     (void **)gang, 0,
2103 					     ARRAY_SIZE(gang));
2104 		if (!ret)
2105 			break;
2106 		for (i = 0; i < ret; i++)
2107 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2108 	}
2109 
2110 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2111 		btrfs_free_log_root_tree(NULL, fs_info);
2112 		btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2113 	}
2114 }
2115 
2116 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2117 {
2118 	mutex_init(&fs_info->scrub_lock);
2119 	atomic_set(&fs_info->scrubs_running, 0);
2120 	atomic_set(&fs_info->scrub_pause_req, 0);
2121 	atomic_set(&fs_info->scrubs_paused, 0);
2122 	atomic_set(&fs_info->scrub_cancel_req, 0);
2123 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2124 	fs_info->scrub_workers_refcnt = 0;
2125 }
2126 
2127 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2128 {
2129 	spin_lock_init(&fs_info->balance_lock);
2130 	mutex_init(&fs_info->balance_mutex);
2131 	atomic_set(&fs_info->balance_running, 0);
2132 	atomic_set(&fs_info->balance_pause_req, 0);
2133 	atomic_set(&fs_info->balance_cancel_req, 0);
2134 	fs_info->balance_ctl = NULL;
2135 	init_waitqueue_head(&fs_info->balance_wait_q);
2136 }
2137 
2138 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2139 {
2140 	struct inode *inode = fs_info->btree_inode;
2141 
2142 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2143 	set_nlink(inode, 1);
2144 	/*
2145 	 * we set the i_size on the btree inode to the max possible int.
2146 	 * the real end of the address space is determined by all of
2147 	 * the devices in the system
2148 	 */
2149 	inode->i_size = OFFSET_MAX;
2150 	inode->i_mapping->a_ops = &btree_aops;
2151 
2152 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2153 	extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2154 	BTRFS_I(inode)->io_tree.track_uptodate = 0;
2155 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2156 
2157 	BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2158 
2159 	BTRFS_I(inode)->root = fs_info->tree_root;
2160 	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2161 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2162 	btrfs_insert_inode_hash(inode);
2163 }
2164 
2165 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2166 {
2167 	fs_info->dev_replace.lock_owner = 0;
2168 	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2169 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2170 	rwlock_init(&fs_info->dev_replace.lock);
2171 	atomic_set(&fs_info->dev_replace.read_locks, 0);
2172 	atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2173 	init_waitqueue_head(&fs_info->replace_wait);
2174 	init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2175 }
2176 
2177 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2178 {
2179 	spin_lock_init(&fs_info->qgroup_lock);
2180 	mutex_init(&fs_info->qgroup_ioctl_lock);
2181 	fs_info->qgroup_tree = RB_ROOT;
2182 	fs_info->qgroup_op_tree = RB_ROOT;
2183 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2184 	fs_info->qgroup_seq = 1;
2185 	fs_info->qgroup_ulist = NULL;
2186 	fs_info->qgroup_rescan_running = false;
2187 	mutex_init(&fs_info->qgroup_rescan_lock);
2188 }
2189 
2190 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2191 		struct btrfs_fs_devices *fs_devices)
2192 {
2193 	int max_active = fs_info->thread_pool_size;
2194 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2195 
2196 	fs_info->workers =
2197 		btrfs_alloc_workqueue(fs_info, "worker",
2198 				      flags | WQ_HIGHPRI, max_active, 16);
2199 
2200 	fs_info->delalloc_workers =
2201 		btrfs_alloc_workqueue(fs_info, "delalloc",
2202 				      flags, max_active, 2);
2203 
2204 	fs_info->flush_workers =
2205 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2206 				      flags, max_active, 0);
2207 
2208 	fs_info->caching_workers =
2209 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2210 
2211 	/*
2212 	 * a higher idle thresh on the submit workers makes it much more
2213 	 * likely that bios will be send down in a sane order to the
2214 	 * devices
2215 	 */
2216 	fs_info->submit_workers =
2217 		btrfs_alloc_workqueue(fs_info, "submit", flags,
2218 				      min_t(u64, fs_devices->num_devices,
2219 					    max_active), 64);
2220 
2221 	fs_info->fixup_workers =
2222 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2223 
2224 	/*
2225 	 * endios are largely parallel and should have a very
2226 	 * low idle thresh
2227 	 */
2228 	fs_info->endio_workers =
2229 		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2230 	fs_info->endio_meta_workers =
2231 		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2232 				      max_active, 4);
2233 	fs_info->endio_meta_write_workers =
2234 		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2235 				      max_active, 2);
2236 	fs_info->endio_raid56_workers =
2237 		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2238 				      max_active, 4);
2239 	fs_info->endio_repair_workers =
2240 		btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2241 	fs_info->rmw_workers =
2242 		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2243 	fs_info->endio_write_workers =
2244 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2245 				      max_active, 2);
2246 	fs_info->endio_freespace_worker =
2247 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2248 				      max_active, 0);
2249 	fs_info->delayed_workers =
2250 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2251 				      max_active, 0);
2252 	fs_info->readahead_workers =
2253 		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2254 				      max_active, 2);
2255 	fs_info->qgroup_rescan_workers =
2256 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2257 	fs_info->extent_workers =
2258 		btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2259 				      min_t(u64, fs_devices->num_devices,
2260 					    max_active), 8);
2261 
2262 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2263 	      fs_info->submit_workers && fs_info->flush_workers &&
2264 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2265 	      fs_info->endio_meta_write_workers &&
2266 	      fs_info->endio_repair_workers &&
2267 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2268 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2269 	      fs_info->caching_workers && fs_info->readahead_workers &&
2270 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2271 	      fs_info->extent_workers &&
2272 	      fs_info->qgroup_rescan_workers)) {
2273 		return -ENOMEM;
2274 	}
2275 
2276 	return 0;
2277 }
2278 
2279 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2280 			    struct btrfs_fs_devices *fs_devices)
2281 {
2282 	int ret;
2283 	struct btrfs_root *log_tree_root;
2284 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2285 	u64 bytenr = btrfs_super_log_root(disk_super);
2286 
2287 	if (fs_devices->rw_devices == 0) {
2288 		btrfs_warn(fs_info, "log replay required on RO media");
2289 		return -EIO;
2290 	}
2291 
2292 	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2293 	if (!log_tree_root)
2294 		return -ENOMEM;
2295 
2296 	__setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2297 
2298 	log_tree_root->node = read_tree_block(fs_info, bytenr,
2299 					      fs_info->generation + 1);
2300 	if (IS_ERR(log_tree_root->node)) {
2301 		btrfs_warn(fs_info, "failed to read log tree");
2302 		ret = PTR_ERR(log_tree_root->node);
2303 		kfree(log_tree_root);
2304 		return ret;
2305 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2306 		btrfs_err(fs_info, "failed to read log tree");
2307 		free_extent_buffer(log_tree_root->node);
2308 		kfree(log_tree_root);
2309 		return -EIO;
2310 	}
2311 	/* returns with log_tree_root freed on success */
2312 	ret = btrfs_recover_log_trees(log_tree_root);
2313 	if (ret) {
2314 		btrfs_handle_fs_error(fs_info, ret,
2315 				      "Failed to recover log tree");
2316 		free_extent_buffer(log_tree_root->node);
2317 		kfree(log_tree_root);
2318 		return ret;
2319 	}
2320 
2321 	if (sb_rdonly(fs_info->sb)) {
2322 		ret = btrfs_commit_super(fs_info);
2323 		if (ret)
2324 			return ret;
2325 	}
2326 
2327 	return 0;
2328 }
2329 
2330 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2331 {
2332 	struct btrfs_root *tree_root = fs_info->tree_root;
2333 	struct btrfs_root *root;
2334 	struct btrfs_key location;
2335 	int ret;
2336 
2337 	BUG_ON(!fs_info->tree_root);
2338 
2339 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2340 	location.type = BTRFS_ROOT_ITEM_KEY;
2341 	location.offset = 0;
2342 
2343 	root = btrfs_read_tree_root(tree_root, &location);
2344 	if (IS_ERR(root))
2345 		return PTR_ERR(root);
2346 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2347 	fs_info->extent_root = root;
2348 
2349 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2350 	root = btrfs_read_tree_root(tree_root, &location);
2351 	if (IS_ERR(root))
2352 		return PTR_ERR(root);
2353 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2354 	fs_info->dev_root = root;
2355 	btrfs_init_devices_late(fs_info);
2356 
2357 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2358 	root = btrfs_read_tree_root(tree_root, &location);
2359 	if (IS_ERR(root))
2360 		return PTR_ERR(root);
2361 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2362 	fs_info->csum_root = root;
2363 
2364 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2365 	root = btrfs_read_tree_root(tree_root, &location);
2366 	if (!IS_ERR(root)) {
2367 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2368 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2369 		fs_info->quota_root = root;
2370 	}
2371 
2372 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2373 	root = btrfs_read_tree_root(tree_root, &location);
2374 	if (IS_ERR(root)) {
2375 		ret = PTR_ERR(root);
2376 		if (ret != -ENOENT)
2377 			return ret;
2378 	} else {
2379 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2380 		fs_info->uuid_root = root;
2381 	}
2382 
2383 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2384 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2385 		root = btrfs_read_tree_root(tree_root, &location);
2386 		if (IS_ERR(root))
2387 			return PTR_ERR(root);
2388 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2389 		fs_info->free_space_root = root;
2390 	}
2391 
2392 	return 0;
2393 }
2394 
2395 int open_ctree(struct super_block *sb,
2396 	       struct btrfs_fs_devices *fs_devices,
2397 	       char *options)
2398 {
2399 	u32 sectorsize;
2400 	u32 nodesize;
2401 	u32 stripesize;
2402 	u64 generation;
2403 	u64 features;
2404 	struct btrfs_key location;
2405 	struct buffer_head *bh;
2406 	struct btrfs_super_block *disk_super;
2407 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2408 	struct btrfs_root *tree_root;
2409 	struct btrfs_root *chunk_root;
