xref: /openbmc/linux/fs/btrfs/disk-io.c (revision 293d5b43)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "hash.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "compression.h"
53 
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57 
58 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
59 				 BTRFS_HEADER_FLAG_RELOC |\
60 				 BTRFS_SUPER_FLAG_ERROR |\
61 				 BTRFS_SUPER_FLAG_SEEDING |\
62 				 BTRFS_SUPER_FLAG_METADUMP)
63 
64 static const struct extent_io_ops btree_extent_io_ops;
65 static void end_workqueue_fn(struct btrfs_work *work);
66 static void free_fs_root(struct btrfs_root *root);
67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
68 				    int read_only);
69 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71 				      struct btrfs_root *root);
72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
73 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
74 					struct extent_io_tree *dirty_pages,
75 					int mark);
76 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
77 				       struct extent_io_tree *pinned_extents);
78 static int btrfs_cleanup_transaction(struct btrfs_root *root);
79 static void btrfs_error_commit_super(struct btrfs_root *root);
80 
81 /*
82  * btrfs_end_io_wq structs are used to do processing in task context when an IO
83  * is complete.  This is used during reads to verify checksums, and it is used
84  * by writes to insert metadata for new file extents after IO is complete.
85  */
86 struct btrfs_end_io_wq {
87 	struct bio *bio;
88 	bio_end_io_t *end_io;
89 	void *private;
90 	struct btrfs_fs_info *info;
91 	int error;
92 	enum btrfs_wq_endio_type metadata;
93 	struct list_head list;
94 	struct btrfs_work work;
95 };
96 
97 static struct kmem_cache *btrfs_end_io_wq_cache;
98 
99 int __init btrfs_end_io_wq_init(void)
100 {
101 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102 					sizeof(struct btrfs_end_io_wq),
103 					0,
104 					SLAB_MEM_SPREAD,
105 					NULL);
106 	if (!btrfs_end_io_wq_cache)
107 		return -ENOMEM;
108 	return 0;
109 }
110 
111 void btrfs_end_io_wq_exit(void)
112 {
113 	kmem_cache_destroy(btrfs_end_io_wq_cache);
114 }
115 
116 /*
117  * async submit bios are used to offload expensive checksumming
118  * onto the worker threads.  They checksum file and metadata bios
119  * just before they are sent down the IO stack.
120  */
121 struct async_submit_bio {
122 	struct inode *inode;
123 	struct bio *bio;
124 	struct list_head list;
125 	extent_submit_bio_hook_t *submit_bio_start;
126 	extent_submit_bio_hook_t *submit_bio_done;
127 	int mirror_num;
128 	unsigned long bio_flags;
129 	/*
130 	 * bio_offset is optional, can be used if the pages in the bio
131 	 * can't tell us where in the file the bio should go
132 	 */
133 	u64 bio_offset;
134 	struct btrfs_work work;
135 	int error;
136 };
137 
138 /*
139  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
140  * eb, the lockdep key is determined by the btrfs_root it belongs to and
141  * the level the eb occupies in the tree.
142  *
143  * Different roots are used for different purposes and may nest inside each
144  * other and they require separate keysets.  As lockdep keys should be
145  * static, assign keysets according to the purpose of the root as indicated
146  * by btrfs_root->objectid.  This ensures that all special purpose roots
147  * have separate keysets.
148  *
149  * Lock-nesting across peer nodes is always done with the immediate parent
150  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
151  * subclass to avoid triggering lockdep warning in such cases.
152  *
153  * The key is set by the readpage_end_io_hook after the buffer has passed
154  * csum validation but before the pages are unlocked.  It is also set by
155  * btrfs_init_new_buffer on freshly allocated blocks.
156  *
157  * We also add a check to make sure the highest level of the tree is the
158  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
159  * needs update as well.
160  */
161 #ifdef CONFIG_DEBUG_LOCK_ALLOC
162 # if BTRFS_MAX_LEVEL != 8
163 #  error
164 # endif
165 
166 static struct btrfs_lockdep_keyset {
167 	u64			id;		/* root objectid */
168 	const char		*name_stem;	/* lock name stem */
169 	char			names[BTRFS_MAX_LEVEL + 1][20];
170 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
171 } btrfs_lockdep_keysets[] = {
172 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
173 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
174 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
175 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
176 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
177 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
178 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
179 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
180 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
181 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
182 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
183 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
184 	{ .id = 0,				.name_stem = "tree"	},
185 };
186 
187 void __init btrfs_init_lockdep(void)
188 {
189 	int i, j;
190 
191 	/* initialize lockdep class names */
192 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
193 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
194 
195 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
196 			snprintf(ks->names[j], sizeof(ks->names[j]),
197 				 "btrfs-%s-%02d", ks->name_stem, j);
198 	}
199 }
200 
201 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
202 				    int level)
203 {
204 	struct btrfs_lockdep_keyset *ks;
205 
206 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
207 
208 	/* find the matching keyset, id 0 is the default entry */
209 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
210 		if (ks->id == objectid)
211 			break;
212 
213 	lockdep_set_class_and_name(&eb->lock,
214 				   &ks->keys[level], ks->names[level]);
215 }
216 
217 #endif
218 
219 /*
220  * extents on the btree inode are pretty simple, there's one extent
221  * that covers the entire device
222  */
223 static struct extent_map *btree_get_extent(struct inode *inode,
224 		struct page *page, size_t pg_offset, u64 start, u64 len,
225 		int create)
226 {
227 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
228 	struct extent_map *em;
229 	int ret;
230 
231 	read_lock(&em_tree->lock);
232 	em = lookup_extent_mapping(em_tree, start, len);
233 	if (em) {
234 		em->bdev =
235 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
236 		read_unlock(&em_tree->lock);
237 		goto out;
238 	}
239 	read_unlock(&em_tree->lock);
240 
241 	em = alloc_extent_map();
242 	if (!em) {
243 		em = ERR_PTR(-ENOMEM);
244 		goto out;
245 	}
246 	em->start = 0;
247 	em->len = (u64)-1;
248 	em->block_len = (u64)-1;
249 	em->block_start = 0;
250 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
251 
252 	write_lock(&em_tree->lock);
253 	ret = add_extent_mapping(em_tree, em, 0);
254 	if (ret == -EEXIST) {
255 		free_extent_map(em);
256 		em = lookup_extent_mapping(em_tree, start, len);
257 		if (!em)
258 			em = ERR_PTR(-EIO);
259 	} else if (ret) {
260 		free_extent_map(em);
261 		em = ERR_PTR(ret);
262 	}
263 	write_unlock(&em_tree->lock);
264 
265 out:
266 	return em;
267 }
268 
269 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
270 {
271 	return btrfs_crc32c(seed, data, len);
272 }
273 
274 void btrfs_csum_final(u32 crc, char *result)
275 {
276 	put_unaligned_le32(~crc, result);
277 }
278 
279 /*
280  * compute the csum for a btree block, and either verify it or write it
281  * into the csum field of the block.
282  */
283 static int csum_tree_block(struct btrfs_fs_info *fs_info,
284 			   struct extent_buffer *buf,
285 			   int verify)
286 {
287 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
288 	char *result = NULL;
289 	unsigned long len;
290 	unsigned long cur_len;
291 	unsigned long offset = BTRFS_CSUM_SIZE;
292 	char *kaddr;
293 	unsigned long map_start;
294 	unsigned long map_len;
295 	int err;
296 	u32 crc = ~(u32)0;
297 	unsigned long inline_result;
298 
299 	len = buf->len - offset;
300 	while (len > 0) {
301 		err = map_private_extent_buffer(buf, offset, 32,
302 					&kaddr, &map_start, &map_len);
303 		if (err)
304 			return err;
305 		cur_len = min(len, map_len - (offset - map_start));
306 		crc = btrfs_csum_data(kaddr + offset - map_start,
307 				      crc, cur_len);
308 		len -= cur_len;
309 		offset += cur_len;
310 	}
311 	if (csum_size > sizeof(inline_result)) {
312 		result = kzalloc(csum_size, GFP_NOFS);
313 		if (!result)
314 			return -ENOMEM;
315 	} else {
316 		result = (char *)&inline_result;
317 	}
318 
319 	btrfs_csum_final(crc, result);
320 
321 	if (verify) {
322 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
323 			u32 val;
324 			u32 found = 0;
325 			memcpy(&found, result, csum_size);
326 
327 			read_extent_buffer(buf, &val, 0, csum_size);
328 			btrfs_warn_rl(fs_info,
329 				"%s checksum verify failed on %llu wanted %X found %X "
330 				"level %d",
331 				fs_info->sb->s_id, buf->start,
332 				val, found, btrfs_header_level(buf));
333 			if (result != (char *)&inline_result)
334 				kfree(result);
335 			return -EUCLEAN;
336 		}
337 	} else {
338 		write_extent_buffer(buf, result, 0, csum_size);
339 	}
340 	if (result != (char *)&inline_result)
341 		kfree(result);
342 	return 0;
343 }
344 
345 /*
346  * we can't consider a given block up to date unless the transid of the
347  * block matches the transid in the parent node's pointer.  This is how we
348  * detect blocks that either didn't get written at all or got written
349  * in the wrong place.
350  */
351 static int verify_parent_transid(struct extent_io_tree *io_tree,
352 				 struct extent_buffer *eb, u64 parent_transid,
353 				 int atomic)
354 {
355 	struct extent_state *cached_state = NULL;
356 	int ret;
357 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
358 
359 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
360 		return 0;
361 
362 	if (atomic)
363 		return -EAGAIN;
364 
365 	if (need_lock) {
366 		btrfs_tree_read_lock(eb);
367 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
368 	}
369 
370 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
371 			 &cached_state);
372 	if (extent_buffer_uptodate(eb) &&
373 	    btrfs_header_generation(eb) == parent_transid) {
374 		ret = 0;
375 		goto out;
376 	}
377 	btrfs_err_rl(eb->fs_info,
378 		"parent transid verify failed on %llu wanted %llu found %llu",
379 			eb->start,
380 			parent_transid, btrfs_header_generation(eb));
381 	ret = 1;
382 
383 	/*
384 	 * Things reading via commit roots that don't have normal protection,
385 	 * like send, can have a really old block in cache that may point at a
386 	 * block that has been freed and re-allocated.  So don't clear uptodate
387 	 * if we find an eb that is under IO (dirty/writeback) because we could
388 	 * end up reading in the stale data and then writing it back out and
389 	 * making everybody very sad.
390 	 */
391 	if (!extent_buffer_under_io(eb))
392 		clear_extent_buffer_uptodate(eb);
393 out:
394 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
395 			     &cached_state, GFP_NOFS);
396 	if (need_lock)
397 		btrfs_tree_read_unlock_blocking(eb);
398 	return ret;
399 }
400 
401 /*
402  * Return 0 if the superblock checksum type matches the checksum value of that
403  * algorithm. Pass the raw disk superblock data.
404  */
405 static int btrfs_check_super_csum(char *raw_disk_sb)
406 {
407 	struct btrfs_super_block *disk_sb =
408 		(struct btrfs_super_block *)raw_disk_sb;
409 	u16 csum_type = btrfs_super_csum_type(disk_sb);
410 	int ret = 0;
411 
412 	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
413 		u32 crc = ~(u32)0;
414 		const int csum_size = sizeof(crc);
415 		char result[csum_size];
416 
417 		/*
418 		 * The super_block structure does not span the whole
419 		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
420 		 * is filled with zeros and is included in the checksum.
421 		 */
422 		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
423 				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
424 		btrfs_csum_final(crc, result);
425 
426 		if (memcmp(raw_disk_sb, result, csum_size))
427 			ret = 1;
428 	}
429 
430 	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
431 		printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
432 				csum_type);
433 		ret = 1;
434 	}
435 
436 	return ret;
437 }
438 
439 /*
440  * helper to read a given tree block, doing retries as required when
441  * the checksums don't match and we have alternate mirrors to try.
442  */
443 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
444 					  struct extent_buffer *eb,
445 					  u64 start, u64 parent_transid)
446 {
447 	struct extent_io_tree *io_tree;
448 	int failed = 0;
449 	int ret;
450 	int num_copies = 0;
451 	int mirror_num = 0;
452 	int failed_mirror = 0;
453 
454 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
455 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
456 	while (1) {
457 		ret = read_extent_buffer_pages(io_tree, eb, start,
458 					       WAIT_COMPLETE,
459 					       btree_get_extent, mirror_num);
460 		if (!ret) {
461 			if (!verify_parent_transid(io_tree, eb,
462 						   parent_transid, 0))
463 				break;
464 			else
465 				ret = -EIO;
466 		}
467 
468 		/*
469 		 * This buffer's crc is fine, but its contents are corrupted, so
470 		 * there is no reason to read the other copies, they won't be
471 		 * any less wrong.
472 		 */
473 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
474 			break;
475 
476 		num_copies = btrfs_num_copies(root->fs_info,
477 					      eb->start, eb->len);
478 		if (num_copies == 1)
479 			break;
480 
481 		if (!failed_mirror) {
482 			failed = 1;
483 			failed_mirror = eb->read_mirror;
484 		}
485 
486 		mirror_num++;
487 		if (mirror_num == failed_mirror)
488 			mirror_num++;
489 
490 		if (mirror_num > num_copies)
491 			break;
492 	}
493 
494 	if (failed && !ret && failed_mirror)
495 		repair_eb_io_failure(root, eb, failed_mirror);
496 
497 	return ret;
498 }
499 
500 /*
501  * checksum a dirty tree block before IO.  This has extra checks to make sure
502  * we only fill in the checksum field in the first page of a multi-page block
503  */
504 
505 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
506 {
507 	u64 start = page_offset(page);
508 	u64 found_start;
509 	struct extent_buffer *eb;
510 
511 	eb = (struct extent_buffer *)page->private;
512 	if (page != eb->pages[0])
513 		return 0;
514 
515 	found_start = btrfs_header_bytenr(eb);
516 	/*
517 	 * Please do not consolidate these warnings into a single if.
518 	 * It is useful to know what went wrong.
519 	 */
520 	if (WARN_ON(found_start != start))
521 		return -EUCLEAN;
522 	if (WARN_ON(!PageUptodate(page)))
523 		return -EUCLEAN;
524 
525 	ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
526 			btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
527 
528 	return csum_tree_block(fs_info, eb, 0);
529 }
530 
531 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
532 				 struct extent_buffer *eb)
533 {
534 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
535 	u8 fsid[BTRFS_UUID_SIZE];
536 	int ret = 1;
537 
538 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
539 	while (fs_devices) {
540 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
541 			ret = 0;
542 			break;
543 		}
544 		fs_devices = fs_devices->seed;
545 	}
546 	return ret;
547 }
548 
549 #define CORRUPT(reason, eb, root, slot)				\
550 	btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"	\
551 		   "root=%llu, slot=%d", reason,			\
552 	       btrfs_header_bytenr(eb),	root->objectid, slot)
553 
554 static noinline int check_leaf(struct btrfs_root *root,
555 			       struct extent_buffer *leaf)
556 {
557 	struct btrfs_key key;
558 	struct btrfs_key leaf_key;
559 	u32 nritems = btrfs_header_nritems(leaf);
560 	int slot;
561 
562 	if (nritems == 0)
563 		return 0;
564 
565 	/* Check the 0 item */
566 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
567 	    BTRFS_LEAF_DATA_SIZE(root)) {
568 		CORRUPT("invalid item offset size pair", leaf, root, 0);
569 		return -EIO;
570 	}
571 
572 	/*
573 	 * Check to make sure each items keys are in the correct order and their
574 	 * offsets make sense.  We only have to loop through nritems-1 because
575 	 * we check the current slot against the next slot, which verifies the
576 	 * next slot's offset+size makes sense and that the current's slot
577 	 * offset is correct.
578 	 */
579 	for (slot = 0; slot < nritems - 1; slot++) {
580 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
581 		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
582 
583 		/* Make sure the keys are in the right order */
584 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
585 			CORRUPT("bad key order", leaf, root, slot);
586 			return -EIO;
587 		}
588 
589 		/*
590 		 * Make sure the offset and ends are right, remember that the
591 		 * item data starts at the end of the leaf and grows towards the
592 		 * front.
593 		 */
594 		if (btrfs_item_offset_nr(leaf, slot) !=
595 			btrfs_item_end_nr(leaf, slot + 1)) {
596 			CORRUPT("slot offset bad", leaf, root, slot);
597 			return -EIO;
598 		}
599 
600 		/*
601 		 * Check to make sure that we don't point outside of the leaf,
602 		 * just in case all the items are consistent to each other, but
603 		 * all point outside of the leaf.
604 		 */
605 		if (btrfs_item_end_nr(leaf, slot) >
606 		    BTRFS_LEAF_DATA_SIZE(root)) {
607 			CORRUPT("slot end outside of leaf", leaf, root, slot);
608 			return -EIO;
609 		}
610 	}
611 
612 	return 0;
613 }
614 
615 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
616 				      u64 phy_offset, struct page *page,
617 				      u64 start, u64 end, int mirror)
618 {
619 	u64 found_start;
620 	int found_level;
621 	struct extent_buffer *eb;
622 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
623 	struct btrfs_fs_info *fs_info = root->fs_info;
624 	int ret = 0;
625 	int reads_done;
626 
627 	if (!page->private)
628 		goto out;
629 
630 	eb = (struct extent_buffer *)page->private;
631 
632 	/* the pending IO might have been the only thing that kept this buffer
633 	 * in memory.  Make sure we have a ref for all this other checks
634 	 */
635 	extent_buffer_get(eb);
636 
637 	reads_done = atomic_dec_and_test(&eb->io_pages);
638 	if (!reads_done)
639 		goto err;
640 
641 	eb->read_mirror = mirror;
642 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
643 		ret = -EIO;
644 		goto err;
645 	}
646 
647 	found_start = btrfs_header_bytenr(eb);
648 	if (found_start != eb->start) {
649 		btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
650 			     found_start, eb->start);
651 		ret = -EIO;
652 		goto err;
653 	}
654 	if (check_tree_block_fsid(fs_info, eb)) {
655 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
656 			     eb->start);
657 		ret = -EIO;
658 		goto err;
659 	}
660 	found_level = btrfs_header_level(eb);
661 	if (found_level >= BTRFS_MAX_LEVEL) {
662 		btrfs_err(fs_info, "bad tree block level %d",
663 			  (int)btrfs_header_level(eb));
664 		ret = -EIO;
665 		goto err;
666 	}
667 
668 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
669 				       eb, found_level);
670 
671 	ret = csum_tree_block(fs_info, eb, 1);
672 	if (ret)
673 		goto err;
674 
675 	/*
676 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
677 	 * that we don't try and read the other copies of this block, just
678 	 * return -EIO.
