1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/slab.h> 30 #include <linux/migrate.h> 31 #include <linux/ratelimit.h> 32 #include <linux/uuid.h> 33 #include <linux/semaphore.h> 34 #include <asm/unaligned.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "hash.h" 38 #include "transaction.h" 39 #include "btrfs_inode.h" 40 #include "volumes.h" 41 #include "print-tree.h" 42 #include "locking.h" 43 #include "tree-log.h" 44 #include "free-space-cache.h" 45 #include "inode-map.h" 46 #include "check-integrity.h" 47 #include "rcu-string.h" 48 #include "dev-replace.h" 49 #include "raid56.h" 50 #include "sysfs.h" 51 #include "qgroup.h" 52 53 #ifdef CONFIG_X86 54 #include <asm/cpufeature.h> 55 #endif 56 57 static struct extent_io_ops btree_extent_io_ops; 58 static void end_workqueue_fn(struct btrfs_work *work); 59 static void free_fs_root(struct btrfs_root *root); 60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 61 int read_only); 62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 64 struct btrfs_root *root); 65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 66 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 67 struct extent_io_tree *dirty_pages, 68 int mark); 69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 70 struct extent_io_tree *pinned_extents); 71 static int btrfs_cleanup_transaction(struct btrfs_root *root); 72 static void btrfs_error_commit_super(struct btrfs_root *root); 73 74 /* 75 * btrfs_end_io_wq structs are used to do processing in task context when an IO 76 * is complete. This is used during reads to verify checksums, and it is used 77 * by writes to insert metadata for new file extents after IO is complete. 78 */ 79 struct btrfs_end_io_wq { 80 struct bio *bio; 81 bio_end_io_t *end_io; 82 void *private; 83 struct btrfs_fs_info *info; 84 int error; 85 enum btrfs_wq_endio_type metadata; 86 struct list_head list; 87 struct btrfs_work work; 88 }; 89 90 static struct kmem_cache *btrfs_end_io_wq_cache; 91 92 int __init btrfs_end_io_wq_init(void) 93 { 94 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 95 sizeof(struct btrfs_end_io_wq), 96 0, 97 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 98 NULL); 99 if (!btrfs_end_io_wq_cache) 100 return -ENOMEM; 101 return 0; 102 } 103 104 void btrfs_end_io_wq_exit(void) 105 { 106 if (btrfs_end_io_wq_cache) 107 kmem_cache_destroy(btrfs_end_io_wq_cache); 108 } 109 110 /* 111 * async submit bios are used to offload expensive checksumming 112 * onto the worker threads. They checksum file and metadata bios 113 * just before they are sent down the IO stack. 114 */ 115 struct async_submit_bio { 116 struct inode *inode; 117 struct bio *bio; 118 struct list_head list; 119 extent_submit_bio_hook_t *submit_bio_start; 120 extent_submit_bio_hook_t *submit_bio_done; 121 int rw; 122 int mirror_num; 123 unsigned long bio_flags; 124 /* 125 * bio_offset is optional, can be used if the pages in the bio 126 * can't tell us where in the file the bio should go 127 */ 128 u64 bio_offset; 129 struct btrfs_work work; 130 int error; 131 }; 132 133 /* 134 * Lockdep class keys for extent_buffer->lock's in this root. For a given 135 * eb, the lockdep key is determined by the btrfs_root it belongs to and 136 * the level the eb occupies in the tree. 137 * 138 * Different roots are used for different purposes and may nest inside each 139 * other and they require separate keysets. As lockdep keys should be 140 * static, assign keysets according to the purpose of the root as indicated 141 * by btrfs_root->objectid. This ensures that all special purpose roots 142 * have separate keysets. 143 * 144 * Lock-nesting across peer nodes is always done with the immediate parent 145 * node locked thus preventing deadlock. As lockdep doesn't know this, use 146 * subclass to avoid triggering lockdep warning in such cases. 147 * 148 * The key is set by the readpage_end_io_hook after the buffer has passed 149 * csum validation but before the pages are unlocked. It is also set by 150 * btrfs_init_new_buffer on freshly allocated blocks. 151 * 152 * We also add a check to make sure the highest level of the tree is the 153 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 154 * needs update as well. 155 */ 156 #ifdef CONFIG_DEBUG_LOCK_ALLOC 157 # if BTRFS_MAX_LEVEL != 8 158 # error 159 # endif 160 161 static struct btrfs_lockdep_keyset { 162 u64 id; /* root objectid */ 163 const char *name_stem; /* lock name stem */ 164 char names[BTRFS_MAX_LEVEL + 1][20]; 165 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 166 } btrfs_lockdep_keysets[] = { 167 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 168 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 169 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 170 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 171 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 172 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 173 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 174 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 175 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 176 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 177 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 178 { .id = 0, .name_stem = "tree" }, 179 }; 180 181 void __init btrfs_init_lockdep(void) 182 { 183 int i, j; 184 185 /* initialize lockdep class names */ 186 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 187 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 188 189 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 190 snprintf(ks->names[j], sizeof(ks->names[j]), 191 "btrfs-%s-%02d", ks->name_stem, j); 192 } 193 } 194 195 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 196 int level) 197 { 198 struct btrfs_lockdep_keyset *ks; 199 200 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 201 202 /* find the matching keyset, id 0 is the default entry */ 203 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 204 if (ks->id == objectid) 205 break; 206 207 lockdep_set_class_and_name(&eb->lock, 208 &ks->keys[level], ks->names[level]); 209 } 210 211 #endif 212 213 /* 214 * extents on the btree inode are pretty simple, there's one extent 215 * that covers the entire device 216 */ 217 static struct extent_map *btree_get_extent(struct inode *inode, 218 struct page *page, size_t pg_offset, u64 start, u64 len, 219 int create) 220 { 221 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 222 struct extent_map *em; 223 int ret; 224 225 read_lock(&em_tree->lock); 226 em = lookup_extent_mapping(em_tree, start, len); 227 if (em) { 228 em->bdev = 229 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 230 read_unlock(&em_tree->lock); 231 goto out; 232 } 233 read_unlock(&em_tree->lock); 234 235 em = alloc_extent_map(); 236 if (!em) { 237 em = ERR_PTR(-ENOMEM); 238 goto out; 239 } 240 em->start = 0; 241 em->len = (u64)-1; 242 em->block_len = (u64)-1; 243 em->block_start = 0; 244 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 245 246 write_lock(&em_tree->lock); 247 ret = add_extent_mapping(em_tree, em, 0); 248 if (ret == -EEXIST) { 249 free_extent_map(em); 250 em = lookup_extent_mapping(em_tree, start, len); 251 if (!em) 252 em = ERR_PTR(-EIO); 253 } else if (ret) { 254 free_extent_map(em); 255 em = ERR_PTR(ret); 256 } 257 write_unlock(&em_tree->lock); 258 259 out: 260 return em; 261 } 262 263 u32 btrfs_csum_data(char *data, u32 seed, size_t len) 264 { 265 return btrfs_crc32c(seed, data, len); 266 } 267 268 void btrfs_csum_final(u32 crc, char *result) 269 { 270 put_unaligned_le32(~crc, result); 271 } 272 273 /* 274 * compute the csum for a btree block, and either verify it or write it 275 * into the csum field of the block. 276 */ 277 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 278 int verify) 279 { 280 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 281 char *result = NULL; 282 unsigned long len; 283 unsigned long cur_len; 284 unsigned long offset = BTRFS_CSUM_SIZE; 285 char *kaddr; 286 unsigned long map_start; 287 unsigned long map_len; 288 int err; 289 u32 crc = ~(u32)0; 290 unsigned long inline_result; 291 292 len = buf->len - offset; 293 while (len > 0) { 294 err = map_private_extent_buffer(buf, offset, 32, 295 &kaddr, &map_start, &map_len); 296 if (err) 297 return 1; 298 cur_len = min(len, map_len - (offset - map_start)); 299 crc = btrfs_csum_data(kaddr + offset - map_start, 300 crc, cur_len); 301 len -= cur_len; 302 offset += cur_len; 303 } 304 if (csum_size > sizeof(inline_result)) { 305 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 306 if (!result) 307 return 1; 308 } else { 309 result = (char *)&inline_result; 310 } 311 312 btrfs_csum_final(crc, result); 313 314 if (verify) { 315 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 316 u32 val; 317 u32 found = 0; 318 memcpy(&found, result, csum_size); 319 320 read_extent_buffer(buf, &val, 0, csum_size); 321 printk_ratelimited(KERN_WARNING 322 "BTRFS: %s checksum verify failed on %llu wanted %X found %X " 323 "level %d\n", 324 root->fs_info->sb->s_id, buf->start, 325 val, found, btrfs_header_level(buf)); 326 if (result != (char *)&inline_result) 327 kfree(result); 328 return 1; 329 } 330 } else { 331 write_extent_buffer(buf, result, 0, csum_size); 332 } 333 if (result != (char *)&inline_result) 334 kfree(result); 335 return 0; 336 } 337 338 /* 339 * we can't consider a given block up to date unless the transid of the 340 * block matches the transid in the parent node's pointer. This is how we 341 * detect blocks that either didn't get written at all or got written 342 * in the wrong place. 343 */ 344 static int verify_parent_transid(struct extent_io_tree *io_tree, 345 struct extent_buffer *eb, u64 parent_transid, 346 int atomic) 347 { 348 struct extent_state *cached_state = NULL; 349 int ret; 350 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 351 352 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 353 return 0; 354 355 if (atomic) 356 return -EAGAIN; 357 358 if (need_lock) { 359 btrfs_tree_read_lock(eb); 360 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 361 } 362 363 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 364 0, &cached_state); 365 if (extent_buffer_uptodate(eb) && 366 btrfs_header_generation(eb) == parent_transid) { 367 ret = 0; 368 goto out; 369 } 370 printk_ratelimited(KERN_ERR 371 "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n", 372 eb->fs_info->sb->s_id, eb->start, 373 parent_transid, btrfs_header_generation(eb)); 374 ret = 1; 375 376 /* 377 * Things reading via commit roots that don't have normal protection, 378 * like send, can have a really old block in cache that may point at a 379 * block that has been free'd and re-allocated. So don't clear uptodate 380 * if we find an eb that is under IO (dirty/writeback) because we could 381 * end up reading in the stale data and then writing it back out and 382 * making everybody very sad. 383 */ 384 if (!extent_buffer_under_io(eb)) 385 clear_extent_buffer_uptodate(eb); 386 out: 387 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 388 &cached_state, GFP_NOFS); 389 if (need_lock) 390 btrfs_tree_read_unlock_blocking(eb); 391 return ret; 392 } 393 394 /* 395 * Return 0 if the superblock checksum type matches the checksum value of that 396 * algorithm. Pass the raw disk superblock data. 397 */ 398 static int btrfs_check_super_csum(char *raw_disk_sb) 399 { 400 struct btrfs_super_block *disk_sb = 401 (struct btrfs_super_block *)raw_disk_sb; 402 u16 csum_type = btrfs_super_csum_type(disk_sb); 403 int ret = 0; 404 405 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 406 u32 crc = ~(u32)0; 407 const int csum_size = sizeof(crc); 408 char result[csum_size]; 409 410 /* 411 * The super_block structure does not span the whole 412 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 413 * is filled with zeros and is included in the checkum. 414 */ 415 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 416 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 417 btrfs_csum_final(crc, result); 418 419 if (memcmp(raw_disk_sb, result, csum_size)) 420 ret = 1; 421 422 if (ret && btrfs_super_generation(disk_sb) < 10) { 423 printk(KERN_WARNING 424 "BTRFS: super block crcs don't match, older mkfs detected\n"); 425 ret = 0; 426 } 427 } 428 429 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 430 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n", 431 csum_type); 432 ret = 1; 433 } 434 435 return ret; 436 } 437 438 /* 439 * helper to read a given tree block, doing retries as required when 440 * the checksums don't match and we have alternate mirrors to try. 441 */ 442 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 443 struct extent_buffer *eb, 444 u64 start, u64 parent_transid) 445 { 446 struct extent_io_tree *io_tree; 447 int failed = 0; 448 int ret; 449 int num_copies = 0; 450 int mirror_num = 0; 451 int failed_mirror = 0; 452 453 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 454 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 455 while (1) { 456 ret = read_extent_buffer_pages(io_tree, eb, start, 457 WAIT_COMPLETE, 458 btree_get_extent, mirror_num); 459 if (!ret) { 460 if (!verify_parent_transid(io_tree, eb, 461 parent_transid, 0)) 462 break; 463 else 464 ret = -EIO; 465 } 466 467 /* 468 * This buffer's crc is fine, but its contents are corrupted, so 469 * there is no reason to read the other copies, they won't be 470 * any less wrong. 471 */ 472 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 473 break; 474 475 num_copies = btrfs_num_copies(root->fs_info, 476 eb->start, eb->len); 477 if (num_copies == 1) 478 break; 479 480 if (!failed_mirror) { 481 failed = 1; 482 failed_mirror = eb->read_mirror; 483 } 484 485 mirror_num++; 486 if (mirror_num == failed_mirror) 487 mirror_num++; 488 489 if (mirror_num > num_copies) 490 break; 491 } 492 493 if (failed && !ret && failed_mirror) 494 repair_eb_io_failure(root, eb, failed_mirror); 495 496 return ret; 497 } 498 499 /* 500 * checksum a dirty tree block before IO. This has extra checks to make sure 501 * we only fill in the checksum field in the first page of a multi-page block 502 */ 503 504 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 505 { 506 u64 start = page_offset(page); 507 u64 found_start; 508 struct extent_buffer *eb; 509 510 eb = (struct extent_buffer *)page->private; 511 if (page != eb->pages[0]) 512 return 0; 513 found_start = btrfs_header_bytenr(eb); 514 if (WARN_ON(found_start != start || !PageUptodate(page))) 515 return 0; 516 csum_tree_block(root, eb, 0); 517 return 0; 518 } 519 520 static int check_tree_block_fsid(struct btrfs_root *root, 521 struct extent_buffer *eb) 522 { 523 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 524 u8 fsid[BTRFS_UUID_SIZE]; 525 int ret = 1; 526 527 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 528 while (fs_devices) { 529 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 530 ret = 0; 531 break; 532 } 533 fs_devices = fs_devices->seed; 534 } 535 return ret; 536 } 537 538 #define CORRUPT(reason, eb, root, slot) \ 539 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \ 540 "root=%llu, slot=%d", reason, \ 541 btrfs_header_bytenr(eb), root->objectid, slot) 542 543 static noinline int check_leaf(struct btrfs_root *root, 544 struct extent_buffer *leaf) 545 { 546 struct btrfs_key key; 547 struct btrfs_key leaf_key; 548 u32 nritems = btrfs_header_nritems(leaf); 549 int slot; 550 551 if (nritems == 0) 552 return 0; 553 554 /* Check the 0 item */ 555 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 556 BTRFS_LEAF_DATA_SIZE(root)) { 557 CORRUPT("invalid item offset size pair", leaf, root, 0); 558 return -EIO; 559 } 560 561 /* 562 * Check to make sure each items keys are in the correct order and their 563 * offsets make sense. We only have to loop through nritems-1 because 564 * we check the current slot against the next slot, which verifies the 565 * next slot's offset+size makes sense and that the current's slot 566 * offset is correct. 