xref: /openbmc/linux/fs/btrfs/disk-io.c (revision 3d9b448b)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56 
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61 				    int read_only);
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 				      struct btrfs_root *root);
65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
66 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67 					struct extent_io_tree *dirty_pages,
68 					int mark);
69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70 				       struct extent_io_tree *pinned_extents);
71 static int btrfs_cleanup_transaction(struct btrfs_root *root);
72 static void btrfs_error_commit_super(struct btrfs_root *root);
73 
74 /*
75  * btrfs_end_io_wq structs are used to do processing in task context when an IO
76  * is complete.  This is used during reads to verify checksums, and it is used
77  * by writes to insert metadata for new file extents after IO is complete.
78  */
79 struct btrfs_end_io_wq {
80 	struct bio *bio;
81 	bio_end_io_t *end_io;
82 	void *private;
83 	struct btrfs_fs_info *info;
84 	int error;
85 	enum btrfs_wq_endio_type metadata;
86 	struct list_head list;
87 	struct btrfs_work work;
88 };
89 
90 static struct kmem_cache *btrfs_end_io_wq_cache;
91 
92 int __init btrfs_end_io_wq_init(void)
93 {
94 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
95 					sizeof(struct btrfs_end_io_wq),
96 					0,
97 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
98 					NULL);
99 	if (!btrfs_end_io_wq_cache)
100 		return -ENOMEM;
101 	return 0;
102 }
103 
104 void btrfs_end_io_wq_exit(void)
105 {
106 	if (btrfs_end_io_wq_cache)
107 		kmem_cache_destroy(btrfs_end_io_wq_cache);
108 }
109 
110 /*
111  * async submit bios are used to offload expensive checksumming
112  * onto the worker threads.  They checksum file and metadata bios
113  * just before they are sent down the IO stack.
114  */
115 struct async_submit_bio {
116 	struct inode *inode;
117 	struct bio *bio;
118 	struct list_head list;
119 	extent_submit_bio_hook_t *submit_bio_start;
120 	extent_submit_bio_hook_t *submit_bio_done;
121 	int rw;
122 	int mirror_num;
123 	unsigned long bio_flags;
124 	/*
125 	 * bio_offset is optional, can be used if the pages in the bio
126 	 * can't tell us where in the file the bio should go
127 	 */
128 	u64 bio_offset;
129 	struct btrfs_work work;
130 	int error;
131 };
132 
133 /*
134  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
135  * eb, the lockdep key is determined by the btrfs_root it belongs to and
136  * the level the eb occupies in the tree.
137  *
138  * Different roots are used for different purposes and may nest inside each
139  * other and they require separate keysets.  As lockdep keys should be
140  * static, assign keysets according to the purpose of the root as indicated
141  * by btrfs_root->objectid.  This ensures that all special purpose roots
142  * have separate keysets.
143  *
144  * Lock-nesting across peer nodes is always done with the immediate parent
145  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
146  * subclass to avoid triggering lockdep warning in such cases.
147  *
148  * The key is set by the readpage_end_io_hook after the buffer has passed
149  * csum validation but before the pages are unlocked.  It is also set by
150  * btrfs_init_new_buffer on freshly allocated blocks.
151  *
152  * We also add a check to make sure the highest level of the tree is the
153  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
154  * needs update as well.
155  */
156 #ifdef CONFIG_DEBUG_LOCK_ALLOC
157 # if BTRFS_MAX_LEVEL != 8
158 #  error
159 # endif
160 
161 static struct btrfs_lockdep_keyset {
162 	u64			id;		/* root objectid */
163 	const char		*name_stem;	/* lock name stem */
164 	char			names[BTRFS_MAX_LEVEL + 1][20];
165 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
166 } btrfs_lockdep_keysets[] = {
167 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
168 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
169 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
170 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
171 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
172 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
173 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
174 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
175 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
176 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
177 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
178 	{ .id = 0,				.name_stem = "tree"	},
179 };
180 
181 void __init btrfs_init_lockdep(void)
182 {
183 	int i, j;
184 
185 	/* initialize lockdep class names */
186 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
187 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
188 
189 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
190 			snprintf(ks->names[j], sizeof(ks->names[j]),
191 				 "btrfs-%s-%02d", ks->name_stem, j);
192 	}
193 }
194 
195 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
196 				    int level)
197 {
198 	struct btrfs_lockdep_keyset *ks;
199 
200 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
201 
202 	/* find the matching keyset, id 0 is the default entry */
203 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
204 		if (ks->id == objectid)
205 			break;
206 
207 	lockdep_set_class_and_name(&eb->lock,
208 				   &ks->keys[level], ks->names[level]);
209 }
210 
211 #endif
212 
213 /*
214  * extents on the btree inode are pretty simple, there's one extent
215  * that covers the entire device
216  */
217 static struct extent_map *btree_get_extent(struct inode *inode,
218 		struct page *page, size_t pg_offset, u64 start, u64 len,
219 		int create)
220 {
221 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
222 	struct extent_map *em;
223 	int ret;
224 
225 	read_lock(&em_tree->lock);
226 	em = lookup_extent_mapping(em_tree, start, len);
227 	if (em) {
228 		em->bdev =
229 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
230 		read_unlock(&em_tree->lock);
231 		goto out;
232 	}
233 	read_unlock(&em_tree->lock);
234 
235 	em = alloc_extent_map();
236 	if (!em) {
237 		em = ERR_PTR(-ENOMEM);
238 		goto out;
239 	}
240 	em->start = 0;
241 	em->len = (u64)-1;
242 	em->block_len = (u64)-1;
243 	em->block_start = 0;
244 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
245 
246 	write_lock(&em_tree->lock);
247 	ret = add_extent_mapping(em_tree, em, 0);
248 	if (ret == -EEXIST) {
249 		free_extent_map(em);
250 		em = lookup_extent_mapping(em_tree, start, len);
251 		if (!em)
252 			em = ERR_PTR(-EIO);
253 	} else if (ret) {
254 		free_extent_map(em);
255 		em = ERR_PTR(ret);
256 	}
257 	write_unlock(&em_tree->lock);
258 
259 out:
260 	return em;
261 }
262 
263 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
264 {
265 	return btrfs_crc32c(seed, data, len);
266 }
267 
268 void btrfs_csum_final(u32 crc, char *result)
269 {
270 	put_unaligned_le32(~crc, result);
271 }
272 
273 /*
274  * compute the csum for a btree block, and either verify it or write it
275  * into the csum field of the block.
276  */
277 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
278 			   int verify)
279 {
280 	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
281 	char *result = NULL;
282 	unsigned long len;
283 	unsigned long cur_len;
284 	unsigned long offset = BTRFS_CSUM_SIZE;
285 	char *kaddr;
286 	unsigned long map_start;
287 	unsigned long map_len;
288 	int err;
289 	u32 crc = ~(u32)0;
290 	unsigned long inline_result;
291 
292 	len = buf->len - offset;
293 	while (len > 0) {
294 		err = map_private_extent_buffer(buf, offset, 32,
295 					&kaddr, &map_start, &map_len);
296 		if (err)
297 			return 1;
298 		cur_len = min(len, map_len - (offset - map_start));
299 		crc = btrfs_csum_data(kaddr + offset - map_start,
300 				      crc, cur_len);
301 		len -= cur_len;
302 		offset += cur_len;
303 	}
304 	if (csum_size > sizeof(inline_result)) {
305 		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
306 		if (!result)
307 			return 1;
308 	} else {
309 		result = (char *)&inline_result;
310 	}
311 
312 	btrfs_csum_final(crc, result);
313 
314 	if (verify) {
315 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
316 			u32 val;
317 			u32 found = 0;
318 			memcpy(&found, result, csum_size);
319 
320 			read_extent_buffer(buf, &val, 0, csum_size);
321 			printk_ratelimited(KERN_WARNING
322 				"BTRFS: %s checksum verify failed on %llu wanted %X found %X "
323 				"level %d\n",
324 				root->fs_info->sb->s_id, buf->start,
325 				val, found, btrfs_header_level(buf));
326 			if (result != (char *)&inline_result)
327 				kfree(result);
328 			return 1;
329 		}
330 	} else {
331 		write_extent_buffer(buf, result, 0, csum_size);
332 	}
333 	if (result != (char *)&inline_result)
334 		kfree(result);
335 	return 0;
336 }
337 
338 /*
339  * we can't consider a given block up to date unless the transid of the
340  * block matches the transid in the parent node's pointer.  This is how we
341  * detect blocks that either didn't get written at all or got written
342  * in the wrong place.
343  */
344 static int verify_parent_transid(struct extent_io_tree *io_tree,
345 				 struct extent_buffer *eb, u64 parent_transid,
346 				 int atomic)
347 {
348 	struct extent_state *cached_state = NULL;
349 	int ret;
350 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
351 
352 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
353 		return 0;
354 
355 	if (atomic)
356 		return -EAGAIN;
357 
358 	if (need_lock) {
359 		btrfs_tree_read_lock(eb);
360 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
361 	}
362 
363 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
364 			 0, &cached_state);
365 	if (extent_buffer_uptodate(eb) &&
366 	    btrfs_header_generation(eb) == parent_transid) {
367 		ret = 0;
368 		goto out;
369 	}
370 	printk_ratelimited(KERN_ERR
371 	    "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
372 			eb->fs_info->sb->s_id, eb->start,
373 			parent_transid, btrfs_header_generation(eb));
374 	ret = 1;
375 
376 	/*
377 	 * Things reading via commit roots that don't have normal protection,
378 	 * like send, can have a really old block in cache that may point at a
379 	 * block that has been free'd and re-allocated.  So don't clear uptodate
380 	 * if we find an eb that is under IO (dirty/writeback) because we could
381 	 * end up reading in the stale data and then writing it back out and
382 	 * making everybody very sad.
383 	 */
384 	if (!extent_buffer_under_io(eb))
385 		clear_extent_buffer_uptodate(eb);
386 out:
387 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
388 			     &cached_state, GFP_NOFS);
389 	if (need_lock)
390 		btrfs_tree_read_unlock_blocking(eb);
391 	return ret;
392 }
393 
394 /*
395  * Return 0 if the superblock checksum type matches the checksum value of that
396  * algorithm. Pass the raw disk superblock data.
397  */
398 static int btrfs_check_super_csum(char *raw_disk_sb)
399 {
400 	struct btrfs_super_block *disk_sb =
401 		(struct btrfs_super_block *)raw_disk_sb;
402 	u16 csum_type = btrfs_super_csum_type(disk_sb);
403 	int ret = 0;
404 
405 	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
406 		u32 crc = ~(u32)0;
407 		const int csum_size = sizeof(crc);
408 		char result[csum_size];
409 
410 		/*
411 		 * The super_block structure does not span the whole
412 		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
413 		 * is filled with zeros and is included in the checkum.
414 		 */
415 		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
416 				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
417 		btrfs_csum_final(crc, result);
418 
419 		if (memcmp(raw_disk_sb, result, csum_size))
420 			ret = 1;
421 
422 		if (ret && btrfs_super_generation(disk_sb) < 10) {
423 			printk(KERN_WARNING
424 				"BTRFS: super block crcs don't match, older mkfs detected\n");
425 			ret = 0;
426 		}
427 	}
428 
429 	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
430 		printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
431 				csum_type);
432 		ret = 1;
433 	}
434 
435 	return ret;
436 }
437 
438 /*
439  * helper to read a given tree block, doing retries as required when
440  * the checksums don't match and we have alternate mirrors to try.
441  */
442 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
443 					  struct extent_buffer *eb,
444 					  u64 start, u64 parent_transid)
445 {
446 	struct extent_io_tree *io_tree;
447 	int failed = 0;
448 	int ret;
449 	int num_copies = 0;
450 	int mirror_num = 0;
451 	int failed_mirror = 0;
452 
453 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
454 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
455 	while (1) {
456 		ret = read_extent_buffer_pages(io_tree, eb, start,
457 					       WAIT_COMPLETE,
458 					       btree_get_extent, mirror_num);
459 		if (!ret) {
460 			if (!verify_parent_transid(io_tree, eb,
461 						   parent_transid, 0))
462 				break;
463 			else
464 				ret = -EIO;
465 		}
466 
467 		/*
468 		 * This buffer's crc is fine, but its contents are corrupted, so
469 		 * there is no reason to read the other copies, they won't be
470 		 * any less wrong.
471 		 */
472 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
473 			break;
474 
475 		num_copies = btrfs_num_copies(root->fs_info,
476 					      eb->start, eb->len);
477 		if (num_copies == 1)
478 			break;
479 
480 		if (!failed_mirror) {
481 			failed = 1;
482 			failed_mirror = eb->read_mirror;
483 		}
484 
485 		mirror_num++;
486 		if (mirror_num == failed_mirror)
487 			mirror_num++;
488 
489 		if (mirror_num > num_copies)
490 			break;
491 	}
492 
493 	if (failed && !ret && failed_mirror)
494 		repair_eb_io_failure(root, eb, failed_mirror);
495 
496 	return ret;
497 }
498 
499 /*
500  * checksum a dirty tree block before IO.  This has extra checks to make sure
501  * we only fill in the checksum field in the first page of a multi-page block
502  */
503 
504 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
505 {
506 	u64 start = page_offset(page);
507 	u64 found_start;
508 	struct extent_buffer *eb;
509 
510 	eb = (struct extent_buffer *)page->private;
511 	if (page != eb->pages[0])
512 		return 0;
513 	found_start = btrfs_header_bytenr(eb);
514 	if (WARN_ON(found_start != start || !PageUptodate(page)))
515 		return 0;
516 	csum_tree_block(root, eb, 0);
517 	return 0;
518 }
519 
520 static int check_tree_block_fsid(struct btrfs_root *root,
521 				 struct extent_buffer *eb)
522 {
523 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
524 	u8 fsid[BTRFS_UUID_SIZE];
525 	int ret = 1;
526 
527 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
528 	while (fs_devices) {
529 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
530 			ret = 0;
531 			break;
532 		}
533 		fs_devices = fs_devices->seed;
534 	}
535 	return ret;
536 }
537 
538 #define CORRUPT(reason, eb, root, slot)				\
539 	btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"	\
540 		   "root=%llu, slot=%d", reason,			\
541 	       btrfs_header_bytenr(eb),	root->objectid, slot)
542 
543 static noinline int check_leaf(struct btrfs_root *root,
544 			       struct extent_buffer *leaf)
545 {
546 	struct btrfs_key key;
547 	struct btrfs_key leaf_key;
548 	u32 nritems = btrfs_header_nritems(leaf);
549 	int slot;
550 
551 	if (nritems == 0)
552 		return 0;
553 
554 	/* Check the 0 item */
555 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
556 	    BTRFS_LEAF_DATA_SIZE(root)) {
557 		CORRUPT("invalid item offset size pair", leaf, root, 0);
558 		return -EIO;
559 	}
560 
561 	/*
562 	 * Check to make sure each items keys are in the correct order and their
563 	 * offsets make sense.  We only have to loop through nritems-1 because
564 	 * we check the current slot against the next slot, which verifies the
565 	 * next slot's offset+size makes sense and that the current's slot
566 	 * offset is correct.
567 	 */
568 	for (slot = 0; slot < nritems - 1; slot++) {
569 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
570 		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
571 
572 		/* Make sure the keys are in the right order */
573 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
574 			CORRUPT("bad key order", leaf, root, slot);
575 			return -EIO;
576 		}
577 
578 		/*
579 		 * Make sure the offset and ends are right, remember that the
580 		 * item data starts at the end of the leaf and grows towards the
581 		 * front.
582 		 */
583 		if (btrfs_item_offset_nr(leaf, slot) !=
584 			btrfs_item_end_nr(leaf, slot + 1)) {
585 			CORRUPT("slot offset bad", leaf, root, slot);
586 			return -EIO;
587 		}
588 
589 		/*
590 		 * Check to make sure that we don't point outside of the leaf,
591 		 * just incase all the items are consistent to eachother, but
592 		 * all point outside of the leaf.
593 		 */
594 		if (btrfs_item_end_nr(leaf, slot) >
595 		    BTRFS_LEAF_DATA_SIZE(root)) {
596 			CORRUPT("slot end outside of leaf", leaf, root, slot);
597 			return -EIO;
598 		}
599 	}
600 
601 	return 0;
602 }
603 
604 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
605 				      u64 phy_offset, struct page *page,
606 				      u64 start, u64 end, int mirror)
607 {
608 	u64 found_start;
609 	int found_level;
610 	struct extent_buffer *eb;
611 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
612 	int ret = 0;
613 	int reads_done;
614 
615 	if (!page->private)
616 		goto out;
617 
618 	eb = (struct extent_buffer *)page->private;
619 
620 	/* the pending IO might have been the only thing that kept this buffer
621 	 * in memory.  Make sure we have a ref for all this other checks
622 	 */
623 	extent_buffer_get(eb);
624 
625 	reads_done = atomic_dec_and_test(&eb->io_pages);
626 	if (!reads_done)
627 		goto err;
628 
629 	eb->read_mirror = mirror;
630 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
631 		ret = -EIO;
632 		goto err;
633 	}
634 
635 	found_start = btrfs_header_bytenr(eb);
636 	if (found_start != eb->start) {
637 		printk_ratelimited(KERN_ERR "BTRFS (device %s): bad tree block start "
638 			       "%llu %llu\n",
639 			       eb->fs_info->sb->s_id, found_start, eb->start);
640 		ret = -EIO;
641 		goto err;
642 	}
643 	if (check_tree_block_fsid(root, eb)) {
644 		printk_ratelimited(KERN_ERR "BTRFS (device %s): bad fsid on block %llu\n",
645 			       eb->fs_info->sb->s_id, eb->start);
646 		ret = -EIO;
647 		goto err;
648 	}
649 	found_level = btrfs_header_level(eb);
650 	if (found_level >= BTRFS_MAX_LEVEL) {
651 		btrfs_err(root->fs_info, "bad tree block level %d",
652 			   (int)btrfs_header_level(eb));
653 		ret = -EIO;
654 		goto err;
655 	}
656 
657 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
658 				       eb, found_level);
659 
660 	ret = csum_tree_block(root, eb, 1);
661 	if (ret) {
662 		ret = -EIO;
663 		goto err;
664 	}
665 
666 	/*
667 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
668 	 * that we don't try and read the other copies of this block, just
669 	 * return -EIO.
