xref: /openbmc/linux/fs/btrfs/disk-io.c (revision 3d3337de)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56 
57 static const struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61 				    int read_only);
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 				      struct btrfs_root *root);
65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
66 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67 					struct extent_io_tree *dirty_pages,
68 					int mark);
69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70 				       struct extent_io_tree *pinned_extents);
71 static int btrfs_cleanup_transaction(struct btrfs_root *root);
72 static void btrfs_error_commit_super(struct btrfs_root *root);
73 
74 /*
75  * btrfs_end_io_wq structs are used to do processing in task context when an IO
76  * is complete.  This is used during reads to verify checksums, and it is used
77  * by writes to insert metadata for new file extents after IO is complete.
78  */
79 struct btrfs_end_io_wq {
80 	struct bio *bio;
81 	bio_end_io_t *end_io;
82 	void *private;
83 	struct btrfs_fs_info *info;
84 	int error;
85 	enum btrfs_wq_endio_type metadata;
86 	struct list_head list;
87 	struct btrfs_work work;
88 };
89 
90 static struct kmem_cache *btrfs_end_io_wq_cache;
91 
92 int __init btrfs_end_io_wq_init(void)
93 {
94 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
95 					sizeof(struct btrfs_end_io_wq),
96 					0,
97 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
98 					NULL);
99 	if (!btrfs_end_io_wq_cache)
100 		return -ENOMEM;
101 	return 0;
102 }
103 
104 void btrfs_end_io_wq_exit(void)
105 {
106 	if (btrfs_end_io_wq_cache)
107 		kmem_cache_destroy(btrfs_end_io_wq_cache);
108 }
109 
110 /*
111  * async submit bios are used to offload expensive checksumming
112  * onto the worker threads.  They checksum file and metadata bios
113  * just before they are sent down the IO stack.
114  */
115 struct async_submit_bio {
116 	struct inode *inode;
117 	struct bio *bio;
118 	struct list_head list;
119 	extent_submit_bio_hook_t *submit_bio_start;
120 	extent_submit_bio_hook_t *submit_bio_done;
121 	int rw;
122 	int mirror_num;
123 	unsigned long bio_flags;
124 	/*
125 	 * bio_offset is optional, can be used if the pages in the bio
126 	 * can't tell us where in the file the bio should go
127 	 */
128 	u64 bio_offset;
129 	struct btrfs_work work;
130 	int error;
131 };
132 
133 /*
134  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
135  * eb, the lockdep key is determined by the btrfs_root it belongs to and
136  * the level the eb occupies in the tree.
137  *
138  * Different roots are used for different purposes and may nest inside each
139  * other and they require separate keysets.  As lockdep keys should be
140  * static, assign keysets according to the purpose of the root as indicated
141  * by btrfs_root->objectid.  This ensures that all special purpose roots
142  * have separate keysets.
143  *
144  * Lock-nesting across peer nodes is always done with the immediate parent
145  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
146  * subclass to avoid triggering lockdep warning in such cases.
147  *
148  * The key is set by the readpage_end_io_hook after the buffer has passed
149  * csum validation but before the pages are unlocked.  It is also set by
150  * btrfs_init_new_buffer on freshly allocated blocks.
151  *
152  * We also add a check to make sure the highest level of the tree is the
153  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
154  * needs update as well.
155  */
156 #ifdef CONFIG_DEBUG_LOCK_ALLOC
157 # if BTRFS_MAX_LEVEL != 8
158 #  error
159 # endif
160 
161 static struct btrfs_lockdep_keyset {
162 	u64			id;		/* root objectid */
163 	const char		*name_stem;	/* lock name stem */
164 	char			names[BTRFS_MAX_LEVEL + 1][20];
165 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
166 } btrfs_lockdep_keysets[] = {
167 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
168 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
169 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
170 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
171 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
172 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
173 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
174 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
175 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
176 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
177 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
178 	{ .id = 0,				.name_stem = "tree"	},
179 };
180 
181 void __init btrfs_init_lockdep(void)
182 {
183 	int i, j;
184 
185 	/* initialize lockdep class names */
186 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
187 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
188 
189 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
190 			snprintf(ks->names[j], sizeof(ks->names[j]),
191 				 "btrfs-%s-%02d", ks->name_stem, j);
192 	}
193 }
194 
195 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
196 				    int level)
197 {
198 	struct btrfs_lockdep_keyset *ks;
199 
200 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
201 
202 	/* find the matching keyset, id 0 is the default entry */
203 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
204 		if (ks->id == objectid)
205 			break;
206 
207 	lockdep_set_class_and_name(&eb->lock,
208 				   &ks->keys[level], ks->names[level]);
209 }
210 
211 #endif
212 
213 /*
214  * extents on the btree inode are pretty simple, there's one extent
215  * that covers the entire device
216  */
217 static struct extent_map *btree_get_extent(struct inode *inode,
218 		struct page *page, size_t pg_offset, u64 start, u64 len,
219 		int create)
220 {
221 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
222 	struct extent_map *em;
223 	int ret;
224 
225 	read_lock(&em_tree->lock);
226 	em = lookup_extent_mapping(em_tree, start, len);
227 	if (em) {
228 		em->bdev =
229 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
230 		read_unlock(&em_tree->lock);
231 		goto out;
232 	}
233 	read_unlock(&em_tree->lock);
234 
235 	em = alloc_extent_map();
236 	if (!em) {
237 		em = ERR_PTR(-ENOMEM);
238 		goto out;
239 	}
240 	em->start = 0;
241 	em->len = (u64)-1;
242 	em->block_len = (u64)-1;
243 	em->block_start = 0;
244 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
245 
246 	write_lock(&em_tree->lock);
247 	ret = add_extent_mapping(em_tree, em, 0);
248 	if (ret == -EEXIST) {
249 		free_extent_map(em);
250 		em = lookup_extent_mapping(em_tree, start, len);
251 		if (!em)
252 			em = ERR_PTR(-EIO);
253 	} else if (ret) {
254 		free_extent_map(em);
255 		em = ERR_PTR(ret);
256 	}
257 	write_unlock(&em_tree->lock);
258 
259 out:
260 	return em;
261 }
262 
263 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
264 {
265 	return btrfs_crc32c(seed, data, len);
266 }
267 
268 void btrfs_csum_final(u32 crc, char *result)
269 {
270 	put_unaligned_le32(~crc, result);
271 }
272 
273 /*
274  * compute the csum for a btree block, and either verify it or write it
275  * into the csum field of the block.
276  */
277 static int csum_tree_block(struct btrfs_fs_info *fs_info,
278 			   struct extent_buffer *buf,
279 			   int verify)
280 {
281 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
282 	char *result = NULL;
283 	unsigned long len;
284 	unsigned long cur_len;
285 	unsigned long offset = BTRFS_CSUM_SIZE;
286 	char *kaddr;
287 	unsigned long map_start;
288 	unsigned long map_len;
289 	int err;
290 	u32 crc = ~(u32)0;
291 	unsigned long inline_result;
292 
293 	len = buf->len - offset;
294 	while (len > 0) {
295 		err = map_private_extent_buffer(buf, offset, 32,
296 					&kaddr, &map_start, &map_len);
297 		if (err)
298 			return 1;
299 		cur_len = min(len, map_len - (offset - map_start));
300 		crc = btrfs_csum_data(kaddr + offset - map_start,
301 				      crc, cur_len);
302 		len -= cur_len;
303 		offset += cur_len;
304 	}
305 	if (csum_size > sizeof(inline_result)) {
306 		result = kzalloc(csum_size, GFP_NOFS);
307 		if (!result)
308 			return 1;
309 	} else {
310 		result = (char *)&inline_result;
311 	}
312 
313 	btrfs_csum_final(crc, result);
314 
315 	if (verify) {
316 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
317 			u32 val;
318 			u32 found = 0;
319 			memcpy(&found, result, csum_size);
320 
321 			read_extent_buffer(buf, &val, 0, csum_size);
322 			printk_ratelimited(KERN_WARNING
323 				"BTRFS: %s checksum verify failed on %llu wanted %X found %X "
324 				"level %d\n",
325 				fs_info->sb->s_id, buf->start,
326 				val, found, btrfs_header_level(buf));
327 			if (result != (char *)&inline_result)
328 				kfree(result);
329 			return 1;
330 		}
331 	} else {
332 		write_extent_buffer(buf, result, 0, csum_size);
333 	}
334 	if (result != (char *)&inline_result)
335 		kfree(result);
336 	return 0;
337 }
338 
339 /*
340  * we can't consider a given block up to date unless the transid of the
341  * block matches the transid in the parent node's pointer.  This is how we
342  * detect blocks that either didn't get written at all or got written
343  * in the wrong place.
344  */
345 static int verify_parent_transid(struct extent_io_tree *io_tree,
346 				 struct extent_buffer *eb, u64 parent_transid,
347 				 int atomic)
348 {
349 	struct extent_state *cached_state = NULL;
350 	int ret;
351 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
352 
353 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
354 		return 0;
355 
356 	if (atomic)
357 		return -EAGAIN;
358 
359 	if (need_lock) {
360 		btrfs_tree_read_lock(eb);
361 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
362 	}
363 
364 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
365 			 0, &cached_state);
366 	if (extent_buffer_uptodate(eb) &&
367 	    btrfs_header_generation(eb) == parent_transid) {
368 		ret = 0;
369 		goto out;
370 	}
371 	printk_ratelimited(KERN_ERR
372 	    "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
373 			eb->fs_info->sb->s_id, eb->start,
374 			parent_transid, btrfs_header_generation(eb));
375 	ret = 1;
376 
377 	/*
378 	 * Things reading via commit roots that don't have normal protection,
379 	 * like send, can have a really old block in cache that may point at a
380 	 * block that has been free'd and re-allocated.  So don't clear uptodate
381 	 * if we find an eb that is under IO (dirty/writeback) because we could
382 	 * end up reading in the stale data and then writing it back out and
383 	 * making everybody very sad.
384 	 */
385 	if (!extent_buffer_under_io(eb))
386 		clear_extent_buffer_uptodate(eb);
387 out:
388 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
389 			     &cached_state, GFP_NOFS);
390 	if (need_lock)
391 		btrfs_tree_read_unlock_blocking(eb);
392 	return ret;
393 }
394 
395 /*
396  * Return 0 if the superblock checksum type matches the checksum value of that
397  * algorithm. Pass the raw disk superblock data.
398  */
399 static int btrfs_check_super_csum(char *raw_disk_sb)
400 {
401 	struct btrfs_super_block *disk_sb =
402 		(struct btrfs_super_block *)raw_disk_sb;
403 	u16 csum_type = btrfs_super_csum_type(disk_sb);
404 	int ret = 0;
405 
406 	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
407 		u32 crc = ~(u32)0;
408 		const int csum_size = sizeof(crc);
409 		char result[csum_size];
410 
411 		/*
412 		 * The super_block structure does not span the whole
413 		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
414 		 * is filled with zeros and is included in the checkum.
415 		 */
416 		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
417 				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
418 		btrfs_csum_final(crc, result);
419 
420 		if (memcmp(raw_disk_sb, result, csum_size))
421 			ret = 1;
422 	}
423 
424 	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
425 		printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
426 				csum_type);
427 		ret = 1;
428 	}
429 
430 	return ret;
431 }
432 
433 /*
434  * helper to read a given tree block, doing retries as required when
435  * the checksums don't match and we have alternate mirrors to try.
436  */
437 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
438 					  struct extent_buffer *eb,
439 					  u64 start, u64 parent_transid)
440 {
441 	struct extent_io_tree *io_tree;
442 	int failed = 0;
443 	int ret;
444 	int num_copies = 0;
445 	int mirror_num = 0;
446 	int failed_mirror = 0;
447 
448 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
449 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
450 	while (1) {
451 		ret = read_extent_buffer_pages(io_tree, eb, start,
452 					       WAIT_COMPLETE,
453 					       btree_get_extent, mirror_num);
454 		if (!ret) {
455 			if (!verify_parent_transid(io_tree, eb,
456 						   parent_transid, 0))
457 				break;
458 			else
459 				ret = -EIO;
460 		}
461 
462 		/*
463 		 * This buffer's crc is fine, but its contents are corrupted, so
464 		 * there is no reason to read the other copies, they won't be
465 		 * any less wrong.
466 		 */
467 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
468 			break;
469 
470 		num_copies = btrfs_num_copies(root->fs_info,
471 					      eb->start, eb->len);
472 		if (num_copies == 1)
473 			break;
474 
475 		if (!failed_mirror) {
476 			failed = 1;
477 			failed_mirror = eb->read_mirror;
478 		}
479 
480 		mirror_num++;
481 		if (mirror_num == failed_mirror)
482 			mirror_num++;
483 
484 		if (mirror_num > num_copies)
485 			break;
486 	}
487 
488 	if (failed && !ret && failed_mirror)
489 		repair_eb_io_failure(root, eb, failed_mirror);
490 
491 	return ret;
492 }
493 
494 /*
495  * checksum a dirty tree block before IO.  This has extra checks to make sure
496  * we only fill in the checksum field in the first page of a multi-page block
497  */
498 
499 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
500 {
501 	u64 start = page_offset(page);
502 	u64 found_start;
503 	struct extent_buffer *eb;
504 
505 	eb = (struct extent_buffer *)page->private;
506 	if (page != eb->pages[0])
507 		return 0;
508 	found_start = btrfs_header_bytenr(eb);
509 	if (WARN_ON(found_start != start || !PageUptodate(page)))
510 		return 0;
511 	csum_tree_block(fs_info, eb, 0);
512 	return 0;
513 }
514 
515 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
516 				 struct extent_buffer *eb)
517 {
518 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
519 	u8 fsid[BTRFS_UUID_SIZE];
520 	int ret = 1;
521 
522 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
523 	while (fs_devices) {
524 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
525 			ret = 0;
526 			break;
527 		}
528 		fs_devices = fs_devices->seed;
529 	}
530 	return ret;
531 }
532 
533 #define CORRUPT(reason, eb, root, slot)				\
534 	btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"	\
535 		   "root=%llu, slot=%d", reason,			\
536 	       btrfs_header_bytenr(eb),	root->objectid, slot)
537 
538 static noinline int check_leaf(struct btrfs_root *root,
539 			       struct extent_buffer *leaf)
540 {
541 	struct btrfs_key key;
542 	struct btrfs_key leaf_key;
543 	u32 nritems = btrfs_header_nritems(leaf);
544 	int slot;
545 
546 	if (nritems == 0)
547 		return 0;
548 
549 	/* Check the 0 item */
550 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
551 	    BTRFS_LEAF_DATA_SIZE(root)) {
552 		CORRUPT("invalid item offset size pair", leaf, root, 0);
553 		return -EIO;
554 	}
555 
556 	/*
557 	 * Check to make sure each items keys are in the correct order and their
558 	 * offsets make sense.  We only have to loop through nritems-1 because
559 	 * we check the current slot against the next slot, which verifies the
560 	 * next slot's offset+size makes sense and that the current's slot
561 	 * offset is correct.
562 	 */
563 	for (slot = 0; slot < nritems - 1; slot++) {
564 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
565 		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
566 
567 		/* Make sure the keys are in the right order */
568 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
569 			CORRUPT("bad key order", leaf, root, slot);
570 			return -EIO;
571 		}
572 
573 		/*
574 		 * Make sure the offset and ends are right, remember that the
575 		 * item data starts at the end of the leaf and grows towards the
576 		 * front.
577 		 */
578 		if (btrfs_item_offset_nr(leaf, slot) !=
579 			btrfs_item_end_nr(leaf, slot + 1)) {
580 			CORRUPT("slot offset bad", leaf, root, slot);
581 			return -EIO;
582 		}
583 
584 		/*
585 		 * Check to make sure that we don't point outside of the leaf,
586 		 * just incase all the items are consistent to eachother, but
587 		 * all point outside of the leaf.
588 		 */
589 		if (btrfs_item_end_nr(leaf, slot) >
590 		    BTRFS_LEAF_DATA_SIZE(root)) {
591 			CORRUPT("slot end outside of leaf", leaf, root, slot);
592 			return -EIO;
593 		}
594 	}
595 
596 	return 0;
597 }
598 
599 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
600 				      u64 phy_offset, struct page *page,
601 				      u64 start, u64 end, int mirror)
602 {
603 	u64 found_start;
604 	int found_level;
605 	struct extent_buffer *eb;
606 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
607 	int ret = 0;
608 	int reads_done;
609 
610 	if (!page->private)
611 		goto out;
612 
613 	eb = (struct extent_buffer *)page->private;
614 
615 	/* the pending IO might have been the only thing that kept this buffer
616 	 * in memory.  Make sure we have a ref for all this other checks
617 	 */
618 	extent_buffer_get(eb);
619 
620 	reads_done = atomic_dec_and_test(&eb->io_pages);
621 	if (!reads_done)
622 		goto err;
623 
624 	eb->read_mirror = mirror;
625 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
626 		ret = -EIO;
627 		goto err;
628 	}
629 
630 	found_start = btrfs_header_bytenr(eb);
631 	if (found_start != eb->start) {
632 		printk_ratelimited(KERN_ERR "BTRFS (device %s): bad tree block start "
633 			       "%llu %llu\n",
634 			       eb->fs_info->sb->s_id, found_start, eb->start);
635 		ret = -EIO;
636 		goto err;
637 	}
638 	if (check_tree_block_fsid(root->fs_info, eb)) {
639 		printk_ratelimited(KERN_ERR "BTRFS (device %s): bad fsid on block %llu\n",
640 			       eb->fs_info->sb->s_id, eb->start);
641 		ret = -EIO;
642 		goto err;
643 	}
644 	found_level = btrfs_header_level(eb);
645 	if (found_level >= BTRFS_MAX_LEVEL) {
646 		btrfs_err(root->fs_info, "bad tree block level %d",
647 			   (int)btrfs_header_level(eb));
648 		ret = -EIO;
649 		goto err;
650 	}
651 
652 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
653 				       eb, found_level);
654 
655 	ret = csum_tree_block(root->fs_info, eb, 1);
656 	if (ret) {
657 		ret = -EIO;
658 		goto err;
659 	}
660 
661 	/*
662 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
663 	 * that we don't try and read the other copies of this block, just
664 	 * return -EIO.