2410 	int ret;
2411 	int err = -EINVAL;
2412 	int num_backups_tried = 0;
2413 	int backup_index = 0;
2414 	int max_active;
2415 	int clear_free_space_tree = 0;
2416 
2417 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2418 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2419 	if (!tree_root || !chunk_root) {
2420 		err = -ENOMEM;
2421 		goto fail;
2422 	}
2423 
2424 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2425 	if (ret) {
2426 		err = ret;
2427 		goto fail;
2428 	}
2429 
2430 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2431 	if (ret) {
2432 		err = ret;
2433 		goto fail_srcu;
2434 	}
2435 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2436 					(1 + ilog2(nr_cpu_ids));
2437 
2438 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2439 	if (ret) {
2440 		err = ret;
2441 		goto fail_dirty_metadata_bytes;
2442 	}
2443 
2444 	ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2445 	if (ret) {
2446 		err = ret;
2447 		goto fail_delalloc_bytes;
2448 	}
2449 
2450 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2451 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2452 	INIT_LIST_HEAD(&fs_info->trans_list);
2453 	INIT_LIST_HEAD(&fs_info->dead_roots);
2454 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2455 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2456 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2457 	spin_lock_init(&fs_info->delalloc_root_lock);
2458 	spin_lock_init(&fs_info->trans_lock);
2459 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2460 	spin_lock_init(&fs_info->delayed_iput_lock);
2461 	spin_lock_init(&fs_info->defrag_inodes_lock);
2462 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2463 	spin_lock_init(&fs_info->super_lock);
2464 	spin_lock_init(&fs_info->qgroup_op_lock);
2465 	spin_lock_init(&fs_info->buffer_lock);
2466 	spin_lock_init(&fs_info->unused_bgs_lock);
2467 	rwlock_init(&fs_info->tree_mod_log_lock);
2468 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2469 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2470 	mutex_init(&fs_info->reloc_mutex);
2471 	mutex_init(&fs_info->delalloc_root_mutex);
2472 	mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2473 	seqlock_init(&fs_info->profiles_lock);
2474 
2475 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2476 	INIT_LIST_HEAD(&fs_info->space_info);
2477 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2478 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2479 	btrfs_mapping_init(&fs_info->mapping_tree);
2480 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2481 			     BTRFS_BLOCK_RSV_GLOBAL);
2482 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2483 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2484 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2485 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2486 			     BTRFS_BLOCK_RSV_DELOPS);
2487 	atomic_set(&fs_info->async_delalloc_pages, 0);
2488 	atomic_set(&fs_info->defrag_running, 0);
2489 	atomic_set(&fs_info->qgroup_op_seq, 0);
2490 	atomic_set(&fs_info->reada_works_cnt, 0);
2491 	atomic64_set(&fs_info->tree_mod_seq, 0);
2492 	fs_info->sb = sb;
2493 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2494 	fs_info->metadata_ratio = 0;
2495 	fs_info->defrag_inodes = RB_ROOT;
2496 	atomic64_set(&fs_info->free_chunk_space, 0);
2497 	fs_info->tree_mod_log = RB_ROOT;
2498 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2499 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2500 	/* readahead state */
2501 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2502 	spin_lock_init(&fs_info->reada_lock);
2503 	btrfs_init_ref_verify(fs_info);
2504 
2505 	fs_info->thread_pool_size = min_t(unsigned long,
2506 					  num_online_cpus() + 2, 8);
2507 
2508 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2509 	spin_lock_init(&fs_info->ordered_root_lock);
2510 
2511 	fs_info->btree_inode = new_inode(sb);
2512 	if (!fs_info->btree_inode) {
2513 		err = -ENOMEM;
2514 		goto fail_bio_counter;
2515 	}
2516 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2517 
2518 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2519 					GFP_KERNEL);
2520 	if (!fs_info->delayed_root) {
2521 		err = -ENOMEM;
2522 		goto fail_iput;
2523 	}
2524 	btrfs_init_delayed_root(fs_info->delayed_root);
2525 
2526 	btrfs_init_scrub(fs_info);
2527 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2528 	fs_info->check_integrity_print_mask = 0;
2529 #endif
2530 	btrfs_init_balance(fs_info);
2531 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2532 
2533 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2534 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2535 
2536 	btrfs_init_btree_inode(fs_info);
2537 
2538 	spin_lock_init(&fs_info->block_group_cache_lock);
2539 	fs_info->block_group_cache_tree = RB_ROOT;
2540 	fs_info->first_logical_byte = (u64)-1;
2541 
2542 	extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2543 	extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2544 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2545 	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2546 
2547 	mutex_init(&fs_info->ordered_operations_mutex);
2548 	mutex_init(&fs_info->tree_log_mutex);
2549 	mutex_init(&fs_info->chunk_mutex);
2550 	mutex_init(&fs_info->transaction_kthread_mutex);
2551 	mutex_init(&fs_info->cleaner_mutex);
2552 	mutex_init(&fs_info->volume_mutex);
2553 	mutex_init(&fs_info->ro_block_group_mutex);
2554 	init_rwsem(&fs_info->commit_root_sem);
2555 	init_rwsem(&fs_info->cleanup_work_sem);
2556 	init_rwsem(&fs_info->subvol_sem);
2557 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2558 
2559 	btrfs_init_dev_replace_locks(fs_info);
2560 	btrfs_init_qgroup(fs_info);
2561 
2562 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2563 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2564 
2565 	init_waitqueue_head(&fs_info->transaction_throttle);
2566 	init_waitqueue_head(&fs_info->transaction_wait);
2567 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2568 	init_waitqueue_head(&fs_info->async_submit_wait);
2569 
2570 	INIT_LIST_HEAD(&fs_info->pinned_chunks);
2571 
2572 	/* Usable values until the real ones are cached from the superblock */
2573 	fs_info->nodesize = 4096;
2574 	fs_info->sectorsize = 4096;
2575 	fs_info->stripesize = 4096;
2576 
2577 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2578 	if (ret) {
2579 		err = ret;
2580 		goto fail_alloc;
2581 	}
2582 
2583 	__setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2584 
2585 	invalidate_bdev(fs_devices->latest_bdev);
2586 
2587 	/*
2588 	 * Read super block and check the signature bytes only
2589 	 */
2590 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2591 	if (IS_ERR(bh)) {
2592 		err = PTR_ERR(bh);
2593 		goto fail_alloc;
2594 	}
2595 
2596 	/*
2597 	 * We want to check superblock checksum, the type is stored inside.
2598 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2599 	 */
2600 	if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2601 		btrfs_err(fs_info, "superblock checksum mismatch");
2602 		err = -EINVAL;
2603 		brelse(bh);
2604 		goto fail_alloc;
2605 	}
2606 
2607 	/*
2608 	 * super_copy is zeroed at allocation time and we never touch the
2609 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2610 	 * the whole block of INFO_SIZE
2611 	 */
2612 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2613 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2614 	       sizeof(*fs_info->super_for_commit));
2615 	brelse(bh);
2616 
2617 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2618 
2619 	ret = btrfs_check_super_valid(fs_info);
2620 	if (ret) {
2621 		btrfs_err(fs_info, "superblock contains fatal errors");
2622 		err = -EINVAL;
2623 		goto fail_alloc;
2624 	}
2625 
2626 	disk_super = fs_info->super_copy;
2627 	if (!btrfs_super_root(disk_super))
2628 		goto fail_alloc;
2629 
2630 	/* check FS state, whether FS is broken. */
2631 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2632 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2633 
2634 	/*
2635 	 * run through our array of backup supers and setup
2636 	 * our ring pointer to the oldest one
2637 	 */
2638 	generation = btrfs_super_generation(disk_super);
2639 	find_oldest_super_backup(fs_info, generation);
2640 
2641 	/*
2642 	 * In the long term, we'll store the compression type in the super
2643 	 * block, and it'll be used for per file compression control.
2644 	 */
2645 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2646 
2647 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2648 	if (ret) {
2649 		err = ret;
2650 		goto fail_alloc;
2651 	}
2652 
2653 	features = btrfs_super_incompat_flags(disk_super) &
2654 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2655 	if (features) {
2656 		btrfs_err(fs_info,
2657 		    "cannot mount because of unsupported optional features (%llx)",
2658 		    features);
2659 		err = -EINVAL;
2660 		goto fail_alloc;
2661 	}
2662 
2663 	features = btrfs_super_incompat_flags(disk_super);
2664 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2665 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2666 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2667 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2668 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2669 
2670 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2671 		btrfs_info(fs_info, "has skinny extents");
2672 
2673 	/*
2674 	 * flag our filesystem as having big metadata blocks if
2675 	 * they are bigger than the page size
2676 	 */
2677 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2678 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2679 			btrfs_info(fs_info,
2680 				"flagging fs with big metadata feature");
2681 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2682 	}
2683 
2684 	nodesize = btrfs_super_nodesize(disk_super);
2685 	sectorsize = btrfs_super_sectorsize(disk_super);
2686 	stripesize = sectorsize;
2687 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2688 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2689 
2690 	/* Cache block sizes */
2691 	fs_info->nodesize = nodesize;
2692 	fs_info->sectorsize = sectorsize;
2693 	fs_info->stripesize = stripesize;
2694 
2695 	/*
2696 	 * mixed block groups end up with duplicate but slightly offset
2697 	 * extent buffers for the same range.  It leads to corruptions
2698 	 */
2699 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2700 	    (sectorsize != nodesize)) {
2701 		btrfs_err(fs_info,
2702 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2703 			nodesize, sectorsize);
2704 		goto fail_alloc;
2705 	}
2706 
2707 	/*
2708 	 * Needn't use the lock because there is no other task which will
2709 	 * update the flag.
