1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <asm/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "bio.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "check-integrity.h" 33 #include "rcu-string.h" 34 #include "dev-replace.h" 35 #include "raid56.h" 36 #include "sysfs.h" 37 #include "qgroup.h" 38 #include "compression.h" 39 #include "tree-checker.h" 40 #include "ref-verify.h" 41 #include "block-group.h" 42 #include "discard.h" 43 #include "space-info.h" 44 #include "zoned.h" 45 #include "subpage.h" 46 #include "fs.h" 47 #include "accessors.h" 48 #include "extent-tree.h" 49 #include "root-tree.h" 50 #include "defrag.h" 51 #include "uuid-tree.h" 52 #include "relocation.h" 53 #include "scrub.h" 54 #include "super.h" 55 56 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 57 BTRFS_HEADER_FLAG_RELOC |\ 58 BTRFS_SUPER_FLAG_ERROR |\ 59 BTRFS_SUPER_FLAG_SEEDING |\ 60 BTRFS_SUPER_FLAG_METADUMP |\ 61 BTRFS_SUPER_FLAG_METADUMP_V2) 62 63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 65 struct btrfs_fs_info *fs_info); 66 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 67 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 68 struct extent_io_tree *dirty_pages, 69 int mark); 70 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 71 struct extent_io_tree *pinned_extents); 72 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 73 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 74 75 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 76 { 77 if (fs_info->csum_shash) 78 crypto_free_shash(fs_info->csum_shash); 79 } 80 81 /* 82 * async submit bios are used to offload expensive checksumming 83 * onto the worker threads. They checksum file and metadata bios 84 * just before they are sent down the IO stack. 85 */ 86 struct async_submit_bio { 87 struct btrfs_inode *inode; 88 struct bio *bio; 89 enum btrfs_wq_submit_cmd submit_cmd; 90 int mirror_num; 91 92 /* Optional parameter for used by direct io */ 93 u64 dio_file_offset; 94 struct btrfs_work work; 95 blk_status_t status; 96 }; 97 98 /* 99 * Compute the csum of a btree block and store the result to provided buffer. 100 */ 101 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 102 { 103 struct btrfs_fs_info *fs_info = buf->fs_info; 104 const int num_pages = num_extent_pages(buf); 105 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 106 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 107 char *kaddr; 108 int i; 109 110 shash->tfm = fs_info->csum_shash; 111 crypto_shash_init(shash); 112 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start); 113 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 114 first_page_part - BTRFS_CSUM_SIZE); 115 116 for (i = 1; i < num_pages; i++) { 117 kaddr = page_address(buf->pages[i]); 118 crypto_shash_update(shash, kaddr, PAGE_SIZE); 119 } 120 memset(result, 0, BTRFS_CSUM_SIZE); 121 crypto_shash_final(shash, result); 122 } 123 124 /* 125 * we can't consider a given block up to date unless the transid of the 126 * block matches the transid in the parent node's pointer. This is how we 127 * detect blocks that either didn't get written at all or got written 128 * in the wrong place. 129 */ 130 static int verify_parent_transid(struct extent_io_tree *io_tree, 131 struct extent_buffer *eb, u64 parent_transid, 132 int atomic) 133 { 134 struct extent_state *cached_state = NULL; 135 int ret; 136 137 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 138 return 0; 139 140 if (atomic) 141 return -EAGAIN; 142 143 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, &cached_state); 144 if (extent_buffer_uptodate(eb) && 145 btrfs_header_generation(eb) == parent_transid) { 146 ret = 0; 147 goto out; 148 } 149 btrfs_err_rl(eb->fs_info, 150 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 151 eb->start, eb->read_mirror, 152 parent_transid, btrfs_header_generation(eb)); 153 ret = 1; 154 clear_extent_buffer_uptodate(eb); 155 out: 156 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, 157 &cached_state); 158 return ret; 159 } 160 161 static bool btrfs_supported_super_csum(u16 csum_type) 162 { 163 switch (csum_type) { 164 case BTRFS_CSUM_TYPE_CRC32: 165 case BTRFS_CSUM_TYPE_XXHASH: 166 case BTRFS_CSUM_TYPE_SHA256: 167 case BTRFS_CSUM_TYPE_BLAKE2: 168 return true; 169 default: 170 return false; 171 } 172 } 173 174 /* 175 * Return 0 if the superblock checksum type matches the checksum value of that 176 * algorithm. Pass the raw disk superblock data. 177 */ 178 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 179 const struct btrfs_super_block *disk_sb) 180 { 181 char result[BTRFS_CSUM_SIZE]; 182 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 183 184 shash->tfm = fs_info->csum_shash; 185 186 /* 187 * The super_block structure does not span the whole 188 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 189 * filled with zeros and is included in the checksum. 190 */ 191 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE, 192 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 193 194 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 195 return 1; 196 197 return 0; 198 } 199 200 int btrfs_verify_level_key(struct extent_buffer *eb, int level, 201 struct btrfs_key *first_key, u64 parent_transid) 202 { 203 struct btrfs_fs_info *fs_info = eb->fs_info; 204 int found_level; 205 struct btrfs_key found_key; 206 int ret; 207 208 found_level = btrfs_header_level(eb); 209 if (found_level != level) { 210 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 211 KERN_ERR "BTRFS: tree level check failed\n"); 212 btrfs_err(fs_info, 213 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 214 eb->start, level, found_level); 215 return -EIO; 216 } 217 218 if (!first_key) 219 return 0; 220 221 /* 222 * For live tree block (new tree blocks in current transaction), 223 * we need proper lock context to avoid race, which is impossible here. 224 * So we only checks tree blocks which is read from disk, whose 225 * generation <= fs_info->last_trans_committed. 226 */ 227 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 228 return 0; 229 230 /* We have @first_key, so this @eb must have at least one item */ 231 if (btrfs_header_nritems(eb) == 0) { 232 btrfs_err(fs_info, 233 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 234 eb->start); 235 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 236 return -EUCLEAN; 237 } 238 239 if (found_level) 240 btrfs_node_key_to_cpu(eb, &found_key, 0); 241 else 242 btrfs_item_key_to_cpu(eb, &found_key, 0); 243 ret = btrfs_comp_cpu_keys(first_key, &found_key); 244 245 if (ret) { 246 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 247 KERN_ERR "BTRFS: tree first key check failed\n"); 248 btrfs_err(fs_info, 249 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 250 eb->start, parent_transid, first_key->objectid, 251 first_key->type, first_key->offset, 252 found_key.objectid, found_key.type, 253 found_key.offset); 254 } 255 return ret; 256 } 257 258 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, 259 int mirror_num) 260 { 261 struct btrfs_fs_info *fs_info = eb->fs_info; 262 u64 start = eb->start; 263 int i, num_pages = num_extent_pages(eb); 264 int ret = 0; 265 266 if (sb_rdonly(fs_info->sb)) 267 return -EROFS; 268 269 for (i = 0; i < num_pages; i++) { 270 struct page *p = eb->pages[i]; 271 272 ret = btrfs_repair_io_failure(fs_info, 0, start, PAGE_SIZE, 273 start, p, start - page_offset(p), mirror_num); 274 if (ret) 275 break; 276 start += PAGE_SIZE; 277 } 278 279 return ret; 280 } 281 282 /* 283 * helper to read a given tree block, doing retries as required when 284 * the checksums don't match and we have alternate mirrors to try. 285 * 286 * @check: expected tree parentness check, see the comments of the 287 * structure for details. 288 */ 289 int btrfs_read_extent_buffer(struct extent_buffer *eb, 290 struct btrfs_tree_parent_check *check) 291 { 292 struct btrfs_fs_info *fs_info = eb->fs_info; 293 int failed = 0; 294 int ret; 295 int num_copies = 0; 296 int mirror_num = 0; 297 int failed_mirror = 0; 298 299 ASSERT(check); 300 301 while (1) { 302 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 303 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check); 304 if (!ret) 305 break; 306 307 num_copies = btrfs_num_copies(fs_info, 308 eb->start, eb->len); 309 if (num_copies == 1) 310 break; 311 312 if (!failed_mirror) { 313 failed = 1; 314 failed_mirror = eb->read_mirror; 315 } 316 317 mirror_num++; 318 if (mirror_num == failed_mirror) 319 mirror_num++; 320 321 if (mirror_num > num_copies) 322 break; 323 } 324 325 if (failed && !ret && failed_mirror) 326 btrfs_repair_eb_io_failure(eb, failed_mirror); 327 328 return ret; 329 } 330 331 static int csum_one_extent_buffer(struct extent_buffer *eb) 332 { 333 struct btrfs_fs_info *fs_info = eb->fs_info; 334 u8 result[BTRFS_CSUM_SIZE]; 335 int ret; 336 337 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 338 offsetof(struct btrfs_header, fsid), 339 BTRFS_FSID_SIZE) == 0); 340 csum_tree_block(eb, result); 341 342 if (btrfs_header_level(eb)) 343 ret = btrfs_check_node(eb); 344 else 345 ret = btrfs_check_leaf_full(eb); 346 347 if (ret < 0) 348 goto error; 349 350 /* 351 * Also check the generation, the eb reached here must be newer than 352 * last committed. Or something seriously wrong happened. 353 */ 354 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) { 355 ret = -EUCLEAN; 356 btrfs_err(fs_info, 357 "block=%llu bad generation, have %llu expect > %llu", 358 eb->start, btrfs_header_generation(eb), 359 fs_info->last_trans_committed); 360 goto error; 361 } 362 write_extent_buffer(eb, result, 0, fs_info->csum_size); 363 364 return 0; 365 366 error: 367 btrfs_print_tree(eb, 0); 368 btrfs_err(fs_info, "block=%llu write time tree block corruption detected", 369 eb->start); 370 /* 371 * Be noisy if this is an extent buffer from a log tree. We don't abort 372 * a transaction in case there's a bad log tree extent buffer, we just 373 * fallback to a transaction commit. Still we want to know when there is 374 * a bad log tree extent buffer, as that may signal a bug somewhere. 375 */ 376 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) || 377 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID); 378 return ret; 379 } 380 381 /* Checksum all dirty extent buffers in one bio_vec */ 382 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info, 383 struct bio_vec *bvec) 384 { 385 struct page *page = bvec->bv_page; 386 u64 bvec_start = page_offset(page) + bvec->bv_offset; 387 u64 cur; 388 int ret = 0; 389 390 for (cur = bvec_start; cur < bvec_start + bvec->bv_len; 391 cur += fs_info->nodesize) { 392 struct extent_buffer *eb; 393 bool uptodate; 394 395 eb = find_extent_buffer(fs_info, cur); 396 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur, 397 fs_info->nodesize); 398 399 /* A dirty eb shouldn't disappear from buffer_radix */ 400 if (WARN_ON(!eb)) 401 return -EUCLEAN; 402 403 if (WARN_ON(cur != btrfs_header_bytenr(eb))) { 404 free_extent_buffer(eb); 405 return -EUCLEAN; 406 } 407 if (WARN_ON(!uptodate)) { 408 free_extent_buffer(eb); 409 return -EUCLEAN; 410 } 411 412 ret = csum_one_extent_buffer(eb); 413 free_extent_buffer(eb); 414 if (ret < 0) 415 return ret; 416 } 417 return ret; 418 } 419 420 /* 421 * Checksum a dirty tree block before IO. This has extra checks to make sure 422 * we only fill in the checksum field in the first page of a multi-page block. 423 * For subpage extent buffers we need bvec to also read the offset in the page. 424 */ 425 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec) 426 { 427 struct page *page = bvec->bv_page; 428 u64 start = page_offset(page); 429 u64 found_start; 430 struct extent_buffer *eb; 431 432 if (fs_info->nodesize < PAGE_SIZE) 433 return csum_dirty_subpage_buffers(fs_info, bvec); 434 435 eb = (struct extent_buffer *)page->private; 436 if (page != eb->pages[0]) 437 return 0; 438 439 found_start = btrfs_header_bytenr(eb); 440 441 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) { 442 WARN_ON(found_start != 0); 443 return 0; 444 } 445 446 /* 447 * Please do not consolidate these warnings into a single if. 448 * It is useful to know what went wrong. 449 */ 450 if (WARN_ON(found_start != start)) 451 return -EUCLEAN; 452 if (WARN_ON(!PageUptodate(page))) 453 return -EUCLEAN; 454 455 return csum_one_extent_buffer(eb); 456 } 457 458 static int check_tree_block_fsid(struct extent_buffer *eb) 459 { 460 struct btrfs_fs_info *fs_info = eb->fs_info; 461 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 462 u8 fsid[BTRFS_FSID_SIZE]; 463 u8 *metadata_uuid; 464 465 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 466 BTRFS_FSID_SIZE); 467 /* 468 * Checking the incompat flag is only valid for the current fs. For 469 * seed devices it's forbidden to have their uuid changed so reading 470 * ->fsid in this case is fine 471 */ 472 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 473 metadata_uuid = fs_devices->metadata_uuid; 474 else 475 metadata_uuid = fs_devices->fsid; 476 477 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) 478 return 0; 479 480 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 481 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 482 return 0; 483 484 return 1; 485 } 486 487 /* Do basic extent buffer checks at read time */ 488 static int validate_extent_buffer(struct extent_buffer *eb, 489 struct btrfs_tree_parent_check *check) 490 { 491 struct btrfs_fs_info *fs_info = eb->fs_info; 492 u64 found_start; 493 const u32 csum_size = fs_info->csum_size; 494 u8 found_level; 495 u8 result[BTRFS_CSUM_SIZE]; 496 const u8 *header_csum; 497 int ret = 0; 498 499 ASSERT(check); 500 501 found_start = btrfs_header_bytenr(eb); 502 if (found_start != eb->start) { 503 btrfs_err_rl(fs_info, 504 "bad tree block start, mirror %u want %llu have %llu", 505 eb->read_mirror, eb->start, found_start); 506 ret = -EIO; 507 goto out; 508 } 509 if (check_tree_block_fsid(eb)) { 510 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u", 511 eb->start, eb->read_mirror); 512 ret = -EIO; 513 goto out; 514 } 515 found_level = btrfs_header_level(eb); 516 if (found_level >= BTRFS_MAX_LEVEL) { 517 btrfs_err(fs_info, 518 "bad tree block level, mirror %u level %d on logical %llu", 519 eb->read_mirror, btrfs_header_level(eb), eb->start); 520 ret = -EIO; 521 goto out; 522 } 523 524 csum_tree_block(eb, result); 525 header_csum = page_address(eb->pages[0]) + 526 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum)); 527 528 if (memcmp(result, header_csum, csum_size) != 0) { 529 btrfs_warn_rl(fs_info, 530 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d", 531 eb->start, eb->read_mirror, 532 CSUM_FMT_VALUE(csum_size, header_csum), 533 CSUM_FMT_VALUE(csum_size, result), 534 btrfs_header_level(eb)); 535 ret = -EUCLEAN; 536 goto out; 537 } 538 539 if (found_level != check->level) { 540 btrfs_err(fs_info, 541 "level verify failed on logical %llu mirror %u wanted %u found %u", 542 eb->start, eb->read_mirror, check->level, found_level); 543 ret = -EIO; 544 goto out; 545 } 546 if (unlikely(check->transid && 547 btrfs_header_generation(eb) != check->transid)) { 548 btrfs_err_rl(eb->fs_info, 549 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 550 eb->start, eb->read_mirror, check->transid, 551 btrfs_header_generation(eb)); 552 ret = -EIO; 553 goto out; 554 } 555 if (check->has_first_key) { 556 struct btrfs_key *expect_key = &check->first_key; 557 struct btrfs_key found_key; 558 559 if (found_level) 560 btrfs_node_key_to_cpu(eb, &found_key, 0); 561 else 562 btrfs_item_key_to_cpu(eb, &found_key, 0); 563 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) { 564 btrfs_err(fs_info, 565 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 566 eb->start, check->transid, 567 expect_key->objectid, 568 expect_key->type, expect_key->offset, 569 found_key.objectid, found_key.type, 570 found_key.offset); 571 ret = -EUCLEAN; 572 goto out; 573 } 574 } 575 if (check->owner_root) { 576 ret = btrfs_check_eb_owner(eb, check->owner_root); 577 if (ret < 0) 578 goto out; 579 } 580 581 /* 582 * If this is a leaf block and it is corrupt, set the corrupt bit so 583 * that we don't try and read the other copies of this block, just 584 * return -EIO. 585 */ 586 if (found_level == 0 && btrfs_check_leaf_full(eb)) { 587 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 588 ret = -EIO; 589 } 590 591 if (found_level > 0 && btrfs_check_node(eb)) 592 ret = -EIO; 593 594 if (!ret) 595 set_extent_buffer_uptodate(eb); 596 else 597 btrfs_err(fs_info, 598 "read time tree block corruption detected on logical %llu mirror %u", 599 eb->start, eb->read_mirror); 600 out: 601 return ret; 602 } 603 604 static int validate_subpage_buffer(struct page *page, u64 start, u64 end, 605 int mirror, struct btrfs_tree_parent_check *check) 606 { 607 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 608 struct extent_buffer *eb; 609 bool reads_done; 610 int ret = 0; 611 612 ASSERT(check); 613 614 /* 615 * We don't allow bio merge for subpage metadata read, so we should 616 * only get one eb for each endio hook. 617 */ 618 ASSERT(end == start + fs_info->nodesize - 1); 619 ASSERT(PagePrivate(page)); 620 621 eb = find_extent_buffer(fs_info, start); 622 /* 623 * When we are reading one tree block, eb must have been inserted into 624 * the radix tree. If not, something is wrong. 625 */ 626 ASSERT(eb); 627 628 reads_done = atomic_dec_and_test(&eb->io_pages); 629 /* Subpage read must finish in page read */ 630 ASSERT(reads_done); 631 632 eb->read_mirror = mirror; 633 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 634 ret = -EIO; 635 goto err; 636 } 637 ret = validate_extent_buffer(eb, check); 638 if (ret < 0) 639 goto err; 640 641 set_extent_buffer_uptodate(eb); 642 643 free_extent_buffer(eb); 644 return ret; 645 err: 646 /* 647 * end_bio_extent_readpage decrements io_pages in case of error, 648 * make sure it has something to decrement. 649 */ 650 atomic_inc(&eb->io_pages); 651 clear_extent_buffer_uptodate(eb); 652 free_extent_buffer(eb); 653 return ret; 654 } 655 656 int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio, 657 struct page *page, u64 start, u64 end, 658 int mirror) 659 { 660 struct extent_buffer *eb; 661 int ret = 0; 662 int reads_done; 663 664 ASSERT(page->private); 665 666 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 667 return validate_subpage_buffer(page, start, end, mirror, 668 &bbio->parent_check); 669 670 eb = (struct extent_buffer *)page->private; 671 672 /* 673 * The pending IO might have been the only thing that kept this buffer 674 * in memory. Make sure we have a ref for all this other checks 675 */ 676 atomic_inc(&eb->refs); 677 678 reads_done = atomic_dec_and_test(&eb->io_pages); 679 if (!reads_done) 680 goto err; 681 682 eb->read_mirror = mirror; 683 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 684 ret = -EIO; 685 goto err; 686 } 687 ret = validate_extent_buffer(eb, &bbio->parent_check); 688 err: 689 if (ret) { 690 /* 691 * our io error hook is going to dec the io pages 692 * again, we have to make sure it has something 693 * to decrement 694 */ 695 atomic_inc(&eb->io_pages); 696 clear_extent_buffer_uptodate(eb); 697 } 698 free_extent_buffer(eb); 699 700 return ret; 701 } 702 703 static void run_one_async_start(struct btrfs_work *work) 704 { 705 struct async_submit_bio *async; 706 blk_status_t ret; 707 708 async = container_of(work, struct async_submit_bio, work); 709 switch (async->submit_cmd) { 710 case WQ_SUBMIT_METADATA: 711 ret = btree_submit_bio_start(async->bio); 712 break; 713 case WQ_SUBMIT_DATA: 714 ret = btrfs_submit_bio_start(async->inode, async->bio); 715 break; 716 case WQ_SUBMIT_DATA_DIO: 717 ret = btrfs_submit_bio_start_direct_io(async->inode, 718 async->bio, async->dio_file_offset); 719 break; 720 } 721 if (ret) 722 async->status = ret; 723 } 724 725 /* 726 * In order to insert checksums into the metadata in large chunks, we wait 727 * until bio submission time. All the pages in the bio are checksummed and 728 * sums are attached onto the ordered extent record. 729 * 730 * At IO completion time the csums attached on the ordered extent record are 731 * inserted into the tree. 732 */ 733 static void run_one_async_done(struct btrfs_work *work) 734 { 735 struct async_submit_bio *async = 736 container_of(work, struct async_submit_bio, work); 737 struct btrfs_inode *inode = async->inode; 738 struct btrfs_bio *bbio = btrfs_bio(async->bio); 739 740 /* If an error occurred we just want to clean up the bio and move on */ 741 if (async->status) { 742 btrfs_bio_end_io(bbio, async->status); 743 return; 744 } 745 746 /* 747 * All of the bios that pass through here are from async helpers. 748 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context. 