665 	 */
666 	if (found_level == 0 && check_leaf(root, eb)) {
667 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
668 		ret = -EIO;
669 	}
670 
671 	if (!ret)
672 		set_extent_buffer_uptodate(eb);
673 err:
674 	if (reads_done &&
675 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
676 		btree_readahead_hook(root, eb, eb->start, ret);
677 
678 	if (ret) {
679 		/*
680 		 * our io error hook is going to dec the io pages
681 		 * again, we have to make sure it has something
682 		 * to decrement
683 		 */
684 		atomic_inc(&eb->io_pages);
685 		clear_extent_buffer_uptodate(eb);
686 	}
687 	free_extent_buffer(eb);
688 out:
689 	return ret;
690 }
691 
692 static int btree_io_failed_hook(struct page *page, int failed_mirror)
693 {
694 	struct extent_buffer *eb;
695 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
696 
697 	eb = (struct extent_buffer *)page->private;
698 	set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
699 	eb->read_mirror = failed_mirror;
700 	atomic_dec(&eb->io_pages);
701 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
702 		btree_readahead_hook(root, eb, eb->start, -EIO);
703 	return -EIO;	/* we fixed nothing */
704 }
705 
706 static void end_workqueue_bio(struct bio *bio, int err)
707 {
708 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
709 	struct btrfs_fs_info *fs_info;
710 	struct btrfs_workqueue *wq;
711 	btrfs_work_func_t func;
712 
713 	fs_info = end_io_wq->info;
714 	end_io_wq->error = err;
715 
716 	if (bio->bi_rw & REQ_WRITE) {
717 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
718 			wq = fs_info->endio_meta_write_workers;
719 			func = btrfs_endio_meta_write_helper;
720 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
721 			wq = fs_info->endio_freespace_worker;
722 			func = btrfs_freespace_write_helper;
723 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
724 			wq = fs_info->endio_raid56_workers;
725 			func = btrfs_endio_raid56_helper;
726 		} else {
727 			wq = fs_info->endio_write_workers;
728 			func = btrfs_endio_write_helper;
729 		}
730 	} else {
731 		if (unlikely(end_io_wq->metadata ==
732 			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
733 			wq = fs_info->endio_repair_workers;
734 			func = btrfs_endio_repair_helper;
735 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
736 			wq = fs_info->endio_raid56_workers;
737 			func = btrfs_endio_raid56_helper;
738 		} else if (end_io_wq->metadata) {
739 			wq = fs_info->endio_meta_workers;
740 			func = btrfs_endio_meta_helper;
741 		} else {
742 			wq = fs_info->endio_workers;
743 			func = btrfs_endio_helper;
744 		}
745 	}
746 
747 	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
748 	btrfs_queue_work(wq, &end_io_wq->work);
749 }
750 
751 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
752 			enum btrfs_wq_endio_type metadata)
753 {
754 	struct btrfs_end_io_wq *end_io_wq;
755 
756 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
757 	if (!end_io_wq)
758 		return -ENOMEM;
759 
760 	end_io_wq->private = bio->bi_private;
761 	end_io_wq->end_io = bio->bi_end_io;
762 	end_io_wq->info = info;
763 	end_io_wq->error = 0;
764 	end_io_wq->bio = bio;
765 	end_io_wq->metadata = metadata;
766 
767 	bio->bi_private = end_io_wq;
768 	bio->bi_end_io = end_workqueue_bio;
769 	return 0;
770 }
771 
772 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
773 {
774 	unsigned long limit = min_t(unsigned long,
775 				    info->thread_pool_size,
776 				    info->fs_devices->open_devices);
777 	return 256 * limit;
778 }
779 
780 static void run_one_async_start(struct btrfs_work *work)
781 {
782 	struct async_submit_bio *async;
783 	int ret;
784 
785 	async = container_of(work, struct  async_submit_bio, work);
786 	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
787 				      async->mirror_num, async->bio_flags,
788 				      async->bio_offset);
789 	if (ret)
790 		async->error = ret;
791 }
792 
793 static void run_one_async_done(struct btrfs_work *work)
794 {
795 	struct btrfs_fs_info *fs_info;
796 	struct async_submit_bio *async;
797 	int limit;
798 
799 	async = container_of(work, struct  async_submit_bio, work);
800 	fs_info = BTRFS_I(async->inode)->root->fs_info;
801 
802 	limit = btrfs_async_submit_limit(fs_info);
803 	limit = limit * 2 / 3;
804 
805 	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
806 	    waitqueue_active(&fs_info->async_submit_wait))
807 		wake_up(&fs_info->async_submit_wait);
808 
809 	/* If an error occured we just want to clean up the bio and move on */
810 	if (async->error) {
811 		bio_endio(async->bio, async->error);
812 		return;
813 	}
814 
815 	async->submit_bio_done(async->inode, async->rw, async->bio,
816 			       async->mirror_num, async->bio_flags,
817 			       async->bio_offset);
818 }
819 
820 static void run_one_async_free(struct btrfs_work *work)
821 {
822 	struct async_submit_bio *async;
823 
824 	async = container_of(work, struct  async_submit_bio, work);
825 	kfree(async);
826 }
827 
828 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
829 			int rw, struct bio *bio, int mirror_num,
830 			unsigned long bio_flags,
831 			u64 bio_offset,
832 			extent_submit_bio_hook_t *submit_bio_start,
833 			extent_submit_bio_hook_t *submit_bio_done)
834 {
835 	struct async_submit_bio *async;
836 
837 	async = kmalloc(sizeof(*async), GFP_NOFS);
838 	if (!async)
839 		return -ENOMEM;
840 
841 	async->inode = inode;
842 	async->rw = rw;
843 	async->bio = bio;
844 	async->mirror_num = mirror_num;
845 	async->submit_bio_start = submit_bio_start;
846 	async->submit_bio_done = submit_bio_done;
847 
848 	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
849 			run_one_async_done, run_one_async_free);
850 
851 	async->bio_flags = bio_flags;
852 	async->bio_offset = bio_offset;
853 
854 	async->error = 0;
855 
856 	atomic_inc(&fs_info->nr_async_submits);
857 
858 	if (rw & REQ_SYNC)
859 		btrfs_set_work_high_priority(&async->work);
860 
861 	btrfs_queue_work(fs_info->workers, &async->work);
862 
863 	while (atomic_read(&fs_info->async_submit_draining) &&
864 	      atomic_read(&fs_info->nr_async_submits)) {
865 		wait_event(fs_info->async_submit_wait,
866 			   (atomic_read(&fs_info->nr_async_submits) == 0));
867 	}
868 
869 	return 0;
870 }
871 
872 static int btree_csum_one_bio(struct bio *bio)
873 {
874 	struct bio_vec *bvec;
875 	struct btrfs_root *root;
876 	int i, ret = 0;
877 
878 	bio_for_each_segment_all(bvec, bio, i) {
879 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
880 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
881 		if (ret)
882 			break;
883 	}
884 
885 	return ret;
886 }
887 
888 static int __btree_submit_bio_start(struct inode *inode, int rw,
889 				    struct bio *bio, int mirror_num,
890 				    unsigned long bio_flags,
891 				    u64 bio_offset)
892 {
893 	/*
894 	 * when we're called for a write, we're already in the async
895 	 * submission context.  Just jump into btrfs_map_bio
896 	 */
897 	return btree_csum_one_bio(bio);
898 }
899 
900 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
901 				 int mirror_num, unsigned long bio_flags,
902 				 u64 bio_offset)
903 {
904 	int ret;
905 
906 	/*
907 	 * when we're called for a write, we're already in the async
908 	 * submission context.  Just jump into btrfs_map_bio
909 	 */
910 	ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
911 	if (ret)
912 		bio_endio(bio, ret);
913 	return ret;
914 }
915 
916 static int check_async_write(struct inode *inode, unsigned long bio_flags)
917 {
918 	if (bio_flags & EXTENT_BIO_TREE_LOG)
919 		return 0;
920 #ifdef CONFIG_X86
921 	if (cpu_has_xmm4_2)
922 		return 0;
923 #endif
924 	return 1;
925 }
926 
927 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
928 				 int mirror_num, unsigned long bio_flags,
929 				 u64 bio_offset)
930 {
931 	int async = check_async_write(inode, bio_flags);
932 	int ret;
933 
934 	if (!(rw & REQ_WRITE)) {
935 		/*
936 		 * called for a read, do the setup so that checksum validation
937 		 * can happen in the async kernel threads
938 		 */
939 		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
940 					  bio, BTRFS_WQ_ENDIO_METADATA);
941 		if (ret)
942 			goto out_w_error;
943 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
944 				    mirror_num, 0);
945 	} else if (!async) {
946 		ret = btree_csum_one_bio(bio);
947 		if (ret)
948 			goto out_w_error;
949 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
950 				    mirror_num, 0);
951 	} else {
952 		/*
953 		 * kthread helpers are used to submit writes so that
954 		 * checksumming can happen in parallel across all CPUs
955 		 */
956 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
957 					  inode, rw, bio, mirror_num, 0,
958 					  bio_offset,
959 					  __btree_submit_bio_start,
960 					  __btree_submit_bio_done);
961 	}
962 
963 	if (ret) {
964 out_w_error:
965 		bio_endio(bio, ret);
966 	}
967 	return ret;
968 }
969 
970 #ifdef CONFIG_MIGRATION
971 static int btree_migratepage(struct address_space *mapping,
972 			struct page *newpage, struct page *page,
973 			enum migrate_mode mode)
974 {
975 	/*
976 	 * we can't safely write a btree page from here,
977 	 * we haven't done the locking hook
978 	 */
979 	if (PageDirty(page))
980 		return -EAGAIN;
981 	/*
982 	 * Buffers may be managed in a filesystem specific way.
983 	 * We must have no buffers or drop them.
984 	 */
985 	if (page_has_private(page) &&
986 	    !try_to_release_page(page, GFP_KERNEL))
987 		return -EAGAIN;
988 	return migrate_page(mapping, newpage, page, mode);
989 }
990 #endif
991 
992 
993 static int btree_writepages(struct address_space *mapping,
994 			    struct writeback_control *wbc)
995 {
996 	struct btrfs_fs_info *fs_info;
997 	int ret;
998 
999 	if (wbc->sync_mode == WB_SYNC_NONE) {
1000 
1001 		if (wbc->for_kupdate)
1002 			return 0;
1003 
1004 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
1005 		/* this is a bit racy, but that's ok */
1006 		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1007 					     BTRFS_DIRTY_METADATA_THRESH);
1008 		if (ret < 0)
1009 			return 0;
1010 	}
1011 	return btree_write_cache_pages(mapping, wbc);
1012 }
1013 
1014 static int btree_readpage(struct file *file, struct page *page)
1015 {
1016 	struct extent_io_tree *tree;
1017 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1018 	return extent_read_full_page(tree, page, btree_get_extent, 0);
1019 }
1020 
1021 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1022 {
1023 	if (PageWriteback(page) || PageDirty(page))
1024 		return 0;
1025 
1026 	return try_release_extent_buffer(page);
1027 }
1028 
1029 static void btree_invalidatepage(struct page *page, unsigned int offset,
1030 				 unsigned int length)
1031 {
1032 	struct extent_io_tree *tree;
1033 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1034 	extent_invalidatepage(tree, page, offset);
1035 	btree_releasepage(page, GFP_NOFS);
1036 	if (PagePrivate(page)) {
1037 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1038 			   "page private not zero on page %llu",
1039 			   (unsigned long long)page_offset(page));
1040 		ClearPagePrivate(page);
1041 		set_page_private(page, 0);
1042 		page_cache_release(page);
1043 	}
1044 }
1045 
1046 static int btree_set_page_dirty(struct page *page)
1047 {
1048 #ifdef DEBUG
1049 	struct extent_buffer *eb;
1050 
1051 	BUG_ON(!PagePrivate(page));
1052 	eb = (struct extent_buffer *)page->private;
1053 	BUG_ON(!eb);
1054 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1055 	BUG_ON(!atomic_read(&eb->refs));
1056 	btrfs_assert_tree_locked(eb);
1057 #endif
1058 	return __set_page_dirty_nobuffers(page);
1059 }
1060 
1061 static const struct address_space_operations btree_aops = {
1062 	.readpage	= btree_readpage,
1063 	.writepages	= btree_writepages,
1064 	.releasepage	= btree_releasepage,
1065 	.invalidatepage = btree_invalidatepage,
1066 #ifdef CONFIG_MIGRATION
1067 	.migratepage	= btree_migratepage,
1068 #endif
1069 	.set_page_dirty = btree_set_page_dirty,
1070 };
1071 
1072 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1073 {
1074 	struct extent_buffer *buf = NULL;
1075 	struct inode *btree_inode = root->fs_info->btree_inode;
1076 
1077 	buf = btrfs_find_create_tree_block(root, bytenr);
1078 	if (!buf)
1079 		return;
1080 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1081 				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1082 	free_extent_buffer(buf);
1083 }
1084 
1085 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1086 			 int mirror_num, struct extent_buffer **eb)
1087 {
1088 	struct extent_buffer *buf = NULL;
1089 	struct inode *btree_inode = root->fs_info->btree_inode;
1090 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1091 	int ret;
1092 
1093 	buf = btrfs_find_create_tree_block(root, bytenr);
1094 	if (!buf)
1095 		return 0;
1096 
1097 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1098 
1099 	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1100 				       btree_get_extent, mirror_num);
1101 	if (ret) {
1102 		free_extent_buffer(buf);
1103 		return ret;
1104 	}
1105 
1106 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1107 		free_extent_buffer(buf);
1108 		return -EIO;
1109 	} else if (extent_buffer_uptodate(buf)) {
1110 		*eb = buf;
1111 	} else {
1112 		free_extent_buffer(buf);
1113 	}
1114 	return 0;
1115 }
1116 
1117 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1118 					    u64 bytenr)
1119 {
1120 	return find_extent_buffer(fs_info, bytenr);
1121 }
1122 
1123 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1124 						 u64 bytenr)
1125 {
1126 	if (btrfs_test_is_dummy_root(root))
1127 		return alloc_test_extent_buffer(root->fs_info, bytenr);
1128 	return alloc_extent_buffer(root->fs_info, bytenr);
1129 }
1130 
1131 
1132 int btrfs_write_tree_block(struct extent_buffer *buf)
1133 {
1134 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1135 					buf->start + buf->len - 1);
1136 }
1137 
1138 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1139 {
1140 	return filemap_fdatawait_range(buf->pages[0]->mapping,
1141 				       buf->start, buf->start + buf->len - 1);
1142 }
1143 
1144 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1145 				      u64 parent_transid)
1146 {
1147 	struct extent_buffer *buf = NULL;
1148 	int ret;
1149 
1150 	buf = btrfs_find_create_tree_block(root, bytenr);
1151 	if (!buf)
1152 		return NULL;
1153 
1154 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1155 	if (ret) {
1156 		free_extent_buffer(buf);
1157 		return NULL;
1158 	}
1159 	return buf;
1160 
1161 }
1162 
1163 void clean_tree_block(struct btrfs_trans_handle *trans,
1164 		      struct btrfs_fs_info *fs_info,
1165 		      struct extent_buffer *buf)
1166 {
1167 	if (btrfs_header_generation(buf) ==
1168 	    fs_info->running_transaction->transid) {
1169 		btrfs_assert_tree_locked(buf);
1170 
1171 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1172 			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
1173 					     -buf->len,
1174 					     fs_info->dirty_metadata_batch);
1175 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1176 			btrfs_set_lock_blocking(buf);
1177 			clear_extent_buffer_dirty(buf);
1178 		}
1179 	}
1180 }
1181 
1182 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1183 {
1184 	struct btrfs_subvolume_writers *writers;
1185 	int ret;
1186 
1187 	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1188 	if (!writers)
1189 		return ERR_PTR(-ENOMEM);
1190 
1191 	ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1192 	if (ret < 0) {
1193 		kfree(writers);
1194 		return ERR_PTR(ret);
1195 	}
1196 
1197 	init_waitqueue_head(&writers->wait);
1198 	return writers;
1199 }
1200 
1201 static void
1202 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1203 {
1204 	percpu_counter_destroy(&writers->counter);
1205 	kfree(writers);
1206 }
1207 
1208 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1209 			 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1210 			 u64 objectid)
1211 {
1212 	root->node = NULL;
1213 	root->commit_root = NULL;
1214 	root->sectorsize = sectorsize;
1215 	root->nodesize = nodesize;
1216 	root->stripesize = stripesize;
1217 	root->state = 0;
1218 	root->orphan_cleanup_state = 0;
1219 
1220 	root->objectid = objectid;
1221 	root->last_trans = 0;
1222 	root->highest_objectid = 0;
1223 	root->nr_delalloc_inodes = 0;
1224 	root->nr_ordered_extents = 0;
1225 	root->name = NULL;
1226 	root->inode_tree = RB_ROOT;
1227 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1228 	root->block_rsv = NULL;