567 */ 568 for (slot = 0; slot < nritems - 1; slot++) { 569 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 570 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 571 572 /* Make sure the keys are in the right order */ 573 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 574 CORRUPT("bad key order", leaf, root, slot); 575 return -EIO; 576 } 577 578 /* 579 * Make sure the offset and ends are right, remember that the 580 * item data starts at the end of the leaf and grows towards the 581 * front. 582 */ 583 if (btrfs_item_offset_nr(leaf, slot) != 584 btrfs_item_end_nr(leaf, slot + 1)) { 585 CORRUPT("slot offset bad", leaf, root, slot); 586 return -EIO; 587 } 588 589 /* 590 * Check to make sure that we don't point outside of the leaf, 591 * just incase all the items are consistent to eachother, but 592 * all point outside of the leaf. 593 */ 594 if (btrfs_item_end_nr(leaf, slot) > 595 BTRFS_LEAF_DATA_SIZE(root)) { 596 CORRUPT("slot end outside of leaf", leaf, root, slot); 597 return -EIO; 598 } 599 } 600 601 return 0; 602 } 603 604 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 605 u64 phy_offset, struct page *page, 606 u64 start, u64 end, int mirror) 607 { 608 u64 found_start; 609 int found_level; 610 struct extent_buffer *eb; 611 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 612 int ret = 0; 613 int reads_done; 614 615 if (!page->private) 616 goto out; 617 618 eb = (struct extent_buffer *)page->private; 619 620 /* the pending IO might have been the only thing that kept this buffer 621 * in memory. Make sure we have a ref for all this other checks 622 */ 623 extent_buffer_get(eb); 624 625 reads_done = atomic_dec_and_test(&eb->io_pages); 626 if (!reads_done) 627 goto err; 628 629 eb->read_mirror = mirror; 630 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 631 ret = -EIO; 632 goto err; 633 } 634 635 found_start = btrfs_header_bytenr(eb); 636 if (found_start != eb->start) { 637 printk_ratelimited(KERN_ERR "BTRFS (device %s): bad tree block start " 638 "%llu %llu\n", 639 eb->fs_info->sb->s_id, found_start, eb->start); 640 ret = -EIO; 641 goto err; 642 } 643 if (check_tree_block_fsid(root, eb)) { 644 printk_ratelimited(KERN_ERR "BTRFS (device %s): bad fsid on block %llu\n", 645 eb->fs_info->sb->s_id, eb->start); 646 ret = -EIO; 647 goto err; 648 } 649 found_level = btrfs_header_level(eb); 650 if (found_level >= BTRFS_MAX_LEVEL) { 651 btrfs_err(root->fs_info, "bad tree block level %d", 652 (int)btrfs_header_level(eb)); 653 ret = -EIO; 654 goto err; 655 } 656 657 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 658 eb, found_level); 659 660 ret = csum_tree_block(root, eb, 1); 661 if (ret) { 662 ret = -EIO; 663 goto err; 664 } 665 666 /* 667 * If this is a leaf block and it is corrupt, set the corrupt bit so 668 * that we don't try and read the other copies of this block, just 669 * return -EIO. 670 */ 671 if (found_level == 0 && check_leaf(root, eb)) { 672 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 673 ret = -EIO; 674 } 675 676 if (!ret) 677 set_extent_buffer_uptodate(eb); 678 err: 679 if (reads_done && 680 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 681 btree_readahead_hook(root, eb, eb->start, ret); 682 683 if (ret) { 684 /* 685 * our io error hook is going to dec the io pages 686 * again, we have to make sure it has something 687 * to decrement 688 */ 689 atomic_inc(&eb->io_pages); 690 clear_extent_buffer_uptodate(eb); 691 } 692 free_extent_buffer(eb); 693 out: 694 return ret; 695 } 696 697 static int btree_io_failed_hook(struct page *page, int failed_mirror) 698 { 699 struct extent_buffer *eb; 700 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 701 702 eb = (struct extent_buffer *)page->private; 703 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 704 eb->read_mirror = failed_mirror; 705 atomic_dec(&eb->io_pages); 706 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 707 btree_readahead_hook(root, eb, eb->start, -EIO); 708 return -EIO; /* we fixed nothing */ 709 } 710 711 static void end_workqueue_bio(struct bio *bio, int err) 712 { 713 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 714 struct btrfs_fs_info *fs_info; 715 struct btrfs_workqueue *wq; 716 btrfs_work_func_t func; 717 718 fs_info = end_io_wq->info; 719 end_io_wq->error = err; 720 721 if (bio->bi_rw & REQ_WRITE) { 722 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 723 wq = fs_info->endio_meta_write_workers; 724 func = btrfs_endio_meta_write_helper; 725 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 726 wq = fs_info->endio_freespace_worker; 727 func = btrfs_freespace_write_helper; 728 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 729 wq = fs_info->endio_raid56_workers; 730 func = btrfs_endio_raid56_helper; 731 } else { 732 wq = fs_info->endio_write_workers; 733 func = btrfs_endio_write_helper; 734 } 735 } else { 736 if (unlikely(end_io_wq->metadata == 737 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 738 wq = fs_info->endio_repair_workers; 739 func = btrfs_endio_repair_helper; 740 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 741 wq = fs_info->endio_raid56_workers; 742 func = btrfs_endio_raid56_helper; 743 } else if (end_io_wq->metadata) { 744 wq = fs_info->endio_meta_workers; 745 func = btrfs_endio_meta_helper; 746 } else { 747 wq = fs_info->endio_workers; 748 func = btrfs_endio_helper; 749 } 750 } 751 752 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 753 btrfs_queue_work(wq, &end_io_wq->work); 754 } 755 756 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 757 enum btrfs_wq_endio_type metadata) 758 { 759 struct btrfs_end_io_wq *end_io_wq; 760 761 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 762 if (!end_io_wq) 763 return -ENOMEM; 764 765 end_io_wq->private = bio->bi_private; 766 end_io_wq->end_io = bio->bi_end_io; 767 end_io_wq->info = info; 768 end_io_wq->error = 0; 769 end_io_wq->bio = bio; 770 end_io_wq->metadata = metadata; 771 772 bio->bi_private = end_io_wq; 773 bio->bi_end_io = end_workqueue_bio; 774 return 0; 775 } 776 777 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 778 { 779 unsigned long limit = min_t(unsigned long, 780 info->thread_pool_size, 781 info->fs_devices->open_devices); 782 return 256 * limit; 783 } 784 785 static void run_one_async_start(struct btrfs_work *work) 786 { 787 struct async_submit_bio *async; 788 int ret; 789 790 async = container_of(work, struct async_submit_bio, work); 791 ret = async->submit_bio_start(async->inode, async->rw, async->bio, 792 async->mirror_num, async->bio_flags, 793 async->bio_offset); 794 if (ret) 795 async->error = ret; 796 } 797 798 static void run_one_async_done(struct btrfs_work *work) 799 { 800 struct btrfs_fs_info *fs_info; 801 struct async_submit_bio *async; 802 int limit; 803 804 async = container_of(work, struct async_submit_bio, work); 805 fs_info = BTRFS_I(async->inode)->root->fs_info; 806 807 limit = btrfs_async_submit_limit(fs_info); 808 limit = limit * 2 / 3; 809 810 if (atomic_dec_return(&fs_info->nr_async_submits) < limit && 811 waitqueue_active(&fs_info->async_submit_wait)) 812 wake_up(&fs_info->async_submit_wait); 813 814 /* If an error occured we just want to clean up the bio and move on */ 815 if (async->error) { 816 bio_endio(async->bio, async->error); 817 return; 818 } 819 820 async->submit_bio_done(async->inode, async->rw, async->bio, 821 async->mirror_num, async->bio_flags, 822 async->bio_offset); 823 } 824 825 static void run_one_async_free(struct btrfs_work *work) 826 { 827 struct async_submit_bio *async; 828 829 async = container_of(work, struct async_submit_bio, work); 830 kfree(async); 831 } 832 833 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 834 int rw, struct bio *bio, int mirror_num, 835 unsigned long bio_flags, 836 u64 bio_offset, 837 extent_submit_bio_hook_t *submit_bio_start, 838 extent_submit_bio_hook_t *submit_bio_done) 839 { 840 struct async_submit_bio *async; 841 842 async = kmalloc(sizeof(*async), GFP_NOFS); 843 if (!async) 844 return -ENOMEM; 845 846 async->inode = inode; 847 async->rw = rw; 848 async->bio = bio; 849 async->mirror_num = mirror_num; 850 async->submit_bio_start = submit_bio_start; 851 async->submit_bio_done = submit_bio_done; 852 853 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 854 run_one_async_done, run_one_async_free); 855 856 async->bio_flags = bio_flags; 857 async->bio_offset = bio_offset; 858 859 async->error = 0; 860 861 atomic_inc(&fs_info->nr_async_submits); 862 863 if (rw & REQ_SYNC) 864 btrfs_set_work_high_priority(&async->work); 865 866 btrfs_queue_work(fs_info->workers, &async->work); 867 868 while (atomic_read(&fs_info->async_submit_draining) && 869 atomic_read(&fs_info->nr_async_submits)) { 870 wait_event(fs_info->async_submit_wait, 871 (atomic_read(&fs_info->nr_async_submits) == 0)); 872 } 873 874 return 0; 875 } 876 877 static int btree_csum_one_bio(struct bio *bio) 878 { 879 struct bio_vec *bvec; 880 struct btrfs_root *root; 881 int i, ret = 0; 882 883 bio_for_each_segment_all(bvec, bio, i) { 884 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 885 ret = csum_dirty_buffer(root, bvec->bv_page); 886 if (ret) 887 break; 888 } 889 890 return ret; 891 } 892 893 static int __btree_submit_bio_start(struct inode *inode, int rw, 894 struct bio *bio, int mirror_num, 895 unsigned long bio_flags, 896 u64 bio_offset) 897 { 898 /* 899 * when we're called for a write, we're already in the async 900 * submission context. Just jump into btrfs_map_bio 901 */ 902 return btree_csum_one_bio(bio); 903 } 904 905 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 906 int mirror_num, unsigned long bio_flags, 907 u64 bio_offset) 908 { 909 int ret; 910 911 /* 912 * when we're called for a write, we're already in the async 913 * submission context. Just jump into btrfs_map_bio 914 */ 915 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 916 if (ret) 917 bio_endio(bio, ret); 918 return ret; 919 } 920 921 static int check_async_write(struct inode *inode, unsigned long bio_flags) 922 { 923 if (bio_flags & EXTENT_BIO_TREE_LOG) 924 return 0; 925 #ifdef CONFIG_X86 926 if (cpu_has_xmm4_2) 927 return 0; 928 #endif 929 return 1; 930 } 931 932 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 933 int mirror_num, unsigned long bio_flags, 934 u64 bio_offset) 935 { 936 int async = check_async_write(inode, bio_flags); 937 int ret; 938 939 if (!(rw & REQ_WRITE)) { 940 /* 941 * called for a read, do the setup so that checksum validation 942 * can happen in the async kernel threads 943 */ 944 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 945 bio, BTRFS_WQ_ENDIO_METADATA); 946 if (ret) 947 goto out_w_error; 948 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 949 mirror_num, 0); 950 } else if (!async) { 951 ret = btree_csum_one_bio(bio); 952 if (ret) 953 goto out_w_error; 954 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 955 mirror_num, 0); 956 } else { 957 /* 958 * kthread helpers are used to submit writes so that 959 * checksumming can happen in parallel across all CPUs 960 */ 961 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 962 inode, rw, bio, mirror_num, 0, 963 bio_offset, 964 __btree_submit_bio_start, 965 __btree_submit_bio_done); 966 } 967 968 if (ret) { 969 out_w_error: 970 bio_endio(bio, ret); 971 } 972 return ret; 973 } 974 975 #ifdef CONFIG_MIGRATION 976 static int btree_migratepage(struct address_space *mapping, 977 struct page *newpage, struct page *page, 978 enum migrate_mode mode) 979 { 980 /* 981 * we can't safely write a btree page from here, 982 * we haven't done the locking hook 983 */ 984 if (PageDirty(page)) 985 return -EAGAIN; 986 /* 987 * Buffers may be managed in a filesystem specific way. 988 * We must have no buffers or drop them. 989 */ 990 if (page_has_private(page) && 991 !try_to_release_page(page, GFP_KERNEL)) 992 return -EAGAIN; 993 return migrate_page(mapping, newpage, page, mode); 994 } 995 #endif 996 997 998 static int btree_writepages(struct address_space *mapping, 999 struct writeback_control *wbc) 1000 { 1001 struct btrfs_fs_info *fs_info; 1002 int ret; 1003 1004 if (wbc->sync_mode == WB_SYNC_NONE) { 1005 1006 if (wbc->for_kupdate) 1007 return 0; 1008 1009 fs_info = BTRFS_I(mapping->host)->root->fs_info; 1010 /* this is a bit racy, but that's ok */ 1011 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 1012 BTRFS_DIRTY_METADATA_THRESH); 1013 if (ret < 0) 1014 return 0; 1015 } 1016 return btree_write_cache_pages(mapping, wbc); 1017 } 1018 1019 static int btree_readpage(struct file *file, struct page *page) 1020 { 1021 struct extent_io_tree *tree; 1022 tree = &BTRFS_I(page->mapping->host)->io_tree; 1023 return extent_read_full_page(tree, page, btree_get_extent, 0); 1024 } 1025 1026 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 1027 { 1028 if (PageWriteback(page) || PageDirty(page)) 1029 return 0; 1030 1031 return try_release_extent_buffer(page); 1032 } 1033 1034 static void btree_invalidatepage(struct page *page, unsigned int offset, 1035 unsigned int length) 1036 { 1037 struct extent_io_tree *tree; 1038 tree = &BTRFS_I(page->mapping->host)->io_tree; 1039 extent_invalidatepage(tree, page, offset); 1040 btree_releasepage(page, GFP_NOFS); 1041 if (PagePrivate(page)) { 1042 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 1043 "page private not zero on page %llu", 1044 (unsigned long long)page_offset(page)); 1045 ClearPagePrivate(page); 1046 set_page_private(page, 0); 1047 page_cache_release(page); 1048 } 1049 } 1050 1051 static int btree_set_page_dirty(struct page *page) 1052 { 1053 #ifdef DEBUG 1054 struct extent_buffer *eb; 1055 1056 BUG_ON(!PagePrivate(page)); 1057 eb = (struct extent_buffer *)page->private; 1058 BUG_ON(!eb); 1059 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1060 BUG_ON(!atomic_read(&eb->refs)); 1061 btrfs_assert_tree_locked(eb); 1062 #endif 1063 return __set_page_dirty_nobuffers(page); 1064 } 1065 1066 static const struct address_space_operations btree_aops = { 1067 .readpage = btree_readpage, 1068 .writepages = btree_writepages, 1069 .releasepage = btree_releasepage, 1070 .invalidatepage = btree_invalidatepage, 1071 #ifdef CONFIG_MIGRATION 1072 .migratepage = btree_migratepage, 1073 #endif 1074 .set_page_dirty = btree_set_page_dirty, 1075 }; 1076 1077 void readahead_tree_block(struct btrfs_root *root, u64 bytenr) 1078 { 1079 struct extent_buffer *buf = NULL; 1080 struct inode *btree_inode = root->fs_info->btree_inode; 1081 1082 buf = btrfs_find_create_tree_block(root, bytenr); 1083 if (!buf) 1084 return; 1085 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1086 buf, 0, WAIT_NONE, btree_get_extent, 0); 1087 free_extent_buffer(buf); 1088 } 1089 1090 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, 1091 int mirror_num, struct extent_buffer **eb) 1092 { 1093 struct extent_buffer *buf = NULL; 1094 struct inode *btree_inode = root->fs_info->btree_inode; 1095 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1096 int ret; 1097 1098 buf = btrfs_find_create_tree_block(root, bytenr); 1099 if (!buf) 1100 return 0; 1101 1102 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1103 1104 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1105 btree_get_extent, mirror_num); 1106 if (ret) { 1107 free_extent_buffer(buf); 1108 return ret; 1109 } 1110 1111 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1112 free_extent_buffer(buf); 1113 return -EIO; 1114 } else if (extent_buffer_uptodate(buf)) { 1115 *eb = buf; 1116 } else { 1117 free_extent_buffer(buf); 1118 } 1119 return 0; 1120 } 1121 1122 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 1123 u64 bytenr) 1124 { 1125 return find_extent_buffer(root->fs_info, bytenr); 1126 } 1127 1128 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1129 u64 bytenr) 1130 { 1131 if (btrfs_test_is_dummy_root(root)) 1132 return alloc_test_extent_buffer(root->fs_info, bytenr); 1133 return alloc_extent_buffer(root->fs_info, bytenr); 1134 } 1135 1136 1137 int btrfs_write_tree_block(struct extent_buffer *buf) 1138 { 1139 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1140 buf->start + buf->len - 1); 1141 } 1142 1143 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1144 { 1145 return filemap_fdatawait_range(buf->pages[0]->mapping, 1146 buf->start, buf->start + buf->len - 1); 1147 } 1148 1149 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1150 u64 parent_transid) 1151 { 1152 