2710 	 */
2711 	btrfs_set_super_incompat_flags(disk_super, features);
2712 
2713 	features = btrfs_super_compat_ro_flags(disk_super) &
2714 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2715 	if (!sb_rdonly(sb) && features) {
2716 		btrfs_err(fs_info,
2717 	"cannot mount read-write because of unsupported optional features (%llx)",
2718 		       features);
2719 		err = -EINVAL;
2720 		goto fail_alloc;
2721 	}
2722 
2723 	max_active = fs_info->thread_pool_size;
2724 
2725 	ret = btrfs_init_workqueues(fs_info, fs_devices);
2726 	if (ret) {
2727 		err = ret;
2728 		goto fail_sb_buffer;
2729 	}
2730 
2731 	sb->s_bdi->congested_fn = btrfs_congested_fn;
2732 	sb->s_bdi->congested_data = fs_info;
2733 	sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2734 	sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
2735 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2736 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2737 
2738 	sb->s_blocksize = sectorsize;
2739 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2740 	memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
2741 
2742 	mutex_lock(&fs_info->chunk_mutex);
2743 	ret = btrfs_read_sys_array(fs_info);
2744 	mutex_unlock(&fs_info->chunk_mutex);
2745 	if (ret) {
2746 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
2747 		goto fail_sb_buffer;
2748 	}
2749 
2750 	generation = btrfs_super_chunk_root_generation(disk_super);
2751 
2752 	__setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2753 
2754 	chunk_root->node = read_tree_block(fs_info,
2755 					   btrfs_super_chunk_root(disk_super),
2756 					   generation);
2757 	if (IS_ERR(chunk_root->node) ||
2758 	    !extent_buffer_uptodate(chunk_root->node)) {
2759 		btrfs_err(fs_info, "failed to read chunk root");
2760 		if (!IS_ERR(chunk_root->node))
2761 			free_extent_buffer(chunk_root->node);
2762 		chunk_root->node = NULL;
2763 		goto fail_tree_roots;
2764 	}
2765 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2766 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2767 
2768 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2769 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2770 
2771 	ret = btrfs_read_chunk_tree(fs_info);
2772 	if (ret) {
2773 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2774 		goto fail_tree_roots;
2775 	}
2776 
2777 	/*
2778 	 * keep the device that is marked to be the target device for the
2779 	 * dev_replace procedure
2780 	 */
2781 	btrfs_close_extra_devices(fs_devices, 0);
2782 
2783 	if (!fs_devices->latest_bdev) {
2784 		btrfs_err(fs_info, "failed to read devices");
2785 		goto fail_tree_roots;
2786 	}
2787 
2788 retry_root_backup:
2789 	generation = btrfs_super_generation(disk_super);
2790 
2791 	tree_root->node = read_tree_block(fs_info,
2792 					  btrfs_super_root(disk_super),
2793 					  generation);
2794 	if (IS_ERR(tree_root->node) ||
2795 	    !extent_buffer_uptodate(tree_root->node)) {
2796 		btrfs_warn(fs_info, "failed to read tree root");
2797 		if (!IS_ERR(tree_root->node))
2798 			free_extent_buffer(tree_root->node);
2799 		tree_root->node = NULL;
2800 		goto recovery_tree_root;
2801 	}
2802 
2803 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2804 	tree_root->commit_root = btrfs_root_node(tree_root);
2805 	btrfs_set_root_refs(&tree_root->root_item, 1);
2806 
2807 	mutex_lock(&tree_root->objectid_mutex);
2808 	ret = btrfs_find_highest_objectid(tree_root,
2809 					&tree_root->highest_objectid);
2810 	if (ret) {
2811 		mutex_unlock(&tree_root->objectid_mutex);
2812 		goto recovery_tree_root;
2813 	}
2814 
2815 	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2816 
2817 	mutex_unlock(&tree_root->objectid_mutex);
2818 
2819 	ret = btrfs_read_roots(fs_info);
2820 	if (ret)
2821 		goto recovery_tree_root;
2822 
2823 	fs_info->generation = generation;
2824 	fs_info->last_trans_committed = generation;
2825 
2826 	ret = btrfs_recover_balance(fs_info);
2827 	if (ret) {
2828 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
2829 		goto fail_block_groups;
2830 	}
2831 
2832 	ret = btrfs_init_dev_stats(fs_info);
2833 	if (ret) {
2834 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2835 		goto fail_block_groups;
2836 	}
2837 
2838 	ret = btrfs_init_dev_replace(fs_info);
2839 	if (ret) {
2840 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
2841 		goto fail_block_groups;
2842 	}
2843 
2844 	btrfs_close_extra_devices(fs_devices, 1);
2845 
2846 	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2847 	if (ret) {
2848 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
2849 				ret);
2850 		goto fail_block_groups;
2851 	}
2852 
2853 	ret = btrfs_sysfs_add_device(fs_devices);
2854 	if (ret) {
2855 		btrfs_err(fs_info, "failed to init sysfs device interface: %d",
2856 				ret);
2857 		goto fail_fsdev_sysfs;
2858 	}
2859 
2860 	ret = btrfs_sysfs_add_mounted(fs_info);
2861 	if (ret) {
2862 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
2863 		goto fail_fsdev_sysfs;
2864 	}
2865 
2866 	ret = btrfs_init_space_info(fs_info);
2867 	if (ret) {
2868 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2869 		goto fail_sysfs;
2870 	}
2871 
2872 	ret = btrfs_read_block_groups(fs_info);
2873 	if (ret) {
2874 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
2875 		goto fail_sysfs;
2876 	}
2877 
2878 	if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info)) {
2879 		btrfs_warn(fs_info,
2880 		"writeable mount is not allowed due to too many missing devices");
2881 		goto fail_sysfs;
2882 	}
2883 
2884 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2885 					       "btrfs-cleaner");
2886 	if (IS_ERR(fs_info->cleaner_kthread))
2887 		goto fail_sysfs;
2888 
2889 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2890 						   tree_root,
2891 						   "btrfs-transaction");
2892 	if (IS_ERR(fs_info->transaction_kthread))
2893 		goto fail_cleaner;
2894 
2895 	if (!btrfs_test_opt(fs_info, NOSSD) &&
2896 	    !fs_info->fs_devices->rotating) {
2897 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
2898 	}
2899 
2900 	/*
2901 	 * Mount does not set all options immediately, we can do it now and do
2902 	 * not have to wait for transaction commit
2903 	 */
2904 	btrfs_apply_pending_changes(fs_info);
2905 
2906 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2907 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2908 		ret = btrfsic_mount(fs_info, fs_devices,
2909 				    btrfs_test_opt(fs_info,
2910 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2911 				    1 : 0,
2912 				    fs_info->check_integrity_print_mask);
2913 		if (ret)
2914 			btrfs_warn(fs_info,
2915 				"failed to initialize integrity check module: %d",
2916 				ret);
2917 	}
2918 #endif
2919 	ret = btrfs_read_qgroup_config(fs_info);
2920 	if (ret)
2921 		goto fail_trans_kthread;
2922 
2923 	if (btrfs_build_ref_tree(fs_info))
2924 		btrfs_err(fs_info, "couldn't build ref tree");
2925 
2926 	/* do not make disk changes in broken FS or nologreplay is given */
2927 	if (btrfs_super_log_root(disk_super) != 0 &&
2928 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
2929 		ret = btrfs_replay_log(fs_info, fs_devices);
2930 		if (ret) {
2931 			err = ret;
2932 			goto fail_qgroup;
2933 		}
2934 	}
2935 
2936 	ret = btrfs_find_orphan_roots(fs_info);
2937 	if (ret)
2938 		goto fail_qgroup;
2939 
2940 	if (!sb_rdonly(sb)) {
2941 		ret = btrfs_cleanup_fs_roots(fs_info);
2942 		if (ret)
2943 			goto fail_qgroup;
2944 
2945 		mutex_lock(&fs_info->cleaner_mutex);
2946 		ret = btrfs_recover_relocation(tree_root);
2947 		mutex_unlock(&fs_info->cleaner_mutex);
2948 		if (ret < 0) {
2949 			btrfs_warn(fs_info, "failed to recover relocation: %d",
2950 					ret);
2951 			err = -EINVAL;
2952 			goto fail_qgroup;
2953 		}
2954 	}
2955 
2956 	location.objectid = BTRFS_FS_TREE_OBJECTID;
2957 	location.type = BTRFS_ROOT_ITEM_KEY;
2958 	location.offset = 0;
2959 
2960 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2961 	if (IS_ERR(fs_info->fs_root)) {
2962 		err = PTR_ERR(fs_info->fs_root);
2963 		goto fail_qgroup;
2964 	}
2965 
2966 	if (sb_rdonly(sb))
2967 		return 0;
2968 
2969 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2970 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2971 		clear_free_space_tree = 1;
2972 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2973 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2974 		btrfs_warn(fs_info, "free space tree is invalid");
2975 		clear_free_space_tree = 1;
2976 	}
2977 
2978 	if (clear_free_space_tree) {
2979 		btrfs_info(fs_info, "clearing free space tree");
2980 		ret = btrfs_clear_free_space_tree(fs_info);
2981 		if (ret) {
2982 			btrfs_warn(fs_info,
2983 				   "failed to clear free space tree: %d", ret);
2984 			close_ctree(fs_info);
2985 			return ret;
2986 		}
2987 	}
2988 
2989 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
2990 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2991 		btrfs_info(fs_info, "creating free space tree");
2992 		ret = btrfs_create_free_space_tree(fs_info);