749 * This changes nothing when cgroups aren't in use. 750 */ 751 async->bio->bi_opf |= REQ_CGROUP_PUNT; 752 btrfs_submit_bio(inode->root->fs_info, async->bio, async->mirror_num); 753 } 754 755 static void run_one_async_free(struct btrfs_work *work) 756 { 757 struct async_submit_bio *async; 758 759 async = container_of(work, struct async_submit_bio, work); 760 kfree(async); 761 } 762 763 /* 764 * Submit bio to an async queue. 765 * 766 * Retrun: 767 * - true if the work has been succesfuly submitted 768 * - false in case of error 769 */ 770 bool btrfs_wq_submit_bio(struct btrfs_inode *inode, struct bio *bio, int mirror_num, 771 u64 dio_file_offset, enum btrfs_wq_submit_cmd cmd) 772 { 773 struct btrfs_fs_info *fs_info = inode->root->fs_info; 774 struct async_submit_bio *async; 775 776 async = kmalloc(sizeof(*async), GFP_NOFS); 777 if (!async) 778 return false; 779 780 async->inode = inode; 781 async->bio = bio; 782 async->mirror_num = mirror_num; 783 async->submit_cmd = cmd; 784 785 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done, 786 run_one_async_free); 787 788 async->dio_file_offset = dio_file_offset; 789 790 async->status = 0; 791 792 if (op_is_sync(bio->bi_opf)) 793 btrfs_queue_work(fs_info->hipri_workers, &async->work); 794 else 795 btrfs_queue_work(fs_info->workers, &async->work); 796 return true; 797 } 798 799 static blk_status_t btree_csum_one_bio(struct bio *bio) 800 { 801 struct bio_vec *bvec; 802 struct btrfs_root *root; 803 int ret = 0; 804 struct bvec_iter_all iter_all; 805 806 ASSERT(!bio_flagged(bio, BIO_CLONED)); 807 bio_for_each_segment_all(bvec, bio, iter_all) { 808 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 809 ret = csum_dirty_buffer(root->fs_info, bvec); 810 if (ret) 811 break; 812 } 813 814 return errno_to_blk_status(ret); 815 } 816 817 blk_status_t btree_submit_bio_start(struct bio *bio) 818 { 819 /* 820 * when we're called for a write, we're already in the async 821 * submission context. Just jump into btrfs_submit_bio. 822 */ 823 return btree_csum_one_bio(bio); 824 } 825 826 static bool should_async_write(struct btrfs_fs_info *fs_info, 827 struct btrfs_inode *bi) 828 { 829 if (btrfs_is_zoned(fs_info)) 830 return false; 831 if (atomic_read(&bi->sync_writers)) 832 return false; 833 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags)) 834 return false; 835 return true; 836 } 837 838 void btrfs_submit_metadata_bio(struct btrfs_inode *inode, struct bio *bio, int mirror_num) 839 { 840 struct btrfs_fs_info *fs_info = inode->root->fs_info; 841 struct btrfs_bio *bbio = btrfs_bio(bio); 842 blk_status_t ret; 843 844 bio->bi_opf |= REQ_META; 845 bbio->is_metadata = 1; 846 847 if (btrfs_op(bio) != BTRFS_MAP_WRITE) { 848 btrfs_submit_bio(fs_info, bio, mirror_num); 849 return; 850 } 851 852 /* 853 * Kthread helpers are used to submit writes so that checksumming can 854 * happen in parallel across all CPUs. 855 */ 856 if (should_async_write(fs_info, inode) && 857 btrfs_wq_submit_bio(inode, bio, mirror_num, 0, WQ_SUBMIT_METADATA)) 858 return; 859 860 ret = btree_csum_one_bio(bio); 861 if (ret) { 862 btrfs_bio_end_io(bbio, ret); 863 return; 864 } 865 866 btrfs_submit_bio(fs_info, bio, mirror_num); 867 } 868 869 #ifdef CONFIG_MIGRATION 870 static int btree_migrate_folio(struct address_space *mapping, 871 struct folio *dst, struct folio *src, enum migrate_mode mode) 872 { 873 /* 874 * we can't safely write a btree page from here, 875 * we haven't done the locking hook 876 */ 877 if (folio_test_dirty(src)) 878 return -EAGAIN; 879 /* 880 * Buffers may be managed in a filesystem specific way. 881 * We must have no buffers or drop them. 882 */ 883 if (folio_get_private(src) && 884 !filemap_release_folio(src, GFP_KERNEL)) 885 return -EAGAIN; 886 return migrate_folio(mapping, dst, src, mode); 887 } 888 #else 889 #define btree_migrate_folio NULL 890 #endif 891 892 static int btree_writepages(struct address_space *mapping, 893 struct writeback_control *wbc) 894 { 895 struct btrfs_fs_info *fs_info; 896 int ret; 897 898 if (wbc->sync_mode == WB_SYNC_NONE) { 899 900 if (wbc->for_kupdate) 901 return 0; 902 903 fs_info = BTRFS_I(mapping->host)->root->fs_info; 904 /* this is a bit racy, but that's ok */ 905 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 906 BTRFS_DIRTY_METADATA_THRESH, 907 fs_info->dirty_metadata_batch); 908 if (ret < 0) 909 return 0; 910 } 911 return btree_write_cache_pages(mapping, wbc); 912 } 913 914 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) 915 { 916 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 917 return false; 918 919 return try_release_extent_buffer(&folio->page); 920 } 921 922 static void btree_invalidate_folio(struct folio *folio, size_t offset, 923 size_t length) 924 { 925 struct extent_io_tree *tree; 926 tree = &BTRFS_I(folio->mapping->host)->io_tree; 927 extent_invalidate_folio(tree, folio, offset); 928 btree_release_folio(folio, GFP_NOFS); 929 if (folio_get_private(folio)) { 930 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info, 931 "folio private not zero on folio %llu", 932 (unsigned long long)folio_pos(folio)); 933 folio_detach_private(folio); 934 } 935 } 936 937 #ifdef DEBUG 938 static bool btree_dirty_folio(struct address_space *mapping, 939 struct folio *folio) 940 { 941 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 942 struct btrfs_subpage *subpage; 943 struct extent_buffer *eb; 944 int cur_bit = 0; 945 u64 page_start = folio_pos(folio); 946 947 if (fs_info->sectorsize == PAGE_SIZE) { 948 eb = folio_get_private(folio); 949 BUG_ON(!eb); 950 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 951 BUG_ON(!atomic_read(&eb->refs)); 952 btrfs_assert_tree_write_locked(eb); 953 return filemap_dirty_folio(mapping, folio); 954 } 955 subpage = folio_get_private(folio); 956 957 ASSERT(subpage->dirty_bitmap); 958 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) { 959 unsigned long flags; 960 u64 cur; 961 u16 tmp = (1 << cur_bit); 962 963 spin_lock_irqsave(&subpage->lock, flags); 964 if (!(tmp & subpage->dirty_bitmap)) { 965 spin_unlock_irqrestore(&subpage->lock, flags); 966 cur_bit++; 967 continue; 968 } 969 spin_unlock_irqrestore(&subpage->lock, flags); 970 cur = page_start + cur_bit * fs_info->sectorsize; 971 972 eb = find_extent_buffer(fs_info, cur); 973 ASSERT(eb); 974 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 975 ASSERT(atomic_read(&eb->refs)); 976 btrfs_assert_tree_write_locked(eb); 977 free_extent_buffer(eb); 978 979 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits); 980 } 981 return filemap_dirty_folio(mapping, folio); 982 } 983 #else 984 #define btree_dirty_folio filemap_dirty_folio 985 #endif 986 987 static const struct address_space_operations btree_aops = { 988 .writepages = btree_writepages, 989 .release_folio = btree_release_folio, 990 .invalidate_folio = btree_invalidate_folio, 991 .migrate_folio = btree_migrate_folio, 992 .dirty_folio = btree_dirty_folio, 993 }; 994 995 struct extent_buffer *btrfs_find_create_tree_block( 996 struct btrfs_fs_info *fs_info, 997 u64 bytenr, u64 owner_root, 998 int level) 999 { 1000 if (btrfs_is_testing(fs_info)) 1001 return alloc_test_extent_buffer(fs_info, bytenr); 1002 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 1003 } 1004 1005 /* 1006 * Read tree block at logical address @bytenr and do variant basic but critical 1007 * verification. 1008 * 1009 * @check: expected tree parentness check, see comments of the 1010 * structure for details. 1011 */ 1012 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 1013 struct btrfs_tree_parent_check *check) 1014 { 1015 struct extent_buffer *buf = NULL; 1016 int ret; 1017 1018 ASSERT(check); 1019 1020 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root, 1021 check->level); 1022 if (IS_ERR(buf)) 1023 return buf; 1024 1025 ret = btrfs_read_extent_buffer(buf, check); 1026 if (ret) { 1027 free_extent_buffer_stale(buf); 1028 return ERR_PTR(ret); 1029 } 1030 if (btrfs_check_eb_owner(buf, check->owner_root)) { 1031 free_extent_buffer_stale(buf); 1032 return ERR_PTR(-EUCLEAN); 1033 } 1034 return buf; 1035 1036 } 1037 1038 void btrfs_clean_tree_block(struct extent_buffer *buf) 1039 { 1040 struct btrfs_fs_info *fs_info = buf->fs_info; 1041 if (btrfs_header_generation(buf) == 1042 fs_info->running_transaction->transid) { 1043 btrfs_assert_tree_write_locked(buf); 1044 1045 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1046 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1047 -buf->len, 1048 fs_info->dirty_metadata_batch); 1049 clear_extent_buffer_dirty(buf); 1050 } 1051 } 1052 } 1053 1054 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1055 u64 objectid) 1056 { 1057 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1058 1059 memset(&root->root_key, 0, sizeof(root->root_key)); 1060 memset(&root->root_item, 0, sizeof(root->root_item)); 1061 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1062 root->fs_info = fs_info; 1063 root->root_key.objectid = objectid; 1064 root->node = NULL; 1065 root->commit_root = NULL; 1066 root->state = 0; 1067 RB_CLEAR_NODE(&root->rb_node); 1068 1069 root->last_trans = 0; 1070 root->free_objectid = 0; 1071 root->nr_delalloc_inodes = 0; 1072 root->nr_ordered_extents = 0; 1073 root->inode_tree = RB_ROOT; 1074 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1075 1076 btrfs_init_root_block_rsv(root); 1077 1078 INIT_LIST_HEAD(&root->dirty_list); 1079 INIT_LIST_HEAD(&root->root_list); 1080 INIT_LIST_HEAD(&root->delalloc_inodes); 1081 INIT_LIST_HEAD(&root->delalloc_root); 1082 INIT_LIST_HEAD(&root->ordered_extents); 1083 INIT_LIST_HEAD(&root->ordered_root); 1084 INIT_LIST_HEAD(&root->reloc_dirty_list); 1085 INIT_LIST_HEAD(&root->logged_list[0]); 1086 INIT_LIST_HEAD(&root->logged_list[1]); 1087 spin_lock_init(&root->inode_lock); 1088 spin_lock_init(&root->delalloc_lock); 1089 spin_lock_init(&root->ordered_extent_lock); 1090 spin_lock_init(&root->accounting_lock); 1091 spin_lock_init(&root->log_extents_lock[0]); 1092 spin_lock_init(&root->log_extents_lock[1]); 1093 spin_lock_init(&root->qgroup_meta_rsv_lock); 1094 mutex_init(&root->objectid_mutex); 1095 mutex_init(&root->log_mutex); 1096 mutex_init(&root->ordered_extent_mutex); 1097 mutex_init(&root->delalloc_mutex); 1098 init_waitqueue_head(&root->qgroup_flush_wait); 1099 init_waitqueue_head(&root->log_writer_wait); 1100 init_waitqueue_head(&root->log_commit_wait[0]); 1101 init_waitqueue_head(&root->log_commit_wait[1]); 1102 INIT_LIST_HEAD(&root->log_ctxs[0]); 1103 INIT_LIST_HEAD(&root->log_ctxs[1]); 1104 atomic_set(&root->log_commit[0], 0); 1105 atomic_set(&root->log_commit[1], 0); 1106 atomic_set(&root->log_writers, 0); 1107 atomic_set(&root->log_batch, 0); 1108 refcount_set(&root->refs, 1); 1109 atomic_set(&root->snapshot_force_cow, 0); 1110 atomic_set(&root->nr_swapfiles, 0); 1111 root->log_transid = 0; 1112 root->log_transid_committed = -1; 1113 root->last_log_commit = 0; 1114 root->anon_dev = 0; 1115 if (!dummy) { 1116 extent_io_tree_init(fs_info, &root->dirty_log_pages, 1117 IO_TREE_ROOT_DIRTY_LOG_PAGES); 1118 extent_io_tree_init(fs_info, &root->log_csum_range, 1119 IO_TREE_LOG_CSUM_RANGE); 1120 } 1121 1122 spin_lock_init(&root->root_item_lock); 1123 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 1124 #ifdef CONFIG_BTRFS_DEBUG 1125 INIT_LIST_HEAD(&root->leak_list); 1126 spin_lock(&fs_info->fs_roots_radix_lock); 1127 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 1128 spin_unlock(&fs_info->fs_roots_radix_lock); 1129 #endif 1130 } 1131 1132 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1133 u64 objectid, gfp_t flags) 1134 { 1135 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1136 if (root) 1137 __setup_root(root, fs_info, objectid); 1138 return root; 1139 } 1140 1141 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1142 /* Should only be used by the testing infrastructure */ 1143 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1144 { 1145 struct btrfs_root *root; 1146 1147 if (!fs_info) 1148 return ERR_PTR(-EINVAL); 1149 1150 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 1151 if (!root) 1152 return ERR_PTR(-ENOMEM); 1153 1154 /* We don't use the stripesize in selftest, set it as sectorsize */ 1155 root->alloc_bytenr = 0; 1156 1157 return root; 1158 } 1159 #endif 1160 1161 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) 1162 { 1163 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); 1164 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); 1165 1166 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); 1167 } 1168 1169 static int global_root_key_cmp(const void *k, const struct rb_node *node) 1170 { 1171 const struct btrfs_key *key = k; 1172 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); 1173 1174 return btrfs_comp_cpu_keys(key, &root->root_key); 1175 } 1176 1177 int btrfs_global_root_insert(struct btrfs_root *root) 1178 { 1179 struct btrfs_fs_info *fs_info = root->fs_info; 1180 struct rb_node *tmp; 1181 1182 write_lock(&fs_info->global_root_lock); 1183 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); 1184 write_unlock(&fs_info->global_root_lock); 1185 ASSERT(!tmp); 1186 1187 return tmp ? -EEXIST : 0; 1188 } 1189 1190 void btrfs_global_root_delete(struct btrfs_root *root) 1191 { 1192 struct btrfs_fs_info *fs_info = root->fs_info; 1193 1194 write_lock(&fs_info->global_root_lock); 1195 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1196 write_unlock(&fs_info->global_root_lock); 1197 } 1198 1199 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, 1200 struct btrfs_key *key) 1201 { 1202 struct rb_node *node; 1203 struct btrfs_root *root = NULL; 1204 1205 read_lock(&fs_info->global_root_lock); 1206 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); 1207 if (node) 1208 root = container_of(node, struct btrfs_root, rb_node); 1209 read_unlock(&fs_info->global_root_lock); 1210 1211 return root; 1212 } 1213 1214 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) 1215 { 1216 struct btrfs_block_group *block_group; 1217 u64 ret; 1218 1219 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 1220 return 0; 1221 1222 if (bytenr) 1223 block_group = btrfs_lookup_block_group(fs_info, bytenr); 1224 else 1225 block_group = btrfs_lookup_first_block_group(fs_info, bytenr); 1226 ASSERT(block_group); 1227 if (!block_group) 1228 return 0; 1229 ret = block_group->global_root_id; 1230 btrfs_put_block_group(block_group); 1231 1232 return ret; 1233 } 1234 1235 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) 1236 { 1237 struct btrfs_key key = { 1238 .objectid = BTRFS_CSUM_TREE_OBJECTID, 1239 .type = BTRFS_ROOT_ITEM_KEY, 1240 .offset = btrfs_global_root_id(fs_info, bytenr), 1241 }; 1242 1243 return btrfs_global_root(fs_info, &key); 1244 } 1245 1246 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) 1247 { 1248 struct btrfs_key key = { 1249 .objectid = BTRFS_EXTENT_TREE_OBJECTID, 1250 .type = BTRFS_ROOT_ITEM_KEY, 1251 .offset = btrfs_global_root_id(fs_info, bytenr), 1252 }; 1253 1254 return btrfs_global_root(fs_info, &key); 1255 } 1256 1257 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info) 1258 { 1259 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) 1260 return fs_info->block_group_root; 1261 return btrfs_extent_root(fs_info, 0); 1262 } 1263 1264 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1265 u64 objectid) 1266 { 1267 struct btrfs_fs_info *fs_info = trans->fs_info; 1268 struct extent_buffer *leaf; 1269 struct btrfs_root *tree_root = fs_info->tree_root; 1270 struct btrfs_root *root; 1271 struct btrfs_key key; 1272 unsigned int nofs_flag; 1273 int ret = 0; 1274 1275 /* 1276 * We're holding a transaction handle, so use a NOFS memory allocation 1277 * context to avoid deadlock if reclaim happens. 1278 */ 1279 nofs_flag = memalloc_nofs_save(); 1280 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 1281 memalloc_nofs_restore(nofs_flag); 1282 if (!root) 1283 return ERR_PTR(-ENOMEM); 1284 1285 root->root_key.objectid = objectid; 1286 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1287 root->root_key.offset = 0; 1288 1289 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 1290 BTRFS_NESTING_NORMAL); 1291 if (IS_ERR(leaf)) { 1292 ret = PTR_ERR(leaf); 1293 leaf = NULL; 1294 goto fail; 1295 } 1296 1297 root->node = leaf; 1298 btrfs_mark_buffer_dirty(leaf); 1299 1300 root->commit_root = btrfs_root_node(root); 1301 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1302 1303 btrfs_set_root_flags(&root->root_item, 0); 1304 btrfs_set_root_limit(&root->root_item, 0); 1305 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1306 btrfs_set_root_generation(&root->root_item, trans->transid); 1307 btrfs_set_root_level(&root->root_item, 0); 1308 btrfs_set_root_refs(&root->root_item, 1); 1309 btrfs_set_root_used(&root->root_item, leaf->len); 1310 btrfs_set_root_last_snapshot(&root->root_item, 0); 1311 btrfs_set_root_dirid(&root->root_item, 0); 1312 if (is_fstree(objectid)) 1313 generate_random_guid(root->root_item.uuid); 1314 else 1315 export_guid(root->root_item.uuid, &guid_null); 1316 btrfs_set_root_drop_level(&root->root_item, 0); 1317 1318 btrfs_tree_unlock(leaf); 1319 1320 key.objectid = objectid; 1321 key.type = BTRFS_ROOT_ITEM_KEY; 1322 key.offset = 0; 1323 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1324 if (ret) 1325 goto fail; 1326 1327 return root; 1328 1329 fail: 1330 btrfs_put_root(root); 1331 1332 return ERR_PTR(ret); 1333 } 1334 1335 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1336 struct btrfs_fs_info *fs_info) 1337 { 1338 struct btrfs_root *root; 1339 1340 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 1341 if (!root) 1342 return ERR_PTR(-ENOMEM); 1343 1344 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1345 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1346 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1347 1348 return root; 1349 } 1350 1351 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 1352 struct btrfs_root *root) 1353 { 1354 struct extent_buffer *leaf; 1355 1356 /* 1357 * DON'T set SHAREABLE bit for log trees. 1358 * 1359 * Log trees are not exposed to user space thus can't be snapshotted, 1360 * and they go away before a real commit is actually done. 1361 * 1362 * They do store pointers to file data extents, and those reference 1363 * counts still get updated (along with back refs to the log tree). 