struct extent_buffer *buf = NULL; 1153 int ret; 1154 1155 buf = btrfs_find_create_tree_block(root, bytenr); 1156 if (!buf) 1157 return NULL; 1158 1159 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1160 if (ret) { 1161 free_extent_buffer(buf); 1162 return NULL; 1163 } 1164 return buf; 1165 1166 } 1167 1168 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1169 struct extent_buffer *buf) 1170 { 1171 struct btrfs_fs_info *fs_info = root->fs_info; 1172 1173 if (btrfs_header_generation(buf) == 1174 fs_info->running_transaction->transid) { 1175 btrfs_assert_tree_locked(buf); 1176 1177 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1178 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 1179 -buf->len, 1180 fs_info->dirty_metadata_batch); 1181 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1182 btrfs_set_lock_blocking(buf); 1183 clear_extent_buffer_dirty(buf); 1184 } 1185 } 1186 } 1187 1188 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1189 { 1190 struct btrfs_subvolume_writers *writers; 1191 int ret; 1192 1193 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1194 if (!writers) 1195 return ERR_PTR(-ENOMEM); 1196 1197 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL); 1198 if (ret < 0) { 1199 kfree(writers); 1200 return ERR_PTR(ret); 1201 } 1202 1203 init_waitqueue_head(&writers->wait); 1204 return writers; 1205 } 1206 1207 static void 1208 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1209 { 1210 percpu_counter_destroy(&writers->counter); 1211 kfree(writers); 1212 } 1213 1214 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize, 1215 struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1216 u64 objectid) 1217 { 1218 root->node = NULL; 1219 root->commit_root = NULL; 1220 root->sectorsize = sectorsize; 1221 root->nodesize = nodesize; 1222 root->stripesize = stripesize; 1223 root->state = 0; 1224 root->orphan_cleanup_state = 0; 1225 1226 root->objectid = objectid; 1227 root->last_trans = 0; 1228 root->highest_objectid = 0; 1229 root->nr_delalloc_inodes = 0; 1230 root->nr_ordered_extents = 0; 1231 root->name = NULL; 1232 root->inode_tree = RB_ROOT; 1233 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1234 root->block_rsv = NULL; 1235 root->orphan_block_rsv = NULL; 1236 1237 INIT_LIST_HEAD(&root->dirty_list); 1238 INIT_LIST_HEAD(&root->root_list); 1239 INIT_LIST_HEAD(&root->delalloc_inodes); 1240 INIT_LIST_HEAD(&root->delalloc_root); 1241 INIT_LIST_HEAD(&root->ordered_extents); 1242 INIT_LIST_HEAD(&root->ordered_root); 1243 INIT_LIST_HEAD(&root->logged_list[0]); 1244 INIT_LIST_HEAD(&root->logged_list[1]); 1245 spin_lock_init(&root->orphan_lock); 1246 spin_lock_init(&root->inode_lock); 1247 spin_lock_init(&root->delalloc_lock); 1248 spin_lock_init(&root->ordered_extent_lock); 1249 spin_lock_init(&root->accounting_lock); 1250 spin_lock_init(&root->log_extents_lock[0]); 1251 spin_lock_init(&root->log_extents_lock[1]); 1252 mutex_init(&root->objectid_mutex); 1253 mutex_init(&root->log_mutex); 1254 mutex_init(&root->ordered_extent_mutex); 1255 mutex_init(&root->delalloc_mutex); 1256 init_waitqueue_head(&root->log_writer_wait); 1257 init_waitqueue_head(&root->log_commit_wait[0]); 1258 init_waitqueue_head(&root->log_commit_wait[1]); 1259 INIT_LIST_HEAD(&root->log_ctxs[0]); 1260 INIT_LIST_HEAD(&root->log_ctxs[1]); 1261 atomic_set(&root->log_commit[0], 0); 1262 atomic_set(&root->log_commit[1], 0); 1263 atomic_set(&root->log_writers, 0); 1264 atomic_set(&root->log_batch, 0); 1265 atomic_set(&root->orphan_inodes, 0); 1266 atomic_set(&root->refs, 1); 1267 atomic_set(&root->will_be_snapshoted, 0); 1268 root->log_transid = 0; 1269 root->log_transid_committed = -1; 1270 root->last_log_commit = 0; 1271 if (fs_info) 1272 extent_io_tree_init(&root->dirty_log_pages, 1273 fs_info->btree_inode->i_mapping); 1274 1275 memset(&root->root_key, 0, sizeof(root->root_key)); 1276 memset(&root->root_item, 0, sizeof(root->root_item)); 1277 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1278 if (fs_info) 1279 root->defrag_trans_start = fs_info->generation; 1280 else 1281 root->defrag_trans_start = 0; 1282 root->root_key.objectid = objectid; 1283 root->anon_dev = 0; 1284 1285 spin_lock_init(&root->root_item_lock); 1286 } 1287 1288 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info) 1289 { 1290 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS); 1291 if (root) 1292 root->fs_info = fs_info; 1293 return root; 1294 } 1295 1296 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1297 /* Should only be used by the testing infrastructure */ 1298 struct btrfs_root *btrfs_alloc_dummy_root(void) 1299 { 1300 struct btrfs_root *root; 1301 1302 root = btrfs_alloc_root(NULL); 1303 if (!root) 1304 return ERR_PTR(-ENOMEM); 1305 __setup_root(4096, 4096, 4096, root, NULL, 1); 1306 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state); 1307 root->alloc_bytenr = 0; 1308 1309 return root; 1310 } 1311 #endif 1312 1313 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1314 struct btrfs_fs_info *fs_info, 1315 u64 objectid) 1316 { 1317 struct extent_buffer *leaf; 1318 struct btrfs_root *tree_root = fs_info->tree_root; 1319 struct btrfs_root *root; 1320 struct btrfs_key key; 1321 int ret = 0; 1322 uuid_le uuid; 1323 1324 root = btrfs_alloc_root(fs_info); 1325 if (!root) 1326 return ERR_PTR(-ENOMEM); 1327 1328 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1329 tree_root->stripesize, root, fs_info, objectid); 1330 root->root_key.objectid = objectid; 1331 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1332 root->root_key.offset = 0; 1333 1334 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1335 if (IS_ERR(leaf)) { 1336 ret = PTR_ERR(leaf); 1337 leaf = NULL; 1338 goto fail; 1339 } 1340 1341 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1342 btrfs_set_header_bytenr(leaf, leaf->start); 1343 btrfs_set_header_generation(leaf, trans->transid); 1344 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1345 btrfs_set_header_owner(leaf, objectid); 1346 root->node = leaf; 1347 1348 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(), 1349 BTRFS_FSID_SIZE); 1350 write_extent_buffer(leaf, fs_info->chunk_tree_uuid, 1351 btrfs_header_chunk_tree_uuid(leaf), 1352 BTRFS_UUID_SIZE); 1353 btrfs_mark_buffer_dirty(leaf); 1354 1355 root->commit_root = btrfs_root_node(root); 1356 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1357 1358 root->root_item.flags = 0; 1359 root->root_item.byte_limit = 0; 1360 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1361 btrfs_set_root_generation(&root->root_item, trans->transid); 1362 btrfs_set_root_level(&root->root_item, 0); 1363 btrfs_set_root_refs(&root->root_item, 1); 1364 btrfs_set_root_used(&root->root_item, leaf->len); 1365 btrfs_set_root_last_snapshot(&root->root_item, 0); 1366 btrfs_set_root_dirid(&root->root_item, 0); 1367 uuid_le_gen(&uuid); 1368 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1369 root->root_item.drop_level = 0; 1370 1371 key.objectid = objectid; 1372 key.type = BTRFS_ROOT_ITEM_KEY; 1373 key.offset = 0; 1374 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1375 if (ret) 1376 goto fail; 1377 1378 btrfs_tree_unlock(leaf); 1379 1380 return root; 1381 1382 fail: 1383 if (leaf) { 1384 btrfs_tree_unlock(leaf); 1385 free_extent_buffer(root->commit_root); 1386 free_extent_buffer(leaf); 1387 } 1388 kfree(root); 1389 1390 return ERR_PTR(ret); 1391 } 1392 1393 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1394 struct btrfs_fs_info *fs_info) 1395 { 1396 struct btrfs_root *root; 1397 struct btrfs_root *tree_root = fs_info->tree_root; 1398 struct extent_buffer *leaf; 1399 1400 root = btrfs_alloc_root(fs_info); 1401 if (!root) 1402 return ERR_PTR(-ENOMEM); 1403 1404 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1405 tree_root->stripesize, root, fs_info, 1406 BTRFS_TREE_LOG_OBJECTID); 1407 1408 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1409 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1410 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1411 1412 /* 1413 * DON'T set REF_COWS for log trees 1414 * 1415 * log trees do not get reference counted because they go away 1416 * before a real commit is actually done. They do store pointers 1417 * to file data extents, and those reference counts still get 1418 * updated (along with back refs to the log tree). 1419 */ 1420 1421 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1422 NULL, 0, 0, 0); 1423 if (IS_ERR(leaf)) { 1424 kfree(root); 1425 return ERR_CAST(leaf); 1426 } 1427 1428 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1429 btrfs_set_header_bytenr(leaf, leaf->start); 1430 btrfs_set_header_generation(leaf, trans->transid); 1431 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1432 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1433 root->node = leaf; 1434 1435 write_extent_buffer(root->node, root->fs_info->fsid, 1436 btrfs_header_fsid(), BTRFS_FSID_SIZE); 1437 btrfs_mark_buffer_dirty(root->node); 1438 btrfs_tree_unlock(root->node); 1439 return root; 1440 } 1441 1442 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1443 struct btrfs_fs_info *fs_info) 1444 { 1445 struct btrfs_root *log_root; 1446 1447 log_root = alloc_log_tree(trans, fs_info); 1448 if (IS_ERR(log_root)) 1449 return PTR_ERR(log_root); 1450 WARN_ON(fs_info->log_root_tree); 1451 fs_info->log_root_tree = log_root; 1452 return 0; 1453 } 1454 1455 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1456 struct btrfs_root *root) 1457 { 1458 struct btrfs_root *log_root; 1459 struct btrfs_inode_item *inode_item; 1460 1461 log_root = alloc_log_tree(trans, root->fs_info); 1462 if (IS_ERR(log_root)) 1463 return PTR_ERR(log_root); 1464 1465 log_root->last_trans = trans->transid; 1466 log_root->root_key.offset = root->root_key.objectid; 1467 1468 inode_item = &log_root->root_item.inode; 1469 btrfs_set_stack_inode_generation(inode_item, 1); 1470 btrfs_set_stack_inode_size(inode_item, 3); 1471 btrfs_set_stack_inode_nlink(inode_item, 1); 1472 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize); 1473 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1474 1475 btrfs_set_root_node(&log_root->root_item, log_root->node); 1476 1477 WARN_ON(root->log_root); 1478 root->log_root = log_root; 1479 root->log_transid = 0; 1480 root->log_transid_committed = -1; 1481 root->last_log_commit = 0; 1482 return 0; 1483 } 1484 1485 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1486 struct btrfs_key *key) 1487 { 1488 struct btrfs_root *root; 1489 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1490 struct btrfs_path *path; 1491 u64 generation; 1492 int ret; 1493 1494 path = btrfs_alloc_path(); 1495 if (!path) 1496 return ERR_PTR(-ENOMEM); 1497 1498 root = btrfs_alloc_root(fs_info); 1499 if (!root) { 1500 ret = -ENOMEM; 1501 goto alloc_fail; 1502 } 1503 1504 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1505 tree_root->stripesize, root, fs_info, key->objectid); 1506 1507 ret = btrfs_find_root(tree_root, key, path, 1508 &root->root_item, &root->root_key); 1509 if (ret) { 1510 if (ret > 0) 1511 ret = -ENOENT; 1512 goto find_fail; 1513 } 1514 1515 generation = btrfs_root_generation(&root->root_item); 1516 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1517 generation); 1518 if (!root->node) { 1519 ret = -ENOMEM; 1520 goto find_fail; 1521 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1522 ret = -EIO; 1523 goto read_fail; 1524 } 1525 root->commit_root = btrfs_root_node(root); 1526 out: 1527 btrfs_free_path(path); 1528 return root; 1529 1530 read_fail: 1531 free_extent_buffer(root->node); 1532 find_fail: 1533 kfree(root); 1534 alloc_fail: 1535 root = ERR_PTR(ret); 1536 goto out; 1537 } 1538 1539 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1540 struct btrfs_key *location) 1541 { 1542 struct btrfs_root *root; 1543 1544 root = btrfs_read_tree_root(tree_root, location); 1545 if (IS_ERR(root)) 1546 return root; 1547 1548 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1549 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1550 btrfs_check_and_init_root_item(&root->root_item); 1551 } 1552 1553 return root; 1554 } 1555 1556 int btrfs_init_fs_root(struct btrfs_root *root) 1557 { 1558 int ret; 1559 struct btrfs_subvolume_writers *writers; 1560 1561 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1562 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1563 GFP_NOFS); 1564 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1565 ret = -ENOMEM; 1566 goto fail; 1567 } 1568 1569 writers = btrfs_alloc_subvolume_writers(); 1570 if (IS_ERR(writers)) { 1571 ret = PTR_ERR(writers); 1572 goto fail; 1573 } 1574 root->subv_writers = writers; 1575 1576 btrfs_init_free_ino_ctl(root); 1577 spin_lock_init(&root->ino_cache_lock); 1578 init_waitqueue_head(&root->ino_cache_wait); 1579 1580 ret = get_anon_bdev(&root->anon_dev); 1581 if (ret) 1582 goto free_writers; 1583 return 0; 1584 1585 free_writers: 1586 btrfs_free_subvolume_writers(root->subv_writers); 1587 fail: 1588 kfree(root->free_ino_ctl); 1589 kfree(root->free_ino_pinned); 1590 return ret; 1591 } 1592 1593 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1594 u64 root_id) 1595 { 1596 struct btrfs_root *root; 1597 1598 spin_lock(&fs_info->fs_roots_radix_lock); 1599 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1600 (unsigned long)root_id); 1601 spin_unlock(&fs_info->fs_roots_radix_lock); 1602 return root; 1603 } 1604 1605 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1606 struct btrfs_root *root) 1607 { 1608 int ret; 1609 1610 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1611 if (ret) 1612 return ret; 1613 1614 spin_lock(&fs_info->fs_roots_radix_lock); 1615 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1616 (unsigned long)root->root_key.objectid, 1617 root); 1618 if (ret == 0) 1619 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1620 spin_unlock(&fs_info->fs_roots_radix_lock); 1621 radix_tree_preload_end(); 1622 1623 return ret; 1624 } 1625 1626 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1627 struct btrfs_key *location, 1628 bool check_ref) 1629 { 1630 struct btrfs_root *root; 1631 struct btrfs_path *path; 1632 struct btrfs_key key; 1633 int ret; 1634 1635 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1636 return fs_info->tree_root; 1637 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1638 return fs_info->extent_root; 1639 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1640 return fs_info->chunk_root; 1641 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1642 return fs_info->dev_root; 1643 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1644 return fs_info->csum_root; 1645 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1646 return fs_info->quota_root ? fs_info->quota_root : 1647 ERR_PTR(-ENOENT); 1648 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1649 return fs_info->uuid_root ? fs_info->uuid_root : 1650 ERR_PTR(-ENOENT); 1651 again: 1652 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1653 if (root) { 1654 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1655 return ERR_PTR(-ENOENT); 1656 return root; 1657 } 1658 1659 root = btrfs_read_fs_root(fs_info->tree_root, location); 1660 if (IS_ERR(root)) 1661 return root; 1662 1663 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1664 ret = -ENOENT; 1665 goto fail; 1666 } 1667 1668 ret = btrfs_init_fs_root(root); 1669 if (ret) 1670 goto fail; 1671 1672 path = btrfs_alloc_path(); 1673 if (!path) { 1674 ret = -ENOMEM; 1675 goto fail; 1676 } 1677 key.objectid = BTRFS_ORPHAN_OBJECTID; 1678 key.type = BTRFS_ORPHAN_ITEM_KEY; 1679 key.offset = location->objectid; 1680 1681 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1682 btrfs_free_path(path); 1683 if (ret < 0) 1684 goto fail; 1685 if (ret == 0) 1686 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1687 1688 ret = btrfs_insert_fs_root(fs_info, root); 1689 if (ret) { 1690 if (ret == -EEXIST) { 1691 free_fs_root(root); 1692 goto again; 1693 } 1694 goto fail; 1695 } 1696 return root; 1697 fail: 1698 free_fs_root(root); 1699 return ERR_PTR(ret); 1700 } 1701 1702 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1703 { 1704 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1705 int ret = 0; 1706 struct btrfs_device *device; 1707 struct backing_dev_info *bdi; 1708 1709 rcu_read_lock(); 1710 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1711 if (!device->bdev) 1712 continue; 1713 bdi = blk_get_backing_dev_info(device->bdev); 1714 if (bdi_congested(bdi, bdi_bits)) { 1715 ret = 1; 1716 break; 1717 } 1718 } 1719 rcu_read_unlock(); 1720 return ret; 1721 } 1722 1723 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1724 { 1725 int err; 1726 1727 err = bdi_setup_and_register(bdi, "btrfs"); 1728 if (err) 1729 return err; 1730 1731 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE; 1732 bdi->congested_fn = btrfs_congested_fn; 1733 bdi->congested_data = info; 1734 return 0; 1735 } 1736 1737 /* 1738 * called by the kthread helper functions to finally call the bio end_io 1739 * functions. This is where read checksum verification actually happens 1740 */ 1741 static void end_workqueue_fn(struct btrfs_work *work) 1742 { 1743 struct bio *bio; 1744 struct btrfs_end_io_wq *end_io_wq; 1745 int error; 1746 1747 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1748 bio = end_io_wq->bio; 1749 1750 error = end_io_wq->error; 1751 bio->bi_private = end_io_wq->private; 1752 bio->bi_end_io = end_io_wq->end_io; 1753 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1754 bio_endio_nodec(bio, error); 1755 } 1756 1757 static int cleaner_kthread(void *arg) 1758 { 1759 struct btrfs_root *root = arg; 1760 int again; 1761 1762 do { 1763 again = 0; 1764 1765 /* Make the cleaner go to sleep early. */ 1766 if (btrfs_need_cleaner_sleep(root)) 1767 goto sleep; 1768 1769 if (!mutex_trylock(&root->fs_info->cleaner_mutex)) 1770 goto sleep; 1771 1772 /* 1773 * Avoid the problem that we change the status of the fs 1774 * during the above check and trylock. 