2993 		if (ret) {
2994 			btrfs_warn(fs_info,
2995 				"failed to create free space tree: %d", ret);
2996 			close_ctree(fs_info);
2997 			return ret;
2998 		}
2999 	}
3000 
3001 	down_read(&fs_info->cleanup_work_sem);
3002 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3003 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3004 		up_read(&fs_info->cleanup_work_sem);
3005 		close_ctree(fs_info);
3006 		return ret;
3007 	}
3008 	up_read(&fs_info->cleanup_work_sem);
3009 
3010 	ret = btrfs_resume_balance_async(fs_info);
3011 	if (ret) {
3012 		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3013 		close_ctree(fs_info);
3014 		return ret;
3015 	}
3016 
3017 	ret = btrfs_resume_dev_replace_async(fs_info);
3018 	if (ret) {
3019 		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3020 		close_ctree(fs_info);
3021 		return ret;
3022 	}
3023 
3024 	btrfs_qgroup_rescan_resume(fs_info);
3025 
3026 	if (!fs_info->uuid_root) {
3027 		btrfs_info(fs_info, "creating UUID tree");
3028 		ret = btrfs_create_uuid_tree(fs_info);
3029 		if (ret) {
3030 			btrfs_warn(fs_info,
3031 				"failed to create the UUID tree: %d", ret);
3032 			close_ctree(fs_info);
3033 			return ret;
3034 		}
3035 	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3036 		   fs_info->generation !=
3037 				btrfs_super_uuid_tree_generation(disk_super)) {
3038 		btrfs_info(fs_info, "checking UUID tree");
3039 		ret = btrfs_check_uuid_tree(fs_info);
3040 		if (ret) {
3041 			btrfs_warn(fs_info,
3042 				"failed to check the UUID tree: %d", ret);
3043 			close_ctree(fs_info);
3044 			return ret;
3045 		}
3046 	} else {
3047 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3048 	}
3049 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3050 
3051 	/*
3052 	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3053 	 * no need to keep the flag
3054 	 */
3055 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3056 
3057 	return 0;
3058 
3059 fail_qgroup:
3060 	btrfs_free_qgroup_config(fs_info);
3061 fail_trans_kthread:
3062 	kthread_stop(fs_info->transaction_kthread);
3063 	btrfs_cleanup_transaction(fs_info);
3064 	btrfs_free_fs_roots(fs_info);
3065 fail_cleaner:
3066 	kthread_stop(fs_info->cleaner_kthread);
3067 
3068 	/*
3069 	 * make sure we're done with the btree inode before we stop our
3070 	 * kthreads
3071 	 */
3072 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3073 
3074 fail_sysfs:
3075 	btrfs_sysfs_remove_mounted(fs_info);
3076 
3077 fail_fsdev_sysfs:
3078 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3079 
3080 fail_block_groups:
3081 	btrfs_put_block_group_cache(fs_info);
3082 
3083 fail_tree_roots:
3084 	free_root_pointers(fs_info, 1);
3085 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3086 
3087 fail_sb_buffer:
3088 	btrfs_stop_all_workers(fs_info);
3089 	btrfs_free_block_groups(fs_info);
3090 fail_alloc:
3091 fail_iput:
3092 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3093 
3094 	iput(fs_info->btree_inode);
3095 fail_bio_counter:
3096 	percpu_counter_destroy(&fs_info->bio_counter);
3097 fail_delalloc_bytes:
3098 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3099 fail_dirty_metadata_bytes:
3100 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3101 fail_srcu:
3102 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3103 fail:
3104 	btrfs_free_stripe_hash_table(fs_info);
3105 	btrfs_close_devices(fs_info->fs_devices);
3106 	return err;
3107 
3108 recovery_tree_root:
3109 	if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3110 		goto fail_tree_roots;
3111 
3112 	free_root_pointers(fs_info, 0);
3113 
3114 	/* don't use the log in recovery mode, it won't be valid */
3115 	btrfs_set_super_log_root(disk_super, 0);
3116 
3117 	/* we can't trust the free space cache either */
3118 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3119 
3120 	ret = next_root_backup(fs_info, fs_info->super_copy,
3121 			       &num_backups_tried, &backup_index);
3122 	if (ret == -1)
3123 		goto fail_block_groups;
3124 	goto retry_root_backup;
3125 }
3126 
3127 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3128 {
3129 	if (uptodate) {
3130 		set_buffer_uptodate(bh);
3131 	} else {
3132 		struct btrfs_device *device = (struct btrfs_device *)
3133 			bh->b_private;
3134 
3135 		btrfs_warn_rl_in_rcu(device->fs_info,
3136 				"lost page write due to IO error on %s",
3137 					  rcu_str_deref(device->name));
3138 		/* note, we don't set_buffer_write_io_error because we have
3139 		 * our own ways of dealing with the IO errors
3140 		 */
3141 		clear_buffer_uptodate(bh);
3142 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3143 	}
3144 	unlock_buffer(bh);
3145 	put_bh(bh);
3146 }
3147 
3148 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3149 			struct buffer_head **bh_ret)
3150 {
3151 	struct buffer_head *bh;
3152 	struct btrfs_super_block *super;
3153 	u64 bytenr;
3154 
3155 	bytenr = btrfs_sb_offset(copy_num);
3156 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3157 		return -EINVAL;
3158 
3159 	bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3160 	/*
3161 	 * If we fail to read from the underlying devices, as of now
3162 	 * the best option we have is to mark it EIO.
3163 	 */
3164 	if (!bh)
3165 		return -EIO;
3166 
3167 	super = (struct btrfs_super_block *)bh->b_data;
3168 	if (btrfs_super_bytenr(super) != bytenr ||
3169 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3170 		brelse(bh);
3171 		return -EINVAL;
3172 	}
3173 
3174 	*bh_ret = bh;
3175 	return 0;
3176 }
3177 
3178 
3179 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3180 {
3181 	struct buffer_head *bh;
3182 	struct buffer_head *latest = NULL;
3183 	struct btrfs_super_block *super;
3184 	int i;
3185 	u64 transid = 0;
3186 	int ret = -EINVAL;
3187 
3188 	/* we would like to check all the supers, but that would make
3189 	 * a btrfs mount succeed after a mkfs from a different FS.
3190 	 * So, we need to add a special mount option to scan for
3191 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3192 	 */
3193 	for (i = 0; i < 1; i++) {
3194 		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3195 		if (ret)
3196 			continue;
3197 
3198 		super = (struct btrfs_super_block *)bh->b_data;
3199 
3200 		if (!latest || btrfs_super_generation(super) > transid) {
3201 			brelse(latest);
3202 			latest = bh;
3203 			transid = btrfs_super_generation(super);
3204 		} else {
3205 			brelse(bh);
3206 		}
3207 	}
3208 
3209 	if (!latest)
3210 		return ERR_PTR(ret);
3211 
3212 	return latest;
3213 }
3214 
3215 /*
3216  * Write superblock @sb to the @device. Do not wait for completion, all the
3217  * buffer heads we write are pinned.
3218  *
3219  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3220  * the expected device size at commit time. Note that max_mirrors must be
3221  * same for write and wait phases.
3222  *
3223  * Return number of errors when buffer head is not found or submission fails.
3224  */
3225 static int write_dev_supers(struct btrfs_device *device,
3226 			    struct btrfs_super_block *sb, int max_mirrors)
3227 {
3228 	struct buffer_head *bh;
3229 	int i;
3230 	int ret;
3231 	int errors = 0;
3232 	u32 crc;
3233 	u64 bytenr;
3234 	int op_flags;
3235 
3236 	if (max_mirrors == 0)
3237 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3238 
3239 	for (i = 0; i < max_mirrors; i++) {
3240 		bytenr = btrfs_sb_offset(i);
3241 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3242 		    device->commit_total_bytes)
3243 			break;
3244 
3245 		btrfs_set_super_bytenr(sb, bytenr);
3246 
3247 		crc = ~(u32)0;
3248 		crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3249 				      BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3250 		btrfs_csum_final(crc, sb->csum);
3251 
3252 		/* One reference for us, and we leave it for the caller */
3253 		bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3254 			      BTRFS_SUPER_INFO_SIZE);
3255 		if (!bh) {
3256 			btrfs_err(device->fs_info,
3257 			    "couldn't get super buffer head for bytenr %llu",
3258 			    bytenr);
3259 			errors++;
3260 			continue;
3261 		}
3262 
3263 		memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3264 
3265 		/* one reference for submit_bh */
3266 		get_bh(bh);
3267 
3268 		set_buffer_uptodate(bh);
3269 		lock_buffer(bh);
3270 		bh->b_end_io = btrfs_end_buffer_write_sync;
3271 		bh->b_private = device;
3272 
3273 		/*
3274 		 * we fua the first super.  The others we allow
3275 		 * to go down lazy.
3276 		 */
3277 		op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3278 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3279 			op_flags |= REQ_FUA;
3280 		ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3281 		if (ret)
3282 			errors++;
3283 	}
3284 	return errors < i ? 0 : -1;
3285 }
3286 
3287 /*
3288  * Wait for write completion of superblocks done by write_dev_supers,
3289  * @max_mirrors same for write and wait phases.
3290  *
3291  * Return number of errors when buffer head is not found or not marked up to
3292  * date.