1364 */ 1365 1366 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1367 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL); 1368 if (IS_ERR(leaf)) 1369 return PTR_ERR(leaf); 1370 1371 root->node = leaf; 1372 1373 btrfs_mark_buffer_dirty(root->node); 1374 btrfs_tree_unlock(root->node); 1375 1376 return 0; 1377 } 1378 1379 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1380 struct btrfs_fs_info *fs_info) 1381 { 1382 struct btrfs_root *log_root; 1383 1384 log_root = alloc_log_tree(trans, fs_info); 1385 if (IS_ERR(log_root)) 1386 return PTR_ERR(log_root); 1387 1388 if (!btrfs_is_zoned(fs_info)) { 1389 int ret = btrfs_alloc_log_tree_node(trans, log_root); 1390 1391 if (ret) { 1392 btrfs_put_root(log_root); 1393 return ret; 1394 } 1395 } 1396 1397 WARN_ON(fs_info->log_root_tree); 1398 fs_info->log_root_tree = log_root; 1399 return 0; 1400 } 1401 1402 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1403 struct btrfs_root *root) 1404 { 1405 struct btrfs_fs_info *fs_info = root->fs_info; 1406 struct btrfs_root *log_root; 1407 struct btrfs_inode_item *inode_item; 1408 int ret; 1409 1410 log_root = alloc_log_tree(trans, fs_info); 1411 if (IS_ERR(log_root)) 1412 return PTR_ERR(log_root); 1413 1414 ret = btrfs_alloc_log_tree_node(trans, log_root); 1415 if (ret) { 1416 btrfs_put_root(log_root); 1417 return ret; 1418 } 1419 1420 log_root->last_trans = trans->transid; 1421 log_root->root_key.offset = root->root_key.objectid; 1422 1423 inode_item = &log_root->root_item.inode; 1424 btrfs_set_stack_inode_generation(inode_item, 1); 1425 btrfs_set_stack_inode_size(inode_item, 3); 1426 btrfs_set_stack_inode_nlink(inode_item, 1); 1427 btrfs_set_stack_inode_nbytes(inode_item, 1428 fs_info->nodesize); 1429 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1430 1431 btrfs_set_root_node(&log_root->root_item, log_root->node); 1432 1433 WARN_ON(root->log_root); 1434 root->log_root = log_root; 1435 root->log_transid = 0; 1436 root->log_transid_committed = -1; 1437 root->last_log_commit = 0; 1438 return 0; 1439 } 1440 1441 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1442 struct btrfs_path *path, 1443 struct btrfs_key *key) 1444 { 1445 struct btrfs_root *root; 1446 struct btrfs_tree_parent_check check = { 0 }; 1447 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1448 u64 generation; 1449 int ret; 1450 int level; 1451 1452 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1453 if (!root) 1454 return ERR_PTR(-ENOMEM); 1455 1456 ret = btrfs_find_root(tree_root, key, path, 1457 &root->root_item, &root->root_key); 1458 if (ret) { 1459 if (ret > 0) 1460 ret = -ENOENT; 1461 goto fail; 1462 } 1463 1464 generation = btrfs_root_generation(&root->root_item); 1465 level = btrfs_root_level(&root->root_item); 1466 check.level = level; 1467 check.transid = generation; 1468 check.owner_root = key->objectid; 1469 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item), 1470 &check); 1471 if (IS_ERR(root->node)) { 1472 ret = PTR_ERR(root->node); 1473 root->node = NULL; 1474 goto fail; 1475 } 1476 if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1477 ret = -EIO; 1478 goto fail; 1479 } 1480 1481 /* 1482 * For real fs, and not log/reloc trees, root owner must 1483 * match its root node owner 1484 */ 1485 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) && 1486 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1487 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1488 root->root_key.objectid != btrfs_header_owner(root->node)) { 1489 btrfs_crit(fs_info, 1490 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu", 1491 root->root_key.objectid, root->node->start, 1492 btrfs_header_owner(root->node), 1493 root->root_key.objectid); 1494 ret = -EUCLEAN; 1495 goto fail; 1496 } 1497 root->commit_root = btrfs_root_node(root); 1498 return root; 1499 fail: 1500 btrfs_put_root(root); 1501 return ERR_PTR(ret); 1502 } 1503 1504 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1505 struct btrfs_key *key) 1506 { 1507 struct btrfs_root *root; 1508 struct btrfs_path *path; 1509 1510 path = btrfs_alloc_path(); 1511 if (!path) 1512 return ERR_PTR(-ENOMEM); 1513 root = read_tree_root_path(tree_root, path, key); 1514 btrfs_free_path(path); 1515 1516 return root; 1517 } 1518 1519 /* 1520 * Initialize subvolume root in-memory structure 1521 * 1522 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1523 */ 1524 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1525 { 1526 int ret; 1527 unsigned int nofs_flag; 1528 1529 /* 1530 * We might be called under a transaction (e.g. indirect backref 1531 * resolution) which could deadlock if it triggers memory reclaim 1532 */ 1533 nofs_flag = memalloc_nofs_save(); 1534 ret = btrfs_drew_lock_init(&root->snapshot_lock); 1535 memalloc_nofs_restore(nofs_flag); 1536 if (ret) 1537 goto fail; 1538 1539 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1540 !btrfs_is_data_reloc_root(root)) { 1541 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1542 btrfs_check_and_init_root_item(&root->root_item); 1543 } 1544 1545 /* 1546 * Don't assign anonymous block device to roots that are not exposed to 1547 * userspace, the id pool is limited to 1M 1548 */ 1549 if (is_fstree(root->root_key.objectid) && 1550 btrfs_root_refs(&root->root_item) > 0) { 1551 if (!anon_dev) { 1552 ret = get_anon_bdev(&root->anon_dev); 1553 if (ret) 1554 goto fail; 1555 } else { 1556 root->anon_dev = anon_dev; 1557 } 1558 } 1559 1560 mutex_lock(&root->objectid_mutex); 1561 ret = btrfs_init_root_free_objectid(root); 1562 if (ret) { 1563 mutex_unlock(&root->objectid_mutex); 1564 goto fail; 1565 } 1566 1567 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1568 1569 mutex_unlock(&root->objectid_mutex); 1570 1571 return 0; 1572 fail: 1573 /* The caller is responsible to call btrfs_free_fs_root */ 1574 return ret; 1575 } 1576 1577 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1578 u64 root_id) 1579 { 1580 struct btrfs_root *root; 1581 1582 spin_lock(&fs_info->fs_roots_radix_lock); 1583 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1584 (unsigned long)root_id); 1585 if (root) 1586 root = btrfs_grab_root(root); 1587 spin_unlock(&fs_info->fs_roots_radix_lock); 1588 return root; 1589 } 1590 1591 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1592 u64 objectid) 1593 { 1594 struct btrfs_key key = { 1595 .objectid = objectid, 1596 .type = BTRFS_ROOT_ITEM_KEY, 1597 .offset = 0, 1598 }; 1599 1600 if (objectid == BTRFS_ROOT_TREE_OBJECTID) 1601 return btrfs_grab_root(fs_info->tree_root); 1602 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 1603 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1604 if (objectid == BTRFS_CHUNK_TREE_OBJECTID) 1605 return btrfs_grab_root(fs_info->chunk_root); 1606 if (objectid == BTRFS_DEV_TREE_OBJECTID) 1607 return btrfs_grab_root(fs_info->dev_root); 1608 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 1609 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1610 if (objectid == BTRFS_QUOTA_TREE_OBJECTID) 1611 return btrfs_grab_root(fs_info->quota_root) ? 1612 fs_info->quota_root : ERR_PTR(-ENOENT); 1613 if (objectid == BTRFS_UUID_TREE_OBJECTID) 1614 return btrfs_grab_root(fs_info->uuid_root) ? 1615 fs_info->uuid_root : ERR_PTR(-ENOENT); 1616 if (objectid == BTRFS_BLOCK_GROUP_TREE_OBJECTID) 1617 return btrfs_grab_root(fs_info->block_group_root) ? 1618 fs_info->block_group_root : ERR_PTR(-ENOENT); 1619 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) { 1620 struct btrfs_root *root = btrfs_global_root(fs_info, &key); 1621 1622 return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT); 1623 } 1624 return NULL; 1625 } 1626 1627 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1628 struct btrfs_root *root) 1629 { 1630 int ret; 1631 1632 ret = radix_tree_preload(GFP_NOFS); 1633 if (ret) 1634 return ret; 1635 1636 spin_lock(&fs_info->fs_roots_radix_lock); 1637 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1638 (unsigned long)root->root_key.objectid, 1639 root); 1640 if (ret == 0) { 1641 btrfs_grab_root(root); 1642 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1643 } 1644 spin_unlock(&fs_info->fs_roots_radix_lock); 1645 radix_tree_preload_end(); 1646 1647 return ret; 1648 } 1649 1650 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) 1651 { 1652 #ifdef CONFIG_BTRFS_DEBUG 1653 struct btrfs_root *root; 1654 1655 while (!list_empty(&fs_info->allocated_roots)) { 1656 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1657 1658 root = list_first_entry(&fs_info->allocated_roots, 1659 struct btrfs_root, leak_list); 1660 btrfs_err(fs_info, "leaked root %s refcount %d", 1661 btrfs_root_name(&root->root_key, buf), 1662 refcount_read(&root->refs)); 1663 while (refcount_read(&root->refs) > 1) 1664 btrfs_put_root(root); 1665 btrfs_put_root(root); 1666 } 1667 #endif 1668 } 1669 1670 static void free_global_roots(struct btrfs_fs_info *fs_info) 1671 { 1672 struct btrfs_root *root; 1673 struct rb_node *node; 1674 1675 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { 1676 root = rb_entry(node, struct btrfs_root, rb_node); 1677 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1678 btrfs_put_root(root); 1679 } 1680 } 1681 1682 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1683 { 1684 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1685 percpu_counter_destroy(&fs_info->delalloc_bytes); 1686 percpu_counter_destroy(&fs_info->ordered_bytes); 1687 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1688 btrfs_free_csum_hash(fs_info); 1689 btrfs_free_stripe_hash_table(fs_info); 1690 btrfs_free_ref_cache(fs_info); 1691 kfree(fs_info->balance_ctl); 1692 kfree(fs_info->delayed_root); 1693 free_global_roots(fs_info); 1694 btrfs_put_root(fs_info->tree_root); 1695 btrfs_put_root(fs_info->chunk_root); 1696 btrfs_put_root(fs_info->dev_root); 1697 btrfs_put_root(fs_info->quota_root); 1698 btrfs_put_root(fs_info->uuid_root); 1699 btrfs_put_root(fs_info->fs_root); 1700 btrfs_put_root(fs_info->data_reloc_root); 1701 btrfs_put_root(fs_info->block_group_root); 1702 btrfs_check_leaked_roots(fs_info); 1703 btrfs_extent_buffer_leak_debug_check(fs_info); 1704 kfree(fs_info->super_copy); 1705 kfree(fs_info->super_for_commit); 1706 kfree(fs_info->subpage_info); 1707 kvfree(fs_info); 1708 } 1709 1710 1711 /* 1712 * Get an in-memory reference of a root structure. 1713 * 1714 * For essential trees like root/extent tree, we grab it from fs_info directly. 1715 * For subvolume trees, we check the cached filesystem roots first. If not 1716 * found, then read it from disk and add it to cached fs roots. 1717 * 1718 * Caller should release the root by calling btrfs_put_root() after the usage. 1719 * 1720 * NOTE: Reloc and log trees can't be read by this function as they share the 1721 * same root objectid. 1722 * 1723 * @objectid: root id 1724 * @anon_dev: preallocated anonymous block device number for new roots, 1725 * pass 0 for new allocation. 1726 * @check_ref: whether to check root item references, If true, return -ENOENT 1727 * for orphan roots 1728 */ 1729 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1730 u64 objectid, dev_t anon_dev, 1731 bool check_ref) 1732 { 1733 struct btrfs_root *root; 1734 struct btrfs_path *path; 1735 struct btrfs_key key; 1736 int ret; 1737 1738 root = btrfs_get_global_root(fs_info, objectid); 1739 if (root) 1740 return root; 1741 again: 1742 root = btrfs_lookup_fs_root(fs_info, objectid); 1743 if (root) { 1744 /* Shouldn't get preallocated anon_dev for cached roots */ 1745 ASSERT(!anon_dev); 1746 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1747 btrfs_put_root(root); 1748 return ERR_PTR(-ENOENT); 1749 } 1750 return root; 1751 } 1752 1753 key.objectid = objectid; 1754 key.type = BTRFS_ROOT_ITEM_KEY; 1755 key.offset = (u64)-1; 1756 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1757 if (IS_ERR(root)) 1758 return root; 1759 1760 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1761 ret = -ENOENT; 1762 goto fail; 1763 } 1764 1765 ret = btrfs_init_fs_root(root, anon_dev); 1766 if (ret) 1767 goto fail; 1768 1769 path = btrfs_alloc_path(); 1770 if (!path) { 1771 ret = -ENOMEM; 1772 goto fail; 1773 } 1774 key.objectid = BTRFS_ORPHAN_OBJECTID; 1775 key.type = BTRFS_ORPHAN_ITEM_KEY; 1776 key.offset = objectid; 1777 1778 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1779 btrfs_free_path(path); 1780 if (ret < 0) 1781 goto fail; 1782 if (ret == 0) 1783 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1784 1785 ret = btrfs_insert_fs_root(fs_info, root); 1786 if (ret) { 1787 if (ret == -EEXIST) { 1788 btrfs_put_root(root); 1789 goto again; 1790 } 1791 goto fail; 1792 } 1793 return root; 1794 fail: 1795 /* 1796 * If our caller provided us an anonymous device, then it's his 1797 * responsibility to free it in case we fail. So we have to set our 1798 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() 1799 * and once again by our caller. 1800 */ 1801 if (anon_dev) 1802 root->anon_dev = 0; 1803 btrfs_put_root(root); 1804 return ERR_PTR(ret); 1805 } 1806 1807 /* 1808 * Get in-memory reference of a root structure 1809 * 1810 * @objectid: tree objectid 1811 * @check_ref: if set, verify that the tree exists and the item has at least 1812 * one reference 1813 */ 1814 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1815 u64 objectid, bool check_ref) 1816 { 1817 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref); 1818 } 1819 1820 /* 1821 * Get in-memory reference of a root structure, created as new, optionally pass 1822 * the anonymous block device id 1823 * 1824 * @objectid: tree objectid 1825 * @anon_dev: if zero, allocate a new anonymous block device or use the 1826 * parameter value 1827 */ 1828 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1829 u64 objectid, dev_t anon_dev) 1830 { 1831 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1832 } 1833 1834 /* 1835 * btrfs_get_fs_root_commit_root - return a root for the given objectid 1836 * @fs_info: the fs_info 1837 * @objectid: the objectid we need to lookup 1838 * 1839 * This is exclusively used for backref walking, and exists specifically because 1840 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1841 * creation time, which means we may have to read the tree_root in order to look 1842 * up a fs root that is not in memory. If the root is not in memory we will 1843 * read the tree root commit root and look up the fs root from there. This is a 1844 * temporary root, it will not be inserted into the radix tree as it doesn't 1845 * have the most uptodate information, it'll simply be discarded once the 1846 * backref code is finished using the root. 1847 */ 1848 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1849 struct btrfs_path *path, 1850 u64 objectid) 1851 { 1852 struct btrfs_root *root; 1853 struct btrfs_key key; 1854 1855 ASSERT(path->search_commit_root && path->skip_locking); 1856 1857 /* 1858 * This can return -ENOENT if we ask for a root that doesn't exist, but 1859 * since this is called via the backref walking code we won't be looking 1860 * up a root that doesn't exist, unless there's corruption. So if root 1861 * != NULL just return it. 1862 */ 1863 root = btrfs_get_global_root(fs_info, objectid); 1864 if (root) 1865 return root; 1866 1867 root = btrfs_lookup_fs_root(fs_info, objectid); 1868 if (root) 1869 return root; 1870 1871 key.objectid = objectid; 1872 key.type = BTRFS_ROOT_ITEM_KEY; 1873 key.offset = (u64)-1; 1874 root = read_tree_root_path(fs_info->tree_root, path, &key); 1875 btrfs_release_path(path); 1876 1877 return root; 1878 } 1879 1880 static int cleaner_kthread(void *arg) 1881 { 1882 struct btrfs_fs_info *fs_info = arg; 1883 int again; 1884 1885 while (1) { 1886 again = 0; 1887 1888 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1889 1890 /* Make the cleaner go to sleep early. */ 1891 if (btrfs_need_cleaner_sleep(fs_info)) 1892 goto sleep; 1893 1894 /* 1895 * Do not do anything if we might cause open_ctree() to block 1896 * before we have finished mounting the filesystem. 1897 */ 1898 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1899 goto sleep; 1900 1901 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1902 goto sleep; 1903 1904 /* 1905 * Avoid the problem that we change the status of the fs 1906 * during the above check and trylock. 1907 */ 1908 if (btrfs_need_cleaner_sleep(fs_info)) { 1909 mutex_unlock(&fs_info->cleaner_mutex); 1910 goto sleep; 1911 } 1912 1913 btrfs_run_delayed_iputs(fs_info); 1914 1915 again = btrfs_clean_one_deleted_snapshot(fs_info); 1916 mutex_unlock(&fs_info->cleaner_mutex); 1917 1918 /* 1919 * The defragger has dealt with the R/O remount and umount, 1920 * needn't do anything special here. 1921 */ 1922 btrfs_run_defrag_inodes(fs_info); 1923 1924 /* 1925 * Acquires fs_info->reclaim_bgs_lock to avoid racing 1926 * with relocation (btrfs_relocate_chunk) and relocation 1927 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1928 * after acquiring fs_info->reclaim_bgs_lock. So we 1929 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1930 * unused block groups. 1931 */ 1932 btrfs_delete_unused_bgs(fs_info); 1933 1934 /* 1935 * Reclaim block groups in the reclaim_bgs list after we deleted 1936 * all unused block_groups. This possibly gives us some more free 1937 * space. 1938 */ 1939 btrfs_reclaim_bgs(fs_info); 1940 sleep: 1941 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1942 if (kthread_should_park()) 1943 kthread_parkme(); 1944 if (kthread_should_stop()) 1945 return 0; 1946 if (!again) { 1947 set_current_state(TASK_INTERRUPTIBLE); 1948 schedule(); 1949 __set_current_state(TASK_RUNNING); 1950 } 1951 } 1952 } 1953 1954 static int transaction_kthread(void *arg) 1955 { 1956 struct btrfs_root *root = arg; 1957 struct btrfs_fs_info *fs_info = root->fs_info; 1958 struct btrfs_trans_handle *trans; 1959 struct btrfs_transaction *cur; 1960 u64 transid; 1961 time64_t delta; 1962 unsigned long delay; 1963 bool cannot_commit; 1964 1965 do { 1966 cannot_commit = false; 1967 delay = msecs_to_jiffies(fs_info->commit_interval * 1000); 1968 mutex_lock(&fs_info->transaction_kthread_mutex); 1969 1970 spin_lock(&fs_info->trans_lock); 1971 cur = fs_info->running_transaction; 1972 if (!cur) { 1973 spin_unlock(&fs_info->trans_lock); 1974 goto sleep; 1975 } 1976 1977 delta = ktime_get_seconds() - cur->start_time; 1978 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && 1979 cur->state < TRANS_STATE_COMMIT_START && 1980 delta < fs_info->commit_interval) { 1981 spin_unlock(&fs_info->trans_lock); 1982 delay -= msecs_to_jiffies((delta - 1) * 1000); 1983 delay = min(delay, 1984 msecs_to_jiffies(fs_info->commit_interval * 1000)); 1985 goto sleep; 1986 } 1987 transid = cur->transid; 1988 spin_unlock(&fs_info->trans_lock); 1989 1990 /* If the file system is aborted, this will always fail. */ 1991 trans = btrfs_attach_transaction(root); 1992 if (IS_ERR(trans)) { 1993 if (PTR_ERR(trans) != -ENOENT) 1994 cannot_commit = true; 1995 goto sleep; 1996 } 1997 if (transid == trans->transid) { 1998 btrfs_commit_transaction(trans); 1999 } else { 2000 btrfs_end_transaction(trans); 2001 } 2002 sleep: 2003 wake_up_process(fs_info->cleaner_kthread); 2004 mutex_unlock(&fs_info->transaction_kthread_mutex); 2005 2006 if (BTRFS_FS_ERROR(fs_info)) 2007 btrfs_cleanup_transaction(fs_info); 2008 if (!kthread_should_stop() && 2009 (!btrfs_transaction_blocked(fs_info) || 2010 cannot_commit)) 2011 schedule_timeout_interruptible(delay); 2012 } while (!kthread_should_stop()); 2013 return 0; 2014 } 2015 2016 /* 2017 * This will find the highest generation in the array of root backups. The 2018 * index of the highest array is returned, or -EINVAL if we can't find 2019 * anything. 2020 * 2021 * We check to make sure the array is valid by comparing the 2022 * generation of the latest root in the array with the generation 2023 * in the super block. If they don't match we pitch it. 2024 */ 2025 static int find_newest_super_backup(struct btrfs_fs_info *info) 2026 { 2027 const u64 newest_gen = btrfs_super_generation(info->super_copy); 2028 u64 cur; 2029 struct btrfs_root_backup *root_backup; 2030 int i; 2031 2032 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2033 root_backup = info->super_copy->super_roots + i; 2034 cur = btrfs_backup_tree_root_gen(root_backup); 2035 if (cur == newest_gen) 2036 return i; 2037 } 2038 2039 return -EINVAL; 2040 } 2041 2042 /* 2043 * copy all the root pointers into the super backup array. 2044 * this will bump the backup pointer by one when it is 2045 * done 2046 */ 2047 static void backup_super_roots(struct btrfs_fs_info *info) 2048 { 2049 const int next_backup = info->backup_root_index; 2050 struct btrfs_root_backup *root_backup; 2051 2052 root_backup = info->super_for_commit->super_roots + next_backup; 2053 2054 /* 2055 * make sure all of our padding and empty slots get zero filled 2056 * regardless of which ones we use today 2057 */ 2058 memset(root_backup, 0, sizeof(*root_backup)); 2059 2060 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 2061 2062 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 2063 btrfs_set_backup_tree_root_gen(root_backup, 2064 btrfs_header_generation(info->tree_root->node)); 2065 2066 btrfs_set_backup_tree_root_level(root_backup, 2067 btrfs_header_level(info->tree_root->node)); 2068 2069 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 2070 btrfs_set_backup_chunk_root_gen(root_backup, 2071 btrfs_header_generation(info->chunk_root->node)); 2072 btrfs_set_backup_chunk_root_level(root_backup, 2073 btrfs_header_level(info->chunk_root->node)); 2074 2075 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) { 2076 struct btrfs_root *extent_root = btrfs_extent_root(info, 0); 2077 struct btrfs_root *csum_root = btrfs_csum_root(info, 0); 2078 2079 btrfs_set_backup_extent_root(root_backup, 2080 extent_root->node->start); 2081 btrfs_set_backup_extent_root_gen(root_backup, 2082 btrfs_header_generation(extent_root->node)); 2083 btrfs_set_backup_extent_root_level(root_backup, 2084 btrfs_header_level(extent_root->node)); 2085 2086 btrfs_set_backup_csum_root(root_backup, csum_root->node->start); 2087 btrfs_set_backup_csum_root_gen(root_backup, 2088 btrfs_header_generation(csum_root->node)); 2089 btrfs_set_backup_csum_root_level(root_backup, 2090 btrfs_header_level(csum_root->node)); 2091 } 2092 2093 /* 2094 * we might commit during log recovery, which happens before we set 2095 * the fs_root. Make sure it is valid before we fill it in. 2096 */ 2097 if (info->fs_root && info->fs_root->node) { 2098 btrfs_set_backup_fs_root(root_backup, 2099 info->fs_root->node->start); 2100 btrfs_set_backup_fs_root_gen(root_backup, 2101 btrfs_header_generation(info->fs_root->node)); 2102 btrfs_set_backup_fs_root_level(root_backup, 2103 btrfs_header_level(info->fs_root->node)); 2104 } 2105 2106 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 2107 btrfs_set_backup_dev_root_gen(root_backup, 2108 btrfs_header_generation(info->dev_root->node)); 2109 btrfs_set_backup_dev_root_level(root_backup, 2110 btrfs_header_level(info->dev_root->node)); 2111 2112 btrfs_set_backup_total_bytes(root_backup, 2113 btrfs_super_total_bytes(info->super_copy)); 2114 btrfs_set_backup_bytes_used(root_backup, 2115 btrfs_super_bytes_used(info->super_copy)); 2116 btrfs_set_backup_num_devices(root_backup, 2117 btrfs_super_num_devices(info->super_copy)); 2118 2119 /* 2120 * if we don't copy this out to the super_copy, it won't get remembered 2121 * for the next commit 2122 */ 2123 memcpy(&info->super_copy->super_roots, 2124 &info->super_for_commit->super_roots, 2125 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 2126 } 2127 2128 /* 2129 * read_backup_root - Reads a backup root based on the passed priority. Prio 0 2130 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 2131 * 2132 * fs_info - filesystem whose backup roots need to be read 2133 * priority - priority of backup root required 2134 * 2135 * Returns backup root index on success and -EINVAL otherwise. 