679 	 */
680 	if (found_level == 0 && check_leaf(root, eb)) {
681 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
682 		ret = -EIO;
683 	}
684 
685 	if (!ret)
686 		set_extent_buffer_uptodate(eb);
687 err:
688 	if (reads_done &&
689 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
690 		btree_readahead_hook(fs_info, eb, eb->start, ret);
691 
692 	if (ret) {
693 		/*
694 		 * our io error hook is going to dec the io pages
695 		 * again, we have to make sure it has something
696 		 * to decrement
697 		 */
698 		atomic_inc(&eb->io_pages);
699 		clear_extent_buffer_uptodate(eb);
700 	}
701 	free_extent_buffer(eb);
702 out:
703 	return ret;
704 }
705 
706 static int btree_io_failed_hook(struct page *page, int failed_mirror)
707 {
708 	struct extent_buffer *eb;
709 
710 	eb = (struct extent_buffer *)page->private;
711 	set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
712 	eb->read_mirror = failed_mirror;
713 	atomic_dec(&eb->io_pages);
714 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
715 		btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
716 	return -EIO;	/* we fixed nothing */
717 }
718 
719 static void end_workqueue_bio(struct bio *bio)
720 {
721 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
722 	struct btrfs_fs_info *fs_info;
723 	struct btrfs_workqueue *wq;
724 	btrfs_work_func_t func;
725 
726 	fs_info = end_io_wq->info;
727 	end_io_wq->error = bio->bi_error;
728 
729 	if (bio_op(bio) == REQ_OP_WRITE) {
730 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
731 			wq = fs_info->endio_meta_write_workers;
732 			func = btrfs_endio_meta_write_helper;
733 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
734 			wq = fs_info->endio_freespace_worker;
735 			func = btrfs_freespace_write_helper;
736 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
737 			wq = fs_info->endio_raid56_workers;
738 			func = btrfs_endio_raid56_helper;
739 		} else {
740 			wq = fs_info->endio_write_workers;
741 			func = btrfs_endio_write_helper;
742 		}
743 	} else {
744 		if (unlikely(end_io_wq->metadata ==
745 			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
746 			wq = fs_info->endio_repair_workers;
747 			func = btrfs_endio_repair_helper;
748 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
749 			wq = fs_info->endio_raid56_workers;
750 			func = btrfs_endio_raid56_helper;
751 		} else if (end_io_wq->metadata) {
752 			wq = fs_info->endio_meta_workers;
753 			func = btrfs_endio_meta_helper;
754 		} else {
755 			wq = fs_info->endio_workers;
756 			func = btrfs_endio_helper;
757 		}
758 	}
759 
760 	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
761 	btrfs_queue_work(wq, &end_io_wq->work);
762 }
763 
764 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
765 			enum btrfs_wq_endio_type metadata)
766 {
767 	struct btrfs_end_io_wq *end_io_wq;
768 
769 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
770 	if (!end_io_wq)
771 		return -ENOMEM;
772 
773 	end_io_wq->private = bio->bi_private;
774 	end_io_wq->end_io = bio->bi_end_io;
775 	end_io_wq->info = info;
776 	end_io_wq->error = 0;
777 	end_io_wq->bio = bio;
778 	end_io_wq->metadata = metadata;
779 
780 	bio->bi_private = end_io_wq;
781 	bio->bi_end_io = end_workqueue_bio;
782 	return 0;
783 }
784 
785 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
786 {
787 	unsigned long limit = min_t(unsigned long,
788 				    info->thread_pool_size,
789 				    info->fs_devices->open_devices);
790 	return 256 * limit;
791 }
792 
793 static void run_one_async_start(struct btrfs_work *work)
794 {
795 	struct async_submit_bio *async;
796 	int ret;
797 
798 	async = container_of(work, struct  async_submit_bio, work);
799 	ret = async->submit_bio_start(async->inode, async->bio,
800 				      async->mirror_num, async->bio_flags,
801 				      async->bio_offset);
802 	if (ret)
803 		async->error = ret;
804 }
805 
806 static void run_one_async_done(struct btrfs_work *work)
807 {
808 	struct btrfs_fs_info *fs_info;
809 	struct async_submit_bio *async;
810 	int limit;
811 
812 	async = container_of(work, struct  async_submit_bio, work);
813 	fs_info = BTRFS_I(async->inode)->root->fs_info;
814 
815 	limit = btrfs_async_submit_limit(fs_info);
816 	limit = limit * 2 / 3;
817 
818 	/*
819 	 * atomic_dec_return implies a barrier for waitqueue_active
820 	 */
821 	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
822 	    waitqueue_active(&fs_info->async_submit_wait))
823 		wake_up(&fs_info->async_submit_wait);
824 
825 	/* If an error occurred we just want to clean up the bio and move on */
826 	if (async->error) {
827 		async->bio->bi_error = async->error;
828 		bio_endio(async->bio);
829 		return;
830 	}
831 
832 	async->submit_bio_done(async->inode, async->bio, async->mirror_num,
833 			       async->bio_flags, async->bio_offset);
834 }
835 
836 static void run_one_async_free(struct btrfs_work *work)
837 {
838 	struct async_submit_bio *async;
839 
840 	async = container_of(work, struct  async_submit_bio, work);
841 	kfree(async);
842 }
843 
844 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
845 			struct bio *bio, int mirror_num,
846 			unsigned long bio_flags,
847 			u64 bio_offset,
848 			extent_submit_bio_hook_t *submit_bio_start,
849 			extent_submit_bio_hook_t *submit_bio_done)
850 {
851 	struct async_submit_bio *async;
852 
853 	async = kmalloc(sizeof(*async), GFP_NOFS);
854 	if (!async)
855 		return -ENOMEM;
856 
857 	async->inode = inode;
858 	async->bio = bio;
859 	async->mirror_num = mirror_num;
860 	async->submit_bio_start = submit_bio_start;
861 	async->submit_bio_done = submit_bio_done;
862 
863 	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
864 			run_one_async_done, run_one_async_free);
865 
866 	async->bio_flags = bio_flags;
867 	async->bio_offset = bio_offset;
868 
869 	async->error = 0;
870 
871 	atomic_inc(&fs_info->nr_async_submits);
872 
873 	if (bio->bi_opf & REQ_SYNC)
874 		btrfs_set_work_high_priority(&async->work);
875 
876 	btrfs_queue_work(fs_info->workers, &async->work);
877 
878 	while (atomic_read(&fs_info->async_submit_draining) &&
879 	      atomic_read(&fs_info->nr_async_submits)) {
880 		wait_event(fs_info->async_submit_wait,
881 			   (atomic_read(&fs_info->nr_async_submits) == 0));
882 	}
883 
884 	return 0;
885 }
886 
887 static int btree_csum_one_bio(struct bio *bio)
888 {
889 	struct bio_vec *bvec;
890 	struct btrfs_root *root;
891 	int i, ret = 0;
892 
893 	bio_for_each_segment_all(bvec, bio, i) {
894 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
895 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
896 		if (ret)
897 			break;
898 	}
899 
900 	return ret;
901 }
902 
903 static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
904 				    int mirror_num, unsigned long bio_flags,
905 				    u64 bio_offset)
906 {
907 	/*
908 	 * when we're called for a write, we're already in the async
909 	 * submission context.  Just jump into btrfs_map_bio
910 	 */
911 	return btree_csum_one_bio(bio);
912 }
913 
914 static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
915 				 int mirror_num, unsigned long bio_flags,
916 				 u64 bio_offset)
917 {
918 	int ret;
919 
920 	/*
921 	 * when we're called for a write, we're already in the async
922 	 * submission context.  Just jump into btrfs_map_bio
923 	 */
924 	ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 1);
925 	if (ret) {
926 		bio->bi_error = ret;
927 		bio_endio(bio);
928 	}
929 	return ret;
930 }
931 
932 static int check_async_write(struct inode *inode, unsigned long bio_flags)
933 {
934 	if (bio_flags & EXTENT_BIO_TREE_LOG)
935 		return 0;
936 #ifdef CONFIG_X86
937 	if (static_cpu_has(X86_FEATURE_XMM4_2))
938 		return 0;
939 #endif
940 	return 1;
941 }
942 
943 static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
944 				 int mirror_num, unsigned long bio_flags,
945 				 u64 bio_offset)
946 {
947 	int async = check_async_write(inode, bio_flags);
948 	int ret;
949 
950 	if (bio_op(bio) != REQ_OP_WRITE) {
951 		/*
952 		 * called for a read, do the setup so that checksum validation
953 		 * can happen in the async kernel threads
954 		 */
955 		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
956 					  bio, BTRFS_WQ_ENDIO_METADATA);
957 		if (ret)
958 			goto out_w_error;
959 		ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
960 	} else if (!async) {
961 		ret = btree_csum_one_bio(bio);
962 		if (ret)
963 			goto out_w_error;
964 		ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
965 	} else {
966 		/*
967 		 * kthread helpers are used to submit writes so that
968 		 * checksumming can happen in parallel across all CPUs
969 		 */
970 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
971 					  inode, bio, mirror_num, 0,
972 					  bio_offset,
973 					  __btree_submit_bio_start,
974 					  __btree_submit_bio_done);
975 	}
976 
977 	if (ret)
978 		goto out_w_error;
979 	return 0;
980 
981 out_w_error:
982 	bio->bi_error = ret;
983 	bio_endio(bio);
984 	return ret;
985 }
986 
987 #ifdef CONFIG_MIGRATION
988 static int btree_migratepage(struct address_space *mapping,
989 			struct page *newpage, struct page *page,
990 			enum migrate_mode mode)
991 {
992 	/*
993 	 * we can't safely write a btree page from here,
994 	 * we haven't done the locking hook
995 	 */
996 	if (PageDirty(page))
997 		return -EAGAIN;
998 	/*
999 	 * Buffers may be managed in a filesystem specific way.
1000 	 * We must have no buffers or drop them.
1001 	 */
1002 	if (page_has_private(page) &&
1003 	    !try_to_release_page(page, GFP_KERNEL))
1004 		return -EAGAIN;
1005 	return migrate_page(mapping, newpage, page, mode);
1006 }
1007 #endif
1008 
1009 
1010 static int btree_writepages(struct address_space *mapping,
1011 			    struct writeback_control *wbc)
1012 {
1013 	struct btrfs_fs_info *fs_info;
1014 	int ret;
1015 
1016 	if (wbc->sync_mode == WB_SYNC_NONE) {
1017 
1018 		if (wbc->for_kupdate)
1019 			return 0;
1020 
1021 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
1022 		/* this is a bit racy, but that's ok */
1023 		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1024 					     BTRFS_DIRTY_METADATA_THRESH);
1025 		if (ret < 0)
1026 			return 0;
1027 	}
1028 	return btree_write_cache_pages(mapping, wbc);
1029 }
1030 
1031 static int btree_readpage(struct file *file, struct page *page)
1032 {
1033 	struct extent_io_tree *tree;
1034 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1035 	return extent_read_full_page(tree, page, btree_get_extent, 0);
1036 }
1037 
1038 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1039 {
1040 	if (PageWriteback(page) || PageDirty(page))
1041 		return 0;
1042 
1043 	return try_release_extent_buffer(page);
1044 }
1045 
1046 static void btree_invalidatepage(struct page *page, unsigned int offset,
1047 				 unsigned int length)
1048 {
1049 	struct extent_io_tree *tree;
1050 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1051 	extent_invalidatepage(tree, page, offset);
1052 	btree_releasepage(page, GFP_NOFS);
1053 	if (PagePrivate(page)) {
1054 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1055 			   "page private not zero on page %llu",
1056 			   (unsigned long long)page_offset(page));
1057 		ClearPagePrivate(page);
1058 		set_page_private(page, 0);
1059 		put_page(page);
1060 	}
1061 }
1062 
1063 static int btree_set_page_dirty(struct page *page)
1064 {
1065 #ifdef DEBUG
1066 	struct extent_buffer *eb;
1067 
1068 	BUG_ON(!PagePrivate(page));
1069 	eb = (struct extent_buffer *)page->private;
1070 	BUG_ON(!eb);
1071 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1072 	BUG_ON(!atomic_read(&eb->refs));
1073 	btrfs_assert_tree_locked(eb);
1074 #endif
1075 	return __set_page_dirty_nobuffers(page);
1076 }
1077 
1078 static const struct address_space_operations btree_aops = {
1079 	.readpage	= btree_readpage,
1080 	.writepages	= btree_writepages,
1081 	.releasepage	= btree_releasepage,
1082 	.invalidatepage = btree_invalidatepage,
1083 #ifdef CONFIG_MIGRATION
1084 	.migratepage	= btree_migratepage,
1085 #endif
1086 	.set_page_dirty = btree_set_page_dirty,
1087 };
1088 
1089 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1090 {
1091 	struct extent_buffer *buf = NULL;
1092 	struct inode *btree_inode = root->fs_info->btree_inode;
1093 
1094 	buf = btrfs_find_create_tree_block(root, bytenr);
1095 	if (IS_ERR(buf))
1096 		return;
1097 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1098 				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1099 	free_extent_buffer(buf);
1100 }
1101 
1102 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1103 			 int mirror_num, struct extent_buffer **eb)
1104 {
1105 	struct extent_buffer *buf = NULL;
1106 	struct inode *btree_inode = root->fs_info->btree_inode;
1107 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1108 	int ret;
1109 
1110 	buf = btrfs_find_create_tree_block(root, bytenr);
1111 	if (IS_ERR(buf))
1112 		return 0;
1113 
1114 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1115 
1116 	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1117 				       btree_get_extent, mirror_num);
1118 	if (ret) {
1119 		free_extent_buffer(buf);
1120 		return ret;
1121 	}
1122 
1123 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1124 		free_extent_buffer(buf);
1125 		return -EIO;
1126 	} else if (extent_buffer_uptodate(buf)) {
1127 		*eb = buf;
1128 	} else {
1129 		free_extent_buffer(buf);
1130 	}
1131 	return 0;
1132 }
1133 
1134 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1135 					    u64 bytenr)
1136 {
1137 	return find_extent_buffer(fs_info, bytenr);
1138 }
1139 
1140 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1141 						 u64 bytenr)
1142 {
1143 	if (btrfs_is_testing(root->fs_info))
1144 		return alloc_test_extent_buffer(root->fs_info, bytenr,
1145 				root->nodesize);
1146 	return alloc_extent_buffer(root->fs_info, bytenr);
1147 }
1148 
1149 
1150 int btrfs_write_tree_block(struct extent_buffer *buf)
1151 {
1152 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1153 					buf->start + buf->len - 1);
1154 }
1155 
1156 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1157 {
1158 	return filemap_fdatawait_range(buf->pages[0]->mapping,
1159 				       buf->start, buf->start + buf->len - 1);
1160 }
1161 
1162 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1163 				      u64 parent_transid)
1164 {
1165 	struct extent_buffer *buf = NULL;
1166 	int ret;
1167 
1168 	buf = btrfs_find_create_tree_block(root, bytenr);
1169 	if (IS_ERR(buf))
1170 		return buf;
1171 
1172 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1173 	if (ret) {
1174 		free_extent_buffer(buf);
1175 		return ERR_PTR(ret);
1176 	}
1177 	return buf;
1178 
1179 }
1180 
1181 void clean_tree_block(struct btrfs_trans_handle *trans,
1182 		      struct btrfs_fs_info *fs_info,
1183 		      struct extent_buffer *buf)
1184 {
1185 	if (btrfs_header_generation(buf) ==
1186 	    fs_info->running_transaction->transid) {
1187 		btrfs_assert_tree_locked(buf);
1188 
1189 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1190 			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
1191 					     -buf->len,
1192 					     fs_info->dirty_metadata_batch);
1193 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1194 			btrfs_set_lock_blocking(buf);
1195 			clear_extent_buffer_dirty(buf);
1196 		}
1197 	}
1198 }
1199 
1200 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1201 {
1202 	struct btrfs_subvolume_writers *writers;
1203 	int ret;
1204 
1205 	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1206 	if (!writers)
1207 		return ERR_PTR(-ENOMEM);
1208 
1209 	ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1210 	if (ret < 0) {
1211 		kfree(writers);
1212 		return ERR_PTR(ret);
1213 	}
1214 
1215 	init_waitqueue_head(&writers->wait);
1216 	return writers;
1217 }
1218 
1219 static void
1220 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1221 {
1222 	percpu_counter_destroy(&writers->counter);
1223 	kfree(writers);
1224 }
1225 
1226 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1227 			 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1228 			 u64 objectid)
1229 {
1230 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1231 	root->node = NULL;
1232 	root->commit_root = NULL;
1233 	root->sectorsize = sectorsize;
1234 	root->nodesize = nodesize;
1235 	root->stripesize = stripesize;
1236 	root->state = 0;
1237 	root->orphan_cleanup_state = 0;
1238 
1239 	root->objectid = objectid;
1240 	root->last_trans = 0;
1241 	root->highest_objectid = 0;
1242 	root->nr_delalloc_inodes = 0;
1243 	root->nr_ordered_extents = 0;
1244 	root->name = NULL;
1245 	root->inode_tree = RB_ROOT;
1246 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1247 	root->block_rsv = NULL;
1248 	root->orphan_block_rsv = NULL;
1249 
1250 	INIT_LIST_HEAD(&root->dirty_list);
1251 	INIT_LIST_HEAD(&root->root_list);
1252 	INIT_LIST_HEAD(&root->delalloc_inodes);
1253 	INIT_LIST_HEAD(&root->delalloc_root);
1254 	INIT_LIST_HEAD(&root->ordered_extents);
1255 	INIT_LIST_HEAD(&root->ordered_root);
1256 	INIT_LIST_HEAD(&root->logged_list[0]);
1257 	INIT_LIST_HEAD(&root->logged_list[1]);