1229 	root->orphan_block_rsv = NULL;
1230 
1231 	INIT_LIST_HEAD(&root->dirty_list);
1232 	INIT_LIST_HEAD(&root->root_list);
1233 	INIT_LIST_HEAD(&root->delalloc_inodes);
1234 	INIT_LIST_HEAD(&root->delalloc_root);
1235 	INIT_LIST_HEAD(&root->ordered_extents);
1236 	INIT_LIST_HEAD(&root->ordered_root);
1237 	INIT_LIST_HEAD(&root->logged_list[0]);
1238 	INIT_LIST_HEAD(&root->logged_list[1]);
1239 	spin_lock_init(&root->orphan_lock);
1240 	spin_lock_init(&root->inode_lock);
1241 	spin_lock_init(&root->delalloc_lock);
1242 	spin_lock_init(&root->ordered_extent_lock);
1243 	spin_lock_init(&root->accounting_lock);
1244 	spin_lock_init(&root->log_extents_lock[0]);
1245 	spin_lock_init(&root->log_extents_lock[1]);
1246 	mutex_init(&root->objectid_mutex);
1247 	mutex_init(&root->log_mutex);
1248 	mutex_init(&root->ordered_extent_mutex);
1249 	mutex_init(&root->delalloc_mutex);
1250 	init_waitqueue_head(&root->log_writer_wait);
1251 	init_waitqueue_head(&root->log_commit_wait[0]);
1252 	init_waitqueue_head(&root->log_commit_wait[1]);
1253 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1254 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1255 	atomic_set(&root->log_commit[0], 0);
1256 	atomic_set(&root->log_commit[1], 0);
1257 	atomic_set(&root->log_writers, 0);
1258 	atomic_set(&root->log_batch, 0);
1259 	atomic_set(&root->orphan_inodes, 0);
1260 	atomic_set(&root->refs, 1);
1261 	atomic_set(&root->will_be_snapshoted, 0);
1262 	root->log_transid = 0;
1263 	root->log_transid_committed = -1;
1264 	root->last_log_commit = 0;
1265 	if (fs_info)
1266 		extent_io_tree_init(&root->dirty_log_pages,
1267 				     fs_info->btree_inode->i_mapping);
1268 
1269 	memset(&root->root_key, 0, sizeof(root->root_key));
1270 	memset(&root->root_item, 0, sizeof(root->root_item));
1271 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1272 	if (fs_info)
1273 		root->defrag_trans_start = fs_info->generation;
1274 	else
1275 		root->defrag_trans_start = 0;
1276 	root->root_key.objectid = objectid;
1277 	root->anon_dev = 0;
1278 
1279 	spin_lock_init(&root->root_item_lock);
1280 }
1281 
1282 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1283 {
1284 	struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1285 	if (root)
1286 		root->fs_info = fs_info;
1287 	return root;
1288 }
1289 
1290 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1291 /* Should only be used by the testing infrastructure */
1292 struct btrfs_root *btrfs_alloc_dummy_root(void)
1293 {
1294 	struct btrfs_root *root;
1295 
1296 	root = btrfs_alloc_root(NULL);
1297 	if (!root)
1298 		return ERR_PTR(-ENOMEM);
1299 	__setup_root(4096, 4096, 4096, root, NULL, 1);
1300 	set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1301 	root->alloc_bytenr = 0;
1302 
1303 	return root;
1304 }
1305 #endif
1306 
1307 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1308 				     struct btrfs_fs_info *fs_info,
1309 				     u64 objectid)
1310 {
1311 	struct extent_buffer *leaf;
1312 	struct btrfs_root *tree_root = fs_info->tree_root;
1313 	struct btrfs_root *root;
1314 	struct btrfs_key key;
1315 	int ret = 0;
1316 	uuid_le uuid;
1317 
1318 	root = btrfs_alloc_root(fs_info);
1319 	if (!root)
1320 		return ERR_PTR(-ENOMEM);
1321 
1322 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1323 		tree_root->stripesize, root, fs_info, objectid);
1324 	root->root_key.objectid = objectid;
1325 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1326 	root->root_key.offset = 0;
1327 
1328 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1329 	if (IS_ERR(leaf)) {
1330 		ret = PTR_ERR(leaf);
1331 		leaf = NULL;
1332 		goto fail;
1333 	}
1334 
1335 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1336 	btrfs_set_header_bytenr(leaf, leaf->start);
1337 	btrfs_set_header_generation(leaf, trans->transid);
1338 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1339 	btrfs_set_header_owner(leaf, objectid);
1340 	root->node = leaf;
1341 
1342 	write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1343 			    BTRFS_FSID_SIZE);
1344 	write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1345 			    btrfs_header_chunk_tree_uuid(leaf),
1346 			    BTRFS_UUID_SIZE);
1347 	btrfs_mark_buffer_dirty(leaf);
1348 
1349 	root->commit_root = btrfs_root_node(root);
1350 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1351 
1352 	root->root_item.flags = 0;
1353 	root->root_item.byte_limit = 0;
1354 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1355 	btrfs_set_root_generation(&root->root_item, trans->transid);
1356 	btrfs_set_root_level(&root->root_item, 0);
1357 	btrfs_set_root_refs(&root->root_item, 1);
1358 	btrfs_set_root_used(&root->root_item, leaf->len);
1359 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1360 	btrfs_set_root_dirid(&root->root_item, 0);
1361 	uuid_le_gen(&uuid);
1362 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1363 	root->root_item.drop_level = 0;
1364 
1365 	key.objectid = objectid;
1366 	key.type = BTRFS_ROOT_ITEM_KEY;
1367 	key.offset = 0;
1368 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1369 	if (ret)
1370 		goto fail;
1371 
1372 	btrfs_tree_unlock(leaf);
1373 
1374 	return root;
1375 
1376 fail:
1377 	if (leaf) {
1378 		btrfs_tree_unlock(leaf);
1379 		free_extent_buffer(root->commit_root);
1380 		free_extent_buffer(leaf);
1381 	}
1382 	kfree(root);
1383 
1384 	return ERR_PTR(ret);
1385 }
1386 
1387 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1388 					 struct btrfs_fs_info *fs_info)
1389 {
1390 	struct btrfs_root *root;
1391 	struct btrfs_root *tree_root = fs_info->tree_root;
1392 	struct extent_buffer *leaf;
1393 
1394 	root = btrfs_alloc_root(fs_info);
1395 	if (!root)
1396 		return ERR_PTR(-ENOMEM);
1397 
1398 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1399 		     tree_root->stripesize, root, fs_info,
1400 		     BTRFS_TREE_LOG_OBJECTID);
1401 
1402 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1403 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1404 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1405 
1406 	/*
1407 	 * DON'T set REF_COWS for log trees
1408 	 *
1409 	 * log trees do not get reference counted because they go away
1410 	 * before a real commit is actually done.  They do store pointers
1411 	 * to file data extents, and those reference counts still get
1412 	 * updated (along with back refs to the log tree).
1413 	 */
1414 
1415 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1416 			NULL, 0, 0, 0);
1417 	if (IS_ERR(leaf)) {
1418 		kfree(root);
1419 		return ERR_CAST(leaf);
1420 	}
1421 
1422 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1423 	btrfs_set_header_bytenr(leaf, leaf->start);
1424 	btrfs_set_header_generation(leaf, trans->transid);
1425 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1426 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1427 	root->node = leaf;
1428 
1429 	write_extent_buffer(root->node, root->fs_info->fsid,
1430 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
1431 	btrfs_mark_buffer_dirty(root->node);
1432 	btrfs_tree_unlock(root->node);
1433 	return root;
1434 }
1435 
1436 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1437 			     struct btrfs_fs_info *fs_info)
1438 {
1439 	struct btrfs_root *log_root;
1440 
1441 	log_root = alloc_log_tree(trans, fs_info);
1442 	if (IS_ERR(log_root))
1443 		return PTR_ERR(log_root);
1444 	WARN_ON(fs_info->log_root_tree);
1445 	fs_info->log_root_tree = log_root;
1446 	return 0;
1447 }
1448 
1449 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1450 		       struct btrfs_root *root)
1451 {
1452 	struct btrfs_root *log_root;
1453 	struct btrfs_inode_item *inode_item;
1454 
1455 	log_root = alloc_log_tree(trans, root->fs_info);
1456 	if (IS_ERR(log_root))
1457 		return PTR_ERR(log_root);
1458 
1459 	log_root->last_trans = trans->transid;
1460 	log_root->root_key.offset = root->root_key.objectid;
1461 
1462 	inode_item = &log_root->root_item.inode;
1463 	btrfs_set_stack_inode_generation(inode_item, 1);
1464 	btrfs_set_stack_inode_size(inode_item, 3);
1465 	btrfs_set_stack_inode_nlink(inode_item, 1);
1466 	btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1467 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1468 
1469 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1470 
1471 	WARN_ON(root->log_root);
1472 	root->log_root = log_root;
1473 	root->log_transid = 0;
1474 	root->log_transid_committed = -1;
1475 	root->last_log_commit = 0;
1476 	return 0;
1477 }
1478 
1479 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1480 					       struct btrfs_key *key)
1481 {
1482 	struct btrfs_root *root;
1483 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1484 	struct btrfs_path *path;
1485 	u64 generation;
1486 	int ret;
1487 
1488 	path = btrfs_alloc_path();
1489 	if (!path)
1490 		return ERR_PTR(-ENOMEM);
1491 
1492 	root = btrfs_alloc_root(fs_info);
1493 	if (!root) {
1494 		ret = -ENOMEM;
1495 		goto alloc_fail;
1496 	}
1497 
1498 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1499 		tree_root->stripesize, root, fs_info, key->objectid);
1500 
1501 	ret = btrfs_find_root(tree_root, key, path,
1502 			      &root->root_item, &root->root_key);
1503 	if (ret) {
1504 		if (ret > 0)
1505 			ret = -ENOENT;
1506 		goto find_fail;
1507 	}
1508 
1509 	generation = btrfs_root_generation(&root->root_item);
1510 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1511 				     generation);
1512 	if (!root->node) {
1513 		ret = -ENOMEM;
1514 		goto find_fail;
1515 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1516 		ret = -EIO;
1517 		goto read_fail;
1518 	}
1519 	root->commit_root = btrfs_root_node(root);
1520 out:
1521 	btrfs_free_path(path);
1522 	return root;
1523 
1524 read_fail:
1525 	free_extent_buffer(root->node);
1526 find_fail:
1527 	kfree(root);
1528 alloc_fail:
1529 	root = ERR_PTR(ret);
1530 	goto out;
1531 }
1532 
1533 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1534 				      struct btrfs_key *location)
1535 {
1536 	struct btrfs_root *root;
1537 
1538 	root = btrfs_read_tree_root(tree_root, location);
1539 	if (IS_ERR(root))
1540 		return root;
1541 
1542 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1543 		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1544 		btrfs_check_and_init_root_item(&root->root_item);
1545 	}
1546 
1547 	return root;
1548 }
1549 
1550 int btrfs_init_fs_root(struct btrfs_root *root)
1551 {
1552 	int ret;
1553 	struct btrfs_subvolume_writers *writers;
1554 
1555 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1556 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1557 					GFP_NOFS);
1558 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1559 		ret = -ENOMEM;
1560 		goto fail;
1561 	}
1562 
1563 	writers = btrfs_alloc_subvolume_writers();
1564 	if (IS_ERR(writers)) {
1565 		ret = PTR_ERR(writers);
1566 		goto fail;
1567 	}
1568 	root->subv_writers = writers;
1569 
1570 	btrfs_init_free_ino_ctl(root);
1571 	spin_lock_init(&root->ino_cache_lock);
1572 	init_waitqueue_head(&root->ino_cache_wait);
1573 
1574 	ret = get_anon_bdev(&root->anon_dev);
1575 	if (ret)
1576 		goto free_writers;
1577 	return 0;
1578 
1579 free_writers:
1580 	btrfs_free_subvolume_writers(root->subv_writers);
1581 fail:
1582 	kfree(root->free_ino_ctl);
1583 	kfree(root->free_ino_pinned);
1584 	return ret;
1585 }
1586 
1587 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1588 					       u64 root_id)
1589 {
1590 	struct btrfs_root *root;
1591 
1592 	spin_lock(&fs_info->fs_roots_radix_lock);
1593 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1594 				 (unsigned long)root_id);
1595 	spin_unlock(&fs_info->fs_roots_radix_lock);
1596 	return root;
1597 }
1598 
1599 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1600 			 struct btrfs_root *root)
1601 {
1602 	int ret;
1603 
1604 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1605 	if (ret)
1606 		return ret;
1607 
1608 	spin_lock(&fs_info->fs_roots_radix_lock);
1609 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1610 				(unsigned long)root->root_key.objectid,
1611 				root);
1612 	if (ret == 0)
1613 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1614 	spin_unlock(&fs_info->fs_roots_radix_lock);
1615 	radix_tree_preload_end();
1616 
1617 	return ret;
1618 }
1619 
1620 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1621 				     struct btrfs_key *location,
1622 				     bool check_ref)
1623 {
1624 	struct btrfs_root *root;
1625 	struct btrfs_path *path;
1626 	struct btrfs_key key;
1627 	int ret;
1628 
1629 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1630 		return fs_info->tree_root;
1631 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1632 		return fs_info->extent_root;
1633 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1634 		return fs_info->chunk_root;
1635 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1636 		return fs_info->dev_root;
1637 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1638 		return fs_info->csum_root;
1639 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1640 		return fs_info->quota_root ? fs_info->quota_root :
1641 					     ERR_PTR(-ENOENT);
1642 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1643 		return fs_info->uuid_root ? fs_info->uuid_root :
1644 					    ERR_PTR(-ENOENT);
1645 again:
1646 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1647 	if (root) {
1648 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1649 			return ERR_PTR(-ENOENT);
1650 		return root;
1651 	}
1652 
1653 	root = btrfs_read_fs_root(fs_info->tree_root, location);
1654 	if (IS_ERR(root))
1655 		return root;
1656 
1657 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1658 		ret = -ENOENT;
1659 		goto fail;
1660 	}
1661 
1662 	ret = btrfs_init_fs_root(root);
1663 	if (ret)
1664 		goto fail;
1665 
1666 	path = btrfs_alloc_path();
1667 	if (!path) {
1668 		ret = -ENOMEM;
1669 		goto fail;
1670 	}
1671 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1672 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1673 	key.offset = location->objectid;
1674 
1675 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1676 	btrfs_free_path(path);
1677 	if (ret < 0)
1678 		goto fail;
1679 	if (ret == 0)
1680 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1681 
1682 	ret = btrfs_insert_fs_root(fs_info, root);
1683 	if (ret) {
1684 		if (ret == -EEXIST) {
1685 			free_fs_root(root);
1686 			goto again;
1687 		}
1688 		goto fail;
1689 	}
1690 	return root;
1691 fail:
1692 	free_fs_root(root);
1693 	return ERR_PTR(ret);
1694 }
1695 
1696 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1697 {
1698 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1699 	int ret = 0;
1700 	struct btrfs_device *device;
1701 	struct backing_dev_info *bdi;
1702 
1703 	rcu_read_lock();
1704 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1705 		if (!device->bdev)
1706 			continue;
1707 		bdi = blk_get_backing_dev_info(device->bdev);
1708 		if (bdi_congested(bdi, bdi_bits)) {
1709 			ret = 1;
1710 			break;
1711 		}
1712 	}
1713 	rcu_read_unlock();
1714 	return ret;
1715 }
1716 
1717 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1718 {
1719 	int err;
1720 
1721 	err = bdi_setup_and_register(bdi, "btrfs");
1722 	if (err)
1723 		return err;
1724 
1725 	bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
1726 	bdi->congested_fn	= btrfs_congested_fn;
1727 	bdi->congested_data	= info;
1728 	return 0;
1729 }
1730 
1731 /*
1732  * called by the kthread helper functions to finally call the bio end_io
1733  * functions.  This is where read checksum verification actually happens
1734  */
1735 static void end_workqueue_fn(struct btrfs_work *work)
1736 {
1737 	struct bio *bio;
1738 	struct btrfs_end_io_wq *end_io_wq;
1739 	int error;
1740 
1741 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1742 	bio = end_io_wq->bio;
1743 
1744 	error = end_io_wq->error;
1745 	bio->bi_private = end_io_wq->private;
1746 	bio->bi_end_io = end_io_wq->end_io;
1747 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1748 	bio_endio_nodec(bio, error);
1749 }
1750 
1751 static int cleaner_kthread(void *arg)
1752 {
1753 	struct btrfs_root *root = arg;
1754 	int again;
1755 
1756 	do {
1757 		again = 0;
1758 
1759 		/* Make the cleaner go to sleep early. */
1760 		if (btrfs_need_cleaner_sleep(root))
1761 			goto sleep;
1762 
1763 		if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1764 			goto sleep;
1765 
1766 		/*
1767 		 * Avoid the problem that we change the status of the fs
1768 		 * during the above check and trylock.
