1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/slab.h> 30 #include <linux/migrate.h> 31 #include <linux/ratelimit.h> 32 #include <linux/uuid.h> 33 #include <linux/semaphore.h> 34 #include <asm/unaligned.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "hash.h" 38 #include "transaction.h" 39 #include "btrfs_inode.h" 40 #include "volumes.h" 41 #include "print-tree.h" 42 #include "async-thread.h" 43 #include "locking.h" 44 #include "tree-log.h" 45 #include "free-space-cache.h" 46 #include "inode-map.h" 47 #include "check-integrity.h" 48 #include "rcu-string.h" 49 #include "dev-replace.h" 50 #include "raid56.h" 51 #include "sysfs.h" 52 #include "qgroup.h" 53 54 #ifdef CONFIG_X86 55 #include <asm/cpufeature.h> 56 #endif 57 58 static struct extent_io_ops btree_extent_io_ops; 59 static void end_workqueue_fn(struct btrfs_work *work); 60 static void free_fs_root(struct btrfs_root *root); 61 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 62 int read_only); 63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 65 struct btrfs_root *root); 66 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 67 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 68 struct extent_io_tree *dirty_pages, 69 int mark); 70 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 71 struct extent_io_tree *pinned_extents); 72 static int btrfs_cleanup_transaction(struct btrfs_root *root); 73 static void btrfs_error_commit_super(struct btrfs_root *root); 74 75 /* 76 * end_io_wq structs are used to do processing in task context when an IO is 77 * complete. This is used during reads to verify checksums, and it is used 78 * by writes to insert metadata for new file extents after IO is complete. 79 */ 80 struct end_io_wq { 81 struct bio *bio; 82 bio_end_io_t *end_io; 83 void *private; 84 struct btrfs_fs_info *info; 85 int error; 86 int metadata; 87 struct list_head list; 88 struct btrfs_work work; 89 }; 90 91 /* 92 * async submit bios are used to offload expensive checksumming 93 * onto the worker threads. They checksum file and metadata bios 94 * just before they are sent down the IO stack. 95 */ 96 struct async_submit_bio { 97 struct inode *inode; 98 struct bio *bio; 99 struct list_head list; 100 extent_submit_bio_hook_t *submit_bio_start; 101 extent_submit_bio_hook_t *submit_bio_done; 102 int rw; 103 int mirror_num; 104 unsigned long bio_flags; 105 /* 106 * bio_offset is optional, can be used if the pages in the bio 107 * can't tell us where in the file the bio should go 108 */ 109 u64 bio_offset; 110 struct btrfs_work work; 111 int error; 112 }; 113 114 /* 115 * Lockdep class keys for extent_buffer->lock's in this root. For a given 116 * eb, the lockdep key is determined by the btrfs_root it belongs to and 117 * the level the eb occupies in the tree. 118 * 119 * Different roots are used for different purposes and may nest inside each 120 * other and they require separate keysets. As lockdep keys should be 121 * static, assign keysets according to the purpose of the root as indicated 122 * by btrfs_root->objectid. This ensures that all special purpose roots 123 * have separate keysets. 124 * 125 * Lock-nesting across peer nodes is always done with the immediate parent 126 * node locked thus preventing deadlock. As lockdep doesn't know this, use 127 * subclass to avoid triggering lockdep warning in such cases. 128 * 129 * The key is set by the readpage_end_io_hook after the buffer has passed 130 * csum validation but before the pages are unlocked. It is also set by 131 * btrfs_init_new_buffer on freshly allocated blocks. 