670 	 */
671 	if (found_level == 0 && check_leaf(root, eb)) {
672 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
673 		ret = -EIO;
674 	}
675 
676 	if (!ret)
677 		set_extent_buffer_uptodate(eb);
678 err:
679 	if (reads_done &&
680 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
681 		btree_readahead_hook(root, eb, eb->start, ret);
682 
683 	if (ret) {
684 		/*
685 		 * our io error hook is going to dec the io pages
686 		 * again, we have to make sure it has something
687 		 * to decrement
688 		 */
689 		atomic_inc(&eb->io_pages);
690 		clear_extent_buffer_uptodate(eb);
691 	}
692 	free_extent_buffer(eb);
693 out:
694 	return ret;
695 }
696 
697 static int btree_io_failed_hook(struct page *page, int failed_mirror)
698 {
699 	struct extent_buffer *eb;
700 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
701 
702 	eb = (struct extent_buffer *)page->private;
703 	set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
704 	eb->read_mirror = failed_mirror;
705 	atomic_dec(&eb->io_pages);
706 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
707 		btree_readahead_hook(root, eb, eb->start, -EIO);
708 	return -EIO;	/* we fixed nothing */
709 }
710 
711 static void end_workqueue_bio(struct bio *bio, int err)
712 {
713 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
714 	struct btrfs_fs_info *fs_info;
715 	struct btrfs_workqueue *wq;
716 	btrfs_work_func_t func;
717 
718 	fs_info = end_io_wq->info;
719 	end_io_wq->error = err;
720 
721 	if (bio->bi_rw & REQ_WRITE) {
722 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
723 			wq = fs_info->endio_meta_write_workers;
724 			func = btrfs_endio_meta_write_helper;
725 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
726 			wq = fs_info->endio_freespace_worker;
727 			func = btrfs_freespace_write_helper;
728 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
729 			wq = fs_info->endio_raid56_workers;
730 			func = btrfs_endio_raid56_helper;
731 		} else {
732 			wq = fs_info->endio_write_workers;
733 			func = btrfs_endio_write_helper;
734 		}
735 	} else {
736 		if (unlikely(end_io_wq->metadata ==
737 			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
738 			wq = fs_info->endio_repair_workers;
739 			func = btrfs_endio_repair_helper;
740 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
741 			wq = fs_info->endio_raid56_workers;
742 			func = btrfs_endio_raid56_helper;
743 		} else if (end_io_wq->metadata) {
744 			wq = fs_info->endio_meta_workers;
745 			func = btrfs_endio_meta_helper;
746 		} else {
747 			wq = fs_info->endio_workers;
748 			func = btrfs_endio_helper;
749 		}
750 	}
751 
752 	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
753 	btrfs_queue_work(wq, &end_io_wq->work);
754 }
755 
756 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
757 			enum btrfs_wq_endio_type metadata)
758 {
759 	struct btrfs_end_io_wq *end_io_wq;
760 
761 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
762 	if (!end_io_wq)
763 		return -ENOMEM;
764 
765 	end_io_wq->private = bio->bi_private;
766 	end_io_wq->end_io = bio->bi_end_io;
767 	end_io_wq->info = info;
768 	end_io_wq->error = 0;
769 	end_io_wq->bio = bio;
770 	end_io_wq->metadata = metadata;
771 
772 	bio->bi_private = end_io_wq;
773 	bio->bi_end_io = end_workqueue_bio;
774 	return 0;
775 }
776 
777 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
778 {
779 	unsigned long limit = min_t(unsigned long,
780 				    info->thread_pool_size,
781 				    info->fs_devices->open_devices);
782 	return 256 * limit;
783 }
784 
785 static void run_one_async_start(struct btrfs_work *work)
786 {
787 	struct async_submit_bio *async;
788 	int ret;
789 
790 	async = container_of(work, struct  async_submit_bio, work);
791 	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
792 				      async->mirror_num, async->bio_flags,
793 				      async->bio_offset);
794 	if (ret)
795 		async->error = ret;
796 }
797 
798 static void run_one_async_done(struct btrfs_work *work)
799 {
800 	struct btrfs_fs_info *fs_info;
801 	struct async_submit_bio *async;
802 	int limit;
803 
804 	async = container_of(work, struct  async_submit_bio, work);
805 	fs_info = BTRFS_I(async->inode)->root->fs_info;
806 
807 	limit = btrfs_async_submit_limit(fs_info);
808 	limit = limit * 2 / 3;
809 
810 	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
811 	    waitqueue_active(&fs_info->async_submit_wait))
812 		wake_up(&fs_info->async_submit_wait);
813 
814 	/* If an error occured we just want to clean up the bio and move on */
815 	if (async->error) {
816 		bio_endio(async->bio, async->error);
817 		return;
818 	}
819 
820 	async->submit_bio_done(async->inode, async->rw, async->bio,
821 			       async->mirror_num, async->bio_flags,
822 			       async->bio_offset);
823 }
824 
825 static void run_one_async_free(struct btrfs_work *work)
826 {
827 	struct async_submit_bio *async;
828 
829 	async = container_of(work, struct  async_submit_bio, work);
830 	kfree(async);
831 }
832 
833 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
834 			int rw, struct bio *bio, int mirror_num,
835 			unsigned long bio_flags,
836 			u64 bio_offset,
837 			extent_submit_bio_hook_t *submit_bio_start,
838 			extent_submit_bio_hook_t *submit_bio_done)
839 {
840 	struct async_submit_bio *async;
841 
842 	async = kmalloc(sizeof(*async), GFP_NOFS);
843 	if (!async)
844 		return -ENOMEM;
845 
846 	async->inode = inode;
847 	async->rw = rw;
848 	async->bio = bio;
849 	async->mirror_num = mirror_num;
850 	async->submit_bio_start = submit_bio_start;
851 	async->submit_bio_done = submit_bio_done;
852 
853 	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
854 			run_one_async_done, run_one_async_free);
855 
856 	async->bio_flags = bio_flags;
857 	async->bio_offset = bio_offset;
858 
859 	async->error = 0;
860 
861 	atomic_inc(&fs_info->nr_async_submits);
862 
863 	if (rw & REQ_SYNC)
864 		btrfs_set_work_high_priority(&async->work);
865 
866 	btrfs_queue_work(fs_info->workers, &async->work);
867 
868 	while (atomic_read(&fs_info->async_submit_draining) &&
869 	      atomic_read(&fs_info->nr_async_submits)) {
870 		wait_event(fs_info->async_submit_wait,
871 			   (atomic_read(&fs_info->nr_async_submits) == 0));
872 	}
873 
874 	return 0;
875 }
876 
877 static int btree_csum_one_bio(struct bio *bio)
878 {
879 	struct bio_vec *bvec;
880 	struct btrfs_root *root;
881 	int i, ret = 0;
882 
883 	bio_for_each_segment_all(bvec, bio, i) {
884 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
885 		ret = csum_dirty_buffer(root, bvec->bv_page);
886 		if (ret)
887 			break;
888 	}
889 
890 	return ret;
891 }
892 
893 static int __btree_submit_bio_start(struct inode *inode, int rw,
894 				    struct bio *bio, int mirror_num,
895 				    unsigned long bio_flags,
896 				    u64 bio_offset)
897 {
898 	/*
899 	 * when we're called for a write, we're already in the async
900 	 * submission context.  Just jump into btrfs_map_bio
901 	 */
902 	return btree_csum_one_bio(bio);
903 }
904 
905 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
906 				 int mirror_num, unsigned long bio_flags,
907 				 u64 bio_offset)
908 {
909 	int ret;
910 
911 	/*
912 	 * when we're called for a write, we're already in the async
913 	 * submission context.  Just jump into btrfs_map_bio
914 	 */
915 	ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
916 	if (ret)
917 		bio_endio(bio, ret);
918 	return ret;
919 }
920 
921 static int check_async_write(struct inode *inode, unsigned long bio_flags)
922 {
923 	if (bio_flags & EXTENT_BIO_TREE_LOG)
924 		return 0;
925 #ifdef CONFIG_X86
926 	if (cpu_has_xmm4_2)
927 		return 0;
928 #endif
929 	return 1;
930 }
931 
932 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
933 				 int mirror_num, unsigned long bio_flags,
934 				 u64 bio_offset)
935 {
936 	int async = check_async_write(inode, bio_flags);
937 	int ret;
938 
939 	if (!(rw & REQ_WRITE)) {
940 		/*
941 		 * called for a read, do the setup so that checksum validation
942 		 * can happen in the async kernel threads
943 		 */
944 		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
945 					  bio, BTRFS_WQ_ENDIO_METADATA);
946 		if (ret)
947 			goto out_w_error;
948 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
949 				    mirror_num, 0);
950 	} else if (!async) {
951 		ret = btree_csum_one_bio(bio);
952 		if (ret)
953 			goto out_w_error;
954 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
955 				    mirror_num, 0);
956 	} else {
957 		/*
958 		 * kthread helpers are used to submit writes so that
959 		 * checksumming can happen in parallel across all CPUs
960 		 */
961 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
962 					  inode, rw, bio, mirror_num, 0,
963 					  bio_offset,
964 					  __btree_submit_bio_start,
965 					  __btree_submit_bio_done);
966 	}
967 
968 	if (ret) {
969 out_w_error:
970 		bio_endio(bio, ret);
971 	}
972 	return ret;
973 }
974 
975 #ifdef CONFIG_MIGRATION
976 static int btree_migratepage(struct address_space *mapping,
977 			struct page *newpage, struct page *page,
978 			enum migrate_mode mode)
979 {
980 	/*
981 	 * we can't safely write a btree page from here,
982 	 * we haven't done the locking hook
983 	 */
984 	if (PageDirty(page))
985 		return -EAGAIN;
986 	/*
987 	 * Buffers may be managed in a filesystem specific way.
988 	 * We must have no buffers or drop them.
989 	 */
990 	if (page_has_private(page) &&
991 	    !try_to_release_page(page, GFP_KERNEL))
992 		return -EAGAIN;
993 	return migrate_page(mapping, newpage, page, mode);
994 }
995 #endif
996 
997 
998 static int btree_writepages(struct address_space *mapping,
999 			    struct writeback_control *wbc)
1000 {
1001 	struct btrfs_fs_info *fs_info;
1002 	int ret;
1003 
1004 	if (wbc->sync_mode == WB_SYNC_NONE) {
1005 
1006 		if (wbc->for_kupdate)
1007 			return 0;
1008 
1009 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
1010 		/* this is a bit racy, but that's ok */
1011 		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1012 					     BTRFS_DIRTY_METADATA_THRESH);
1013 		if (ret < 0)
1014 			return 0;
1015 	}
1016 	return btree_write_cache_pages(mapping, wbc);
1017 }
1018 
1019 static int btree_readpage(struct file *file, struct page *page)
1020 {
1021 	struct extent_io_tree *tree;
1022 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1023 	return extent_read_full_page(tree, page, btree_get_extent, 0);
1024 }
1025 
1026 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1027 {
1028 	if (PageWriteback(page) || PageDirty(page))
1029 		return 0;
1030 
1031 	return try_release_extent_buffer(page);
1032 }
1033 
1034 static void btree_invalidatepage(struct page *page, unsigned int offset,
1035 				 unsigned int length)
1036 {
1037 	struct extent_io_tree *tree;
1038 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1039 	extent_invalidatepage(tree, page, offset);
1040 	btree_releasepage(page, GFP_NOFS);
1041 	if (PagePrivate(page)) {
1042 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1043 			   "page private not zero on page %llu",
1044 			   (unsigned long long)page_offset(page));
1045 		ClearPagePrivate(page);
1046 		set_page_private(page, 0);
1047 		page_cache_release(page);
1048 	}
1049 }
1050 
1051 static int btree_set_page_dirty(struct page *page)
1052 {
1053 #ifdef DEBUG
1054 	struct extent_buffer *eb;
1055 
1056 	BUG_ON(!PagePrivate(page));
1057 	eb = (struct extent_buffer *)page->private;
1058 	BUG_ON(!eb);
1059 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1060 	BUG_ON(!atomic_read(&eb->refs));
1061 	btrfs_assert_tree_locked(eb);
1062 #endif
1063 	return __set_page_dirty_nobuffers(page);
1064 }
1065 
1066 static const struct address_space_operations btree_aops = {
1067 	.readpage	= btree_readpage,
1068 	.writepages	= btree_writepages,
1069 	.releasepage	= btree_releasepage,
1070 	.invalidatepage = btree_invalidatepage,
1071 #ifdef CONFIG_MIGRATION
1072 	.migratepage	= btree_migratepage,
1073 #endif
1074 	.set_page_dirty = btree_set_page_dirty,
1075 };
1076 
1077 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1078 {
1079 	struct extent_buffer *buf = NULL;
1080 	struct inode *btree_inode = root->fs_info->btree_inode;
1081 
1082 	buf = btrfs_find_create_tree_block(root, bytenr);
1083 	if (!buf)
1084 		return;
1085 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1086 				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1087 	free_extent_buffer(buf);
1088 }
1089 
1090 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1091 			 int mirror_num, struct extent_buffer **eb)
1092 {
1093 	struct extent_buffer *buf = NULL;
1094 	struct inode *btree_inode = root->fs_info->btree_inode;
1095 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1096 	int ret;
1097 
1098 	buf = btrfs_find_create_tree_block(root, bytenr);
1099 	if (!buf)
1100 		return 0;
1101 
1102 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1103 
1104 	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1105 				       btree_get_extent, mirror_num);
1106 	if (ret) {
1107 		free_extent_buffer(buf);
1108 		return ret;
1109 	}
1110 
1111 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1112 		free_extent_buffer(buf);
1113 		return -EIO;
1114 	} else if (extent_buffer_uptodate(buf)) {
1115 		*eb = buf;
1116 	} else {
1117 		free_extent_buffer(buf);
1118 	}
1119 	return 0;
1120 }
1121 
1122 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1123 					    u64 bytenr)
1124 {
1125 	return find_extent_buffer(root->fs_info, bytenr);
1126 }
1127 
1128 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1129 						 u64 bytenr)
1130 {
1131 	if (btrfs_test_is_dummy_root(root))
1132 		return alloc_test_extent_buffer(root->fs_info, bytenr);
1133 	return alloc_extent_buffer(root->fs_info, bytenr);
1134 }
1135 
1136 
1137 int btrfs_write_tree_block(struct extent_buffer *buf)
1138 {
1139 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1140 					buf->start + buf->len - 1);
1141 }
1142 
1143 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1144 {
1145 	return filemap_fdatawait_range(buf->pages[0]->mapping,
1146 				       buf->start, buf->start + buf->len - 1);
1147 }
1148 
1149 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1150 				      u64 parent_transid)
1151 {
1152 	struct extent_buffer *buf = NULL;
1153 	int ret;
1154 
1155 	buf = btrfs_find_create_tree_block(root, bytenr);
1156 	if (!buf)
1157 		return NULL;
1158 
1159 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1160 	if (ret) {
1161 		free_extent_buffer(buf);
1162 		return NULL;
1163 	}
1164 	return buf;
1165 
1166 }
1167 
1168 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1169 		      struct extent_buffer *buf)
1170 {
1171 	struct btrfs_fs_info *fs_info = root->fs_info;
1172 
1173 	if (btrfs_header_generation(buf) ==
1174 	    fs_info->running_transaction->transid) {
1175 		btrfs_assert_tree_locked(buf);
1176 
1177 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1178 			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
1179 					     -buf->len,
1180 					     fs_info->dirty_metadata_batch);
1181 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1182 			btrfs_set_lock_blocking(buf);
1183 			clear_extent_buffer_dirty(buf);
1184 		}
1185 	}
1186 }
1187 
1188 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1189 {
1190 	struct btrfs_subvolume_writers *writers;
1191 	int ret;
1192 
1193 	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1194 	if (!writers)
1195 		return ERR_PTR(-ENOMEM);
1196 
1197 	ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1198 	if (ret < 0) {
1199 		kfree(writers);
1200 		return ERR_PTR(ret);
1201 	}
1202 
1203 	init_waitqueue_head(&writers->wait);
1204 	return writers;
1205 }
1206 
1207 static void
1208 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1209 {
1210 	percpu_counter_destroy(&writers->counter);
1211 	kfree(writers);
1212 }
1213 
1214 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1215 			 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1216 			 u64 objectid)
1217 {
1218 	root->node = NULL;
1219 	root->commit_root = NULL;
1220 	root->sectorsize = sectorsize;
1221 	root->nodesize = nodesize;
1222 	root->stripesize = stripesize;
1223 	root->state = 0;
1224 	root->orphan_cleanup_state = 0;
1225 
1226 	root->objectid = objectid;
1227 	root->last_trans = 0;
1228 	root->highest_objectid = 0;
1229 	root->nr_delalloc_inodes = 0;
1230 	root->nr_ordered_extents = 0;
1231 	root->name = NULL;
1232 	root->inode_tree = RB_ROOT;
1233 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1234 	root->block_rsv = NULL;