1769 		 */
1770 		if (btrfs_need_cleaner_sleep(root)) {
1771 			mutex_unlock(&root->fs_info->cleaner_mutex);
1772 			goto sleep;
1773 		}
1774 
1775 		btrfs_run_delayed_iputs(root);
1776 		btrfs_delete_unused_bgs(root->fs_info);
1777 		again = btrfs_clean_one_deleted_snapshot(root);
1778 		mutex_unlock(&root->fs_info->cleaner_mutex);
1779 
1780 		/*
1781 		 * The defragger has dealt with the R/O remount and umount,
1782 		 * needn't do anything special here.
1783 		 */
1784 		btrfs_run_defrag_inodes(root->fs_info);
1785 sleep:
1786 		if (!try_to_freeze() && !again) {
1787 			set_current_state(TASK_INTERRUPTIBLE);
1788 			if (!kthread_should_stop())
1789 				schedule();
1790 			__set_current_state(TASK_RUNNING);
1791 		}
1792 	} while (!kthread_should_stop());
1793 	return 0;
1794 }
1795 
1796 static int transaction_kthread(void *arg)
1797 {
1798 	struct btrfs_root *root = arg;
1799 	struct btrfs_trans_handle *trans;
1800 	struct btrfs_transaction *cur;
1801 	u64 transid;
1802 	unsigned long now;
1803 	unsigned long delay;
1804 	bool cannot_commit;
1805 
1806 	do {
1807 		cannot_commit = false;
1808 		delay = HZ * root->fs_info->commit_interval;
1809 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1810 
1811 		spin_lock(&root->fs_info->trans_lock);
1812 		cur = root->fs_info->running_transaction;
1813 		if (!cur) {
1814 			spin_unlock(&root->fs_info->trans_lock);
1815 			goto sleep;
1816 		}
1817 
1818 		now = get_seconds();
1819 		if (cur->state < TRANS_STATE_BLOCKED &&
1820 		    (now < cur->start_time ||
1821 		     now - cur->start_time < root->fs_info->commit_interval)) {
1822 			spin_unlock(&root->fs_info->trans_lock);
1823 			delay = HZ * 5;
1824 			goto sleep;
1825 		}
1826 		transid = cur->transid;
1827 		spin_unlock(&root->fs_info->trans_lock);
1828 
1829 		/* If the file system is aborted, this will always fail. */
1830 		trans = btrfs_attach_transaction(root);
1831 		if (IS_ERR(trans)) {
1832 			if (PTR_ERR(trans) != -ENOENT)
1833 				cannot_commit = true;
1834 			goto sleep;
1835 		}
1836 		if (transid == trans->transid) {
1837 			btrfs_commit_transaction(trans, root);
1838 		} else {
1839 			btrfs_end_transaction(trans, root);
1840 		}
1841 sleep:
1842 		wake_up_process(root->fs_info->cleaner_kthread);
1843 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1844 
1845 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1846 				      &root->fs_info->fs_state)))
1847 			btrfs_cleanup_transaction(root);
1848 		if (!try_to_freeze()) {
1849 			set_current_state(TASK_INTERRUPTIBLE);
1850 			if (!kthread_should_stop() &&
1851 			    (!btrfs_transaction_blocked(root->fs_info) ||
1852 			     cannot_commit))
1853 				schedule_timeout(delay);
1854 			__set_current_state(TASK_RUNNING);
1855 		}
1856 	} while (!kthread_should_stop());
1857 	return 0;
1858 }
1859 
1860 /*
1861  * this will find the highest generation in the array of
1862  * root backups.  The index of the highest array is returned,
1863  * or -1 if we can't find anything.
1864  *
1865  * We check to make sure the array is valid by comparing the
1866  * generation of the latest  root in the array with the generation
1867  * in the super block.  If they don't match we pitch it.
1868  */
1869 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1870 {
1871 	u64 cur;
1872 	int newest_index = -1;
1873 	struct btrfs_root_backup *root_backup;
1874 	int i;
1875 
1876 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1877 		root_backup = info->super_copy->super_roots + i;
1878 		cur = btrfs_backup_tree_root_gen(root_backup);
1879 		if (cur == newest_gen)
1880 			newest_index = i;
1881 	}
1882 
1883 	/* check to see if we actually wrapped around */
1884 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1885 		root_backup = info->super_copy->super_roots;
1886 		cur = btrfs_backup_tree_root_gen(root_backup);
1887 		if (cur == newest_gen)
1888 			newest_index = 0;
1889 	}
1890 	return newest_index;
1891 }
1892 
1893 
1894 /*
1895  * find the oldest backup so we know where to store new entries
1896  * in the backup array.  This will set the backup_root_index
1897  * field in the fs_info struct
1898  */
1899 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1900 				     u64 newest_gen)
1901 {
1902 	int newest_index = -1;
1903 
1904 	newest_index = find_newest_super_backup(info, newest_gen);
1905 	/* if there was garbage in there, just move along */
1906 	if (newest_index == -1) {
1907 		info->backup_root_index = 0;
1908 	} else {
1909 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1910 	}
1911 }
1912 
1913 /*
1914  * copy all the root pointers into the super backup array.
1915  * this will bump the backup pointer by one when it is
1916  * done
1917  */
1918 static void backup_super_roots(struct btrfs_fs_info *info)
1919 {
1920 	int next_backup;
1921 	struct btrfs_root_backup *root_backup;
1922 	int last_backup;
1923 
1924 	next_backup = info->backup_root_index;
1925 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1926 		BTRFS_NUM_BACKUP_ROOTS;
1927 
1928 	/*
1929 	 * just overwrite the last backup if we're at the same generation
1930 	 * this happens only at umount
1931 	 */
1932 	root_backup = info->super_for_commit->super_roots + last_backup;
1933 	if (btrfs_backup_tree_root_gen(root_backup) ==
1934 	    btrfs_header_generation(info->tree_root->node))
1935 		next_backup = last_backup;
1936 
1937 	root_backup = info->super_for_commit->super_roots + next_backup;
1938 
1939 	/*
1940 	 * make sure all of our padding and empty slots get zero filled
1941 	 * regardless of which ones we use today
1942 	 */
1943 	memset(root_backup, 0, sizeof(*root_backup));
1944 
1945 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1946 
1947 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1948 	btrfs_set_backup_tree_root_gen(root_backup,
1949 			       btrfs_header_generation(info->tree_root->node));
1950 
1951 	btrfs_set_backup_tree_root_level(root_backup,
1952 			       btrfs_header_level(info->tree_root->node));
1953 
1954 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1955 	btrfs_set_backup_chunk_root_gen(root_backup,
1956 			       btrfs_header_generation(info->chunk_root->node));
1957 	btrfs_set_backup_chunk_root_level(root_backup,
1958 			       btrfs_header_level(info->chunk_root->node));
1959 
1960 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1961 	btrfs_set_backup_extent_root_gen(root_backup,
1962 			       btrfs_header_generation(info->extent_root->node));
1963 	btrfs_set_backup_extent_root_level(root_backup,
1964 			       btrfs_header_level(info->extent_root->node));
1965 
1966 	/*
1967 	 * we might commit during log recovery, which happens before we set
1968 	 * the fs_root.  Make sure it is valid before we fill it in.
1969 	 */
1970 	if (info->fs_root && info->fs_root->node) {
1971 		btrfs_set_backup_fs_root(root_backup,
1972 					 info->fs_root->node->start);
1973 		btrfs_set_backup_fs_root_gen(root_backup,
1974 			       btrfs_header_generation(info->fs_root->node));
1975 		btrfs_set_backup_fs_root_level(root_backup,
1976 			       btrfs_header_level(info->fs_root->node));
1977 	}
1978 
1979 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1980 	btrfs_set_backup_dev_root_gen(root_backup,
1981 			       btrfs_header_generation(info->dev_root->node));
1982 	btrfs_set_backup_dev_root_level(root_backup,
1983 				       btrfs_header_level(info->dev_root->node));
1984 
1985 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1986 	btrfs_set_backup_csum_root_gen(root_backup,
1987 			       btrfs_header_generation(info->csum_root->node));
1988 	btrfs_set_backup_csum_root_level(root_backup,
1989 			       btrfs_header_level(info->csum_root->node));
1990 
1991 	btrfs_set_backup_total_bytes(root_backup,
1992 			     btrfs_super_total_bytes(info->super_copy));
1993 	btrfs_set_backup_bytes_used(root_backup,
1994 			     btrfs_super_bytes_used(info->super_copy));
1995 	btrfs_set_backup_num_devices(root_backup,
1996 			     btrfs_super_num_devices(info->super_copy));
1997 
1998 	/*
1999 	 * if we don't copy this out to the super_copy, it won't get remembered
2000 	 * for the next commit
2001 	 */
2002 	memcpy(&info->super_copy->super_roots,
2003 	       &info->super_for_commit->super_roots,
2004 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2005 }
2006 
2007 /*
2008  * this copies info out of the root backup array and back into
2009  * the in-memory super block.  It is meant to help iterate through
2010  * the array, so you send it the number of backups you've already
2011  * tried and the last backup index you used.
2012  *
2013  * this returns -1 when it has tried all the backups
2014  */
2015 static noinline int next_root_backup(struct btrfs_fs_info *info,
2016 				     struct btrfs_super_block *super,
2017 				     int *num_backups_tried, int *backup_index)
2018 {
2019 	struct btrfs_root_backup *root_backup;
2020 	int newest = *backup_index;
2021 
2022 	if (*num_backups_tried == 0) {
2023 		u64 gen = btrfs_super_generation(super);
2024 
2025 		newest = find_newest_super_backup(info, gen);
2026 		if (newest == -1)
2027 			return -1;
2028 
2029 		*backup_index = newest;
2030 		*num_backups_tried = 1;
2031 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2032 		/* we've tried all the backups, all done */
2033 		return -1;
2034 	} else {
2035 		/* jump to the next oldest backup */
2036 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2037 			BTRFS_NUM_BACKUP_ROOTS;
2038 		*backup_index = newest;
2039 		*num_backups_tried += 1;
2040 	}
2041 	root_backup = super->super_roots + newest;
2042 
2043 	btrfs_set_super_generation(super,
2044 				   btrfs_backup_tree_root_gen(root_backup));
2045 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2046 	btrfs_set_super_root_level(super,
2047 				   btrfs_backup_tree_root_level(root_backup));
2048 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2049 
2050 	/*
2051 	 * fixme: the total bytes and num_devices need to match or we should
2052 	 * need a fsck
2053 	 */
2054 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2055 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2056 	return 0;
2057 }
2058 
2059 /* helper to cleanup workers */
2060 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2061 {
2062 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2063 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2064 	btrfs_destroy_workqueue(fs_info->workers);
2065 	btrfs_destroy_workqueue(fs_info->endio_workers);
2066 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2067 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2068 	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2069 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2070 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2071 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2072 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2073 	btrfs_destroy_workqueue(fs_info->submit_workers);
2074 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2075 	btrfs_destroy_workqueue(fs_info->caching_workers);
2076 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2077 	btrfs_destroy_workqueue(fs_info->flush_workers);
2078 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2079 	btrfs_destroy_workqueue(fs_info->extent_workers);
2080 }
2081 
2082 static void free_root_extent_buffers(struct btrfs_root *root)
2083 {
2084 	if (root) {
2085 		free_extent_buffer(root->node);
2086 		free_extent_buffer(root->commit_root);
2087 		root->node = NULL;
2088 		root->commit_root = NULL;
2089 	}
2090 }
2091 
2092 /* helper to cleanup tree roots */
2093 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2094 {
2095 	free_root_extent_buffers(info->tree_root);
2096 
2097 	free_root_extent_buffers(info->dev_root);
2098 	free_root_extent_buffers(info->extent_root);
2099 	free_root_extent_buffers(info->csum_root);
2100 	free_root_extent_buffers(info->quota_root);
2101 	free_root_extent_buffers(info->uuid_root);
2102 	if (chunk_root)
2103 		free_root_extent_buffers(info->chunk_root);
2104 }
2105 
2106 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2107 {
2108 	int ret;
2109 	struct btrfs_root *gang[8];
2110 	int i;
2111 
2112 	while (!list_empty(&fs_info->dead_roots)) {
2113 		gang[0] = list_entry(fs_info->dead_roots.next,
2114 				     struct btrfs_root, root_list);
2115 		list_del(&gang[0]->root_list);
2116 
2117 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2118 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2119 		} else {
2120 			free_extent_buffer(gang[0]->node);
2121 			free_extent_buffer(gang[0]->commit_root);
2122 			btrfs_put_fs_root(gang[0]);
2123 		}
2124 	}
2125 
2126 	while (1) {
2127 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2128 					     (void **)gang, 0,
2129 					     ARRAY_SIZE(gang));
2130 		if (!ret)
2131 			break;
2132 		for (i = 0; i < ret; i++)
2133 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2134 	}
2135 
2136 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2137 		btrfs_free_log_root_tree(NULL, fs_info);
2138 		btrfs_destroy_pinned_extent(fs_info->tree_root,
2139 					    fs_info->pinned_extents);
2140 	}
2141 }
2142 
2143 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2144 {
2145 	mutex_init(&fs_info->scrub_lock);
2146 	atomic_set(&fs_info->scrubs_running, 0);
2147 	atomic_set(&fs_info->scrub_pause_req, 0);
2148 	atomic_set(&fs_info->scrubs_paused, 0);
2149 	atomic_set(&fs_info->scrub_cancel_req, 0);
2150 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2151 	fs_info->scrub_workers_refcnt = 0;
2152 }
2153 
2154 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2155 {
2156 	spin_lock_init(&fs_info->balance_lock);
2157 	mutex_init(&fs_info->balance_mutex);
2158 	atomic_set(&fs_info->balance_running, 0);
2159 	atomic_set(&fs_info->balance_pause_req, 0);
2160 	atomic_set(&fs_info->balance_cancel_req, 0);
2161 	fs_info->balance_ctl = NULL;
2162 	init_waitqueue_head(&fs_info->balance_wait_q);
2163 }
2164 
2165 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2166 				   struct btrfs_root *tree_root)
2167 {
2168 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2169 	set_nlink(fs_info->btree_inode, 1);
2170 	/*
2171 	 * we set the i_size on the btree inode to the max possible int.