132 * 133 * We also add a check to make sure the highest level of the tree is the 134 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 135 * needs update as well. 136 */ 137 #ifdef CONFIG_DEBUG_LOCK_ALLOC 138 # if BTRFS_MAX_LEVEL != 8 139 # error 140 # endif 141 142 static struct btrfs_lockdep_keyset { 143 u64 id; /* root objectid */ 144 const char *name_stem; /* lock name stem */ 145 char names[BTRFS_MAX_LEVEL + 1][20]; 146 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 147 } btrfs_lockdep_keysets[] = { 148 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 149 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 150 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 151 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 152 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 153 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 154 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 155 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 156 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 157 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 158 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 159 { .id = 0, .name_stem = "tree" }, 160 }; 161 162 void __init btrfs_init_lockdep(void) 163 { 164 int i, j; 165 166 /* initialize lockdep class names */ 167 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 168 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 169 170 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 171 snprintf(ks->names[j], sizeof(ks->names[j]), 172 "btrfs-%s-%02d", ks->name_stem, j); 173 } 174 } 175 176 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 177 int level) 178 { 179 struct btrfs_lockdep_keyset *ks; 180 181 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 182 183 /* find the matching keyset, id 0 is the default entry */ 184 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 185 if (ks->id == objectid) 186 break; 187 188 lockdep_set_class_and_name(&eb->lock, 189 &ks->keys[level], ks->names[level]); 190 } 191 192 #endif 193 194 /* 195 * extents on the btree inode are pretty simple, there's one extent 196 * that covers the entire device 197 */ 198 static struct extent_map *btree_get_extent(struct inode *inode, 199 struct page *page, size_t pg_offset, u64 start, u64 len, 200 int create) 201 { 202 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 203 struct extent_map *em; 204 int ret; 205 206 read_lock(&em_tree->lock); 207 em = lookup_extent_mapping(em_tree, start, len); 208 if (em) { 209 em->bdev = 210 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 211 read_unlock(&em_tree->lock); 212 goto out; 213 } 214 read_unlock(&em_tree->lock); 215 216 em = alloc_extent_map(); 217 if (!em) { 218 em = ERR_PTR(-ENOMEM); 219 goto out; 220 } 221 em->start = 0; 222 em->len = (u64)-1; 223 em->block_len = (u64)-1; 224 em->block_start = 0; 225 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 226 227 write_lock(&em_tree->lock); 228 ret = add_extent_mapping(em_tree, em, 0); 229 if (ret == -EEXIST) { 230 free_extent_map(em); 231 em = lookup_extent_mapping(em_tree, start, len); 232 if (!em) 233 em = ERR_PTR(-EIO); 234 } else if (ret) { 235 free_extent_map(em); 236 em = ERR_PTR(ret); 237 } 238 write_unlock(&em_tree->lock); 239 240 out: 241 return em; 242 } 243 244 u32 btrfs_csum_data(char *data, u32 seed, size_t len) 245 { 246 return btrfs_crc32c(seed, data, len); 247 } 248 249 void btrfs_csum_final(u32 crc, char *result) 250 { 251 put_unaligned_le32(~crc, result); 252 } 253 254 /* 255 * compute the csum for a btree block, and either verify it or write it 256 * into the csum field of the block. 257 */ 258 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 259 int verify) 260 { 261 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 262 char *result = NULL; 263 unsigned long len; 264 unsigned long cur_len; 265 unsigned long offset = BTRFS_CSUM_SIZE; 266 char *kaddr; 267 unsigned long map_start; 268 unsigned long map_len; 269 int err; 270 u32 crc = ~(u32)0; 271 unsigned long inline_result; 272 273 len = buf->len - offset; 274 while (len > 0) { 275 err = map_private_extent_buffer(buf, offset, 32, 276 &kaddr, &map_start, &map_len); 277 if (err) 278 return 1; 279 cur_len = min(len, map_len - (offset - map_start)); 280 crc = btrfs_csum_data(kaddr + offset - map_start, 281 crc, cur_len); 282 len -= cur_len; 283 offset += cur_len; 284 } 285 if (csum_size > sizeof(inline_result)) { 286 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 287 if (!result) 288 return 1; 289 } else { 290 result = (char *)&inline_result; 291 } 292 293 btrfs_csum_final(crc, result); 294 295 if (verify) { 296 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 297 u32 val; 298 