1258 	spin_lock_init(&root->orphan_lock);
1259 	spin_lock_init(&root->inode_lock);
1260 	spin_lock_init(&root->delalloc_lock);
1261 	spin_lock_init(&root->ordered_extent_lock);
1262 	spin_lock_init(&root->accounting_lock);
1263 	spin_lock_init(&root->log_extents_lock[0]);
1264 	spin_lock_init(&root->log_extents_lock[1]);
1265 	mutex_init(&root->objectid_mutex);
1266 	mutex_init(&root->log_mutex);
1267 	mutex_init(&root->ordered_extent_mutex);
1268 	mutex_init(&root->delalloc_mutex);
1269 	init_waitqueue_head(&root->log_writer_wait);
1270 	init_waitqueue_head(&root->log_commit_wait[0]);
1271 	init_waitqueue_head(&root->log_commit_wait[1]);
1272 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1273 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1274 	atomic_set(&root->log_commit[0], 0);
1275 	atomic_set(&root->log_commit[1], 0);
1276 	atomic_set(&root->log_writers, 0);
1277 	atomic_set(&root->log_batch, 0);
1278 	atomic_set(&root->orphan_inodes, 0);
1279 	atomic_set(&root->refs, 1);
1280 	atomic_set(&root->will_be_snapshoted, 0);
1281 	atomic_set(&root->qgroup_meta_rsv, 0);
1282 	root->log_transid = 0;
1283 	root->log_transid_committed = -1;
1284 	root->last_log_commit = 0;
1285 	if (!dummy)
1286 		extent_io_tree_init(&root->dirty_log_pages,
1287 				     fs_info->btree_inode->i_mapping);
1288 
1289 	memset(&root->root_key, 0, sizeof(root->root_key));
1290 	memset(&root->root_item, 0, sizeof(root->root_item));
1291 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1292 	if (!dummy)
1293 		root->defrag_trans_start = fs_info->generation;
1294 	else
1295 		root->defrag_trans_start = 0;
1296 	root->root_key.objectid = objectid;
1297 	root->anon_dev = 0;
1298 
1299 	spin_lock_init(&root->root_item_lock);
1300 }
1301 
1302 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1303 		gfp_t flags)
1304 {
1305 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1306 	if (root)
1307 		root->fs_info = fs_info;
1308 	return root;
1309 }
1310 
1311 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1312 /* Should only be used by the testing infrastructure */
1313 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info,
1314 					  u32 sectorsize, u32 nodesize)
1315 {
1316 	struct btrfs_root *root;
1317 
1318 	if (!fs_info)
1319 		return ERR_PTR(-EINVAL);
1320 
1321 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1322 	if (!root)
1323 		return ERR_PTR(-ENOMEM);
1324 	/* We don't use the stripesize in selftest, set it as sectorsize */
1325 	__setup_root(nodesize, sectorsize, sectorsize, root, fs_info,
1326 			BTRFS_ROOT_TREE_OBJECTID);
1327 	root->alloc_bytenr = 0;
1328 
1329 	return root;
1330 }
1331 #endif
1332 
1333 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1334 				     struct btrfs_fs_info *fs_info,
1335 				     u64 objectid)
1336 {
1337 	struct extent_buffer *leaf;
1338 	struct btrfs_root *tree_root = fs_info->tree_root;
1339 	struct btrfs_root *root;
1340 	struct btrfs_key key;
1341 	int ret = 0;
1342 	uuid_le uuid;
1343 
1344 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1345 	if (!root)
1346 		return ERR_PTR(-ENOMEM);
1347 
1348 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1349 		tree_root->stripesize, root, fs_info, objectid);
1350 	root->root_key.objectid = objectid;
1351 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1352 	root->root_key.offset = 0;
1353 
1354 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1355 	if (IS_ERR(leaf)) {
1356 		ret = PTR_ERR(leaf);
1357 		leaf = NULL;
1358 		goto fail;
1359 	}
1360 
1361 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1362 	btrfs_set_header_bytenr(leaf, leaf->start);
1363 	btrfs_set_header_generation(leaf, trans->transid);
1364 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1365 	btrfs_set_header_owner(leaf, objectid);
1366 	root->node = leaf;
1367 
1368 	write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1369 			    BTRFS_FSID_SIZE);
1370 	write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1371 			    btrfs_header_chunk_tree_uuid(leaf),
1372 			    BTRFS_UUID_SIZE);
1373 	btrfs_mark_buffer_dirty(leaf);
1374 
1375 	root->commit_root = btrfs_root_node(root);
1376 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1377 
1378 	root->root_item.flags = 0;
1379 	root->root_item.byte_limit = 0;
1380 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1381 	btrfs_set_root_generation(&root->root_item, trans->transid);
1382 	btrfs_set_root_level(&root->root_item, 0);
1383 	btrfs_set_root_refs(&root->root_item, 1);
1384 	btrfs_set_root_used(&root->root_item, leaf->len);
1385 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1386 	btrfs_set_root_dirid(&root->root_item, 0);
1387 	uuid_le_gen(&uuid);
1388 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1389 	root->root_item.drop_level = 0;
1390 
1391 	key.objectid = objectid;
1392 	key.type = BTRFS_ROOT_ITEM_KEY;
1393 	key.offset = 0;
1394 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1395 	if (ret)
1396 		goto fail;
1397 
1398 	btrfs_tree_unlock(leaf);
1399 
1400 	return root;
1401 
1402 fail:
1403 	if (leaf) {
1404 		btrfs_tree_unlock(leaf);
1405 		free_extent_buffer(root->commit_root);
1406 		free_extent_buffer(leaf);
1407 	}
1408 	kfree(root);
1409 
1410 	return ERR_PTR(ret);
1411 }
1412 
1413 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1414 					 struct btrfs_fs_info *fs_info)
1415 {
1416 	struct btrfs_root *root;
1417 	struct btrfs_root *tree_root = fs_info->tree_root;
1418 	struct extent_buffer *leaf;
1419 
1420 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1421 	if (!root)
1422 		return ERR_PTR(-ENOMEM);
1423 
1424 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1425 		     tree_root->stripesize, root, fs_info,
1426 		     BTRFS_TREE_LOG_OBJECTID);
1427 
1428 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1429 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1430 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1431 
1432 	/*
1433 	 * DON'T set REF_COWS for log trees
1434 	 *
1435 	 * log trees do not get reference counted because they go away
1436 	 * before a real commit is actually done.  They do store pointers
1437 	 * to file data extents, and those reference counts still get
1438 	 * updated (along with back refs to the log tree).
1439 	 */
1440 
1441 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1442 			NULL, 0, 0, 0);
1443 	if (IS_ERR(leaf)) {
1444 		kfree(root);
1445 		return ERR_CAST(leaf);
1446 	}
1447 
1448 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1449 	btrfs_set_header_bytenr(leaf, leaf->start);
1450 	btrfs_set_header_generation(leaf, trans->transid);
1451 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1452 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1453 	root->node = leaf;
1454 
1455 	write_extent_buffer(root->node, root->fs_info->fsid,
1456 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
1457 	btrfs_mark_buffer_dirty(root->node);
1458 	btrfs_tree_unlock(root->node);
1459 	return root;
1460 }
1461 
1462 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1463 			     struct btrfs_fs_info *fs_info)
1464 {
1465 	struct btrfs_root *log_root;
1466 
1467 	log_root = alloc_log_tree(trans, fs_info);
1468 	if (IS_ERR(log_root))
1469 		return PTR_ERR(log_root);
1470 	WARN_ON(fs_info->log_root_tree);
1471 	fs_info->log_root_tree = log_root;
1472 	return 0;
1473 }
1474 
1475 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1476 		       struct btrfs_root *root)
1477 {
1478 	struct btrfs_root *log_root;
1479 	struct btrfs_inode_item *inode_item;
1480 
1481 	log_root = alloc_log_tree(trans, root->fs_info);
1482 	if (IS_ERR(log_root))
1483 		return PTR_ERR(log_root);
1484 
1485 	log_root->last_trans = trans->transid;
1486 	log_root->root_key.offset = root->root_key.objectid;
1487 
1488 	inode_item = &log_root->root_item.inode;
1489 	btrfs_set_stack_inode_generation(inode_item, 1);
1490 	btrfs_set_stack_inode_size(inode_item, 3);
1491 	btrfs_set_stack_inode_nlink(inode_item, 1);
1492 	btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1493 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1494 
1495 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1496 
1497 	WARN_ON(root->log_root);
1498 	root->log_root = log_root;
1499 	root->log_transid = 0;
1500 	root->log_transid_committed = -1;
1501 	root->last_log_commit = 0;
1502 	return 0;
1503 }
1504 
1505 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1506 					       struct btrfs_key *key)
1507 {
1508 	struct btrfs_root *root;
1509 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1510 	struct btrfs_path *path;
1511 	u64 generation;
1512 	int ret;
1513 
1514 	path = btrfs_alloc_path();
1515 	if (!path)
1516 		return ERR_PTR(-ENOMEM);
1517 
1518 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1519 	if (!root) {
1520 		ret = -ENOMEM;
1521 		goto alloc_fail;
1522 	}
1523 
1524 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1525 		tree_root->stripesize, root, fs_info, key->objectid);
1526 
1527 	ret = btrfs_find_root(tree_root, key, path,
1528 			      &root->root_item, &root->root_key);
1529 	if (ret) {
1530 		if (ret > 0)
1531 			ret = -ENOENT;
1532 		goto find_fail;
1533 	}
1534 
1535 	generation = btrfs_root_generation(&root->root_item);
1536 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1537 				     generation);
1538 	if (IS_ERR(root->node)) {
1539 		ret = PTR_ERR(root->node);
1540 		goto find_fail;
1541 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1542 		ret = -EIO;
1543 		free_extent_buffer(root->node);
1544 		goto find_fail;
1545 	}
1546 	root->commit_root = btrfs_root_node(root);
1547 out:
1548 	btrfs_free_path(path);
1549 	return root;
1550 
1551 find_fail:
1552 	kfree(root);
1553 alloc_fail:
1554 	root = ERR_PTR(ret);
1555 	goto out;
1556 }
1557 
1558 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1559 				      struct btrfs_key *location)
1560 {
1561 	struct btrfs_root *root;
1562 
1563 	root = btrfs_read_tree_root(tree_root, location);
1564 	if (IS_ERR(root))
1565 		return root;
1566 
1567 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1568 		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1569 		btrfs_check_and_init_root_item(&root->root_item);
1570 	}
1571 
1572 	return root;
1573 }
1574 
1575 int btrfs_init_fs_root(struct btrfs_root *root)
1576 {
1577 	int ret;
1578 	struct btrfs_subvolume_writers *writers;
1579 
1580 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1581 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1582 					GFP_NOFS);
1583 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1584 		ret = -ENOMEM;
1585 		goto fail;
1586 	}
1587 
1588 	writers = btrfs_alloc_subvolume_writers();
1589 	if (IS_ERR(writers)) {
1590 		ret = PTR_ERR(writers);
1591 		goto fail;
1592 	}
1593 	root->subv_writers = writers;
1594 
1595 	btrfs_init_free_ino_ctl(root);
1596 	spin_lock_init(&root->ino_cache_lock);
1597 	init_waitqueue_head(&root->ino_cache_wait);
1598 
1599 	ret = get_anon_bdev(&root->anon_dev);
1600 	if (ret)
1601 		goto fail;
1602 
1603 	mutex_lock(&root->objectid_mutex);
1604 	ret = btrfs_find_highest_objectid(root,
1605 					&root->highest_objectid);
1606 	if (ret) {
1607 		mutex_unlock(&root->objectid_mutex);
1608 		goto fail;
1609 	}
1610 
1611 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1612 
1613 	mutex_unlock(&root->objectid_mutex);
1614 
1615 	return 0;
1616 fail:
1617 	/* the caller is responsible to call free_fs_root */
1618 	return ret;
1619 }
1620 
1621 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1622 					       u64 root_id)
1623 {
1624 	struct btrfs_root *root;
1625 
1626 	spin_lock(&fs_info->fs_roots_radix_lock);
1627 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1628 				 (unsigned long)root_id);
1629 	spin_unlock(&fs_info->fs_roots_radix_lock);
1630 	return root;
1631 }
1632 
1633 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1634 			 struct btrfs_root *root)
1635 {
1636 	int ret;
1637 
1638 	ret = radix_tree_preload(GFP_NOFS);
1639 	if (ret)
1640 		return ret;
1641 
1642 	spin_lock(&fs_info->fs_roots_radix_lock);
1643 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1644 				(unsigned long)root->root_key.objectid,
1645 				root);
1646 	if (ret == 0)
1647 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1648 	spin_unlock(&fs_info->fs_roots_radix_lock);
1649 	radix_tree_preload_end();
1650 
1651 	return ret;
1652 }
1653 
1654 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1655 				     struct btrfs_key *location,
1656 				     bool check_ref)
1657 {
1658 	struct btrfs_root *root;
1659 	struct btrfs_path *path;
1660 	struct btrfs_key key;
1661 	int ret;
1662 
1663 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1664 		return fs_info->tree_root;
1665 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1666 		return fs_info->extent_root;
1667 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1668 		return fs_info->chunk_root;
1669 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1670 		return fs_info->dev_root;
1671 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1672 		return fs_info->csum_root;
1673 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1674 		return fs_info->quota_root ? fs_info->quota_root :
1675 					     ERR_PTR(-ENOENT);
1676 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1677 		return fs_info->uuid_root ? fs_info->uuid_root :
1678 					    ERR_PTR(-ENOENT);
1679 	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1680 		return fs_info->free_space_root ? fs_info->free_space_root :
1681 						  ERR_PTR(-ENOENT);
1682 again:
1683 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1684 	if (root) {
1685 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1686 			return ERR_PTR(-ENOENT);
1687 		return root;
1688 	}
1689 
1690 	root = btrfs_read_fs_root(fs_info->tree_root, location);
1691 	if (IS_ERR(root))
1692 		return root;
1693 
1694 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1695 		ret = -ENOENT;
1696 		goto fail;
1697 	}
1698 
1699 	ret = btrfs_init_fs_root(root);
1700 	if (ret)
1701 		goto fail;
1702 
1703 	path = btrfs_alloc_path();
1704 	if (!path) {
1705 		ret = -ENOMEM;
1706 		goto fail;
1707 	}
1708 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1709 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1710 	key.offset = location->objectid;
1711 
1712 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1713 	btrfs_free_path(path);
1714 	if (ret < 0)
1715 		goto fail;
1716 	if (ret == 0)
1717 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1718 
1719 	ret = btrfs_insert_fs_root(fs_info, root);
1720 	if (ret) {
1721 		if (ret == -EEXIST) {
1722 			free_fs_root(root);
1723 			goto again;
1724 		}
1725 		goto fail;
1726 	}
1727 	return root;
1728 fail:
1729 	free_fs_root(root);
1730 	return ERR_PTR(ret);
1731 }
1732 
1733 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1734 {
1735 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1736 	int ret = 0;
1737 	struct btrfs_device *device;
1738 	struct backing_dev_info *bdi;
1739 
1740 	rcu_read_lock();
1741 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1742 		if (!device->bdev)
1743 			continue;
1744 		bdi = blk_get_backing_dev_info(device->bdev);
1745 		if (bdi_congested(bdi, bdi_bits)) {
1746 			ret = 1;
1747 			break;
1748 		}
1749 	}
1750 	rcu_read_unlock();
1751 	return ret;
1752 }
1753 
1754 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1755 {
1756 	int err;
1757 
1758 	err = bdi_setup_and_register(bdi, "btrfs");
1759 	if (err)
1760 		return err;
1761 
1762 	bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1763 	bdi->congested_fn	= btrfs_congested_fn;
1764 	bdi->congested_data	= info;
1765 	bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1766 	return 0;
1767 }
1768 
1769 /*
1770  * called by the kthread helper functions to finally call the bio end_io
1771  * functions.  This is where read checksum verification actually happens
1772  */
1773 static void end_workqueue_fn(struct btrfs_work *work)
1774 {
1775 	struct bio *bio;
1776 	struct btrfs_end_io_wq *end_io_wq;
1777 
1778 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1779 	bio = end_io_wq->bio;
1780 
1781 	bio->bi_error = end_io_wq->error;
1782 	bio->bi_private = end_io_wq->private;
1783 	bio->bi_end_io = end_io_wq->end_io;
1784 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1785 	bio_endio(bio);
1786 }
1787 
1788 static int cleaner_kthread(void *arg)
1789 {
1790 	struct btrfs_root *root = arg;
1791 	int again;
1792 	struct btrfs_trans_handle *trans;
1793 
1794 	do {
1795 		again = 0;
1796 
1797 		/* Make the cleaner go to sleep early. */
1798 		if (btrfs_need_cleaner_sleep(root))
1799 			goto sleep;
1800 
1801 		/*
1802 		 * Do not do anything if we might cause open_ctree() to block
1803 		 * before we have finished mounting the filesystem.
1804 		 */
1805 		if (!root->fs_info->open)
1806 			goto sleep;
1807 
1808 		if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1809 			goto sleep;
1810 
1811 		/*
1812 		 * Avoid the problem that we change the status of the fs
1813 		 * during the above check and trylock.