1775 */ 1776 if (btrfs_need_cleaner_sleep(root)) { 1777 mutex_unlock(&root->fs_info->cleaner_mutex); 1778 goto sleep; 1779 } 1780 1781 btrfs_run_delayed_iputs(root); 1782 btrfs_delete_unused_bgs(root->fs_info); 1783 again = btrfs_clean_one_deleted_snapshot(root); 1784 mutex_unlock(&root->fs_info->cleaner_mutex); 1785 1786 /* 1787 * The defragger has dealt with the R/O remount and umount, 1788 * needn't do anything special here. 1789 */ 1790 btrfs_run_defrag_inodes(root->fs_info); 1791 sleep: 1792 if (!try_to_freeze() && !again) { 1793 set_current_state(TASK_INTERRUPTIBLE); 1794 if (!kthread_should_stop()) 1795 schedule(); 1796 __set_current_state(TASK_RUNNING); 1797 } 1798 } while (!kthread_should_stop()); 1799 return 0; 1800 } 1801 1802 static int transaction_kthread(void *arg) 1803 { 1804 struct btrfs_root *root = arg; 1805 struct btrfs_trans_handle *trans; 1806 struct btrfs_transaction *cur; 1807 u64 transid; 1808 unsigned long now; 1809 unsigned long delay; 1810 bool cannot_commit; 1811 1812 do { 1813 cannot_commit = false; 1814 delay = HZ * root->fs_info->commit_interval; 1815 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1816 1817 spin_lock(&root->fs_info->trans_lock); 1818 cur = root->fs_info->running_transaction; 1819 if (!cur) { 1820 spin_unlock(&root->fs_info->trans_lock); 1821 goto sleep; 1822 } 1823 1824 now = get_seconds(); 1825 if (cur->state < TRANS_STATE_BLOCKED && 1826 (now < cur->start_time || 1827 now - cur->start_time < root->fs_info->commit_interval)) { 1828 spin_unlock(&root->fs_info->trans_lock); 1829 delay = HZ * 5; 1830 goto sleep; 1831 } 1832 transid = cur->transid; 1833 spin_unlock(&root->fs_info->trans_lock); 1834 1835 /* If the file system is aborted, this will always fail. */ 1836 trans = btrfs_attach_transaction(root); 1837 if (IS_ERR(trans)) { 1838 if (PTR_ERR(trans) != -ENOENT) 1839 cannot_commit = true; 1840 goto sleep; 1841 } 1842 if (transid == trans->transid) { 1843 btrfs_commit_transaction(trans, root); 1844 } else { 1845 btrfs_end_transaction(trans, root); 1846 } 1847 sleep: 1848 wake_up_process(root->fs_info->cleaner_kthread); 1849 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1850 1851 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1852 &root->fs_info->fs_state))) 1853 btrfs_cleanup_transaction(root); 1854 if (!try_to_freeze()) { 1855 set_current_state(TASK_INTERRUPTIBLE); 1856 if (!kthread_should_stop() && 1857 (!btrfs_transaction_blocked(root->fs_info) || 1858 cannot_commit)) 1859 schedule_timeout(delay); 1860 __set_current_state(TASK_RUNNING); 1861 } 1862 } while (!kthread_should_stop()); 1863 return 0; 1864 } 1865 1866 /* 1867 * this will find the highest generation in the array of 1868 * root backups. The index of the highest array is returned, 1869 * or -1 if we can't find anything. 1870 * 1871 * We check to make sure the array is valid by comparing the 1872 * generation of the latest root in the array with the generation 1873 * in the super block. If they don't match we pitch it. 1874 */ 1875 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1876 { 1877 u64 cur; 1878 int newest_index = -1; 1879 struct btrfs_root_backup *root_backup; 1880 int i; 1881 1882 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1883 root_backup = info->super_copy->super_roots + i; 1884 cur = btrfs_backup_tree_root_gen(root_backup); 1885 if (cur == newest_gen) 1886 newest_index = i; 1887 } 1888 1889 /* check to see if we actually wrapped around */ 1890 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1891 root_backup = info->super_copy->super_roots; 1892 cur = btrfs_backup_tree_root_gen(root_backup); 1893 if (cur == newest_gen) 1894 newest_index = 0; 1895 } 1896 return newest_index; 1897 } 1898 1899 1900 /* 1901 * find the oldest backup so we know where to store new entries 1902 * in the backup array. This will set the backup_root_index 1903 * field in the fs_info struct 1904 */ 1905 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1906 u64 newest_gen) 1907 { 1908 int newest_index = -1; 1909 1910 newest_index = find_newest_super_backup(info, newest_gen); 1911 /* if there was garbage in there, just move along */ 1912 if (newest_index == -1) { 1913 info->backup_root_index = 0; 1914 } else { 1915 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1916 } 1917 } 1918 1919 /* 1920 * copy all the root pointers into the super backup array. 1921 * this will bump the backup pointer by one when it is 1922 * done 1923 */ 1924 static void backup_super_roots(struct btrfs_fs_info *info) 1925 { 1926 int next_backup; 1927 struct btrfs_root_backup *root_backup; 1928 int last_backup; 1929 1930 next_backup = info->backup_root_index; 1931 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1932 BTRFS_NUM_BACKUP_ROOTS; 1933 1934 /* 1935 * just overwrite the last backup if we're at the same generation 1936 * this happens only at umount 1937 */ 1938 root_backup = info->super_for_commit->super_roots + last_backup; 1939 if (btrfs_backup_tree_root_gen(root_backup) == 1940 btrfs_header_generation(info->tree_root->node)) 1941 next_backup = last_backup; 1942 1943 root_backup = info->super_for_commit->super_roots + next_backup; 1944 1945 /* 1946 * make sure all of our padding and empty slots get zero filled 1947 * regardless of which ones we use today 1948 */ 1949 memset(root_backup, 0, sizeof(*root_backup)); 1950 1951 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1952 1953 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1954 btrfs_set_backup_tree_root_gen(root_backup, 1955 btrfs_header_generation(info->tree_root->node)); 1956 1957 btrfs_set_backup_tree_root_level(root_backup, 1958 btrfs_header_level(info->tree_root->node)); 1959 1960 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1961 btrfs_set_backup_chunk_root_gen(root_backup, 1962 btrfs_header_generation(info->chunk_root->node)); 1963 btrfs_set_backup_chunk_root_level(root_backup, 1964 btrfs_header_level(info->chunk_root->node)); 1965 1966 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1967 btrfs_set_backup_extent_root_gen(root_backup, 1968 btrfs_header_generation(info->extent_root->node)); 1969 btrfs_set_backup_extent_root_level(root_backup, 1970 btrfs_header_level(info->extent_root->node)); 1971 1972 /* 1973 * we might commit during log recovery, which happens before we set 1974 * the fs_root. Make sure it is valid before we fill it in. 1975 */ 1976 if (info->fs_root && info->fs_root->node) { 1977 btrfs_set_backup_fs_root(root_backup, 1978 info->fs_root->node->start); 1979 btrfs_set_backup_fs_root_gen(root_backup, 1980 btrfs_header_generation(info->fs_root->node)); 1981 btrfs_set_backup_fs_root_level(root_backup, 1982 btrfs_header_level(info->fs_root->node)); 1983 } 1984 1985 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1986 btrfs_set_backup_dev_root_gen(root_backup, 1987 btrfs_header_generation(info->dev_root->node)); 1988 btrfs_set_backup_dev_root_level(root_backup, 1989 btrfs_header_level(info->dev_root->node)); 1990 1991 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1992 btrfs_set_backup_csum_root_gen(root_backup, 1993 btrfs_header_generation(info->csum_root->node)); 1994 btrfs_set_backup_csum_root_level(root_backup, 1995 btrfs_header_level(info->csum_root->node)); 1996 1997 btrfs_set_backup_total_bytes(root_backup, 1998 btrfs_super_total_bytes(info->super_copy)); 1999 btrfs_set_backup_bytes_used(root_backup, 2000 btrfs_super_bytes_used(info->super_copy)); 2001 btrfs_set_backup_num_devices(root_backup, 2002 btrfs_super_num_devices(info->super_copy)); 2003 2004 /* 2005 * if we don't copy this out to the super_copy, it won't get remembered 2006 * for the next commit 2007 */ 2008 memcpy(&info->super_copy->super_roots, 2009 &info->super_for_commit->super_roots, 2010 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 2011 } 2012 2013 /* 2014 * this copies info out of the root backup array and back into 2015 * the in-memory super block. It is meant to help iterate through 2016 * the array, so you send it the number of backups you've already 2017 * tried and the last backup index you used. 2018 * 2019 * this returns -1 when it has tried all the backups 2020 */ 2021 static noinline int next_root_backup(struct btrfs_fs_info *info, 2022 struct btrfs_super_block *super, 2023 int *num_backups_tried, int *backup_index) 2024 { 2025 struct btrfs_root_backup *root_backup; 2026 int newest = *backup_index; 2027 2028 if (*num_backups_tried == 0) { 2029 u64 gen = btrfs_super_generation(super); 2030 2031 newest = find_newest_super_backup(info, gen); 2032 if (newest == -1) 2033 return -1; 2034 2035 *backup_index = newest; 2036 *num_backups_tried = 1; 2037 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 2038 /* we've tried all the backups, all done */ 2039 return -1; 2040 } else { 2041 /* jump to the next oldest backup */ 2042 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 2043 BTRFS_NUM_BACKUP_ROOTS; 2044 *backup_index = newest; 2045 *num_backups_tried += 1; 2046 } 2047 root_backup = super->super_roots + newest; 2048 2049 btrfs_set_super_generation(super, 2050 btrfs_backup_tree_root_gen(root_backup)); 2051 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2052 btrfs_set_super_root_level(super, 2053 btrfs_backup_tree_root_level(root_backup)); 2054 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2055 2056 /* 2057 * fixme: the total bytes and num_devices need to match or we should 2058 * need a fsck 2059 */ 2060 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2061 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2062 return 0; 2063 } 2064 2065 /* helper to cleanup workers */ 2066 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2067 { 2068 btrfs_destroy_workqueue(fs_info->fixup_workers); 2069 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2070 btrfs_destroy_workqueue(fs_info->workers); 2071 btrfs_destroy_workqueue(fs_info->endio_workers); 2072 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2073 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2074 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 2075 btrfs_destroy_workqueue(fs_info->rmw_workers); 2076 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2077 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2078 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2079 btrfs_destroy_workqueue(fs_info->submit_workers); 2080 btrfs_destroy_workqueue(fs_info->delayed_workers); 2081 btrfs_destroy_workqueue(fs_info->caching_workers); 2082 btrfs_destroy_workqueue(fs_info->readahead_workers); 2083 btrfs_destroy_workqueue(fs_info->flush_workers); 2084 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2085 btrfs_destroy_workqueue(fs_info->extent_workers); 2086 } 2087 2088 static void free_root_extent_buffers(struct btrfs_root *root) 2089 { 2090 if (root) { 2091 free_extent_buffer(root->node); 2092 free_extent_buffer(root->commit_root); 2093 root->node = NULL; 2094 root->commit_root = NULL; 2095 } 2096 } 2097 2098 /* helper to cleanup tree roots */ 2099 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2100 { 2101 free_root_extent_buffers(info->tree_root); 2102 2103 free_root_extent_buffers(info->dev_root); 2104 free_root_extent_buffers(info->extent_root); 2105 free_root_extent_buffers(info->csum_root); 2106 free_root_extent_buffers(info->quota_root); 2107 free_root_extent_buffers(info->uuid_root); 2108 if (chunk_root) 2109 free_root_extent_buffers(info->chunk_root); 2110 } 2111 2112 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2113 { 2114 int ret; 2115 struct btrfs_root *gang[8]; 2116 int i; 2117 2118 while (!list_empty(&fs_info->dead_roots)) { 2119 gang[0] = list_entry(fs_info->dead_roots.next, 2120 struct btrfs_root, root_list); 2121 list_del(&gang[0]->root_list); 2122 2123 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2124 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2125 } else { 2126 free_extent_buffer(gang[0]->node); 2127 free_extent_buffer(gang[0]->commit_root); 2128 btrfs_put_fs_root(gang[0]); 2129 } 2130 } 2131 2132 while (1) { 2133 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2134 (void **)gang, 0, 2135 ARRAY_SIZE(gang)); 2136 if (!ret) 2137 break; 2138 for (i = 0; i < ret; i++) 2139 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2140 } 2141 2142 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2143 btrfs_free_log_root_tree(NULL, fs_info); 2144 btrfs_destroy_pinned_extent(fs_info->tree_root, 2145 fs_info->pinned_extents); 2146 } 2147 } 2148 2149 int open_ctree(struct super_block *sb, 2150 struct btrfs_fs_devices *fs_devices, 2151 char *options) 2152 { 2153 u32 sectorsize; 2154 u32 nodesize; 2155 u32 stripesize; 2156 u64 generation; 2157 u64 features; 2158 struct btrfs_key location; 2159 struct buffer_head *bh; 2160 struct btrfs_super_block *disk_super; 2161 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2162 struct btrfs_root *tree_root; 2163 struct btrfs_root *extent_root; 2164 struct btrfs_root *csum_root; 2165 struct btrfs_root *chunk_root; 2166 struct btrfs_root *dev_root; 2167 struct btrfs_root *quota_root; 2168 struct btrfs_root *uuid_root; 2169 struct btrfs_root *log_tree_root; 2170 int ret; 2171 int err = -EINVAL; 2172 int num_backups_tried = 0; 2173 int backup_index = 0; 2174 int max_active; 2175 int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2176 bool create_uuid_tree; 2177 bool check_uuid_tree; 2178 2179 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info); 2180 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info); 2181 if (!tree_root || !chunk_root) { 2182 err = -ENOMEM; 2183 goto fail; 2184 } 2185 2186 ret = init_srcu_struct(&fs_info->subvol_srcu); 2187 if (ret) { 2188 err = ret; 2189 goto fail; 2190 } 2191 2192 ret = setup_bdi(fs_info, &fs_info->bdi); 2193 if (ret) { 2194 err = ret; 2195 goto fail_srcu; 2196 } 2197 2198 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2199 if (ret) { 2200 err = ret; 2201 goto fail_bdi; 2202 } 2203 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE * 2204 (1 + ilog2(nr_cpu_ids)); 2205 2206 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2207 if (ret) { 2208 err = ret; 2209 goto fail_dirty_metadata_bytes; 2210 } 2211 2212 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL); 2213 if (ret) { 2214 err = ret; 2215 goto fail_delalloc_bytes; 2216 } 2217 2218 fs_info->btree_inode = new_inode(sb); 2219 if (!fs_info->btree_inode) { 2220 err = -ENOMEM; 