u32 found = 0; 299 memcpy(&found, result, csum_size); 300 301 read_extent_buffer(buf, &val, 0, csum_size); 302 printk_ratelimited(KERN_INFO 303 "BTRFS: %s checksum verify failed on %llu wanted %X found %X " 304 "level %d\n", 305 root->fs_info->sb->s_id, buf->start, 306 val, found, btrfs_header_level(buf)); 307 if (result != (char *)&inline_result) 308 kfree(result); 309 return 1; 310 } 311 } else { 312 write_extent_buffer(buf, result, 0, csum_size); 313 } 314 if (result != (char *)&inline_result) 315 kfree(result); 316 return 0; 317 } 318 319 /* 320 * we can't consider a given block up to date unless the transid of the 321 * block matches the transid in the parent node's pointer. This is how we 322 * detect blocks that either didn't get written at all or got written 323 * in the wrong place. 324 */ 325 static int verify_parent_transid(struct extent_io_tree *io_tree, 326 struct extent_buffer *eb, u64 parent_transid, 327 int atomic) 328 { 329 struct extent_state *cached_state = NULL; 330 int ret; 331 bool need_lock = (current->journal_info == 332 (void *)BTRFS_SEND_TRANS_STUB); 333 334 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 335 return 0; 336 337 if (atomic) 338 return -EAGAIN; 339 340 if (need_lock) { 341 btrfs_tree_read_lock(eb); 342 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 343 } 344 345 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 346 0, &cached_state); 347 if (extent_buffer_uptodate(eb) && 348 btrfs_header_generation(eb) == parent_transid) { 349 ret = 0; 350 goto out; 351 } 352 printk_ratelimited("parent transid verify failed on %llu wanted %llu " 353 "found %llu\n", 354 eb->start, parent_transid, btrfs_header_generation(eb)); 355 ret = 1; 356 357 /* 358 * Things reading via commit roots that don't have normal protection, 359 * like send, can have a really old block in cache that may point at a 360 * block that has been free'd and re-allocated. So don't clear uptodate 361 * if we find an eb that is under IO (dirty/writeback) because we could 362 * end up reading in the stale data and then writing it back out and 363 * making everybody very sad. 364 */ 365 if (!extent_buffer_under_io(eb)) 366 clear_extent_buffer_uptodate(eb); 367 out: 368 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 369 &cached_state, GFP_NOFS); 370 if (need_lock) 371 btrfs_tree_read_unlock_blocking(eb); 372 return ret; 373 } 374 375 /* 376 * Return 0 if the superblock checksum type matches the checksum value of that 377 * algorithm. Pass the raw disk superblock data. 378 */ 379 static int btrfs_check_super_csum(char *raw_disk_sb) 380 { 381 struct btrfs_super_block *disk_sb = 382 (struct btrfs_super_block *)raw_disk_sb; 383 u16 csum_type = btrfs_super_csum_type(disk_sb); 384 int ret = 0; 385 386 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 387 u32 crc = ~(u32)0; 388 const int csum_size = sizeof(crc); 389 char result[csum_size]; 390 391 /* 392 * The super_block structure does not span the whole 393 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 394 * is filled with zeros and is included in the checkum. 395 */ 396 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 397 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 398 btrfs_csum_final(crc, result); 399 400 if (memcmp(raw_disk_sb, result, csum_size)) 401 ret = 1; 402 403 if (ret && btrfs_super_generation(disk_sb) < 10) { 404 printk(KERN_WARNING 405 "BTRFS: super block crcs don't match, older mkfs detected\n"); 406 ret = 0; 407 } 408 } 409 410 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 411 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n", 412 csum_type); 413 ret = 1; 414 } 415 416 return ret; 417 } 418 419 /* 420 * helper to read a given tree block, doing retries as required when 421 * the checksums don't match and we have alternate mirrors to try. 422 */ 423 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 424 struct extent_buffer *eb, 425 u64 start, u64 parent_transid) 426 { 427 struct extent_io_tree *io_tree; 428 int failed = 0; 429 int ret; 430 int num_copies = 0; 431 int mirror_num = 0; 432 int failed_mirror = 0; 433 434 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 435 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 436 while (1) { 437 ret = read_extent_buffer_pages(io_tree, eb, start, 438 WAIT_COMPLETE, 439 btree_get_extent, mirror_num); 440 if (!ret) { 441 if (!verify_parent_transid(io_tree, eb, 442 parent_transid, 0)) 443 break; 444 else 445 ret = -EIO; 446 } 447 448 /* 449 * This buffer's crc is fine, but its contents are corrupted, so 450 * there is no reason to read the other copies, they won't be 451 * any less wrong. 