2172 	 * the real end of the address space is determined by all of
2173 	 * the devices in the system
2174 	 */
2175 	fs_info->btree_inode->i_size = OFFSET_MAX;
2176 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2177 
2178 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2179 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2180 			     fs_info->btree_inode->i_mapping);
2181 	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2182 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2183 
2184 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2185 
2186 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2187 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2188 	       sizeof(struct btrfs_key));
2189 	set_bit(BTRFS_INODE_DUMMY,
2190 		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2191 	btrfs_insert_inode_hash(fs_info->btree_inode);
2192 }
2193 
2194 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2195 {
2196 	fs_info->dev_replace.lock_owner = 0;
2197 	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2198 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2199 	mutex_init(&fs_info->dev_replace.lock_management_lock);
2200 	mutex_init(&fs_info->dev_replace.lock);
2201 	init_waitqueue_head(&fs_info->replace_wait);
2202 }
2203 
2204 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2205 {
2206 	spin_lock_init(&fs_info->qgroup_lock);
2207 	mutex_init(&fs_info->qgroup_ioctl_lock);
2208 	fs_info->qgroup_tree = RB_ROOT;
2209 	fs_info->qgroup_op_tree = RB_ROOT;
2210 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2211 	fs_info->qgroup_seq = 1;
2212 	fs_info->quota_enabled = 0;
2213 	fs_info->pending_quota_state = 0;
2214 	fs_info->qgroup_ulist = NULL;
2215 	mutex_init(&fs_info->qgroup_rescan_lock);
2216 }
2217 
2218 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2219 		struct btrfs_fs_devices *fs_devices)
2220 {
2221 	int max_active = fs_info->thread_pool_size;
2222 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2223 
2224 	fs_info->workers =
2225 		btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2226 				      max_active, 16);
2227 
2228 	fs_info->delalloc_workers =
2229 		btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2230 
2231 	fs_info->flush_workers =
2232 		btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2233 
2234 	fs_info->caching_workers =
2235 		btrfs_alloc_workqueue("cache", flags, max_active, 0);
2236 
2237 	/*
2238 	 * a higher idle thresh on the submit workers makes it much more
2239 	 * likely that bios will be send down in a sane order to the
2240 	 * devices
2241 	 */
2242 	fs_info->submit_workers =
2243 		btrfs_alloc_workqueue("submit", flags,
2244 				      min_t(u64, fs_devices->num_devices,
2245 					    max_active), 64);
2246 
2247 	fs_info->fixup_workers =
2248 		btrfs_alloc_workqueue("fixup", flags, 1, 0);
2249 
2250 	/*
2251 	 * endios are largely parallel and should have a very
2252 	 * low idle thresh
2253 	 */
2254 	fs_info->endio_workers =
2255 		btrfs_alloc_workqueue("endio", flags, max_active, 4);
2256 	fs_info->endio_meta_workers =
2257 		btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2258 	fs_info->endio_meta_write_workers =
2259 		btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2260 	fs_info->endio_raid56_workers =
2261 		btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2262 	fs_info->endio_repair_workers =
2263 		btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2264 	fs_info->rmw_workers =
2265 		btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2266 	fs_info->endio_write_workers =
2267 		btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2268 	fs_info->endio_freespace_worker =
2269 		btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2270 	fs_info->delayed_workers =
2271 		btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2272 	fs_info->readahead_workers =
2273 		btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2274 	fs_info->qgroup_rescan_workers =
2275 		btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2276 	fs_info->extent_workers =
2277 		btrfs_alloc_workqueue("extent-refs", flags,
2278 				      min_t(u64, fs_devices->num_devices,
2279 					    max_active), 8);
2280 
2281 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2282 	      fs_info->submit_workers && fs_info->flush_workers &&
2283 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2284 	      fs_info->endio_meta_write_workers &&
2285 	      fs_info->endio_repair_workers &&
2286 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2287 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2288 	      fs_info->caching_workers && fs_info->readahead_workers &&
2289 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2290 	      fs_info->extent_workers &&
2291 	      fs_info->qgroup_rescan_workers)) {
2292 		return -ENOMEM;
2293 	}
2294 
2295 	return 0;
2296 }
2297 
2298 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2299 			    struct btrfs_fs_devices *fs_devices)
2300 {
2301 	int ret;
2302 	struct btrfs_root *tree_root = fs_info->tree_root;
2303 	struct btrfs_root *log_tree_root;
2304 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2305 	u64 bytenr = btrfs_super_log_root(disk_super);
2306 
2307 	if (fs_devices->rw_devices == 0) {
2308 		printk(KERN_WARNING "BTRFS: log replay required "
2309 		       "on RO media\n");
2310 		return -EIO;
2311 	}
2312 
2313 	log_tree_root = btrfs_alloc_root(fs_info);
2314 	if (!log_tree_root)
2315 		return -ENOMEM;
2316 
2317 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
2318 			tree_root->stripesize, log_tree_root, fs_info,
2319 			BTRFS_TREE_LOG_OBJECTID);
2320 
2321 	log_tree_root->node = read_tree_block(tree_root, bytenr,
2322 			fs_info->generation + 1);
2323 	if (!log_tree_root->node ||
2324 	    !extent_buffer_uptodate(log_tree_root->node)) {
2325 		printk(KERN_ERR "BTRFS: failed to read log tree\n");
2326 		free_extent_buffer(log_tree_root->node);
2327 		kfree(log_tree_root);
2328 		return -EIO;
2329 	}
2330 	/* returns with log_tree_root freed on success */
2331 	ret = btrfs_recover_log_trees(log_tree_root);
2332 	if (ret) {
2333 		btrfs_error(tree_root->fs_info, ret,
2334 			    "Failed to recover log tree");
2335 		free_extent_buffer(log_tree_root->node);
2336 		kfree(log_tree_root);
2337 		return ret;
2338 	}
2339 
2340 	if (fs_info->sb->s_flags & MS_RDONLY) {
2341 		ret = btrfs_commit_super(tree_root);
2342 		if (ret)
2343 			return ret;
2344 	}
2345 
2346 	return 0;
2347 }
2348 
2349 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2350 			    struct btrfs_root *tree_root)
2351 {
2352 	struct btrfs_root *root;
2353 	struct btrfs_key location;
2354 	int ret;
2355 
2356 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2357 	location.type = BTRFS_ROOT_ITEM_KEY;
2358 	location.offset = 0;
2359 
2360 	root = btrfs_read_tree_root(tree_root, &location);
2361 	if (IS_ERR(root))
2362 		return PTR_ERR(root);
2363 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2364 	fs_info->extent_root = root;
2365 
2366 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2367 	root = btrfs_read_tree_root(tree_root, &location);
2368 	if (IS_ERR(root))
2369 		return PTR_ERR(root);
2370 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2371 	fs_info->dev_root = root;
2372 	btrfs_init_devices_late(fs_info);
2373 
2374 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2375 	root = btrfs_read_tree_root(tree_root, &location);
2376 	if (IS_ERR(root))
2377 		return PTR_ERR(root);
2378 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2379 	fs_info->csum_root = root;
2380 
2381 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2382 	root = btrfs_read_tree_root(tree_root, &location);
2383 	if (!IS_ERR(root)) {
2384 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2385 		fs_info->quota_enabled = 1;
2386 		fs_info->pending_quota_state = 1;
2387 		fs_info->quota_root = root;
2388 	}
2389 
2390 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2391 	root = btrfs_read_tree_root(tree_root, &location);
2392 	if (IS_ERR(root)) {
2393 		ret = PTR_ERR(root);
2394 		if (ret != -ENOENT)
2395 			return ret;
2396 	} else {
2397 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2398 		fs_info->uuid_root = root;
2399 	}
2400 
2401 	return 0;
2402 }
2403 
2404 int open_ctree(struct super_block *sb,
2405 	       struct btrfs_fs_devices *fs_devices,
2406 	       char *options)
2407 {
2408 	u32 sectorsize;
2409 	u32 nodesize;
2410 	u32 stripesize;
2411 	u64 generation;
2412 	u64 features;
2413 	struct btrfs_key location;
2414 	struct buffer_head *bh;
2415 	struct btrfs_super_block *disk_super;
2416 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2417 	struct btrfs_root *tree_root;
2418 	struct btrfs_root *chunk_root;
2419 	int ret;
2420 	int err = -EINVAL;
2421 	int num_backups_tried = 0;
2422 	int backup_index = 0;
2423 	int max_active;
2424 
2425 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2426 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2427 	if (!tree_root || !chunk_root) {
2428 		err = -ENOMEM;
2429 		goto fail;
2430 	}
2431 
2432 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2433 	if (ret) {
2434 		err = ret;
2435 		goto fail;
2436 	}
2437 
2438 	ret = setup_bdi(fs_info, &fs_info->bdi);
2439 	if (ret) {
2440 		err = ret;
2441 		goto fail_srcu;
2442 	}
2443 
2444 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2445 	if (ret) {
2446 		err = ret;
2447 		goto fail_bdi;
2448 	}
2449 	fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2450 					(1 + ilog2(nr_cpu_ids));
2451 
2452 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2453 	if (ret) {
2454 		err = ret;
2455 		goto fail_dirty_metadata_bytes;
2456 	}
2457 
2458 	ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2459 	if (ret) {
2460 		err = ret;
2461 		goto fail_delalloc_bytes;
2462 	}
2463 
2464 	fs_info->btree_inode = new_inode(sb);
2465 	if (!fs_info->btree_inode) {
2466 		err = -ENOMEM;
2467 		goto fail_bio_counter;
2468 	}
2469 
2470 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2471 
2472 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2473 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2474 	INIT_LIST_HEAD(&fs_info->trans_list);
2475 	INIT_LIST_HEAD(&fs_info->dead_roots);
2476 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2477 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2478 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2479 	spin_lock_init(&fs_info->delalloc_root_lock);
2480 	spin_lock_init(&fs_info->trans_lock);
2481 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2482 	spin_lock_init(&fs_info->delayed_iput_lock);
2483 	spin_lock_init(&fs_info->defrag_inodes_lock);
2484 	spin_lock_init(&fs_info->free_chunk_lock);
2485 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2486 	spin_lock_init(&fs_info->super_lock);
2487 	spin_lock_init(&fs_info->qgroup_op_lock);
2488 	spin_lock_init(&fs_info->buffer_lock);
2489 	spin_lock_init(&fs_info->unused_bgs_lock);
2490 	rwlock_init(&fs_info->tree_mod_log_lock);
2491 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2492 	mutex_init(&fs_info->reloc_mutex);
2493 	mutex_init(&fs_info->delalloc_root_mutex);
2494 	seqlock_init(&fs_info->profiles_lock);
2495 	init_rwsem(&fs_info->delayed_iput_sem);
2496 
2497 	init_completion(&fs_info->kobj_unregister);
2498 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2499 	INIT_LIST_HEAD(&fs_info->space_info);
2500 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2501 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2502 	btrfs_mapping_init(&fs_info->mapping_tree);
2503 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2504 			     BTRFS_BLOCK_RSV_GLOBAL);
2505 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2506 			     BTRFS_BLOCK_RSV_DELALLOC);
2507 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2508 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2509 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2510 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2511 			     BTRFS_BLOCK_RSV_DELOPS);
2512 	atomic_set(&fs_info->nr_async_submits, 0);
2513 	atomic_set(&fs_info->async_delalloc_pages, 0);
2514 	atomic_set(&fs_info->async_submit_draining, 0);
2515 	atomic_set(&fs_info->nr_async_bios, 0);
2516 	atomic_set(&fs_info->defrag_running, 0);
2517 	atomic_set(&fs_info->qgroup_op_seq, 0);
2518 	atomic64_set(&fs_info->tree_mod_seq, 0);
2519 	fs_info->sb = sb;
2520 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2521 	fs_info->metadata_ratio = 0;
2522 	fs_info->defrag_inodes = RB_ROOT;
2523 	fs_info->free_chunk_space = 0;
2524 	fs_info->tree_mod_log = RB_ROOT;
2525 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2526 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2527 	/* readahead state */
2528 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2529 	spin_lock_init(&fs_info->reada_lock);
2530 
2531 	fs_info->thread_pool_size = min_t(unsigned long,
2532 					  num_online_cpus() + 2, 8);
2533 
2534 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2535 	spin_lock_init(&fs_info->ordered_root_lock);
2536 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2537 					GFP_NOFS);
2538 	if (!fs_info->delayed_root) {
2539 		err = -ENOMEM;
2540 		goto fail_iput;
2541 	}
2542 	btrfs_init_delayed_root(fs_info->delayed_root);
2543 
2544 	btrfs_init_scrub(fs_info);
2545 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2546 	fs_info->check_integrity_print_mask = 0;
2547 #endif
2548 	btrfs_init_balance(fs_info);
2549 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2550 
2551 	sb->s_blocksize = 4096;
2552 	sb->s_blocksize_bits = blksize_bits(4096);
2553 	sb->s_bdi = &fs_info->bdi;
2554 
2555 	btrfs_init_btree_inode(fs_info, tree_root);
2556 
2557 	spin_lock_init(&fs_info->block_group_cache_lock);
2558 	fs_info->block_group_cache_tree = RB_ROOT;
2559 	fs_info->first_logical_byte = (u64)-1;
2560 
2561 	extent_io_tree_init(&fs_info->freed_extents[0],
2562 			     fs_info->btree_inode->i_mapping);
2563 	extent_io_tree_init(&fs_info->freed_extents[1],
2564 			     fs_info->btree_inode->i_mapping);
2565 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2566 	fs_info->do_barriers = 1;
2567 
2568 
2569 	mutex_init(&fs_info->ordered_operations_mutex);
2570 	mutex_init(&fs_info->ordered_extent_flush_mutex);
2571 	mutex_init(&fs_info->tree_log_mutex);
2572 	mutex_init(&fs_info->chunk_mutex);
2573 	mutex_init(&fs_info->transaction_kthread_mutex);
2574 	mutex_init(&fs_info->cleaner_mutex);
2575 	mutex_init(&fs_info->volume_mutex);
2576 	mutex_init(&fs_info->ro_block_group_mutex);
2577 	init_rwsem(&fs_info->commit_root_sem);
2578 	init_rwsem(&fs_info->cleanup_work_sem);
2579 	init_rwsem(&fs_info->subvol_sem);
2580 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2581 
2582 	btrfs_init_dev_replace_locks(fs_info);
2583 	btrfs_init_qgroup(fs_info);
2584 
2585 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2586 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2587 
2588 	init_waitqueue_head(&fs_info->transaction_throttle);
2589 	init_waitqueue_head(&fs_info->transaction_wait);
2590 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2591 	init_waitqueue_head(&fs_info->async_submit_wait);
2592 
2593 	INIT_LIST_HEAD(&fs_info->pinned_chunks);
2594 
2595 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2596 	if (ret) {
2597 		err = ret;
2598 		goto fail_alloc;
2599 	}
2600 
2601 	__setup_root(4096, 4096, 4096, tree_root,
2602 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2603 
2604 	invalidate_bdev(fs_devices->latest_bdev);
2605 
2606 	/*
2607 	 * Read super block and check the signature bytes only
2608 	 */
2609 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2610 	if (!bh) {
2611 		err = -EINVAL;
2612 		goto fail_alloc;
2613 	}
2614 
2615 	/*
2616 	 * We want to check superblock checksum, the type is stored inside.
2617 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2618 	 */
2619 	if (btrfs_check_super_csum(bh->b_data)) {
2620 		printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2621 		err = -EINVAL;
2622 		goto fail_alloc;
2623 	}
2624 
2625 	/*
2626 	 * super_copy is zeroed at allocation time and we never touch the
2627 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2628 	 * the whole block of INFO_SIZE
2629 	 */
2630 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2631 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2632 	       sizeof(*fs_info->super_for_commit));
2633 	brelse(bh);
2634 
2635 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2636 
2637 	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2638 	if (ret) {
2639 		printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2640 		err = -EINVAL;
2641 		goto fail_alloc;
2642 	}
2643 
2644 	disk_super = fs_info->super_copy;
2645 	if (!btrfs_super_root(disk_super))
2646 		goto fail_alloc;
2647 
2648 	/* check FS state, whether FS is broken. */
2649 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2650 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2651 
2652 	/*
2653 	 * run through our array of backup supers and setup
2654 	 * our ring pointer to the oldest one
2655 	 */
2656 	generation = btrfs_super_generation(disk_super);
2657 	find_oldest_super_backup(fs_info, generation);
2658 
2659 	/*
2660 	 * In the long term, we'll store the compression type in the super
2661 	 * block, and it'll be used for per file compression control.
2662 	 */
2663 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2664 
2665 	ret = btrfs_parse_options(tree_root, options);
2666 	if (ret) {
2667 		err = ret;
2668 		goto fail_alloc;
2669 	}
2670 
2671 	features = btrfs_super_incompat_flags(disk_super) &
2672 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2673 	if (features) {
2674 		printk(KERN_ERR "BTRFS: couldn't mount because of "
2675 		       "unsupported optional features (%Lx).\n",
2676 		       features);
2677 		err = -EINVAL;
2678 		goto fail_alloc;
2679 	}
2680 
2681 	/*
2682 	 * Leafsize and nodesize were always equal, this is only a sanity check.
2683 	 */
2684 	if (le32_to_cpu(disk_super->__unused_leafsize) !=
2685 	    btrfs_super_nodesize(disk_super)) {
2686 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2687 		       "blocksizes don't match.  node %d leaf %d\n",
2688 		       btrfs_super_nodesize(disk_super),
2689 		       le32_to_cpu(disk_super->__unused_leafsize));
2690 		err = -EINVAL;
2691 		goto fail_alloc;
2692 	}
2693 	if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2694 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2695 		       "blocksize (%d) was too large\n",
2696 		       btrfs_super_nodesize(disk_super));
2697 		err = -EINVAL;
2698 		goto fail_alloc;
2699 	}
2700 
2701 	features = btrfs_super_incompat_flags(disk_super);
2702 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2703 	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2704 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2705 
2706 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2707 		printk(KERN_INFO "BTRFS: has skinny extents\n");
2708 
2709 	/*
2710 	 * flag our filesystem as having big metadata blocks if
2711 	 * they are bigger than the page size
2712 	 */
2713 	if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2714 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2715 			printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2716 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2717 	}
2718 
2719 	nodesize = btrfs_super_nodesize(disk_super);
2720 	sectorsize = btrfs_super_sectorsize(disk_super);
2721 	stripesize = btrfs_super_stripesize(disk_super);
2722 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2723 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2724 
2725 	/*
2726 	 * mixed block groups end up with duplicate but slightly offset
2727 	 * extent buffers for the same range.  It leads to corruptions
2728 	 */
2729 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2730 	    (sectorsize != nodesize)) {
2731 		printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2732 				"are not allowed for mixed block groups on %s\n",
2733 				sb->s_id);
2734 		goto fail_alloc;
2735 	}
2736 
2737 	/*
2738 	 * Needn't use the lock because there is no other task which will
2739 	 * update the flag.