2221 goto fail_bio_counter; 2222 } 2223 2224 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2225 2226 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2227 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2228 INIT_LIST_HEAD(&fs_info->trans_list); 2229 INIT_LIST_HEAD(&fs_info->dead_roots); 2230 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2231 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2232 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2233 spin_lock_init(&fs_info->delalloc_root_lock); 2234 spin_lock_init(&fs_info->trans_lock); 2235 spin_lock_init(&fs_info->fs_roots_radix_lock); 2236 spin_lock_init(&fs_info->delayed_iput_lock); 2237 spin_lock_init(&fs_info->defrag_inodes_lock); 2238 spin_lock_init(&fs_info->free_chunk_lock); 2239 spin_lock_init(&fs_info->tree_mod_seq_lock); 2240 spin_lock_init(&fs_info->super_lock); 2241 spin_lock_init(&fs_info->qgroup_op_lock); 2242 spin_lock_init(&fs_info->buffer_lock); 2243 spin_lock_init(&fs_info->unused_bgs_lock); 2244 mutex_init(&fs_info->unused_bg_unpin_mutex); 2245 rwlock_init(&fs_info->tree_mod_log_lock); 2246 mutex_init(&fs_info->reloc_mutex); 2247 mutex_init(&fs_info->delalloc_root_mutex); 2248 seqlock_init(&fs_info->profiles_lock); 2249 2250 init_completion(&fs_info->kobj_unregister); 2251 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2252 INIT_LIST_HEAD(&fs_info->space_info); 2253 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2254 INIT_LIST_HEAD(&fs_info->unused_bgs); 2255 btrfs_mapping_init(&fs_info->mapping_tree); 2256 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2257 BTRFS_BLOCK_RSV_GLOBAL); 2258 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, 2259 BTRFS_BLOCK_RSV_DELALLOC); 2260 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2261 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2262 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2263 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2264 BTRFS_BLOCK_RSV_DELOPS); 2265 atomic_set(&fs_info->nr_async_submits, 0); 2266 atomic_set(&fs_info->async_delalloc_pages, 0); 2267 atomic_set(&fs_info->async_submit_draining, 0); 2268 atomic_set(&fs_info->nr_async_bios, 0); 2269 atomic_set(&fs_info->defrag_running, 0); 2270 atomic_set(&fs_info->qgroup_op_seq, 0); 2271 atomic64_set(&fs_info->tree_mod_seq, 0); 2272 fs_info->sb = sb; 2273 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2274 fs_info->metadata_ratio = 0; 2275 fs_info->defrag_inodes = RB_ROOT; 2276 fs_info->free_chunk_space = 0; 2277 fs_info->tree_mod_log = RB_ROOT; 2278 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2279 fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64); 2280 /* readahead state */ 2281 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT); 2282 spin_lock_init(&fs_info->reada_lock); 2283 2284 fs_info->thread_pool_size = min_t(unsigned long, 2285 num_online_cpus() + 2, 8); 2286 2287 INIT_LIST_HEAD(&fs_info->ordered_roots); 2288 spin_lock_init(&fs_info->ordered_root_lock); 2289 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2290 GFP_NOFS); 2291 if (!fs_info->delayed_root) { 2292 err = -ENOMEM; 2293 goto fail_iput; 2294 } 2295 btrfs_init_delayed_root(fs_info->delayed_root); 2296 2297 mutex_init(&fs_info->scrub_lock); 2298 atomic_set(&fs_info->scrubs_running, 0); 2299 atomic_set(&fs_info->scrub_pause_req, 0); 2300 atomic_set(&fs_info->scrubs_paused, 0); 2301 atomic_set(&fs_info->scrub_cancel_req, 0); 2302 init_waitqueue_head(&fs_info->replace_wait); 2303 init_waitqueue_head(&fs_info->scrub_pause_wait); 2304 fs_info->scrub_workers_refcnt = 0; 2305 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2306 fs_info->check_integrity_print_mask = 0; 2307 #endif 2308 2309 spin_lock_init(&fs_info->balance_lock); 2310 mutex_init(&fs_info->balance_mutex); 2311 atomic_set(&fs_info->balance_running, 0); 2312 atomic_set(&fs_info->balance_pause_req, 0); 2313 atomic_set(&fs_info->balance_cancel_req, 0); 2314 fs_info->balance_ctl = NULL; 2315 init_waitqueue_head(&fs_info->balance_wait_q); 2316 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2317 2318 sb->s_blocksize = 4096; 2319 sb->s_blocksize_bits = blksize_bits(4096); 2320 sb->s_bdi = &fs_info->bdi; 2321 2322 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2323 set_nlink(fs_info->btree_inode, 1); 2324 /* 2325 * we set the i_size on the btree inode to the max possible int. 2326 * the real end of the address space is determined by all of 2327 * the devices in the system 2328 */ 2329 fs_info->btree_inode->i_size = OFFSET_MAX; 2330 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 2331 2332 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2333 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2334 fs_info->btree_inode->i_mapping); 2335 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0; 2336 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2337 2338 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2339 2340 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2341 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2342 sizeof(struct btrfs_key)); 2343 set_bit(BTRFS_INODE_DUMMY, 2344 &BTRFS_I(fs_info->btree_inode)->runtime_flags); 2345 btrfs_insert_inode_hash(fs_info->btree_inode); 2346 2347 spin_lock_init(&fs_info->block_group_cache_lock); 2348 fs_info->block_group_cache_tree = RB_ROOT; 2349 fs_info->first_logical_byte = (u64)-1; 2350 2351 extent_io_tree_init(&fs_info->freed_extents[0], 2352 fs_info->btree_inode->i_mapping); 2353 extent_io_tree_init(&fs_info->freed_extents[1], 2354 fs_info->btree_inode->i_mapping); 2355 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2356 fs_info->do_barriers = 1; 2357 2358 2359 mutex_init(&fs_info->ordered_operations_mutex); 2360 mutex_init(&fs_info->ordered_extent_flush_mutex); 2361 mutex_init(&fs_info->tree_log_mutex); 2362 mutex_init(&fs_info->chunk_mutex); 2363 mutex_init(&fs_info->transaction_kthread_mutex); 2364 mutex_init(&fs_info->cleaner_mutex); 2365 mutex_init(&fs_info->volume_mutex); 2366 init_rwsem(&fs_info->commit_root_sem); 2367 init_rwsem(&fs_info->cleanup_work_sem); 2368 init_rwsem(&fs_info->subvol_sem); 2369 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2370 fs_info->dev_replace.lock_owner = 0; 2371 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2372 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2373 mutex_init(&fs_info->dev_replace.lock_management_lock); 2374 mutex_init(&fs_info->dev_replace.lock); 2375 2376 spin_lock_init(&fs_info->qgroup_lock); 2377 mutex_init(&fs_info->qgroup_ioctl_lock); 2378 fs_info->qgroup_tree = RB_ROOT; 2379 fs_info->qgroup_op_tree = RB_ROOT; 2380 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2381 fs_info->qgroup_seq = 1; 2382 fs_info->quota_enabled = 0; 2383 fs_info->pending_quota_state = 0; 2384 fs_info->qgroup_ulist = NULL; 2385 mutex_init(&fs_info->qgroup_rescan_lock); 2386 2387 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2388 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2389 2390 init_waitqueue_head(&fs_info->transaction_throttle); 2391 init_waitqueue_head(&fs_info->transaction_wait); 2392 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2393 init_waitqueue_head(&fs_info->async_submit_wait); 2394 2395 INIT_LIST_HEAD(&fs_info->pinned_chunks); 2396 2397 ret = btrfs_alloc_stripe_hash_table(fs_info); 2398 if (ret) { 2399 err = ret; 2400 goto fail_alloc; 2401 } 2402 2403 __setup_root(4096, 4096, 4096, tree_root, 2404 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2405 2406 invalidate_bdev(fs_devices->latest_bdev); 2407 2408 /* 2409 * Read super block and check the signature bytes only 2410 */ 2411 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2412 if (!bh) { 2413 err = -EINVAL; 2414 goto fail_alloc; 2415 } 2416 2417 /* 2418 * We want to check superblock checksum, the type is stored inside. 2419 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2420 */ 2421 if (btrfs_check_super_csum(bh->b_data)) { 2422 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n"); 2423 err = -EINVAL; 2424 goto fail_alloc; 2425 } 2426 2427 /* 2428 * super_copy is zeroed at allocation time and we never touch the 2429 * following bytes up to INFO_SIZE, the checksum is calculated from 2430 * the whole block of INFO_SIZE 2431 */ 2432 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2433 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2434 sizeof(*fs_info->super_for_commit)); 2435 brelse(bh); 2436 2437 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2438 2439 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2440 if (ret) { 2441 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n"); 2442 err = -EINVAL; 2443 goto fail_alloc; 2444 } 2445 2446 disk_super = fs_info->super_copy; 2447 if (!btrfs_super_root(disk_super)) 2448 goto fail_alloc; 2449 2450 /* check FS state, whether FS is broken. */ 2451 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2452 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2453 2454 /* 2455 * run through our array of backup supers and setup 2456 * our ring pointer to the oldest one 2457 */ 2458 generation = btrfs_super_generation(disk_super); 2459 find_oldest_super_backup(fs_info, generation); 2460 2461 /* 2462 * In the long term, we'll store the compression type in the super 2463 * block, and it'll be used for per file compression control. 2464 */ 2465 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2466 2467 ret = btrfs_parse_options(tree_root, options); 2468 if (ret) { 2469 err = ret; 2470 goto fail_alloc; 2471 } 2472 2473 features = btrfs_super_incompat_flags(disk_super) & 2474 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2475 if (features) { 2476 printk(KERN_ERR "BTRFS: couldn't mount because of " 2477 "unsupported optional features (%Lx).\n", 2478 features); 2479 err = -EINVAL; 2480 goto fail_alloc; 2481 } 2482 2483 /* 2484 * Leafsize and nodesize were always equal, this is only a sanity check. 2485 */ 2486 if (le32_to_cpu(disk_super->__unused_leafsize) != 2487 btrfs_super_nodesize(disk_super)) { 2488 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2489 "blocksizes don't match. node %d leaf %d\n", 2490 btrfs_super_nodesize(disk_super), 2491 le32_to_cpu(disk_super->__unused_leafsize)); 2492 err = -EINVAL; 2493 goto fail_alloc; 2494 } 2495 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) { 2496 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2497 "blocksize (%d) was too large\n", 2498 btrfs_super_nodesize(disk_super)); 2499 err = -EINVAL; 2500 goto fail_alloc; 2501 } 2502 2503 features = btrfs_super_incompat_flags(disk_super); 2504 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2505 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 2506 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2507 2508 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2509 printk(KERN_INFO "BTRFS: has skinny extents\n"); 2510 2511 /* 2512 * flag our filesystem as having big metadata blocks if 2513 * they are bigger than the page size 2514 */ 2515 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) { 2516 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2517 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n"); 2518 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2519 } 2520 2521 nodesize = btrfs_super_nodesize(disk_super); 2522 sectorsize = btrfs_super_sectorsize(disk_super); 2523 stripesize = btrfs_super_stripesize(disk_super); 2524 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2525 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2526 2527 /* 2528 * mixed block groups end up with duplicate but slightly offset 2529 * extent buffers for the same range. It leads to corruptions 2530 */ 2531 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2532 (sectorsize != nodesize)) { 2533 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes " 2534 "are not allowed for mixed block groups on %s\n", 2535 sb->s_id); 2536 goto fail_alloc; 2537 } 2538 2539 /* 2540 * Needn't use the lock because there is no other task which will 2541 * update the flag. 2542 */ 2543 btrfs_set_super_incompat_flags(disk_super, features); 2544 2545 features = btrfs_super_compat_ro_flags(disk_super) & 2546 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2547 if (!(sb->s_flags & MS_RDONLY) && features) { 2548 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 2549 "unsupported option features (%Lx).\n", 2550 features); 2551 err = -EINVAL; 2552 goto fail_alloc; 2553 } 2554 2555 max_active = fs_info->thread_pool_size; 2556 2557 fs_info->workers = 2558 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI, 2559 max_active, 16); 2560 2561 fs_info->delalloc_workers = 2562 btrfs_alloc_workqueue("delalloc", flags, max_active, 2); 2563 2564 fs_info->flush_workers = 2565 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0); 2566 2567 fs_info->caching_workers = 2568 btrfs_alloc_workqueue("cache", flags, max_active, 0); 2569 2570 /* 2571 * a higher idle thresh on the submit workers makes it much more 2572 * likely that bios will be send down in a sane order to the 2573 * devices 2574 */ 2575 fs_info->submit_workers = 2576 btrfs_alloc_workqueue("submit", flags, 2577 min_t(u64, fs_devices->num_devices, 2578 max_active), 64); 2579 2580 fs_info->fixup_workers = 2581 btrfs_alloc_workqueue("fixup", flags, 1, 0); 2582 2583 /* 2584 * endios are largely parallel and should have a very 2585 * low idle thresh 2586 */ 2587 fs_info->endio_workers = 2588 btrfs_alloc_workqueue("endio", flags, max_active, 4); 2589 fs_info->endio_meta_workers = 2590 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4); 2591 fs_info->endio_meta_write_workers = 2592 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2); 2593 fs_info->endio_raid56_workers = 2594 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4); 2595 fs_info->endio_repair_workers = 2596 btrfs_alloc_workqueue("endio-repair", flags, 1, 0); 2597 fs_info->rmw_workers = 2598 btrfs_alloc_workqueue("rmw", flags, max_active, 2); 2599 fs_info->endio_write_workers = 2600 btrfs_alloc_workqueue("endio-write", flags, max_active, 2); 2601 fs_info->endio_freespace_worker = 2602 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0); 2603 fs_info->delayed_workers = 2604 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0); 2605 fs_info->readahead_workers = 2606 btrfs_alloc_workqueue("readahead", flags, max_active, 2); 2607 fs_info->qgroup_rescan_workers = 2608 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0); 2609 fs_info->extent_workers = 2610 btrfs_alloc_workqueue("extent-refs", flags, 2611 min_t(u64, fs_devices->num_devices, 2612 max_active), 8); 2613 2614 if (!