3293  */
3294 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3295 {
3296 	struct buffer_head *bh;
3297 	int i;
3298 	int errors = 0;
3299 	u64 bytenr;
3300 
3301 	if (max_mirrors == 0)
3302 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3303 
3304 	for (i = 0; i < max_mirrors; i++) {
3305 		bytenr = btrfs_sb_offset(i);
3306 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3307 		    device->commit_total_bytes)
3308 			break;
3309 
3310 		bh = __find_get_block(device->bdev,
3311 				      bytenr / BTRFS_BDEV_BLOCKSIZE,
3312 				      BTRFS_SUPER_INFO_SIZE);
3313 		if (!bh) {
3314 			errors++;
3315 			continue;
3316 		}
3317 		wait_on_buffer(bh);
3318 		if (!buffer_uptodate(bh))
3319 			errors++;
3320 
3321 		/* drop our reference */
3322 		brelse(bh);
3323 
3324 		/* drop the reference from the writing run */
3325 		brelse(bh);
3326 	}
3327 
3328 	return errors < i ? 0 : -1;
3329 }
3330 
3331 /*
3332  * endio for the write_dev_flush, this will wake anyone waiting
3333  * for the barrier when it is done
3334  */
3335 static void btrfs_end_empty_barrier(struct bio *bio)
3336 {
3337 	complete(bio->bi_private);
3338 }
3339 
3340 /*
3341  * Submit a flush request to the device if it supports it. Error handling is
3342  * done in the waiting counterpart.
3343  */
3344 static void write_dev_flush(struct btrfs_device *device)
3345 {
3346 	struct request_queue *q = bdev_get_queue(device->bdev);
3347 	struct bio *bio = device->flush_bio;
3348 
3349 	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3350 		return;
3351 
3352 	bio_reset(bio);
3353 	bio->bi_end_io = btrfs_end_empty_barrier;
3354 	bio_set_dev(bio, device->bdev);
3355 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3356 	init_completion(&device->flush_wait);
3357 	bio->bi_private = &device->flush_wait;
3358 
3359 	btrfsic_submit_bio(bio);
3360 	device->flush_bio_sent = 1;
3361 }
3362 
3363 /*
3364  * If the flush bio has been submitted by write_dev_flush, wait for it.
3365  */
3366 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3367 {
3368 	struct bio *bio = device->flush_bio;
3369 
3370 	if (!device->flush_bio_sent)
3371 		return BLK_STS_OK;
3372 
3373 	device->flush_bio_sent = 0;
3374 	wait_for_completion_io(&device->flush_wait);
3375 
3376 	return bio->bi_status;
3377 }
3378 
3379 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3380 {
3381 	if (!btrfs_check_rw_degradable(fs_info))
3382 		return -EIO;
3383 	return 0;
3384 }
3385 
3386 /*
3387  * send an empty flush down to each device in parallel,
3388  * then wait for them
3389  */
3390 static int barrier_all_devices(struct btrfs_fs_info *info)
3391 {
3392 	struct list_head *head;
3393 	struct btrfs_device *dev;
3394 	int errors_wait = 0;
3395 	blk_status_t ret;
3396 
3397 	/* send down all the barriers */
3398 	head = &info->fs_devices->devices;
3399 	list_for_each_entry_rcu(dev, head, dev_list) {
3400 		if (dev->missing)
3401 			continue;
3402 		if (!dev->bdev)
3403 			continue;
3404 		if (!dev->in_fs_metadata || !dev->writeable)
3405 			continue;
3406 
3407 		write_dev_flush(dev);
3408 		dev->last_flush_error = BLK_STS_OK;
3409 	}
3410 
3411 	/* wait for all the barriers */
3412 	list_for_each_entry_rcu(dev, head, dev_list) {
3413 		if (dev->missing)
3414 			continue;
3415 		if (!dev->bdev) {
3416 			errors_wait++;
3417 			continue;
3418 		}
3419 		if (!dev->in_fs_metadata || !dev->writeable)
3420 			continue;
3421 
3422 		ret = wait_dev_flush(dev);
3423 		if (ret) {
3424 			dev->last_flush_error = ret;
3425 			btrfs_dev_stat_inc_and_print(dev,
3426 					BTRFS_DEV_STAT_FLUSH_ERRS);
3427 			errors_wait++;
3428 		}
3429 	}
3430 
3431 	if (errors_wait) {
3432 		/*
3433 		 * At some point we need the status of all disks
3434 		 * to arrive at the volume status. So error checking
3435 		 * is being pushed to a separate loop.
3436 		 */
3437 		return check_barrier_error(info);
3438 	}
3439 	return 0;
3440 }
3441 
3442 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3443 {
3444 	int raid_type;
3445 	int min_tolerated = INT_MAX;
3446 
3447 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3448 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3449 		min_tolerated = min(min_tolerated,
3450 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3451 				    tolerated_failures);
3452 
3453 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3454 		if (raid_type == BTRFS_RAID_SINGLE)
3455 			continue;
3456 		if (!(flags & btrfs_raid_group[raid_type]))
3457 			continue;
3458 		min_tolerated = min(min_tolerated,
3459 				    btrfs_raid_array[raid_type].
3460 				    tolerated_failures);
3461 	}
3462 
3463 	if (min_tolerated == INT_MAX) {
3464 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3465 		min_tolerated = 0;
3466 	}
3467 
3468 	return min_tolerated;
3469 }
3470 
3471 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3472 {
3473 	struct list_head *head;
3474 	struct btrfs_device *dev;
3475 	struct btrfs_super_block *sb;
3476 	struct btrfs_dev_item *dev_item;
3477 	int ret;
3478 	int do_barriers;
3479 	int max_errors;
3480 	int total_errors = 0;
3481 	u64 flags;
3482 
3483 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3484 
3485 	/*
3486 	 * max_mirrors == 0 indicates we're from commit_transaction,
3487 	 * not from fsync where the tree roots in fs_info have not
3488 	 * been consistent on disk.
3489 	 */
3490 	if (max_mirrors == 0)
3491 		backup_super_roots(fs_info);
3492 
3493 	sb = fs_info->super_for_commit;
3494 	dev_item = &sb->dev_item;
3495 
3496 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3497 	head = &fs_info->fs_devices->devices;
3498 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3499 
3500 	if (do_barriers) {
3501 		ret = barrier_all_devices(fs_info);
3502 		if (ret) {
3503 			mutex_unlock(
3504 				&fs_info->fs_devices->device_list_mutex);
3505 			btrfs_handle_fs_error(fs_info, ret,
3506 					      "errors while submitting device barriers.");
3507 			return ret;
3508 		}
3509 	}
3510 
3511 	list_for_each_entry_rcu(dev, head, dev_list) {
3512 		if (!dev->bdev) {
3513 			total_errors++;
3514 			continue;
3515 		}
3516 		if (!dev->in_fs_metadata || !dev->writeable)
3517 			continue;
3518 
3519 		btrfs_set_stack_device_generation(dev_item, 0);
3520 		btrfs_set_stack_device_type(dev_item, dev->type);
3521 		btrfs_set_stack_device_id(dev_item, dev->devid);
3522 		btrfs_set_stack_device_total_bytes(dev_item,
3523 						   dev->commit_total_bytes);
3524 		btrfs_set_stack_device_bytes_used(dev_item,
3525 						  dev->commit_bytes_used);
3526 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3527 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3528 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3529 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3530 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
3531 
3532 		flags = btrfs_super_flags(sb);
3533 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3534 
3535 		ret = write_dev_supers(dev, sb, max_mirrors);
3536 		if (ret)
3537 			total_errors++;
3538 	}
3539 	if (total_errors > max_errors) {
3540 		btrfs_err(fs_info, "%d errors while writing supers",
3541 			  total_errors);
3542 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3543 
3544 		/* FUA is masked off if unsupported and can't be the reason */
3545 		btrfs_handle_fs_error(fs_info, -EIO,
3546 				      "%d errors while writing supers",
3547 				      total_errors);
3548 		return -EIO;
3549 	}
3550 
3551 	total_errors = 0;
3552 	list_for_each_entry_rcu(dev, head, dev_list) {
3553 		if (!dev->bdev)
3554 			continue;
3555 		if (!dev->in_fs_metadata || !dev->writeable)
3556 			continue;
3557 
3558 		ret = wait_dev_supers(dev, max_mirrors);
3559 		if (ret)
3560 			total_errors++;
3561 	}
3562 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3563 	if (total_errors > max_errors) {
3564 		btrfs_handle_fs_error(fs_info, -EIO,
3565 				      "%d errors while writing supers",
3566 				      total_errors);
3567 		return -EIO;
3568 	}
3569 	return 0;
3570 }
3571 
3572 /* Drop a fs root from the radix tree and free it. */
3573 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3574 				  struct btrfs_root *root)
3575 {
3576 	spin_lock(&fs_info->fs_roots_radix_lock);
3577 	radix_tree_delete(&fs_info->fs_roots_radix,
3578 			  (unsigned long)root->root_key.objectid);
3579 	spin_unlock(&fs_info->fs_roots_radix_lock);
3580 
3581 	if (btrfs_root_refs(&root->root_item) == 0)
3582 		synchronize_srcu(&fs_info->subvol_srcu);
3583 
3584 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3585 		btrfs_free_log(NULL, root);
3586 		if (root->reloc_root) {
3587 			free_extent_buffer(root->reloc_root->node);
3588 			free_extent_buffer(root->reloc_root->commit_root);
3589 			btrfs_put_fs_root(root->reloc_root);
3590 			root->reloc_root = NULL;
3591 		}
3592 	}
3593 
3594 	if (root->free_ino_pinned)
3595 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3596 	if (root->free_ino_ctl)
3597 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3598 	free_fs_root(root);
3599 }
3600 
3601 static void free_fs_root(struct btrfs_root *root)
3602 {
3603 	iput(root->ino_cache_inode);
3604 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3605 	btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
3606 	root->orphan_block_rsv = NULL;
3607 	if (root->anon_dev)
3608 		free_anon_bdev(root->anon_dev);
3609 	if (root->subv_writers)
3610 		btrfs_free_subvolume_writers(root->subv_writers);
3611 	free_extent_buffer(root->node);
3612 	free_extent_buffer(root->commit_root);
3613 	kfree(root->free_ino_ctl);
3614 	kfree(root->free_ino_pinned);
3615 	kfree(root->name);
3616 	btrfs_put_fs_root(root);
3617 }
3618 
3619 void btrfs_free_fs_root(struct btrfs_root *root)
3620 {
3621 	free_fs_root(root);
3622 }
3623 
3624 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3625 {