2136 */ 2137 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 2138 { 2139 int backup_index = find_newest_super_backup(fs_info); 2140 struct btrfs_super_block *super = fs_info->super_copy; 2141 struct btrfs_root_backup *root_backup; 2142 2143 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 2144 if (priority == 0) 2145 return backup_index; 2146 2147 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 2148 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 2149 } else { 2150 return -EINVAL; 2151 } 2152 2153 root_backup = super->super_roots + backup_index; 2154 2155 btrfs_set_super_generation(super, 2156 btrfs_backup_tree_root_gen(root_backup)); 2157 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2158 btrfs_set_super_root_level(super, 2159 btrfs_backup_tree_root_level(root_backup)); 2160 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2161 2162 /* 2163 * Fixme: the total bytes and num_devices need to match or we should 2164 * need a fsck 2165 */ 2166 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2167 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2168 2169 return backup_index; 2170 } 2171 2172 /* helper to cleanup workers */ 2173 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2174 { 2175 btrfs_destroy_workqueue(fs_info->fixup_workers); 2176 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2177 btrfs_destroy_workqueue(fs_info->hipri_workers); 2178 btrfs_destroy_workqueue(fs_info->workers); 2179 if (fs_info->endio_workers) 2180 destroy_workqueue(fs_info->endio_workers); 2181 if (fs_info->rmw_workers) 2182 destroy_workqueue(fs_info->rmw_workers); 2183 if (fs_info->compressed_write_workers) 2184 destroy_workqueue(fs_info->compressed_write_workers); 2185 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2186 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2187 btrfs_destroy_workqueue(fs_info->delayed_workers); 2188 btrfs_destroy_workqueue(fs_info->caching_workers); 2189 btrfs_destroy_workqueue(fs_info->flush_workers); 2190 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2191 if (fs_info->discard_ctl.discard_workers) 2192 destroy_workqueue(fs_info->discard_ctl.discard_workers); 2193 /* 2194 * Now that all other work queues are destroyed, we can safely destroy 2195 * the queues used for metadata I/O, since tasks from those other work 2196 * queues can do metadata I/O operations. 2197 */ 2198 if (fs_info->endio_meta_workers) 2199 destroy_workqueue(fs_info->endio_meta_workers); 2200 } 2201 2202 static void free_root_extent_buffers(struct btrfs_root *root) 2203 { 2204 if (root) { 2205 free_extent_buffer(root->node); 2206 free_extent_buffer(root->commit_root); 2207 root->node = NULL; 2208 root->commit_root = NULL; 2209 } 2210 } 2211 2212 static void free_global_root_pointers(struct btrfs_fs_info *fs_info) 2213 { 2214 struct btrfs_root *root, *tmp; 2215 2216 rbtree_postorder_for_each_entry_safe(root, tmp, 2217 &fs_info->global_root_tree, 2218 rb_node) 2219 free_root_extent_buffers(root); 2220 } 2221 2222 /* helper to cleanup tree roots */ 2223 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 2224 { 2225 free_root_extent_buffers(info->tree_root); 2226 2227 free_global_root_pointers(info); 2228 free_root_extent_buffers(info->dev_root); 2229 free_root_extent_buffers(info->quota_root); 2230 free_root_extent_buffers(info->uuid_root); 2231 free_root_extent_buffers(info->fs_root); 2232 free_root_extent_buffers(info->data_reloc_root); 2233 free_root_extent_buffers(info->block_group_root); 2234 if (free_chunk_root) 2235 free_root_extent_buffers(info->chunk_root); 2236 } 2237 2238 void btrfs_put_root(struct btrfs_root *root) 2239 { 2240 if (!root) 2241 return; 2242 2243 if (refcount_dec_and_test(&root->refs)) { 2244 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2245 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 2246 if (root->anon_dev) 2247 free_anon_bdev(root->anon_dev); 2248 btrfs_drew_lock_destroy(&root->snapshot_lock); 2249 free_root_extent_buffers(root); 2250 #ifdef CONFIG_BTRFS_DEBUG 2251 spin_lock(&root->fs_info->fs_roots_radix_lock); 2252 list_del_init(&root->leak_list); 2253 spin_unlock(&root->fs_info->fs_roots_radix_lock); 2254 #endif 2255 kfree(root); 2256 } 2257 } 2258 2259 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2260 { 2261 int ret; 2262 struct btrfs_root *gang[8]; 2263 int i; 2264 2265 while (!list_empty(&fs_info->dead_roots)) { 2266 gang[0] = list_entry(fs_info->dead_roots.next, 2267 struct btrfs_root, root_list); 2268 list_del(&gang[0]->root_list); 2269 2270 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 2271 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2272 btrfs_put_root(gang[0]); 2273 } 2274 2275 while (1) { 2276 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2277 (void **)gang, 0, 2278 ARRAY_SIZE(gang)); 2279 if (!ret) 2280 break; 2281 for (i = 0; i < ret; i++) 2282 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2283 } 2284 } 2285 2286 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2287 { 2288 mutex_init(&fs_info->scrub_lock); 2289 atomic_set(&fs_info->scrubs_running, 0); 2290 atomic_set(&fs_info->scrub_pause_req, 0); 2291 atomic_set(&fs_info->scrubs_paused, 0); 2292 atomic_set(&fs_info->scrub_cancel_req, 0); 2293 init_waitqueue_head(&fs_info->scrub_pause_wait); 2294 refcount_set(&fs_info->scrub_workers_refcnt, 0); 2295 } 2296 2297 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2298 { 2299 spin_lock_init(&fs_info->balance_lock); 2300 mutex_init(&fs_info->balance_mutex); 2301 atomic_set(&fs_info->balance_pause_req, 0); 2302 atomic_set(&fs_info->balance_cancel_req, 0); 2303 fs_info->balance_ctl = NULL; 2304 init_waitqueue_head(&fs_info->balance_wait_q); 2305 atomic_set(&fs_info->reloc_cancel_req, 0); 2306 } 2307 2308 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2309 { 2310 struct inode *inode = fs_info->btree_inode; 2311 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, 2312 fs_info->tree_root); 2313 2314 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2315 set_nlink(inode, 1); 2316 /* 2317 * we set the i_size on the btree inode to the max possible int. 2318 * the real end of the address space is determined by all of 2319 * the devices in the system 2320 */ 2321 inode->i_size = OFFSET_MAX; 2322 inode->i_mapping->a_ops = &btree_aops; 2323 2324 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2325 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 2326 IO_TREE_BTREE_INODE_IO); 2327 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2328 2329 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 2330 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID; 2331 BTRFS_I(inode)->location.type = 0; 2332 BTRFS_I(inode)->location.offset = 0; 2333 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2334 __insert_inode_hash(inode, hash); 2335 } 2336 2337 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2338 { 2339 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2340 init_rwsem(&fs_info->dev_replace.rwsem); 2341 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2342 } 2343 2344 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2345 { 2346 spin_lock_init(&fs_info->qgroup_lock); 2347 mutex_init(&fs_info->qgroup_ioctl_lock); 2348 fs_info->qgroup_tree = RB_ROOT; 2349 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2350 fs_info->qgroup_seq = 1; 2351 fs_info->qgroup_ulist = NULL; 2352 fs_info->qgroup_rescan_running = false; 2353 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL; 2354 mutex_init(&fs_info->qgroup_rescan_lock); 2355 } 2356 2357 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) 2358 { 2359 u32 max_active = fs_info->thread_pool_size; 2360 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2361 2362 fs_info->workers = 2363 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16); 2364 fs_info->hipri_workers = 2365 btrfs_alloc_workqueue(fs_info, "worker-high", 2366 flags | WQ_HIGHPRI, max_active, 16); 2367 2368 fs_info->delalloc_workers = 2369 btrfs_alloc_workqueue(fs_info, "delalloc", 2370 flags, max_active, 2); 2371 2372 fs_info->flush_workers = 2373 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2374 flags, max_active, 0); 2375 2376 fs_info->caching_workers = 2377 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2378 2379 fs_info->fixup_workers = 2380 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2381 2382 fs_info->endio_workers = 2383 alloc_workqueue("btrfs-endio", flags, max_active); 2384 fs_info->endio_meta_workers = 2385 alloc_workqueue("btrfs-endio-meta", flags, max_active); 2386 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active); 2387 fs_info->endio_write_workers = 2388 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2389 max_active, 2); 2390 fs_info->compressed_write_workers = 2391 alloc_workqueue("btrfs-compressed-write", flags, max_active); 2392 fs_info->endio_freespace_worker = 2393 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2394 max_active, 0); 2395 fs_info->delayed_workers = 2396 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2397 max_active, 0); 2398 fs_info->qgroup_rescan_workers = 2399 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2400 fs_info->discard_ctl.discard_workers = 2401 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1); 2402 2403 if (!(fs_info->workers && fs_info->hipri_workers && 2404 fs_info->delalloc_workers && fs_info->flush_workers && 2405 fs_info->endio_workers && fs_info->endio_meta_workers && 2406 fs_info->compressed_write_workers && 2407 fs_info->endio_write_workers && 2408 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2409 fs_info->caching_workers && fs_info->fixup_workers && 2410 fs_info->delayed_workers && fs_info->qgroup_rescan_workers && 2411 fs_info->discard_ctl.discard_workers)) { 2412 return -ENOMEM; 2413 } 2414 2415 return 0; 2416 } 2417 2418 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2419 { 2420 struct crypto_shash *csum_shash; 2421 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2422 2423 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2424 2425 if (IS_ERR(csum_shash)) { 2426 btrfs_err(fs_info, "error allocating %s hash for checksum", 2427 csum_driver); 2428 return PTR_ERR(csum_shash); 2429 } 2430 2431 fs_info->csum_shash = csum_shash; 2432 2433 btrfs_info(fs_info, "using %s (%s) checksum algorithm", 2434 btrfs_super_csum_name(csum_type), 2435 crypto_shash_driver_name(csum_shash)); 2436 return 0; 2437 } 2438 2439 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2440 struct btrfs_fs_devices *fs_devices) 2441 { 2442 int ret; 2443 struct btrfs_tree_parent_check check = { 0 }; 2444 struct btrfs_root *log_tree_root; 2445 struct btrfs_super_block *disk_super = fs_info->super_copy; 2446 u64 bytenr = btrfs_super_log_root(disk_super); 2447 int level = btrfs_super_log_root_level(disk_super); 2448 2449 if (fs_devices->rw_devices == 0) { 2450 btrfs_warn(fs_info, "log replay required on RO media"); 2451 return -EIO; 2452 } 2453 2454 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2455 GFP_KERNEL); 2456 if (!log_tree_root) 2457 return -ENOMEM; 2458 2459 check.level = level; 2460 check.transid = fs_info->generation + 1; 2461 check.owner_root = BTRFS_TREE_LOG_OBJECTID; 2462 log_tree_root->node = read_tree_block(fs_info, bytenr, &check); 2463 if (IS_ERR(log_tree_root->node)) { 2464 btrfs_warn(fs_info, "failed to read log tree"); 2465 ret = PTR_ERR(log_tree_root->node); 2466 log_tree_root->node = NULL; 2467 btrfs_put_root(log_tree_root); 2468 return ret; 2469 } 2470 if (!extent_buffer_uptodate(log_tree_root->node)) { 2471 btrfs_err(fs_info, "failed to read log tree"); 2472 btrfs_put_root(log_tree_root); 2473 return -EIO; 2474 } 2475 2476 /* returns with log_tree_root freed on success */ 2477 ret = btrfs_recover_log_trees(log_tree_root); 2478 if (ret) { 2479 btrfs_handle_fs_error(fs_info, ret, 2480 "Failed to recover log tree"); 2481 btrfs_put_root(log_tree_root); 2482 return ret; 2483 } 2484 2485 if (sb_rdonly(fs_info->sb)) { 2486 ret = btrfs_commit_super(fs_info); 2487 if (ret) 2488 return ret; 2489 } 2490 2491 return 0; 2492 } 2493 2494 static int load_global_roots_objectid(struct btrfs_root *tree_root, 2495 struct btrfs_path *path, u64 objectid, 2496 const char *name) 2497 { 2498 struct btrfs_fs_info *fs_info = tree_root->fs_info; 2499 struct btrfs_root *root; 2500 u64 max_global_id = 0; 2501 int ret; 2502 struct btrfs_key key = { 2503 .objectid = objectid, 2504 .type = BTRFS_ROOT_ITEM_KEY, 2505 .offset = 0, 2506 }; 2507 bool found = false; 2508 2509 /* If we have IGNOREDATACSUMS skip loading these roots. */ 2510 if (objectid == BTRFS_CSUM_TREE_OBJECTID && 2511 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2512 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2513 return 0; 2514 } 2515 2516 while (1) { 2517 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 2518 if (ret < 0) 2519 break; 2520 2521 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2522 ret = btrfs_next_leaf(tree_root, path); 2523 if (ret) { 2524 if (ret > 0) 2525 ret = 0; 2526 break; 2527 } 2528 } 2529 ret = 0; 2530 2531 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2532 if (key.objectid != objectid) 2533 break; 2534 btrfs_release_path(path); 2535 2536 /* 2537 * Just worry about this for extent tree, it'll be the same for 2538 * everybody. 2539 */ 2540 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2541 max_global_id = max(max_global_id, key.offset); 2542 2543 found = true; 2544 root = read_tree_root_path(tree_root, path, &key); 2545 if (IS_ERR(root)) { 2546 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2547 ret = PTR_ERR(root); 2548 break; 2549 } 2550 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2551 ret = btrfs_global_root_insert(root); 2552 if (ret) { 2553 btrfs_put_root(root); 2554 break; 2555 } 2556 key.offset++; 2557 } 2558 btrfs_release_path(path); 2559 2560 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2561 fs_info->nr_global_roots = max_global_id + 1; 2562 2563 if (!found || ret) { 2564 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 2565 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2566 2567 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2568 ret = ret ? ret : -ENOENT; 2569 else 2570 ret = 0; 2571 btrfs_err(fs_info, "failed to load root %s", name); 2572 } 2573 return ret; 2574 } 2575 2576 static int load_global_roots(struct btrfs_root *tree_root) 2577 { 2578 struct btrfs_path *path; 2579 int ret = 0; 2580 2581 path = btrfs_alloc_path(); 2582 if (!path) 2583 return -ENOMEM; 2584 2585 ret = load_global_roots_objectid(tree_root, path, 2586 BTRFS_EXTENT_TREE_OBJECTID, "extent"); 2587 if (ret) 2588 goto out; 2589 ret = load_global_roots_objectid(tree_root, path, 2590 BTRFS_CSUM_TREE_OBJECTID, "csum"); 2591 if (ret) 2592 goto out; 2593 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) 2594 goto out; 2595 ret = load_global_roots_objectid(tree_root, path, 2596 BTRFS_FREE_SPACE_TREE_OBJECTID, 2597 "free space"); 2598 out: 2599 btrfs_free_path(path); 2600 return ret; 2601 } 2602 2603 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2604 { 2605 struct btrfs_root *tree_root = fs_info->tree_root; 2606 struct btrfs_root *root; 2607 struct btrfs_key location; 2608 int ret; 2609 2610 BUG_ON(!fs_info->tree_root); 2611 2612 ret = load_global_roots(tree_root); 2613 if (ret) 2614 return ret; 2615 2616 location.type = BTRFS_ROOT_ITEM_KEY; 2617 location.offset = 0; 2618 2619 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 2620 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; 2621 root = btrfs_read_tree_root(tree_root, &location); 2622 if (IS_ERR(root)) { 2623 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2624 ret = PTR_ERR(root); 2625 goto out; 2626 } 2627 } else { 2628 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2629 fs_info->block_group_root = root; 2630 } 2631 } 2632 2633 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2634 root = btrfs_read_tree_root(tree_root, &location); 2635 if (IS_ERR(root)) { 2636 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2637 ret = PTR_ERR(root); 2638 goto out; 2639 } 2640 } else { 2641 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2642 fs_info->dev_root = root; 2643 } 2644 /* Initialize fs_info for all devices in any case */ 2645 ret = btrfs_init_devices_late(fs_info); 2646 if (ret) 2647 goto out; 2648 2649 /* 2650 * This tree can share blocks with some other fs tree during relocation 2651 * and we need a proper setup by btrfs_get_fs_root 2652 */ 2653 root = btrfs_get_fs_root(tree_root->fs_info, 2654 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2655 if (IS_ERR(root)) { 2656 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2657 ret = PTR_ERR(root); 2658 goto out; 2659 } 2660 } else { 2661 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2662 fs_info->data_reloc_root = root; 2663 } 2664 2665 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2666 root = btrfs_read_tree_root(tree_root, &location); 2667 if (!IS_ERR(root)) { 2668 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2669 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2670 fs_info->quota_root = root; 2671 } 2672 2673 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2674 root = btrfs_read_tree_root(tree_root, &location); 2675 if (IS_ERR(root)) { 2676 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2677 ret = PTR_ERR(root); 2678 if (ret != -ENOENT) 2679 goto out; 2680 } 2681 } else { 2682 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2683 fs_info->uuid_root = root; 2684 } 2685 2686 return 0; 2687 out: 2688 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2689 location.objectid, ret); 2690 return ret; 2691 } 2692 2693 /* 2694 * Real super block validation 2695 * NOTE: super csum type and incompat features will not be checked here. 2696 * 2697 * @sb: super block to check 2698 * @mirror_num: the super block number to check its bytenr: 2699 * 0 the primary (1st) sb 2700 * 1, 2 2nd and 3rd backup copy 2701 * -1 skip bytenr check 2702 */ 2703 int btrfs_validate_super(struct btrfs_fs_info *fs_info, 2704 struct btrfs_super_block *sb, int mirror_num) 2705 { 2706 u64 nodesize = btrfs_super_nodesize(sb); 2707 u64 sectorsize = btrfs_super_sectorsize(sb); 2708 int ret = 0; 2709 2710 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2711 btrfs_err(fs_info, "no valid FS found"); 2712 ret = -EINVAL; 2713 } 2714 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2715 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2716 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2717 ret = -EINVAL; 2718 } 2719 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2720 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2721 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2722 ret = -EINVAL; 2723 } 2724 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2725 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2726 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2727 ret = -EINVAL; 2728 } 2729 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2730 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2731 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2732 ret = -EINVAL; 2733 } 2734 2735 /* 2736 * Check sectorsize and nodesize first, other check will need it. 2737 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2738 */ 2739 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2740 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2741 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2742 ret = -EINVAL; 2743 } 2744 2745 /* 2746 * We only support at most two sectorsizes: 4K and PAGE_SIZE. 2747 * 2748 * We can support 16K sectorsize with 64K page size without problem, 2749 * but such sectorsize/pagesize combination doesn't make much sense. 2750 * 4K will be our future standard, PAGE_SIZE is supported from the very 2751 * beginning. 