1235 	root->orphan_block_rsv = NULL;
1236 
1237 	INIT_LIST_HEAD(&root->dirty_list);
1238 	INIT_LIST_HEAD(&root->root_list);
1239 	INIT_LIST_HEAD(&root->delalloc_inodes);
1240 	INIT_LIST_HEAD(&root->delalloc_root);
1241 	INIT_LIST_HEAD(&root->ordered_extents);
1242 	INIT_LIST_HEAD(&root->ordered_root);
1243 	INIT_LIST_HEAD(&root->logged_list[0]);
1244 	INIT_LIST_HEAD(&root->logged_list[1]);
1245 	spin_lock_init(&root->orphan_lock);
1246 	spin_lock_init(&root->inode_lock);
1247 	spin_lock_init(&root->delalloc_lock);
1248 	spin_lock_init(&root->ordered_extent_lock);
1249 	spin_lock_init(&root->accounting_lock);
1250 	spin_lock_init(&root->log_extents_lock[0]);
1251 	spin_lock_init(&root->log_extents_lock[1]);
1252 	mutex_init(&root->objectid_mutex);
1253 	mutex_init(&root->log_mutex);
1254 	mutex_init(&root->ordered_extent_mutex);
1255 	mutex_init(&root->delalloc_mutex);
1256 	init_waitqueue_head(&root->log_writer_wait);
1257 	init_waitqueue_head(&root->log_commit_wait[0]);
1258 	init_waitqueue_head(&root->log_commit_wait[1]);
1259 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1260 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1261 	atomic_set(&root->log_commit[0], 0);
1262 	atomic_set(&root->log_commit[1], 0);
1263 	atomic_set(&root->log_writers, 0);
1264 	atomic_set(&root->log_batch, 0);
1265 	atomic_set(&root->orphan_inodes, 0);
1266 	atomic_set(&root->refs, 1);
1267 	atomic_set(&root->will_be_snapshoted, 0);
1268 	root->log_transid = 0;
1269 	root->log_transid_committed = -1;
1270 	root->last_log_commit = 0;
1271 	if (fs_info)
1272 		extent_io_tree_init(&root->dirty_log_pages,
1273 				     fs_info->btree_inode->i_mapping);
1274 
1275 	memset(&root->root_key, 0, sizeof(root->root_key));
1276 	memset(&root->root_item, 0, sizeof(root->root_item));
1277 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1278 	if (fs_info)
1279 		root->defrag_trans_start = fs_info->generation;
1280 	else
1281 		root->defrag_trans_start = 0;
1282 	root->root_key.objectid = objectid;
1283 	root->anon_dev = 0;
1284 
1285 	spin_lock_init(&root->root_item_lock);
1286 }
1287 
1288 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1289 {
1290 	struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1291 	if (root)
1292 		root->fs_info = fs_info;
1293 	return root;
1294 }
1295 
1296 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1297 /* Should only be used by the testing infrastructure */
1298 struct btrfs_root *btrfs_alloc_dummy_root(void)
1299 {
1300 	struct btrfs_root *root;
1301 
1302 	root = btrfs_alloc_root(NULL);
1303 	if (!root)
1304 		return ERR_PTR(-ENOMEM);
1305 	__setup_root(4096, 4096, 4096, root, NULL, 1);
1306 	set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1307 	root->alloc_bytenr = 0;
1308 
1309 	return root;
1310 }
1311 #endif
1312 
1313 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1314 				     struct btrfs_fs_info *fs_info,
1315 				     u64 objectid)
1316 {
1317 	struct extent_buffer *leaf;
1318 	struct btrfs_root *tree_root = fs_info->tree_root;
1319 	struct btrfs_root *root;
1320 	struct btrfs_key key;
1321 	int ret = 0;
1322 	uuid_le uuid;
1323 
1324 	root = btrfs_alloc_root(fs_info);
1325 	if (!root)
1326 		return ERR_PTR(-ENOMEM);
1327 
1328 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1329 		tree_root->stripesize, root, fs_info, objectid);
1330 	root->root_key.objectid = objectid;
1331 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1332 	root->root_key.offset = 0;
1333 
1334 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1335 	if (IS_ERR(leaf)) {
1336 		ret = PTR_ERR(leaf);
1337 		leaf = NULL;
1338 		goto fail;
1339 	}
1340 
1341 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1342 	btrfs_set_header_bytenr(leaf, leaf->start);
1343 	btrfs_set_header_generation(leaf, trans->transid);
1344 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1345 	btrfs_set_header_owner(leaf, objectid);
1346 	root->node = leaf;
1347 
1348 	write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1349 			    BTRFS_FSID_SIZE);
1350 	write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1351 			    btrfs_header_chunk_tree_uuid(leaf),
1352 			    BTRFS_UUID_SIZE);
1353 	btrfs_mark_buffer_dirty(leaf);
1354 
1355 	root->commit_root = btrfs_root_node(root);
1356 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1357 
1358 	root->root_item.flags = 0;
1359 	root->root_item.byte_limit = 0;
1360 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1361 	btrfs_set_root_generation(&root->root_item, trans->transid);
1362 	btrfs_set_root_level(&root->root_item, 0);
1363 	btrfs_set_root_refs(&root->root_item, 1);
1364 	btrfs_set_root_used(&root->root_item, leaf->len);
1365 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1366 	btrfs_set_root_dirid(&root->root_item, 0);
1367 	uuid_le_gen(&uuid);
1368 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1369 	root->root_item.drop_level = 0;
1370 
1371 	key.objectid = objectid;
1372 	key.type = BTRFS_ROOT_ITEM_KEY;
1373 	key.offset = 0;
1374 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1375 	if (ret)
1376 		goto fail;
1377 
1378 	btrfs_tree_unlock(leaf);
1379 
1380 	return root;
1381 
1382 fail:
1383 	if (leaf) {
1384 		btrfs_tree_unlock(leaf);
1385 		free_extent_buffer(root->commit_root);
1386 		free_extent_buffer(leaf);
1387 	}
1388 	kfree(root);
1389 
1390 	return ERR_PTR(ret);
1391 }
1392 
1393 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1394 					 struct btrfs_fs_info *fs_info)
1395 {
1396 	struct btrfs_root *root;
1397 	struct btrfs_root *tree_root = fs_info->tree_root;
1398 	struct extent_buffer *leaf;
1399 
1400 	root = btrfs_alloc_root(fs_info);
1401 	if (!root)
1402 		return ERR_PTR(-ENOMEM);
1403 
1404 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1405 		     tree_root->stripesize, root, fs_info,
1406 		     BTRFS_TREE_LOG_OBJECTID);
1407 
1408 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1409 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1410 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1411 
1412 	/*
1413 	 * DON'T set REF_COWS for log trees
1414 	 *
1415 	 * log trees do not get reference counted because they go away
1416 	 * before a real commit is actually done.  They do store pointers
1417 	 * to file data extents, and those reference counts still get
1418 	 * updated (along with back refs to the log tree).
1419 	 */
1420 
1421 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1422 			NULL, 0, 0, 0);
1423 	if (IS_ERR(leaf)) {
1424 		kfree(root);
1425 		return ERR_CAST(leaf);
1426 	}
1427 
1428 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1429 	btrfs_set_header_bytenr(leaf, leaf->start);
1430 	btrfs_set_header_generation(leaf, trans->transid);
1431 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1432 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1433 	root->node = leaf;
1434 
1435 	write_extent_buffer(root->node, root->fs_info->fsid,
1436 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
1437 	btrfs_mark_buffer_dirty(root->node);
1438 	btrfs_tree_unlock(root->node);
1439 	return root;
1440 }
1441 
1442 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1443 			     struct btrfs_fs_info *fs_info)
1444 {
1445 	struct btrfs_root *log_root;
1446 
1447 	log_root = alloc_log_tree(trans, fs_info);
1448 	if (IS_ERR(log_root))
1449 		return PTR_ERR(log_root);
1450 	WARN_ON(fs_info->log_root_tree);
1451 	fs_info->log_root_tree = log_root;
1452 	return 0;
1453 }
1454 
1455 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1456 		       struct btrfs_root *root)
1457 {
1458 	struct btrfs_root *log_root;
1459 	struct btrfs_inode_item *inode_item;
1460 
1461 	log_root = alloc_log_tree(trans, root->fs_info);
1462 	if (IS_ERR(log_root))
1463 		return PTR_ERR(log_root);
1464 
1465 	log_root->last_trans = trans->transid;
1466 	log_root->root_key.offset = root->root_key.objectid;
1467 
1468 	inode_item = &log_root->root_item.inode;
1469 	btrfs_set_stack_inode_generation(inode_item, 1);
1470 	btrfs_set_stack_inode_size(inode_item, 3);
1471 	btrfs_set_stack_inode_nlink(inode_item, 1);
1472 	btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1473 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1474 
1475 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1476 
1477 	WARN_ON(root->log_root);
1478 	root->log_root = log_root;
1479 	root->log_transid = 0;
1480 	root->log_transid_committed = -1;
1481 	root->last_log_commit = 0;
1482 	return 0;
1483 }
1484 
1485 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1486 					       struct btrfs_key *key)
1487 {
1488 	struct btrfs_root *root;
1489 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1490 	struct btrfs_path *path;
1491 	u64 generation;
1492 	int ret;
1493 
1494 	path = btrfs_alloc_path();
1495 	if (!path)
1496 		return ERR_PTR(-ENOMEM);
1497 
1498 	root = btrfs_alloc_root(fs_info);
1499 	if (!root) {
1500 		ret = -ENOMEM;
1501 		goto alloc_fail;
1502 	}
1503 
1504 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1505 		tree_root->stripesize, root, fs_info, key->objectid);
1506 
1507 	ret = btrfs_find_root(tree_root, key, path,
1508 			      &root->root_item, &root->root_key);
1509 	if (ret) {
1510 		if (ret > 0)
1511 			ret = -ENOENT;
1512 		goto find_fail;
1513 	}
1514 
1515 	generation = btrfs_root_generation(&root->root_item);
1516 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1517 				     generation);
1518 	if (!root->node) {
1519 		ret = -ENOMEM;
1520 		goto find_fail;
1521 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1522 		ret = -EIO;
1523 		goto read_fail;
1524 	}
1525 	root->commit_root = btrfs_root_node(root);
1526 out:
1527 	btrfs_free_path(path);
1528 	return root;
1529 
1530 read_fail:
1531 	free_extent_buffer(root->node);
1532 find_fail:
1533 	kfree(root);
1534 alloc_fail:
1535 	root = ERR_PTR(ret);
1536 	goto out;
1537 }
1538 
1539 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1540 				      struct btrfs_key *location)
1541 {
1542 	struct btrfs_root *root;
1543 
1544 	root = btrfs_read_tree_root(tree_root, location);
1545 	if (IS_ERR(root))
1546 		return root;
1547 
1548 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1549 		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1550 		btrfs_check_and_init_root_item(&root->root_item);
1551 	}
1552 
1553 	return root;
1554 }
1555 
1556 int btrfs_init_fs_root(struct btrfs_root *root)
1557 {
1558 	int ret;
1559 	struct btrfs_subvolume_writers *writers;
1560 
1561 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1562 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1563 					GFP_NOFS);
1564 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1565 		ret = -ENOMEM;
1566 		goto fail;
1567 	}
1568 
1569 	writers = btrfs_alloc_subvolume_writers();
1570 	if (IS_ERR(writers)) {
1571 		ret = PTR_ERR(writers);
1572 		goto fail;
1573 	}
1574 	root->subv_writers = writers;
1575 
1576 	btrfs_init_free_ino_ctl(root);
1577 	spin_lock_init(&root->ino_cache_lock);
1578 	init_waitqueue_head(&root->ino_cache_wait);
1579 
1580 	ret = get_anon_bdev(&root->anon_dev);
1581 	if (ret)
1582 		goto free_writers;
1583 	return 0;
1584 
1585 free_writers:
1586 	btrfs_free_subvolume_writers(root->subv_writers);
1587 fail:
1588 	kfree(root->free_ino_ctl);
1589 	kfree(root->free_ino_pinned);
1590 	return ret;
1591 }
1592 
1593 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1594 					       u64 root_id)
1595 {
1596 	struct btrfs_root *root;
1597 
1598 	spin_lock(&fs_info->fs_roots_radix_lock);
1599 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1600 				 (unsigned long)root_id);
1601 	spin_unlock(&fs_info->fs_roots_radix_lock);
1602 	return root;
1603 }
1604 
1605 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1606 			 struct btrfs_root *root)
1607 {
1608 	int ret;
1609 
1610 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1611 	if (ret)
1612 		return ret;
1613 
1614 	spin_lock(&fs_info->fs_roots_radix_lock);
1615 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1616 				(unsigned long)root->root_key.objectid,
1617 				root);
1618 	if (ret == 0)
1619 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1620 	spin_unlock(&fs_info->fs_roots_radix_lock);
1621 	radix_tree_preload_end();
1622 
1623 	return ret;
1624 }
1625 
1626 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1627 				     struct btrfs_key *location,
1628 				     bool check_ref)
1629 {
1630 	struct btrfs_root *root;
1631 	struct btrfs_path *path;
1632 	struct btrfs_key key;
1633 	int ret;
1634 
1635 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1636 		return fs_info->tree_root;
1637 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1638 		return fs_info->extent_root;
1639 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1640 		return fs_info->chunk_root;
1641 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1642 		return fs_info->dev_root;
1643 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1644 		return fs_info->csum_root;
1645 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1646 		return fs_info->quota_root ? fs_info->quota_root :
1647 					     ERR_PTR(-ENOENT);
1648 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1649 		return fs_info->uuid_root ? fs_info->uuid_root :
1650 					    ERR_PTR(-ENOENT);
1651 again:
1652 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1653 	if (root) {
1654 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1655 			return ERR_PTR(-ENOENT);
1656 		return root;
1657 	}
1658 
1659 	root = btrfs_read_fs_root(fs_info->tree_root, location);
1660 	if (IS_ERR(root))
1661 		return root;
1662 
1663 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1664 		ret = -ENOENT;
1665 		goto fail;
1666 	}
1667 
1668 	ret = btrfs_init_fs_root(root);
1669 	if (ret)
1670 		goto fail;
1671 
1672 	path = btrfs_alloc_path();
1673 	if (!path) {
1674 		ret = -ENOMEM;
1675 		goto fail;
1676 	}
1677 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1678 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1679 	key.offset = location->objectid;
1680 
1681 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1682 	btrfs_free_path(path);
1683 	if (ret < 0)
1684 		goto fail;
1685 	if (ret == 0)
1686 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1687 
1688 	ret = btrfs_insert_fs_root(fs_info, root);
1689 	if (ret) {
1690 		if (ret == -EEXIST) {
1691 			free_fs_root(root);
1692 			goto again;
1693 		}
1694 		goto fail;
1695 	}
1696 	return root;
1697 fail:
1698 	free_fs_root(root);
1699 	return ERR_PTR(ret);
1700 }
1701 
1702 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1703 {
1704 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1705 	int ret = 0;
1706 	struct btrfs_device *device;
1707 	struct backing_dev_info *bdi;
1708 
1709 	rcu_read_lock();
1710 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1711 		if (!device->bdev)
1712 			continue;
1713 		bdi = blk_get_backing_dev_info(device->bdev);
1714 		if (bdi_congested(bdi, bdi_bits)) {
1715 			ret = 1;
1716 			break;
1717 		}
1718 	}
1719 	rcu_read_unlock();
1720 	return ret;
1721 }
1722 
1723 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1724 {
1725 	int err;
1726 
1727 	err = bdi_setup_and_register(bdi, "btrfs");
1728 	if (err)
1729 		return err;
1730 
1731 	bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
1732 	bdi->congested_fn	= btrfs_congested_fn;
1733 	bdi->congested_data	= info;
1734 	return 0;
1735 }
1736 
1737 /*
1738  * called by the kthread helper functions to finally call the bio end_io
1739  * functions.  This is where read checksum verification actually happens
1740  */
1741 static void end_workqueue_fn(struct btrfs_work *work)
1742 {
1743 	struct bio *bio;
1744 	struct btrfs_end_io_wq *end_io_wq;
1745 	int error;
1746 
1747 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1748 	bio = end_io_wq->bio;
1749 
1750 	error = end_io_wq->error;
1751 	bio->bi_private = end_io_wq->private;
1752 	bio->bi_end_io = end_io_wq->end_io;
1753 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1754 	bio_endio_nodec(bio, error);
1755 }
1756 
1757 static int cleaner_kthread(void *arg)
1758 {
1759 	struct btrfs_root *root = arg;
1760 	int again;
1761 
1762 	do {
1763 		again = 0;
1764 
1765 		/* Make the cleaner go to sleep early. */
1766 		if (btrfs_need_cleaner_sleep(root))
1767 			goto sleep;
1768 
1769 		if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1770 			goto sleep;
1771 
1772 		/*
1773 		 * Avoid the problem that we change the status of the fs
1774 		 * during the above check and trylock.