1814 		 */
1815 		if (btrfs_need_cleaner_sleep(root)) {
1816 			mutex_unlock(&root->fs_info->cleaner_mutex);
1817 			goto sleep;
1818 		}
1819 
1820 		mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1821 		btrfs_run_delayed_iputs(root);
1822 		mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1823 
1824 		again = btrfs_clean_one_deleted_snapshot(root);
1825 		mutex_unlock(&root->fs_info->cleaner_mutex);
1826 
1827 		/*
1828 		 * The defragger has dealt with the R/O remount and umount,
1829 		 * needn't do anything special here.
1830 		 */
1831 		btrfs_run_defrag_inodes(root->fs_info);
1832 
1833 		/*
1834 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1835 		 * with relocation (btrfs_relocate_chunk) and relocation
1836 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1837 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1838 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1839 		 * unused block groups.
1840 		 */
1841 		btrfs_delete_unused_bgs(root->fs_info);
1842 sleep:
1843 		if (!again) {
1844 			set_current_state(TASK_INTERRUPTIBLE);
1845 			if (!kthread_should_stop())
1846 				schedule();
1847 			__set_current_state(TASK_RUNNING);
1848 		}
1849 	} while (!kthread_should_stop());
1850 
1851 	/*
1852 	 * Transaction kthread is stopped before us and wakes us up.
1853 	 * However we might have started a new transaction and COWed some
1854 	 * tree blocks when deleting unused block groups for example. So
1855 	 * make sure we commit the transaction we started to have a clean
1856 	 * shutdown when evicting the btree inode - if it has dirty pages
1857 	 * when we do the final iput() on it, eviction will trigger a
1858 	 * writeback for it which will fail with null pointer dereferences
1859 	 * since work queues and other resources were already released and
1860 	 * destroyed by the time the iput/eviction/writeback is made.
1861 	 */
1862 	trans = btrfs_attach_transaction(root);
1863 	if (IS_ERR(trans)) {
1864 		if (PTR_ERR(trans) != -ENOENT)
1865 			btrfs_err(root->fs_info,
1866 				  "cleaner transaction attach returned %ld",
1867 				  PTR_ERR(trans));
1868 	} else {
1869 		int ret;
1870 
1871 		ret = btrfs_commit_transaction(trans, root);
1872 		if (ret)
1873 			btrfs_err(root->fs_info,
1874 				  "cleaner open transaction commit returned %d",
1875 				  ret);
1876 	}
1877 
1878 	return 0;
1879 }
1880 
1881 static int transaction_kthread(void *arg)
1882 {
1883 	struct btrfs_root *root = arg;
1884 	struct btrfs_trans_handle *trans;
1885 	struct btrfs_transaction *cur;
1886 	u64 transid;
1887 	unsigned long now;
1888 	unsigned long delay;
1889 	bool cannot_commit;
1890 
1891 	do {
1892 		cannot_commit = false;
1893 		delay = HZ * root->fs_info->commit_interval;
1894 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1895 
1896 		spin_lock(&root->fs_info->trans_lock);
1897 		cur = root->fs_info->running_transaction;
1898 		if (!cur) {
1899 			spin_unlock(&root->fs_info->trans_lock);
1900 			goto sleep;
1901 		}
1902 
1903 		now = get_seconds();
1904 		if (cur->state < TRANS_STATE_BLOCKED &&
1905 		    (now < cur->start_time ||
1906 		     now - cur->start_time < root->fs_info->commit_interval)) {
1907 			spin_unlock(&root->fs_info->trans_lock);
1908 			delay = HZ * 5;
1909 			goto sleep;
1910 		}
1911 		transid = cur->transid;
1912 		spin_unlock(&root->fs_info->trans_lock);
1913 
1914 		/* If the file system is aborted, this will always fail. */
1915 		trans = btrfs_attach_transaction(root);
1916 		if (IS_ERR(trans)) {
1917 			if (PTR_ERR(trans) != -ENOENT)
1918 				cannot_commit = true;
1919 			goto sleep;
1920 		}
1921 		if (transid == trans->transid) {
1922 			btrfs_commit_transaction(trans, root);
1923 		} else {
1924 			btrfs_end_transaction(trans, root);
1925 		}
1926 sleep:
1927 		wake_up_process(root->fs_info->cleaner_kthread);
1928 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1929 
1930 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1931 				      &root->fs_info->fs_state)))
1932 			btrfs_cleanup_transaction(root);
1933 		set_current_state(TASK_INTERRUPTIBLE);
1934 		if (!kthread_should_stop() &&
1935 				(!btrfs_transaction_blocked(root->fs_info) ||
1936 				 cannot_commit))
1937 			schedule_timeout(delay);
1938 		__set_current_state(TASK_RUNNING);
1939 	} while (!kthread_should_stop());
1940 	return 0;
1941 }
1942 
1943 /*
1944  * this will find the highest generation in the array of
1945  * root backups.  The index of the highest array is returned,
1946  * or -1 if we can't find anything.
1947  *
1948  * We check to make sure the array is valid by comparing the
1949  * generation of the latest  root in the array with the generation
1950  * in the super block.  If they don't match we pitch it.
1951  */
1952 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1953 {
1954 	u64 cur;
1955 	int newest_index = -1;
1956 	struct btrfs_root_backup *root_backup;
1957 	int i;
1958 
1959 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1960 		root_backup = info->super_copy->super_roots + i;
1961 		cur = btrfs_backup_tree_root_gen(root_backup);
1962 		if (cur == newest_gen)
1963 			newest_index = i;
1964 	}
1965 
1966 	/* check to see if we actually wrapped around */
1967 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1968 		root_backup = info->super_copy->super_roots;
1969 		cur = btrfs_backup_tree_root_gen(root_backup);
1970 		if (cur == newest_gen)
1971 			newest_index = 0;
1972 	}
1973 	return newest_index;
1974 }
1975 
1976 
1977 /*
1978  * find the oldest backup so we know where to store new entries
1979  * in the backup array.  This will set the backup_root_index
1980  * field in the fs_info struct
1981  */
1982 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1983 				     u64 newest_gen)
1984 {
1985 	int newest_index = -1;
1986 
1987 	newest_index = find_newest_super_backup(info, newest_gen);
1988 	/* if there was garbage in there, just move along */
1989 	if (newest_index == -1) {
1990 		info->backup_root_index = 0;
1991 	} else {
1992 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1993 	}
1994 }
1995 
1996 /*
1997  * copy all the root pointers into the super backup array.
1998  * this will bump the backup pointer by one when it is
1999  * done
2000  */
2001 static void backup_super_roots(struct btrfs_fs_info *info)
2002 {
2003 	int next_backup;
2004 	struct btrfs_root_backup *root_backup;
2005 	int last_backup;
2006 
2007 	next_backup = info->backup_root_index;
2008 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2009 		BTRFS_NUM_BACKUP_ROOTS;
2010 
2011 	/*
2012 	 * just overwrite the last backup if we're at the same generation
2013 	 * this happens only at umount
2014 	 */
2015 	root_backup = info->super_for_commit->super_roots + last_backup;
2016 	if (btrfs_backup_tree_root_gen(root_backup) ==
2017 	    btrfs_header_generation(info->tree_root->node))
2018 		next_backup = last_backup;
2019 
2020 	root_backup = info->super_for_commit->super_roots + next_backup;
2021 
2022 	/*
2023 	 * make sure all of our padding and empty slots get zero filled
2024 	 * regardless of which ones we use today
2025 	 */
2026 	memset(root_backup, 0, sizeof(*root_backup));
2027 
2028 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2029 
2030 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2031 	btrfs_set_backup_tree_root_gen(root_backup,
2032 			       btrfs_header_generation(info->tree_root->node));
2033 
2034 	btrfs_set_backup_tree_root_level(root_backup,
2035 			       btrfs_header_level(info->tree_root->node));
2036 
2037 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2038 	btrfs_set_backup_chunk_root_gen(root_backup,
2039 			       btrfs_header_generation(info->chunk_root->node));
2040 	btrfs_set_backup_chunk_root_level(root_backup,
2041 			       btrfs_header_level(info->chunk_root->node));
2042 
2043 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2044 	btrfs_set_backup_extent_root_gen(root_backup,
2045 			       btrfs_header_generation(info->extent_root->node));
2046 	btrfs_set_backup_extent_root_level(root_backup,
2047 			       btrfs_header_level(info->extent_root->node));
2048 
2049 	/*
2050 	 * we might commit during log recovery, which happens before we set
2051 	 * the fs_root.  Make sure it is valid before we fill it in.
2052 	 */
2053 	if (info->fs_root && info->fs_root->node) {
2054 		btrfs_set_backup_fs_root(root_backup,
2055 					 info->fs_root->node->start);
2056 		btrfs_set_backup_fs_root_gen(root_backup,
2057 			       btrfs_header_generation(info->fs_root->node));
2058 		btrfs_set_backup_fs_root_level(root_backup,
2059 			       btrfs_header_level(info->fs_root->node));
2060 	}
2061 
2062 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2063 	btrfs_set_backup_dev_root_gen(root_backup,
2064 			       btrfs_header_generation(info->dev_root->node));
2065 	btrfs_set_backup_dev_root_level(root_backup,
2066 				       btrfs_header_level(info->dev_root->node));
2067 
2068 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2069 	btrfs_set_backup_csum_root_gen(root_backup,
2070 			       btrfs_header_generation(info->csum_root->node));
2071 	btrfs_set_backup_csum_root_level(root_backup,
2072 			       btrfs_header_level(info->csum_root->node));
2073 
2074 	btrfs_set_backup_total_bytes(root_backup,
2075 			     btrfs_super_total_bytes(info->super_copy));
2076 	btrfs_set_backup_bytes_used(root_backup,
2077 			     btrfs_super_bytes_used(info->super_copy));
2078 	btrfs_set_backup_num_devices(root_backup,
2079 			     btrfs_super_num_devices(info->super_copy));
2080 
2081 	/*
2082 	 * if we don't copy this out to the super_copy, it won't get remembered
2083 	 * for the next commit
2084 	 */
2085 	memcpy(&info->super_copy->super_roots,
2086 	       &info->super_for_commit->super_roots,
2087 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2088 }
2089 
2090 /*
2091  * this copies info out of the root backup array and back into
2092  * the in-memory super block.  It is meant to help iterate through
2093  * the array, so you send it the number of backups you've already
2094  * tried and the last backup index you used.
2095  *
2096  * this returns -1 when it has tried all the backups
2097  */
2098 static noinline int next_root_backup(struct btrfs_fs_info *info,
2099 				     struct btrfs_super_block *super,
2100 				     int *num_backups_tried, int *backup_index)
2101 {
2102 	struct btrfs_root_backup *root_backup;
2103 	int newest = *backup_index;
2104 
2105 	if (*num_backups_tried == 0) {
2106 		u64 gen = btrfs_super_generation(super);
2107 
2108 		newest = find_newest_super_backup(info, gen);
2109 		if (newest == -1)
2110 			return -1;
2111 
2112 		*backup_index = newest;
2113 		*num_backups_tried = 1;
2114 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2115 		/* we've tried all the backups, all done */
2116 		return -1;
2117 	} else {
2118 		/* jump to the next oldest backup */
2119 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2120 			BTRFS_NUM_BACKUP_ROOTS;
2121 		*backup_index = newest;
2122 		*num_backups_tried += 1;
2123 	}
2124 	root_backup = super->super_roots + newest;
2125 
2126 	btrfs_set_super_generation(super,
2127 				   btrfs_backup_tree_root_gen(root_backup));
2128 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2129 	btrfs_set_super_root_level(super,
2130 				   btrfs_backup_tree_root_level(root_backup));
2131 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2132 
2133 	/*
2134 	 * fixme: the total bytes and num_devices need to match or we should
2135 	 * need a fsck
2136 	 */
2137 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2138 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2139 	return 0;
2140 }
2141 
2142 /* helper to cleanup workers */
2143 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2144 {
2145 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2146 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2147 	btrfs_destroy_workqueue(fs_info->workers);
2148 	btrfs_destroy_workqueue(fs_info->endio_workers);
2149 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2150 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2151 	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2152 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2153 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2154 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2155 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2156 	btrfs_destroy_workqueue(fs_info->submit_workers);
2157 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2158 	btrfs_destroy_workqueue(fs_info->caching_workers);
2159 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2160 	btrfs_destroy_workqueue(fs_info->flush_workers);
2161 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2162 	btrfs_destroy_workqueue(fs_info->extent_workers);
2163 }
2164 
2165 static void free_root_extent_buffers(struct btrfs_root *root)
2166 {
2167 	if (root) {
2168 		free_extent_buffer(root->node);
2169 		free_extent_buffer(root->commit_root);
2170 		root->node = NULL;
2171 		root->commit_root = NULL;
2172 	}
2173 }
2174 
2175 /* helper to cleanup tree roots */
2176 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2177 {
2178 	free_root_extent_buffers(info->tree_root);
2179 
2180 	free_root_extent_buffers(info->dev_root);
2181 	free_root_extent_buffers(info->extent_root);
2182 	free_root_extent_buffers(info->csum_root);
2183 	free_root_extent_buffers(info->quota_root);
2184 	free_root_extent_buffers(info->uuid_root);
2185 	if (chunk_root)
2186 		free_root_extent_buffers(info->chunk_root);
2187 	free_root_extent_buffers(info->free_space_root);
2188 }
2189 
2190 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2191 {
2192 	int ret;
2193 	struct btrfs_root *gang[8];
2194 	int i;
2195 
2196 	while (!list_empty(&fs_info->dead_roots)) {
2197 		gang[0] = list_entry(fs_info->dead_roots.next,
2198 				     struct btrfs_root, root_list);
2199 		list_del(&gang[0]->root_list);
2200 
2201 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2202 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2203 		} else {
2204 			free_extent_buffer(gang[0]->node);
2205 			free_extent_buffer(gang[0]->commit_root);
2206 			btrfs_put_fs_root(gang[0]);
2207 		}
2208 	}
2209 
2210 	while (1) {
2211 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2212 					     (void **)gang, 0,
2213 					     ARRAY_SIZE(gang));
2214 		if (!ret)
2215 			break;
2216 		for (i = 0; i < ret; i++)
2217 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2218 	}
2219 
2220 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2221 		btrfs_free_log_root_tree(NULL, fs_info);
2222 		btrfs_destroy_pinned_extent(fs_info->tree_root,
2223 					    fs_info->pinned_extents);
2224 	}
2225 }
2226 
2227 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2228 {
2229 	mutex_init(&fs_info->scrub_lock);
2230 	atomic_set(&fs_info->scrubs_running, 0);
2231 	atomic_set(&fs_info->scrub_pause_req, 0);
2232 	atomic_set(&fs_info->scrubs_paused, 0);
2233 	atomic_set(&fs_info->scrub_cancel_req, 0);
2234 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2235 	fs_info->scrub_workers_refcnt = 0;
2236 }
2237 
2238 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2239 {
2240 	spin_lock_init(&fs_info->balance_lock);
2241 	mutex_init(&fs_info->balance_mutex);
2242 	atomic_set(&fs_info->balance_running, 0);
2243 	atomic_set(&fs_info->balance_pause_req, 0);
2244 	atomic_set(&fs_info->balance_cancel_req, 0);
2245 	fs_info->balance_ctl = NULL;
2246 	init_waitqueue_head(&fs_info->balance_wait_q);
2247 }
2248 
2249 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2250 				   struct btrfs_root *tree_root)
2251 {
2252 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2253 	set_nlink(fs_info->btree_inode, 1);
2254 	/*
2255 	 * we set the i_size on the btree inode to the max possible int.