(fs_info->workers && fs_info->delalloc_workers && 2615 fs_info->submit_workers && fs_info->flush_workers && 2616 fs_info->endio_workers && fs_info->endio_meta_workers && 2617 fs_info->endio_meta_write_workers && 2618 fs_info->endio_repair_workers && 2619 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2620 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2621 fs_info->caching_workers && fs_info->readahead_workers && 2622 fs_info->fixup_workers && fs_info->delayed_workers && 2623 fs_info->extent_workers && 2624 fs_info->qgroup_rescan_workers)) { 2625 err = -ENOMEM; 2626 goto fail_sb_buffer; 2627 } 2628 2629 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2630 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2631 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 2632 2633 tree_root->nodesize = nodesize; 2634 tree_root->sectorsize = sectorsize; 2635 tree_root->stripesize = stripesize; 2636 2637 sb->s_blocksize = sectorsize; 2638 sb->s_blocksize_bits = blksize_bits(sectorsize); 2639 2640 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 2641 printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id); 2642 goto fail_sb_buffer; 2643 } 2644 2645 if (sectorsize != PAGE_SIZE) { 2646 printk(KERN_ERR "BTRFS: incompatible sector size (%lu) " 2647 "found on %s\n", (unsigned long)sectorsize, sb->s_id); 2648 goto fail_sb_buffer; 2649 } 2650 2651 mutex_lock(&fs_info->chunk_mutex); 2652 ret = btrfs_read_sys_array(tree_root); 2653 mutex_unlock(&fs_info->chunk_mutex); 2654 if (ret) { 2655 printk(KERN_ERR "BTRFS: failed to read the system " 2656 "array on %s\n", sb->s_id); 2657 goto fail_sb_buffer; 2658 } 2659 2660 generation = btrfs_super_chunk_root_generation(disk_super); 2661 2662 __setup_root(nodesize, sectorsize, stripesize, chunk_root, 2663 fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2664 2665 chunk_root->node = read_tree_block(chunk_root, 2666 btrfs_super_chunk_root(disk_super), 2667 generation); 2668 if (!chunk_root->node || 2669 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { 2670 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n", 2671 sb->s_id); 2672 goto fail_tree_roots; 2673 } 2674 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2675 chunk_root->commit_root = btrfs_root_node(chunk_root); 2676 2677 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2678 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2679 2680 ret = btrfs_read_chunk_tree(chunk_root); 2681 if (ret) { 2682 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n", 2683 sb->s_id); 2684 goto fail_tree_roots; 2685 } 2686 2687 /* 2688 * keep the device that is marked to be the target device for the 2689 * dev_replace procedure 2690 */ 2691 btrfs_close_extra_devices(fs_info, fs_devices, 0); 2692 2693 if (!fs_devices->latest_bdev) { 2694 printk(KERN_ERR "BTRFS: failed to read devices on %s\n", 2695 sb->s_id); 2696 goto fail_tree_roots; 2697 } 2698 2699 retry_root_backup: 2700 generation = btrfs_super_generation(disk_super); 2701 2702 tree_root->node = read_tree_block(tree_root, 2703 btrfs_super_root(disk_super), 2704 generation); 2705 if (!tree_root->node || 2706 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { 2707 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n", 2708 sb->s_id); 2709 2710 goto recovery_tree_root; 2711 } 2712 2713 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2714 tree_root->commit_root = btrfs_root_node(tree_root); 2715 btrfs_set_root_refs(&tree_root->root_item, 1); 2716 2717 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2718 location.type = BTRFS_ROOT_ITEM_KEY; 2719 location.offset = 0; 2720 2721 extent_root = btrfs_read_tree_root(tree_root, &location); 2722 if (IS_ERR(extent_root)) { 2723 ret = PTR_ERR(extent_root); 2724 goto recovery_tree_root; 2725 } 2726 set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state); 2727 fs_info->extent_root = extent_root; 2728 2729 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2730 dev_root = btrfs_read_tree_root(tree_root, &location); 2731 if (IS_ERR(dev_root)) { 2732 ret = PTR_ERR(dev_root); 2733 goto recovery_tree_root; 2734 } 2735 set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state); 2736 fs_info->dev_root = dev_root; 2737 btrfs_init_devices_late(fs_info); 2738 2739 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2740 csum_root = btrfs_read_tree_root(tree_root, &location); 2741 if (IS_ERR(csum_root)) { 2742 ret = PTR_ERR(csum_root); 2743 goto recovery_tree_root; 2744 } 2745 set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state); 2746 fs_info->csum_root = csum_root; 2747 2748 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2749 quota_root = btrfs_read_tree_root(tree_root, &location); 2750 if (!IS_ERR(quota_root)) { 2751 set_bit(BTRFS_ROOT_TRACK_DIRTY, "a_root->state); 2752 fs_info->quota_enabled = 1; 2753 fs_info->pending_quota_state = 1; 2754 fs_info->quota_root = quota_root; 2755 } 2756 2757 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2758 uuid_root = btrfs_read_tree_root(tree_root, &location); 2759 if (IS_ERR(uuid_root)) { 2760 ret = PTR_ERR(uuid_root); 2761 if (ret != -ENOENT) 2762 goto recovery_tree_root; 2763 create_uuid_tree = true; 2764 check_uuid_tree = false; 2765 } else { 2766 set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state); 2767 fs_info->uuid_root = uuid_root; 2768 create_uuid_tree = false; 2769 check_uuid_tree = 2770 generation != btrfs_super_uuid_tree_generation(disk_super); 2771 } 2772 2773 fs_info->generation = generation; 2774 fs_info->last_trans_committed = generation; 2775 2776 ret = btrfs_recover_balance(fs_info); 2777 if (ret) { 2778 printk(KERN_ERR "BTRFS: failed to recover balance\n"); 2779 goto fail_block_groups; 2780 } 2781 2782 ret = btrfs_init_dev_stats(fs_info); 2783 if (ret) { 2784 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n", 2785 ret); 2786 goto fail_block_groups; 2787 } 2788 2789 ret = btrfs_init_dev_replace(fs_info); 2790 if (ret) { 2791 pr_err("BTRFS: failed to init dev_replace: %d\n", ret); 2792 goto fail_block_groups; 2793 } 2794 2795 btrfs_close_extra_devices(fs_info, fs_devices, 1); 2796 2797 ret = btrfs_sysfs_add_one(fs_info); 2798 if (ret) { 2799 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret); 2800 goto fail_block_groups; 2801 } 2802 2803 ret = btrfs_init_space_info(fs_info); 2804 if (ret) { 2805 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret); 2806 goto fail_sysfs; 2807 } 2808 2809 ret = btrfs_read_block_groups(extent_root); 2810 if (ret) { 2811 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret); 2812 goto fail_sysfs; 2813 } 2814 fs_info->num_tolerated_disk_barrier_failures = 2815 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 2816 if (fs_info->fs_devices->missing_devices > 2817 fs_info->num_tolerated_disk_barrier_failures && 2818 !(sb->s_flags & MS_RDONLY)) { 2819 printk(KERN_WARNING "BTRFS: " 2820 "too many missing devices, writeable mount is not allowed\n"); 2821 goto fail_sysfs; 2822 } 2823 2824 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2825 "btrfs-cleaner"); 2826 if (IS_ERR(fs_info->cleaner_kthread)) 2827 goto fail_sysfs; 2828 2829 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2830 tree_root, 2831 "btrfs-transaction"); 2832 if (IS_ERR(fs_info->transaction_kthread)) 2833 goto fail_cleaner; 2834 2835 if (!btrfs_test_opt(tree_root, SSD) && 2836 !btrfs_test_opt(tree_root, NOSSD) && 2837 !fs_info->fs_devices->rotating) { 2838 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD " 2839 "mode\n"); 2840 btrfs_set_opt(fs_info->mount_opt, SSD); 2841 } 2842 2843 /* 2844 * Mount does not set all options immediatelly, we can do it now and do 2845 * not have to wait for transaction commit 2846 */ 2847 btrfs_apply_pending_changes(fs_info); 2848 2849 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2850 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) { 2851 ret = btrfsic_mount(tree_root, fs_devices, 2852 btrfs_test_opt(tree_root, 2853 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 2854 1 : 0, 2855 fs_info->check_integrity_print_mask); 2856 if (ret) 2857 printk(KERN_WARNING "BTRFS: failed to initialize" 2858 " integrity check module %s\n", sb->s_id); 2859 } 2860 #endif 2861 ret = btrfs_read_qgroup_config(fs_info); 2862 if (ret) 2863 goto fail_trans_kthread; 2864 2865 /* do not make disk changes in broken FS */ 2866 if (btrfs_super_log_root(disk_super) != 0) { 2867 u64 bytenr = btrfs_super_log_root(disk_super); 2868 2869 if (fs_devices->rw_devices == 0) { 2870 printk(KERN_WARNING "BTRFS: log replay required " 2871 "on RO media\n"); 2872 err = -EIO; 2873 goto fail_qgroup; 2874 } 2875 2876 log_tree_root = btrfs_alloc_root(fs_info); 2877 if (!log_tree_root) { 2878 err = -ENOMEM; 2879 goto fail_qgroup; 2880 } 2881 2882 __setup_root(nodesize, sectorsize, stripesize, 2883 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2884 2885 log_tree_root->node = read_tree_block(tree_root, bytenr, 2886 generation + 1); 2887 if (!log_tree_root->node || 2888 !extent_buffer_uptodate(log_tree_root->node)) { 2889 printk(KERN_ERR "BTRFS: failed to read log tree\n"); 2890 free_extent_buffer(log_tree_root->node); 2891 kfree(log_tree_root); 2892 goto fail_qgroup; 2893 } 2894 /* returns with log_tree_root freed on success */ 2895 ret = btrfs_recover_log_trees(log_tree_root); 2896 if (ret) { 2897 btrfs_error(tree_root->fs_info, ret, 2898 "Failed to recover log tree"); 2899 free_extent_buffer(log_tree_root->node); 2900 kfree(log_tree_root); 2901 goto fail_qgroup; 2902 } 2903 2904 if (sb->s_flags & MS_RDONLY) { 2905 ret = btrfs_commit_super(tree_root); 2906 if (ret) 2907 goto fail_qgroup; 2908 } 2909 } 2910 2911 ret = btrfs_find_orphan_roots(tree_root); 2912 if (ret) 2913 goto fail_qgroup; 2914 2915 if (!(sb->s_flags & MS_RDONLY)) { 2916 ret = btrfs_cleanup_fs_roots(fs_info); 2917 if (ret) 2918 goto fail_qgroup; 2919 2920 mutex_lock(&fs_info->cleaner_mutex); 2921 ret = btrfs_recover_relocation(tree_root); 2922 mutex_unlock(&fs_info->cleaner_mutex); 2923 if (ret < 0) { 2924 printk(KERN_WARNING 2925 "BTRFS: failed to recover relocation\n"); 2926 err = -EINVAL; 2927 goto fail_qgroup; 2928 } 2929 } 2930 2931 location.objectid = BTRFS_FS_TREE_OBJECTID; 2932 location.type = BTRFS_ROOT_ITEM_KEY; 2933 location.offset = 0; 2934 2935 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 2936 if (IS_ERR(fs_info->fs_root)) { 2937 err = PTR_ERR(fs_info->fs_root); 2938 goto fail_qgroup; 2939 } 2940 2941 if (sb->s_flags & MS_RDONLY) 2942 return 0; 2943 2944 down_read(&fs_info->cleanup_work_sem); 2945 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 2946 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 2947 up_read(&fs_info->cleanup_work_sem); 2948 close_ctree(tree_root); 2949 return ret; 2950 } 2951 up_read(&fs_info->cleanup_work_sem); 2952 2953 ret = btrfs_resume_balance_async(fs_info); 2954 if (ret) { 2955 printk(KERN_WARNING "BTRFS: failed to resume balance\n"); 2956 close_ctree(tree_root); 2957 return ret; 2958 } 2959 2960 ret = btrfs_resume_dev_replace_async(fs_info); 2961 if (ret) { 2962 pr_warn("BTRFS: failed to resume dev_replace\n"); 2963 close_ctree(tree_root); 2964 return ret; 2965 } 2966 2967 btrfs_qgroup_rescan_resume(fs_info); 2968 2969 if (create_uuid_tree) { 2970 pr_info("BTRFS: creating UUID tree\n"); 2971 ret = btrfs_create_uuid_tree(fs_info); 2972 if (ret) { 2973 pr_warn("BTRFS: failed to create the UUID tree %d\n", 2974 ret); 2975 close_ctree(tree_root); 2976 return ret; 2977 } 2978 } else if (check_uuid_tree || 2979 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) { 2980 pr_info("BTRFS: checking UUID tree\n"); 2981 ret = btrfs_check_uuid_tree(fs_info); 2982 if (ret) { 2983 pr_warn("BTRFS: failed to check the UUID tree %d\n", 2984 ret); 2985 close_ctree(tree_root); 2986 return ret; 2987 } 2988 } else { 2989 fs_info->update_uuid_tree_gen = 1; 2990 } 2991 2992 fs_info->open = 1; 2993 2994 return 0; 2995 2996 fail_qgroup: 2997 btrfs_free_qgroup_config(fs_info); 2998 fail_trans_kthread: 2999 kthread_stop(fs_info->transaction_kthread); 3000 btrfs_cleanup_transaction(fs_info->tree_root); 3001 btrfs_free_fs_roots(fs_info); 3002 fail_cleaner: 3003 kthread_stop(fs_info->cleaner_kthread); 3004 3005 /* 3006 * make sure we're done with the btree inode before we stop our 3007 * kthreads 3008 */ 3009 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3010 3011 fail_sysfs: 3012 btrfs_sysfs_remove_one(fs_info); 3013 3014 fail_block_groups: 3015 btrfs_put_block_group_cache(fs_info); 3016 btrfs_free_block_groups(fs_info); 3017 3018 fail_tree_roots: 3019 free_root_pointers(fs_info, 1); 3020 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3021 3022 fail_sb_buffer: 3023 btrfs_stop_all_workers(fs_info); 3024 fail_alloc: 3025 fail_iput: 3026 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3027 3028 iput(fs_info->btree_inode); 3029 fail_bio_counter: 3030 percpu_counter_destroy(&fs_info->bio_counter); 3031 fail_delalloc_bytes: 3032 percpu_counter_destroy(&fs_info->delalloc_bytes); 3033 fail_dirty_metadata_bytes: 3034 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3035 fail_bdi: 3036 bdi_destroy(&fs_info->bdi); 3037 fail_srcu: 3038 cleanup_srcu_struct(&fs_info->subvol_srcu); 3039 fail: 3040 btrfs_free_stripe_hash_table(fs_info); 3041 btrfs_close_devices(fs_info->fs_devices); 3042 return err; 3043 3044 recovery_tree_root: 3045 if (!btrfs_test_opt(tree_root, RECOVERY)) 3046 goto fail_tree_roots; 3047 3048 free_root_pointers(fs_info, 0); 3049 3050 /* don't use the log in recovery mode, it won't be valid */ 3051 btrfs_set_super_log_root(disk_super, 0); 3052 3053 /* we can't trust the free space cache either */ 3054 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3055 3056 ret = next_root_backup(fs_info, fs_info->super_copy, 3057 &num_backups_tried, &backup_index); 3058 if (ret == -1) 3059 goto fail_block_groups; 3060 goto retry_root_backup; 3061 } 3062 3063 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3064 { 3065 if (uptodate) { 3066 set_buffer_uptodate(bh); 3067 } else { 3068 struct btrfs_device *device = (struct btrfs_device *) 3069 bh->b_private; 3070 3071 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to " 3072 "I/O error on %s\n", 3073 rcu_str_deref(device->name)); 3074 /* note, we dont' set_buffer_write_io_error because we have 3075 * our own ways of dealing with the IO errors 3076 */ 3077 clear_buffer_uptodate(bh); 3078 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3079 } 3080 unlock_buffer(bh); 3081 put_bh(bh); 3082 } 3083 3084 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3085 { 3086 struct buffer_head *bh; 3087 struct buffer_head *latest = NULL; 3088 struct btrfs_super_block *super; 3089 int i; 3090 u64 transid = 0; 3091 u64 bytenr; 3092 3093 /* we would like to check all the supers, but that would make 3094 * a btrfs mount succeed after a mkfs from a different FS. 3095 * So, we need to add a special mount option to scan for 3096 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3097 */ 3098 for (i = 0; i < 1; i++) { 3099 bytenr = btrfs_sb_offset(i); 3100 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3101 i_size_read(bdev->bd_inode)) 3102 break; 3103 bh = __bread(bdev, bytenr / 4096, 3104 BTRFS_SUPER_INFO_SIZE); 3105 if (!bh) 3106 continue; 3107 3108 super = (struct btrfs_super_block *)bh->b_data; 3109 if (btrfs_super_bytenr(super) != bytenr || 3110 btrfs_super_magic(super) != BTRFS_MAGIC) { 3111 brelse(bh); 3112 continue; 3113 } 3114 3115 if (!latest || btrfs_super_generation(super) > transid) { 3116 brelse(latest); 3117 latest = bh; 3118 transid = btrfs_super_generation(super); 3119 } else { 3120 brelse(bh); 3121 } 3122 } 3123 return latest; 3124 } 3125 3126 /* 3127 * this should be called twice, once with wait == 0 and 3128 * once with wait == 1. When wait == 0 is done, all the buffer heads 3129 * we write are pinned. 3130 * 3131 * They are released when wait == 1 is done. 3132 * max_mirrors must be the same for both runs, and it indicates how 3133 * many supers on this one device should be written. 3134 * 3135 * max_mirrors == 0 means to write them all. 3136 */ 3137 static int write_dev_supers(struct btrfs_device *device, 3138 struct btrfs_super_block *sb, 3139 int do_barriers, int wait, int max_mirrors) 3140 { 3141 struct buffer_head *bh; 3142 int i; 3143 int ret; 3144 int errors = 0; 3145 u32 crc; 3146 u64 bytenr; 3147 3148 if (max_mirrors == 0) 3149 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3150 3151 for (i = 0; i < max_mirrors; i++) { 3152 bytenr = btrfs_sb_offset(i); 3153 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3154 device->commit_total_bytes) 3155 break; 3156 3157 if (wait) { 3158 bh = __find_get_block(device->bdev, bytenr / 4096, 3159 BTRFS_SUPER_INFO_SIZE); 3160 if (!bh) { 3161 errors++; 3162 continue; 3163 } 3164 wait_on_buffer(bh); 3165 if (!buffer_uptodate(bh)) 3166 errors++; 3167 3168 /* drop our reference */ 3169 brelse(bh); 3170 3171 /* drop the reference from the wait == 0 run */ 3172 brelse(bh); 3173 continue; 3174 } else { 3175 btrfs_set_super_bytenr(sb, bytenr); 3176 3177 crc = ~(u32)0; 3178 crc = btrfs_csum_data((char *)sb + 3179 BTRFS_CSUM_SIZE, crc, 3180 BTRFS_SUPER_INFO_SIZE - 3181 BTRFS_CSUM_SIZE); 3182 btrfs_csum_final(crc, sb->csum); 3183 3184 /* 3185 * one reference for us, and we leave it for the 3186 * caller 3187 */ 3188 bh = __getblk(device->bdev, bytenr / 4096, 3189 BTRFS_SUPER_INFO_SIZE); 3190 if (!bh) { 3191 printk(KERN_ERR "BTRFS: couldn't get super " 3192 "buffer head for bytenr %Lu\n", bytenr); 3193 errors++; 3194 continue; 3195 } 3196 3197 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3198 3199 /* one reference for submit_bh */ 3200 get_bh(bh); 3201 3202 set_buffer_uptodate(bh); 3203 lock_buffer(bh); 3204 bh->b_end_io = btrfs_end_buffer_write_sync; 3205 bh->b_private = device; 3206 } 3207 3208 /* 3209 * we fua the first super. The others we allow 3210 * to go down lazy. 3211 */ 3212 if (i == 0) 3213 ret = btrfsic_submit_bh(WRITE_FUA, bh); 3214 else 3215 ret = btrfsic_submit_bh(WRITE_SYNC, bh); 3216 if (ret) 3217 errors++; 3218 } 3219 return errors < i ? 