3626 	u64 root_objectid = 0;
3627 	struct btrfs_root *gang[8];
3628 	int i = 0;
3629 	int err = 0;
3630 	unsigned int ret = 0;
3631 	int index;
3632 
3633 	while (1) {
3634 		index = srcu_read_lock(&fs_info->subvol_srcu);
3635 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3636 					     (void **)gang, root_objectid,
3637 					     ARRAY_SIZE(gang));
3638 		if (!ret) {
3639 			srcu_read_unlock(&fs_info->subvol_srcu, index);
3640 			break;
3641 		}
3642 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3643 
3644 		for (i = 0; i < ret; i++) {
3645 			/* Avoid to grab roots in dead_roots */
3646 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3647 				gang[i] = NULL;
3648 				continue;
3649 			}
3650 			/* grab all the search result for later use */
3651 			gang[i] = btrfs_grab_fs_root(gang[i]);
3652 		}
3653 		srcu_read_unlock(&fs_info->subvol_srcu, index);
3654 
3655 		for (i = 0; i < ret; i++) {
3656 			if (!gang[i])
3657 				continue;
3658 			root_objectid = gang[i]->root_key.objectid;
3659 			err = btrfs_orphan_cleanup(gang[i]);
3660 			if (err)
3661 				break;
3662 			btrfs_put_fs_root(gang[i]);
3663 		}
3664 		root_objectid++;
3665 	}
3666 
3667 	/* release the uncleaned roots due to error */
3668 	for (; i < ret; i++) {
3669 		if (gang[i])
3670 			btrfs_put_fs_root(gang[i]);
3671 	}
3672 	return err;
3673 }
3674 
3675 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3676 {
3677 	struct btrfs_root *root = fs_info->tree_root;
3678 	struct btrfs_trans_handle *trans;
3679 
3680 	mutex_lock(&fs_info->cleaner_mutex);
3681 	btrfs_run_delayed_iputs(fs_info);
3682 	mutex_unlock(&fs_info->cleaner_mutex);
3683 	wake_up_process(fs_info->cleaner_kthread);
3684 
3685 	/* wait until ongoing cleanup work done */
3686 	down_write(&fs_info->cleanup_work_sem);
3687 	up_write(&fs_info->cleanup_work_sem);
3688 
3689 	trans = btrfs_join_transaction(root);
3690 	if (IS_ERR(trans))
3691 		return PTR_ERR(trans);
3692 	return btrfs_commit_transaction(trans);
3693 }
3694 
3695 void close_ctree(struct btrfs_fs_info *fs_info)
3696 {
3697 	struct btrfs_root *root = fs_info->tree_root;
3698 	int ret;
3699 
3700 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3701 
3702 	/* wait for the qgroup rescan worker to stop */
3703 	btrfs_qgroup_wait_for_completion(fs_info, false);
3704 
3705 	/* wait for the uuid_scan task to finish */
3706 	down(&fs_info->uuid_tree_rescan_sem);
3707 	/* avoid complains from lockdep et al., set sem back to initial state */
3708 	up(&fs_info->uuid_tree_rescan_sem);
3709 
3710 	/* pause restriper - we want to resume on mount */
3711 	btrfs_pause_balance(fs_info);
3712 
3713 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3714 
3715 	btrfs_scrub_cancel(fs_info);
3716 
3717 	/* wait for any defraggers to finish */
3718 	wait_event(fs_info->transaction_wait,
3719 		   (atomic_read(&fs_info->defrag_running) == 0));
3720 
3721 	/* clear out the rbtree of defraggable inodes */
3722 	btrfs_cleanup_defrag_inodes(fs_info);
3723 
3724 	cancel_work_sync(&fs_info->async_reclaim_work);
3725 
3726 	if (!sb_rdonly(fs_info->sb)) {
3727 		/*
3728 		 * If the cleaner thread is stopped and there are
3729 		 * block groups queued for removal, the deletion will be
3730 		 * skipped when we quit the cleaner thread.
3731 		 */
3732 		btrfs_delete_unused_bgs(fs_info);
3733 
3734 		ret = btrfs_commit_super(fs_info);
3735 		if (ret)
3736 			btrfs_err(fs_info, "commit super ret %d", ret);
3737 	}
3738 
3739 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3740 		btrfs_error_commit_super(fs_info);
3741 
3742 	kthread_stop(fs_info->transaction_kthread);
3743 	kthread_stop(fs_info->cleaner_kthread);
3744 
3745 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3746 
3747 	btrfs_free_qgroup_config(fs_info);
3748 
3749 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3750 		btrfs_info(fs_info, "at unmount delalloc count %lld",
3751 		       percpu_counter_sum(&fs_info->delalloc_bytes));
3752 	}
3753 
3754 	btrfs_sysfs_remove_mounted(fs_info);
3755 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3756 
3757 	btrfs_free_fs_roots(fs_info);
3758 
3759 	btrfs_put_block_group_cache(fs_info);
3760 
3761 	/*
3762 	 * we must make sure there is not any read request to
3763 	 * submit after we stopping all workers.
3764 	 */
3765 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3766 	btrfs_stop_all_workers(fs_info);
3767 
3768 	btrfs_free_block_groups(fs_info);
3769 
3770 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3771 	free_root_pointers(fs_info, 1);
3772 
3773 	iput(fs_info->btree_inode);
3774 
3775 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3776 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
3777 		btrfsic_unmount(fs_info->fs_devices);
3778 #endif
3779 
3780 	btrfs_close_devices(fs_info->fs_devices);
3781 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3782 
3783 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3784 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3785 	percpu_counter_destroy(&fs_info->bio_counter);
3786 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3787 
3788 	btrfs_free_stripe_hash_table(fs_info);
3789 	btrfs_free_ref_cache(fs_info);
3790 
3791 	__btrfs_free_block_rsv(root->orphan_block_rsv);
3792 	root->orphan_block_rsv = NULL;
3793 
3794 	while (!list_empty(&fs_info->pinned_chunks)) {
3795 		struct extent_map *em;
3796 
3797 		em = list_first_entry(&fs_info->pinned_chunks,
3798 				      struct extent_map, list);
3799 		list_del_init(&em->list);
3800 		free_extent_map(em);
3801 	}
3802 }
3803 
3804 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3805 			  int atomic)
3806 {
3807 	int ret;
3808 	struct inode *btree_inode = buf->pages[0]->mapping->host;
3809 
3810 	ret = extent_buffer_uptodate(buf);
3811 	if (!ret)
3812 		return ret;
3813 
3814 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3815 				    parent_transid, atomic);
3816 	if (ret == -EAGAIN)
3817 		return ret;
3818 	return !ret;
3819 }
3820 
3821 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3822 {
3823 	struct btrfs_fs_info *fs_info;
3824 	struct btrfs_root *root;
3825 	u64 transid = btrfs_header_generation(buf);
3826 	int was_dirty;
3827 
3828 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3829 	/*
3830 	 * This is a fast path so only do this check if we have sanity tests
3831 	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3832 	 * outside of the sanity tests.
3833 	 */
3834 	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3835 		return;
3836 #endif
3837 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3838 	fs_info = root->fs_info;
3839 	btrfs_assert_tree_locked(buf);
3840 	if (transid != fs_info->generation)
3841 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
3842 			buf->start, transid, fs_info->generation);
3843 	was_dirty = set_extent_buffer_dirty(buf);
3844 	if (!was_dirty)
3845 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3846 					 buf->len,
3847 					 fs_info->dirty_metadata_batch);
3848 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3849 	/*
3850 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
3851 	 * but item data not updated.
3852 	 * So here we should only check item pointers, not item data.
3853 	 */
3854 	if (btrfs_header_level(buf) == 0 &&
3855 	    btrfs_check_leaf_relaxed(root, buf)) {
3856 		btrfs_print_leaf(buf);
3857 		ASSERT(0);
3858 	}
3859 #endif
3860 }
3861 
3862 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
3863 					int flush_delayed)
3864 {
3865 	/*
3866 	 * looks as though older kernels can get into trouble with
3867 	 * this code, they end up stuck in balance_dirty_pages forever
3868 	 */
3869 	int ret;
3870 
3871 	if (current->flags & PF_MEMALLOC)
3872 		return;
3873 
3874 	if (flush_delayed)
3875 		btrfs_balance_delayed_items(fs_info);
3876 
3877 	ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
3878 				     BTRFS_DIRTY_METADATA_THRESH);
3879 	if (ret > 0) {
3880 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
3881 	}
3882 }
3883 
3884 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
3885 {
3886 	__btrfs_btree_balance_dirty(fs_info, 1);
3887 }
3888 
3889 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
3890 {
3891 	__btrfs_btree_balance_dirty(fs_info, 0);
3892 }
3893 
3894 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3895 {
3896 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3897 	struct btrfs_fs_info *fs_info = root->fs_info;
3898 
3899 	return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
3900 }
3901 
3902 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
3903 {
3904 	struct btrfs_super_block *sb = fs_info->super_copy;
3905 	u64 nodesize = btrfs_super_nodesize(sb);
3906 	u64 sectorsize = btrfs_super_sectorsize(sb);
3907 	int ret = 0;
3908 
3909 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
3910 		btrfs_err(fs_info, "no valid FS found");
3911 		ret = -EINVAL;
3912 	}
3913 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
3914 		btrfs_warn(fs_info, "unrecognized super flag: %llu",
3915 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
3916 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3917 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
3918 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
3919 		ret = -EINVAL;
3920 	}
3921 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3922 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
3923 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
3924 		ret = -EINVAL;
3925 	}
3926 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3927 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
3928 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
3929 		ret = -EINVAL;
3930 	}
3931 
3932 	/*
3933 	 * Check sectorsize and nodesize first, other check will need it.