2256 	 * the real end of the address space is determined by all of
2257 	 * the devices in the system
2258 	 */
2259 	fs_info->btree_inode->i_size = OFFSET_MAX;
2260 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2261 
2262 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2263 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2264 			     fs_info->btree_inode->i_mapping);
2265 	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2266 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2267 
2268 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2269 
2270 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2271 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2272 	       sizeof(struct btrfs_key));
2273 	set_bit(BTRFS_INODE_DUMMY,
2274 		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2275 	btrfs_insert_inode_hash(fs_info->btree_inode);
2276 }
2277 
2278 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2279 {
2280 	fs_info->dev_replace.lock_owner = 0;
2281 	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2282 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2283 	rwlock_init(&fs_info->dev_replace.lock);
2284 	atomic_set(&fs_info->dev_replace.read_locks, 0);
2285 	atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2286 	init_waitqueue_head(&fs_info->replace_wait);
2287 	init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2288 }
2289 
2290 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2291 {
2292 	spin_lock_init(&fs_info->qgroup_lock);
2293 	mutex_init(&fs_info->qgroup_ioctl_lock);
2294 	fs_info->qgroup_tree = RB_ROOT;
2295 	fs_info->qgroup_op_tree = RB_ROOT;
2296 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2297 	fs_info->qgroup_seq = 1;
2298 	fs_info->quota_enabled = 0;
2299 	fs_info->pending_quota_state = 0;
2300 	fs_info->qgroup_ulist = NULL;
2301 	mutex_init(&fs_info->qgroup_rescan_lock);
2302 }
2303 
2304 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2305 		struct btrfs_fs_devices *fs_devices)
2306 {
2307 	int max_active = fs_info->thread_pool_size;
2308 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2309 
2310 	fs_info->workers =
2311 		btrfs_alloc_workqueue(fs_info, "worker",
2312 				      flags | WQ_HIGHPRI, max_active, 16);
2313 
2314 	fs_info->delalloc_workers =
2315 		btrfs_alloc_workqueue(fs_info, "delalloc",
2316 				      flags, max_active, 2);
2317 
2318 	fs_info->flush_workers =
2319 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2320 				      flags, max_active, 0);
2321 
2322 	fs_info->caching_workers =
2323 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2324 
2325 	/*
2326 	 * a higher idle thresh on the submit workers makes it much more
2327 	 * likely that bios will be send down in a sane order to the
2328 	 * devices
2329 	 */
2330 	fs_info->submit_workers =
2331 		btrfs_alloc_workqueue(fs_info, "submit", flags,
2332 				      min_t(u64, fs_devices->num_devices,
2333 					    max_active), 64);
2334 
2335 	fs_info->fixup_workers =
2336 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2337 
2338 	/*
2339 	 * endios are largely parallel and should have a very
2340 	 * low idle thresh
2341 	 */
2342 	fs_info->endio_workers =
2343 		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2344 	fs_info->endio_meta_workers =
2345 		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2346 				      max_active, 4);
2347 	fs_info->endio_meta_write_workers =
2348 		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2349 				      max_active, 2);
2350 	fs_info->endio_raid56_workers =
2351 		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2352 				      max_active, 4);
2353 	fs_info->endio_repair_workers =
2354 		btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2355 	fs_info->rmw_workers =
2356 		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2357 	fs_info->endio_write_workers =
2358 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2359 				      max_active, 2);
2360 	fs_info->endio_freespace_worker =
2361 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2362 				      max_active, 0);
2363 	fs_info->delayed_workers =
2364 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2365 				      max_active, 0);
2366 	fs_info->readahead_workers =
2367 		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2368 				      max_active, 2);
2369 	fs_info->qgroup_rescan_workers =
2370 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2371 	fs_info->extent_workers =
2372 		btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2373 				      min_t(u64, fs_devices->num_devices,
2374 					    max_active), 8);
2375 
2376 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2377 	      fs_info->submit_workers && fs_info->flush_workers &&
2378 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2379 	      fs_info->endio_meta_write_workers &&
2380 	      fs_info->endio_repair_workers &&
2381 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2382 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2383 	      fs_info->caching_workers && fs_info->readahead_workers &&
2384 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2385 	      fs_info->extent_workers &&
2386 	      fs_info->qgroup_rescan_workers)) {
2387 		return -ENOMEM;
2388 	}
2389 
2390 	return 0;
2391 }
2392 
2393 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2394 			    struct btrfs_fs_devices *fs_devices)
2395 {
2396 	int ret;
2397 	struct btrfs_root *tree_root = fs_info->tree_root;
2398 	struct btrfs_root *log_tree_root;
2399 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2400 	u64 bytenr = btrfs_super_log_root(disk_super);
2401 
2402 	if (fs_devices->rw_devices == 0) {
2403 		btrfs_warn(fs_info, "log replay required on RO media");
2404 		return -EIO;
2405 	}
2406 
2407 	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2408 	if (!log_tree_root)
2409 		return -ENOMEM;
2410 
2411 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
2412 			tree_root->stripesize, log_tree_root, fs_info,
2413 			BTRFS_TREE_LOG_OBJECTID);
2414 
2415 	log_tree_root->node = read_tree_block(tree_root, bytenr,
2416 			fs_info->generation + 1);
2417 	if (IS_ERR(log_tree_root->node)) {
2418 		btrfs_warn(fs_info, "failed to read log tree");
2419 		ret = PTR_ERR(log_tree_root->node);
2420 		kfree(log_tree_root);
2421 		return ret;
2422 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2423 		btrfs_err(fs_info, "failed to read log tree");
2424 		free_extent_buffer(log_tree_root->node);
2425 		kfree(log_tree_root);
2426 		return -EIO;
2427 	}
2428 	/* returns with log_tree_root freed on success */
2429 	ret = btrfs_recover_log_trees(log_tree_root);
2430 	if (ret) {
2431 		btrfs_handle_fs_error(tree_root->fs_info, ret,
2432 			    "Failed to recover log tree");
2433 		free_extent_buffer(log_tree_root->node);
2434 		kfree(log_tree_root);
2435 		return ret;
2436 	}
2437 
2438 	if (fs_info->sb->s_flags & MS_RDONLY) {
2439 		ret = btrfs_commit_super(tree_root);
2440 		if (ret)
2441 			return ret;
2442 	}
2443 
2444 	return 0;
2445 }
2446 
2447 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2448 			    struct btrfs_root *tree_root)
2449 {
2450 	struct btrfs_root *root;
2451 	struct btrfs_key location;
2452 	int ret;
2453 
2454 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2455 	location.type = BTRFS_ROOT_ITEM_KEY;
2456 	location.offset = 0;
2457 
2458 	root = btrfs_read_tree_root(tree_root, &location);
2459 	if (IS_ERR(root))
2460 		return PTR_ERR(root);
2461 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2462 	fs_info->extent_root = root;
2463 
2464 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2465 	root = btrfs_read_tree_root(tree_root, &location);
2466 	if (IS_ERR(root))
2467 		return PTR_ERR(root);
2468 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2469 	fs_info->dev_root = root;
2470 	btrfs_init_devices_late(fs_info);
2471 
2472 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2473 	root = btrfs_read_tree_root(tree_root, &location);
2474 	if (IS_ERR(root))
2475 		return PTR_ERR(root);
2476 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2477 	fs_info->csum_root = root;
2478 
2479 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2480 	root = btrfs_read_tree_root(tree_root, &location);
2481 	if (!IS_ERR(root)) {
2482 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2483 		fs_info->quota_enabled = 1;
2484 		fs_info->pending_quota_state = 1;
2485 		fs_info->quota_root = root;
2486 	}
2487 
2488 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2489 	root = btrfs_read_tree_root(tree_root, &location);
2490 	if (IS_ERR(root)) {
2491 		ret = PTR_ERR(root);
2492 		if (ret != -ENOENT)
2493 			return ret;
2494 	} else {
2495 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2496 		fs_info->uuid_root = root;
2497 	}
2498 
2499 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2500 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2501 		root = btrfs_read_tree_root(tree_root, &location);
2502 		if (IS_ERR(root))
2503 			return PTR_ERR(root);
2504 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2505 		fs_info->free_space_root = root;
2506 	}
2507 
2508 	return 0;
2509 }
2510 
2511 int open_ctree(struct super_block *sb,
2512 	       struct btrfs_fs_devices *fs_devices,
2513 	       char *options)
2514 {
2515 	u32 sectorsize;
2516 	u32 nodesize;
2517 	u32 stripesize;
2518 	u64 generation;
2519 	u64 features;
2520 	struct btrfs_key location;
2521 	struct buffer_head *bh;
2522 	struct btrfs_super_block *disk_super;
2523 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2524 	struct btrfs_root *tree_root;
2525 	struct btrfs_root *chunk_root;
2526 	int ret;
2527 	int err = -EINVAL;
2528 	int num_backups_tried = 0;
2529 	int backup_index = 0;
2530 	int max_active;
2531 
2532 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2533 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2534 	if (!tree_root || !chunk_root) {
2535 		err = -ENOMEM;
2536 		goto fail;
2537 	}
2538 
2539 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2540 	if (ret) {
2541 		err = ret;
2542 		goto fail;
2543 	}
2544 
2545 	ret = setup_bdi(fs_info, &fs_info->bdi);
2546 	if (ret) {
2547 		err = ret;
2548 		goto fail_srcu;
2549 	}
2550 
2551 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2552 	if (ret) {
2553 		err = ret;
2554 		goto fail_bdi;
2555 	}
2556 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2557 					(1 + ilog2(nr_cpu_ids));
2558 
2559 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2560 	if (ret) {
2561 		err = ret;
2562 		goto fail_dirty_metadata_bytes;
2563 	}
2564 
2565 	ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2566 	if (ret) {
2567 		err = ret;
2568 		goto fail_delalloc_bytes;
2569 	}
2570 
2571 	fs_info->btree_inode = new_inode(sb);
2572 	if (!fs_info->btree_inode) {
2573 		err = -ENOMEM;
2574 		goto fail_bio_counter;
2575 	}
2576 
2577 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2578 
2579 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2580 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2581 	INIT_LIST_HEAD(&fs_info->trans_list);
2582 	INIT_LIST_HEAD(&fs_info->dead_roots);
2583 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2584 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2585 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2586 	spin_lock_init(&fs_info->delalloc_root_lock);
2587 	spin_lock_init(&fs_info->trans_lock);
2588 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2589 	spin_lock_init(&fs_info->delayed_iput_lock);
2590 	spin_lock_init(&fs_info->defrag_inodes_lock);
2591 	spin_lock_init(&fs_info->free_chunk_lock);
2592 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2593 	spin_lock_init(&fs_info->super_lock);
2594 	spin_lock_init(&fs_info->qgroup_op_lock);
2595 	spin_lock_init(&fs_info->buffer_lock);
2596 	spin_lock_init(&fs_info->unused_bgs_lock);
2597 	rwlock_init(&fs_info->tree_mod_log_lock);
2598 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2599 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2600 	mutex_init(&fs_info->reloc_mutex);
2601 	mutex_init(&fs_info->delalloc_root_mutex);
2602 	mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2603 	seqlock_init(&fs_info->profiles_lock);
2604 
2605 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2606 	INIT_LIST_HEAD(&fs_info->space_info);
2607 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2608 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2609 	btrfs_mapping_init(&fs_info->mapping_tree);
2610 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2611 			     BTRFS_BLOCK_RSV_GLOBAL);
2612 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2613 			     BTRFS_BLOCK_RSV_DELALLOC);
2614 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2615 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2616 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2617 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2618 			     BTRFS_BLOCK_RSV_DELOPS);
2619 	atomic_set(&fs_info->nr_async_submits, 0);
2620 	atomic_set(&fs_info->async_delalloc_pages, 0);
2621 	atomic_set(&fs_info->async_submit_draining, 0);
2622 	atomic_set(&fs_info->nr_async_bios, 0);
2623 	atomic_set(&fs_info->defrag_running, 0);
2624 	atomic_set(&fs_info->qgroup_op_seq, 0);
2625 	atomic_set(&fs_info->reada_works_cnt, 0);
2626 	atomic64_set(&fs_info->tree_mod_seq, 0);
2627 	fs_info->sb = sb;
2628 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2629 	fs_info->metadata_ratio = 0;
2630 	fs_info->defrag_inodes = RB_ROOT;
2631 	fs_info->free_chunk_space = 0;
2632 	fs_info->tree_mod_log = RB_ROOT;
2633 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2634 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2635 	/* readahead state */
2636 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2637 	spin_lock_init(&fs_info->reada_lock);
2638 
2639 	fs_info->thread_pool_size = min_t(unsigned long,
2640 					  num_online_cpus() + 2, 8);
2641 
2642 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2643 	spin_lock_init(&fs_info->ordered_root_lock);
2644 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2645 					GFP_KERNEL);
2646 	if (!fs_info->delayed_root) {
2647 		err = -ENOMEM;
2648 		goto fail_iput;
2649 	}
2650 	btrfs_init_delayed_root(fs_info->delayed_root);
2651 
2652 	btrfs_init_scrub(fs_info);
2653 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2654 	fs_info->check_integrity_print_mask = 0;
2655 #endif
2656 	btrfs_init_balance(fs_info);
2657 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2658 
2659 	sb->s_blocksize = 4096;
2660 	sb->s_blocksize_bits = blksize_bits(4096);
2661 	sb->s_bdi = &fs_info->bdi;
2662 
2663 	btrfs_init_btree_inode(fs_info, tree_root);
2664 
2665 	spin_lock_init(&fs_info->block_group_cache_lock);
2666 	fs_info->block_group_cache_tree = RB_ROOT;
2667 	fs_info->first_logical_byte = (u64)-1;
2668 
2669 	extent_io_tree_init(&fs_info->freed_extents[0],
2670 			     fs_info->btree_inode->i_mapping);
2671 	extent_io_tree_init(&fs_info->freed_extents[1],
2672 			     fs_info->btree_inode->i_mapping);
2673 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2674 	fs_info->do_barriers = 1;
2675 
2676 
2677 	mutex_init(&fs_info->ordered_operations_mutex);
2678 	mutex_init(&fs_info->tree_log_mutex);
2679 	mutex_init(&fs_info->chunk_mutex);
2680 	mutex_init(&fs_info->transaction_kthread_mutex);
2681 	mutex_init(&fs_info->cleaner_mutex);
2682 	mutex_init(&fs_info->volume_mutex);
2683 	mutex_init(&fs_info->ro_block_group_mutex);
2684 	init_rwsem(&fs_info->commit_root_sem);
2685 	init_rwsem(&fs_info->cleanup_work_sem);
2686 	init_rwsem(&fs_info->subvol_sem);
2687 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2688 
2689 	btrfs_init_dev_replace_locks(fs_info);
2690 	btrfs_init_qgroup(fs_info);
2691 
2692 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2693 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2694 
2695 	init_waitqueue_head(&fs_info->transaction_throttle);
2696 	init_waitqueue_head(&fs_info->transaction_wait);
2697 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2698 	init_waitqueue_head(&fs_info->async_submit_wait);
2699 
2700 	INIT_LIST_HEAD(&fs_info->pinned_chunks);
2701 
2702 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2703 	if (ret) {
2704 		err = ret;
2705 		goto fail_alloc;
2706 	}
2707 
2708 	__setup_root(4096, 4096, 4096, tree_root,
2709 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2710 
2711 	invalidate_bdev(fs_devices->latest_bdev);
2712 
2713 	/*
2714 	 * Read super block and check the signature bytes only
2715 	 */
2716 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2717 	if (IS_ERR(bh)) {
2718 		err = PTR_ERR(bh);
2719 		goto fail_alloc;
2720 	}
2721 
2722 	/*
2723 	 * We want to check superblock checksum, the type is stored inside.
2724 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2725 	 */
2726 	if (btrfs_check_super_csum(bh->b_data)) {
2727 		btrfs_err(fs_info, "superblock checksum mismatch");
2728 		err = -EINVAL;
2729 		brelse(bh);
2730 		goto fail_alloc;
2731 	}
2732 
2733 	/*
2734 	 * super_copy is zeroed at allocation time and we never touch the
2735 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2736 	 * the whole block of INFO_SIZE
2737 	 */
2738 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2739 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2740 	       sizeof(*fs_info->super_for_commit));
2741 	brelse(bh);
2742 
2743 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2744 
2745 	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2746 	if (ret) {
2747 		btrfs_err(fs_info, "superblock contains fatal errors");
2748 		err = -EINVAL;
2749 		goto fail_alloc;
2750 	}
2751 
2752 	disk_super = fs_info->super_copy;
2753 	if (!btrfs_super_root(disk_super))
2754 		goto fail_alloc;
2755 
2756 	/* check FS state, whether FS is broken. */
2757 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2758 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2759 
2760 	/*
2761 	 * run through our array of backup supers and setup
2762 	 * our ring pointer to the oldest one
2763 	 */
2764 	generation = btrfs_super_generation(disk_super);
2765 	find_oldest_super_backup(fs_info, generation);
2766 
2767 	/*
2768 	 * In the long term, we'll store the compression type in the super
2769 	 * block, and it'll be used for per file compression control.
2770 	 */
2771 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2772 
2773 	ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2774 	if (ret) {
2775 		err = ret;
2776 		goto fail_alloc;
2777 	}
2778 
2779 	features = btrfs_super_incompat_flags(disk_super) &
2780 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2781 	if (features) {
2782 		btrfs_err(fs_info,
2783 		    "cannot mount because of unsupported optional features (%llx)",
2784 		    features);
2785 		err = -EINVAL;
2786 		goto fail_alloc;
2787 	}
2788 
2789 	features = btrfs_super_incompat_flags(disk_super);
2790 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2791 	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2792 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2793 
2794 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2795 		btrfs_info(fs_info, "has skinny extents");
2796 
2797 	/*
2798 	 * flag our filesystem as having big metadata blocks if
2799 	 * they are bigger than the page size
2800 	 */
2801 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2802 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2803 			btrfs_info(fs_info,
2804 				"flagging fs with big metadata feature");
2805 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2806 	}
2807 
2808 	nodesize = btrfs_super_nodesize(disk_super);
2809 	sectorsize = btrfs_super_sectorsize(disk_super);
2810 	stripesize = sectorsize;
2811 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2812 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2813 
2814 	/*
2815 	 * mixed block groups end up with duplicate but slightly offset
2816 	 * extent buffers for the same range.  It leads to corruptions
2817 	 */
2818 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2819 	    (sectorsize != nodesize)) {
2820 		btrfs_err(fs_info,
2821 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2822 			nodesize, sectorsize);
2823 		goto fail_alloc;
2824 	}
2825 
2826 	/*
2827 	 * Needn't use the lock because there is no other task which will
2828 	 * update the flag.