2740 	 */
2741 	btrfs_set_super_incompat_flags(disk_super, features);
2742 
2743 	features = btrfs_super_compat_ro_flags(disk_super) &
2744 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2745 	if (!(sb->s_flags & MS_RDONLY) && features) {
2746 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2747 		       "unsupported option features (%Lx).\n",
2748 		       features);
2749 		err = -EINVAL;
2750 		goto fail_alloc;
2751 	}
2752 
2753 	max_active = fs_info->thread_pool_size;
2754 
2755 	ret = btrfs_init_workqueues(fs_info, fs_devices);
2756 	if (ret) {
2757 		err = ret;
2758 		goto fail_sb_buffer;
2759 	}
2760 
2761 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2762 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2763 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2764 
2765 	tree_root->nodesize = nodesize;
2766 	tree_root->sectorsize = sectorsize;
2767 	tree_root->stripesize = stripesize;
2768 
2769 	sb->s_blocksize = sectorsize;
2770 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2771 
2772 	if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2773 		printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
2774 		goto fail_sb_buffer;
2775 	}
2776 
2777 	if (sectorsize != PAGE_SIZE) {
2778 		printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
2779 		       "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2780 		goto fail_sb_buffer;
2781 	}
2782 
2783 	mutex_lock(&fs_info->chunk_mutex);
2784 	ret = btrfs_read_sys_array(tree_root);
2785 	mutex_unlock(&fs_info->chunk_mutex);
2786 	if (ret) {
2787 		printk(KERN_ERR "BTRFS: failed to read the system "
2788 		       "array on %s\n", sb->s_id);
2789 		goto fail_sb_buffer;
2790 	}
2791 
2792 	generation = btrfs_super_chunk_root_generation(disk_super);
2793 
2794 	__setup_root(nodesize, sectorsize, stripesize, chunk_root,
2795 		     fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2796 
2797 	chunk_root->node = read_tree_block(chunk_root,
2798 					   btrfs_super_chunk_root(disk_super),
2799 					   generation);
2800 	if (!chunk_root->node ||
2801 	    !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2802 		printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2803 		       sb->s_id);
2804 		goto fail_tree_roots;
2805 	}
2806 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2807 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2808 
2809 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2810 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2811 
2812 	ret = btrfs_read_chunk_tree(chunk_root);
2813 	if (ret) {
2814 		printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2815 		       sb->s_id);
2816 		goto fail_tree_roots;
2817 	}
2818 
2819 	/*
2820 	 * keep the device that is marked to be the target device for the
2821 	 * dev_replace procedure
2822 	 */
2823 	btrfs_close_extra_devices(fs_devices, 0);
2824 
2825 	if (!fs_devices->latest_bdev) {
2826 		printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2827 		       sb->s_id);
2828 		goto fail_tree_roots;
2829 	}
2830 
2831 retry_root_backup:
2832 	generation = btrfs_super_generation(disk_super);
2833 
2834 	tree_root->node = read_tree_block(tree_root,
2835 					  btrfs_super_root(disk_super),
2836 					  generation);
2837 	if (!tree_root->node ||
2838 	    !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2839 		printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2840 		       sb->s_id);
2841 
2842 		goto recovery_tree_root;
2843 	}
2844 
2845 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2846 	tree_root->commit_root = btrfs_root_node(tree_root);
2847 	btrfs_set_root_refs(&tree_root->root_item, 1);
2848 
2849 	ret = btrfs_read_roots(fs_info, tree_root);
2850 	if (ret)
2851 		goto recovery_tree_root;
2852 
2853 	fs_info->generation = generation;
2854 	fs_info->last_trans_committed = generation;
2855 
2856 	ret = btrfs_recover_balance(fs_info);
2857 	if (ret) {
2858 		printk(KERN_ERR "BTRFS: failed to recover balance\n");
2859 		goto fail_block_groups;
2860 	}
2861 
2862 	ret = btrfs_init_dev_stats(fs_info);
2863 	if (ret) {
2864 		printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2865 		       ret);
2866 		goto fail_block_groups;
2867 	}
2868 
2869 	ret = btrfs_init_dev_replace(fs_info);
2870 	if (ret) {
2871 		pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2872 		goto fail_block_groups;
2873 	}
2874 
2875 	btrfs_close_extra_devices(fs_devices, 1);
2876 
2877 	ret = btrfs_sysfs_add_one(fs_info);
2878 	if (ret) {
2879 		pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2880 		goto fail_block_groups;
2881 	}
2882 
2883 	ret = btrfs_init_space_info(fs_info);
2884 	if (ret) {
2885 		printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2886 		goto fail_sysfs;
2887 	}
2888 
2889 	ret = btrfs_read_block_groups(fs_info->extent_root);
2890 	if (ret) {
2891 		printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2892 		goto fail_sysfs;
2893 	}
2894 	fs_info->num_tolerated_disk_barrier_failures =
2895 		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2896 	if (fs_info->fs_devices->missing_devices >
2897 	     fs_info->num_tolerated_disk_barrier_failures &&
2898 	    !(sb->s_flags & MS_RDONLY)) {
2899 		printk(KERN_WARNING "BTRFS: "
2900 			"too many missing devices, writeable mount is not allowed\n");
2901 		goto fail_sysfs;
2902 	}
2903 
2904 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2905 					       "btrfs-cleaner");
2906 	if (IS_ERR(fs_info->cleaner_kthread))
2907 		goto fail_sysfs;
2908 
2909 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2910 						   tree_root,
2911 						   "btrfs-transaction");
2912 	if (IS_ERR(fs_info->transaction_kthread))
2913 		goto fail_cleaner;
2914 
2915 	if (!btrfs_test_opt(tree_root, SSD) &&
2916 	    !btrfs_test_opt(tree_root, NOSSD) &&
2917 	    !fs_info->fs_devices->rotating) {
2918 		printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2919 		       "mode\n");
2920 		btrfs_set_opt(fs_info->mount_opt, SSD);
2921 	}
2922 
2923 	/*
2924 	 * Mount does not set all options immediatelly, we can do it now and do
2925 	 * not have to wait for transaction commit
2926 	 */
2927 	btrfs_apply_pending_changes(fs_info);
2928 
2929 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2930 	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2931 		ret = btrfsic_mount(tree_root, fs_devices,
2932 				    btrfs_test_opt(tree_root,
2933 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2934 				    1 : 0,
2935 				    fs_info->check_integrity_print_mask);
2936 		if (ret)
2937 			printk(KERN_WARNING "BTRFS: failed to initialize"
2938 			       " integrity check module %s\n", sb->s_id);
2939 	}
2940 #endif
2941 	ret = btrfs_read_qgroup_config(fs_info);
2942 	if (ret)
2943 		goto fail_trans_kthread;
2944 
2945 	/* do not make disk changes in broken FS */
2946 	if (btrfs_super_log_root(disk_super) != 0) {
2947 		ret = btrfs_replay_log(fs_info, fs_devices);
2948 		if (ret) {
2949 			err = ret;
2950 			goto fail_qgroup;
2951 		}
2952 	}
2953 
2954 	ret = btrfs_find_orphan_roots(tree_root);
2955 	if (ret)
2956 		goto fail_qgroup;
2957 
2958 	if (!(sb->s_flags & MS_RDONLY)) {
2959 		ret = btrfs_cleanup_fs_roots(fs_info);
2960 		if (ret)
2961 			goto fail_qgroup;
2962 
2963 		mutex_lock(&fs_info->cleaner_mutex);
2964 		ret = btrfs_recover_relocation(tree_root);
2965 		mutex_unlock(&fs_info->cleaner_mutex);
2966 		if (ret < 0) {
2967 			printk(KERN_WARNING
2968 			       "BTRFS: failed to recover relocation\n");
2969 			err = -EINVAL;
2970 			goto fail_qgroup;
2971 		}
2972 	}
2973 
2974 	location.objectid = BTRFS_FS_TREE_OBJECTID;
2975 	location.type = BTRFS_ROOT_ITEM_KEY;
2976 	location.offset = 0;
2977 
2978 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2979 	if (IS_ERR(fs_info->fs_root)) {
2980 		err = PTR_ERR(fs_info->fs_root);
2981 		goto fail_qgroup;
2982 	}
2983 
2984 	if (sb->s_flags & MS_RDONLY)
2985 		return 0;
2986 
2987 	down_read(&fs_info->cleanup_work_sem);
2988 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2989 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2990 		up_read(&fs_info->cleanup_work_sem);
2991 		close_ctree(tree_root);
2992 		return ret;
2993 	}
2994 	up_read(&fs_info->cleanup_work_sem);
2995 
2996 	ret = btrfs_resume_balance_async(fs_info);
2997 	if (ret) {
2998 		printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2999 		close_ctree(tree_root);
3000 		return ret;
3001 	}
3002 
3003 	ret = btrfs_resume_dev_replace_async(fs_info);
3004 	if (ret) {
3005 		pr_warn("BTRFS: failed to resume dev_replace\n");
3006 		close_ctree(tree_root);
3007 		return ret;
3008 	}
3009 
3010 	btrfs_qgroup_rescan_resume(fs_info);
3011 
3012 	if (!fs_info->uuid_root) {
3013 		pr_info("BTRFS: creating UUID tree\n");
3014 		ret = btrfs_create_uuid_tree(fs_info);
3015 		if (ret) {
3016 			pr_warn("BTRFS: failed to create the UUID tree %d\n",
3017 				ret);
3018 			close_ctree(tree_root);
3019 			return ret;
3020 		}
3021 	} else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3022 		   fs_info->generation !=
3023 				btrfs_super_uuid_tree_generation(disk_super)) {
3024 		pr_info("BTRFS: checking UUID tree\n");
3025 		ret = btrfs_check_uuid_tree(fs_info);
3026 		if (ret) {
3027 			pr_warn("BTRFS: failed to check the UUID tree %d\n",
3028 				ret);
3029 			close_ctree(tree_root);
3030 			return ret;
3031 		}
3032 	} else {
3033 		fs_info->update_uuid_tree_gen = 1;
3034 	}
3035 
3036 	fs_info->open = 1;
3037 
3038 	return 0;
3039 
3040 fail_qgroup:
3041 	btrfs_free_qgroup_config(fs_info);
3042 fail_trans_kthread:
3043 	kthread_stop(fs_info->transaction_kthread);
3044 	btrfs_cleanup_transaction(fs_info->tree_root);
3045 	btrfs_free_fs_roots(fs_info);
3046 fail_cleaner:
3047 	kthread_stop(fs_info->cleaner_kthread);
3048 
3049 	/*
3050 	 * make sure we're done with the btree inode before we stop our
3051 	 * kthreads
3052 	 */
3053 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3054 
3055 fail_sysfs:
3056 	btrfs_sysfs_remove_one(fs_info);
3057 
3058 fail_block_groups:
3059 	btrfs_put_block_group_cache(fs_info);
3060 	btrfs_free_block_groups(fs_info);
3061 
3062 fail_tree_roots:
3063 	free_root_pointers(fs_info, 1);
3064 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3065 
3066 fail_sb_buffer:
3067 	btrfs_stop_all_workers(fs_info);
3068 fail_alloc:
3069 fail_iput:
3070 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3071 
3072 	iput(fs_info->btree_inode);
3073 fail_bio_counter:
3074 	percpu_counter_destroy(&fs_info->bio_counter);
3075 fail_delalloc_bytes:
3076 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3077 fail_dirty_metadata_bytes:
3078 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3079 fail_bdi:
3080 	bdi_destroy(&fs_info->bdi);
3081 fail_srcu:
3082 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3083 fail:
3084 	btrfs_free_stripe_hash_table(fs_info);
3085 	btrfs_close_devices(fs_info->fs_devices);
3086 	return err;
3087 
3088 recovery_tree_root:
3089 	if (!btrfs_test_opt(tree_root, RECOVERY))
3090 		goto fail_tree_roots;
3091 
3092 	free_root_pointers(fs_info, 0);
3093 
3094 	/* don't use the log in recovery mode, it won't be valid */
3095 	btrfs_set_super_log_root(disk_super, 0);
3096 
3097 	/* we can't trust the free space cache either */
3098 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3099 
3100 	ret = next_root_backup(fs_info, fs_info->super_copy,
3101 			       &num_backups_tried, &backup_index);
3102 	if (ret == -1)
3103 		goto fail_block_groups;
3104 	goto retry_root_backup;
3105 }
3106 
3107 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3108 {
3109 	if (uptodate) {
3110 		set_buffer_uptodate(bh);
3111 	} else {
3112 		struct btrfs_device *device = (struct btrfs_device *)
3113 			bh->b_private;
3114 
3115 		printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3116 					  "I/O error on %s\n",
3117 					  rcu_str_deref(device->name));
3118 		/* note, we dont' set_buffer_write_io_error because we have
3119 		 * our own ways of dealing with the IO errors
3120 		 */
3121 		clear_buffer_uptodate(bh);
3122 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3123 	}
3124 	unlock_buffer(bh);
3125 	put_bh(bh);
3126 }
3127 
3128 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3129 {
3130 	struct buffer_head *bh;
3131 	struct buffer_head *latest = NULL;
3132 	struct btrfs_super_block *super;
3133 	int i;
3134 	u64 transid = 0;
3135 	u64 bytenr;
3136 
3137 	/* we would like to check all the supers, but that would make
3138 	 * a btrfs mount succeed after a mkfs from a different FS.
3139 	 * So, we need to add a special mount option to scan for
3140 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3141 	 */
3142 	for (i = 0; i < 1; i++) {
3143 		bytenr = btrfs_sb_offset(i);
3144 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3145 					i_size_read(bdev->bd_inode))
3146 			break;
3147 		bh = __bread(bdev, bytenr / 4096,
3148 					BTRFS_SUPER_INFO_SIZE);
3149 		if (!bh)
3150 			continue;
3151 
3152 		super = (struct btrfs_super_block *)bh->b_data;
3153 		if (btrfs_super_bytenr(super) != bytenr ||
3154 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3155 			brelse(bh);
3156 			continue;
3157 		}
3158 
3159 		if (!latest || btrfs_super_generation(super) > transid) {
3160 			brelse(latest);
3161 			latest = bh;
3162 			transid = btrfs_super_generation(super);
3163 		} else {
3164 			brelse(bh);
3165 		}
3166 	}
3167 	return latest;
3168 }
3169 
3170 /*
3171  * this should be called twice, once with wait == 0 and
3172  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3173  * we write are pinned.
3174  *
3175  * They are released when wait == 1 is done.
3176  * max_mirrors must be the same for both runs, and it indicates how
3177  * many supers on this one device should be written.
3178  *
3179  * max_mirrors == 0 means to write them all.
3180  */
3181 static int write_dev_supers(struct btrfs_device *device,
3182 			    struct btrfs_super_block *sb,
3183 			    int do_barriers, int wait, int max_mirrors)
3184 {
3185 	struct buffer_head *bh;
3186 	int i;
3187 	int ret;
3188 	int errors = 0;
3189 	u32 crc;
3190 	u64 bytenr;
3191 
3192 	if (max_mirrors == 0)
3193 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3194 
3195 	for (i = 0; i < max_mirrors; i++) {
3196 		bytenr = btrfs_sb_offset(i);
3197 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3198 		    device->commit_total_bytes)
3199 			break;
3200 
3201 		if (wait) {
3202 			bh = __find_get_block(device->bdev, bytenr / 4096,
3203 					      BTRFS_SUPER_INFO_SIZE);
3204 			if (!bh) {
3205 				errors++;
3206 				continue;
3207 			}
3208 			wait_on_buffer(bh);
3209 			if (!buffer_uptodate(bh))
3210 				errors++;
3211 
3212 			/* drop our reference */
3213 			brelse(bh);
3214 
3215 			/* drop the reference from the wait == 0 run */
3216 			brelse(bh);
3217 			continue;
3218 		} else {
3219 			btrfs_set_super_bytenr(sb, bytenr);
3220 
3221 			crc = ~(u32)0;
3222 			crc = btrfs_csum_data((char *)sb +
3223 					      BTRFS_CSUM_SIZE, crc,
3224 					      BTRFS_SUPER_INFO_SIZE -
3225 					      BTRFS_CSUM_SIZE);
3226 			btrfs_csum_final(crc, sb->csum);
3227 
3228 			/*
3229 			 * one reference for us, and we leave it for the
3230 			 * caller
3231 			 */
3232 			bh = __getblk(device->bdev, bytenr / 4096,
3233 				      BTRFS_SUPER_INFO_SIZE);
3234 			if (!bh) {
3235 				printk(KERN_ERR "BTRFS: couldn't get super "
3236 				       "buffer head for bytenr %Lu\n", bytenr);
3237 				errors++;
3238 				continue;
3239 			}
3240 
3241 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3242 
3243 			/* one reference for submit_bh */
3244 			get_bh(bh);
3245 
3246 			set_buffer_uptodate(bh);
3247 			lock_buffer(bh);
3248 			bh->b_end_io = btrfs_end_buffer_write_sync;
3249 			bh->b_private = device;
3250 		}
3251 
3252 		/*
3253 		 * we fua the first super.  The others we allow
3254 		 * to go down lazy.
3255 		 */
3256 		if (i == 0)
3257 			ret = btrfsic_submit_bh(WRITE_FUA, bh);
3258 		else
3259 			ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3260 		if (ret)
3261 			errors++;
3262 	}
3263 	return errors < i ? 0 : -1;
3264 }
3265 
3266 /*
3267  * endio for the write_dev_flush, this will wake anyone waiting
3268  * for the barrier when it is done
3269  */
3270 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3271 {
3272 	if (err) {
3273 		if (err == -EOPNOTSUPP)
3274 			set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3275 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
3276 	}
3277 	if (bio->bi_private)
3278 		complete(bio->bi_private);
3279 	bio_put(bio);
3280 }
3281 
3282 /*
3283  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3284  * sent down.  With wait == 1, it waits for the previous flush.