3934 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
3935 	 */
3936 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
3937 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
3938 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
3939 		ret = -EINVAL;
3940 	}
3941 	/* Only PAGE SIZE is supported yet */
3942 	if (sectorsize != PAGE_SIZE) {
3943 		btrfs_err(fs_info,
3944 			"sectorsize %llu not supported yet, only support %lu",
3945 			sectorsize, PAGE_SIZE);
3946 		ret = -EINVAL;
3947 	}
3948 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
3949 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
3950 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
3951 		ret = -EINVAL;
3952 	}
3953 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
3954 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
3955 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
3956 		ret = -EINVAL;
3957 	}
3958 
3959 	/* Root alignment check */
3960 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
3961 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
3962 			   btrfs_super_root(sb));
3963 		ret = -EINVAL;
3964 	}
3965 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
3966 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
3967 			   btrfs_super_chunk_root(sb));
3968 		ret = -EINVAL;
3969 	}
3970 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
3971 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
3972 			   btrfs_super_log_root(sb));
3973 		ret = -EINVAL;
3974 	}
3975 
3976 	if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
3977 		btrfs_err(fs_info,
3978 			   "dev_item UUID does not match fsid: %pU != %pU",
3979 			   fs_info->fsid, sb->dev_item.fsid);
3980 		ret = -EINVAL;
3981 	}
3982 
3983 	/*
3984 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
3985 	 * done later
3986 	 */
3987 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
3988 		btrfs_err(fs_info, "bytes_used is too small %llu",
3989 			  btrfs_super_bytes_used(sb));
3990 		ret = -EINVAL;
3991 	}
3992 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
3993 		btrfs_err(fs_info, "invalid stripesize %u",
3994 			  btrfs_super_stripesize(sb));
3995 		ret = -EINVAL;
3996 	}
3997 	if (btrfs_super_num_devices(sb) > (1UL << 31))
3998 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
3999 			   btrfs_super_num_devices(sb));
4000 	if (btrfs_super_num_devices(sb) == 0) {
4001 		btrfs_err(fs_info, "number of devices is 0");
4002 		ret = -EINVAL;
4003 	}
4004 
4005 	if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4006 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
4007 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4008 		ret = -EINVAL;
4009 	}
4010 
4011 	/*
4012 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
4013 	 * and one chunk
4014 	 */
4015 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4016 		btrfs_err(fs_info, "system chunk array too big %u > %u",
4017 			  btrfs_super_sys_array_size(sb),
4018 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4019 		ret = -EINVAL;
4020 	}
4021 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4022 			+ sizeof(struct btrfs_chunk)) {
4023 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
4024 			  btrfs_super_sys_array_size(sb),
4025 			  sizeof(struct btrfs_disk_key)
4026 			  + sizeof(struct btrfs_chunk));
4027 		ret = -EINVAL;
4028 	}
4029 
4030 	/*
4031 	 * The generation is a global counter, we'll trust it more than the others
4032 	 * but it's still possible that it's the one that's wrong.
4033 	 */
4034 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4035 		btrfs_warn(fs_info,
4036 			"suspicious: generation < chunk_root_generation: %llu < %llu",
4037 			btrfs_super_generation(sb),
4038 			btrfs_super_chunk_root_generation(sb));
4039 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4040 	    && btrfs_super_cache_generation(sb) != (u64)-1)
4041 		btrfs_warn(fs_info,
4042 			"suspicious: generation < cache_generation: %llu < %llu",
4043 			btrfs_super_generation(sb),
4044 			btrfs_super_cache_generation(sb));
4045 
4046 	return ret;
4047 }
4048 
4049 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4050 {
4051 	mutex_lock(&fs_info->cleaner_mutex);
4052 	btrfs_run_delayed_iputs(fs_info);
4053 	mutex_unlock(&fs_info->cleaner_mutex);
4054 
4055 	down_write(&fs_info->cleanup_work_sem);
4056 	up_write(&fs_info->cleanup_work_sem);
4057 
4058 	/* cleanup FS via transaction */
4059 	btrfs_cleanup_transaction(fs_info);
4060 }
4061 
4062 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4063 {
4064 	struct btrfs_ordered_extent *ordered;
4065 
4066 	spin_lock(&root->ordered_extent_lock);
4067 	/*
4068 	 * This will just short circuit the ordered completion stuff which will
4069 	 * make sure the ordered extent gets properly cleaned up.
4070 	 */
4071 	list_for_each_entry(ordered, &root->ordered_extents,
4072 			    root_extent_list)
4073 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4074 	spin_unlock(&root->ordered_extent_lock);
4075 }
4076 
4077 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4078 {
4079 	struct btrfs_root *root;
4080 	struct list_head splice;
4081 
4082 	INIT_LIST_HEAD(&splice);
4083 
4084 	spin_lock(&fs_info->ordered_root_lock);
4085 	list_splice_init(&fs_info->ordered_roots, &splice);
4086 	while (!list_empty(&splice)) {
4087 		root = list_first_entry(&splice, struct btrfs_root,
4088 					ordered_root);
4089 		list_move_tail(&root->ordered_root,
4090 			       &fs_info->ordered_roots);
4091 
4092 		spin_unlock(&fs_info->ordered_root_lock);
4093 		btrfs_destroy_ordered_extents(root);
4094 
4095 		cond_resched();
4096 		spin_lock(&fs_info->ordered_root_lock);
4097 	}
4098 	spin_unlock(&fs_info->ordered_root_lock);
4099 }
4100 
4101 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4102 				      struct btrfs_fs_info *fs_info)
4103 {
4104 	struct rb_node *node;
4105 	struct btrfs_delayed_ref_root *delayed_refs;
4106 	struct btrfs_delayed_ref_node *ref;
4107 	int ret = 0;
4108 
4109 	delayed_refs = &trans->delayed_refs;
4110 
4111 	spin_lock(&delayed_refs->lock);
4112 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4113 		spin_unlock(&delayed_refs->lock);
4114 		btrfs_info(fs_info, "delayed_refs has NO entry");
4115 		return ret;
4116 	}
4117 
4118 	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4119 		struct btrfs_delayed_ref_head *head;
4120 		struct rb_node *n;
4121 		bool pin_bytes = false;
4122 
4123 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4124 				href_node);
4125 		if (!mutex_trylock(&head->mutex)) {
4126 			refcount_inc(&head->refs);
4127 			spin_unlock(&delayed_refs->lock);
4128 
4129 			mutex_lock(&head->mutex);
4130 			mutex_unlock(&head->mutex);
4131 			btrfs_put_delayed_ref_head(head);
4132 			spin_lock(&delayed_refs->lock);
4133 			continue;
4134 		}
4135 		spin_lock(&head->lock);
4136 		while ((n = rb_first(&head->ref_tree)) != NULL) {
4137 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4138 				       ref_node);
4139 			ref->in_tree = 0;
4140 			rb_erase(&ref->ref_node, &head->ref_tree);
4141 			RB_CLEAR_NODE(&ref->ref_node);
4142 			if (!list_empty(&ref->add_list))
4143 				list_del(&ref->add_list);
4144 			atomic_dec(&delayed_refs->num_entries);
4145 			btrfs_put_delayed_ref(ref);
4146 		}
4147 		if (head->must_insert_reserved)
4148 			pin_bytes = true;
4149 		btrfs_free_delayed_extent_op(head->extent_op);
4150 		delayed_refs->num_heads--;
4151 		if (head->processing == 0)
4152 			delayed_refs->num_heads_ready--;
4153 		atomic_dec(&delayed_refs->num_entries);
4154 		rb_erase(&head->href_node, &delayed_refs->href_root);
4155 		RB_CLEAR_NODE(&head->href_node);
4156 		spin_unlock(&head->lock);
4157 		spin_unlock(&delayed_refs->lock);
4158 		mutex_unlock(&head->mutex);
4159 
4160 		if (pin_bytes)
4161 			btrfs_pin_extent(fs_info, head->bytenr,
4162 					 head->num_bytes, 1);
4163 		btrfs_put_delayed_ref_head(head);
4164 		cond_resched();
4165 		spin_lock(&delayed_refs->lock);
4166 	}
4167 
4168 	spin_unlock(&delayed_refs->lock);
4169 
4170 	return ret;
4171 }
4172 
4173 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4174 {
4175 	struct btrfs_inode *btrfs_inode;
4176 	struct list_head splice;
4177 
4178 	INIT_LIST_HEAD(&splice);
4179 
4180 	spin_lock(&root->delalloc_lock);
4181 	list_splice_init(&root->delalloc_inodes, &splice);