2829 	 */
2830 	btrfs_set_super_incompat_flags(disk_super, features);
2831 
2832 	features = btrfs_super_compat_ro_flags(disk_super) &
2833 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2834 	if (!(sb->s_flags & MS_RDONLY) && features) {
2835 		btrfs_err(fs_info,
2836 	"cannot mount read-write because of unsupported optional features (%llx)",
2837 		       features);
2838 		err = -EINVAL;
2839 		goto fail_alloc;
2840 	}
2841 
2842 	max_active = fs_info->thread_pool_size;
2843 
2844 	ret = btrfs_init_workqueues(fs_info, fs_devices);
2845 	if (ret) {
2846 		err = ret;
2847 		goto fail_sb_buffer;
2848 	}
2849 
2850 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2851 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2852 				    SZ_4M / PAGE_SIZE);
2853 
2854 	tree_root->nodesize = nodesize;
2855 	tree_root->sectorsize = sectorsize;
2856 	tree_root->stripesize = stripesize;
2857 
2858 	sb->s_blocksize = sectorsize;
2859 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2860 
2861 	mutex_lock(&fs_info->chunk_mutex);
2862 	ret = btrfs_read_sys_array(tree_root);
2863 	mutex_unlock(&fs_info->chunk_mutex);
2864 	if (ret) {
2865 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
2866 		goto fail_sb_buffer;
2867 	}
2868 
2869 	generation = btrfs_super_chunk_root_generation(disk_super);
2870 
2871 	__setup_root(nodesize, sectorsize, stripesize, chunk_root,
2872 		     fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2873 
2874 	chunk_root->node = read_tree_block(chunk_root,
2875 					   btrfs_super_chunk_root(disk_super),
2876 					   generation);
2877 	if (IS_ERR(chunk_root->node) ||
2878 	    !extent_buffer_uptodate(chunk_root->node)) {
2879 		btrfs_err(fs_info, "failed to read chunk root");
2880 		if (!IS_ERR(chunk_root->node))
2881 			free_extent_buffer(chunk_root->node);
2882 		chunk_root->node = NULL;
2883 		goto fail_tree_roots;
2884 	}
2885 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2886 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2887 
2888 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2889 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2890 
2891 	ret = btrfs_read_chunk_tree(chunk_root);
2892 	if (ret) {
2893 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2894 		goto fail_tree_roots;
2895 	}
2896 
2897 	/*
2898 	 * keep the device that is marked to be the target device for the
2899 	 * dev_replace procedure
2900 	 */
2901 	btrfs_close_extra_devices(fs_devices, 0);
2902 
2903 	if (!fs_devices->latest_bdev) {
2904 		btrfs_err(fs_info, "failed to read devices");
2905 		goto fail_tree_roots;
2906 	}
2907 
2908 retry_root_backup:
2909 	generation = btrfs_super_generation(disk_super);
2910 
2911 	tree_root->node = read_tree_block(tree_root,
2912 					  btrfs_super_root(disk_super),
2913 					  generation);
2914 	if (IS_ERR(tree_root->node) ||
2915 	    !extent_buffer_uptodate(tree_root->node)) {
2916 		btrfs_warn(fs_info, "failed to read tree root");
2917 		if (!IS_ERR(tree_root->node))
2918 			free_extent_buffer(tree_root->node);
2919 		tree_root->node = NULL;
2920 		goto recovery_tree_root;
2921 	}
2922 
2923 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2924 	tree_root->commit_root = btrfs_root_node(tree_root);
2925 	btrfs_set_root_refs(&tree_root->root_item, 1);
2926 
2927 	mutex_lock(&tree_root->objectid_mutex);
2928 	ret = btrfs_find_highest_objectid(tree_root,
2929 					&tree_root->highest_objectid);
2930 	if (ret) {
2931 		mutex_unlock(&tree_root->objectid_mutex);
2932 		goto recovery_tree_root;
2933 	}
2934 
2935 	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2936 
2937 	mutex_unlock(&tree_root->objectid_mutex);
2938 
2939 	ret = btrfs_read_roots(fs_info, tree_root);
2940 	if (ret)
2941 		goto recovery_tree_root;
2942 
2943 	fs_info->generation = generation;
2944 	fs_info->last_trans_committed = generation;
2945 
2946 	ret = btrfs_recover_balance(fs_info);
2947 	if (ret) {
2948 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
2949 		goto fail_block_groups;
2950 	}
2951 
2952 	ret = btrfs_init_dev_stats(fs_info);
2953 	if (ret) {
2954 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2955 		goto fail_block_groups;
2956 	}
2957 
2958 	ret = btrfs_init_dev_replace(fs_info);
2959 	if (ret) {
2960 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
2961 		goto fail_block_groups;
2962 	}
2963 
2964 	btrfs_close_extra_devices(fs_devices, 1);
2965 
2966 	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2967 	if (ret) {
2968 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
2969 				ret);
2970 		goto fail_block_groups;
2971 	}
2972 
2973 	ret = btrfs_sysfs_add_device(fs_devices);
2974 	if (ret) {
2975 		btrfs_err(fs_info, "failed to init sysfs device interface: %d",
2976 				ret);
2977 		goto fail_fsdev_sysfs;
2978 	}
2979 
2980 	ret = btrfs_sysfs_add_mounted(fs_info);
2981 	if (ret) {
2982 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
2983 		goto fail_fsdev_sysfs;
2984 	}
2985 
2986 	ret = btrfs_init_space_info(fs_info);
2987 	if (ret) {
2988 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2989 		goto fail_sysfs;
2990 	}
2991 
2992 	ret = btrfs_read_block_groups(fs_info->extent_root);
2993 	if (ret) {
2994 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
2995 		goto fail_sysfs;
2996 	}
2997 	fs_info->num_tolerated_disk_barrier_failures =
2998 		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2999 	if (fs_info->fs_devices->missing_devices >
3000 	     fs_info->num_tolerated_disk_barrier_failures &&
3001 	    !(sb->s_flags & MS_RDONLY)) {
3002 		btrfs_warn(fs_info,
3003 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
3004 			fs_info->fs_devices->missing_devices,
3005 			fs_info->num_tolerated_disk_barrier_failures);
3006 		goto fail_sysfs;
3007 	}
3008 
3009 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3010 					       "btrfs-cleaner");
3011 	if (IS_ERR(fs_info->cleaner_kthread))
3012 		goto fail_sysfs;
3013 
3014 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3015 						   tree_root,
3016 						   "btrfs-transaction");
3017 	if (IS_ERR(fs_info->transaction_kthread))
3018 		goto fail_cleaner;
3019 
3020 	if (!btrfs_test_opt(tree_root->fs_info, SSD) &&
3021 	    !btrfs_test_opt(tree_root->fs_info, NOSSD) &&
3022 	    !fs_info->fs_devices->rotating) {
3023 		btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
3024 		btrfs_set_opt(fs_info->mount_opt, SSD);
3025 	}
3026 
3027 	/*
3028 	 * Mount does not set all options immediately, we can do it now and do
3029 	 * not have to wait for transaction commit
3030 	 */
3031 	btrfs_apply_pending_changes(fs_info);
3032 
3033 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3034 	if (btrfs_test_opt(tree_root->fs_info, CHECK_INTEGRITY)) {
3035 		ret = btrfsic_mount(tree_root, fs_devices,
3036 				    btrfs_test_opt(tree_root->fs_info,
3037 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3038 				    1 : 0,
3039 				    fs_info->check_integrity_print_mask);
3040 		if (ret)
3041 			btrfs_warn(fs_info,
3042 				"failed to initialize integrity check module: %d",
3043 				ret);
3044 	}
3045 #endif
3046 	ret = btrfs_read_qgroup_config(fs_info);
3047 	if (ret)
3048 		goto fail_trans_kthread;
3049 
3050 	/* do not make disk changes in broken FS or nologreplay is given */
3051 	if (btrfs_super_log_root(disk_super) != 0 &&
3052 	    !btrfs_test_opt(tree_root->fs_info, NOLOGREPLAY)) {
3053 		ret = btrfs_replay_log(fs_info, fs_devices);
3054 		if (ret) {
3055 			err = ret;
3056 			goto fail_qgroup;
3057 		}
3058 	}
3059 
3060 	ret = btrfs_find_orphan_roots(tree_root);
3061 	if (ret)
3062 		goto fail_qgroup;
3063 
3064 	if (!(sb->s_flags & MS_RDONLY)) {
3065 		ret = btrfs_cleanup_fs_roots(fs_info);
3066 		if (ret)
3067 			goto fail_qgroup;
3068 
3069 		mutex_lock(&fs_info->cleaner_mutex);
3070 		ret = btrfs_recover_relocation(tree_root);
3071 		mutex_unlock(&fs_info->cleaner_mutex);
3072 		if (ret < 0) {
3073 			btrfs_warn(fs_info, "failed to recover relocation: %d",
3074 					ret);
3075 			err = -EINVAL;
3076 			goto fail_qgroup;
3077 		}
3078 	}
3079 
3080 	location.objectid = BTRFS_FS_TREE_OBJECTID;
3081 	location.type = BTRFS_ROOT_ITEM_KEY;
3082 	location.offset = 0;
3083 
3084 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3085 	if (IS_ERR(fs_info->fs_root)) {
3086 		err = PTR_ERR(fs_info->fs_root);
3087 		goto fail_qgroup;
3088 	}
3089 
3090 	if (sb->s_flags & MS_RDONLY)
3091 		return 0;
3092 
3093 	if (btrfs_test_opt(tree_root->fs_info, FREE_SPACE_TREE) &&
3094 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3095 		btrfs_info(fs_info, "creating free space tree");
3096 		ret = btrfs_create_free_space_tree(fs_info);
3097 		if (ret) {
3098 			btrfs_warn(fs_info,
3099 				"failed to create free space tree: %d", ret);
3100 			close_ctree(tree_root);
3101 			return ret;
3102 		}
3103 	}
3104 
3105 	down_read(&fs_info->cleanup_work_sem);
3106 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3107 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3108 		up_read(&fs_info->cleanup_work_sem);
3109 		close_ctree(tree_root);
3110 		return ret;
3111 	}
3112 	up_read(&fs_info->cleanup_work_sem);
3113 
3114 	ret = btrfs_resume_balance_async(fs_info);
3115 	if (ret) {
3116 		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3117 		close_ctree(tree_root);
3118 		return ret;
3119 	}
3120 
3121 	ret = btrfs_resume_dev_replace_async(fs_info);
3122 	if (ret) {
3123 		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3124 		close_ctree(tree_root);
3125 		return ret;
3126 	}
3127 
3128 	btrfs_qgroup_rescan_resume(fs_info);
3129 
3130 	if (btrfs_test_opt(tree_root->fs_info, CLEAR_CACHE) &&
3131 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3132 		btrfs_info(fs_info, "clearing free space tree");
3133 		ret = btrfs_clear_free_space_tree(fs_info);
3134 		if (ret) {
3135 			btrfs_warn(fs_info,
3136 				"failed to clear free space tree: %d", ret);
3137 			close_ctree(tree_root);
3138 			return ret;
3139 		}
3140 	}
3141 
3142 	if (!fs_info->uuid_root) {
3143 		btrfs_info(fs_info, "creating UUID tree");
3144 		ret = btrfs_create_uuid_tree(fs_info);
3145 		if (ret) {
3146 			btrfs_warn(fs_info,
3147 				"failed to create the UUID tree: %d", ret);
3148 			close_ctree(tree_root);
3149 			return ret;
3150 		}
3151 	} else if (btrfs_test_opt(tree_root->fs_info, RESCAN_UUID_TREE) ||
3152 		   fs_info->generation !=
3153 				btrfs_super_uuid_tree_generation(disk_super)) {
3154 		btrfs_info(fs_info, "checking UUID tree");
3155 		ret = btrfs_check_uuid_tree(fs_info);
3156 		if (ret) {
3157 			btrfs_warn(fs_info,
3158 				"failed to check the UUID tree: %d", ret);
3159 			close_ctree(tree_root);
3160 			return ret;
3161 		}
3162 	} else {
3163 		fs_info->update_uuid_tree_gen = 1;
3164 	}
3165 
3166 	fs_info->open = 1;
3167 
3168 	/*
3169 	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3170 	 * no need to keep the flag
3171 	 */
3172 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3173 
3174 	return 0;
3175 
3176 fail_qgroup:
3177 	btrfs_free_qgroup_config(fs_info);
3178 fail_trans_kthread:
3179 	kthread_stop(fs_info->transaction_kthread);
3180 	btrfs_cleanup_transaction(fs_info->tree_root);
3181 	btrfs_free_fs_roots(fs_info);
3182 fail_cleaner:
3183 	kthread_stop(fs_info->cleaner_kthread);
3184 
3185 	/*
3186 	 * make sure we're done with the btree inode before we stop our
3187 	 * kthreads
3188 	 */
3189 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3190 
3191 fail_sysfs:
3192 	btrfs_sysfs_remove_mounted(fs_info);
3193 
3194 fail_fsdev_sysfs:
3195 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3196 
3197 fail_block_groups:
3198 	btrfs_put_block_group_cache(fs_info);
3199 	btrfs_free_block_groups(fs_info);
3200 
3201 fail_tree_roots:
3202 	free_root_pointers(fs_info, 1);
3203 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3204 
3205 fail_sb_buffer:
3206 	btrfs_stop_all_workers(fs_info);
3207 fail_alloc:
3208 fail_iput:
3209 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3210 
3211 	iput(fs_info->btree_inode);
3212 fail_bio_counter:
3213 	percpu_counter_destroy(&fs_info->bio_counter);
3214 fail_delalloc_bytes:
3215 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3216 fail_dirty_metadata_bytes:
3217 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3218 fail_bdi:
3219 	bdi_destroy(&fs_info->bdi);
3220 fail_srcu:
3221 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3222 fail:
3223 	btrfs_free_stripe_hash_table(fs_info);
3224 	btrfs_close_devices(fs_info->fs_devices);
3225 	return err;
3226 
3227 recovery_tree_root:
3228 	if (!btrfs_test_opt(tree_root->fs_info, USEBACKUPROOT))
3229 		goto fail_tree_roots;
3230 
3231 	free_root_pointers(fs_info, 0);
3232 
3233 	/* don't use the log in recovery mode, it won't be valid */
3234 	btrfs_set_super_log_root(disk_super, 0);
3235 
3236 	/* we can't trust the free space cache either */
3237 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3238 
3239 	ret = next_root_backup(fs_info, fs_info->super_copy,
3240 			       &num_backups_tried, &backup_index);
3241 	if (ret == -1)
3242 		goto fail_block_groups;
3243 	goto retry_root_backup;
3244 }
3245 
3246 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3247 {
3248 	if (uptodate) {
3249 		set_buffer_uptodate(bh);
3250 	} else {
3251 		struct btrfs_device *device = (struct btrfs_device *)
3252 			bh->b_private;
3253 
3254 		btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3255 				"lost page write due to IO error on %s",
3256 					  rcu_str_deref(device->name));
3257 		/* note, we don't set_buffer_write_io_error because we have
3258 		 * our own ways of dealing with the IO errors
3259 		 */
3260 		clear_buffer_uptodate(bh);
3261 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3262 	}
3263 	unlock_buffer(bh);
3264 	put_bh(bh);
3265 }
3266 
3267 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3268 			struct buffer_head **bh_ret)
3269 {
3270 	struct buffer_head *bh;
3271 	struct btrfs_super_block *super;
3272 	u64 bytenr;
3273 
3274 	bytenr = btrfs_sb_offset(copy_num);
3275 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3276 		return -EINVAL;
3277 
3278 	bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3279 	/*
3280 	 * If we fail to read from the underlying devices, as of now
3281 	 * the best option we have is to mark it EIO.
3282 	 */
3283 	if (!bh)
3284 		return -EIO;
3285 
3286 	super = (struct btrfs_super_block *)bh->b_data;
3287 	if (btrfs_super_bytenr(super) != bytenr ||
3288 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3289 		brelse(bh);
3290 		return -EINVAL;
3291 	}
3292 
3293 	*bh_ret = bh;
3294 	return 0;
3295 }
3296 
3297 
3298 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3299 {
3300 	struct buffer_head *bh;
3301 	struct buffer_head *latest = NULL;
3302 	struct btrfs_super_block *super;
3303 	int i;
3304 	u64 transid = 0;
3305 	int ret = -EINVAL;
3306 
3307 	/* we would like to check all the supers, but that would make
3308 	 * a btrfs mount succeed after a mkfs from a different FS.
3309 	 * So, we need to add a special mount option to scan for
3310 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3311 	 */
3312 	for (i = 0; i < 1; i++) {
3313 		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3314 		if (ret)
3315 			continue;
3316 
3317 		super = (struct btrfs_super_block *)bh->b_data;
3318 
3319 		if (!latest || btrfs_super_generation(super) > transid) {
3320 			brelse(latest);
3321 			latest = bh;
3322 			transid = btrfs_super_generation(super);
3323 		} else {
3324 			brelse(bh);
3325 		}
3326 	}
3327 
3328 	if (!latest)
3329 		return ERR_PTR(ret);
3330 
3331 	return latest;
3332 }
3333 
3334 /*
3335  * this should be called twice, once with wait == 0 and
3336  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3337  * we write are pinned.
3338  *
3339  * They are released when wait == 1 is done.
3340  * max_mirrors must be the same for both runs, and it indicates how
3341  * many supers on this one device should be written.
3342  *
3343  * max_mirrors == 0 means to write them all.
3344  */
3345 static int write_dev_supers(struct btrfs_device *device,
3346 			    struct btrfs_super_block *sb,
3347 			    int do_barriers, int wait, int max_mirrors)
3348 {
3349 	struct buffer_head *bh;
3350 	int i;
3351 	int ret;
3352 	int errors = 0;
3353 	u32 crc;
3354 	u64 bytenr;
3355 
3356 	if (max_mirrors == 0)
3357 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3358 
3359 	for (i = 0; i < max_mirrors; i++) {
3360 		bytenr = btrfs_sb_offset(i);
3361 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3362 		    device->commit_total_bytes)
3363 			break;
3364 
3365 		if (wait) {
3366 			bh = __find_get_block(device->bdev, bytenr / 4096,
3367 					      BTRFS_SUPER_INFO_SIZE);
3368 			if (!bh) {
3369 				errors++;
3370 				continue;
3371 			}
3372 			wait_on_buffer(bh);
3373 			if (!buffer_uptodate(bh))
3374 				errors++;
3375 
3376 			/* drop our reference */
3377 			brelse(bh);
3378 
3379 			/* drop the reference from the wait == 0 run */
3380 			brelse(bh);
3381 			continue;
3382 		} else {
3383 			btrfs_set_super_bytenr(sb, bytenr);
3384 
3385 			crc = ~(u32)0;
3386 			crc = btrfs_csum_data((char *)sb +
3387 					      BTRFS_CSUM_SIZE, crc,
3388 					      BTRFS_SUPER_INFO_SIZE -
3389 					      BTRFS_CSUM_SIZE);
3390 			btrfs_csum_final(crc, sb->csum);
3391 
3392 			/*
3393 			 * one reference for us, and we leave it for the
3394 			 * caller
3395 			 */
3396 			bh = __getblk(device->bdev, bytenr / 4096,
3397 				      BTRFS_SUPER_INFO_SIZE);
3398 			if (!bh) {
3399 				btrfs_err(device->dev_root->fs_info,
3400 				    "couldn't get super buffer head for bytenr %llu",
3401 				    bytenr);
3402 				errors++;
3403 				continue;
3404 			}
3405 
3406 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3407 
3408 			/* one reference for submit_bh */
3409 			get_bh(bh);
3410 
3411 			set_buffer_uptodate(bh);
3412 			lock_buffer(bh);
3413 			bh->b_end_io = btrfs_end_buffer_write_sync;
3414 			bh->b_private = device;
3415 		}
3416 
3417 		/*
3418 		 * we fua the first super.  The others we allow
3419 		 * to go down lazy.