452 */ 453 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 454 break; 455 456 num_copies = btrfs_num_copies(root->fs_info, 457 eb->start, eb->len); 458 if (num_copies == 1) 459 break; 460 461 if (!failed_mirror) { 462 failed = 1; 463 failed_mirror = eb->read_mirror; 464 } 465 466 mirror_num++; 467 if (mirror_num == failed_mirror) 468 mirror_num++; 469 470 if (mirror_num > num_copies) 471 break; 472 } 473 474 if (failed && !ret && failed_mirror) 475 repair_eb_io_failure(root, eb, failed_mirror); 476 477 return ret; 478 } 479 480 /* 481 * checksum a dirty tree block before IO. This has extra checks to make sure 482 * we only fill in the checksum field in the first page of a multi-page block 483 */ 484 485 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 486 { 487 u64 start = page_offset(page); 488 u64 found_start; 489 struct extent_buffer *eb; 490 491 eb = (struct extent_buffer *)page->private; 492 if (page != eb->pages[0]) 493 return 0; 494 found_start = btrfs_header_bytenr(eb); 495 if (WARN_ON(found_start != start || !PageUptodate(page))) 496 return 0; 497 csum_tree_block(root, eb, 0); 498 return 0; 499 } 500 501 static int check_tree_block_fsid(struct btrfs_root *root, 502 struct extent_buffer *eb) 503 { 504 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 505 u8 fsid[BTRFS_UUID_SIZE]; 506 int ret = 1; 507 508 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 509 while (fs_devices) { 510 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 511 ret = 0; 512 break; 513 } 514 fs_devices = fs_devices->seed; 515 } 516 return ret; 517 } 518 519 #define CORRUPT(reason, eb, root, slot) \ 520 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \ 521 "root=%llu, slot=%d", reason, \ 522 btrfs_header_bytenr(eb), root->objectid, slot) 523 524 static noinline int check_leaf(struct btrfs_root *root, 525 struct extent_buffer *leaf) 526 { 527 struct btrfs_key key; 528 struct btrfs_key leaf_key; 529 u32 nritems = btrfs_header_nritems(leaf); 530 int slot; 531 532 if (nritems == 0) 533 return 0; 534 535 /* Check the 0 item */ 536 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 537 BTRFS_LEAF_DATA_SIZE(root)) { 538 CORRUPT("invalid item offset size pair", leaf, root, 0); 539 return -EIO; 540 } 541 542 /* 543 * Check to make sure each items keys are in the correct order and their 544 * offsets make sense. We only have to loop through nritems-1 because 545 * we check the current slot against the next slot, which verifies the 546 * next slot's offset+size makes sense and that the current's slot 547 * offset is correct. 548 */ 549 for (slot = 0; slot < nritems - 1; slot++) { 550 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 551 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 552 553 /* Make sure the keys are in the right order */ 554 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 555 CORRUPT("bad key order", leaf, root, slot); 556 return -EIO; 557 } 558 559 /* 560 * Make sure the offset and ends are right, remember that the 561 * item data starts at the end of the leaf and grows towards the 562 * front. 