2752 */ 2753 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) { 2754 btrfs_err(fs_info, 2755 "sectorsize %llu not yet supported for page size %lu", 2756 sectorsize, PAGE_SIZE); 2757 ret = -EINVAL; 2758 } 2759 2760 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2761 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2762 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2763 ret = -EINVAL; 2764 } 2765 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2766 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2767 le32_to_cpu(sb->__unused_leafsize), nodesize); 2768 ret = -EINVAL; 2769 } 2770 2771 /* Root alignment check */ 2772 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2773 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2774 btrfs_super_root(sb)); 2775 ret = -EINVAL; 2776 } 2777 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2778 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2779 btrfs_super_chunk_root(sb)); 2780 ret = -EINVAL; 2781 } 2782 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2783 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2784 btrfs_super_log_root(sb)); 2785 ret = -EINVAL; 2786 } 2787 2788 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, 2789 BTRFS_FSID_SIZE)) { 2790 btrfs_err(fs_info, 2791 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2792 fs_info->super_copy->fsid, fs_info->fs_devices->fsid); 2793 ret = -EINVAL; 2794 } 2795 2796 if (btrfs_fs_incompat(fs_info, METADATA_UUID) && 2797 memcmp(fs_info->fs_devices->metadata_uuid, 2798 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) { 2799 btrfs_err(fs_info, 2800 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2801 fs_info->super_copy->metadata_uuid, 2802 fs_info->fs_devices->metadata_uuid); 2803 ret = -EINVAL; 2804 } 2805 2806 /* 2807 * Artificial requirement for block-group-tree to force newer features 2808 * (free-space-tree, no-holes) so the test matrix is smaller. 2809 */ 2810 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 2811 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || 2812 !btrfs_fs_incompat(fs_info, NO_HOLES))) { 2813 btrfs_err(fs_info, 2814 "block-group-tree feature requires fres-space-tree and no-holes"); 2815 ret = -EINVAL; 2816 } 2817 2818 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2819 BTRFS_FSID_SIZE) != 0) { 2820 btrfs_err(fs_info, 2821 "dev_item UUID does not match metadata fsid: %pU != %pU", 2822 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2823 ret = -EINVAL; 2824 } 2825 2826 /* 2827 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2828 * done later 2829 */ 2830 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2831 btrfs_err(fs_info, "bytes_used is too small %llu", 2832 btrfs_super_bytes_used(sb)); 2833 ret = -EINVAL; 2834 } 2835 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2836 btrfs_err(fs_info, "invalid stripesize %u", 2837 btrfs_super_stripesize(sb)); 2838 ret = -EINVAL; 2839 } 2840 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2841 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2842 btrfs_super_num_devices(sb)); 2843 if (btrfs_super_num_devices(sb) == 0) { 2844 btrfs_err(fs_info, "number of devices is 0"); 2845 ret = -EINVAL; 2846 } 2847 2848 if (mirror_num >= 0 && 2849 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2850 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2851 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2852 ret = -EINVAL; 2853 } 2854 2855 /* 2856 * Obvious sys_chunk_array corruptions, it must hold at least one key 2857 * and one chunk 2858 */ 2859 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2860 btrfs_err(fs_info, "system chunk array too big %u > %u", 2861 btrfs_super_sys_array_size(sb), 2862 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2863 ret = -EINVAL; 2864 } 2865 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2866 + sizeof(struct btrfs_chunk)) { 2867 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2868 btrfs_super_sys_array_size(sb), 2869 sizeof(struct btrfs_disk_key) 2870 + sizeof(struct btrfs_chunk)); 2871 ret = -EINVAL; 2872 } 2873 2874 /* 2875 * The generation is a global counter, we'll trust it more than the others 2876 * but it's still possible that it's the one that's wrong. 2877 */ 2878 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2879 btrfs_warn(fs_info, 2880 "suspicious: generation < chunk_root_generation: %llu < %llu", 2881 btrfs_super_generation(sb), 2882 btrfs_super_chunk_root_generation(sb)); 2883 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2884 && btrfs_super_cache_generation(sb) != (u64)-1) 2885 btrfs_warn(fs_info, 2886 "suspicious: generation < cache_generation: %llu < %llu", 2887 btrfs_super_generation(sb), 2888 btrfs_super_cache_generation(sb)); 2889 2890 return ret; 2891 } 2892 2893 /* 2894 * Validation of super block at mount time. 2895 * Some checks already done early at mount time, like csum type and incompat 2896 * flags will be skipped. 2897 */ 2898 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2899 { 2900 return btrfs_validate_super(fs_info, fs_info->super_copy, 0); 2901 } 2902 2903 /* 2904 * Validation of super block at write time. 2905 * Some checks like bytenr check will be skipped as their values will be 2906 * overwritten soon. 2907 * Extra checks like csum type and incompat flags will be done here. 2908 */ 2909 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2910 struct btrfs_super_block *sb) 2911 { 2912 int ret; 2913 2914 ret = btrfs_validate_super(fs_info, sb, -1); 2915 if (ret < 0) 2916 goto out; 2917 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2918 ret = -EUCLEAN; 2919 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2920 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2921 goto out; 2922 } 2923 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2924 ret = -EUCLEAN; 2925 btrfs_err(fs_info, 2926 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2927 btrfs_super_incompat_flags(sb), 2928 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2929 goto out; 2930 } 2931 out: 2932 if (ret < 0) 2933 btrfs_err(fs_info, 2934 "super block corruption detected before writing it to disk"); 2935 return ret; 2936 } 2937 2938 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) 2939 { 2940 struct btrfs_tree_parent_check check = { 2941 .level = level, 2942 .transid = gen, 2943 .owner_root = root->root_key.objectid 2944 }; 2945 int ret = 0; 2946 2947 root->node = read_tree_block(root->fs_info, bytenr, &check); 2948 if (IS_ERR(root->node)) { 2949 ret = PTR_ERR(root->node); 2950 root->node = NULL; 2951 return ret; 2952 } 2953 if (!extent_buffer_uptodate(root->node)) { 2954 free_extent_buffer(root->node); 2955 root->node = NULL; 2956 return -EIO; 2957 } 2958 2959 btrfs_set_root_node(&root->root_item, root->node); 2960 root->commit_root = btrfs_root_node(root); 2961 btrfs_set_root_refs(&root->root_item, 1); 2962 return ret; 2963 } 2964 2965 static int load_important_roots(struct btrfs_fs_info *fs_info) 2966 { 2967 struct btrfs_super_block *sb = fs_info->super_copy; 2968 u64 gen, bytenr; 2969 int level, ret; 2970 2971 bytenr = btrfs_super_root(sb); 2972 gen = btrfs_super_generation(sb); 2973 level = btrfs_super_root_level(sb); 2974 ret = load_super_root(fs_info->tree_root, bytenr, gen, level); 2975 if (ret) { 2976 btrfs_warn(fs_info, "couldn't read tree root"); 2977 return ret; 2978 } 2979 return 0; 2980 } 2981 2982 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2983 { 2984 int backup_index = find_newest_super_backup(fs_info); 2985 struct btrfs_super_block *sb = fs_info->super_copy; 2986 struct btrfs_root *tree_root = fs_info->tree_root; 2987 bool handle_error = false; 2988 int ret = 0; 2989 int i; 2990 2991 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2992 if (handle_error) { 2993 if (!IS_ERR(tree_root->node)) 2994 free_extent_buffer(tree_root->node); 2995 tree_root->node = NULL; 2996 2997 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2998 break; 2999 3000 free_root_pointers(fs_info, 0); 3001 3002 /* 3003 * Don't use the log in recovery mode, it won't be 3004 * valid 3005 */ 3006 btrfs_set_super_log_root(sb, 0); 3007 3008 /* We can't trust the free space cache either */ 3009 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3010 3011 ret = read_backup_root(fs_info, i); 3012 backup_index = ret; 3013 if (ret < 0) 3014 return ret; 3015 } 3016 3017 ret = load_important_roots(fs_info); 3018 if (ret) { 3019 handle_error = true; 3020 continue; 3021 } 3022 3023 /* 3024 * No need to hold btrfs_root::objectid_mutex since the fs 3025 * hasn't been fully initialised and we are the only user 3026 */ 3027 ret = btrfs_init_root_free_objectid(tree_root); 3028 if (ret < 0) { 3029 handle_error = true; 3030 continue; 3031 } 3032 3033 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 3034 3035 ret = btrfs_read_roots(fs_info); 3036 if (ret < 0) { 3037 handle_error = true; 3038 continue; 3039 } 3040 3041 /* All successful */ 3042 fs_info->generation = btrfs_header_generation(tree_root->node); 3043 fs_info->last_trans_committed = fs_info->generation; 3044 fs_info->last_reloc_trans = 0; 3045 3046 /* Always begin writing backup roots after the one being used */ 3047 if (backup_index < 0) { 3048 fs_info->backup_root_index = 0; 3049 } else { 3050 fs_info->backup_root_index = backup_index + 1; 3051 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 3052 } 3053 break; 3054 } 3055 3056 return ret; 3057 } 3058 3059 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 3060 { 3061 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 3062 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 3063 INIT_LIST_HEAD(&fs_info->trans_list); 3064 INIT_LIST_HEAD(&fs_info->dead_roots); 3065 INIT_LIST_HEAD(&fs_info->delayed_iputs); 3066 INIT_LIST_HEAD(&fs_info->delalloc_roots); 3067 INIT_LIST_HEAD(&fs_info->caching_block_groups); 3068 spin_lock_init(&fs_info->delalloc_root_lock); 3069 spin_lock_init(&fs_info->trans_lock); 3070 spin_lock_init(&fs_info->fs_roots_radix_lock); 3071 spin_lock_init(&fs_info->delayed_iput_lock); 3072 spin_lock_init(&fs_info->defrag_inodes_lock); 3073 spin_lock_init(&fs_info->super_lock); 3074 spin_lock_init(&fs_info->buffer_lock); 3075 spin_lock_init(&fs_info->unused_bgs_lock); 3076 spin_lock_init(&fs_info->treelog_bg_lock); 3077 spin_lock_init(&fs_info->zone_active_bgs_lock); 3078 spin_lock_init(&fs_info->relocation_bg_lock); 3079 rwlock_init(&fs_info->tree_mod_log_lock); 3080 rwlock_init(&fs_info->global_root_lock); 3081 mutex_init(&fs_info->unused_bg_unpin_mutex); 3082 mutex_init(&fs_info->reclaim_bgs_lock); 3083 mutex_init(&fs_info->reloc_mutex); 3084 mutex_init(&fs_info->delalloc_root_mutex); 3085 mutex_init(&fs_info->zoned_meta_io_lock); 3086 mutex_init(&fs_info->zoned_data_reloc_io_lock); 3087 seqlock_init(&fs_info->profiles_lock); 3088 3089 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); 3090 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); 3091 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); 3092 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); 3093 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start, 3094 BTRFS_LOCKDEP_TRANS_COMMIT_START); 3095 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, 3096 BTRFS_LOCKDEP_TRANS_UNBLOCKED); 3097 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, 3098 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 3099 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, 3100 BTRFS_LOCKDEP_TRANS_COMPLETED); 3101 3102 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 3103 INIT_LIST_HEAD(&fs_info->space_info); 3104 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 3105 INIT_LIST_HEAD(&fs_info->unused_bgs); 3106 INIT_LIST_HEAD(&fs_info->reclaim_bgs); 3107 INIT_LIST_HEAD(&fs_info->zone_active_bgs); 3108 #ifdef CONFIG_BTRFS_DEBUG 3109 INIT_LIST_HEAD(&fs_info->allocated_roots); 3110 INIT_LIST_HEAD(&fs_info->allocated_ebs); 3111 spin_lock_init(&fs_info->eb_leak_lock); 3112 #endif 3113 extent_map_tree_init(&fs_info->mapping_tree); 3114 btrfs_init_block_rsv(&fs_info->global_block_rsv, 3115 BTRFS_BLOCK_RSV_GLOBAL); 3116 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 3117 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 3118 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 3119 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 3120 BTRFS_BLOCK_RSV_DELOPS); 3121 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 3122 BTRFS_BLOCK_RSV_DELREFS); 3123 3124 atomic_set(&fs_info->async_delalloc_pages, 0); 3125 atomic_set(&fs_info->defrag_running, 0); 3126 atomic_set(&fs_info->nr_delayed_iputs, 0); 3127 atomic64_set(&fs_info->tree_mod_seq, 0); 3128 fs_info->global_root_tree = RB_ROOT; 3129 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 3130 fs_info->metadata_ratio = 0; 3131 fs_info->defrag_inodes = RB_ROOT; 3132 atomic64_set(&fs_info->free_chunk_space, 0); 3133 fs_info->tree_mod_log = RB_ROOT; 3134 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 3135 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 3136 btrfs_init_ref_verify(fs_info); 3137 3138 fs_info->thread_pool_size = min_t(unsigned long, 3139 num_online_cpus() + 2, 8); 3140 3141 INIT_LIST_HEAD(&fs_info->ordered_roots); 3142 spin_lock_init(&fs_info->ordered_root_lock); 3143 3144 btrfs_init_scrub(fs_info); 3145 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3146 fs_info->check_integrity_print_mask = 0; 3147 #endif 3148 btrfs_init_balance(fs_info); 3149 btrfs_init_async_reclaim_work(fs_info); 3150 3151 rwlock_init(&fs_info->block_group_cache_lock); 3152 fs_info->block_group_cache_tree = RB_ROOT_CACHED; 3153 3154 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 3155 IO_TREE_FS_EXCLUDED_EXTENTS); 3156 3157 mutex_init(&fs_info->ordered_operations_mutex); 3158 mutex_init(&fs_info->tree_log_mutex); 3159 mutex_init(&fs_info->chunk_mutex); 3160 mutex_init(&fs_info->transaction_kthread_mutex); 3161 mutex_init(&fs_info->cleaner_mutex); 3162 mutex_init(&fs_info->ro_block_group_mutex); 3163 init_rwsem(&fs_info->commit_root_sem); 3164 init_rwsem(&fs_info->cleanup_work_sem); 3165 init_rwsem(&fs_info->subvol_sem); 3166 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 3167 3168 btrfs_init_dev_replace_locks(fs_info); 3169 btrfs_init_qgroup(fs_info); 3170 btrfs_discard_init(fs_info); 3171 3172 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 3173 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 3174 3175 init_waitqueue_head(&fs_info->transaction_throttle); 3176 init_waitqueue_head(&fs_info->transaction_wait); 3177 init_waitqueue_head(&fs_info->transaction_blocked_wait); 3178 init_waitqueue_head(&fs_info->async_submit_wait); 3179 init_waitqueue_head(&fs_info->delayed_iputs_wait); 3180 3181 /* Usable values until the real ones are cached from the superblock */ 3182 fs_info->nodesize = 4096; 3183 fs_info->sectorsize = 4096; 3184 fs_info->sectorsize_bits = ilog2(4096); 3185 fs_info->stripesize = 4096; 3186 3187 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; 3188 3189 spin_lock_init(&fs_info->swapfile_pins_lock); 3190 fs_info->swapfile_pins = RB_ROOT; 3191 3192 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; 3193 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); 3194 } 3195 3196 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 3197 { 3198 int ret; 3199 3200 fs_info->sb = sb; 3201 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 3202 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 3203 3204 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 3205 if (ret) 3206 return ret; 3207 3208 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 3209 if (ret) 3210 return ret; 3211 3212 fs_info->dirty_metadata_batch = PAGE_SIZE * 3213 (1 + ilog2(nr_cpu_ids)); 3214 3215 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 3216 if (ret) 3217 return ret; 3218 3219 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 3220 GFP_KERNEL); 3221 if (ret) 3222 return ret; 3223 3224 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 3225 GFP_KERNEL); 3226 if (!fs_info->delayed_root) 3227 return -ENOMEM; 3228 btrfs_init_delayed_root(fs_info->delayed_root); 3229 3230 if (sb_rdonly(sb)) 3231 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 3232 3233 return btrfs_alloc_stripe_hash_table(fs_info); 3234 } 3235 3236 static int btrfs_uuid_rescan_kthread(void *data) 3237 { 3238 struct btrfs_fs_info *fs_info = data; 3239 int ret; 3240 3241 /* 3242 * 1st step is to iterate through the existing UUID tree and 3243 * to delete all entries that contain outdated data. 3244 * 2nd step is to add all missing entries to the UUID tree. 3245 */ 3246 ret = btrfs_uuid_tree_iterate(fs_info); 3247 if (ret < 0) { 3248 if (ret != -EINTR) 3249 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 3250 ret); 3251 up(&fs_info->uuid_tree_rescan_sem); 3252 return ret; 3253 } 3254 return btrfs_uuid_scan_kthread(data); 3255 } 3256 3257 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 3258 { 3259 struct task_struct *task; 3260 3261 down(&fs_info->uuid_tree_rescan_sem); 3262 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 3263 if (IS_ERR(task)) { 3264 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 3265 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 3266 up(&fs_info->uuid_tree_rescan_sem); 3267 return PTR_ERR(task); 3268 } 3269 3270 return 0; 3271 } 3272 3273 /* 3274 * Some options only have meaning at mount time and shouldn't persist across 3275 * remounts, or be displayed. Clear these at the end of mount and remount 3276 * code paths. 3277 */ 3278 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info) 3279 { 3280 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3281 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE); 3282 } 3283 3284 /* 3285 * Mounting logic specific to read-write file systems. Shared by open_ctree 3286 * and btrfs_remount when remounting from read-only to read-write. 3287 */ 3288 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 3289 { 3290 int ret; 3291 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 3292 bool clear_free_space_tree = false; 3293 3294 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3295 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3296 clear_free_space_tree = true; 3297 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3298 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3299 btrfs_warn(fs_info, "free space tree is invalid"); 3300 clear_free_space_tree = true; 3301 } 3302 3303 if (clear_free_space_tree) { 3304 btrfs_info(fs_info, "clearing free space tree"); 3305 ret = btrfs_clear_free_space_tree(fs_info); 3306 if (ret) { 3307 btrfs_warn(fs_info, 3308 "failed to clear free space tree: %d", ret); 3309 goto out; 3310 } 3311 } 3312 3313 /* 3314 * btrfs_find_orphan_roots() is responsible for finding all the dead 3315 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load 3316 * them into the fs_info->fs_roots_radix tree. This must be done before 3317 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it 3318 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan 3319 * item before the root's tree is deleted - this means that if we unmount 3320 * or crash before the deletion completes, on the next mount we will not 3321 * delete what remains of the tree because the orphan item does not 3322 * exists anymore, which is what tells us we have a pending deletion. 3323 */ 3324 ret = btrfs_find_orphan_roots(fs_info); 3325 if (ret) 3326 goto out; 3327 3328 ret = btrfs_cleanup_fs_roots(fs_info); 3329 if (ret) 3330 goto out; 3331 3332 down_read(&fs_info->cleanup_work_sem); 3333 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3334 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3335 up_read(&fs_info->cleanup_work_sem); 3336 goto out; 3337 } 3338 up_read(&fs_info->cleanup_work_sem); 3339 3340 mutex_lock(&fs_info->cleaner_mutex); 3341 ret = btrfs_recover_relocation(fs_info); 3342 mutex_unlock(&fs_info->cleaner_mutex); 3343 if (ret < 0) { 3344 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 3345 goto out; 3346 } 3347 3348 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3349 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3350 btrfs_info(fs_info, "creating free space tree"); 3351 ret = btrfs_create_free_space_tree(fs_info); 3352 if (ret) { 3353 btrfs_warn(fs_info, 3354 "failed to create free space tree: %d", ret); 3355 goto out; 3356 } 3357 } 3358 3359 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 3360 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 3361 if (ret) 3362 goto out; 3363 } 3364 3365 ret = btrfs_resume_balance_async(fs_info); 3366 if (ret) 3367 goto out; 3368 3369 ret = btrfs_resume_dev_replace_async(fs_info); 3370 if (ret) { 3371 btrfs_warn(fs_info, "failed to resume dev_replace"); 3372 goto out; 3373 } 3374 3375 btrfs_qgroup_rescan_resume(fs_info); 3376 3377 if (!fs_info->uuid_root) { 3378 btrfs_info(fs_info, "creating UUID tree"); 3379 ret = btrfs_create_uuid_tree(fs_info); 3380 if (ret) { 3381 btrfs_warn(fs_info, 3382 "failed to create the UUID tree %d", ret); 3383 goto out; 3384 } 3385 } 3386 3387 out: 3388 return ret; 3389 } 3390 3391 /* 3392 * Do various sanity and dependency checks of different features. 