3420 		 */
3421 		if (i == 0)
3422 			ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_FUA, bh);
3423 		else
3424 			ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_SYNC, bh);
3425 		if (ret)
3426 			errors++;
3427 	}
3428 	return errors < i ? 0 : -1;
3429 }
3430 
3431 /*
3432  * endio for the write_dev_flush, this will wake anyone waiting
3433  * for the barrier when it is done
3434  */
3435 static void btrfs_end_empty_barrier(struct bio *bio)
3436 {
3437 	if (bio->bi_private)
3438 		complete(bio->bi_private);
3439 	bio_put(bio);
3440 }
3441 
3442 /*
3443  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3444  * sent down.  With wait == 1, it waits for the previous flush.
3445  *
3446  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3447  * capable
3448  */
3449 static int write_dev_flush(struct btrfs_device *device, int wait)
3450 {
3451 	struct bio *bio;
3452 	int ret = 0;
3453 
3454 	if (device->nobarriers)
3455 		return 0;
3456 
3457 	if (wait) {
3458 		bio = device->flush_bio;
3459 		if (!bio)
3460 			return 0;
3461 
3462 		wait_for_completion(&device->flush_wait);
3463 
3464 		if (bio->bi_error) {
3465 			ret = bio->bi_error;
3466 			btrfs_dev_stat_inc_and_print(device,
3467 				BTRFS_DEV_STAT_FLUSH_ERRS);
3468 		}
3469 
3470 		/* drop the reference from the wait == 0 run */
3471 		bio_put(bio);
3472 		device->flush_bio = NULL;
3473 
3474 		return ret;
3475 	}
3476 
3477 	/*
3478 	 * one reference for us, and we leave it for the
3479 	 * caller
3480 	 */
3481 	device->flush_bio = NULL;
3482 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3483 	if (!bio)
3484 		return -ENOMEM;
3485 
3486 	bio->bi_end_io = btrfs_end_empty_barrier;
3487 	bio->bi_bdev = device->bdev;
3488 	bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
3489 	init_completion(&device->flush_wait);
3490 	bio->bi_private = &device->flush_wait;
3491 	device->flush_bio = bio;
3492 
3493 	bio_get(bio);
3494 	btrfsic_submit_bio(bio);
3495 
3496 	return 0;
3497 }
3498 
3499 /*
3500  * send an empty flush down to each device in parallel,
3501  * then wait for them
3502  */
3503 static int barrier_all_devices(struct btrfs_fs_info *info)
3504 {
3505 	struct list_head *head;
3506 	struct btrfs_device *dev;
3507 	int errors_send = 0;
3508 	int errors_wait = 0;
3509 	int ret;
3510 
3511 	/* send down all the barriers */
3512 	head = &info->fs_devices->devices;
3513 	list_for_each_entry_rcu(dev, head, dev_list) {
3514 		if (dev->missing)
3515 			continue;
3516 		if (!dev->bdev) {
3517 			errors_send++;
3518 			continue;
3519 		}
3520 		if (!dev->in_fs_metadata || !dev->writeable)
3521 			continue;
3522 
3523 		ret = write_dev_flush(dev, 0);
3524 		if (ret)
3525 			errors_send++;
3526 	}
3527 
3528 	/* wait for all the barriers */
3529 	list_for_each_entry_rcu(dev, head, dev_list) {
3530 		if (dev->missing)
3531 			continue;
3532 		if (!dev->bdev) {
3533 			errors_wait++;
3534 			continue;
3535 		}
3536 		if (!dev->in_fs_metadata || !dev->writeable)
3537 			continue;
3538 
3539 		ret = write_dev_flush(dev, 1);
3540 		if (ret)
3541 			errors_wait++;
3542 	}
3543 	if (errors_send > info->num_tolerated_disk_barrier_failures ||
3544 	    errors_wait > info->num_tolerated_disk_barrier_failures)
3545 		return -EIO;
3546 	return 0;
3547 }
3548 
3549 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3550 {
3551 	int raid_type;
3552 	int min_tolerated = INT_MAX;
3553 
3554 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3555 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3556 		min_tolerated = min(min_tolerated,
3557 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3558 				    tolerated_failures);
3559 
3560 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3561 		if (raid_type == BTRFS_RAID_SINGLE)
3562 			continue;
3563 		if (!(flags & btrfs_raid_group[raid_type]))
3564 			continue;
3565 		min_tolerated = min(min_tolerated,
3566 				    btrfs_raid_array[raid_type].
3567 				    tolerated_failures);
3568 	}
3569 
3570 	if (min_tolerated == INT_MAX) {
3571 		pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3572 		min_tolerated = 0;
3573 	}
3574 
3575 	return min_tolerated;
3576 }
3577 
3578 int btrfs_calc_num_tolerated_disk_barrier_failures(
3579 	struct btrfs_fs_info *fs_info)
3580 {
3581 	struct btrfs_ioctl_space_info space;
3582 	struct btrfs_space_info *sinfo;
3583 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3584 		       BTRFS_BLOCK_GROUP_SYSTEM,
3585 		       BTRFS_BLOCK_GROUP_METADATA,
3586 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3587 	int i;
3588 	int c;
3589 	int num_tolerated_disk_barrier_failures =
3590 		(int)fs_info->fs_devices->num_devices;
3591 
3592 	for (i = 0; i < ARRAY_SIZE(types); i++) {
3593 		struct btrfs_space_info *tmp;
3594 
3595 		sinfo = NULL;
3596 		rcu_read_lock();
3597 		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3598 			if (tmp->flags == types[i]) {
3599 				sinfo = tmp;
3600 				break;
3601 			}
3602 		}
3603 		rcu_read_unlock();
3604 
3605 		if (!sinfo)
3606 			continue;
3607 
3608 		down_read(&sinfo->groups_sem);
3609 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3610 			u64 flags;
3611 
3612 			if (list_empty(&sinfo->block_groups[c]))
3613 				continue;
3614 
3615 			btrfs_get_block_group_info(&sinfo->block_groups[c],
3616 						   &space);
3617 			if (space.total_bytes == 0 || space.used_bytes == 0)
3618 				continue;
3619 			flags = space.flags;
3620 
3621 			num_tolerated_disk_barrier_failures = min(
3622 				num_tolerated_disk_barrier_failures,
3623 				btrfs_get_num_tolerated_disk_barrier_failures(
3624 					flags));
3625 		}
3626 		up_read(&sinfo->groups_sem);
3627 	}
3628 
3629 	return num_tolerated_disk_barrier_failures;
3630 }
3631 
3632 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3633 {
3634 	struct list_head *head;
3635 	struct btrfs_device *dev;
3636 	struct btrfs_super_block *sb;
3637 	struct btrfs_dev_item *dev_item;
3638 	int ret;
3639 	int do_barriers;
3640 	int max_errors;
3641 	int total_errors = 0;
3642 	u64 flags;
3643 
3644 	do_barriers = !btrfs_test_opt(root->fs_info, NOBARRIER);
3645 	backup_super_roots(root->fs_info);
3646 
3647 	sb = root->fs_info->super_for_commit;
3648 	dev_item = &sb->dev_item;
3649 
3650 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3651 	head = &root->fs_info->fs_devices->devices;
3652 	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3653 
3654 	if (do_barriers) {
3655 		ret = barrier_all_devices(root->fs_info);
3656 		if (ret) {
3657 			mutex_unlock(
3658 				&root->fs_info->fs_devices->device_list_mutex);
3659 			btrfs_handle_fs_error(root->fs_info, ret,
3660 				    "errors while submitting device barriers.");
3661 			return ret;
3662 		}
3663 	}
3664 
3665 	list_for_each_entry_rcu(dev, head, dev_list) {
3666 		if (!dev->bdev) {
3667 			total_errors++;
3668 			continue;
3669 		}
3670 		if (!dev->in_fs_metadata || !dev->writeable)
3671 			continue;
3672 
3673 		btrfs_set_stack_device_generation(dev_item, 0);
3674 		btrfs_set_stack_device_type(dev_item, dev->type);
3675 		btrfs_set_stack_device_id(dev_item, dev->devid);
3676 		btrfs_set_stack_device_total_bytes(dev_item,
3677 						   dev->commit_total_bytes);
3678 		btrfs_set_stack_device_bytes_used(dev_item,
3679 						  dev->commit_bytes_used);
3680 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3681 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3682 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3683 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3684 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3685 
3686 		flags = btrfs_super_flags(sb);
3687 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3688 
3689 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3690 		if (ret)
3691 			total_errors++;
3692 	}
3693 	if (total_errors > max_errors) {
3694 		btrfs_err(root->fs_info, "%d errors while writing supers",
3695 		       total_errors);
3696 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3697 
3698 		/* FUA is masked off if unsupported and can't be the reason */
3699 		btrfs_handle_fs_error(root->fs_info, -EIO,
3700 			    "%d errors while writing supers", total_errors);
3701 		return -EIO;
3702 	}
3703 
3704 	total_errors = 0;
3705 	list_for_each_entry_rcu(dev, head, dev_list) {
3706 		if (!dev->bdev)
3707 			continue;
3708 		if (!dev->in_fs_metadata || !dev->writeable)
3709 			continue;
3710 
3711 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3712 		if (ret)
3713 			total_errors++;
3714 	}
3715 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3716 	if (total_errors > max_errors) {
3717 		btrfs_handle_fs_error(root->fs_info, -EIO,
3718 			    "%d errors while writing supers", total_errors);
3719 		return -EIO;
3720 	}
3721 	return 0;
3722 }
3723 
3724 int write_ctree_super(struct btrfs_trans_handle *trans,
3725 		      struct btrfs_root *root, int max_mirrors)
3726 {
3727 	return write_all_supers(root, max_mirrors);
3728 }
3729 
3730 /* Drop a fs root from the radix tree and free it. */
3731 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3732 				  struct btrfs_root *root)
3733 {
3734 	spin_lock(&fs_info->fs_roots_radix_lock);
3735 	radix_tree_delete(&fs_info->fs_roots_radix,
3736 			  (unsigned long)root->root_key.objectid);
3737 	spin_unlock(&fs_info->fs_roots_radix_lock);
3738 
3739 	if (btrfs_root_refs(&root->root_item) == 0)
3740 		synchronize_srcu(&fs_info->subvol_srcu);
3741 
3742 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3743 		btrfs_free_log(NULL, root);
3744 
3745 	if (root->free_ino_pinned)
3746 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3747 	if (root->free_ino_ctl)
3748 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3749 	free_fs_root(root);
3750 }
3751 
3752 static void free_fs_root(struct btrfs_root *root)
3753 {
3754 	iput(root->ino_cache_inode);
3755 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3756 	btrfs_free_block_rsv(root, root->orphan_block_rsv);
3757 	root->orphan_block_rsv = NULL;
3758 	if (root->anon_dev)
3759 		free_anon_bdev(root->anon_dev);
3760 	if (root->subv_writers)
3761 		btrfs_free_subvolume_writers(root->subv_writers);
3762 	free_extent_buffer(root->node);
3763 	free_extent_buffer(root->commit_root);
3764 	kfree(root->free_ino_ctl);
3765 	kfree(root->free_ino_pinned);
3766 	kfree(root->name);
3767 	btrfs_put_fs_root(root);
3768 }
3769 
3770 void btrfs_free_fs_root(struct btrfs_root *root)
3771 {
3772 	free_fs_root(root);
3773 }
3774 
3775 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3776 {
3777 	u64 root_objectid = 0;
3778 	struct btrfs_root *gang[8];
3779 	int i = 0;
3780 	int err = 0;
3781 	unsigned int ret = 0;
3782 	int index;
3783 
3784 	while (1) {
3785 		index = srcu_read_lock(&fs_info->subvol_srcu);
3786 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3787 					     (void **)gang, root_objectid,
3788 					     ARRAY_SIZE(gang));
3789 		if (!ret) {
3790 			srcu_read_unlock(&fs_info->subvol_srcu, index);
3791 			break;
3792 		}
3793 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3794 
3795 		for (i = 0; i < ret; i++) {
3796 			/* Avoid to grab roots in dead_roots */
3797 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3798 				gang[i] = NULL;
3799 				continue;
3800 			}
3801 			/* grab all the search result for later use */
3802 			gang[i] = btrfs_grab_fs_root(gang[i]);
3803 		}
3804 		srcu_read_unlock(&fs_info->subvol_srcu, index);
3805 
3806 		for (i = 0; i < ret; i++) {
3807 			if (!gang[i])
3808 				continue;
3809 			root_objectid = gang[i]->root_key.objectid;
3810 			err = btrfs_orphan_cleanup(gang[i]);
3811 			if (err)
3812 				break;
3813 			btrfs_put_fs_root(gang[i]);
3814 		}
3815 		root_objectid++;
3816 	}
3817 
3818 	/* release the uncleaned roots due to error */
3819 	for (; i < ret; i++) {
3820 		if (gang[i])
3821 			btrfs_put_fs_root(gang[i]);
3822 	}
3823 	return err;
3824 }
3825 
3826 int btrfs_commit_super(struct btrfs_root *root)
3827 {
3828 	struct btrfs_trans_handle *trans;
3829 
3830 	mutex_lock(&root->fs_info->cleaner_mutex);
3831 	btrfs_run_delayed_iputs(root);
3832 	mutex_unlock(&root->fs_info->cleaner_mutex);
3833 	wake_up_process(root->fs_info->cleaner_kthread);
3834 
3835 	/* wait until ongoing cleanup work done */
3836 	down_write(&root->fs_info->cleanup_work_sem);
3837 	up_write(&root->fs_info->cleanup_work_sem);
3838 
3839 	trans = btrfs_join_transaction(root);
3840 	if (IS_ERR(trans))
3841 		return PTR_ERR(trans);
3842 	return btrfs_commit_transaction(trans, root);
3843 }
3844 
3845 void close_ctree(struct btrfs_root *root)
3846 {
3847 	struct btrfs_fs_info *fs_info = root->fs_info;
3848 	int ret;
3849 
3850 	fs_info->closing = 1;
3851 	smp_mb();
3852 
3853 	/* wait for the qgroup rescan worker to stop */
3854 	btrfs_qgroup_wait_for_completion(fs_info);
3855 
3856 	/* wait for the uuid_scan task to finish */
3857 	down(&fs_info->uuid_tree_rescan_sem);
3858 	/* avoid complains from lockdep et al., set sem back to initial state */
3859 	up(&fs_info->uuid_tree_rescan_sem);
3860 
3861 	/* pause restriper - we want to resume on mount */
3862 	btrfs_pause_balance(fs_info);
3863 
3864 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3865 
3866 	btrfs_scrub_cancel(fs_info);
3867 
3868 	/* wait for any defraggers to finish */
3869 	wait_event(fs_info->transaction_wait,
3870 		   (atomic_read(&fs_info->defrag_running) == 0));
3871 
3872 	/* clear out the rbtree of defraggable inodes */
3873 	btrfs_cleanup_defrag_inodes(fs_info);
3874 
3875 	cancel_work_sync(&fs_info->async_reclaim_work);
3876 
3877 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3878 		/*
3879 		 * If the cleaner thread is stopped and there are
3880 		 * block groups queued for removal, the deletion will be
3881 		 * skipped when we quit the cleaner thread.
3882 		 */
3883 		btrfs_delete_unused_bgs(root->fs_info);
3884 
3885 		ret = btrfs_commit_super(root);
3886 		if (ret)
3887 			btrfs_err(fs_info, "commit super ret %d", ret);
3888 	}
3889 
3890 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3891 		btrfs_error_commit_super(root);
3892 
3893 	kthread_stop(fs_info->transaction_kthread);
3894 	kthread_stop(fs_info->cleaner_kthread);
3895 
3896 	fs_info->closing = 2;
3897 	smp_mb();
3898 
3899 	btrfs_free_qgroup_config(fs_info);
3900 
3901 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3902 		btrfs_info(fs_info, "at unmount delalloc count %lld",
3903 		       percpu_counter_sum(&fs_info->delalloc_bytes));
3904 	}
3905 
3906 	btrfs_sysfs_remove_mounted(fs_info);
3907 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3908 
3909 	btrfs_free_fs_roots(fs_info);
3910 
3911 	btrfs_put_block_group_cache(fs_info);
3912 
3913 	btrfs_free_block_groups(fs_info);
3914 
3915 	/*
3916 	 * we must make sure there is not any read request to
3917 	 * submit after we stopping all workers.
3918 	 */
3919 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3920 	btrfs_stop_all_workers(fs_info);
3921 
3922 	fs_info->open = 0;
3923 	free_root_pointers(fs_info, 1);
3924 
3925 	iput(fs_info->btree_inode);
3926 
3927 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3928 	if (btrfs_test_opt(root->fs_info, CHECK_INTEGRITY))
3929 		btrfsic_unmount(root, fs_info->fs_devices);
3930 #endif
3931 
3932 	btrfs_close_devices(fs_info->fs_devices);
3933 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3934 
3935 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3936 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3937 	percpu_counter_destroy(&fs_info->bio_counter);
3938 	bdi_destroy(&fs_info->bdi);
3939 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3940 
3941 	btrfs_free_stripe_hash_table(fs_info);
3942 
3943 	__btrfs_free_block_rsv(root->orphan_block_rsv);
3944 	root->orphan_block_rsv = NULL;
3945 
3946 	lock_chunks(root);
3947 	while (!list_empty(&fs_info->pinned_chunks)) {
3948 		struct extent_map *em;
3949 
3950 		em = list_first_entry(&fs_info->pinned_chunks,
3951 				      struct extent_map, list);
3952 		list_del_init(&em->list);
3953 		free_extent_map(em);
3954 	}
3955 	unlock_chunks(root);
3956 }
3957 
3958 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3959 			  int atomic)
3960 {
3961 	int ret;
3962 	struct inode *btree_inode = buf->pages[0]->mapping->host;
3963 
3964 	ret = extent_buffer_uptodate(buf);
3965 	if (!ret)
3966 		return ret;
3967 
3968 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3969 				    parent_transid, atomic);
3970 	if (ret == -EAGAIN)
3971 		return ret;
3972 	return !ret;
3973 }
3974 
3975 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3976 {
3977 	struct btrfs_root *root;
3978 	u64 transid = btrfs_header_generation(buf);
3979 	int was_dirty;
3980 
3981 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3982 	/*
3983 	 * This is a fast path so only do this check if we have sanity tests
3984 	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3985 	 * outside of the sanity tests.