563 */ 564 if (btrfs_item_offset_nr(leaf, slot) != 565 btrfs_item_end_nr(leaf, slot + 1)) { 566 CORRUPT("slot offset bad", leaf, root, slot); 567 return -EIO; 568 } 569 570 /* 571 * Check to make sure that we don't point outside of the leaf, 572 * just incase all the items are consistent to eachother, but 573 * all point outside of the leaf. 574 */ 575 if (btrfs_item_end_nr(leaf, slot) > 576 BTRFS_LEAF_DATA_SIZE(root)) { 577 CORRUPT("slot end outside of leaf", leaf, root, slot); 578 return -EIO; 579 } 580 } 581 582 return 0; 583 } 584 585 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 586 u64 phy_offset, struct page *page, 587 u64 start, u64 end, int mirror) 588 { 589 u64 found_start; 590 int found_level; 591 struct extent_buffer *eb; 592 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 593 int ret = 0; 594 int reads_done; 595 596 if (!page->private) 597 goto out; 598 599 eb = (struct extent_buffer *)page->private; 600 601 /* the pending IO might have been the only thing that kept this buffer 602 * in memory. Make sure we have a ref for all this other checks 603 */ 604 extent_buffer_get(eb); 605 606 reads_done = atomic_dec_and_test(&eb->io_pages); 607 if (!reads_done) 608 goto err; 609 610 eb->read_mirror = mirror; 611 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) { 612 ret = -EIO; 613 goto err; 614 } 615 616 found_start = btrfs_header_bytenr(eb); 617 if (found_start != eb->start) { 618 printk_ratelimited(KERN_INFO "BTRFS: bad tree block start " 619 "%llu %llu\n", 620 found_start, eb->start); 621 ret = -EIO; 622 goto err; 623 } 624 if (check_tree_block_fsid(root, eb)) { 625 printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n", 626 eb->start); 627 ret = -EIO; 628 goto err; 629 } 630 found_level = btrfs_header_level(eb); 631 if (found_level >= BTRFS_MAX_LEVEL) { 632 btrfs_info(root->fs_info, "bad tree block level %d", 633 (int)btrfs_header_level(eb)); 634 ret = -EIO; 635 goto err; 636 } 637 638 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 639 eb, found_level); 640 641 ret = csum_tree_block(root, eb, 1); 642 if (ret) { 643 ret = -EIO; 644 goto err; 645 } 646 647 /* 648 * If this is a leaf block and it is corrupt, set the corrupt bit so 649 * that we don't try and read the other copies of this block, just 650 * return -EIO. 651 */ 652 if (found_level == 0 && check_leaf(root, eb)) { 653 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 654 ret = -EIO; 655 } 656 657 if (!ret) 658 set_extent_buffer_uptodate(eb); 659 err: 660 if (reads_done && 661 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 662 btree_readahead_hook(root, eb, eb->start, ret); 663 664 if (ret) { 665 /* 666 * our io error hook is going to dec the io pages 667 * again, we have to make sure it has something 668 * to decrement 669 */ 670 atomic_inc(&eb->io_pages); 671 clear_extent_buffer_uptodate(eb); 672 } 673 free_extent_buffer(eb); 674 out: 675 return ret; 676 } 677 678 static int btree_io_failed_hook(struct page *page, int failed_mirror) 679 { 680 struct extent_buffer *eb; 681 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 682 683 eb = (struct extent_buffer *)page->private; 684 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 685 eb->read_mirror = failed_mirror; 686 atomic_dec(&eb->io_pages); 687 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 688 btree_readahead_hook(root, eb, eb->start, -EIO); 689 return -EIO; /* we fixed nothing */ 690 } 691 692 static void end_workqueue_bio(struct bio *bio, int err) 693 { 694 struct end_io_wq *end_io_wq = bio->bi_private; 695 struct btrfs_fs_info *fs_info; 696 697 fs_info = end_io_wq->info; 698 end_io_wq->error = err; 699 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL); 700 701 if (bio->bi_rw & REQ_WRITE) { 702 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) 703 btrfs_queue_work(fs_info->endio_meta_write_workers, 704 &end_io_wq->work); 705 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) 706 btrfs_queue_work(fs_info->endio_freespace_worker, 707 &end_io_wq->work); 708 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 709 btrfs_queue_work(fs_info->endio_raid56_workers, 710 &end_io_wq->work); 711 else 712 btrfs_queue_work(fs_info->endio_write_workers, 713 &end_io_wq->work); 714 } else { 715 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 716 btrfs_queue_work(fs_info->endio_raid56_workers, 717 &end_io_wq->work); 718 else if (end_io_wq->metadata) 719 btrfs_queue_work(fs_info->endio_meta_workers, 720 &end_io_wq->work); 721 else 722 btrfs_queue_work(fs_info->endio_workers, 723 &end_io_wq->work); 724 } 725 } 726 727 /* 728 * For the metadata arg you want 729 * 730 * 0 - if data 731 * 1 - if normal metadta 732 * 2 - if writing to the free space cache