3393 * 3394 * @is_rw_mount: If the mount is read-write. 3395 * 3396 * This is the place for less strict checks (like for subpage or artificial 3397 * feature dependencies). 3398 * 3399 * For strict checks or possible corruption detection, see 3400 * btrfs_validate_super(). 3401 * 3402 * This should be called after btrfs_parse_options(), as some mount options 3403 * (space cache related) can modify on-disk format like free space tree and 3404 * screw up certain feature dependencies. 3405 */ 3406 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount) 3407 { 3408 struct btrfs_super_block *disk_super = fs_info->super_copy; 3409 u64 incompat = btrfs_super_incompat_flags(disk_super); 3410 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super); 3411 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); 3412 3413 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 3414 btrfs_err(fs_info, 3415 "cannot mount because of unknown incompat features (0x%llx)", 3416 incompat); 3417 return -EINVAL; 3418 } 3419 3420 /* Runtime limitation for mixed block groups. */ 3421 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3422 (fs_info->sectorsize != fs_info->nodesize)) { 3423 btrfs_err(fs_info, 3424 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3425 fs_info->nodesize, fs_info->sectorsize); 3426 return -EINVAL; 3427 } 3428 3429 /* Mixed backref is an always-enabled feature. */ 3430 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3431 3432 /* Set compression related flags just in case. */ 3433 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3434 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3435 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3436 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3437 3438 /* 3439 * An ancient flag, which should really be marked deprecated. 3440 * Such runtime limitation doesn't really need a incompat flag. 3441 */ 3442 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) 3443 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3444 3445 if (compat_ro_unsupp && is_rw_mount) { 3446 btrfs_err(fs_info, 3447 "cannot mount read-write because of unknown compat_ro features (0x%llx)", 3448 compat_ro); 3449 return -EINVAL; 3450 } 3451 3452 /* 3453 * We have unsupported RO compat features, although RO mounted, we 3454 * should not cause any metadata writes, including log replay. 3455 * Or we could screw up whatever the new feature requires. 3456 */ 3457 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) && 3458 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3459 btrfs_err(fs_info, 3460 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", 3461 compat_ro); 3462 return -EINVAL; 3463 } 3464 3465 /* 3466 * Artificial limitations for block group tree, to force 3467 * block-group-tree to rely on no-holes and free-space-tree. 3468 */ 3469 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 3470 (!btrfs_fs_incompat(fs_info, NO_HOLES) || 3471 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { 3472 btrfs_err(fs_info, 3473 "block-group-tree feature requires no-holes and free-space-tree features"); 3474 return -EINVAL; 3475 } 3476 3477 /* 3478 * Subpage runtime limitation on v1 cache. 3479 * 3480 * V1 space cache still has some hard codeed PAGE_SIZE usage, while 3481 * we're already defaulting to v2 cache, no need to bother v1 as it's 3482 * going to be deprecated anyway. 3483 */ 3484 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { 3485 btrfs_warn(fs_info, 3486 "v1 space cache is not supported for page size %lu with sectorsize %u", 3487 PAGE_SIZE, fs_info->sectorsize); 3488 return -EINVAL; 3489 } 3490 3491 /* This can be called by remount, we need to protect the super block. */ 3492 spin_lock(&fs_info->super_lock); 3493 btrfs_set_super_incompat_flags(disk_super, incompat); 3494 spin_unlock(&fs_info->super_lock); 3495 3496 return 0; 3497 } 3498 3499 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 3500 char *options) 3501 { 3502 u32 sectorsize; 3503 u32 nodesize; 3504 u32 stripesize; 3505 u64 generation; 3506 u64 features; 3507 u16 csum_type; 3508 struct btrfs_super_block *disk_super; 3509 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3510 struct btrfs_root *tree_root; 3511 struct btrfs_root *chunk_root; 3512 int ret; 3513 int err = -EINVAL; 3514 int level; 3515 3516 ret = init_mount_fs_info(fs_info, sb); 3517 if (ret) { 3518 err = ret; 3519 goto fail; 3520 } 3521 3522 /* These need to be init'ed before we start creating inodes and such. */ 3523 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3524 GFP_KERNEL); 3525 fs_info->tree_root = tree_root; 3526 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3527 GFP_KERNEL); 3528 fs_info->chunk_root = chunk_root; 3529 if (!tree_root || !chunk_root) { 3530 err = -ENOMEM; 3531 goto fail; 3532 } 3533 3534 fs_info->btree_inode = new_inode(sb); 3535 if (!fs_info->btree_inode) { 3536 err = -ENOMEM; 3537 goto fail; 3538 } 3539 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 3540 btrfs_init_btree_inode(fs_info); 3541 3542 invalidate_bdev(fs_devices->latest_dev->bdev); 3543 3544 /* 3545 * Read super block and check the signature bytes only 3546 */ 3547 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev); 3548 if (IS_ERR(disk_super)) { 3549 err = PTR_ERR(disk_super); 3550 goto fail_alloc; 3551 } 3552 3553 /* 3554 * Verify the type first, if that or the checksum value are 3555 * corrupted, we'll find out 3556 */ 3557 csum_type = btrfs_super_csum_type(disk_super); 3558 if (!btrfs_supported_super_csum(csum_type)) { 3559 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3560 csum_type); 3561 err = -EINVAL; 3562 btrfs_release_disk_super(disk_super); 3563 goto fail_alloc; 3564 } 3565 3566 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3567 3568 ret = btrfs_init_csum_hash(fs_info, csum_type); 3569 if (ret) { 3570 err = ret; 3571 btrfs_release_disk_super(disk_super); 3572 goto fail_alloc; 3573 } 3574 3575 /* 3576 * We want to check superblock checksum, the type is stored inside. 3577 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3578 */ 3579 if (btrfs_check_super_csum(fs_info, disk_super)) { 3580 btrfs_err(fs_info, "superblock checksum mismatch"); 3581 err = -EINVAL; 3582 btrfs_release_disk_super(disk_super); 3583 goto fail_alloc; 3584 } 3585 3586 /* 3587 * super_copy is zeroed at allocation time and we never touch the 3588 * following bytes up to INFO_SIZE, the checksum is calculated from 3589 * the whole block of INFO_SIZE 3590 */ 3591 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3592 btrfs_release_disk_super(disk_super); 3593 3594 disk_super = fs_info->super_copy; 3595 3596 3597 features = btrfs_super_flags(disk_super); 3598 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 3599 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 3600 btrfs_set_super_flags(disk_super, features); 3601 btrfs_info(fs_info, 3602 "found metadata UUID change in progress flag, clearing"); 3603 } 3604 3605 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3606 sizeof(*fs_info->super_for_commit)); 3607 3608 ret = btrfs_validate_mount_super(fs_info); 3609 if (ret) { 3610 btrfs_err(fs_info, "superblock contains fatal errors"); 3611 err = -EINVAL; 3612 goto fail_alloc; 3613 } 3614 3615 if (!btrfs_super_root(disk_super)) 3616 goto fail_alloc; 3617 3618 /* check FS state, whether FS is broken. */ 3619 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3620 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 3621 3622 /* 3623 * In the long term, we'll store the compression type in the super 3624 * block, and it'll be used for per file compression control. 3625 */ 3626 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 3627 3628 3629 /* Set up fs_info before parsing mount options */ 3630 nodesize = btrfs_super_nodesize(disk_super); 3631 sectorsize = btrfs_super_sectorsize(disk_super); 3632 stripesize = sectorsize; 3633 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3634 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3635 3636 fs_info->nodesize = nodesize; 3637 fs_info->sectorsize = sectorsize; 3638 fs_info->sectorsize_bits = ilog2(sectorsize); 3639 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3640 fs_info->stripesize = stripesize; 3641 3642 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 3643 if (ret) { 3644 err = ret; 3645 goto fail_alloc; 3646 } 3647 3648 ret = btrfs_check_features(fs_info, !sb_rdonly(sb)); 3649 if (ret < 0) { 3650 err = ret; 3651 goto fail_alloc; 3652 } 3653 3654 if (sectorsize < PAGE_SIZE) { 3655 struct btrfs_subpage_info *subpage_info; 3656 3657 /* 3658 * V1 space cache has some hardcoded PAGE_SIZE usage, and is 3659 * going to be deprecated. 3660 * 3661 * Force to use v2 cache for subpage case. 3662 */ 3663 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 3664 btrfs_set_and_info(fs_info, FREE_SPACE_TREE, 3665 "forcing free space tree for sector size %u with page size %lu", 3666 sectorsize, PAGE_SIZE); 3667 3668 btrfs_warn(fs_info, 3669 "read-write for sector size %u with page size %lu is experimental", 3670 sectorsize, PAGE_SIZE); 3671 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL); 3672 if (!subpage_info) 3673 goto fail_alloc; 3674 btrfs_init_subpage_info(subpage_info, sectorsize); 3675 fs_info->subpage_info = subpage_info; 3676 } 3677 3678 ret = btrfs_init_workqueues(fs_info); 3679 if (ret) { 3680 err = ret; 3681 goto fail_sb_buffer; 3682 } 3683 3684 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3685 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3686 3687 sb->s_blocksize = sectorsize; 3688 sb->s_blocksize_bits = blksize_bits(sectorsize); 3689 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3690 3691 mutex_lock(&fs_info->chunk_mutex); 3692 ret = btrfs_read_sys_array(fs_info); 3693 mutex_unlock(&fs_info->chunk_mutex); 3694 if (ret) { 3695 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3696 goto fail_sb_buffer; 3697 } 3698 3699 generation = btrfs_super_chunk_root_generation(disk_super); 3700 level = btrfs_super_chunk_root_level(disk_super); 3701 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super), 3702 generation, level); 3703 if (ret) { 3704 btrfs_err(fs_info, "failed to read chunk root"); 3705 goto fail_tree_roots; 3706 } 3707 3708 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3709 offsetof(struct btrfs_header, chunk_tree_uuid), 3710 BTRFS_UUID_SIZE); 3711 3712 ret = btrfs_read_chunk_tree(fs_info); 3713 if (ret) { 3714 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3715 goto fail_tree_roots; 3716 } 3717 3718 /* 3719 * At this point we know all the devices that make this filesystem, 3720 * including the seed devices but we don't know yet if the replace 3721 * target is required. So free devices that are not part of this 3722 * filesystem but skip the replace target device which is checked 3723 * below in btrfs_init_dev_replace(). 3724 */ 3725 btrfs_free_extra_devids(fs_devices); 3726 if (!fs_devices->latest_dev->bdev) { 3727 btrfs_err(fs_info, "failed to read devices"); 3728 goto fail_tree_roots; 3729 } 3730 3731 ret = init_tree_roots(fs_info); 3732 if (ret) 3733 goto fail_tree_roots; 3734 3735 /* 3736 * Get zone type information of zoned block devices. This will also 3737 * handle emulation of a zoned filesystem if a regular device has the 3738 * zoned incompat feature flag set. 3739 */ 3740 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3741 if (ret) { 3742 btrfs_err(fs_info, 3743 "zoned: failed to read device zone info: %d", 3744 ret); 3745 goto fail_block_groups; 3746 } 3747 3748 /* 3749 * If we have a uuid root and we're not being told to rescan we need to 3750 * check the generation here so we can set the 3751 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3752 * transaction during a balance or the log replay without updating the 3753 * uuid generation, and then if we crash we would rescan the uuid tree, 3754 * even though it was perfectly fine. 3755 */ 3756 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3757 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3758 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3759 3760 ret = btrfs_verify_dev_extents(fs_info); 3761 if (ret) { 3762 btrfs_err(fs_info, 3763 "failed to verify dev extents against chunks: %d", 3764 ret); 3765 goto fail_block_groups; 3766 } 3767 ret = btrfs_recover_balance(fs_info); 3768 if (ret) { 3769 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3770 goto fail_block_groups; 3771 } 3772 3773 ret = btrfs_init_dev_stats(fs_info); 3774 if (ret) { 3775 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3776 goto fail_block_groups; 3777 } 3778 3779 ret = btrfs_init_dev_replace(fs_info); 3780 if (ret) { 3781 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3782 goto fail_block_groups; 3783 } 3784 3785 ret = btrfs_check_zoned_mode(fs_info); 3786 if (ret) { 3787 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3788 ret); 3789 goto fail_block_groups; 3790 } 3791 3792 ret = btrfs_sysfs_add_fsid(fs_devices); 3793 if (ret) { 3794 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3795 ret); 3796 goto fail_block_groups; 3797 } 3798 3799 ret = btrfs_sysfs_add_mounted(fs_info); 3800 if (ret) { 3801 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3802 goto fail_fsdev_sysfs; 3803 } 3804 3805 ret = btrfs_init_space_info(fs_info); 3806 if (ret) { 3807 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3808 goto fail_sysfs; 3809 } 3810 3811 ret = btrfs_read_block_groups(fs_info); 3812 if (ret) { 3813 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3814 goto fail_sysfs; 3815 } 3816 3817 btrfs_free_zone_cache(fs_info); 3818 3819 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && 3820 !btrfs_check_rw_degradable(fs_info, NULL)) { 3821 btrfs_warn(fs_info, 3822 "writable mount is not allowed due to too many missing devices"); 3823 goto fail_sysfs; 3824 } 3825 3826 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, 3827 "btrfs-cleaner"); 3828 if (IS_ERR(fs_info->cleaner_kthread)) 3829 goto fail_sysfs; 3830 3831 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3832 tree_root, 3833 "btrfs-transaction"); 3834 if (IS_ERR(fs_info->transaction_kthread)) 3835 goto fail_cleaner; 3836 3837 if (!btrfs_test_opt(fs_info, NOSSD) && 3838 !fs_info->fs_devices->rotating) { 3839 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3840 } 3841 3842 /* 3843 * For devices supporting discard turn on discard=async automatically, 3844 * unless it's already set or disabled. This could be turned off by 3845 * nodiscard for the same mount. 3846 */ 3847 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) || 3848 btrfs_test_opt(fs_info, DISCARD_ASYNC) || 3849 btrfs_test_opt(fs_info, NODISCARD)) && 3850 fs_info->fs_devices->discardable) { 3851 btrfs_set_and_info(fs_info, DISCARD_ASYNC, 3852 "auto enabling async discard"); 3853 btrfs_clear_opt(fs_info->mount_opt, NODISCARD); 3854 } 3855 3856 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3857 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3858 ret = btrfsic_mount(fs_info, fs_devices, 3859 btrfs_test_opt(fs_info, 3860 CHECK_INTEGRITY_DATA) ? 1 : 0, 3861 fs_info->check_integrity_print_mask); 3862 if (ret) 3863 btrfs_warn(fs_info, 3864 "failed to initialize integrity check module: %d", 3865 ret); 3866 } 3867 #endif 3868 ret = btrfs_read_qgroup_config(fs_info); 3869 if (ret) 3870 goto fail_trans_kthread; 3871 3872 if (btrfs_build_ref_tree(fs_info)) 3873 btrfs_err(fs_info, "couldn't build ref tree"); 3874 3875 /* do not make disk changes in broken FS or nologreplay is given */ 3876 if (btrfs_super_log_root(disk_super) != 0 && 3877 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3878 btrfs_info(fs_info, "start tree-log replay"); 3879 ret = btrfs_replay_log(fs_info, fs_devices); 3880 if (ret) { 3881 err = ret; 3882 goto fail_qgroup; 3883 } 3884 } 3885 3886 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3887 if (IS_ERR(fs_info->fs_root)) { 3888 err = PTR_ERR(fs_info->fs_root); 3889 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3890 fs_info->fs_root = NULL; 3891 goto fail_qgroup; 3892 } 3893 3894 if (sb_rdonly(sb)) 3895 goto clear_oneshot; 3896 3897 ret = btrfs_start_pre_rw_mount(fs_info); 3898 if (ret) { 3899 close_ctree(fs_info); 3900 return ret; 3901 } 3902 btrfs_discard_resume(fs_info); 3903 3904 if (fs_info->uuid_root && 3905 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3906 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3907 btrfs_info(fs_info, "checking UUID tree"); 3908 ret = btrfs_check_uuid_tree(fs_info); 3909 if (ret) { 3910 btrfs_warn(fs_info, 3911 "failed to check the UUID tree: %d", ret); 3912 close_ctree(fs_info); 3913 return ret; 3914 } 3915 } 3916 3917 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3918 3919 /* Kick the cleaner thread so it'll start deleting snapshots. */ 3920 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) 3921 wake_up_process(fs_info->cleaner_kthread); 3922 3923 clear_oneshot: 3924 btrfs_clear_oneshot_options(fs_info); 3925 return 0; 3926 3927 fail_qgroup: 3928 btrfs_free_qgroup_config(fs_info); 3929 fail_trans_kthread: 3930 kthread_stop(fs_info->transaction_kthread); 3931 btrfs_cleanup_transaction(fs_info); 3932 btrfs_free_fs_roots(fs_info); 3933 fail_cleaner: 3934 kthread_stop(fs_info->cleaner_kthread); 3935 3936 /* 3937 * make sure we're done with the btree inode before we stop our 3938 * kthreads 3939 */ 3940 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3941 3942 fail_sysfs: 3943 btrfs_sysfs_remove_mounted(fs_info); 3944 3945 fail_fsdev_sysfs: 3946 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3947 3948 fail_block_groups: 3949 btrfs_put_block_group_cache(fs_info); 3950 3951 fail_tree_roots: 3952 if (fs_info->data_reloc_root) 3953 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3954 free_root_pointers(fs_info, true); 3955 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3956 3957 fail_sb_buffer: 3958 btrfs_stop_all_workers(fs_info); 3959 btrfs_free_block_groups(fs_info); 3960 fail_alloc: 3961 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3962 3963 iput(fs_info->btree_inode); 3964 fail: 3965 btrfs_close_devices(fs_info->fs_devices); 3966 return err; 3967 } 3968 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3969 3970 static void btrfs_end_super_write(struct bio *bio) 3971 { 3972 struct btrfs_device *device = bio->bi_private; 3973 struct bio_vec *bvec; 3974 struct bvec_iter_all iter_all; 3975 struct page *page; 3976 3977 bio_for_each_segment_all(bvec, bio, iter_all) { 3978 page = bvec->bv_page; 3979 3980 if (bio->bi_status) { 3981 btrfs_warn_rl_in_rcu(device->fs_info, 3982 "lost page write due to IO error on %s (%d)", 3983 btrfs_dev_name(device), 3984 blk_status_to_errno(bio->bi_status)); 3985 ClearPageUptodate(page); 3986 SetPageError(page); 3987 btrfs_dev_stat_inc_and_print(device, 3988 BTRFS_DEV_STAT_WRITE_ERRS); 3989 } else { 3990 SetPageUptodate(page); 3991 } 3992 3993 put_page(page); 3994 unlock_page(page); 3995 } 3996 3997 bio_put(bio); 3998 } 3999 4000 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 4001 int copy_num, bool drop_cache) 4002 { 4003 struct btrfs_super_block *super; 4004 struct page *page; 4005 u64 bytenr, bytenr_orig; 4006 struct address_space *mapping = bdev->bd_inode->i_mapping; 4007 int ret; 4008 4009 bytenr_orig = btrfs_sb_offset(copy_num); 4010 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 4011 if (ret == -ENOENT) 4012 return ERR_PTR(-EINVAL); 4013 else if (ret) 4014 return ERR_PTR(ret); 4015 4016 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) 4017 return ERR_PTR(-EINVAL); 4018 4019 if (drop_cache) { 4020 /* This should only be called with the primary sb. */ 4021 ASSERT(copy_num == 0); 4022 4023 /* 4024 * Drop the page of the primary superblock, so later read will 4025 * always read from the device. 