3285  *
3286  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3287  * capable
3288  */
3289 static int write_dev_flush(struct btrfs_device *device, int wait)
3290 {
3291 	struct bio *bio;
3292 	int ret = 0;
3293 
3294 	if (device->nobarriers)
3295 		return 0;
3296 
3297 	if (wait) {
3298 		bio = device->flush_bio;
3299 		if (!bio)
3300 			return 0;
3301 
3302 		wait_for_completion(&device->flush_wait);
3303 
3304 		if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3305 			printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3306 				      rcu_str_deref(device->name));
3307 			device->nobarriers = 1;
3308 		} else if (!bio_flagged(bio, BIO_UPTODATE)) {
3309 			ret = -EIO;
3310 			btrfs_dev_stat_inc_and_print(device,
3311 				BTRFS_DEV_STAT_FLUSH_ERRS);
3312 		}
3313 
3314 		/* drop the reference from the wait == 0 run */
3315 		bio_put(bio);
3316 		device->flush_bio = NULL;
3317 
3318 		return ret;
3319 	}
3320 
3321 	/*
3322 	 * one reference for us, and we leave it for the
3323 	 * caller
3324 	 */
3325 	device->flush_bio = NULL;
3326 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3327 	if (!bio)
3328 		return -ENOMEM;
3329 
3330 	bio->bi_end_io = btrfs_end_empty_barrier;
3331 	bio->bi_bdev = device->bdev;
3332 	init_completion(&device->flush_wait);
3333 	bio->bi_private = &device->flush_wait;
3334 	device->flush_bio = bio;
3335 
3336 	bio_get(bio);
3337 	btrfsic_submit_bio(WRITE_FLUSH, bio);
3338 
3339 	return 0;
3340 }
3341 
3342 /*
3343  * send an empty flush down to each device in parallel,
3344  * then wait for them
3345  */
3346 static int barrier_all_devices(struct btrfs_fs_info *info)
3347 {
3348 	struct list_head *head;
3349 	struct btrfs_device *dev;
3350 	int errors_send = 0;
3351 	int errors_wait = 0;
3352 	int ret;
3353 
3354 	/* send down all the barriers */
3355 	head = &info->fs_devices->devices;
3356 	list_for_each_entry_rcu(dev, head, dev_list) {
3357 		if (dev->missing)
3358 			continue;
3359 		if (!dev->bdev) {
3360 			errors_send++;
3361 			continue;
3362 		}
3363 		if (!dev->in_fs_metadata || !dev->writeable)
3364 			continue;
3365 
3366 		ret = write_dev_flush(dev, 0);
3367 		if (ret)
3368 			errors_send++;
3369 	}
3370 
3371 	/* wait for all the barriers */
3372 	list_for_each_entry_rcu(dev, head, dev_list) {
3373 		if (dev->missing)
3374 			continue;
3375 		if (!dev->bdev) {
3376 			errors_wait++;
3377 			continue;
3378 		}
3379 		if (!dev->in_fs_metadata || !dev->writeable)
3380 			continue;
3381 
3382 		ret = write_dev_flush(dev, 1);
3383 		if (ret)
3384 			errors_wait++;
3385 	}
3386 	if (errors_send > info->num_tolerated_disk_barrier_failures ||
3387 	    errors_wait > info->num_tolerated_disk_barrier_failures)
3388 		return -EIO;
3389 	return 0;
3390 }
3391 
3392 int btrfs_calc_num_tolerated_disk_barrier_failures(
3393 	struct btrfs_fs_info *fs_info)
3394 {
3395 	struct btrfs_ioctl_space_info space;
3396 	struct btrfs_space_info *sinfo;
3397 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3398 		       BTRFS_BLOCK_GROUP_SYSTEM,
3399 		       BTRFS_BLOCK_GROUP_METADATA,
3400 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3401 	int num_types = 4;
3402 	int i;
3403 	int c;
3404 	int num_tolerated_disk_barrier_failures =
3405 		(int)fs_info->fs_devices->num_devices;
3406 
3407 	for (i = 0; i < num_types; i++) {
3408 		struct btrfs_space_info *tmp;
3409 
3410 		sinfo = NULL;
3411 		rcu_read_lock();
3412 		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3413 			if (tmp->flags == types[i]) {
3414 				sinfo = tmp;
3415 				break;
3416 			}
3417 		}
3418 		rcu_read_unlock();
3419 
3420 		if (!sinfo)
3421 			continue;
3422 
3423 		down_read(&sinfo->groups_sem);
3424 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3425 			if (!list_empty(&sinfo->block_groups[c])) {
3426 				u64 flags;
3427 
3428 				btrfs_get_block_group_info(
3429 					&sinfo->block_groups[c], &space);
3430 				if (space.total_bytes == 0 ||
3431 				    space.used_bytes == 0)
3432 					continue;
3433 				flags = space.flags;
3434 				/*
3435 				 * return
3436 				 * 0: if dup, single or RAID0 is configured for
3437 				 *    any of metadata, system or data, else
3438 				 * 1: if RAID5 is configured, or if RAID1 or
3439 				 *    RAID10 is configured and only two mirrors
3440 				 *    are used, else
3441 				 * 2: if RAID6 is configured, else
3442 				 * num_mirrors - 1: if RAID1 or RAID10 is
3443 				 *                  configured and more than
3444 				 *                  2 mirrors are used.
3445 				 */
3446 				if (num_tolerated_disk_barrier_failures > 0 &&
3447 				    ((flags & (BTRFS_BLOCK_GROUP_DUP |
3448 					       BTRFS_BLOCK_GROUP_RAID0)) ||
3449 				     ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3450 				      == 0)))
3451 					num_tolerated_disk_barrier_failures = 0;
3452 				else if (num_tolerated_disk_barrier_failures > 1) {
3453 					if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3454 					    BTRFS_BLOCK_GROUP_RAID5 |
3455 					    BTRFS_BLOCK_GROUP_RAID10)) {
3456 						num_tolerated_disk_barrier_failures = 1;
3457 					} else if (flags &
3458 						   BTRFS_BLOCK_GROUP_RAID6) {
3459 						num_tolerated_disk_barrier_failures = 2;
3460 					}
3461 				}
3462 			}
3463 		}
3464 		up_read(&sinfo->groups_sem);
3465 	}
3466 
3467 	return num_tolerated_disk_barrier_failures;
3468 }
3469 
3470 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3471 {
3472 	struct list_head *head;
3473 	struct btrfs_device *dev;
3474 	struct btrfs_super_block *sb;
3475 	struct btrfs_dev_item *dev_item;
3476 	int ret;
3477 	int do_barriers;
3478 	int max_errors;
3479 	int total_errors = 0;
3480 	u64 flags;
3481 
3482 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
3483 	backup_super_roots(root->fs_info);
3484 
3485 	sb = root->fs_info->super_for_commit;
3486 	dev_item = &sb->dev_item;
3487 
3488 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3489 	head = &root->fs_info->fs_devices->devices;
3490 	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3491 
3492 	if (do_barriers) {
3493 		ret = barrier_all_devices(root->fs_info);
3494 		if (ret) {
3495 			mutex_unlock(
3496 				&root->fs_info->fs_devices->device_list_mutex);
3497 			btrfs_error(root->fs_info, ret,
3498 				    "errors while submitting device barriers.");
3499 			return ret;
3500 		}
3501 	}
3502 
3503 	list_for_each_entry_rcu(dev, head, dev_list) {
3504 		if (!dev->bdev) {
3505 			total_errors++;
3506 			continue;
3507 		}
3508 		if (!dev->in_fs_metadata || !dev->writeable)
3509 			continue;
3510 
3511 		btrfs_set_stack_device_generation(dev_item, 0);
3512 		btrfs_set_stack_device_type(dev_item, dev->type);
3513 		btrfs_set_stack_device_id(dev_item, dev->devid);
3514 		btrfs_set_stack_device_total_bytes(dev_item,
3515 						   dev->commit_total_bytes);
3516 		btrfs_set_stack_device_bytes_used(dev_item,
3517 						  dev->commit_bytes_used);
3518 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3519 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3520 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3521 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3522 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3523 
3524 		flags = btrfs_super_flags(sb);
3525 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3526 
3527 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3528 		if (ret)
3529 			total_errors++;
3530 	}
3531 	if (total_errors > max_errors) {
3532 		btrfs_err(root->fs_info, "%d errors while writing supers",
3533 		       total_errors);
3534 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3535 
3536 		/* FUA is masked off if unsupported and can't be the reason */
3537 		btrfs_error(root->fs_info, -EIO,
3538 			    "%d errors while writing supers", total_errors);
3539 		return -EIO;
3540 	}
3541 
3542 	total_errors = 0;
3543 	list_for_each_entry_rcu(dev, head, dev_list) {
3544 		if (!dev->bdev)
3545 			continue;
3546 		if (!dev->in_fs_metadata || !dev->writeable)
3547 			continue;
3548 
3549 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3550 		if (ret)
3551 			total_errors++;
3552 	}
3553 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3554 	if (total_errors > max_errors) {
3555 		btrfs_error(root->fs_info, -EIO,
3556 			    "%d errors while writing supers", total_errors);
3557 		return -EIO;
3558 	}
3559 	return 0;
3560 }
3561 
3562 int write_ctree_super(struct btrfs_trans_handle *trans,
3563 		      struct btrfs_root *root, int max_mirrors)
3564 {
3565 	return write_all_supers(root, max_mirrors);
3566 }
3567 
3568 /* Drop a fs root from the radix tree and free it. */
3569 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3570 				  struct btrfs_root *root)
3571 {
3572 	spin_lock(&fs_info->fs_roots_radix_lock);
3573 	radix_tree_delete(&fs_info->fs_roots_radix,
3574 			  (unsigned long)root->root_key.objectid);
3575 	spin_unlock(&fs_info->fs_roots_radix_lock);
3576 
3577 	if (btrfs_root_refs(&root->root_item) == 0)
3578 		synchronize_srcu(&fs_info->subvol_srcu);
3579 
3580 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3581 		btrfs_free_log(NULL, root);
3582 
3583 	if (root->free_ino_pinned)
3584 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3585 	if (root->free_ino_ctl)
3586 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3587 	free_fs_root(root);
3588 }
3589 
3590 static void free_fs_root(struct btrfs_root *root)
3591 {
3592 	iput(root->ino_cache_inode);
3593 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3594 	btrfs_free_block_rsv(root, root->orphan_block_rsv);
3595 	root->orphan_block_rsv = NULL;
3596 	if (root->anon_dev)
3597 		free_anon_bdev(root->anon_dev);
3598 	if (root->subv_writers)
3599 		btrfs_free_subvolume_writers(root->subv_writers);
3600 	free_extent_buffer(root->node);
3601 	free_extent_buffer(root->commit_root);
3602 	kfree(root->free_ino_ctl);
3603 	kfree(root->free_ino_pinned);
3604 	kfree(root->name);
3605 	btrfs_put_fs_root(root);
3606 }
3607 
3608 void btrfs_free_fs_root(struct btrfs_root *root)
3609 {
3610 	free_fs_root(root);
3611 }
3612 
3613 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3614 {
3615 	u64 root_objectid = 0;
3616 	struct btrfs_root *gang[8];
3617 	int i = 0;
3618 	int err = 0;
3619 	unsigned int ret = 0;
3620 	int index;
3621 
3622 	while (1) {
3623 		index = srcu_read_lock(&fs_info->subvol_srcu);
3624 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3625 					     (void **)gang, root_objectid,
3626 					     ARRAY_SIZE(gang));
3627 		if (!ret) {
3628 			srcu_read_unlock(&fs_info->subvol_srcu, index);
3629 			break;
3630 		}
3631 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3632 
3633 		for (i = 0; i < ret; i++) {
3634 			/* Avoid to grab roots in dead_roots */
3635 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3636 				gang[i] = NULL;
3637 				continue;
3638 			}
3639 			/* grab all the search result for later use */
3640 			gang[i] = btrfs_grab_fs_root(gang[i]);
3641 		}
3642 		srcu_read_unlock(&fs_info->subvol_srcu, index);
3643 
3644 		for (i = 0; i < ret; i++) {
3645 			if (!gang[i])
3646 				continue;
3647 			root_objectid = gang[i]->root_key.objectid;
3648 			err = btrfs_orphan_cleanup(gang[i]);
3649 			if (err)
3650 				break;
3651 			btrfs_put_fs_root(gang[i]);
3652 		}
3653 		root_objectid++;
3654 	}
3655 
3656 	/* release the uncleaned roots due to error */
3657 	for (; i < ret; i++) {
3658 		if (gang[i])
3659 			btrfs_put_fs_root(gang[i]);
3660 	}
3661 	return err;
3662 }
3663 
3664 int btrfs_commit_super(struct btrfs_root *root)
3665 {
3666 	struct btrfs_trans_handle *trans;
3667 
3668 	mutex_lock(&root->fs_info->cleaner_mutex);
3669 	btrfs_run_delayed_iputs(root);
3670 	mutex_unlock(&root->fs_info->cleaner_mutex);
3671 	wake_up_process(root->fs_info->cleaner_kthread);
3672 
3673 	/* wait until ongoing cleanup work done */
3674 	down_write(&root->fs_info->cleanup_work_sem);
3675 	up_write(&root->fs_info->cleanup_work_sem);
3676 
3677 	trans = btrfs_join_transaction(root);
3678 	if (IS_ERR(trans))
3679 		return PTR_ERR(trans);
3680 	return btrfs_commit_transaction(trans, root);
3681 }
3682 
3683 void close_ctree(struct btrfs_root *root)
3684 {
3685 	struct btrfs_fs_info *fs_info = root->fs_info;
3686 	int ret;
3687 
3688 	fs_info->closing = 1;
3689 	smp_mb();
3690 
3691 	/* wait for the uuid_scan task to finish */
3692 	down(&fs_info->uuid_tree_rescan_sem);
3693 	/* avoid complains from lockdep et al., set sem back to initial state */
3694 	up(&fs_info->uuid_tree_rescan_sem);
3695 
3696 	/* pause restriper - we want to resume on mount */
3697 	btrfs_pause_balance(fs_info);
3698 
3699 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3700 
3701 	btrfs_scrub_cancel(fs_info);
3702 
3703 	/* wait for any defraggers to finish */
3704 	wait_event(fs_info->transaction_wait,
3705 		   (atomic_read(&fs_info->defrag_running) == 0));
3706 
3707 	/* clear out the rbtree of defraggable inodes */
3708 	btrfs_cleanup_defrag_inodes(fs_info);
3709 
3710 	cancel_work_sync(&fs_info->async_reclaim_work);
3711 
3712 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3713 		ret = btrfs_commit_super(root);
3714 		if (ret)
3715 			btrfs_err(fs_info, "commit super ret %d", ret);
3716 	}
3717 
3718 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3719 		btrfs_error_commit_super(root);
3720 
3721 	kthread_stop(fs_info->transaction_kthread);
3722 	kthread_stop(fs_info->cleaner_kthread);
3723 
3724 	fs_info->closing = 2;
3725 	smp_mb();
3726 
3727 	btrfs_free_qgroup_config(fs_info);
3728 
3729 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3730 		btrfs_info(fs_info, "at unmount delalloc count %lld",
3731 		       percpu_counter_sum(&fs_info->delalloc_bytes));
3732 	}
3733 
3734 	btrfs_sysfs_remove_one(fs_info);
3735 
3736 	btrfs_free_fs_roots(fs_info);
3737 
3738 	btrfs_put_block_group_cache(fs_info);
3739 
3740 	btrfs_free_block_groups(fs_info);
3741 
3742 	/*
3743 	 * we must make sure there is not any read request to
3744 	 * submit after we stopping all workers.
3745 	 */
3746 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3747 	btrfs_stop_all_workers(fs_info);
3748 
3749 	fs_info->open = 0;
3750 	free_root_pointers(fs_info, 1);
3751 
3752 	iput(fs_info->btree_inode);
3753 
3754 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3755 	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3756 		btrfsic_unmount(root, fs_info->fs_devices);
3757 #endif
3758 
3759 	btrfs_close_devices(fs_info->fs_devices);
3760 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3761 
3762 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3763 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3764 	percpu_counter_destroy(&fs_info->bio_counter);
3765 	bdi_destroy(&fs_info->bdi);
3766 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3767 
3768 	btrfs_free_stripe_hash_table(fs_info);
3769 
3770 	__btrfs_free_block_rsv(root->orphan_block_rsv);
3771 	root->orphan_block_rsv = NULL;
3772 
3773 	lock_chunks(root);
3774 	while (!list_empty(&fs_info->pinned_chunks)) {
3775 		struct extent_map *em;
3776 
3777 		em = list_first_entry(&fs_info->pinned_chunks,
3778 				      struct extent_map, list);
3779 		list_del_init(&em->list);
3780 		free_extent_map(em);
3781 	}
3782 	unlock_chunks(root);
3783 }
3784 
3785 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3786 			  int atomic)
3787 {
3788 	int ret;
3789 	struct inode *btree_inode = buf->pages[0]->mapping->host;
3790 
3791 	ret = extent_buffer_uptodate(buf);
3792 	if (!ret)
3793 		return ret;
3794 
3795 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3796 				    parent_transid, atomic);
3797 	if (ret == -EAGAIN)
3798 		return ret;
3799 	return !ret;
3800 }
3801 
3802 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3803 {
3804 	return set_extent_buffer_uptodate(buf);
3805 }
3806 
3807 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3808 {
3809 	struct btrfs_root *root;
3810 	u64 transid = btrfs_header_generation(buf);
3811 	int was_dirty;
3812 
3813 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3814 	/*
3815 	 * This is a fast path so only do this check if we have sanity tests
3816 	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3817 	 * outside of the sanity tests.