1775 		 */
1776 		if (btrfs_need_cleaner_sleep(root)) {
1777 			mutex_unlock(&root->fs_info->cleaner_mutex);
1778 			goto sleep;
1779 		}
1780 
1781 		btrfs_run_delayed_iputs(root);
1782 		btrfs_delete_unused_bgs(root->fs_info);
1783 		again = btrfs_clean_one_deleted_snapshot(root);
1784 		mutex_unlock(&root->fs_info->cleaner_mutex);
1785 
1786 		/*
1787 		 * The defragger has dealt with the R/O remount and umount,
1788 		 * needn't do anything special here.
1789 		 */
1790 		btrfs_run_defrag_inodes(root->fs_info);
1791 sleep:
1792 		if (!try_to_freeze() && !again) {
1793 			set_current_state(TASK_INTERRUPTIBLE);
1794 			if (!kthread_should_stop())
1795 				schedule();
1796 			__set_current_state(TASK_RUNNING);
1797 		}
1798 	} while (!kthread_should_stop());
1799 	return 0;
1800 }
1801 
1802 static int transaction_kthread(void *arg)
1803 {
1804 	struct btrfs_root *root = arg;
1805 	struct btrfs_trans_handle *trans;
1806 	struct btrfs_transaction *cur;
1807 	u64 transid;
1808 	unsigned long now;
1809 	unsigned long delay;
1810 	bool cannot_commit;
1811 
1812 	do {
1813 		cannot_commit = false;
1814 		delay = HZ * root->fs_info->commit_interval;
1815 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1816 
1817 		spin_lock(&root->fs_info->trans_lock);
1818 		cur = root->fs_info->running_transaction;
1819 		if (!cur) {
1820 			spin_unlock(&root->fs_info->trans_lock);
1821 			goto sleep;
1822 		}
1823 
1824 		now = get_seconds();
1825 		if (cur->state < TRANS_STATE_BLOCKED &&
1826 		    (now < cur->start_time ||
1827 		     now - cur->start_time < root->fs_info->commit_interval)) {
1828 			spin_unlock(&root->fs_info->trans_lock);
1829 			delay = HZ * 5;
1830 			goto sleep;
1831 		}
1832 		transid = cur->transid;
1833 		spin_unlock(&root->fs_info->trans_lock);
1834 
1835 		/* If the file system is aborted, this will always fail. */
1836 		trans = btrfs_attach_transaction(root);
1837 		if (IS_ERR(trans)) {
1838 			if (PTR_ERR(trans) != -ENOENT)
1839 				cannot_commit = true;
1840 			goto sleep;
1841 		}
1842 		if (transid == trans->transid) {
1843 			btrfs_commit_transaction(trans, root);
1844 		} else {
1845 			btrfs_end_transaction(trans, root);
1846 		}
1847 sleep:
1848 		wake_up_process(root->fs_info->cleaner_kthread);
1849 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1850 
1851 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1852 				      &root->fs_info->fs_state)))
1853 			btrfs_cleanup_transaction(root);
1854 		if (!try_to_freeze()) {
1855 			set_current_state(TASK_INTERRUPTIBLE);
1856 			if (!kthread_should_stop() &&
1857 			    (!btrfs_transaction_blocked(root->fs_info) ||
1858 			     cannot_commit))
1859 				schedule_timeout(delay);
1860 			__set_current_state(TASK_RUNNING);
1861 		}
1862 	} while (!kthread_should_stop());
1863 	return 0;
1864 }
1865 
1866 /*
1867  * this will find the highest generation in the array of
1868  * root backups.  The index of the highest array is returned,
1869  * or -1 if we can't find anything.
1870  *
1871  * We check to make sure the array is valid by comparing the
1872  * generation of the latest  root in the array with the generation
1873  * in the super block.  If they don't match we pitch it.
1874  */
1875 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1876 {
1877 	u64 cur;
1878 	int newest_index = -1;
1879 	struct btrfs_root_backup *root_backup;
1880 	int i;
1881 
1882 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1883 		root_backup = info->super_copy->super_roots + i;
1884 		cur = btrfs_backup_tree_root_gen(root_backup);
1885 		if (cur == newest_gen)
1886 			newest_index = i;
1887 	}
1888 
1889 	/* check to see if we actually wrapped around */
1890 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1891 		root_backup = info->super_copy->super_roots;
1892 		cur = btrfs_backup_tree_root_gen(root_backup);
1893 		if (cur == newest_gen)
1894 			newest_index = 0;
1895 	}
1896 	return newest_index;
1897 }
1898 
1899 
1900 /*
1901  * find the oldest backup so we know where to store new entries
1902  * in the backup array.  This will set the backup_root_index
1903  * field in the fs_info struct
1904  */
1905 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1906 				     u64 newest_gen)
1907 {
1908 	int newest_index = -1;
1909 
1910 	newest_index = find_newest_super_backup(info, newest_gen);
1911 	/* if there was garbage in there, just move along */
1912 	if (newest_index == -1) {
1913 		info->backup_root_index = 0;
1914 	} else {
1915 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1916 	}
1917 }
1918 
1919 /*
1920  * copy all the root pointers into the super backup array.
1921  * this will bump the backup pointer by one when it is
1922  * done
1923  */
1924 static void backup_super_roots(struct btrfs_fs_info *info)
1925 {
1926 	int next_backup;
1927 	struct btrfs_root_backup *root_backup;
1928 	int last_backup;
1929 
1930 	next_backup = info->backup_root_index;
1931 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1932 		BTRFS_NUM_BACKUP_ROOTS;
1933 
1934 	/*
1935 	 * just overwrite the last backup if we're at the same generation
1936 	 * this happens only at umount
1937 	 */
1938 	root_backup = info->super_for_commit->super_roots + last_backup;
1939 	if (btrfs_backup_tree_root_gen(root_backup) ==
1940 	    btrfs_header_generation(info->tree_root->node))
1941 		next_backup = last_backup;
1942 
1943 	root_backup = info->super_for_commit->super_roots + next_backup;
1944 
1945 	/*
1946 	 * make sure all of our padding and empty slots get zero filled
1947 	 * regardless of which ones we use today
1948 	 */
1949 	memset(root_backup, 0, sizeof(*root_backup));
1950 
1951 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1952 
1953 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1954 	btrfs_set_backup_tree_root_gen(root_backup,
1955 			       btrfs_header_generation(info->tree_root->node));
1956 
1957 	btrfs_set_backup_tree_root_level(root_backup,
1958 			       btrfs_header_level(info->tree_root->node));
1959 
1960 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1961 	btrfs_set_backup_chunk_root_gen(root_backup,
1962 			       btrfs_header_generation(info->chunk_root->node));
1963 	btrfs_set_backup_chunk_root_level(root_backup,
1964 			       btrfs_header_level(info->chunk_root->node));
1965 
1966 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1967 	btrfs_set_backup_extent_root_gen(root_backup,
1968 			       btrfs_header_generation(info->extent_root->node));
1969 	btrfs_set_backup_extent_root_level(root_backup,
1970 			       btrfs_header_level(info->extent_root->node));
1971 
1972 	/*
1973 	 * we might commit during log recovery, which happens before we set
1974 	 * the fs_root.  Make sure it is valid before we fill it in.
1975 	 */
1976 	if (info->fs_root && info->fs_root->node) {
1977 		btrfs_set_backup_fs_root(root_backup,
1978 					 info->fs_root->node->start);
1979 		btrfs_set_backup_fs_root_gen(root_backup,
1980 			       btrfs_header_generation(info->fs_root->node));
1981 		btrfs_set_backup_fs_root_level(root_backup,
1982 			       btrfs_header_level(info->fs_root->node));
1983 	}
1984 
1985 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1986 	btrfs_set_backup_dev_root_gen(root_backup,
1987 			       btrfs_header_generation(info->dev_root->node));
1988 	btrfs_set_backup_dev_root_level(root_backup,
1989 				       btrfs_header_level(info->dev_root->node));
1990 
1991 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1992 	btrfs_set_backup_csum_root_gen(root_backup,
1993 			       btrfs_header_generation(info->csum_root->node));
1994 	btrfs_set_backup_csum_root_level(root_backup,
1995 			       btrfs_header_level(info->csum_root->node));
1996 
1997 	btrfs_set_backup_total_bytes(root_backup,
1998 			     btrfs_super_total_bytes(info->super_copy));
1999 	btrfs_set_backup_bytes_used(root_backup,
2000 			     btrfs_super_bytes_used(info->super_copy));
2001 	btrfs_set_backup_num_devices(root_backup,
2002 			     btrfs_super_num_devices(info->super_copy));
2003 
2004 	/*
2005 	 * if we don't copy this out to the super_copy, it won't get remembered
2006 	 * for the next commit
2007 	 */
2008 	memcpy(&info->super_copy->super_roots,
2009 	       &info->super_for_commit->super_roots,
2010 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2011 }
2012 
2013 /*
2014  * this copies info out of the root backup array and back into
2015  * the in-memory super block.  It is meant to help iterate through
2016  * the array, so you send it the number of backups you've already
2017  * tried and the last backup index you used.
2018  *
2019  * this returns -1 when it has tried all the backups
2020  */
2021 static noinline int next_root_backup(struct btrfs_fs_info *info,
2022 				     struct btrfs_super_block *super,
2023 				     int *num_backups_tried, int *backup_index)
2024 {
2025 	struct btrfs_root_backup *root_backup;
2026 	int newest = *backup_index;
2027 
2028 	if (*num_backups_tried == 0) {
2029 		u64 gen = btrfs_super_generation(super);
2030 
2031 		newest = find_newest_super_backup(info, gen);
2032 		if (newest == -1)
2033 			return -1;
2034 
2035 		*backup_index = newest;
2036 		*num_backups_tried = 1;
2037 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2038 		/* we've tried all the backups, all done */
2039 		return -1;
2040 	} else {
2041 		/* jump to the next oldest backup */
2042 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2043 			BTRFS_NUM_BACKUP_ROOTS;
2044 		*backup_index = newest;
2045 		*num_backups_tried += 1;
2046 	}
2047 	root_backup = super->super_roots + newest;
2048 
2049 	btrfs_set_super_generation(super,
2050 				   btrfs_backup_tree_root_gen(root_backup));
2051 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2052 	btrfs_set_super_root_level(super,
2053 				   btrfs_backup_tree_root_level(root_backup));
2054 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2055 
2056 	/*
2057 	 * fixme: the total bytes and num_devices need to match or we should
2058 	 * need a fsck
2059 	 */
2060 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2061 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2062 	return 0;
2063 }
2064 
2065 /* helper to cleanup workers */
2066 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2067 {
2068 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2069 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2070 	btrfs_destroy_workqueue(fs_info->workers);
2071 	btrfs_destroy_workqueue(fs_info->endio_workers);
2072 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2073 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2074 	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2075 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2076 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2077 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2078 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2079 	btrfs_destroy_workqueue(fs_info->submit_workers);
2080 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2081 	btrfs_destroy_workqueue(fs_info->caching_workers);
2082 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2083 	btrfs_destroy_workqueue(fs_info->flush_workers);
2084 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2085 	btrfs_destroy_workqueue(fs_info->extent_workers);
2086 }
2087 
2088 static void free_root_extent_buffers(struct btrfs_root *root)
2089 {
2090 	if (root) {
2091 		free_extent_buffer(root->node);
2092 		free_extent_buffer(root->commit_root);
2093 		root->node = NULL;
2094 		root->commit_root = NULL;
2095 	}
2096 }
2097 
2098 /* helper to cleanup tree roots */
2099 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2100 {
2101 	free_root_extent_buffers(info->tree_root);
2102 
2103 	free_root_extent_buffers(info->dev_root);
2104 	free_root_extent_buffers(info->extent_root);
2105 	free_root_extent_buffers(info->csum_root);
2106 	free_root_extent_buffers(info->quota_root);
2107 	free_root_extent_buffers(info->uuid_root);
2108 	if (chunk_root)
2109 		free_root_extent_buffers(info->chunk_root);
2110 }
2111 
2112 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2113 {
2114 	int ret;
2115 	struct btrfs_root *gang[8];
2116 	int i;
2117 
2118 	while (!list_empty(&fs_info->dead_roots)) {
2119 		gang[0] = list_entry(fs_info->dead_roots.next,
2120 				     struct btrfs_root, root_list);
2121 		list_del(&gang[0]->root_list);
2122 
2123 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2124 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2125 		} else {
2126 			free_extent_buffer(gang[0]->node);
2127 			free_extent_buffer(gang[0]->commit_root);
2128 			btrfs_put_fs_root(gang[0]);
2129 		}
2130 	}
2131 
2132 	while (1) {
2133 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2134 					     (void **)gang, 0,
2135 					     ARRAY_SIZE(gang));
2136 		if (!ret)
2137 			break;
2138 		for (i = 0; i < ret; i++)
2139 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2140 	}
2141 
2142 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2143 		btrfs_free_log_root_tree(NULL, fs_info);
2144 		btrfs_destroy_pinned_extent(fs_info->tree_root,
2145 					    fs_info->pinned_extents);
2146 	}
2147 }
2148 
2149 int open_ctree(struct super_block *sb,
2150 	       struct btrfs_fs_devices *fs_devices,
2151 	       char *options)
2152 {
2153 	u32 sectorsize;
2154 	u32 nodesize;
2155 	u32 stripesize;
2156 	u64 generation;
2157 	u64 features;
2158 	struct btrfs_key location;
2159 	struct buffer_head *bh;
2160 	struct btrfs_super_block *disk_super;
2161 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2162 	struct btrfs_root *tree_root;
2163 	struct btrfs_root *extent_root;
2164 	struct btrfs_root *csum_root;
2165 	struct btrfs_root *chunk_root;
2166 	struct btrfs_root *dev_root;
2167 	struct btrfs_root *quota_root;
2168 	struct btrfs_root *uuid_root;
2169 	struct btrfs_root *log_tree_root;
2170 	int ret;
2171 	int err = -EINVAL;
2172 	int num_backups_tried = 0;
2173 	int backup_index = 0;
2174 	int max_active;
2175 	int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2176 	bool create_uuid_tree;
2177 	bool check_uuid_tree;
2178 
2179 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2180 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2181 	if (!tree_root || !chunk_root) {
2182 		err = -ENOMEM;
2183 		goto fail;
2184 	}
2185 
2186 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2187 	if (ret) {
2188 		err = ret;
2189 		goto fail;
2190 	}
2191 
2192 	ret = setup_bdi(fs_info, &fs_info->bdi);
2193 	if (ret) {
2194 		err = ret;
2195 		goto fail_srcu;
2196 	}
2197 
2198 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2199 	if (ret) {
2200 		err = ret;
2201 		goto fail_bdi;
2202 	}
2203 	fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2204 					(1 + ilog2(nr_cpu_ids));
2205 
2206 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2207 	if (ret) {
2208 		err = ret;
2209 		goto fail_dirty_metadata_bytes;
2210 	}
2211 
2212 	ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2213 	if (ret) {
2214 		err = ret;
2215 		goto fail_delalloc_bytes;
2216 	}
2217 
2218 	fs_info->btree_inode = new_inode(sb);
2219 	if (!fs_info->btree_inode) {
2220 		err = -ENOMEM;
2221 		goto fail_bio_counter;
2222 	}
2223 
2224 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2225 
2226 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2227 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2228 	INIT_LIST_HEAD(&fs_info->trans_list);
2229 	INIT_LIST_HEAD(&fs_info->dead_roots);
2230 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2231 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2232 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2233 	spin_lock_init(&fs_info->delalloc_root_lock);
2234 	spin_lock_init(&fs_info->trans_lock);
2235 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2236 	spin_lock_init(&fs_info->delayed_iput_lock);
2237 	spin_lock_init(&fs_info->defrag_inodes_lock);
2238 	spin_lock_init(&fs_info->free_chunk_lock);
2239 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2240 	spin_lock_init(&fs_info->super_lock);
2241 	spin_lock_init(&fs_info->qgroup_op_lock);
2242 	spin_lock_init(&fs_info->buffer_lock);
2243 	spin_lock_init(&fs_info->unused_bgs_lock);
2244 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2245 	rwlock_init(&fs_info->tree_mod_log_lock);
2246 	mutex_init(&fs_info->reloc_mutex);
2247 	mutex_init(&fs_info->delalloc_root_mutex);
2248 	seqlock_init(&fs_info->profiles_lock);
2249 
2250 	init_completion(&fs_info->kobj_unregister);
2251 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2252 	INIT_LIST_HEAD(&fs_info->space_info);
2253 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2254 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2255 	btrfs_mapping_init(&fs_info->mapping_tree);
2256 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2257 			     BTRFS_BLOCK_RSV_GLOBAL);
2258 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2259 			     BTRFS_BLOCK_RSV_DELALLOC);
2260 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2261 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2262 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2263 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2264 			     BTRFS_BLOCK_RSV_DELOPS);
2265 	atomic_set(&fs_info->nr_async_submits, 0);
2266 	atomic_set(&fs_info->async_delalloc_pages, 0);
2267 	atomic_set(&fs_info->async_submit_draining, 0);
2268 	atomic_set(&fs_info->nr_async_bios, 0);
2269 	atomic_set(&fs_info->defrag_running, 0);
2270 	atomic_set(&fs_info->qgroup_op_seq, 0);
2271 	atomic64_set(&fs_info->tree_mod_seq, 0);
2272 	fs_info->sb = sb;
2273 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2274 	fs_info->metadata_ratio = 0;
2275 	fs_info->defrag_inodes = RB_ROOT;
2276 	fs_info->free_chunk_space = 0;
2277 	fs_info->tree_mod_log = RB_ROOT;
2278 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2279 	fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
2280 	/* readahead state */
2281 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2282 	spin_lock_init(&fs_info->reada_lock);
2283 
2284 	fs_info->thread_pool_size = min_t(unsigned long,
2285 					  num_online_cpus() + 2, 8);
2286 
2287 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2288 	spin_lock_init(&fs_info->ordered_root_lock);
2289 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2290 					GFP_NOFS);
2291 	if (!fs_info->delayed_root) {
2292 		err = -ENOMEM;
2293 		goto fail_iput;
2294 	}
2295 	btrfs_init_delayed_root(fs_info->delayed_root);
2296 
2297 	mutex_init(&fs_info->scrub_lock);
2298 	atomic_set(&fs_info->scrubs_running, 0);
2299 	atomic_set(&fs_info->scrub_pause_req, 0);
2300 	atomic_set(&fs_info->scrubs_paused, 0);
2301 	atomic_set(&fs_info->scrub_cancel_req, 0);
2302 	init_waitqueue_head(&fs_info->replace_wait);
2303 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2304 	fs_info->scrub_workers_refcnt = 0;
2305 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2306 	fs_info->check_integrity_print_mask = 0;
2307 #endif
2308 
2309 	spin_lock_init(&fs_info->balance_lock);
2310 	mutex_init(&fs_info->balance_mutex);
2311 	atomic_set(&fs_info->balance_running, 0);
2312 	atomic_set(&fs_info->balance_pause_req, 0);
2313 	atomic_set(&fs_info->balance_cancel_req, 0);
2314 	fs_info->balance_ctl = NULL;
2315 	init_waitqueue_head(&fs_info->balance_wait_q);
2316 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2317 
2318 	sb->s_blocksize = 4096;
2319 	sb->s_blocksize_bits = blksize_bits(4096);
2320 	sb->s_bdi = &fs_info->bdi;
2321 
2322 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2323 	set_nlink(fs_info->btree_inode, 1);
2324 	/*
2325 	 * we set the i_size on the btree inode to the max possible int.