4026 */ 4027 invalidate_inode_pages2_range(mapping, 4028 bytenr >> PAGE_SHIFT, 4029 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT); 4030 } 4031 4032 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 4033 if (IS_ERR(page)) 4034 return ERR_CAST(page); 4035 4036 super = page_address(page); 4037 if (btrfs_super_magic(super) != BTRFS_MAGIC) { 4038 btrfs_release_disk_super(super); 4039 return ERR_PTR(-ENODATA); 4040 } 4041 4042 if (btrfs_super_bytenr(super) != bytenr_orig) { 4043 btrfs_release_disk_super(super); 4044 return ERR_PTR(-EINVAL); 4045 } 4046 4047 return super; 4048 } 4049 4050 4051 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 4052 { 4053 struct btrfs_super_block *super, *latest = NULL; 4054 int i; 4055 u64 transid = 0; 4056 4057 /* we would like to check all the supers, but that would make 4058 * a btrfs mount succeed after a mkfs from a different FS. 4059 * So, we need to add a special mount option to scan for 4060 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 4061 */ 4062 for (i = 0; i < 1; i++) { 4063 super = btrfs_read_dev_one_super(bdev, i, false); 4064 if (IS_ERR(super)) 4065 continue; 4066 4067 if (!latest || btrfs_super_generation(super) > transid) { 4068 if (latest) 4069 btrfs_release_disk_super(super); 4070 4071 latest = super; 4072 transid = btrfs_super_generation(super); 4073 } 4074 } 4075 4076 return super; 4077 } 4078 4079 /* 4080 * Write superblock @sb to the @device. Do not wait for completion, all the 4081 * pages we use for writing are locked. 4082 * 4083 * Write @max_mirrors copies of the superblock, where 0 means default that fit 4084 * the expected device size at commit time. Note that max_mirrors must be 4085 * same for write and wait phases. 4086 * 4087 * Return number of errors when page is not found or submission fails. 4088 */ 4089 static int write_dev_supers(struct btrfs_device *device, 4090 struct btrfs_super_block *sb, int max_mirrors) 4091 { 4092 struct btrfs_fs_info *fs_info = device->fs_info; 4093 struct address_space *mapping = device->bdev->bd_inode->i_mapping; 4094 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 4095 int i; 4096 int errors = 0; 4097 int ret; 4098 u64 bytenr, bytenr_orig; 4099 4100 if (max_mirrors == 0) 4101 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 4102 4103 shash->tfm = fs_info->csum_shash; 4104 4105 for (i = 0; i < max_mirrors; i++) { 4106 struct page *page; 4107 struct bio *bio; 4108 struct btrfs_super_block *disk_super; 4109 4110 bytenr_orig = btrfs_sb_offset(i); 4111 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 4112 if (ret == -ENOENT) { 4113 continue; 4114 } else if (ret < 0) { 4115 btrfs_err(device->fs_info, 4116 "couldn't get super block location for mirror %d", 4117 i); 4118 errors++; 4119 continue; 4120 } 4121 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 4122 device->commit_total_bytes) 4123 break; 4124 4125 btrfs_set_super_bytenr(sb, bytenr_orig); 4126 4127 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 4128 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 4129 sb->csum); 4130 4131 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT, 4132 GFP_NOFS); 4133 if (!page) { 4134 btrfs_err(device->fs_info, 4135 "couldn't get super block page for bytenr %llu", 4136 bytenr); 4137 errors++; 4138 continue; 4139 } 4140 4141 /* Bump the refcount for wait_dev_supers() */ 4142 get_page(page); 4143 4144 disk_super = page_address(page); 4145 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 4146 4147 /* 4148 * Directly use bios here instead of relying on the page cache 4149 * to do I/O, so we don't lose the ability to do integrity 4150 * checking. 4151 */ 4152 bio = bio_alloc(device->bdev, 1, 4153 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, 4154 GFP_NOFS); 4155 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 4156 bio->bi_private = device; 4157 bio->bi_end_io = btrfs_end_super_write; 4158 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE, 4159 offset_in_page(bytenr)); 4160 4161 /* 4162 * We FUA only the first super block. The others we allow to 4163 * go down lazy and there's a short window where the on-disk 4164 * copies might still contain the older version. 4165 */ 4166 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 4167 bio->bi_opf |= REQ_FUA; 4168 4169 btrfsic_check_bio(bio); 4170 submit_bio(bio); 4171 4172 if (btrfs_advance_sb_log(device, i)) 4173 errors++; 4174 } 4175 return errors < i ? 0 : -1; 4176 } 4177 4178 /* 4179 * Wait for write completion of superblocks done by write_dev_supers, 4180 * @max_mirrors same for write and wait phases. 4181 * 4182 * Return number of errors when page is not found or not marked up to 4183 * date. 4184 */ 4185 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 4186 { 4187 int i; 4188 int errors = 0; 4189 bool primary_failed = false; 4190 int ret; 4191 u64 bytenr; 4192 4193 if (max_mirrors == 0) 4194 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 4195 4196 for (i = 0; i < max_mirrors; i++) { 4197 struct page *page; 4198 4199 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 4200 if (ret == -ENOENT) { 4201 break; 4202 } else if (ret < 0) { 4203 errors++; 4204 if (i == 0) 4205 primary_failed = true; 4206 continue; 4207 } 4208 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 4209 device->commit_total_bytes) 4210 break; 4211 4212 page = find_get_page(device->bdev->bd_inode->i_mapping, 4213 bytenr >> PAGE_SHIFT); 4214 if (!page) { 4215 errors++; 4216 if (i == 0) 4217 primary_failed = true; 4218 continue; 4219 } 4220 /* Page is submitted locked and unlocked once the IO completes */ 4221 wait_on_page_locked(page); 4222 if (PageError(page)) { 4223 errors++; 4224 if (i == 0) 4225 primary_failed = true; 4226 } 4227 4228 /* Drop our reference */ 4229 put_page(page); 4230 4231 /* Drop the reference from the writing run */ 4232 put_page(page); 4233 } 4234 4235 /* log error, force error return */ 4236 if (primary_failed) { 4237 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 4238 device->devid); 4239 return -1; 4240 } 4241 4242 return errors < i ? 0 : -1; 4243 } 4244 4245 /* 4246 * endio for the write_dev_flush, this will wake anyone waiting 4247 * for the barrier when it is done 4248 */ 4249 static void btrfs_end_empty_barrier(struct bio *bio) 4250 { 4251 bio_uninit(bio); 4252 complete(bio->bi_private); 4253 } 4254 4255 /* 4256 * Submit a flush request to the device if it supports it. Error handling is 4257 * done in the waiting counterpart. 4258 */ 4259 static void write_dev_flush(struct btrfs_device *device) 4260 { 4261 struct bio *bio = &device->flush_bio; 4262 4263 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4264 /* 4265 * When a disk has write caching disabled, we skip submission of a bio 4266 * with flush and sync requests before writing the superblock, since 4267 * it's not needed. However when the integrity checker is enabled, this 4268 * results in reports that there are metadata blocks referred by a 4269 * superblock that were not properly flushed. So don't skip the bio 4270 * submission only when the integrity checker is enabled for the sake 4271 * of simplicity, since this is a debug tool and not meant for use in 4272 * non-debug builds. 4273 */ 4274 if (!bdev_write_cache(device->bdev)) 4275 return; 4276 #endif 4277 4278 bio_init(bio, device->bdev, NULL, 0, 4279 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); 4280 bio->bi_end_io = btrfs_end_empty_barrier; 4281 init_completion(&device->flush_wait); 4282 bio->bi_private = &device->flush_wait; 4283 4284 btrfsic_check_bio(bio); 4285 submit_bio(bio); 4286 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 4287 } 4288 4289 /* 4290 * If the flush bio has been submitted by write_dev_flush, wait for it. 4291 */ 4292 static blk_status_t wait_dev_flush(struct btrfs_device *device) 4293 { 4294 struct bio *bio = &device->flush_bio; 4295 4296 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 4297 return BLK_STS_OK; 4298 4299 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 4300 wait_for_completion_io(&device->flush_wait); 4301 4302 return bio->bi_status; 4303 } 4304 4305 static int check_barrier_error(struct btrfs_fs_info *fs_info) 4306 { 4307 if (!btrfs_check_rw_degradable(fs_info, NULL)) 4308 return -EIO; 4309 return 0; 4310 } 4311 4312 /* 4313 * send an empty flush down to each device in parallel, 4314 * then wait for them 4315 */ 4316 static int barrier_all_devices(struct btrfs_fs_info *info) 4317 { 4318 struct list_head *head; 4319 struct btrfs_device *dev; 4320 int errors_wait = 0; 4321 blk_status_t ret; 4322 4323 lockdep_assert_held(&info->fs_devices->device_list_mutex); 4324 /* send down all the barriers */ 4325 head = &info->fs_devices->devices; 4326 list_for_each_entry(dev, head, dev_list) { 4327 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 4328 continue; 4329 if (!dev->bdev) 4330 continue; 4331 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4332 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4333 continue; 4334 4335 write_dev_flush(dev); 4336 dev->last_flush_error = BLK_STS_OK; 4337 } 4338 4339 /* wait for all the barriers */ 4340 list_for_each_entry(dev, head, dev_list) { 4341 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 4342 continue; 4343 if (!dev->bdev) { 4344 errors_wait++; 4345 continue; 4346 } 4347 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4348 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4349 continue; 4350 4351 ret = wait_dev_flush(dev); 4352 if (ret) { 4353 dev->last_flush_error = ret; 4354 btrfs_dev_stat_inc_and_print(dev, 4355 BTRFS_DEV_STAT_FLUSH_ERRS); 4356 errors_wait++; 4357 } 4358 } 4359 4360 if (errors_wait) { 4361 /* 4362 * At some point we need the status of all disks 4363 * to arrive at the volume status. So error checking 4364 * is being pushed to a separate loop. 4365 */ 4366 return check_barrier_error(info); 4367 } 4368 return 0; 4369 } 4370 4371 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 4372 { 4373 int raid_type; 4374 int min_tolerated = INT_MAX; 4375 4376 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 4377 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 4378 min_tolerated = min_t(int, min_tolerated, 4379 btrfs_raid_array[BTRFS_RAID_SINGLE]. 4380 tolerated_failures); 4381 4382 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4383 if (raid_type == BTRFS_RAID_SINGLE) 4384 continue; 4385 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 4386 continue; 4387 min_tolerated = min_t(int, min_tolerated, 4388 btrfs_raid_array[raid_type]. 4389 tolerated_failures); 4390 } 4391 4392 if (min_tolerated == INT_MAX) { 4393 pr_warn("BTRFS: unknown raid flag: %llu", flags); 4394 min_tolerated = 0; 4395 } 4396 4397 return min_tolerated; 4398 } 4399 4400 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 4401 { 4402 struct list_head *head; 4403 struct btrfs_device *dev; 4404 struct btrfs_super_block *sb; 4405 struct btrfs_dev_item *dev_item; 4406 int ret; 4407 int do_barriers; 4408 int max_errors; 4409 int total_errors = 0; 4410 u64 flags; 4411 4412 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 4413 4414 /* 4415 * max_mirrors == 0 indicates we're from commit_transaction, 4416 * not from fsync where the tree roots in fs_info have not 4417 * been consistent on disk. 4418 */ 4419 if (max_mirrors == 0) 4420 backup_super_roots(fs_info); 4421 4422 sb = fs_info->super_for_commit; 4423 dev_item = &sb->dev_item; 4424 4425 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4426 head = &fs_info->fs_devices->devices; 4427 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4428 4429 if (do_barriers) { 4430 ret = barrier_all_devices(fs_info); 4431 if (ret) { 4432 mutex_unlock( 4433 &fs_info->fs_devices->device_list_mutex); 4434 btrfs_handle_fs_error(fs_info, ret, 4435 "errors while submitting device barriers."); 4436 return ret; 4437 } 4438 } 4439 4440 list_for_each_entry(dev, head, dev_list) { 4441 if (!dev->bdev) { 4442 total_errors++; 4443 continue; 4444 } 4445 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4446 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4447 continue; 4448 4449 btrfs_set_stack_device_generation(dev_item, 0); 4450 btrfs_set_stack_device_type(dev_item, dev->type); 4451 btrfs_set_stack_device_id(dev_item, dev->devid); 4452 btrfs_set_stack_device_total_bytes(dev_item, 4453 dev->commit_total_bytes); 4454 btrfs_set_stack_device_bytes_used(dev_item, 4455 dev->commit_bytes_used); 4456 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4457 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4458 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4459 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4460 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4461 BTRFS_FSID_SIZE); 4462 4463 flags = btrfs_super_flags(sb); 4464 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4465 4466 ret = btrfs_validate_write_super(fs_info, sb); 4467 if (ret < 0) { 4468 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4469 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4470 "unexpected superblock corruption detected"); 4471 return -EUCLEAN; 4472 } 4473 4474 ret = write_dev_supers(dev, sb, max_mirrors); 4475 if (ret) 4476 total_errors++; 4477 } 4478 if (total_errors > max_errors) { 4479 btrfs_err(fs_info, "%d errors while writing supers", 4480 total_errors); 4481 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4482 4483 /* FUA is masked off if unsupported and can't be the reason */ 4484 btrfs_handle_fs_error(fs_info, -EIO, 4485 "%d errors while writing supers", 4486 total_errors); 4487 return -EIO; 4488 } 4489 4490 total_errors = 0; 4491 list_for_each_entry(dev, head, dev_list) { 4492 if (!dev->bdev) 4493 continue; 4494 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4495 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4496 continue; 4497 4498 ret = wait_dev_supers(dev, max_mirrors); 4499 if (ret) 4500 total_errors++; 4501 } 4502 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4503 if (total_errors > max_errors) { 4504 btrfs_handle_fs_error(fs_info, -EIO, 4505 "%d errors while writing supers", 4506 total_errors); 4507 return -EIO; 4508 } 4509 return 0; 4510 } 4511 4512 /* Drop a fs root from the radix tree and free it. */ 4513 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4514 struct btrfs_root *root) 4515 { 4516 bool drop_ref = false; 4517 4518 spin_lock(&fs_info->fs_roots_radix_lock); 4519 radix_tree_delete(&fs_info->fs_roots_radix, 4520 (unsigned long)root->root_key.objectid); 4521 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4522 drop_ref = true; 4523 spin_unlock(&fs_info->fs_roots_radix_lock); 4524 4525 if (BTRFS_FS_ERROR(fs_info)) { 4526 ASSERT(root->log_root == NULL); 4527 if (root->reloc_root) { 4528 btrfs_put_root(root->reloc_root); 4529 root->reloc_root = NULL; 4530 } 4531 } 4532 4533 if (drop_ref) 4534 btrfs_put_root(root); 4535 } 4536 4537 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 4538 { 4539 u64 root_objectid = 0; 4540 struct btrfs_root *gang[8]; 4541 int i = 0; 4542 int err = 0; 4543 unsigned int ret = 0; 4544 4545 while (1) { 4546 spin_lock(&fs_info->fs_roots_radix_lock); 4547 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4548 (void **)gang, root_objectid, 4549 ARRAY_SIZE(gang)); 4550 if (!ret) { 4551 spin_unlock(&fs_info->fs_roots_radix_lock); 4552 break; 4553 } 4554 root_objectid = gang[ret - 1]->root_key.objectid + 1; 4555 4556 for (i = 0; i < ret; i++) { 4557 /* Avoid to grab roots in dead_roots */ 4558 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 4559 gang[i] = NULL; 4560 continue; 4561 } 4562 /* grab all the search result for later use */ 4563 gang[i] = btrfs_grab_root(gang[i]); 4564 } 4565 spin_unlock(&fs_info->fs_roots_radix_lock); 4566 4567 for (i = 0; i < ret; i++) { 4568 if (!gang[i]) 4569 continue; 4570 root_objectid = gang[i]->root_key.objectid; 4571 err = btrfs_orphan_cleanup(gang[i]); 4572 if (err) 4573 break; 4574 btrfs_put_root(gang[i]); 4575 } 4576 root_objectid++; 4577 } 4578 4579 /* release the uncleaned roots due to error */ 4580 for (; i < ret; i++) { 4581 if (gang[i]) 4582 btrfs_put_root(gang[i]); 4583 } 4584 return err; 4585 } 4586 4587 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4588 { 4589 struct btrfs_root *root = fs_info->tree_root; 4590 struct btrfs_trans_handle *trans; 4591 4592 mutex_lock(&fs_info->cleaner_mutex); 4593 btrfs_run_delayed_iputs(fs_info); 4594 mutex_unlock(&fs_info->cleaner_mutex); 4595 wake_up_process(fs_info->cleaner_kthread); 4596 4597 /* wait until ongoing cleanup work done */ 4598 down_write(&fs_info->cleanup_work_sem); 4599 up_write(&fs_info->cleanup_work_sem); 4600 4601 trans = btrfs_join_transaction(root); 4602 if (IS_ERR(trans)) 4603 return PTR_ERR(trans); 4604 return btrfs_commit_transaction(trans); 4605 } 4606 4607 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) 4608 { 4609 struct btrfs_transaction *trans; 4610 struct btrfs_transaction *tmp; 4611 bool found = false; 4612 4613 if (list_empty(&fs_info->trans_list)) 4614 return; 4615 4616 /* 4617 * This function is only called at the very end of close_ctree(), 4618 * thus no other running transaction, no need to take trans_lock. 4619 */ 4620 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); 4621 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { 4622 struct extent_state *cached = NULL; 4623 u64 dirty_bytes = 0; 4624 u64 cur = 0; 4625 u64 found_start; 4626 u64 found_end; 4627 4628 found = true; 4629 while (!find_first_extent_bit(&trans->dirty_pages, cur, 4630 &found_start, &found_end, EXTENT_DIRTY, &cached)) { 4631 dirty_bytes += found_end + 1 - found_start; 4632 cur = found_end + 1; 4633 } 4634 btrfs_warn(fs_info, 4635 "transaction %llu (with %llu dirty metadata bytes) is not committed", 4636 trans->transid, dirty_bytes); 4637 btrfs_cleanup_one_transaction(trans, fs_info); 4638 4639 if (trans == fs_info->running_transaction) 4640 fs_info->running_transaction = NULL; 4641 list_del_init(&trans->list); 4642 4643 btrfs_put_transaction(trans); 4644 trace_btrfs_transaction_commit(fs_info); 4645 } 4646 ASSERT(!found); 4647 } 4648 4649 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4650 { 4651 int ret; 4652 4653 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4654 4655 /* 4656 * If we had UNFINISHED_DROPS we could still be processing them, so 4657 * clear that bit and wake up relocation so it can stop. 4658 * We must do this before stopping the block group reclaim task, because 4659 * at btrfs_relocate_block_group() we wait for this bit, and after the 4660 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we 4661 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will 4662 * return 1. 4663 */ 4664 btrfs_wake_unfinished_drop(fs_info); 4665 4666 /* 4667 * We may have the reclaim task running and relocating a data block group, 4668 * in which case it may create delayed iputs. So stop it before we park 4669 * the cleaner kthread otherwise we can get new delayed iputs after 4670 * parking the cleaner, and that can make the async reclaim task to hang 4671 * if it's waiting for delayed iputs to complete, since the cleaner is 4672 * parked and can not run delayed iputs - this will make us hang when 4673 * trying to stop the async reclaim task. 4674 */ 4675 cancel_work_sync(&fs_info->reclaim_bgs_work); 4676 /* 4677 * We don't want the cleaner to start new transactions, add more delayed 4678 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4679 * because that frees the task_struct, and the transaction kthread might 4680 * still try to wake up the cleaner. 4681 */ 4682 kthread_park(fs_info->cleaner_kthread); 4683 4684 /* wait for the qgroup rescan worker to stop */ 4685 btrfs_qgroup_wait_for_completion(fs_info, false); 4686 4687 /* wait for the uuid_scan task to finish */ 4688 down(&fs_info->uuid_tree_rescan_sem); 4689 /* avoid complains from lockdep et al., set sem back to initial state */ 4690 up(&fs_info->uuid_tree_rescan_sem); 4691 4692 /* pause restriper - we want to resume on mount */ 4693 btrfs_pause_balance(fs_info); 4694 4695 btrfs_dev_replace_suspend_for_unmount(fs_info); 4696 4697 btrfs_scrub_cancel(fs_info); 4698 4699 /* wait for any defraggers to finish */ 4700 wait_event(fs_info->transaction_wait, 4701 (atomic_read(&fs_info->defrag_running) == 0)); 4702 4703 /* clear out the rbtree of defraggable inodes */ 4704 btrfs_cleanup_defrag_inodes(fs_info); 4705 4706 /* 4707 * After we parked the cleaner kthread, ordered extents may have 4708 * completed and created new delayed iputs. If one of the async reclaim 4709 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we 4710 * can hang forever trying to stop it, because if a delayed iput is 4711 * added after it ran btrfs_run_delayed_iputs() and before it called 4712 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is 4713 * no one else to run iputs. 4714 * 4715 * So wait for all ongoing ordered extents to complete and then run 4716 * delayed iputs. This works because once we reach this point no one 4717 * can either create new ordered extents nor create delayed iputs 4718 * through some other means. 4719 * 4720 * Also note that btrfs_wait_ordered_roots() is not safe here, because 4721 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, 4722 * but the delayed iput for the respective inode is made only when doing 4723 * the final btrfs_put_ordered_extent() (which must happen at 4724 * btrfs_finish_ordered_io() when we are unmounting). 