0 : -1; 3220 } 3221 3222 /* 3223 * endio for the write_dev_flush, this will wake anyone waiting 3224 * for the barrier when it is done 3225 */ 3226 static void btrfs_end_empty_barrier(struct bio *bio, int err) 3227 { 3228 if (err) { 3229 if (err == -EOPNOTSUPP) 3230 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 3231 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3232 } 3233 if (bio->bi_private) 3234 complete(bio->bi_private); 3235 bio_put(bio); 3236 } 3237 3238 /* 3239 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 3240 * sent down. With wait == 1, it waits for the previous flush. 3241 * 3242 * any device where the flush fails with eopnotsupp are flagged as not-barrier 3243 * capable 3244 */ 3245 static int write_dev_flush(struct btrfs_device *device, int wait) 3246 { 3247 struct bio *bio; 3248 int ret = 0; 3249 3250 if (device->nobarriers) 3251 return 0; 3252 3253 if (wait) { 3254 bio = device->flush_bio; 3255 if (!bio) 3256 return 0; 3257 3258 wait_for_completion(&device->flush_wait); 3259 3260 if (bio_flagged(bio, BIO_EOPNOTSUPP)) { 3261 printk_in_rcu("BTRFS: disabling barriers on dev %s\n", 3262 rcu_str_deref(device->name)); 3263 device->nobarriers = 1; 3264 } else if (!bio_flagged(bio, BIO_UPTODATE)) { 3265 ret = -EIO; 3266 btrfs_dev_stat_inc_and_print(device, 3267 BTRFS_DEV_STAT_FLUSH_ERRS); 3268 } 3269 3270 /* drop the reference from the wait == 0 run */ 3271 bio_put(bio); 3272 device->flush_bio = NULL; 3273 3274 return ret; 3275 } 3276 3277 /* 3278 * one reference for us, and we leave it for the 3279 * caller 3280 */ 3281 device->flush_bio = NULL; 3282 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 3283 if (!bio) 3284 return -ENOMEM; 3285 3286 bio->bi_end_io = btrfs_end_empty_barrier; 3287 bio->bi_bdev = device->bdev; 3288 init_completion(&device->flush_wait); 3289 bio->bi_private = &device->flush_wait; 3290 device->flush_bio = bio; 3291 3292 bio_get(bio); 3293 btrfsic_submit_bio(WRITE_FLUSH, bio); 3294 3295 return 0; 3296 } 3297 3298 /* 3299 * send an empty flush down to each device in parallel, 3300 * then wait for them 3301 */ 3302 static int barrier_all_devices(struct btrfs_fs_info *info) 3303 { 3304 struct list_head *head; 3305 struct btrfs_device *dev; 3306 int errors_send = 0; 3307 int errors_wait = 0; 3308 int ret; 3309 3310 /* send down all the barriers */ 3311 head = &info->fs_devices->devices; 3312 list_for_each_entry_rcu(dev, head, dev_list) { 3313 if (dev->missing) 3314 continue; 3315 if (!dev->bdev) { 3316 errors_send++; 3317 continue; 3318 } 3319 if (!dev->in_fs_metadata || !dev->writeable) 3320 continue; 3321 3322 ret = write_dev_flush(dev, 0); 3323 if (ret) 3324 errors_send++; 3325 } 3326 3327 /* wait for all the barriers */ 3328 list_for_each_entry_rcu(dev, head, dev_list) { 3329 if (dev->missing) 3330 continue; 3331 if (!dev->bdev) { 3332 errors_wait++; 3333 continue; 3334 } 3335 if (!dev->in_fs_metadata || !dev->writeable) 3336 continue; 3337 3338 ret = write_dev_flush(dev, 1); 3339 if (ret) 3340 errors_wait++; 3341 } 3342 if (errors_send > info->num_tolerated_disk_barrier_failures || 3343 errors_wait > info->num_tolerated_disk_barrier_failures) 3344 return -EIO; 3345 return 0; 3346 } 3347 3348 int btrfs_calc_num_tolerated_disk_barrier_failures( 3349 struct btrfs_fs_info *fs_info) 3350 { 3351 struct btrfs_ioctl_space_info space; 3352 struct btrfs_space_info *sinfo; 3353 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3354 BTRFS_BLOCK_GROUP_SYSTEM, 3355 BTRFS_BLOCK_GROUP_METADATA, 3356 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3357 int num_types = 4; 3358 int i; 3359 int c; 3360 int num_tolerated_disk_barrier_failures = 3361 (int)fs_info->fs_devices->num_devices; 3362 3363 for (i = 0; i < num_types; i++) { 3364 struct btrfs_space_info *tmp; 3365 3366 sinfo = NULL; 3367 rcu_read_lock(); 3368 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) { 3369 if (tmp->flags == types[i]) { 3370 sinfo = tmp; 3371 break; 3372 } 3373 } 3374 rcu_read_unlock(); 3375 3376 if (!sinfo) 3377 continue; 3378 3379 down_read(&sinfo->groups_sem); 3380 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3381 if (!list_empty(&sinfo->block_groups[c])) { 3382 u64 flags; 3383 3384 btrfs_get_block_group_info( 3385 &sinfo->block_groups[c], &space); 3386 if (space.total_bytes == 0 || 3387 space.used_bytes == 0) 3388 continue; 3389 flags = space.flags; 3390 /* 3391 * return 3392 * 0: if dup, single or RAID0 is configured for 3393 * any of metadata, system or data, else 3394 * 1: if RAID5 is configured, or if RAID1 or 3395 * RAID10 is configured and only two mirrors 3396 * are used, else 3397 * 2: if RAID6 is configured, else 3398 * num_mirrors - 1: if RAID1 or RAID10 is 3399 * configured and more than 3400 * 2 mirrors are used. 3401 */ 3402 if (num_tolerated_disk_barrier_failures > 0 && 3403 ((flags & (BTRFS_BLOCK_GROUP_DUP | 3404 BTRFS_BLOCK_GROUP_RAID0)) || 3405 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) 3406 == 0))) 3407 num_tolerated_disk_barrier_failures = 0; 3408 else if (num_tolerated_disk_barrier_failures > 1) { 3409 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 3410 BTRFS_BLOCK_GROUP_RAID5 | 3411 BTRFS_BLOCK_GROUP_RAID10)) { 3412 num_tolerated_disk_barrier_failures = 1; 3413 } else if (flags & 3414 BTRFS_BLOCK_GROUP_RAID6) { 3415 num_tolerated_disk_barrier_failures = 2; 3416 } 3417 } 3418 } 3419 } 3420 up_read(&sinfo->groups_sem); 3421 } 3422 3423 return num_tolerated_disk_barrier_failures; 3424 } 3425 3426 static int write_all_supers(struct btrfs_root *root, int max_mirrors) 3427 { 3428 struct list_head *head; 3429 struct btrfs_device *dev; 3430 struct btrfs_super_block *sb; 3431 struct btrfs_dev_item *dev_item; 3432 int ret; 3433 int do_barriers; 3434 int max_errors; 3435 int total_errors = 0; 3436 u64 flags; 3437 3438 do_barriers = !btrfs_test_opt(root, NOBARRIER); 3439 backup_super_roots(root->fs_info); 3440 3441 sb = root->fs_info->super_for_commit; 3442 dev_item = &sb->dev_item; 3443 3444 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 3445 head = &root->fs_info->fs_devices->devices; 3446 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 3447 3448 if (do_barriers) { 3449 ret = barrier_all_devices(root->fs_info); 3450 if (ret) { 3451 mutex_unlock( 3452 &root->fs_info->fs_devices->device_list_mutex); 3453 btrfs_error(root->fs_info, ret, 3454 "errors while submitting device barriers."); 3455 return ret; 3456 } 3457 } 3458 3459 list_for_each_entry_rcu(dev, head, dev_list) { 3460 if (!dev->bdev) { 3461 total_errors++; 3462 continue; 3463 } 3464 if (!dev->in_fs_metadata || !dev->writeable) 3465 continue; 3466 3467 btrfs_set_stack_device_generation(dev_item, 0); 3468 btrfs_set_stack_device_type(dev_item, dev->type); 3469 btrfs_set_stack_device_id(dev_item, dev->devid); 3470 btrfs_set_stack_device_total_bytes(dev_item, 3471 dev->commit_total_bytes); 3472 btrfs_set_stack_device_bytes_used(dev_item, 3473 dev->commit_bytes_used); 3474 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3475 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3476 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3477 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3478 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 3479 3480 flags = btrfs_super_flags(sb); 3481 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3482 3483 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 3484 if (ret) 3485 total_errors++; 3486 } 3487 if (total_errors > max_errors) { 3488 btrfs_err(root->fs_info, "%d errors while writing supers", 3489 total_errors); 3490 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3491 3492 /* FUA is masked off if unsupported and can't be the reason */ 3493 btrfs_error(root->fs_info, -EIO, 3494 "%d errors while writing supers", total_errors); 3495 return -EIO; 3496 } 3497 3498 total_errors = 0; 3499 list_for_each_entry_rcu(dev, head, dev_list) { 3500 if (!dev->bdev) 3501 continue; 3502 if (!dev->in_fs_metadata || !dev->writeable) 3503 continue; 3504 3505 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 3506 if (ret) 3507 total_errors++; 3508 } 3509 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3510 if (total_errors > max_errors) { 3511 btrfs_error(root->fs_info, -EIO, 3512 "%d errors while writing supers", total_errors); 3513 return -EIO; 3514 } 3515 return 0; 3516 } 3517 3518 int write_ctree_super(struct btrfs_trans_handle *trans, 3519 struct btrfs_root *root, int max_mirrors) 3520 { 3521 return write_all_supers(root, max_mirrors); 3522 } 3523 3524 /* Drop a fs root from the radix tree and free it. */ 3525 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3526 struct btrfs_root *root) 3527 { 3528 spin_lock(&fs_info->fs_roots_radix_lock); 3529 radix_tree_delete(&fs_info->fs_roots_radix, 3530 (unsigned long)root->root_key.objectid); 3531 spin_unlock(&fs_info->fs_roots_radix_lock); 3532 3533 if (btrfs_root_refs(&root->root_item) == 0) 3534 synchronize_srcu(&fs_info->subvol_srcu); 3535 3536 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3537 btrfs_free_log(NULL, root); 3538 3539 if (root->free_ino_pinned) 3540 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3541 if (root->free_ino_ctl) 3542 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3543 free_fs_root(root); 3544 } 3545 3546 static void free_fs_root(struct btrfs_root *root) 3547 { 3548 iput(root->ino_cache_inode); 3549 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3550 btrfs_free_block_rsv(root, root->orphan_block_rsv); 3551 root->orphan_block_rsv = NULL; 3552 if (root->anon_dev) 3553 free_anon_bdev(root->anon_dev); 3554 if (root->subv_writers) 3555 btrfs_free_subvolume_writers(root->subv_writers); 3556 free_extent_buffer(root->node); 3557 free_extent_buffer(root->commit_root); 3558 kfree(root->free_ino_ctl); 3559 kfree(root->free_ino_pinned); 3560 kfree(root->name); 3561 btrfs_put_fs_root(root); 3562 } 3563 3564 void btrfs_free_fs_root(struct btrfs_root *root) 3565 { 3566 free_fs_root(root); 3567 } 3568 3569 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3570 { 3571 u64 root_objectid = 0; 3572 struct btrfs_root *gang[8]; 3573 int i = 0; 3574 int err = 0; 3575 unsigned int ret = 0; 3576 int index; 3577 3578 while (1) { 3579 index = srcu_read_lock(&fs_info->subvol_srcu); 3580 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3581 (void **)gang, root_objectid, 3582 ARRAY_SIZE(gang)); 3583 if (!ret) { 3584 srcu_read_unlock(&fs_info->subvol_srcu, index); 3585 break; 3586 } 3587 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3588 3589 for (i = 0; i < ret; i++) { 3590 /* Avoid to grab roots in dead_roots */ 3591 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3592 gang[i] = NULL; 3593 continue; 3594 } 3595 /* grab all the search result for later use */ 3596 gang[i] = btrfs_grab_fs_root(gang[i]); 3597 } 3598 srcu_read_unlock(&fs_info->subvol_srcu, index); 3599 3600 for (i = 0; i < ret; i++) { 3601 if (!gang[i]) 3602 continue; 3603 root_objectid = gang[i]->root_key.objectid; 3604 err = btrfs_orphan_cleanup(gang[i]); 3605 if (err) 3606 break; 3607 btrfs_put_fs_root(gang[i]); 3608 } 3609 root_objectid++; 3610 } 3611 3612 /* release the uncleaned roots due to error */ 3613 for (; i < ret; i++) { 3614 if (gang[i]) 3615 btrfs_put_fs_root(gang[i]); 3616 } 3617 return err; 3618 } 3619 3620 int btrfs_commit_super(struct btrfs_root *root) 3621 { 3622 struct btrfs_trans_handle *trans; 3623 3624 mutex_lock(&root->fs_info->cleaner_mutex); 3625 btrfs_run_delayed_iputs(root); 3626 mutex_unlock(&root->fs_info->cleaner_mutex); 3627 wake_up_process(root->fs_info->cleaner_kthread); 3628 3629 /* wait until ongoing cleanup work done */ 3630 down_write(&root->fs_info->cleanup_work_sem); 3631 up_write(&root->fs_info->cleanup_work_sem); 3632 3633 trans = btrfs_join_transaction(root); 3634 if (IS_ERR(trans)) 3635 return PTR_ERR(trans); 3636 return btrfs_commit_transaction(trans, root); 3637 } 3638 3639 void close_ctree(struct btrfs_root *root) 3640 { 3641 struct btrfs_fs_info *fs_info = root->fs_info; 3642 int ret; 3643 3644 fs_info->closing = 1; 3645 smp_mb(); 3646 3647 /* wait for the uuid_scan task to finish */ 3648 down(&fs_info->uuid_tree_rescan_sem); 3649 /* avoid complains from lockdep et al., set sem back to initial state */ 3650 up(&fs_info->uuid_tree_rescan_sem); 3651 3652 /* pause restriper - we want to resume on mount */ 3653 btrfs_pause_balance(fs_info); 3654 3655 btrfs_dev_replace_suspend_for_unmount(fs_info); 3656 3657 btrfs_scrub_cancel(fs_info); 3658 3659 /* wait for any defraggers to finish */ 3660 wait_event(fs_info->transaction_wait, 3661 (atomic_read(&fs_info->defrag_running) == 0)); 3662 3663 /* clear out the rbtree of defraggable inodes */ 3664 btrfs_cleanup_defrag_inodes(fs_info); 3665 3666 cancel_work_sync(&fs_info->async_reclaim_work); 3667 3668 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3669 ret = btrfs_commit_super(root); 3670 if (ret) 3671 btrfs_err(root->fs_info, "commit super ret %d", ret); 3672 } 3673 3674 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3675 btrfs_error_commit_super(root); 3676 3677 kthread_stop(fs_info->transaction_kthread); 3678 kthread_stop(fs_info->cleaner_kthread); 3679 3680 fs_info->closing = 2; 3681 smp_mb(); 3682 3683 btrfs_free_qgroup_config(root->fs_info); 3684 3685 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3686 btrfs_info(root->fs_info, "at unmount delalloc count %lld", 3687 percpu_counter_sum(&fs_info->delalloc_bytes)); 3688 } 3689 3690 btrfs_sysfs_remove_one(fs_info); 3691 3692 btrfs_free_fs_roots(fs_info); 3693 3694 btrfs_put_block_group_cache(fs_info); 3695 3696 btrfs_free_block_groups(fs_info); 3697 3698 /* 3699 * we must make sure there is not any read request to 3700 * submit after we stopping all workers. 3701 */ 3702 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3703 btrfs_stop_all_workers(fs_info); 3704 3705 fs_info->open = 0; 3706 free_root_pointers(fs_info, 1); 3707 3708 iput(fs_info->btree_inode); 3709 3710 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3711 if (btrfs_test_opt(root, CHECK_INTEGRITY)) 3712 btrfsic_unmount(root, fs_info->fs_devices); 3713 #endif 3714 3715 btrfs_close_devices(fs_info->fs_devices); 3716 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3717 3718 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3719 percpu_counter_destroy(&fs_info->delalloc_bytes); 3720 percpu_counter_destroy(&fs_info->bio_counter); 3721 bdi_destroy(&fs_info->bdi); 3722 cleanup_srcu_struct(&fs_info->subvol_srcu); 3723 3724 btrfs_free_stripe_hash_table(fs_info); 3725 3726 btrfs_free_block_rsv(root, root->orphan_block_rsv); 3727 root->orphan_block_rsv = NULL; 3728 3729 lock_chunks(root); 3730 while (!list_empty(&fs_info->pinned_chunks)) { 3731 struct extent_map *em; 3732 3733 em = list_first_entry(&fs_info->pinned_chunks, 3734 struct extent_map, list); 3735 list_del_init(&em->list); 3736 free_extent_map(em); 3737 } 3738 unlock_chunks(root); 3739 } 3740 3741 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 3742 int atomic) 3743 { 3744 int ret; 3745 struct inode *btree_inode = buf->pages[0]->mapping->host; 3746 3747 ret = extent_buffer_uptodate(buf); 3748 if (!ret) 3749 return ret; 3750 3751 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3752 parent_transid, atomic); 3753 if (ret == -EAGAIN) 3754 return ret; 3755 return !ret; 3756 } 3757 3758 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 3759 { 3760 return set_extent_buffer_uptodate(buf); 3761 } 3762 3763 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3764 { 3765 struct btrfs_root *root; 3766 u64 transid = btrfs_header_generation(buf); 3767 int was_dirty; 3768 3769 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3770 /* 3771 * This is a fast path so only do this check if we have sanity tests 3772 * enabled. Normal people shouldn't be marking dummy buffers as dirty 3773 * outside of the sanity tests. 