4182 
4183 	while (!list_empty(&splice)) {
4184 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4185 					       delalloc_inodes);
4186 
4187 		list_del_init(&btrfs_inode->delalloc_inodes);
4188 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4189 			  &btrfs_inode->runtime_flags);
4190 		spin_unlock(&root->delalloc_lock);
4191 
4192 		btrfs_invalidate_inodes(btrfs_inode->root);
4193 
4194 		spin_lock(&root->delalloc_lock);
4195 	}
4196 
4197 	spin_unlock(&root->delalloc_lock);
4198 }
4199 
4200 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4201 {
4202 	struct btrfs_root *root;
4203 	struct list_head splice;
4204 
4205 	INIT_LIST_HEAD(&splice);
4206 
4207 	spin_lock(&fs_info->delalloc_root_lock);
4208 	list_splice_init(&fs_info->delalloc_roots, &splice);
4209 	while (!list_empty(&splice)) {
4210 		root = list_first_entry(&splice, struct btrfs_root,
4211 					 delalloc_root);
4212 		list_del_init(&root->delalloc_root);
4213 		root = btrfs_grab_fs_root(root);
4214 		BUG_ON(!root);
4215 		spin_unlock(&fs_info->delalloc_root_lock);
4216 
4217 		btrfs_destroy_delalloc_inodes(root);
4218 		btrfs_put_fs_root(root);
4219 
4220 		spin_lock(&fs_info->delalloc_root_lock);
4221 	}
4222 	spin_unlock(&fs_info->delalloc_root_lock);
4223 }
4224 
4225 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4226 					struct extent_io_tree *dirty_pages,
4227 					int mark)
4228 {
4229 	int ret;
4230 	struct extent_buffer *eb;
4231 	u64 start = 0;
4232 	u64 end;
4233 
4234 	while (1) {
4235 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4236 					    mark, NULL);
4237 		if (ret)
4238 			break;
4239 
4240 		clear_extent_bits(dirty_pages, start, end, mark);
4241 		while (start <= end) {
4242 			eb = find_extent_buffer(fs_info, start);
4243 			start += fs_info->nodesize;
4244 			if (!eb)
4245 				continue;
4246 			wait_on_extent_buffer_writeback(eb);
4247 
4248 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4249 					       &eb->bflags))
4250 				clear_extent_buffer_dirty(eb);
4251 			free_extent_buffer_stale(eb);
4252 		}
4253 	}
4254 
4255 	return ret;
4256 }
4257 
4258 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4259 				       struct extent_io_tree *pinned_extents)
4260 {
4261 	struct extent_io_tree *unpin;
4262 	u64 start;
4263 	u64 end;
4264 	int ret;
4265 	bool loop = true;
4266 
4267 	unpin = pinned_extents;
4268 again:
4269 	while (1) {
4270 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4271 					    EXTENT_DIRTY, NULL);
4272 		if (ret)
4273 			break;
4274 
4275 		clear_extent_dirty(unpin, start, end);
4276 		btrfs_error_unpin_extent_range(fs_info, start, end);
4277 		cond_resched();
4278 	}
4279 
4280 	if (loop) {
4281 		if (unpin == &fs_info->freed_extents[0])
4282 			unpin = &fs_info->freed_extents[1];
4283 		else
4284 			unpin = &fs_info->freed_extents[0];
4285 		loop = false;
4286 		goto again;
4287 	}
4288 
4289 	return 0;
4290 }
4291 
4292 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4293 {
4294 	struct inode *inode;
4295 
4296 	inode = cache->io_ctl.inode;
4297 	if (inode) {
4298 		invalidate_inode_pages2(inode->i_mapping);
4299 		BTRFS_I(inode)->generation = 0;
4300 		cache->io_ctl.inode = NULL;
4301 		iput(inode);
4302 	}
4303 	btrfs_put_block_group(cache);
4304 }
4305 
4306 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4307 			     struct btrfs_fs_info *fs_info)
4308 {
4309 	struct btrfs_block_group_cache *cache;
4310 
4311 	spin_lock(&cur_trans->dirty_bgs_lock);
4312 	while (!list_empty(&cur_trans->dirty_bgs)) {
4313 		cache = list_first_entry(&cur_trans->dirty_bgs,
4314 					 struct btrfs_block_group_cache,
4315 					 dirty_list);
4316 		if (!cache) {
4317 			btrfs_err(fs_info, "orphan block group dirty_bgs list");
4318 			spin_unlock(&cur_trans->dirty_bgs_lock);
4319 			return;
4320 		}
4321 
4322 		if (!list_empty(&cache->io_list)) {
4323 			spin_unlock(&cur_trans->dirty_bgs_lock);
4324 			list_del_init(&cache->io_list);
4325 			btrfs_cleanup_bg_io(cache);
4326 			spin_lock(&cur_trans->dirty_bgs_lock);
4327 		}
4328 
4329 		list_del_init(&cache->dirty_list);
4330 		spin_lock(&cache->lock);
4331 		cache->disk_cache_state = BTRFS_DC_ERROR;
4332 		spin_unlock(&cache->lock);
4333 
4334 		spin_unlock(&cur_trans->dirty_bgs_lock);
4335 		btrfs_put_block_group(cache);
4336 		spin_lock(&cur_trans->dirty_bgs_lock);
4337 	}
4338 	spin_unlock(&cur_trans->dirty_bgs_lock);
4339 
4340 	while (!list_empty(&cur_trans->io_bgs)) {
4341 		cache = list_first_entry(&cur_trans->io_bgs,
4342 					 struct btrfs_block_group_cache,
4343 					 io_list);
4344 		if (!cache) {
4345 			btrfs_err(fs_info, "orphan block group on io_bgs list");
4346 			return;
4347 		}
4348 
4349 		list_del_init(&cache->io_list);
4350 		spin_lock(&cache->lock);
4351 		cache->disk_cache_state = BTRFS_DC_ERROR;
4352 		spin_unlock(&cache->lock);
4353 		btrfs_cleanup_bg_io(cache);
4354 	}
4355 }
4356 
4357 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4358 				   struct btrfs_fs_info *fs_info)
4359 {
4360 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4361 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4362 	ASSERT(list_empty(&cur_trans->io_bgs));
4363 
4364 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4365 
4366 	cur_trans->state = TRANS_STATE_COMMIT_START;
4367 	wake_up(&fs_info->transaction_blocked_wait);
4368 
4369 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4370 	wake_up(&fs_info->transaction_wait);
4371 
4372 	btrfs_destroy_delayed_inodes(fs_info);
4373 	btrfs_assert_delayed_root_empty(fs_info);
4374 
4375 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4376 				     EXTENT_DIRTY);
4377 	btrfs_destroy_pinned_extent(fs_info,
4378 				    fs_info->pinned_extents);
4379 
4380 	cur_trans->state =TRANS_STATE_COMPLETED;
4381 	wake_up(&cur_trans->commit_wait);
4382 }
4383 
4384 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4385 {
4386 	struct btrfs_transaction *t;
4387 
4388 	mutex_lock(&fs_info->transaction_kthread_mutex);
4389 
4390 	spin_lock(&fs_info->trans_lock);
4391 	while (!list_empty(&fs_info->trans_list)) {
4392 		t = list_first_entry(&fs_info->trans_list,
4393 				     struct btrfs_transaction, list);
4394 		if (t->state >= TRANS_STATE_COMMIT_START) {
4395 			refcount_inc(&t->use_count);
4396 			spin_unlock(&fs_info->trans_lock);
4397 			btrfs_wait_for_commit(fs_info, t->transid);
4398 			btrfs_put_transaction(t);
4399 			spin_lock(&fs_info->trans_lock);
4400 			continue;
4401 		}
4402 		if (t == fs_info->running_transaction) {
4403 			t->state = TRANS_STATE_COMMIT_DOING;
4404 			spin_unlock(&fs_info->trans_lock);
4405 			/*
4406 			 * We wait for 0 num_writers since we don't hold a trans
4407 			 * handle open currently for this transaction.
4408 			 */
4409 			wait_event(t->writer_wait,
4410 				   atomic_read(&t->num_writers) == 0);
4411 		} else {
4412 			spin_unlock(&fs_info->trans_lock);
4413 		}
4414 		btrfs_cleanup_one_transaction(t, fs_info);
4415 
4416 		spin_lock(&fs_info->trans_lock);
4417 		if (t == fs_info->running_transaction)
4418 			fs_info->running_transaction = NULL;
4419 		list_del_init(&t->list);
4420 		spin_unlock(&fs_info->trans_lock);
4421 
4422 		btrfs_put_transaction(t);
4423 		trace_btrfs_transaction_commit(fs_info->tree_root);
4424 		spin_lock(&fs_info->trans_lock);
4425 	}
4426 	spin_unlock(&fs_info->trans_lock);
4427 	btrfs_destroy_all_ordered_extents(fs_info);
4428 	btrfs_destroy_delayed_inodes(fs_info);
4429 	btrfs_assert_delayed_root_empty(fs_info);
4430 	btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4431 	btrfs_destroy_all_delalloc_inodes(fs_info);
4432 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4433 
4434 	return 0;
4435 }
4436 
4437 static struct btrfs_fs_info *btree_fs_info(void *private_data)
4438 {
4439 	struct inode *inode = private_data;
4440 	return btrfs_sb(inode->i_sb);
4441 }
4442 
4443 static const struct extent_io_ops btree_extent_io_ops = {
4444 	/* mandatory callbacks */
4445 	.submit_bio_hook = btree_submit_bio_hook,
4446 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4447 	/* note we're sharing with inode.c for the merge bio hook */
4448 	.merge_bio_hook = btrfs_merge_bio_hook,
4449 	.readpage_io_failed_hook = btree_io_failed_hook,
4450 	.set_range_writeback = btrfs_set_range_writeback,
4451 	.tree_fs_info = btree_fs_info,
4452 
4453 	/* optional callbacks */
4454 };
4455