4725 */ 4726 btrfs_flush_workqueue(fs_info->endio_write_workers); 4727 /* Ordered extents for free space inodes. */ 4728 btrfs_flush_workqueue(fs_info->endio_freespace_worker); 4729 btrfs_run_delayed_iputs(fs_info); 4730 4731 cancel_work_sync(&fs_info->async_reclaim_work); 4732 cancel_work_sync(&fs_info->async_data_reclaim_work); 4733 cancel_work_sync(&fs_info->preempt_reclaim_work); 4734 4735 /* Cancel or finish ongoing discard work */ 4736 btrfs_discard_cleanup(fs_info); 4737 4738 if (!sb_rdonly(fs_info->sb)) { 4739 /* 4740 * The cleaner kthread is stopped, so do one final pass over 4741 * unused block groups. 4742 */ 4743 btrfs_delete_unused_bgs(fs_info); 4744 4745 /* 4746 * There might be existing delayed inode workers still running 4747 * and holding an empty delayed inode item. We must wait for 4748 * them to complete first because they can create a transaction. 4749 * This happens when someone calls btrfs_balance_delayed_items() 4750 * and then a transaction commit runs the same delayed nodes 4751 * before any delayed worker has done something with the nodes. 4752 * We must wait for any worker here and not at transaction 4753 * commit time since that could cause a deadlock. 4754 * This is a very rare case. 4755 */ 4756 btrfs_flush_workqueue(fs_info->delayed_workers); 4757 4758 ret = btrfs_commit_super(fs_info); 4759 if (ret) 4760 btrfs_err(fs_info, "commit super ret %d", ret); 4761 } 4762 4763 if (BTRFS_FS_ERROR(fs_info)) 4764 btrfs_error_commit_super(fs_info); 4765 4766 kthread_stop(fs_info->transaction_kthread); 4767 kthread_stop(fs_info->cleaner_kthread); 4768 4769 ASSERT(list_empty(&fs_info->delayed_iputs)); 4770 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4771 4772 if (btrfs_check_quota_leak(fs_info)) { 4773 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4774 btrfs_err(fs_info, "qgroup reserved space leaked"); 4775 } 4776 4777 btrfs_free_qgroup_config(fs_info); 4778 ASSERT(list_empty(&fs_info->delalloc_roots)); 4779 4780 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4781 btrfs_info(fs_info, "at unmount delalloc count %lld", 4782 percpu_counter_sum(&fs_info->delalloc_bytes)); 4783 } 4784 4785 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4786 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4787 percpu_counter_sum(&fs_info->ordered_bytes)); 4788 4789 btrfs_sysfs_remove_mounted(fs_info); 4790 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4791 4792 btrfs_put_block_group_cache(fs_info); 4793 4794 /* 4795 * we must make sure there is not any read request to 4796 * submit after we stopping all workers. 4797 */ 4798 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4799 btrfs_stop_all_workers(fs_info); 4800 4801 /* We shouldn't have any transaction open at this point */ 4802 warn_about_uncommitted_trans(fs_info); 4803 4804 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4805 free_root_pointers(fs_info, true); 4806 btrfs_free_fs_roots(fs_info); 4807 4808 /* 4809 * We must free the block groups after dropping the fs_roots as we could 4810 * have had an IO error and have left over tree log blocks that aren't 4811 * cleaned up until the fs roots are freed. This makes the block group 4812 * accounting appear to be wrong because there's pending reserved bytes, 4813 * so make sure we do the block group cleanup afterwards. 4814 */ 4815 btrfs_free_block_groups(fs_info); 4816 4817 iput(fs_info->btree_inode); 4818 4819 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4820 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4821 btrfsic_unmount(fs_info->fs_devices); 4822 #endif 4823 4824 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4825 btrfs_close_devices(fs_info->fs_devices); 4826 } 4827 4828 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4829 int atomic) 4830 { 4831 int ret; 4832 struct inode *btree_inode = buf->pages[0]->mapping->host; 4833 4834 ret = extent_buffer_uptodate(buf); 4835 if (!ret) 4836 return ret; 4837 4838 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4839 parent_transid, atomic); 4840 if (ret == -EAGAIN) 4841 return ret; 4842 return !ret; 4843 } 4844 4845 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4846 { 4847 struct btrfs_fs_info *fs_info = buf->fs_info; 4848 u64 transid = btrfs_header_generation(buf); 4849 int was_dirty; 4850 4851 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4852 /* 4853 * This is a fast path so only do this check if we have sanity tests 4854 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4855 * outside of the sanity tests. 4856 */ 4857 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4858 return; 4859 #endif 4860 btrfs_assert_tree_write_locked(buf); 4861 if (transid != fs_info->generation) 4862 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4863 buf->start, transid, fs_info->generation); 4864 was_dirty = set_extent_buffer_dirty(buf); 4865 if (!was_dirty) 4866 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4867 buf->len, 4868 fs_info->dirty_metadata_batch); 4869 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4870 /* 4871 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4872 * but item data not updated. 4873 * So here we should only check item pointers, not item data. 4874 */ 4875 if (btrfs_header_level(buf) == 0 && 4876 btrfs_check_leaf_relaxed(buf)) { 4877 btrfs_print_leaf(buf); 4878 ASSERT(0); 4879 } 4880 #endif 4881 } 4882 4883 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4884 int flush_delayed) 4885 { 4886 /* 4887 * looks as though older kernels can get into trouble with 4888 * this code, they end up stuck in balance_dirty_pages forever 4889 */ 4890 int ret; 4891 4892 if (current->flags & PF_MEMALLOC) 4893 return; 4894 4895 if (flush_delayed) 4896 btrfs_balance_delayed_items(fs_info); 4897 4898 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4899 BTRFS_DIRTY_METADATA_THRESH, 4900 fs_info->dirty_metadata_batch); 4901 if (ret > 0) { 4902 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4903 } 4904 } 4905 4906 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4907 { 4908 __btrfs_btree_balance_dirty(fs_info, 1); 4909 } 4910 4911 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4912 { 4913 __btrfs_btree_balance_dirty(fs_info, 0); 4914 } 4915 4916 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4917 { 4918 /* cleanup FS via transaction */ 4919 btrfs_cleanup_transaction(fs_info); 4920 4921 mutex_lock(&fs_info->cleaner_mutex); 4922 btrfs_run_delayed_iputs(fs_info); 4923 mutex_unlock(&fs_info->cleaner_mutex); 4924 4925 down_write(&fs_info->cleanup_work_sem); 4926 up_write(&fs_info->cleanup_work_sem); 4927 } 4928 4929 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4930 { 4931 struct btrfs_root *gang[8]; 4932 u64 root_objectid = 0; 4933 int ret; 4934 4935 spin_lock(&fs_info->fs_roots_radix_lock); 4936 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4937 (void **)gang, root_objectid, 4938 ARRAY_SIZE(gang))) != 0) { 4939 int i; 4940 4941 for (i = 0; i < ret; i++) 4942 gang[i] = btrfs_grab_root(gang[i]); 4943 spin_unlock(&fs_info->fs_roots_radix_lock); 4944 4945 for (i = 0; i < ret; i++) { 4946 if (!gang[i]) 4947 continue; 4948 root_objectid = gang[i]->root_key.objectid; 4949 btrfs_free_log(NULL, gang[i]); 4950 btrfs_put_root(gang[i]); 4951 } 4952 root_objectid++; 4953 spin_lock(&fs_info->fs_roots_radix_lock); 4954 } 4955 spin_unlock(&fs_info->fs_roots_radix_lock); 4956 btrfs_free_log_root_tree(NULL, fs_info); 4957 } 4958 4959 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4960 { 4961 struct btrfs_ordered_extent *ordered; 4962 4963 spin_lock(&root->ordered_extent_lock); 4964 /* 4965 * This will just short circuit the ordered completion stuff which will 4966 * make sure the ordered extent gets properly cleaned up. 4967 */ 4968 list_for_each_entry(ordered, &root->ordered_extents, 4969 root_extent_list) 4970 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4971 spin_unlock(&root->ordered_extent_lock); 4972 } 4973 4974 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4975 { 4976 struct btrfs_root *root; 4977 struct list_head splice; 4978 4979 INIT_LIST_HEAD(&splice); 4980 4981 spin_lock(&fs_info->ordered_root_lock); 4982 list_splice_init(&fs_info->ordered_roots, &splice); 4983 while (!list_empty(&splice)) { 4984 root = list_first_entry(&splice, struct btrfs_root, 4985 ordered_root); 4986 list_move_tail(&root->ordered_root, 4987 &fs_info->ordered_roots); 4988 4989 spin_unlock(&fs_info->ordered_root_lock); 4990 btrfs_destroy_ordered_extents(root); 4991 4992 cond_resched(); 4993 spin_lock(&fs_info->ordered_root_lock); 4994 } 4995 spin_unlock(&fs_info->ordered_root_lock); 4996 4997 /* 4998 * We need this here because if we've been flipped read-only we won't 4999 * get sync() from the umount, so we need to make sure any ordered 5000 * extents that haven't had their dirty pages IO start writeout yet 5001 * actually get run and error out properly. 5002 */ 5003 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 5004 } 5005 5006 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 5007 struct btrfs_fs_info *fs_info) 5008 { 5009 struct rb_node *node; 5010 struct btrfs_delayed_ref_root *delayed_refs; 5011 struct btrfs_delayed_ref_node *ref; 5012 int ret = 0; 5013 5014 delayed_refs = &trans->delayed_refs; 5015 5016 spin_lock(&delayed_refs->lock); 5017 if (atomic_read(&delayed_refs->num_entries) == 0) { 5018 spin_unlock(&delayed_refs->lock); 5019 btrfs_debug(fs_info, "delayed_refs has NO entry"); 5020 return ret; 5021 } 5022 5023 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 5024 struct btrfs_delayed_ref_head *head; 5025 struct rb_node *n; 5026 bool pin_bytes = false; 5027 5028 head = rb_entry(node, struct btrfs_delayed_ref_head, 5029 href_node); 5030 if (btrfs_delayed_ref_lock(delayed_refs, head)) 5031 continue; 5032 5033 spin_lock(&head->lock); 5034 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 5035 ref = rb_entry(n, struct btrfs_delayed_ref_node, 5036 ref_node); 5037 ref->in_tree = 0; 5038 rb_erase_cached(&ref->ref_node, &head->ref_tree); 5039 RB_CLEAR_NODE(&ref->ref_node); 5040 if (!list_empty(&ref->add_list)) 5041 list_del(&ref->add_list); 5042 atomic_dec(&delayed_refs->num_entries); 5043 btrfs_put_delayed_ref(ref); 5044 } 5045 if (head->must_insert_reserved) 5046 pin_bytes = true; 5047 btrfs_free_delayed_extent_op(head->extent_op); 5048 btrfs_delete_ref_head(delayed_refs, head); 5049 spin_unlock(&head->lock); 5050 spin_unlock(&delayed_refs->lock); 5051 mutex_unlock(&head->mutex); 5052 5053 if (pin_bytes) { 5054 struct btrfs_block_group *cache; 5055 5056 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 5057 BUG_ON(!cache); 5058 5059 spin_lock(&cache->space_info->lock); 5060 spin_lock(&cache->lock); 5061 cache->pinned += head->num_bytes; 5062 btrfs_space_info_update_bytes_pinned(fs_info, 5063 cache->space_info, head->num_bytes); 5064 cache->reserved -= head->num_bytes; 5065 cache->space_info->bytes_reserved -= head->num_bytes; 5066 spin_unlock(&cache->lock); 5067 spin_unlock(&cache->space_info->lock); 5068 5069 btrfs_put_block_group(cache); 5070 5071 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 5072 head->bytenr + head->num_bytes - 1); 5073 } 5074 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 5075 btrfs_put_delayed_ref_head(head); 5076 cond_resched(); 5077 spin_lock(&delayed_refs->lock); 5078 } 5079 btrfs_qgroup_destroy_extent_records(trans); 5080 5081 spin_unlock(&delayed_refs->lock); 5082 5083 return ret; 5084 } 5085 5086 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 5087 { 5088 struct btrfs_inode *btrfs_inode; 5089 struct list_head splice; 5090 5091 INIT_LIST_HEAD(&splice); 5092 5093 spin_lock(&root->delalloc_lock); 5094 list_splice_init(&root->delalloc_inodes, &splice); 5095 5096 while (!list_empty(&splice)) { 5097 struct inode *inode = NULL; 5098 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 5099 delalloc_inodes); 5100 __btrfs_del_delalloc_inode(root, btrfs_inode); 5101 spin_unlock(&root->delalloc_lock); 5102 5103 /* 5104 * Make sure we get a live inode and that it'll not disappear 5105 * meanwhile. 5106 */ 5107 inode = igrab(&btrfs_inode->vfs_inode); 5108 if (inode) { 5109 invalidate_inode_pages2(inode->i_mapping); 5110 iput(inode); 5111 } 5112 spin_lock(&root->delalloc_lock); 5113 } 5114 spin_unlock(&root->delalloc_lock); 5115 } 5116 5117 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 5118 { 5119 struct btrfs_root *root; 5120 struct list_head splice; 5121 5122 INIT_LIST_HEAD(&splice); 5123 5124 spin_lock(&fs_info->delalloc_root_lock); 5125 list_splice_init(&fs_info->delalloc_roots, &splice); 5126 while (!list_empty(&splice)) { 5127 root = list_first_entry(&splice, struct btrfs_root, 5128 delalloc_root); 5129 root = btrfs_grab_root(root); 5130 BUG_ON(!root); 5131 spin_unlock(&fs_info->delalloc_root_lock); 5132 5133 btrfs_destroy_delalloc_inodes(root); 5134 btrfs_put_root(root); 5135 5136 spin_lock(&fs_info->delalloc_root_lock); 5137 } 5138 spin_unlock(&fs_info->delalloc_root_lock); 5139 } 5140 5141 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 5142 struct extent_io_tree *dirty_pages, 5143 int mark) 5144 { 5145 int ret; 5146 struct extent_buffer *eb; 5147 u64 start = 0; 5148 u64 end; 5149 5150 while (1) { 5151 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 5152 mark, NULL); 5153 if (ret) 5154 break; 5155 5156 clear_extent_bits(dirty_pages, start, end, mark); 5157 while (start <= end) { 5158 eb = find_extent_buffer(fs_info, start); 5159 start += fs_info->nodesize; 5160 if (!eb) 5161 continue; 5162 wait_on_extent_buffer_writeback(eb); 5163 5164 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 5165 &eb->bflags)) 5166 clear_extent_buffer_dirty(eb); 5167 free_extent_buffer_stale(eb); 5168 } 5169 } 5170 5171 return ret; 5172 } 5173 5174 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 5175 struct extent_io_tree *unpin) 5176 { 5177 u64 start; 5178 u64 end; 5179 int ret; 5180 5181 while (1) { 5182 struct extent_state *cached_state = NULL; 5183 5184 /* 5185 * The btrfs_finish_extent_commit() may get the same range as 5186 * ours between find_first_extent_bit and clear_extent_dirty. 5187 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 5188 * the same extent range. 5189 */ 5190 mutex_lock(&fs_info->unused_bg_unpin_mutex); 5191 ret = find_first_extent_bit(unpin, 0, &start, &end, 5192 EXTENT_DIRTY, &cached_state); 5193 if (ret) { 5194 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 5195 break; 5196 } 5197 5198 clear_extent_dirty(unpin, start, end, &cached_state); 5199 free_extent_state(cached_state); 5200 btrfs_error_unpin_extent_range(fs_info, start, end); 5201 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 5202 cond_resched(); 5203 } 5204 5205 return 0; 5206 } 5207 5208 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 5209 { 5210 struct inode *inode; 5211 5212 inode = cache->io_ctl.inode; 5213 if (inode) { 5214 invalidate_inode_pages2(inode->i_mapping); 5215 BTRFS_I(inode)->generation = 0; 5216 cache->io_ctl.inode = NULL; 5217 iput(inode); 5218 } 5219 ASSERT(cache->io_ctl.pages == NULL); 5220 btrfs_put_block_group(cache); 5221 } 5222 5223 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 5224 struct btrfs_fs_info *fs_info) 5225 { 5226 struct btrfs_block_group *cache; 5227 5228 spin_lock(&cur_trans->dirty_bgs_lock); 5229 while (!list_empty(&cur_trans->dirty_bgs)) { 5230 cache = list_first_entry(&cur_trans->dirty_bgs, 5231 struct btrfs_block_group, 5232 dirty_list); 5233 5234 if (!list_empty(&cache->io_list)) { 5235 spin_unlock(&cur_trans->dirty_bgs_lock); 5236 list_del_init(&cache->io_list); 5237 btrfs_cleanup_bg_io(cache); 5238 spin_lock(&cur_trans->dirty_bgs_lock); 5239 } 5240 5241 list_del_init(&cache->dirty_list); 5242 spin_lock(&cache->lock); 5243 cache->disk_cache_state = BTRFS_DC_ERROR; 5244 spin_unlock(&cache->lock); 5245 5246 spin_unlock(&cur_trans->dirty_bgs_lock); 5247 btrfs_put_block_group(cache); 5248 btrfs_delayed_refs_rsv_release(fs_info, 1); 5249 spin_lock(&cur_trans->dirty_bgs_lock); 5250 } 5251 spin_unlock(&cur_trans->dirty_bgs_lock); 5252 5253 /* 5254 * Refer to the definition of io_bgs member for details why it's safe 5255 * to use it without any locking 5256 */ 5257 while (!list_empty(&cur_trans->io_bgs)) { 5258 cache = list_first_entry(&cur_trans->io_bgs, 5259 struct btrfs_block_group, 5260 io_list); 5261 5262 list_del_init(&cache->io_list); 5263 spin_lock(&cache->lock); 5264 cache->disk_cache_state = BTRFS_DC_ERROR; 5265 spin_unlock(&cache->lock); 5266 btrfs_cleanup_bg_io(cache); 5267 } 5268 } 5269 5270 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 5271 struct btrfs_fs_info *fs_info) 5272 { 5273 struct btrfs_device *dev, *tmp; 5274 5275 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 5276 ASSERT(list_empty(&cur_trans->dirty_bgs)); 5277 ASSERT(list_empty(&cur_trans->io_bgs)); 5278 5279 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 5280 post_commit_list) { 5281 list_del_init(&dev->post_commit_list); 5282 } 5283 5284 btrfs_destroy_delayed_refs(cur_trans, fs_info); 5285 5286 cur_trans->state = TRANS_STATE_COMMIT_START; 5287 wake_up(&fs_info->transaction_blocked_wait); 5288 5289 cur_trans->state = TRANS_STATE_UNBLOCKED; 5290 wake_up(&fs_info->transaction_wait); 5291 5292 btrfs_destroy_delayed_inodes(fs_info); 5293 5294 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 5295 EXTENT_DIRTY); 5296 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 5297 5298 btrfs_free_redirty_list(cur_trans); 5299 5300 cur_trans->state =TRANS_STATE_COMPLETED; 5301 wake_up(&cur_trans->commit_wait); 5302 } 5303 5304 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 5305 { 5306 struct btrfs_transaction *t; 5307 5308 mutex_lock(&fs_info->transaction_kthread_mutex); 5309 5310 spin_lock(&fs_info->trans_lock); 5311 while (!list_empty(&fs_info->trans_list)) { 5312 t = list_first_entry(&fs_info->trans_list, 5313 struct btrfs_transaction, list); 5314 if (t->state >= TRANS_STATE_COMMIT_START) { 5315 refcount_inc(&t->use_count); 5316 spin_unlock(&fs_info->trans_lock); 5317 btrfs_wait_for_commit(fs_info, t->transid); 5318 btrfs_put_transaction(t); 5319 spin_lock(&fs_info->trans_lock); 5320 continue; 5321 } 5322 if (t == fs_info->running_transaction) { 5323 t->state = TRANS_STATE_COMMIT_DOING; 5324 spin_unlock(&fs_info->trans_lock); 5325 /* 5326 * We wait for 0 num_writers since we don't hold a trans 5327 * handle open currently for this transaction. 5328 */ 5329 wait_event(t->writer_wait, 5330 atomic_read(&t->num_writers) == 0); 5331 } else { 5332 spin_unlock(&fs_info->trans_lock); 5333 } 5334 btrfs_cleanup_one_transaction(t, fs_info); 5335 5336 spin_lock(&fs_info->trans_lock); 5337 if (t == fs_info->running_transaction) 5338 fs_info->running_transaction = NULL; 5339 list_del_init(&t->list); 5340 spin_unlock(&fs_info->trans_lock); 5341 5342 btrfs_put_transaction(t); 5343 trace_btrfs_transaction_commit(fs_info); 5344 spin_lock(&fs_info->trans_lock); 5345 } 5346 spin_unlock(&fs_info->trans_lock); 5347 btrfs_destroy_all_ordered_extents(fs_info); 5348 btrfs_destroy_delayed_inodes(fs_info); 5349 btrfs_assert_delayed_root_empty(fs_info); 5350 btrfs_destroy_all_delalloc_inodes(fs_info); 5351 btrfs_drop_all_logs(fs_info); 5352 mutex_unlock(&fs_info->transaction_kthread_mutex); 5353 5354 return 0; 5355 } 5356 5357 int btrfs_init_root_free_objectid(struct btrfs_root *root) 5358 { 5359 struct btrfs_path *path; 5360 int ret; 5361 struct extent_buffer *l; 5362 struct btrfs_key search_key; 5363 struct btrfs_key found_key; 5364 int slot; 5365 5366 path = btrfs_alloc_path(); 5367 if (!path) 5368 return -ENOMEM; 5369 5370 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 5371 search_key.type = -1; 5372 search_key.offset = (u64)-1; 5373 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 5374 if (ret < 0) 5375 goto error; 5376 BUG_ON(ret == 0); /* Corruption */ 5377 if (path->slots[0] > 0) { 5378 slot = path->slots[0] - 1; 5379 l = path->nodes[0]; 5380 btrfs_item_key_to_cpu(l, &found_key, slot); 5381 root->free_objectid = max_t(u64, found_key.objectid + 1, 5382 BTRFS_FIRST_FREE_OBJECTID); 5383 } else { 5384 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 5385 } 5386 ret = 0; 5387 error: 5388 btrfs_free_path(path); 5389 return ret; 5390 } 5391 5392 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 5393 { 5394 int ret; 5395 mutex_lock(&root->objectid_mutex); 5396 5397 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 5398 btrfs_warn(root->fs_info, 5399 "the objectid of root %llu reaches its highest value", 5400 root->root_key.objectid); 5401 ret = -ENOSPC; 5402 goto out; 5403 } 5404 5405 *objectid = root->free_objectid++; 5406 ret = 0; 5407 out: 5408 mutex_unlock(&root->objectid_mutex); 5409 return ret; 5410 } 5411