2326 	 * the real end of the address space is determined by all of
2327 	 * the devices in the system
2328 	 */
2329 	fs_info->btree_inode->i_size = OFFSET_MAX;
2330 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2331 
2332 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2333 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2334 			     fs_info->btree_inode->i_mapping);
2335 	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2336 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2337 
2338 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2339 
2340 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2341 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2342 	       sizeof(struct btrfs_key));
2343 	set_bit(BTRFS_INODE_DUMMY,
2344 		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2345 	btrfs_insert_inode_hash(fs_info->btree_inode);
2346 
2347 	spin_lock_init(&fs_info->block_group_cache_lock);
2348 	fs_info->block_group_cache_tree = RB_ROOT;
2349 	fs_info->first_logical_byte = (u64)-1;
2350 
2351 	extent_io_tree_init(&fs_info->freed_extents[0],
2352 			     fs_info->btree_inode->i_mapping);
2353 	extent_io_tree_init(&fs_info->freed_extents[1],
2354 			     fs_info->btree_inode->i_mapping);
2355 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2356 	fs_info->do_barriers = 1;
2357 
2358 
2359 	mutex_init(&fs_info->ordered_operations_mutex);
2360 	mutex_init(&fs_info->ordered_extent_flush_mutex);
2361 	mutex_init(&fs_info->tree_log_mutex);
2362 	mutex_init(&fs_info->chunk_mutex);
2363 	mutex_init(&fs_info->transaction_kthread_mutex);
2364 	mutex_init(&fs_info->cleaner_mutex);
2365 	mutex_init(&fs_info->volume_mutex);
2366 	init_rwsem(&fs_info->commit_root_sem);
2367 	init_rwsem(&fs_info->cleanup_work_sem);
2368 	init_rwsem(&fs_info->subvol_sem);
2369 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2370 	fs_info->dev_replace.lock_owner = 0;
2371 	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2372 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2373 	mutex_init(&fs_info->dev_replace.lock_management_lock);
2374 	mutex_init(&fs_info->dev_replace.lock);
2375 
2376 	spin_lock_init(&fs_info->qgroup_lock);
2377 	mutex_init(&fs_info->qgroup_ioctl_lock);
2378 	fs_info->qgroup_tree = RB_ROOT;
2379 	fs_info->qgroup_op_tree = RB_ROOT;
2380 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2381 	fs_info->qgroup_seq = 1;
2382 	fs_info->quota_enabled = 0;
2383 	fs_info->pending_quota_state = 0;
2384 	fs_info->qgroup_ulist = NULL;
2385 	mutex_init(&fs_info->qgroup_rescan_lock);
2386 
2387 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2388 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2389 
2390 	init_waitqueue_head(&fs_info->transaction_throttle);
2391 	init_waitqueue_head(&fs_info->transaction_wait);
2392 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2393 	init_waitqueue_head(&fs_info->async_submit_wait);
2394 
2395 	INIT_LIST_HEAD(&fs_info->pinned_chunks);
2396 
2397 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2398 	if (ret) {
2399 		err = ret;
2400 		goto fail_alloc;
2401 	}
2402 
2403 	__setup_root(4096, 4096, 4096, tree_root,
2404 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2405 
2406 	invalidate_bdev(fs_devices->latest_bdev);
2407 
2408 	/*
2409 	 * Read super block and check the signature bytes only
2410 	 */
2411 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2412 	if (!bh) {
2413 		err = -EINVAL;
2414 		goto fail_alloc;
2415 	}
2416 
2417 	/*
2418 	 * We want to check superblock checksum, the type is stored inside.
2419 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2420 	 */
2421 	if (btrfs_check_super_csum(bh->b_data)) {
2422 		printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2423 		err = -EINVAL;
2424 		goto fail_alloc;
2425 	}
2426 
2427 	/*
2428 	 * super_copy is zeroed at allocation time and we never touch the
2429 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2430 	 * the whole block of INFO_SIZE
2431 	 */
2432 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2433 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2434 	       sizeof(*fs_info->super_for_commit));
2435 	brelse(bh);
2436 
2437 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2438 
2439 	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2440 	if (ret) {
2441 		printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2442 		err = -EINVAL;
2443 		goto fail_alloc;
2444 	}
2445 
2446 	disk_super = fs_info->super_copy;
2447 	if (!btrfs_super_root(disk_super))
2448 		goto fail_alloc;
2449 
2450 	/* check FS state, whether FS is broken. */
2451 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2452 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2453 
2454 	/*
2455 	 * run through our array of backup supers and setup
2456 	 * our ring pointer to the oldest one
2457 	 */
2458 	generation = btrfs_super_generation(disk_super);
2459 	find_oldest_super_backup(fs_info, generation);
2460 
2461 	/*
2462 	 * In the long term, we'll store the compression type in the super
2463 	 * block, and it'll be used for per file compression control.
2464 	 */
2465 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2466 
2467 	ret = btrfs_parse_options(tree_root, options);
2468 	if (ret) {
2469 		err = ret;
2470 		goto fail_alloc;
2471 	}
2472 
2473 	features = btrfs_super_incompat_flags(disk_super) &
2474 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2475 	if (features) {
2476 		printk(KERN_ERR "BTRFS: couldn't mount because of "
2477 		       "unsupported optional features (%Lx).\n",
2478 		       features);
2479 		err = -EINVAL;
2480 		goto fail_alloc;
2481 	}
2482 
2483 	/*
2484 	 * Leafsize and nodesize were always equal, this is only a sanity check.
2485 	 */
2486 	if (le32_to_cpu(disk_super->__unused_leafsize) !=
2487 	    btrfs_super_nodesize(disk_super)) {
2488 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2489 		       "blocksizes don't match.  node %d leaf %d\n",
2490 		       btrfs_super_nodesize(disk_super),
2491 		       le32_to_cpu(disk_super->__unused_leafsize));
2492 		err = -EINVAL;
2493 		goto fail_alloc;
2494 	}
2495 	if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2496 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2497 		       "blocksize (%d) was too large\n",
2498 		       btrfs_super_nodesize(disk_super));
2499 		err = -EINVAL;
2500 		goto fail_alloc;
2501 	}
2502 
2503 	features = btrfs_super_incompat_flags(disk_super);
2504 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2505 	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2506 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2507 
2508 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2509 		printk(KERN_INFO "BTRFS: has skinny extents\n");
2510 
2511 	/*
2512 	 * flag our filesystem as having big metadata blocks if
2513 	 * they are bigger than the page size
2514 	 */
2515 	if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2516 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2517 			printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2518 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2519 	}
2520 
2521 	nodesize = btrfs_super_nodesize(disk_super);
2522 	sectorsize = btrfs_super_sectorsize(disk_super);
2523 	stripesize = btrfs_super_stripesize(disk_super);
2524 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2525 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2526 
2527 	/*
2528 	 * mixed block groups end up with duplicate but slightly offset
2529 	 * extent buffers for the same range.  It leads to corruptions
2530 	 */
2531 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2532 	    (sectorsize != nodesize)) {
2533 		printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2534 				"are not allowed for mixed block groups on %s\n",
2535 				sb->s_id);
2536 		goto fail_alloc;
2537 	}
2538 
2539 	/*
2540 	 * Needn't use the lock because there is no other task which will
2541 	 * update the flag.
2542 	 */
2543 	btrfs_set_super_incompat_flags(disk_super, features);
2544 
2545 	features = btrfs_super_compat_ro_flags(disk_super) &
2546 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2547 	if (!(sb->s_flags & MS_RDONLY) && features) {
2548 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2549 		       "unsupported option features (%Lx).\n",
2550 		       features);
2551 		err = -EINVAL;
2552 		goto fail_alloc;
2553 	}
2554 
2555 	max_active = fs_info->thread_pool_size;
2556 
2557 	fs_info->workers =
2558 		btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2559 				      max_active, 16);
2560 
2561 	fs_info->delalloc_workers =
2562 		btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2563 
2564 	fs_info->flush_workers =
2565 		btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2566 
2567 	fs_info->caching_workers =
2568 		btrfs_alloc_workqueue("cache", flags, max_active, 0);
2569 
2570 	/*
2571 	 * a higher idle thresh on the submit workers makes it much more
2572 	 * likely that bios will be send down in a sane order to the
2573 	 * devices
2574 	 */
2575 	fs_info->submit_workers =
2576 		btrfs_alloc_workqueue("submit", flags,
2577 				      min_t(u64, fs_devices->num_devices,
2578 					    max_active), 64);
2579 
2580 	fs_info->fixup_workers =
2581 		btrfs_alloc_workqueue("fixup", flags, 1, 0);
2582 
2583 	/*
2584 	 * endios are largely parallel and should have a very
2585 	 * low idle thresh
2586 	 */
2587 	fs_info->endio_workers =
2588 		btrfs_alloc_workqueue("endio", flags, max_active, 4);
2589 	fs_info->endio_meta_workers =
2590 		btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2591 	fs_info->endio_meta_write_workers =
2592 		btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2593 	fs_info->endio_raid56_workers =
2594 		btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2595 	fs_info->endio_repair_workers =
2596 		btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2597 	fs_info->rmw_workers =
2598 		btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2599 	fs_info->endio_write_workers =
2600 		btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2601 	fs_info->endio_freespace_worker =
2602 		btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2603 	fs_info->delayed_workers =
2604 		btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2605 	fs_info->readahead_workers =
2606 		btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2607 	fs_info->qgroup_rescan_workers =
2608 		btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2609 	fs_info->extent_workers =
2610 		btrfs_alloc_workqueue("extent-refs", flags,
2611 				      min_t(u64, fs_devices->num_devices,
2612 					    max_active), 8);
2613 
2614 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2615 	      fs_info->submit_workers && fs_info->flush_workers &&
2616 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2617 	      fs_info->endio_meta_write_workers &&
2618 	      fs_info->endio_repair_workers &&
2619 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2620 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2621 	      fs_info->caching_workers && fs_info->readahead_workers &&
2622 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2623 	      fs_info->extent_workers &&
2624 	      fs_info->qgroup_rescan_workers)) {
2625 		err = -ENOMEM;
2626 		goto fail_sb_buffer;
2627 	}
2628 
2629 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2630 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2631 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2632 
2633 	tree_root->nodesize = nodesize;
2634 	tree_root->sectorsize = sectorsize;
2635 	tree_root->stripesize = stripesize;
2636 
2637 	sb->s_blocksize = sectorsize;
2638 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2639 
2640 	if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2641 		printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
2642 		goto fail_sb_buffer;
2643 	}
2644 
2645 	if (sectorsize != PAGE_SIZE) {
2646 		printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
2647 		       "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2648 		goto fail_sb_buffer;
2649 	}
2650 
2651 	mutex_lock(&fs_info->chunk_mutex);
2652 	ret = btrfs_read_sys_array(tree_root);
2653 	mutex_unlock(&fs_info->chunk_mutex);
2654 	if (ret) {
2655 		printk(KERN_ERR "BTRFS: failed to read the system "
2656 		       "array on %s\n", sb->s_id);
2657 		goto fail_sb_buffer;
2658 	}
2659 
2660 	generation = btrfs_super_chunk_root_generation(disk_super);
2661 
2662 	__setup_root(nodesize, sectorsize, stripesize, chunk_root,
2663 		     fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2664 
2665 	chunk_root->node = read_tree_block(chunk_root,
2666 					   btrfs_super_chunk_root(disk_super),
2667 					   generation);
2668 	if (!chunk_root->node ||
2669 	    !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2670 		printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2671 		       sb->s_id);
2672 		goto fail_tree_roots;
2673 	}
2674 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2675 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2676 
2677 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2678 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2679 
2680 	ret = btrfs_read_chunk_tree(chunk_root);
2681 	if (ret) {
2682 		printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2683 		       sb->s_id);
2684 		goto fail_tree_roots;
2685 	}
2686 
2687 	/*
2688 	 * keep the device that is marked to be the target device for the
2689 	 * dev_replace procedure
2690 	 */
2691 	btrfs_close_extra_devices(fs_info, fs_devices, 0);
2692 
2693 	if (!fs_devices->latest_bdev) {
2694 		printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2695 		       sb->s_id);
2696 		goto fail_tree_roots;
2697 	}
2698 
2699 retry_root_backup:
2700 	generation = btrfs_super_generation(disk_super);
2701 
2702 	tree_root->node = read_tree_block(tree_root,
2703 					  btrfs_super_root(disk_super),
2704 					  generation);
2705 	if (!tree_root->node ||
2706 	    !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2707 		printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2708 		       sb->s_id);
2709 
2710 		goto recovery_tree_root;
2711 	}
2712 
2713 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2714 	tree_root->commit_root = btrfs_root_node(tree_root);
2715 	btrfs_set_root_refs(&tree_root->root_item, 1);
2716 
2717 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2718 	location.type = BTRFS_ROOT_ITEM_KEY;
2719 	location.offset = 0;
2720 
2721 	extent_root = btrfs_read_tree_root(tree_root, &location);
2722 	if (IS_ERR(extent_root)) {
2723 		ret = PTR_ERR(extent_root);
2724 		goto recovery_tree_root;
2725 	}
2726 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
2727 	fs_info->extent_root = extent_root;
2728 
2729 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2730 	dev_root = btrfs_read_tree_root(tree_root, &location);
2731 	if (IS_ERR(dev_root)) {
2732 		ret = PTR_ERR(dev_root);
2733 		goto recovery_tree_root;
2734 	}
2735 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
2736 	fs_info->dev_root = dev_root;
2737 	btrfs_init_devices_late(fs_info);
2738 
2739 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2740 	csum_root = btrfs_read_tree_root(tree_root, &location);