3818 	 */
3819 	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3820 		return;
3821 #endif
3822 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3823 	btrfs_assert_tree_locked(buf);
3824 	if (transid != root->fs_info->generation)
3825 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3826 		       "found %llu running %llu\n",
3827 			buf->start, transid, root->fs_info->generation);
3828 	was_dirty = set_extent_buffer_dirty(buf);
3829 	if (!was_dirty)
3830 		__percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3831 				     buf->len,
3832 				     root->fs_info->dirty_metadata_batch);
3833 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3834 	if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3835 		btrfs_print_leaf(root, buf);
3836 		ASSERT(0);
3837 	}
3838 #endif
3839 }
3840 
3841 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3842 					int flush_delayed)
3843 {
3844 	/*
3845 	 * looks as though older kernels can get into trouble with
3846 	 * this code, they end up stuck in balance_dirty_pages forever
3847 	 */
3848 	int ret;
3849 
3850 	if (current->flags & PF_MEMALLOC)
3851 		return;
3852 
3853 	if (flush_delayed)
3854 		btrfs_balance_delayed_items(root);
3855 
3856 	ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3857 				     BTRFS_DIRTY_METADATA_THRESH);
3858 	if (ret > 0) {
3859 		balance_dirty_pages_ratelimited(
3860 				   root->fs_info->btree_inode->i_mapping);
3861 	}
3862 	return;
3863 }
3864 
3865 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3866 {
3867 	__btrfs_btree_balance_dirty(root, 1);
3868 }
3869 
3870 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3871 {
3872 	__btrfs_btree_balance_dirty(root, 0);
3873 }
3874 
3875 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3876 {
3877 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3878 	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3879 }
3880 
3881 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3882 			      int read_only)
3883 {
3884 	struct btrfs_super_block *sb = fs_info->super_copy;
3885 	int ret = 0;
3886 
3887 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3888 		printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
3889 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
3890 		ret = -EINVAL;
3891 	}
3892 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3893 		printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
3894 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
3895 		ret = -EINVAL;
3896 	}
3897 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3898 		printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
3899 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
3900 		ret = -EINVAL;
3901 	}
3902 
3903 	/*
3904 	 * The common minimum, we don't know if we can trust the nodesize/sectorsize
3905 	 * items yet, they'll be verified later. Issue just a warning.
3906 	 */
3907 	if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
3908 		printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
3909 				btrfs_super_root(sb));
3910 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
3911 		printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
3912 				btrfs_super_chunk_root(sb));
3913 	if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
3914 		printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
3915 				btrfs_super_log_root(sb));
3916 
3917 	/*
3918 	 * Check the lower bound, the alignment and other constraints are
3919 	 * checked later.
3920 	 */
3921 	if (btrfs_super_nodesize(sb) < 4096) {
3922 		printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
3923 				btrfs_super_nodesize(sb));
3924 		ret = -EINVAL;
3925 	}
3926 	if (btrfs_super_sectorsize(sb) < 4096) {
3927 		printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
3928 				btrfs_super_sectorsize(sb));
3929 		ret = -EINVAL;
3930 	}
3931 
3932 	if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
3933 		printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
3934 				fs_info->fsid, sb->dev_item.fsid);
3935 		ret = -EINVAL;
3936 	}
3937 
3938 	/*
3939 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
3940 	 * done later
3941 	 */
3942 	if (btrfs_super_num_devices(sb) > (1UL << 31))
3943 		printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
3944 				btrfs_super_num_devices(sb));
3945 	if (btrfs_super_num_devices(sb) == 0) {
3946 		printk(KERN_ERR "BTRFS: number of devices is 0\n");
3947 		ret = -EINVAL;
3948 	}
3949 
3950 	if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
3951 		printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
3952 				btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
3953 		ret = -EINVAL;
3954 	}
3955 
3956 	/*
3957 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
3958 	 * and one chunk
3959 	 */
3960 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
3961 		printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
3962 				btrfs_super_sys_array_size(sb),
3963 				BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
3964 		ret = -EINVAL;
3965 	}
3966 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
3967 			+ sizeof(struct btrfs_chunk)) {
3968 		printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
3969 				btrfs_super_sys_array_size(sb),
3970 				sizeof(struct btrfs_disk_key)
3971 				+ sizeof(struct btrfs_chunk));
3972 		ret = -EINVAL;
3973 	}
3974 
3975 	/*
3976 	 * The generation is a global counter, we'll trust it more than the others
3977 	 * but it's still possible that it's the one that's wrong.
3978 	 */
3979 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
3980 		printk(KERN_WARNING
3981 			"BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
3982 			btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
3983 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
3984 	    && btrfs_super_cache_generation(sb) != (u64)-1)
3985 		printk(KERN_WARNING
3986 			"BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
3987 			btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
3988 
3989 	return ret;
3990 }
3991 
3992 static void btrfs_error_commit_super(struct btrfs_root *root)
3993 {
3994 	mutex_lock(&root->fs_info->cleaner_mutex);
3995 	btrfs_run_delayed_iputs(root);
3996 	mutex_unlock(&root->fs_info->cleaner_mutex);
3997 
3998 	down_write(&root->fs_info->cleanup_work_sem);
3999 	up_write(&root->fs_info->cleanup_work_sem);
4000 
4001 	/* cleanup FS via transaction */
4002 	btrfs_cleanup_transaction(root);
4003 }
4004 
4005 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4006 {
4007 	struct btrfs_ordered_extent *ordered;
4008 
4009 	spin_lock(&root->ordered_extent_lock);
4010 	/*
4011 	 * This will just short circuit the ordered completion stuff which will
4012 	 * make sure the ordered extent gets properly cleaned up.
4013 	 */
4014 	list_for_each_entry(ordered, &root->ordered_extents,
4015 			    root_extent_list)
4016 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4017 	spin_unlock(&root->ordered_extent_lock);
4018 }
4019 
4020 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4021 {
4022 	struct btrfs_root *root;
4023 	struct list_head splice;
4024 
4025 	INIT_LIST_HEAD(&splice);
4026 
4027 	spin_lock(&fs_info->ordered_root_lock);
4028 	list_splice_init(&fs_info->ordered_roots, &splice);
4029 	while (!list_empty(&splice)) {
4030 		root = list_first_entry(&splice, struct btrfs_root,
4031 					ordered_root);
4032 		list_move_tail(&root->ordered_root,
4033 			       &fs_info->ordered_roots);
4034 
4035 		spin_unlock(&fs_info->ordered_root_lock);
4036 		btrfs_destroy_ordered_extents(root);
4037 
4038 		cond_resched();
4039 		spin_lock(&fs_info->ordered_root_lock);
4040 	}
4041 	spin_unlock(&fs_info->ordered_root_lock);
4042 }
4043 
4044 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4045 				      struct btrfs_root *root)
4046 {
4047 	struct rb_node *node;
4048 	struct btrfs_delayed_ref_root *delayed_refs;
4049 	struct btrfs_delayed_ref_node *ref;
4050 	int ret = 0;
4051 
4052 	delayed_refs = &trans->delayed_refs;
4053 
4054 	spin_lock(&delayed_refs->lock);
4055 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4056 		spin_unlock(&delayed_refs->lock);
4057 		btrfs_info(root->fs_info, "delayed_refs has NO entry");
4058 		return ret;
4059 	}
4060 
4061 	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4062 		struct btrfs_delayed_ref_head *head;
4063 		bool pin_bytes = false;
4064 
4065 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4066 				href_node);
4067 		if (!mutex_trylock(&head->mutex)) {
4068 			atomic_inc(&head->node.refs);
4069 			spin_unlock(&delayed_refs->lock);
4070 
4071 			mutex_lock(&head->mutex);
4072 			mutex_unlock(&head->mutex);
4073 			btrfs_put_delayed_ref(&head->node);
4074 			spin_lock(&delayed_refs->lock);
4075 			continue;
4076 		}
4077 		spin_lock(&head->lock);
4078 		while ((node = rb_first(&head->ref_root)) != NULL) {
4079 			ref = rb_entry(node, struct btrfs_delayed_ref_node,
4080 				       rb_node);
4081 			ref->in_tree = 0;
4082 			rb_erase(&ref->rb_node, &head->ref_root);
4083 			atomic_dec(&delayed_refs->num_entries);
4084 			btrfs_put_delayed_ref(ref);
4085 		}
4086 		if (head->must_insert_reserved)
4087 			pin_bytes = true;
4088 		btrfs_free_delayed_extent_op(head->extent_op);
4089 		delayed_refs->num_heads--;
4090 		if (head->processing == 0)
4091 			delayed_refs->num_heads_ready--;
4092 		atomic_dec(&delayed_refs->num_entries);
4093 		head->node.in_tree = 0;
4094 		rb_erase(&head->href_node, &delayed_refs->href_root);
4095 		spin_unlock(&head->lock);
4096 		spin_unlock(&delayed_refs->lock);
4097 		mutex_unlock(&head->mutex);
4098 
4099 		if (pin_bytes)
4100 			btrfs_pin_extent(root, head->node.bytenr,
4101 					 head->node.num_bytes, 1);
4102 		btrfs_put_delayed_ref(&head->node);
4103 		cond_resched();
4104 		spin_lock(&delayed_refs->lock);
4105 	}
4106 
4107 	spin_unlock(&delayed_refs->lock);
4108 
4109 	return ret;
4110 }
4111 
4112 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4113 {
4114 	struct btrfs_inode *btrfs_inode;
4115 	struct list_head splice;
4116 
4117 	INIT_LIST_HEAD(&splice);
4118 
4119 	spin_lock(&root->delalloc_lock);
4120 	list_splice_init(&root->delalloc_inodes, &splice);
4121 
4122 	while (!list_empty(&splice)) {
4123 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4124 					       delalloc_inodes);
4125 
4126 		list_del_init(&btrfs_inode->delalloc_inodes);
4127 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4128 			  &btrfs_inode->runtime_flags);
4129 		spin_unlock(&root->delalloc_lock);
4130 
4131 		btrfs_invalidate_inodes(btrfs_inode->root);
4132 
4133 		spin_lock(&root->delalloc_lock);
4134 	}
4135 
4136 	spin_unlock(&root->delalloc_lock);
4137 }
4138 
4139 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4140 {
4141 	struct btrfs_root *root;
4142 	struct list_head splice;
4143 
4144 	INIT_LIST_HEAD(&splice);
4145 
4146 	spin_lock(&fs_info->delalloc_root_lock);
4147 	list_splice_init(&fs_info->delalloc_roots, &splice);
4148 	while (!list_empty(&splice)) {
4149 		root = list_first_entry(&splice, struct btrfs_root,
4150 					 delalloc_root);
4151 		list_del_init(&root->delalloc_root);
4152 		root = btrfs_grab_fs_root(root);
4153 		BUG_ON(!root);
4154 		spin_unlock(&fs_info->delalloc_root_lock);
4155 
4156 		btrfs_destroy_delalloc_inodes(root);
4157 		btrfs_put_fs_root(root);
4158 
4159 		spin_lock(&fs_info->delalloc_root_lock);
4160 	}
4161 	spin_unlock(&fs_info->delalloc_root_lock);
4162 }
4163 
4164 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4165 					struct extent_io_tree *dirty_pages,
4166 					int mark)
4167 {
4168 	int ret;
4169 	struct extent_buffer *eb;
4170 	u64 start = 0;
4171 	u64 end;
4172 
4173 	while (1) {
4174 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4175 					    mark, NULL);
4176 		if (ret)
4177 			break;
4178 
4179 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4180 		while (start <= end) {
4181 			eb = btrfs_find_tree_block(root->fs_info, start);
4182 			start += root->nodesize;
4183 			if (!eb)
4184 				continue;
4185 			wait_on_extent_buffer_writeback(eb);
4186 
4187 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4188 					       &eb->bflags))
4189 				clear_extent_buffer_dirty(eb);
4190 			free_extent_buffer_stale(eb);
4191 		}
4192 	}
4193 
4194 	return ret;
4195 }
4196 
4197 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4198 				       struct extent_io_tree *pinned_extents)
4199 {
4200 	struct extent_io_tree *unpin;
4201 	u64 start;
4202 	u64 end;
4203 	int ret;
4204 	bool loop = true;
4205 
4206 	unpin = pinned_extents;
4207 again:
4208 	while (1) {
4209 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4210 					    EXTENT_DIRTY, NULL);
4211 		if (ret)
4212 			break;
4213 
4214 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
4215 		btrfs_error_unpin_extent_range(root, start, end);
4216 		cond_resched();
4217 	}
4218 
4219 	if (loop) {
4220 		if (unpin == &root->fs_info->freed_extents[0])
4221 			unpin = &root->fs_info->freed_extents[1];
4222 		else
4223 			unpin = &root->fs_info->freed_extents[0];
4224 		loop = false;
4225 		goto again;
4226 	}
4227 
4228 	return 0;
4229 }
4230 
4231 static void btrfs_free_pending_ordered(struct btrfs_transaction *cur_trans,
4232 				       struct btrfs_fs_info *fs_info)
4233 {
4234 	struct btrfs_ordered_extent *ordered;
4235 
4236 	spin_lock(&fs_info->trans_lock);
4237 	while (!list_empty(&cur_trans->pending_ordered)) {
4238 		ordered = list_first_entry(&cur_trans->pending_ordered,
4239 					   struct btrfs_ordered_extent,
4240 					   trans_list);
4241 		list_del_init(&ordered->trans_list);
4242 		spin_unlock(&fs_info->trans_lock);
4243 
4244 		btrfs_put_ordered_extent(ordered);
4245 		spin_lock(&fs_info->trans_lock);
4246 	}
4247 	spin_unlock(&fs_info->trans_lock);
4248 }
4249 
4250 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4251 				   struct btrfs_root *root)
4252 {
4253 	btrfs_destroy_delayed_refs(cur_trans, root);
4254 
4255 	cur_trans->state = TRANS_STATE_COMMIT_START;
4256 	wake_up(&root->fs_info->transaction_blocked_wait);
4257 
4258 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4259 	wake_up(&root->fs_info->transaction_wait);
4260 
4261 	btrfs_free_pending_ordered(cur_trans, root->fs_info);
4262 	btrfs_destroy_delayed_inodes(root);
4263 	btrfs_assert_delayed_root_empty(root);
4264 
4265 	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4266 				     EXTENT_DIRTY);
4267 	btrfs_destroy_pinned_extent(root,
4268 				    root->fs_info->pinned_extents);
4269 
4270 	cur_trans->state =TRANS_STATE_COMPLETED;
4271 	wake_up(&cur_trans->commit_wait);
4272 
4273 	/*
4274 	memset(cur_trans, 0, sizeof(*cur_trans));
4275 	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4276 	*/
4277 }
4278 
4279 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4280 {
4281 	struct btrfs_transaction *t;
4282 
4283 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
4284 
4285 	spin_lock(&root->fs_info->trans_lock);
4286 	while (!list_empty(&root->fs_info->trans_list)) {
4287 		t = list_first_entry(&root->fs_info->trans_list,
4288 				     struct btrfs_transaction, list);
4289 		if (t->state >= TRANS_STATE_COMMIT_START) {
4290 			atomic_inc(&t->use_count);
4291 			spin_unlock(&root->fs_info->trans_lock);
4292 			btrfs_wait_for_commit(root, t->transid);
4293 			btrfs_put_transaction(t);
4294 			spin_lock(&root->fs_info->trans_lock);
4295 			continue;
4296 		}
4297 		if (t == root->fs_info->running_transaction) {
4298 			t->state = TRANS_STATE_COMMIT_DOING;
4299 			spin_unlock(&root->fs_info->trans_lock);
4300 			/*
4301 			 * We wait for 0 num_writers since we don't hold a trans
4302 			 * handle open currently for this transaction.
4303 			 */
4304 			wait_event(t->writer_wait,
4305 				   atomic_read(&t->num_writers) == 0);
4306 		} else {
4307 			spin_unlock(&root->fs_info->trans_lock);
4308 		}
4309 		btrfs_cleanup_one_transaction(t, root);
4310 
4311 		spin_lock(&root->fs_info->trans_lock);
4312 		if (t == root->fs_info->running_transaction)
4313 			root->fs_info->running_transaction = NULL;
4314 		list_del_init(&t->list);
4315 		spin_unlock(&root->fs_info->trans_lock);
4316 
4317 		btrfs_put_transaction(t);
4318 		trace_btrfs_transaction_commit(root);
4319 		spin_lock(&root->fs_info->trans_lock);
4320 	}
4321 	spin_unlock(&root->fs_info->trans_lock);
4322 	btrfs_destroy_all_ordered_extents(root->fs_info);
4323 	btrfs_destroy_delayed_inodes(root);
4324 	btrfs_assert_delayed_root_empty(root);
4325 	btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4326 	btrfs_destroy_all_delalloc_inodes(root->fs_info);
4327 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4328 
4329 	return 0;
4330 }
4331 
4332 static const struct extent_io_ops btree_extent_io_ops = {
4333 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4334 	.readpage_io_failed_hook = btree_io_failed_hook,
4335 	.submit_bio_hook = btree_submit_bio_hook,
4336 	/* note we're sharing with inode.c for the merge bio hook */
4337 	.merge_bio_hook = btrfs_merge_bio_hook,
4338 };
4339