3774 */ 3775 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags))) 3776 return; 3777 #endif 3778 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3779 btrfs_assert_tree_locked(buf); 3780 if (transid != root->fs_info->generation) 3781 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, " 3782 "found %llu running %llu\n", 3783 buf->start, transid, root->fs_info->generation); 3784 was_dirty = set_extent_buffer_dirty(buf); 3785 if (!was_dirty) 3786 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes, 3787 buf->len, 3788 root->fs_info->dirty_metadata_batch); 3789 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3790 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) { 3791 btrfs_print_leaf(root, buf); 3792 ASSERT(0); 3793 } 3794 #endif 3795 } 3796 3797 static void __btrfs_btree_balance_dirty(struct btrfs_root *root, 3798 int flush_delayed) 3799 { 3800 /* 3801 * looks as though older kernels can get into trouble with 3802 * this code, they end up stuck in balance_dirty_pages forever 3803 */ 3804 int ret; 3805 3806 if (current->flags & PF_MEMALLOC) 3807 return; 3808 3809 if (flush_delayed) 3810 btrfs_balance_delayed_items(root); 3811 3812 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes, 3813 BTRFS_DIRTY_METADATA_THRESH); 3814 if (ret > 0) { 3815 balance_dirty_pages_ratelimited( 3816 root->fs_info->btree_inode->i_mapping); 3817 } 3818 return; 3819 } 3820 3821 void btrfs_btree_balance_dirty(struct btrfs_root *root) 3822 { 3823 __btrfs_btree_balance_dirty(root, 1); 3824 } 3825 3826 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root) 3827 { 3828 __btrfs_btree_balance_dirty(root, 0); 3829 } 3830 3831 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 3832 { 3833 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3834 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 3835 } 3836 3837 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 3838 int read_only) 3839 { 3840 struct btrfs_super_block *sb = fs_info->super_copy; 3841 int ret = 0; 3842 3843 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 3844 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n", 3845 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 3846 ret = -EINVAL; 3847 } 3848 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 3849 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n", 3850 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 3851 ret = -EINVAL; 3852 } 3853 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 3854 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n", 3855 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 3856 ret = -EINVAL; 3857 } 3858 3859 /* 3860 * The common minimum, we don't know if we can trust the nodesize/sectorsize 3861 * items yet, they'll be verified later. Issue just a warning. 3862 */ 3863 if (!IS_ALIGNED(btrfs_super_root(sb), 4096)) 3864 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n", 3865 btrfs_super_root(sb)); 3866 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096)) 3867 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n", 3868 btrfs_super_chunk_root(sb)); 3869 if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096)) 3870 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n", 3871 btrfs_super_log_root(sb)); 3872 3873 /* 3874 * Check the lower bound, the alignment and other constraints are 3875 * checked later. 3876 */ 3877 if (btrfs_super_nodesize(sb) < 4096) { 3878 printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n", 3879 btrfs_super_nodesize(sb)); 3880 ret = -EINVAL; 3881 } 3882 if (btrfs_super_sectorsize(sb) < 4096) { 3883 printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n", 3884 btrfs_super_sectorsize(sb)); 3885 ret = -EINVAL; 3886 } 3887 3888 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) { 3889 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n", 3890 fs_info->fsid, sb->dev_item.fsid); 3891 ret = -EINVAL; 3892 } 3893 3894 /* 3895 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 3896 * done later 3897 */ 3898 if (btrfs_super_num_devices(sb) > (1UL << 31)) 3899 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n", 3900 btrfs_super_num_devices(sb)); 3901 if (btrfs_super_num_devices(sb) == 0) { 3902 printk(KERN_ERR "BTRFS: number of devices is 0\n"); 3903 ret = -EINVAL; 3904 } 3905 3906 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) { 3907 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n", 3908 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 3909 ret = -EINVAL; 3910 } 3911 3912 /* 3913 * Obvious sys_chunk_array corruptions, it must hold at least one key 3914 * and one chunk 3915 */ 3916 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 3917 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n", 3918 btrfs_super_sys_array_size(sb), 3919 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 3920 ret = -EINVAL; 3921 } 3922 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 3923 + sizeof(struct btrfs_chunk)) { 3924 printk(KERN_ERR "BTRFS: system chunk array too small %u < %lu\n", 3925 btrfs_super_sys_array_size(sb), 3926 sizeof(struct btrfs_disk_key) 3927 + sizeof(struct btrfs_chunk)); 3928 ret = -EINVAL; 3929 } 3930 3931 /* 3932 * The generation is a global counter, we'll trust it more than the others 3933 * but it's still possible that it's the one that's wrong. 3934 */ 3935 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 3936 printk(KERN_WARNING 3937 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n", 3938 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb)); 3939 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 3940 && btrfs_super_cache_generation(sb) != (u64)-1) 3941 printk(KERN_WARNING 3942 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n", 3943 btrfs_super_generation(sb), btrfs_super_cache_generation(sb)); 3944 3945 return ret; 3946 } 3947 3948 static void btrfs_error_commit_super(struct btrfs_root *root) 3949 { 3950 mutex_lock(&root->fs_info->cleaner_mutex); 3951 btrfs_run_delayed_iputs(root); 3952 mutex_unlock(&root->fs_info->cleaner_mutex); 3953 3954 down_write(&root->fs_info->cleanup_work_sem); 3955 up_write(&root->fs_info->cleanup_work_sem); 3956 3957 /* cleanup FS via transaction */ 3958 btrfs_cleanup_transaction(root); 3959 } 3960 3961 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 3962 { 3963 struct btrfs_ordered_extent *ordered; 3964 3965 spin_lock(&root->ordered_extent_lock); 3966 /* 3967 * This will just short circuit the ordered completion stuff which will 3968 * make sure the ordered extent gets properly cleaned up. 3969 */ 3970 list_for_each_entry(ordered, &root->ordered_extents, 3971 root_extent_list) 3972 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 3973 spin_unlock(&root->ordered_extent_lock); 3974 } 3975 3976 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 3977 { 3978 struct btrfs_root *root; 3979 struct list_head splice; 3980 3981 INIT_LIST_HEAD(&splice); 3982 3983 spin_lock(&fs_info->ordered_root_lock); 3984 list_splice_init(&fs_info->ordered_roots, &splice); 3985 while (!list_empty(&splice)) { 3986 root = list_first_entry(&splice, struct btrfs_root, 3987 ordered_root); 3988 list_move_tail(&root->ordered_root, 3989 &fs_info->ordered_roots); 3990 3991 spin_unlock(&fs_info->ordered_root_lock); 3992 btrfs_destroy_ordered_extents(root); 3993 3994 cond_resched(); 3995 spin_lock(&fs_info->ordered_root_lock); 3996 } 3997 spin_unlock(&fs_info->ordered_root_lock); 3998 } 3999 4000 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4001 struct btrfs_root *root) 4002 { 4003 struct rb_node *node; 4004 struct btrfs_delayed_ref_root *delayed_refs; 4005 struct btrfs_delayed_ref_node *ref; 4006 int ret = 0; 4007 4008 delayed_refs = &trans->delayed_refs; 4009 4010 spin_lock(&delayed_refs->lock); 4011 if (atomic_read(&delayed_refs->num_entries) == 0) { 4012 spin_unlock(&delayed_refs->lock); 4013 btrfs_info(root->fs_info, "delayed_refs has NO entry"); 4014 return ret; 4015 } 4016 4017 while ((node = rb_first(&delayed_refs->href_root)) != NULL) { 4018 struct btrfs_delayed_ref_head *head; 4019 bool pin_bytes = false; 4020 4021 head = rb_entry(node, struct btrfs_delayed_ref_head, 4022 href_node); 4023 if (!mutex_trylock(&head->mutex)) { 4024 atomic_inc(&head->node.refs); 4025 spin_unlock(&delayed_refs->lock); 4026 4027 mutex_lock(&head->mutex); 4028 mutex_unlock(&head->mutex); 4029 btrfs_put_delayed_ref(&head->node); 4030 spin_lock(&delayed_refs->lock); 4031 continue; 4032 } 4033 spin_lock(&head->lock); 4034 while ((node = rb_first(&head->ref_root)) != NULL) { 4035 ref = rb_entry(node, struct btrfs_delayed_ref_node, 4036 rb_node); 4037 ref->in_tree = 0; 4038 rb_erase(&ref->rb_node, &head->ref_root); 4039 atomic_dec(&delayed_refs->num_entries); 4040 btrfs_put_delayed_ref(ref); 4041 } 4042 if (head->must_insert_reserved) 4043 pin_bytes = true; 4044 btrfs_free_delayed_extent_op(head->extent_op); 4045 delayed_refs->num_heads--; 4046 if (head->processing == 0) 4047 delayed_refs->num_heads_ready--; 4048 atomic_dec(&delayed_refs->num_entries); 4049 head->node.in_tree = 0; 4050 rb_erase(&head->href_node, &delayed_refs->href_root); 4051 spin_unlock(&head->lock); 4052 spin_unlock(&delayed_refs->lock); 4053 mutex_unlock(&head->mutex); 4054 4055 if (pin_bytes) 4056 btrfs_pin_extent(root, head->node.bytenr, 4057 head->node.num_bytes, 1); 4058 btrfs_put_delayed_ref(&head->node); 4059 cond_resched(); 4060 spin_lock(&delayed_refs->lock); 4061 } 4062 4063 spin_unlock(&delayed_refs->lock); 4064 4065 return ret; 4066 } 4067 4068 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4069 { 4070 struct btrfs_inode *btrfs_inode; 4071 struct list_head splice; 4072 4073 INIT_LIST_HEAD(&splice); 4074 4075 spin_lock(&root->delalloc_lock); 4076 list_splice_init(&root->delalloc_inodes, &splice); 4077 4078 while (!list_empty(&splice)) { 4079 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4080 delalloc_inodes); 4081 4082 list_del_init(&btrfs_inode->delalloc_inodes); 4083 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 4084 &btrfs_inode->runtime_flags); 4085 spin_unlock(&root->delalloc_lock); 4086 4087 btrfs_invalidate_inodes(btrfs_inode->root); 4088 4089 spin_lock(&root->delalloc_lock); 4090 } 4091 4092 spin_unlock(&root->delalloc_lock); 4093 } 4094 4095 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4096 { 4097 struct btrfs_root *root; 4098 struct list_head splice; 4099 4100 INIT_LIST_HEAD(&splice); 4101 4102 spin_lock(&fs_info->delalloc_root_lock); 4103 list_splice_init(&fs_info->delalloc_roots, &splice); 4104 while (!list_empty(&splice)) { 4105 root = list_first_entry(&splice, struct btrfs_root, 4106 delalloc_root); 4107 list_del_init(&root->delalloc_root); 4108 root = btrfs_grab_fs_root(root); 4109 BUG_ON(!root); 4110 spin_unlock(&fs_info->delalloc_root_lock); 4111 4112 btrfs_destroy_delalloc_inodes(root); 4113 btrfs_put_fs_root(root); 4114 4115 spin_lock(&fs_info->delalloc_root_lock); 4116 } 4117 spin_unlock(&fs_info->delalloc_root_lock); 4118 } 4119 4120 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 4121 struct extent_io_tree *dirty_pages, 4122 int mark) 4123 { 4124 int ret; 4125 struct extent_buffer *eb; 4126 u64 start = 0; 4127 u64 end; 4128 4129 while (1) { 4130 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4131 mark, NULL); 4132 if (ret) 4133 break; 4134 4135 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 4136 while (start <= end) { 4137 eb = btrfs_find_tree_block(root, start); 4138 start += root->nodesize; 4139 if (!eb) 4140 continue; 4141 wait_on_extent_buffer_writeback(eb); 4142 4143 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4144 &eb->bflags)) 4145 clear_extent_buffer_dirty(eb); 4146 free_extent_buffer_stale(eb); 4147 } 4148 } 4149 4150 return ret; 4151 } 4152 4153 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 4154 struct extent_io_tree *pinned_extents) 4155 { 4156 struct extent_io_tree *unpin; 4157 u64 start; 4158 u64 end; 4159 int ret; 4160 bool loop = true; 4161 4162 unpin = pinned_extents; 4163 again: 4164 while (1) { 4165 ret = find_first_extent_bit(unpin, 0, &start, &end, 4166 EXTENT_DIRTY, NULL); 4167 if (ret) 4168 break; 4169 4170 clear_extent_dirty(unpin, start, end, GFP_NOFS); 4171 btrfs_error_unpin_extent_range(root, start, end); 4172 cond_resched(); 4173 } 4174 4175 if (loop) { 4176 if (unpin == &root->fs_info->freed_extents[0]) 4177 unpin = &root->fs_info->freed_extents[1]; 4178 else 4179 unpin = &root->fs_info->freed_extents[0]; 4180 loop = false; 4181 goto again; 4182 } 4183 4184 return 0; 4185 } 4186 4187 static void btrfs_free_pending_ordered(struct btrfs_transaction *cur_trans, 4188 struct btrfs_fs_info *fs_info) 4189 { 4190 struct btrfs_ordered_extent *ordered; 4191 4192 spin_lock(&fs_info->trans_lock); 4193 while (!list_empty(&cur_trans->pending_ordered)) { 4194 ordered = list_first_entry(&cur_trans->pending_ordered, 4195 struct btrfs_ordered_extent, 4196 trans_list); 4197 list_del_init(&ordered->trans_list); 4198 spin_unlock(&fs_info->trans_lock); 4199 4200 btrfs_put_ordered_extent(ordered); 4201 spin_lock(&fs_info->trans_lock); 4202 } 4203 spin_unlock(&fs_info->trans_lock); 4204 } 4205 4206 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4207 struct btrfs_root *root) 4208 { 4209 btrfs_destroy_delayed_refs(cur_trans, root); 4210 4211 cur_trans->state = TRANS_STATE_COMMIT_START; 4212 wake_up(&root->fs_info->transaction_blocked_wait); 4213 4214 cur_trans->state = TRANS_STATE_UNBLOCKED; 4215 wake_up(&root->fs_info->transaction_wait); 4216 4217 btrfs_free_pending_ordered(cur_trans, root->fs_info); 4218 btrfs_destroy_delayed_inodes(root); 4219 btrfs_assert_delayed_root_empty(root); 4220 4221 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages, 4222 EXTENT_DIRTY); 4223 btrfs_destroy_pinned_extent(root, 4224 root->fs_info->pinned_extents); 4225 4226 cur_trans->state =TRANS_STATE_COMPLETED; 4227 wake_up(&cur_trans->commit_wait); 4228 4229 /* 4230 memset(cur_trans, 0, sizeof(*cur_trans)); 4231 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 4232 */ 4233 } 4234 4235 static int btrfs_cleanup_transaction(struct btrfs_root *root) 4236 { 4237 struct btrfs_transaction *t; 4238 4239 mutex_lock(&root->fs_info->transaction_kthread_mutex); 4240 4241 spin_lock(&root->fs_info->trans_lock); 4242 while (!list_empty(&root->fs_info->trans_list)) { 4243 t = list_first_entry(&root->fs_info->trans_list, 4244 struct btrfs_transaction, list); 4245 if (t->state >= TRANS_STATE_COMMIT_START) { 4246 atomic_inc(&t->use_count); 4247 spin_unlock(&root->fs_info->trans_lock); 4248 btrfs_wait_for_commit(root, t->transid); 4249 btrfs_put_transaction(t); 4250 spin_lock(&root->fs_info->trans_lock); 4251 continue; 4252 } 4253 if (t == root->fs_info->running_transaction) { 4254 t->state = TRANS_STATE_COMMIT_DOING; 4255 spin_unlock(&root->fs_info->trans_lock); 4256 /* 4257 * We wait for 0 num_writers since we don't hold a trans 4258 * handle open currently for this transaction. 4259 */ 4260 wait_event(t->writer_wait, 4261 atomic_read(&t->num_writers) == 0); 4262 } else { 4263 spin_unlock(&root->fs_info->trans_lock); 4264 } 4265 btrfs_cleanup_one_transaction(t, root); 4266 4267 spin_lock(&root->fs_info->trans_lock); 4268 if (t == root->fs_info->running_transaction) 4269 root->fs_info->running_transaction = NULL; 4270 list_del_init(&t->list); 4271 spin_unlock(&root->fs_info->trans_lock); 4272 4273 btrfs_put_transaction(t); 4274 trace_btrfs_transaction_commit(root); 4275 spin_lock(&root->fs_info->trans_lock); 4276 } 4277 spin_unlock(&root->fs_info->trans_lock); 4278 btrfs_destroy_all_ordered_extents(root->fs_info); 4279 btrfs_destroy_delayed_inodes(root); 4280 btrfs_assert_delayed_root_empty(root); 4281 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents); 4282 btrfs_destroy_all_delalloc_inodes(root->fs_info); 4283 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 4284 4285 return 0; 4286 } 4287 4288 static struct extent_io_ops btree_extent_io_ops = { 4289 .readpage_end_io_hook = btree_readpage_end_io_hook, 4290 .readpage_io_failed_hook = btree_io_failed_hook, 4291 .submit_bio_hook = btree_submit_bio_hook, 4292 /* note we're sharing with inode.c for the merge bio hook */ 4293 .merge_bio_hook = btrfs_merge_bio_hook, 4294 }; 4295