2741 	if (IS_ERR(csum_root)) {
2742 		ret = PTR_ERR(csum_root);
2743 		goto recovery_tree_root;
2744 	}
2745 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
2746 	fs_info->csum_root = csum_root;
2747 
2748 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2749 	quota_root = btrfs_read_tree_root(tree_root, &location);
2750 	if (!IS_ERR(quota_root)) {
2751 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &quota_root->state);
2752 		fs_info->quota_enabled = 1;
2753 		fs_info->pending_quota_state = 1;
2754 		fs_info->quota_root = quota_root;
2755 	}
2756 
2757 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2758 	uuid_root = btrfs_read_tree_root(tree_root, &location);
2759 	if (IS_ERR(uuid_root)) {
2760 		ret = PTR_ERR(uuid_root);
2761 		if (ret != -ENOENT)
2762 			goto recovery_tree_root;
2763 		create_uuid_tree = true;
2764 		check_uuid_tree = false;
2765 	} else {
2766 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
2767 		fs_info->uuid_root = uuid_root;
2768 		create_uuid_tree = false;
2769 		check_uuid_tree =
2770 		    generation != btrfs_super_uuid_tree_generation(disk_super);
2771 	}
2772 
2773 	fs_info->generation = generation;
2774 	fs_info->last_trans_committed = generation;
2775 
2776 	ret = btrfs_recover_balance(fs_info);
2777 	if (ret) {
2778 		printk(KERN_ERR "BTRFS: failed to recover balance\n");
2779 		goto fail_block_groups;
2780 	}
2781 
2782 	ret = btrfs_init_dev_stats(fs_info);
2783 	if (ret) {
2784 		printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2785 		       ret);
2786 		goto fail_block_groups;
2787 	}
2788 
2789 	ret = btrfs_init_dev_replace(fs_info);
2790 	if (ret) {
2791 		pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2792 		goto fail_block_groups;
2793 	}
2794 
2795 	btrfs_close_extra_devices(fs_info, fs_devices, 1);
2796 
2797 	ret = btrfs_sysfs_add_one(fs_info);
2798 	if (ret) {
2799 		pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2800 		goto fail_block_groups;
2801 	}
2802 
2803 	ret = btrfs_init_space_info(fs_info);
2804 	if (ret) {
2805 		printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2806 		goto fail_sysfs;
2807 	}
2808 
2809 	ret = btrfs_read_block_groups(extent_root);
2810 	if (ret) {
2811 		printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2812 		goto fail_sysfs;
2813 	}
2814 	fs_info->num_tolerated_disk_barrier_failures =
2815 		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2816 	if (fs_info->fs_devices->missing_devices >
2817 	     fs_info->num_tolerated_disk_barrier_failures &&
2818 	    !(sb->s_flags & MS_RDONLY)) {
2819 		printk(KERN_WARNING "BTRFS: "
2820 			"too many missing devices, writeable mount is not allowed\n");
2821 		goto fail_sysfs;
2822 	}
2823 
2824 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2825 					       "btrfs-cleaner");
2826 	if (IS_ERR(fs_info->cleaner_kthread))
2827 		goto fail_sysfs;
2828 
2829 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2830 						   tree_root,
2831 						   "btrfs-transaction");
2832 	if (IS_ERR(fs_info->transaction_kthread))
2833 		goto fail_cleaner;
2834 
2835 	if (!btrfs_test_opt(tree_root, SSD) &&
2836 	    !btrfs_test_opt(tree_root, NOSSD) &&
2837 	    !fs_info->fs_devices->rotating) {
2838 		printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2839 		       "mode\n");
2840 		btrfs_set_opt(fs_info->mount_opt, SSD);
2841 	}
2842 
2843 	/*
2844 	 * Mount does not set all options immediatelly, we can do it now and do
2845 	 * not have to wait for transaction commit
2846 	 */
2847 	btrfs_apply_pending_changes(fs_info);
2848 
2849 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2850 	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2851 		ret = btrfsic_mount(tree_root, fs_devices,
2852 				    btrfs_test_opt(tree_root,
2853 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2854 				    1 : 0,
2855 				    fs_info->check_integrity_print_mask);
2856 		if (ret)
2857 			printk(KERN_WARNING "BTRFS: failed to initialize"
2858 			       " integrity check module %s\n", sb->s_id);
2859 	}
2860 #endif
2861 	ret = btrfs_read_qgroup_config(fs_info);
2862 	if (ret)
2863 		goto fail_trans_kthread;
2864 
2865 	/* do not make disk changes in broken FS */
2866 	if (btrfs_super_log_root(disk_super) != 0) {
2867 		u64 bytenr = btrfs_super_log_root(disk_super);
2868 
2869 		if (fs_devices->rw_devices == 0) {
2870 			printk(KERN_WARNING "BTRFS: log replay required "
2871 			       "on RO media\n");
2872 			err = -EIO;
2873 			goto fail_qgroup;
2874 		}
2875 
2876 		log_tree_root = btrfs_alloc_root(fs_info);
2877 		if (!log_tree_root) {
2878 			err = -ENOMEM;
2879 			goto fail_qgroup;
2880 		}
2881 
2882 		__setup_root(nodesize, sectorsize, stripesize,
2883 			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2884 
2885 		log_tree_root->node = read_tree_block(tree_root, bytenr,
2886 						      generation + 1);
2887 		if (!log_tree_root->node ||
2888 		    !extent_buffer_uptodate(log_tree_root->node)) {
2889 			printk(KERN_ERR "BTRFS: failed to read log tree\n");
2890 			free_extent_buffer(log_tree_root->node);
2891 			kfree(log_tree_root);
2892 			goto fail_qgroup;
2893 		}
2894 		/* returns with log_tree_root freed on success */
2895 		ret = btrfs_recover_log_trees(log_tree_root);
2896 		if (ret) {
2897 			btrfs_error(tree_root->fs_info, ret,
2898 				    "Failed to recover log tree");
2899 			free_extent_buffer(log_tree_root->node);
2900 			kfree(log_tree_root);
2901 			goto fail_qgroup;
2902 		}
2903 
2904 		if (sb->s_flags & MS_RDONLY) {
2905 			ret = btrfs_commit_super(tree_root);
2906 			if (ret)
2907 				goto fail_qgroup;
2908 		}
2909 	}
2910 
2911 	ret = btrfs_find_orphan_roots(tree_root);
2912 	if (ret)
2913 		goto fail_qgroup;
2914 
2915 	if (!(sb->s_flags & MS_RDONLY)) {
2916 		ret = btrfs_cleanup_fs_roots(fs_info);
2917 		if (ret)
2918 			goto fail_qgroup;
2919 
2920 		mutex_lock(&fs_info->cleaner_mutex);
2921 		ret = btrfs_recover_relocation(tree_root);
2922 		mutex_unlock(&fs_info->cleaner_mutex);
2923 		if (ret < 0) {
2924 			printk(KERN_WARNING
2925 			       "BTRFS: failed to recover relocation\n");
2926 			err = -EINVAL;
2927 			goto fail_qgroup;
2928 		}
2929 	}
2930 
2931 	location.objectid = BTRFS_FS_TREE_OBJECTID;
2932 	location.type = BTRFS_ROOT_ITEM_KEY;
2933 	location.offset = 0;
2934 
2935 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2936 	if (IS_ERR(fs_info->fs_root)) {
2937 		err = PTR_ERR(fs_info->fs_root);
2938 		goto fail_qgroup;
2939 	}
2940 
2941 	if (sb->s_flags & MS_RDONLY)
2942 		return 0;
2943 
2944 	down_read(&fs_info->cleanup_work_sem);
2945 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2946 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2947 		up_read(&fs_info->cleanup_work_sem);
2948 		close_ctree(tree_root);
2949 		return ret;
2950 	}
2951 	up_read(&fs_info->cleanup_work_sem);
2952 
2953 	ret = btrfs_resume_balance_async(fs_info);
2954 	if (ret) {
2955 		printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2956 		close_ctree(tree_root);
2957 		return ret;
2958 	}
2959 
2960 	ret = btrfs_resume_dev_replace_async(fs_info);
2961 	if (ret) {
2962 		pr_warn("BTRFS: failed to resume dev_replace\n");
2963 		close_ctree(tree_root);
2964 		return ret;
2965 	}
2966 
2967 	btrfs_qgroup_rescan_resume(fs_info);
2968 
2969 	if (create_uuid_tree) {
2970 		pr_info("BTRFS: creating UUID tree\n");
2971 		ret = btrfs_create_uuid_tree(fs_info);
2972 		if (ret) {
2973 			pr_warn("BTRFS: failed to create the UUID tree %d\n",
2974 				ret);
2975 			close_ctree(tree_root);
2976 			return ret;
2977 		}
2978 	} else if (check_uuid_tree ||
2979 		   btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2980 		pr_info("BTRFS: checking UUID tree\n");
2981 		ret = btrfs_check_uuid_tree(fs_info);
2982 		if (ret) {
2983 			pr_warn("BTRFS: failed to check the UUID tree %d\n",
2984 				ret);
2985 			close_ctree(tree_root);
2986 			return ret;
2987 		}
2988 	} else {
2989 		fs_info->update_uuid_tree_gen = 1;
2990 	}
2991 
2992 	fs_info->open = 1;
2993 
2994 	return 0;
2995 
2996 fail_qgroup:
2997 	btrfs_free_qgroup_config(fs_info);
2998 fail_trans_kthread:
2999 	kthread_stop(fs_info->transaction_kthread);
3000 	btrfs_cleanup_transaction(fs_info->tree_root);
3001 	btrfs_free_fs_roots(fs_info);
3002 fail_cleaner:
3003 	kthread_stop(fs_info->cleaner_kthread);
3004 
3005 	/*
3006 	 * make sure we're done with the btree inode before we stop our
3007 	 * kthreads
3008 	 */
3009 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3010 
3011 fail_sysfs:
3012 	btrfs_sysfs_remove_one(fs_info);
3013 
3014 fail_block_groups:
3015 	btrfs_put_block_group_cache(fs_info);
3016 	btrfs_free_block_groups(fs_info);
3017 
3018 fail_tree_roots:
3019 	free_root_pointers(fs_info, 1);
3020 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3021 
3022 fail_sb_buffer:
3023 	btrfs_stop_all_workers(fs_info);
3024 fail_alloc:
3025 fail_iput:
3026 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3027 
3028 	iput(fs_info->btree_inode);
3029 fail_bio_counter:
3030 	percpu_counter_destroy(&fs_info->bio_counter);
3031 fail_delalloc_bytes:
3032 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3033 fail_dirty_metadata_bytes:
3034 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3035 fail_bdi:
3036 	bdi_destroy(&fs_info->bdi);
3037 fail_srcu:
3038 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3039 fail:
3040 	btrfs_free_stripe_hash_table(fs_info);
3041 	btrfs_close_devices(fs_info->fs_devices);
3042 	return err;
3043 
3044 recovery_tree_root:
3045 	if (!btrfs_test_opt(tree_root, RECOVERY))
3046 		goto fail_tree_roots;
3047 
3048 	free_root_pointers(fs_info, 0);
3049 
3050 	/* don't use the log in recovery mode, it won't be valid */
3051 	btrfs_set_super_log_root(disk_super, 0);
3052 
3053 	/* we can't trust the free space cache either */
3054 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3055 
3056 	ret = next_root_backup(fs_info, fs_info->super_copy,
3057 			       &num_backups_tried, &backup_index);
3058 	if (ret == -1)
3059 		goto fail_block_groups;
3060 	goto retry_root_backup;
3061 }
3062 
3063 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3064 {
3065 	if (uptodate) {
3066 		set_buffer_uptodate(bh);
3067 	} else {
3068 		struct btrfs_device *device = (struct btrfs_device *)
3069 			bh->b_private;
3070 
3071 		printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3072 					  "I/O error on %s\n",
3073 					  rcu_str_deref(device->name));
3074 		/* note, we dont' set_buffer_write_io_error because we have
3075 		 * our own ways of dealing with the IO errors
3076 		 */
3077 		clear_buffer_uptodate(bh);
3078 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3079 	}
3080 	unlock_buffer(bh);
3081 	put_bh(bh);
3082 }
3083 
3084 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3085 {
3086 	struct buffer_head *bh;
3087 	struct buffer_head *latest = NULL;
3088 	struct btrfs_super_block *super;
3089 	int i;
3090 	u64 transid = 0;
3091 	u64 bytenr;
3092 
3093 	/* we would like to check all the supers, but that would make
3094 	 * a btrfs mount succeed after a mkfs from a different FS.
3095 	 * So, we need to add a special mount option to scan for
3096 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3097 	 */
3098 	for (i = 0; i < 1; i++) {
3099 		bytenr = btrfs_sb_offset(i);
3100 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3101 					i_size_read(bdev->bd_inode))
3102 			break;
3103 		bh = __bread(bdev, bytenr / 4096,
3104 					BTRFS_SUPER_INFO_SIZE);
3105 		if (!bh)
3106 			continue;
3107 
3108 		super = (struct btrfs_super_block *)bh->b_data;
3109 		if (btrfs_super_bytenr(super) != bytenr ||
3110 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3111 			brelse(bh);
3112 			continue;
3113 		}
3114 
3115 		if (!latest || btrfs_super_generation(super) > transid) {
3116 			brelse(latest);
3117 			latest = bh;
3118 			transid = btrfs_super_generation(super);
3119 		} else {
3120 			brelse(bh);
3121 		}
3122 	}
3123 	return latest;
3124 }
3125 
3126 /*
3127  * this should be called twice, once with wait == 0 and
3128  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3129  * we write are pinned.
3130  *
3131  * They are released when wait == 1 is done.
3132  * max_mirrors must be the same for both runs, and it indicates how
3133  * many supers on this one device should be written.
3134  *
3135  * max_mirrors == 0 means to write them all.
3136  */
3137 static int write_dev_supers(struct btrfs_device *device,
3138 			    struct btrfs_super_block *sb,
3139 			    int do_barriers, int wait, int max_mirrors)
3140 {
3141 	struct buffer_head *bh;
3142 	int i;
3143 	int ret;
3144 	int errors = 0;
3145 	u32 crc;
3146 	u64 bytenr;
3147 
3148 	if (max_mirrors == 0)
3149 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3150 
3151 	for (i = 0; i < max_mirrors; i++) {
3152 		bytenr = btrfs_sb_offset(i);
3153 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3154 		    device->commit_total_bytes)
3155 			break;
3156 
3157 		if (wait) {
3158 			bh = __find_get_block(device->bdev, bytenr / 4096,
3159 					      BTRFS_SUPER_INFO_SIZE);
3160 			if (!bh) {
3161 				errors++;
3162 				continue;
3163 			}
3164 			wait_on_buffer(bh);
3165 			if (!buffer_uptodate(bh))
3166 				errors++;
3167 
3168 			/* drop our reference */
3169 			brelse(bh);
3170 
3171 			/* drop the reference from the wait == 0 run */
3172 			brelse(bh);
3173 			continue;
3174 		} else {
3175 			btrfs_set_super_bytenr(sb, bytenr);
3176 
3177 			crc = ~(u32)0;
3178 			crc = btrfs_csum_data((char *)sb +
3179 					      BTRFS_CSUM_SIZE, crc,
3180 					      BTRFS_SUPER_INFO_SIZE -
3181 					      BTRFS_CSUM_SIZE);
3182 			btrfs_csum_final(crc, sb->csum);
3183 
3184 			/*
3185 			 * one reference for us, and we leave it for the
3186 			 * caller
3187 			 */
3188 			bh = __getblk(device->bdev, bytenr / 4096,
3189 				      BTRFS_SUPER_INFO_SIZE);
3190 			if (!bh) {
3191 				printk(KERN_ERR "BTRFS: couldn't get super "
3192 				       "buffer head for bytenr %Lu\n", bytenr);
3193 				errors++;
3194 				continue;
3195 			}
3196 
3197 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3198 
3199 			/* one reference for submit_bh */
3200 			get_bh(bh);
3201 
3202 			set_buffer_uptodate(bh);
3203 			lock_buffer(bh);
3204 			bh->b_end_io = btrfs_end_buffer_write_sync;
3205 			bh->b_private = device;
3206 		}
3207 
3208 		/*
3209 		 * we fua the first super.  The others we allow
3210 		 * to go down lazy.
3211 		 */
3212 		if (i == 0)
3213 			ret = btrfsic_submit_bh(WRITE_FUA, bh);
3214 		else
3215 			ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3216 		if (ret)
3217 			errors++;
3218 	}
3219 	return errors < i ? 0 : -1;
3220 }
3221 
3222 /*
3223  * endio for the write_dev_flush, this will wake anyone waiting
3224  * for the barrier when it is done
3225  */
3226 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3227 {
3228 	if (err) {
3229 		if (err == -EOPNOTSUPP)
3230 			set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3231 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
3232 	}
3233 	if (bio->bi_private)
3234 		complete(bio->bi_private);
3235 	bio_put(bio);
3236 }
3237 
3238 /*
3239  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3240  * sent down.  With wait == 1, it waits for the previous flush.