3986 	 */
3987 	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3988 		return;
3989 #endif
3990 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3991 	btrfs_assert_tree_locked(buf);
3992 	if (transid != root->fs_info->generation)
3993 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3994 		       "found %llu running %llu\n",
3995 			buf->start, transid, root->fs_info->generation);
3996 	was_dirty = set_extent_buffer_dirty(buf);
3997 	if (!was_dirty)
3998 		__percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3999 				     buf->len,
4000 				     root->fs_info->dirty_metadata_batch);
4001 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4002 	if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4003 		btrfs_print_leaf(root, buf);
4004 		ASSERT(0);
4005 	}
4006 #endif
4007 }
4008 
4009 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4010 					int flush_delayed)
4011 {
4012 	/*
4013 	 * looks as though older kernels can get into trouble with
4014 	 * this code, they end up stuck in balance_dirty_pages forever
4015 	 */
4016 	int ret;
4017 
4018 	if (current->flags & PF_MEMALLOC)
4019 		return;
4020 
4021 	if (flush_delayed)
4022 		btrfs_balance_delayed_items(root);
4023 
4024 	ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4025 				     BTRFS_DIRTY_METADATA_THRESH);
4026 	if (ret > 0) {
4027 		balance_dirty_pages_ratelimited(
4028 				   root->fs_info->btree_inode->i_mapping);
4029 	}
4030 }
4031 
4032 void btrfs_btree_balance_dirty(struct btrfs_root *root)
4033 {
4034 	__btrfs_btree_balance_dirty(root, 1);
4035 }
4036 
4037 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4038 {
4039 	__btrfs_btree_balance_dirty(root, 0);
4040 }
4041 
4042 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4043 {
4044 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4045 	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
4046 }
4047 
4048 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4049 			      int read_only)
4050 {
4051 	struct btrfs_super_block *sb = fs_info->super_copy;
4052 	u64 nodesize = btrfs_super_nodesize(sb);
4053 	u64 sectorsize = btrfs_super_sectorsize(sb);
4054 	int ret = 0;
4055 
4056 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4057 		printk(KERN_ERR "BTRFS: no valid FS found\n");
4058 		ret = -EINVAL;
4059 	}
4060 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4061 		printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
4062 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4063 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4064 		printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4065 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4066 		ret = -EINVAL;
4067 	}
4068 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4069 		printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4070 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4071 		ret = -EINVAL;
4072 	}
4073 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4074 		printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4075 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4076 		ret = -EINVAL;
4077 	}
4078 
4079 	/*
4080 	 * Check sectorsize and nodesize first, other check will need it.
4081 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4082 	 */
4083 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4084 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4085 		printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
4086 		ret = -EINVAL;
4087 	}
4088 	/* Only PAGE SIZE is supported yet */
4089 	if (sectorsize != PAGE_SIZE) {
4090 		printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
4091 				sectorsize, PAGE_SIZE);
4092 		ret = -EINVAL;
4093 	}
4094 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4095 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4096 		printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
4097 		ret = -EINVAL;
4098 	}
4099 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4100 		printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
4101 				le32_to_cpu(sb->__unused_leafsize),
4102 				nodesize);
4103 		ret = -EINVAL;
4104 	}
4105 
4106 	/* Root alignment check */
4107 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4108 		printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4109 				btrfs_super_root(sb));
4110 		ret = -EINVAL;
4111 	}
4112 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4113 		printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4114 				btrfs_super_chunk_root(sb));
4115 		ret = -EINVAL;
4116 	}
4117 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4118 		printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4119 				btrfs_super_log_root(sb));
4120 		ret = -EINVAL;
4121 	}
4122 
4123 	if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4124 		printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4125 				fs_info->fsid, sb->dev_item.fsid);
4126 		ret = -EINVAL;
4127 	}
4128 
4129 	/*
4130 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4131 	 * done later
4132 	 */
4133 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4134 		btrfs_err(fs_info, "bytes_used is too small %llu",
4135 		       btrfs_super_bytes_used(sb));
4136 		ret = -EINVAL;
4137 	}
4138 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4139 		btrfs_err(fs_info, "invalid stripesize %u",
4140 		       btrfs_super_stripesize(sb));
4141 		ret = -EINVAL;
4142 	}
4143 	if (btrfs_super_num_devices(sb) > (1UL << 31))
4144 		printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4145 				btrfs_super_num_devices(sb));
4146 	if (btrfs_super_num_devices(sb) == 0) {
4147 		printk(KERN_ERR "BTRFS: number of devices is 0\n");
4148 		ret = -EINVAL;
4149 	}
4150 
4151 	if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4152 		printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4153 				btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4154 		ret = -EINVAL;
4155 	}
4156 
4157 	/*
4158 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
4159 	 * and one chunk
4160 	 */
4161 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4162 		printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4163 				btrfs_super_sys_array_size(sb),
4164 				BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4165 		ret = -EINVAL;
4166 	}
4167 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4168 			+ sizeof(struct btrfs_chunk)) {
4169 		printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4170 				btrfs_super_sys_array_size(sb),
4171 				sizeof(struct btrfs_disk_key)
4172 				+ sizeof(struct btrfs_chunk));
4173 		ret = -EINVAL;
4174 	}
4175 
4176 	/*
4177 	 * The generation is a global counter, we'll trust it more than the others
4178 	 * but it's still possible that it's the one that's wrong.
4179 	 */
4180 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4181 		printk(KERN_WARNING
4182 			"BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4183 			btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4184 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4185 	    && btrfs_super_cache_generation(sb) != (u64)-1)
4186 		printk(KERN_WARNING
4187 			"BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4188 			btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4189 
4190 	return ret;
4191 }
4192 
4193 static void btrfs_error_commit_super(struct btrfs_root *root)
4194 {
4195 	mutex_lock(&root->fs_info->cleaner_mutex);
4196 	btrfs_run_delayed_iputs(root);
4197 	mutex_unlock(&root->fs_info->cleaner_mutex);
4198 
4199 	down_write(&root->fs_info->cleanup_work_sem);
4200 	up_write(&root->fs_info->cleanup_work_sem);
4201 
4202 	/* cleanup FS via transaction */
4203 	btrfs_cleanup_transaction(root);
4204 }
4205 
4206 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4207 {
4208 	struct btrfs_ordered_extent *ordered;
4209 
4210 	spin_lock(&root->ordered_extent_lock);
4211 	/*
4212 	 * This will just short circuit the ordered completion stuff which will
4213 	 * make sure the ordered extent gets properly cleaned up.
4214 	 */
4215 	list_for_each_entry(ordered, &root->ordered_extents,
4216 			    root_extent_list)
4217 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4218 	spin_unlock(&root->ordered_extent_lock);
4219 }
4220 
4221 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4222 {
4223 	struct btrfs_root *root;
4224 	struct list_head splice;
4225 
4226 	INIT_LIST_HEAD(&splice);
4227 
4228 	spin_lock(&fs_info->ordered_root_lock);
4229 	list_splice_init(&fs_info->ordered_roots, &splice);
4230 	while (!list_empty(&splice)) {
4231 		root = list_first_entry(&splice, struct btrfs_root,
4232 					ordered_root);
4233 		list_move_tail(&root->ordered_root,
4234 			       &fs_info->ordered_roots);
4235 
4236 		spin_unlock(&fs_info->ordered_root_lock);
4237 		btrfs_destroy_ordered_extents(root);
4238 
4239 		cond_resched();
4240 		spin_lock(&fs_info->ordered_root_lock);
4241 	}
4242 	spin_unlock(&fs_info->ordered_root_lock);
4243 }
4244 
4245 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4246 				      struct btrfs_root *root)
4247 {
4248 	struct rb_node *node;
4249 	struct btrfs_delayed_ref_root *delayed_refs;
4250 	struct btrfs_delayed_ref_node *ref;
4251 	int ret = 0;
4252 
4253 	delayed_refs = &trans->delayed_refs;
4254 
4255 	spin_lock(&delayed_refs->lock);
4256 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4257 		spin_unlock(&delayed_refs->lock);
4258 		btrfs_info(root->fs_info, "delayed_refs has NO entry");
4259 		return ret;
4260 	}
4261 
4262 	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4263 		struct btrfs_delayed_ref_head *head;
4264 		struct btrfs_delayed_ref_node *tmp;
4265 		bool pin_bytes = false;
4266 
4267 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4268 				href_node);
4269 		if (!mutex_trylock(&head->mutex)) {
4270 			atomic_inc(&head->node.refs);
4271 			spin_unlock(&delayed_refs->lock);
4272 
4273 			mutex_lock(&head->mutex);
4274 			mutex_unlock(&head->mutex);
4275 			btrfs_put_delayed_ref(&head->node);
4276 			spin_lock(&delayed_refs->lock);
4277 			continue;
4278 		}
4279 		spin_lock(&head->lock);
4280 		list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4281 						 list) {
4282 			ref->in_tree = 0;
4283 			list_del(&ref->list);
4284 			atomic_dec(&delayed_refs->num_entries);
4285 			btrfs_put_delayed_ref(ref);
4286 		}
4287 		if (head->must_insert_reserved)
4288 			pin_bytes = true;
4289 		btrfs_free_delayed_extent_op(head->extent_op);
4290 		delayed_refs->num_heads--;
4291 		if (head->processing == 0)
4292 			delayed_refs->num_heads_ready--;
4293 		atomic_dec(&delayed_refs->num_entries);
4294 		head->node.in_tree = 0;
4295 		rb_erase(&head->href_node, &delayed_refs->href_root);
4296 		spin_unlock(&head->lock);
4297 		spin_unlock(&delayed_refs->lock);
4298 		mutex_unlock(&head->mutex);
4299 
4300 		if (pin_bytes)
4301 			btrfs_pin_extent(root, head->node.bytenr,
4302 					 head->node.num_bytes, 1);
4303 		btrfs_put_delayed_ref(&head->node);
4304 		cond_resched();
4305 		spin_lock(&delayed_refs->lock);
4306 	}
4307 
4308 	spin_unlock(&delayed_refs->lock);
4309 
4310 	return ret;
4311 }
4312 
4313 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4314 {
4315 	struct btrfs_inode *btrfs_inode;
4316 	struct list_head splice;
4317 
4318 	INIT_LIST_HEAD(&splice);
4319 
4320 	spin_lock(&root->delalloc_lock);
4321 	list_splice_init(&root->delalloc_inodes, &splice);
4322 
4323 	while (!list_empty(&splice)) {
4324 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4325 					       delalloc_inodes);
4326 
4327 		list_del_init(&btrfs_inode->delalloc_inodes);
4328 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4329 			  &btrfs_inode->runtime_flags);
4330 		spin_unlock(&root->delalloc_lock);
4331 
4332 		btrfs_invalidate_inodes(btrfs_inode->root);
4333 
4334 		spin_lock(&root->delalloc_lock);
4335 	}
4336 
4337 	spin_unlock(&root->delalloc_lock);
4338 }
4339 
4340 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4341 {
4342 	struct btrfs_root *root;
4343 	struct list_head splice;
4344 
4345 	INIT_LIST_HEAD(&splice);
4346 
4347 	spin_lock(&fs_info->delalloc_root_lock);
4348 	list_splice_init(&fs_info->delalloc_roots, &splice);
4349 	while (!list_empty(&splice)) {
4350 		root = list_first_entry(&splice, struct btrfs_root,
4351 					 delalloc_root);
4352 		list_del_init(&root->delalloc_root);
4353 		root = btrfs_grab_fs_root(root);
4354 		BUG_ON(!root);
4355 		spin_unlock(&fs_info->delalloc_root_lock);
4356 
4357 		btrfs_destroy_delalloc_inodes(root);
4358 		btrfs_put_fs_root(root);
4359 
4360 		spin_lock(&fs_info->delalloc_root_lock);
4361 	}
4362 	spin_unlock(&fs_info->delalloc_root_lock);
4363 }
4364 
4365 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4366 					struct extent_io_tree *dirty_pages,
4367 					int mark)
4368 {
4369 	int ret;
4370 	struct extent_buffer *eb;
4371 	u64 start = 0;
4372 	u64 end;
4373 
4374 	while (1) {
4375 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4376 					    mark, NULL);
4377 		if (ret)
4378 			break;
4379 
4380 		clear_extent_bits(dirty_pages, start, end, mark);
4381 		while (start <= end) {
4382 			eb = btrfs_find_tree_block(root->fs_info, start);
4383 			start += root->nodesize;
4384 			if (!eb)
4385 				continue;
4386 			wait_on_extent_buffer_writeback(eb);
4387 
4388 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4389 					       &eb->bflags))
4390 				clear_extent_buffer_dirty(eb);
4391 			free_extent_buffer_stale(eb);
4392 		}
4393 	}
4394 
4395 	return ret;
4396 }
4397 
4398 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4399 				       struct extent_io_tree *pinned_extents)
4400 {
4401 	struct extent_io_tree *unpin;
4402 	u64 start;
4403 	u64 end;
4404 	int ret;
4405 	bool loop = true;
4406 
4407 	unpin = pinned_extents;
4408 again:
4409 	while (1) {
4410 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4411 					    EXTENT_DIRTY, NULL);
4412 		if (ret)
4413 			break;
4414 
4415 		clear_extent_dirty(unpin, start, end);
4416 		btrfs_error_unpin_extent_range(root, start, end);
4417 		cond_resched();
4418 	}
4419 
4420 	if (loop) {
4421 		if (unpin == &root->fs_info->freed_extents[0])
4422 			unpin = &root->fs_info->freed_extents[1];
4423 		else
4424 			unpin = &root->fs_info->freed_extents[0];
4425 		loop = false;
4426 		goto again;
4427 	}
4428 
4429 	return 0;
4430 }
4431 
4432 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4433 				   struct btrfs_root *root)
4434 {
4435 	btrfs_destroy_delayed_refs(cur_trans, root);
4436 
4437 	cur_trans->state = TRANS_STATE_COMMIT_START;
4438 	wake_up(&root->fs_info->transaction_blocked_wait);
4439 
4440 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4441 	wake_up(&root->fs_info->transaction_wait);
4442 
4443 	btrfs_destroy_delayed_inodes(root);
4444 	btrfs_assert_delayed_root_empty(root);
4445 
4446 	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4447 				     EXTENT_DIRTY);
4448 	btrfs_destroy_pinned_extent(root,
4449 				    root->fs_info->pinned_extents);
4450 
4451 	cur_trans->state =TRANS_STATE_COMPLETED;
4452 	wake_up(&cur_trans->commit_wait);
4453 
4454 	/*
4455 	memset(cur_trans, 0, sizeof(*cur_trans));
4456 	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4457 	*/
4458 }
4459 
4460 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4461 {
4462 	struct btrfs_transaction *t;
4463 
4464 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
4465 
4466 	spin_lock(&root->fs_info->trans_lock);
4467 	while (!list_empty(&root->fs_info->trans_list)) {
4468 		t = list_first_entry(&root->fs_info->trans_list,
4469 				     struct btrfs_transaction, list);
4470 		if (t->state >= TRANS_STATE_COMMIT_START) {
4471 			atomic_inc(&t->use_count);
4472 			spin_unlock(&root->fs_info->trans_lock);
4473 			btrfs_wait_for_commit(root, t->transid);
4474 			btrfs_put_transaction(t);
4475 			spin_lock(&root->fs_info->trans_lock);
4476 			continue;
4477 		}
4478 		if (t == root->fs_info->running_transaction) {
4479 			t->state = TRANS_STATE_COMMIT_DOING;
4480 			spin_unlock(&root->fs_info->trans_lock);
4481 			/*
4482 			 * We wait for 0 num_writers since we don't hold a trans
4483 			 * handle open currently for this transaction.
4484 			 */
4485 			wait_event(t->writer_wait,
4486 				   atomic_read(&t->num_writers) == 0);
4487 		} else {
4488 			spin_unlock(&root->fs_info->trans_lock);
4489 		}
4490 		btrfs_cleanup_one_transaction(t, root);
4491 
4492 		spin_lock(&root->fs_info->trans_lock);
4493 		if (t == root->fs_info->running_transaction)
4494 			root->fs_info->running_transaction = NULL;
4495 		list_del_init(&t->list);
4496 		spin_unlock(&root->fs_info->trans_lock);
4497 
4498 		btrfs_put_transaction(t);
4499 		trace_btrfs_transaction_commit(root);
4500 		spin_lock(&root->fs_info->trans_lock);
4501 	}
4502 	spin_unlock(&root->fs_info->trans_lock);
4503 	btrfs_destroy_all_ordered_extents(root->fs_info);
4504 	btrfs_destroy_delayed_inodes(root);
4505 	btrfs_assert_delayed_root_empty(root);
4506 	btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4507 	btrfs_destroy_all_delalloc_inodes(root->fs_info);
4508 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4509 
4510 	return 0;
4511 }
4512 
4513 static const struct extent_io_ops btree_extent_io_ops = {
4514 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4515 	.readpage_io_failed_hook = btree_io_failed_hook,
4516 	.submit_bio_hook = btree_submit_bio_hook,
4517 	/* note we're sharing with inode.c for the merge bio hook */
4518 	.merge_bio_hook = btrfs_merge_bio_hook,
4519 };
4520