3241  *
3242  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3243  * capable
3244  */
3245 static int write_dev_flush(struct btrfs_device *device, int wait)
3246 {
3247 	struct bio *bio;
3248 	int ret = 0;
3249 
3250 	if (device->nobarriers)
3251 		return 0;
3252 
3253 	if (wait) {
3254 		bio = device->flush_bio;
3255 		if (!bio)
3256 			return 0;
3257 
3258 		wait_for_completion(&device->flush_wait);
3259 
3260 		if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3261 			printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3262 				      rcu_str_deref(device->name));
3263 			device->nobarriers = 1;
3264 		} else if (!bio_flagged(bio, BIO_UPTODATE)) {
3265 			ret = -EIO;
3266 			btrfs_dev_stat_inc_and_print(device,
3267 				BTRFS_DEV_STAT_FLUSH_ERRS);
3268 		}
3269 
3270 		/* drop the reference from the wait == 0 run */
3271 		bio_put(bio);
3272 		device->flush_bio = NULL;
3273 
3274 		return ret;
3275 	}
3276 
3277 	/*
3278 	 * one reference for us, and we leave it for the
3279 	 * caller
3280 	 */
3281 	device->flush_bio = NULL;
3282 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3283 	if (!bio)
3284 		return -ENOMEM;
3285 
3286 	bio->bi_end_io = btrfs_end_empty_barrier;
3287 	bio->bi_bdev = device->bdev;
3288 	init_completion(&device->flush_wait);
3289 	bio->bi_private = &device->flush_wait;
3290 	device->flush_bio = bio;
3291 
3292 	bio_get(bio);
3293 	btrfsic_submit_bio(WRITE_FLUSH, bio);
3294 
3295 	return 0;
3296 }
3297 
3298 /*
3299  * send an empty flush down to each device in parallel,
3300  * then wait for them
3301  */
3302 static int barrier_all_devices(struct btrfs_fs_info *info)
3303 {
3304 	struct list_head *head;
3305 	struct btrfs_device *dev;
3306 	int errors_send = 0;
3307 	int errors_wait = 0;
3308 	int ret;
3309 
3310 	/* send down all the barriers */
3311 	head = &info->fs_devices->devices;
3312 	list_for_each_entry_rcu(dev, head, dev_list) {
3313 		if (dev->missing)
3314 			continue;
3315 		if (!dev->bdev) {
3316 			errors_send++;
3317 			continue;
3318 		}
3319 		if (!dev->in_fs_metadata || !dev->writeable)
3320 			continue;
3321 
3322 		ret = write_dev_flush(dev, 0);
3323 		if (ret)
3324 			errors_send++;
3325 	}
3326 
3327 	/* wait for all the barriers */
3328 	list_for_each_entry_rcu(dev, head, dev_list) {
3329 		if (dev->missing)
3330 			continue;
3331 		if (!dev->bdev) {
3332 			errors_wait++;
3333 			continue;
3334 		}
3335 		if (!dev->in_fs_metadata || !dev->writeable)
3336 			continue;
3337 
3338 		ret = write_dev_flush(dev, 1);
3339 		if (ret)
3340 			errors_wait++;
3341 	}
3342 	if (errors_send > info->num_tolerated_disk_barrier_failures ||
3343 	    errors_wait > info->num_tolerated_disk_barrier_failures)
3344 		return -EIO;
3345 	return 0;
3346 }
3347 
3348 int btrfs_calc_num_tolerated_disk_barrier_failures(
3349 	struct btrfs_fs_info *fs_info)
3350 {
3351 	struct btrfs_ioctl_space_info space;
3352 	struct btrfs_space_info *sinfo;
3353 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3354 		       BTRFS_BLOCK_GROUP_SYSTEM,
3355 		       BTRFS_BLOCK_GROUP_METADATA,
3356 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3357 	int num_types = 4;
3358 	int i;
3359 	int c;
3360 	int num_tolerated_disk_barrier_failures =
3361 		(int)fs_info->fs_devices->num_devices;
3362 
3363 	for (i = 0; i < num_types; i++) {
3364 		struct btrfs_space_info *tmp;
3365 
3366 		sinfo = NULL;
3367 		rcu_read_lock();
3368 		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3369 			if (tmp->flags == types[i]) {
3370 				sinfo = tmp;
3371 				break;
3372 			}
3373 		}
3374 		rcu_read_unlock();
3375 
3376 		if (!sinfo)
3377 			continue;
3378 
3379 		down_read(&sinfo->groups_sem);
3380 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3381 			if (!list_empty(&sinfo->block_groups[c])) {
3382 				u64 flags;
3383 
3384 				btrfs_get_block_group_info(
3385 					&sinfo->block_groups[c], &space);
3386 				if (space.total_bytes == 0 ||
3387 				    space.used_bytes == 0)
3388 					continue;
3389 				flags = space.flags;
3390 				/*
3391 				 * return
3392 				 * 0: if dup, single or RAID0 is configured for
3393 				 *    any of metadata, system or data, else
3394 				 * 1: if RAID5 is configured, or if RAID1 or
3395 				 *    RAID10 is configured and only two mirrors
3396 				 *    are used, else
3397 				 * 2: if RAID6 is configured, else
3398 				 * num_mirrors - 1: if RAID1 or RAID10 is
3399 				 *                  configured and more than
3400 				 *                  2 mirrors are used.
3401 				 */
3402 				if (num_tolerated_disk_barrier_failures > 0 &&
3403 				    ((flags & (BTRFS_BLOCK_GROUP_DUP |
3404 					       BTRFS_BLOCK_GROUP_RAID0)) ||
3405 				     ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3406 				      == 0)))
3407 					num_tolerated_disk_barrier_failures = 0;
3408 				else if (num_tolerated_disk_barrier_failures > 1) {
3409 					if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3410 					    BTRFS_BLOCK_GROUP_RAID5 |
3411 					    BTRFS_BLOCK_GROUP_RAID10)) {
3412 						num_tolerated_disk_barrier_failures = 1;
3413 					} else if (flags &
3414 						   BTRFS_BLOCK_GROUP_RAID6) {
3415 						num_tolerated_disk_barrier_failures = 2;
3416 					}
3417 				}
3418 			}
3419 		}
3420 		up_read(&sinfo->groups_sem);
3421 	}
3422 
3423 	return num_tolerated_disk_barrier_failures;
3424 }
3425 
3426 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3427 {
3428 	struct list_head *head;
3429 	struct btrfs_device *dev;
3430 	struct btrfs_super_block *sb;
3431 	struct btrfs_dev_item *dev_item;
3432 	int ret;
3433 	int do_barriers;
3434 	int max_errors;
3435 	int total_errors = 0;
3436 	u64 flags;
3437 
3438 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
3439 	backup_super_roots(root->fs_info);
3440 
3441 	sb = root->fs_info->super_for_commit;
3442 	dev_item = &sb->dev_item;
3443 
3444 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3445 	head = &root->fs_info->fs_devices->devices;
3446 	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3447 
3448 	if (do_barriers) {
3449 		ret = barrier_all_devices(root->fs_info);
3450 		if (ret) {
3451 			mutex_unlock(
3452 				&root->fs_info->fs_devices->device_list_mutex);
3453 			btrfs_error(root->fs_info, ret,
3454 				    "errors while submitting device barriers.");
3455 			return ret;
3456 		}
3457 	}
3458 
3459 	list_for_each_entry_rcu(dev, head, dev_list) {
3460 		if (!dev->bdev) {
3461 			total_errors++;
3462 			continue;
3463 		}
3464 		if (!dev->in_fs_metadata || !dev->writeable)
3465 			continue;
3466 
3467 		btrfs_set_stack_device_generation(dev_item, 0);
3468 		btrfs_set_stack_device_type(dev_item, dev->type);
3469 		btrfs_set_stack_device_id(dev_item, dev->devid);
3470 		btrfs_set_stack_device_total_bytes(dev_item,
3471 						   dev->commit_total_bytes);
3472 		btrfs_set_stack_device_bytes_used(dev_item,
3473 						  dev->commit_bytes_used);
3474 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3475 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3476 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3477 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3478 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3479 
3480 		flags = btrfs_super_flags(sb);
3481 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3482 
3483 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3484 		if (ret)
3485 			total_errors++;
3486 	}
3487 	if (total_errors > max_errors) {
3488 		btrfs_err(root->fs_info, "%d errors while writing supers",
3489 		       total_errors);
3490 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3491 
3492 		/* FUA is masked off if unsupported and can't be the reason */
3493 		btrfs_error(root->fs_info, -EIO,
3494 			    "%d errors while writing supers", total_errors);
3495 		return -EIO;
3496 	}
3497 
3498 	total_errors = 0;
3499 	list_for_each_entry_rcu(dev, head, dev_list) {
3500 		if (!dev->bdev)
3501 			continue;
3502 		if (!dev->in_fs_metadata || !dev->writeable)
3503 			continue;
3504 
3505 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3506 		if (ret)
3507 			total_errors++;
3508 	}
3509 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3510 	if (total_errors > max_errors) {
3511 		btrfs_error(root->fs_info, -EIO,
3512 			    "%d errors while writing supers", total_errors);
3513 		return -EIO;
3514 	}
3515 	return 0;
3516 }
3517 
3518 int write_ctree_super(struct btrfs_trans_handle *trans,
3519 		      struct btrfs_root *root, int max_mirrors)
3520 {
3521 	return write_all_supers(root, max_mirrors);
3522 }
3523 
3524 /* Drop a fs root from the radix tree and free it. */
3525 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3526 				  struct btrfs_root *root)
3527 {
3528 	spin_lock(&fs_info->fs_roots_radix_lock);
3529 	radix_tree_delete(&fs_info->fs_roots_radix,
3530 			  (unsigned long)root->root_key.objectid);
3531 	spin_unlock(&fs_info->fs_roots_radix_lock);
3532 
3533 	if (btrfs_root_refs(&root->root_item) == 0)
3534 		synchronize_srcu(&fs_info->subvol_srcu);
3535 
3536 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3537 		btrfs_free_log(NULL, root);
3538 
3539 	if (root->free_ino_pinned)
3540 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3541 	if (root->free_ino_ctl)
3542 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3543 	free_fs_root(root);
3544 }
3545 
3546 static void free_fs_root(struct btrfs_root *root)
3547 {
3548 	iput(root->ino_cache_inode);
3549 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3550 	btrfs_free_block_rsv(root, root->orphan_block_rsv);
3551 	root->orphan_block_rsv = NULL;
3552 	if (root->anon_dev)
3553 		free_anon_bdev(root->anon_dev);
3554 	if (root->subv_writers)
3555 		btrfs_free_subvolume_writers(root->subv_writers);
3556 	free_extent_buffer(root->node);
3557 	free_extent_buffer(root->commit_root);
3558 	kfree(root->free_ino_ctl);
3559 	kfree(root->free_ino_pinned);
3560 	kfree(root->name);
3561 	btrfs_put_fs_root(root);
3562 }
3563 
3564 void btrfs_free_fs_root(struct btrfs_root *root)
3565 {
3566 	free_fs_root(root);
3567 }
3568 
3569 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3570 {
3571 	u64 root_objectid = 0;
3572 	struct btrfs_root *gang[8];
3573 	int i = 0;
3574 	int err = 0;
3575 	unsigned int ret = 0;
3576 	int index;
3577 
3578 	while (1) {
3579 		index = srcu_read_lock(&fs_info->subvol_srcu);
3580 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3581 					     (void **)gang, root_objectid,
3582 					     ARRAY_SIZE(gang));
3583 		if (!ret) {
3584 			srcu_read_unlock(&fs_info->subvol_srcu, index);
3585 			break;
3586 		}
3587 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3588 
3589 		for (i = 0; i < ret; i++) {
3590 			/* Avoid to grab roots in dead_roots */
3591 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3592 				gang[i] = NULL;
3593 				continue;
3594 			}
3595 			/* grab all the search result for later use */
3596 			gang[i] = btrfs_grab_fs_root(gang[i]);
3597 		}
3598 		srcu_read_unlock(&fs_info->subvol_srcu, index);
3599 
3600 		for (i = 0; i < ret; i++) {
3601 			if (!gang[i])
3602 				continue;
3603 			root_objectid = gang[i]->root_key.objectid;
3604 			err = btrfs_orphan_cleanup(gang[i]);
3605 			if (err)
3606 				break;
3607 			btrfs_put_fs_root(gang[i]);
3608 		}
3609 		root_objectid++;
3610 	}
3611 
3612 	/* release the uncleaned roots due to error */
3613 	for (; i < ret; i++) {
3614 		if (gang[i])
3615 			btrfs_put_fs_root(gang[i]);
3616 	}
3617 	return err;
3618 }
3619 
3620 int btrfs_commit_super(struct btrfs_root *root)
3621 {
3622 	struct btrfs_trans_handle *trans;
3623 
3624 	mutex_lock(&root->fs_info->cleaner_mutex);
3625 	btrfs_run_delayed_iputs(root);
3626 	mutex_unlock(&root->fs_info->cleaner_mutex);
3627 	wake_up_process(root->fs_info->cleaner_kthread);
3628 
3629 	/* wait until ongoing cleanup work done */
3630 	down_write(&root->fs_info->cleanup_work_sem);
3631 	up_write(&root->fs_info->cleanup_work_sem);
3632 
3633 	trans = btrfs_join_transaction(root);
3634 	if (IS_ERR(trans))
3635 		return PTR_ERR(trans);
3636 	return btrfs_commit_transaction(trans, root);
3637 }
3638 
3639 void close_ctree(struct btrfs_root *root)
3640 {
3641 	struct btrfs_fs_info *fs_info = root->fs_info;
3642 	int ret;
3643 
3644 	fs_info->closing = 1;
3645 	smp_mb();
3646 
3647 	/* wait for the uuid_scan task to finish */
3648 	down(&fs_info->uuid_tree_rescan_sem);
3649 	/* avoid complains from lockdep et al., set sem back to initial state */
3650 	up(&fs_info->uuid_tree_rescan_sem);
3651 
3652 	/* pause restriper - we want to resume on mount */
3653 	btrfs_pause_balance(fs_info);
3654 
3655 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3656 
3657 	btrfs_scrub_cancel(fs_info);
3658 
3659 	/* wait for any defraggers to finish */
3660 	wait_event(fs_info->transaction_wait,
3661 		   (atomic_read(&fs_info->defrag_running) == 0));
3662 
3663 	/* clear out the rbtree of defraggable inodes */
3664 	btrfs_cleanup_defrag_inodes(fs_info);
3665 
3666 	cancel_work_sync(&fs_info->async_reclaim_work);
3667 
3668 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3669 		ret = btrfs_commit_super(root);
3670 		if (ret)
3671 			btrfs_err(root->fs_info, "commit super ret %d", ret);
3672 	}
3673 
3674 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3675 		btrfs_error_commit_super(root);
3676 
3677 	kthread_stop(fs_info->transaction_kthread);
3678 	kthread_stop(fs_info->cleaner_kthread);
3679 
3680 	fs_info->closing = 2;
3681 	smp_mb();
3682 
3683 	btrfs_free_qgroup_config(root->fs_info);
3684 
3685 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3686 		btrfs_info(root->fs_info, "at unmount delalloc count %lld",
3687 		       percpu_counter_sum(&fs_info->delalloc_bytes));
3688 	}
3689 
3690 	btrfs_sysfs_remove_one(fs_info);
3691 
3692 	btrfs_free_fs_roots(fs_info);
3693 
3694 	btrfs_put_block_group_cache(fs_info);
3695 
3696 	btrfs_free_block_groups(fs_info);
3697 
3698 	/*
3699 	 * we must make sure there is not any read request to
3700 	 * submit after we stopping all workers.
3701 	 */
3702 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3703 	btrfs_stop_all_workers(fs_info);
3704 
3705 	fs_info->open = 0;
3706 	free_root_pointers(fs_info, 1);
3707 
3708 	iput(fs_info->btree_inode);
3709 
3710 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3711 	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3712 		btrfsic_unmount(root, fs_info->fs_devices);
3713 #endif
3714 
3715 	btrfs_close_devices(fs_info->fs_devices);
3716 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3717 
3718 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3719 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3720 	percpu_counter_destroy(&fs_info->bio_counter);
3721 	bdi_destroy(&fs_info->bdi);
3722 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3723 
3724 	btrfs_free_stripe_hash_table(fs_info);
3725 
3726 	btrfs_free_block_rsv(root, root->orphan_block_rsv);
3727 	root->orphan_block_rsv = NULL;
3728 
3729 	lock_chunks(root);
3730 	while (!list_empty(&fs_info->pinned_chunks)) {
3731 		struct extent_map *em;
3732 
3733 		em = list_first_entry(&fs_info->pinned_chunks,
3734 				      struct extent_map, list);
3735 		list_del_init(&em->list);
3736 		free_extent_map(em);
3737 	}
3738 	unlock_chunks(root);
3739 }
3740 
3741 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3742 			  int atomic)
3743 {
3744 	int ret;
3745 	struct inode *btree_inode = buf->pages[0]->mapping->host;
3746 
3747 	ret = extent_buffer_uptodate(buf);
3748 	if (!ret)
3749 		return ret;
3750 
3751 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3752 				    parent_transid, atomic);
3753 	if (ret == -EAGAIN)
3754 		return ret;
3755 	return !ret;
3756 }
3757 
3758 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3759 {
3760 	return set_extent_buffer_uptodate(buf);
3761 }
3762 
3763 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3764 {
3765 	struct btrfs_root *root;
3766 	u64 transid = btrfs_header_generation(buf);
3767 	int was_dirty;
3768 
3769 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3770 	/*
3771 	 * This is a fast path so only do this check if we have sanity tests
3772 	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3773 	 * outside of the sanity tests.
3774 	 */
3775 	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3776 		return;
3777 #endif
3778 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3779 	btrfs_assert_tree_locked(buf);
3780 	if (transid != root->fs_info->generation)
3781 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3782 		       "found %llu running %llu\n",
3783 			buf->start, transid, root->fs_info->generation);
3784 	was_dirty = set_extent_buffer_dirty(buf);
3785 	if (!was_dirty)
3786 		__percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3787 				     buf->len,
3788 				     root->fs_info->dirty_metadata_batch);
3789 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3790 	if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3791 		btrfs_print_leaf(root, buf);
3792 		ASSERT(0);
3793 	}
3794 #endif
3795 }
3796 
3797 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3798 					int flush_delayed)
3799 {
3800 	/*
3801 	 * looks as though older kernels can get into trouble with
3802 	 * this code, they end up stuck in balance_dirty_pages forever
3803 	 */
3804 	int ret;
3805 
3806 	if (current->flags & PF_MEMALLOC)
3807 		return;
3808 
3809 	if (flush_delayed)
3810 		btrfs_balance_delayed_items(root);
3811 
3812 	ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3813 				     BTRFS_DIRTY_METADATA_THRESH);
3814 	if (ret > 0) {
3815 		balance_dirty_pages_ratelimited(
3816 				   root->fs_info->btree_inode->i_mapping);
3817 	}
3818 	return;
3819 }
3820 
3821 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3822 {
3823 	__btrfs_btree_balance_dirty(root, 1);
3824 }
3825 
3826 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3827 {
3828 	__btrfs_btree_balance_dirty(root, 0);
3829 }
3830 
3831 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3832 {
3833 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3834 	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3835 }
3836 
3837 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3838 			      int read_only)
3839 {
3840 	struct btrfs_super_block *sb = fs_info->super_copy;
3841 	int ret = 0;
3842 
3843 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3844 		printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
3845 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
3846 		ret = -EINVAL;
3847 	}
3848 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3849 		printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
3850 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
3851 		ret = -EINVAL;
3852 	}
3853 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3854 		printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
3855 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
3856 		ret = -EINVAL;
3857 	}
3858 
3859 	/*
3860 	 * The common minimum, we don't know if we can trust the nodesize/sectorsize
3861 	 * items yet, they'll be verified later. Issue just a warning.
3862 	 */
3863 	if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
3864 		printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
3865 				btrfs_super_root(sb));
3866 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
3867 		printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
3868 				btrfs_super_chunk_root(sb));
3869 	if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
3870 		printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
3871 				btrfs_super_log_root(sb));
3872 
3873 	/*
3874 	 * Check the lower bound, the alignment and other constraints are
3875 	 * checked later.
3876 	 */
3877 	if (btrfs_super_nodesize(sb) < 4096) {
3878 		printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
3879 				btrfs_super_nodesize(sb));
3880 		ret = -EINVAL;
3881 	}
3882 	if (btrfs_super_sectorsize(sb) < 4096) {
3883 		printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
3884 				btrfs_super_sectorsize(sb));
3885 		ret = -EINVAL;
3886 	}
3887 
3888 	if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
3889 		printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
3890 				fs_info->fsid, sb->dev_item.fsid);
3891 		ret = -EINVAL;
3892 	}
3893 
3894 	/*
3895 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
3896 	 * done later
3897 	 */
3898 	if (btrfs_super_num_devices(sb) > (1UL << 31))
3899 		printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
3900 				btrfs_super_num_devices(sb));
3901 	if (btrfs_super_num_devices(sb) == 0) {
3902 		printk(KERN_ERR "BTRFS: number of devices is 0\n");
3903 		ret = -EINVAL;
3904 	}
3905 
3906 	if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
3907 		printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
3908 				btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
3909 		ret = -EINVAL;
3910 	}
3911 
3912 	/*
3913 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
3914 	 * and one chunk
3915 	 */
3916 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
3917 		printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
3918 				btrfs_super_sys_array_size(sb),
3919 				BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
3920 		ret = -EINVAL;
3921 	}
3922 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
3923 			+ sizeof(struct btrfs_chunk)) {
3924 		printk(KERN_ERR "BTRFS: system chunk array too small %u < %lu\n",
3925 				btrfs_super_sys_array_size(sb),
3926 				sizeof(struct btrfs_disk_key)
3927 				+ sizeof(struct btrfs_chunk));
3928 		ret = -EINVAL;
3929 	}
3930 
3931 	/*
3932 	 * The generation is a global counter, we'll trust it more than the others
3933 	 * but it's still possible that it's the one that's wrong.
3934 	 */
3935 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
3936 		printk(KERN_WARNING
3937 			"BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
3938 			btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
3939 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
3940 	    && btrfs_super_cache_generation(sb) != (u64)-1)
3941 		printk(KERN_WARNING
3942 			"BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
3943 			btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
3944 
3945 	return ret;
3946 }
3947 
3948 static void btrfs_error_commit_super(struct btrfs_root *root)
3949 {
3950 	mutex_lock(&root->fs_info->cleaner_mutex);
3951 	btrfs_run_delayed_iputs(root);
3952 	mutex_unlock(&root->fs_info->cleaner_mutex);
3953 
3954 	down_write(&root->fs_info->cleanup_work_sem);
3955 	up_write(&root->fs_info->cleanup_work_sem);
3956 
3957 	/* cleanup FS via transaction */
3958 	btrfs_cleanup_transaction(root);
3959 }
3960 
3961 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3962 {
3963 	struct btrfs_ordered_extent *ordered;
3964 
3965 	spin_lock(&root->ordered_extent_lock);
3966 	/*
3967 	 * This will just short circuit the ordered completion stuff which will
3968 	 * make sure the ordered extent gets properly cleaned up.
3969 	 */
3970 	list_for_each_entry(ordered, &root->ordered_extents,
3971 			    root_extent_list)
3972 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3973 	spin_unlock(&root->ordered_extent_lock);
3974 }
3975 
3976 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3977 {
3978 	struct btrfs_root *root;
3979 	struct list_head splice;
3980 
3981 	INIT_LIST_HEAD(&splice);
3982 
3983 	spin_lock(&fs_info->ordered_root_lock);
3984 	list_splice_init(&fs_info->ordered_roots, &splice);
3985 	while (!list_empty(&splice)) {
3986 		root = list_first_entry(&splice, struct btrfs_root,
3987 					ordered_root);
3988 		list_move_tail(&root->ordered_root,
3989 			       &fs_info->ordered_roots);
3990 
3991 		spin_unlock(&fs_info->ordered_root_lock);
3992 		btrfs_destroy_ordered_extents(root);
3993 
3994 		cond_resched();
3995 		spin_lock(&fs_info->ordered_root_lock);
3996 	}
3997 	spin_unlock(&fs_info->ordered_root_lock);
3998 }
3999 
4000 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4001 				      struct btrfs_root *root)
4002 {
4003 	struct rb_node *node;
4004 	struct btrfs_delayed_ref_root *delayed_refs;
4005 	struct btrfs_delayed_ref_node *ref;
4006 	int ret = 0;
4007 
4008 	delayed_refs = &trans->delayed_refs;
4009 
4010 	spin_lock(&delayed_refs->lock);
4011 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4012 		spin_unlock(&delayed_refs->lock);
4013 		btrfs_info(root->fs_info, "delayed_refs has NO entry");
4014 		return ret;
4015 	}
4016 
4017 	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4018 		struct btrfs_delayed_ref_head *head;
4019 		bool pin_bytes = false;
4020 
4021 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4022 				href_node);
4023 		if (!mutex_trylock(&head->mutex)) {
4024 			atomic_inc(&head->node.refs);
4025 			spin_unlock(&delayed_refs->lock);
4026 
4027 			mutex_lock(&head->mutex);
4028 			mutex_unlock(&head->mutex);
4029 			btrfs_put_delayed_ref(&head->node);
4030 			spin_lock(&delayed_refs->lock);
4031 			continue;
4032 		}
4033 		spin_lock(&head->lock);
4034 		while ((node = rb_first(&head->ref_root)) != NULL) {
4035 			ref = rb_entry(node, struct btrfs_delayed_ref_node,
4036 				       rb_node);
4037 			ref->in_tree = 0;
4038 			rb_erase(&ref->rb_node, &head->ref_root);
4039 			atomic_dec(&delayed_refs->num_entries);
4040 			btrfs_put_delayed_ref(ref);
4041 		}
4042 		if (head->must_insert_reserved)
4043 			pin_bytes = true;
4044 		btrfs_free_delayed_extent_op(head->extent_op);
4045 		delayed_refs->num_heads--;
4046 		if (head->processing == 0)
4047 			delayed_refs->num_heads_ready--;
4048 		atomic_dec(&delayed_refs->num_entries);
4049 		head->node.in_tree = 0;
4050 		rb_erase(&head->href_node, &delayed_refs->href_root);
4051 		spin_unlock(&head->lock);
4052 		spin_unlock(&delayed_refs->lock);
4053 		mutex_unlock(&head->mutex);
4054 
4055 		if (pin_bytes)
4056 			btrfs_pin_extent(root, head->node.bytenr,
4057 					 head->node.num_bytes, 1);
4058 		btrfs_put_delayed_ref(&head->node);
4059 		cond_resched();
4060 		spin_lock(&delayed_refs->lock);
4061 	}
4062 
4063 	spin_unlock(&delayed_refs->lock);
4064 
4065 	return ret;
4066 }
4067 
4068 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4069 {
4070 	struct btrfs_inode *btrfs_inode;
4071 	struct list_head splice;
4072 
4073 	INIT_LIST_HEAD(&splice);
4074 
4075 	spin_lock(&root->delalloc_lock);
4076 	list_splice_init(&root->delalloc_inodes, &splice);
4077 
4078 	while (!list_empty(&splice)) {
4079 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4080 					       delalloc_inodes);
4081 
4082 		list_del_init(&btrfs_inode->delalloc_inodes);
4083 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4084 			  &btrfs_inode->runtime_flags);
4085 		spin_unlock(&root->delalloc_lock);
4086 
4087 		btrfs_invalidate_inodes(btrfs_inode->root);
4088 
4089 		spin_lock(&root->delalloc_lock);
4090 	}
4091 
4092 	spin_unlock(&root->delalloc_lock);
4093 }
4094 
4095 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4096 {
4097 	struct btrfs_root *root;
4098 	struct list_head splice;
4099 
4100 	INIT_LIST_HEAD(&splice);
4101 
4102 	spin_lock(&fs_info->delalloc_root_lock);
4103 	list_splice_init(&fs_info->delalloc_roots, &splice);
4104 	while (!list_empty(&splice)) {
4105 		root = list_first_entry(&splice, struct btrfs_root,
4106 					 delalloc_root);
4107 		list_del_init(&root->delalloc_root);
4108 		root = btrfs_grab_fs_root(root);
4109 		BUG_ON(!root);
4110 		spin_unlock(&fs_info->delalloc_root_lock);
4111 
4112 		btrfs_destroy_delalloc_inodes(root);
4113 		btrfs_put_fs_root(root);
4114 
4115 		spin_lock(&fs_info->delalloc_root_lock);
4116 	}
4117 	spin_unlock(&fs_info->delalloc_root_lock);
4118 }
4119 
4120 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4121 					struct extent_io_tree *dirty_pages,
4122 					int mark)
4123 {
4124 	int ret;
4125 	struct extent_buffer *eb;
4126 	u64 start = 0;
4127 	u64 end;
4128 
4129 	while (1) {
4130 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4131 					    mark, NULL);
4132 		if (ret)
4133 			break;
4134 
4135 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4136 		while (start <= end) {
4137 			eb = btrfs_find_tree_block(root, start);
4138 			start += root->nodesize;
4139 			if (!eb)
4140 				continue;
4141 			wait_on_extent_buffer_writeback(eb);
4142 
4143 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4144 					       &eb->bflags))
4145 				clear_extent_buffer_dirty(eb);
4146 			free_extent_buffer_stale(eb);
4147 		}
4148 	}
4149 
4150 	return ret;
4151 }
4152 
4153 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4154 				       struct extent_io_tree *pinned_extents)
4155 {
4156 	struct extent_io_tree *unpin;
4157 	u64 start;
4158 	u64 end;
4159 	int ret;
4160 	bool loop = true;
4161 
4162 	unpin = pinned_extents;
4163 again:
4164 	while (1) {
4165 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4166 					    EXTENT_DIRTY, NULL);
4167 		if (ret)
4168 			break;
4169 
4170 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
4171 		btrfs_error_unpin_extent_range(root, start, end);
4172 		cond_resched();
4173 	}
4174 
4175 	if (loop) {
4176 		if (unpin == &root->fs_info->freed_extents[0])
4177 			unpin = &root->fs_info->freed_extents[1];
4178 		else
4179 			unpin = &root->fs_info->freed_extents[0];
4180 		loop = false;
4181 		goto again;
4182 	}
4183 
4184 	return 0;
4185 }
4186 
4187 static void btrfs_free_pending_ordered(struct btrfs_transaction *cur_trans,
4188 				       struct btrfs_fs_info *fs_info)
4189 {
4190 	struct btrfs_ordered_extent *ordered;
4191 
4192 	spin_lock(&fs_info->trans_lock);
4193 	while (!list_empty(&cur_trans->pending_ordered)) {
4194 		ordered = list_first_entry(&cur_trans->pending_ordered,
4195 					   struct btrfs_ordered_extent,
4196 					   trans_list);
4197 		list_del_init(&ordered->trans_list);
4198 		spin_unlock(&fs_info->trans_lock);
4199 
4200 		btrfs_put_ordered_extent(ordered);
4201 		spin_lock(&fs_info->trans_lock);
4202 	}
4203 	spin_unlock(&fs_info->trans_lock);
4204 }
4205 
4206 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4207 				   struct btrfs_root *root)
4208 {
4209 	btrfs_destroy_delayed_refs(cur_trans, root);
4210 
4211 	cur_trans->state = TRANS_STATE_COMMIT_START;
4212 	wake_up(&root->fs_info->transaction_blocked_wait);
4213 
4214 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4215 	wake_up(&root->fs_info->transaction_wait);
4216 
4217 	btrfs_free_pending_ordered(cur_trans, root->fs_info);
4218 	btrfs_destroy_delayed_inodes(root);
4219 	btrfs_assert_delayed_root_empty(root);
4220 
4221 	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4222 				     EXTENT_DIRTY);
4223 	btrfs_destroy_pinned_extent(root,
4224 				    root->fs_info->pinned_extents);
4225 
4226 	cur_trans->state =TRANS_STATE_COMPLETED;
4227 	wake_up(&cur_trans->commit_wait);
4228 
4229 	/*
4230 	memset(cur_trans, 0, sizeof(*cur_trans));
4231 	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4232 	*/
4233 }
4234 
4235 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4236 {
4237 	struct btrfs_transaction *t;
4238 
4239 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
4240 
4241 	spin_lock(&root->fs_info->trans_lock);
4242 	while (!list_empty(&root->fs_info->trans_list)) {
4243 		t = list_first_entry(&root->fs_info->trans_list,
4244 				     struct btrfs_transaction, list);
4245 		if (t->state >= TRANS_STATE_COMMIT_START) {
4246 			atomic_inc(&t->use_count);
4247 			spin_unlock(&root->fs_info->trans_lock);
4248 			btrfs_wait_for_commit(root, t->transid);
4249 			btrfs_put_transaction(t);
4250 			spin_lock(&root->fs_info->trans_lock);
4251 			continue;
4252 		}
4253 		if (t == root->fs_info->running_transaction) {
4254 			t->state = TRANS_STATE_COMMIT_DOING;
4255 			spin_unlock(&root->fs_info->trans_lock);
4256 			/*
4257 			 * We wait for 0 num_writers since we don't hold a trans
4258 			 * handle open currently for this transaction.
4259 			 */
4260 			wait_event(t->writer_wait,
4261 				   atomic_read(&t->num_writers) == 0);
4262 		} else {
4263 			spin_unlock(&root->fs_info->trans_lock);
4264 		}
4265 		btrfs_cleanup_one_transaction(t, root);
4266 
4267 		spin_lock(&root->fs_info->trans_lock);
4268 		if (t == root->fs_info->running_transaction)
4269 			root->fs_info->running_transaction = NULL;
4270 		list_del_init(&t->list);
4271 		spin_unlock(&root->fs_info->trans_lock);
4272 
4273 		btrfs_put_transaction(t);
4274 		trace_btrfs_transaction_commit(root);
4275 		spin_lock(&root->fs_info->trans_lock);
4276 	}
4277 	spin_unlock(&root->fs_info->trans_lock);
4278 	btrfs_destroy_all_ordered_extents(root->fs_info);
4279 	btrfs_destroy_delayed_inodes(root);
4280 	btrfs_assert_delayed_root_empty(root);
4281 	btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4282 	btrfs_destroy_all_delalloc_inodes(root->fs_info);
4283 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4284 
4285 	return 0;
4286 }
4287 
4288 static struct extent_io_ops btree_extent_io_ops = {
4289 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4290 	.readpage_io_failed_hook = btree_io_failed_hook,
4291 	.submit_bio_hook = btree_submit_bio_hook,
4292 	/* note we're sharing with inode.c for the merge bio hook */
4293 	.merge_bio_hook = btrfs_merge_bio_hook,
4294 };
4295