area 733 * 3 - raid parity work 734 */ 735 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 736 int metadata) 737 { 738 struct end_io_wq *end_io_wq; 739 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 740 if (!end_io_wq) 741 return -ENOMEM; 742 743 end_io_wq->private = bio->bi_private; 744 end_io_wq->end_io = bio->bi_end_io; 745 end_io_wq->info = info; 746 end_io_wq->error = 0; 747 end_io_wq->bio = bio; 748 end_io_wq->metadata = metadata; 749 750 bio->bi_private = end_io_wq; 751 bio->bi_end_io = end_workqueue_bio; 752 return 0; 753 } 754 755 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 756 { 757 unsigned long limit = min_t(unsigned long, 758 info->thread_pool_size, 759 info->fs_devices->open_devices); 760 return 256 * limit; 761 } 762 763 static void run_one_async_start(struct btrfs_work *work) 764 { 765 struct async_submit_bio *async; 766 int ret; 767 768 async = container_of(work, struct async_submit_bio, work); 769 ret = async->submit_bio_start(async->inode, async->rw, async->bio, 770 async->mirror_num, async->bio_flags, 771 async->bio_offset); 772 if (ret) 773 async->error = ret; 774 } 775 776 static void run_one_async_done(struct btrfs_work *work) 777 { 778 struct btrfs_fs_info *fs_info; 779 struct async_submit_bio *async; 780 int limit; 781 782 async = container_of(work, struct async_submit_bio, work); 783 fs_info = BTRFS_I(async->inode)->root->fs_info; 784 785 limit = btrfs_async_submit_limit(fs_info); 786 limit = limit * 2 / 3; 787 788 if (atomic_dec_return(&fs_info->nr_async_submits) < limit && 789 waitqueue_active(&fs_info->async_submit_wait)) 790 wake_up(&fs_info->async_submit_wait); 791 792 /* If an error occured we just want to clean up the bio and move on */ 793 if (async->error) { 794 bio_endio(async->bio, async->error); 795 return; 796 } 797 798 async->submit_bio_done(async->inode, async->rw, async->bio, 799 async->mirror_num, async->bio_flags, 800 async->bio_offset); 801 } 802 803 static void run_one_async_free(struct btrfs_work *work) 804 { 805 struct async_submit_bio *async; 806 807 async = container_of(work, struct async_submit_bio, work); 808 kfree(async); 809 } 810 811 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 812 int rw, struct bio *bio, int mirror_num, 813 unsigned long bio_flags, 814 u64 bio_offset, 815 extent_submit_bio_hook_t *submit_bio_start, 816 extent_submit_bio_hook_t *submit_bio_done) 817 { 818 struct async_submit_bio *async; 819 820 async = kmalloc(sizeof(*async), GFP_NOFS); 821 if (!async) 822 return -ENOMEM; 823 824 async->inode = inode; 825 async->rw = rw; 826 async->bio = bio; 827 async->mirror_num = mirror_num; 828 async->submit_bio_start = submit_bio_start; 829 async->submit_bio_done = submit_bio_done; 830 831 btrfs_init_work(&async->work, run_one_async_start, 832 run_one_async_done, run_one_async_free); 833 834 async->bio_flags = bio_flags; 835 async->bio_offset = bio_offset; 836 837 async->error = 0; 838 839 atomic_inc(&fs_info->nr_async_submits); 840 841 if (rw & REQ_SYNC) 842 btrfs_set_work_high_priority(&async->work); 843 844 btrfs_queue_work(fs_info->workers, &async->work); 845 846 while (atomic_read(&fs_info->async_submit_draining) && 847 atomic_read(&fs_info->nr_async_submits)) { 848 wait_event(fs_info->async_submit_wait, 849 (atomic_read(&fs_info->nr_async_submits) == 0)); 850 } 851 852 return 0; 853 } 854 855 static int btree_csum_one_bio(struct bio *bio) 856 { 857 struct bio_vec *bvec; 858 struct btrfs_root *root; 859 int i, ret = 0; 860 861 bio_for_each_segment_all(bvec, bio, i) { 862 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 863 ret = csum_dirty_buffer(root, bvec->bv_page); 864 if (ret) 865 break; 866 } 867 868 return ret; 869 } 870 871 static int __btree_submit_bio_start(struct inode *inode, int rw, 872 struct bio *bio, int mirror_num, 873 unsigned long bio_flags, 874 u64 bio_offset) 875 { 876 /* 877 * when we're called for a write, we're already in the async 878 * submission context. Just jump into btrfs_map_bio 879 */ 880 return btree_csum_one_bio(bio); 881 } 882 883 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 884 int mirror_num, unsigned long bio_flags, 885 u64 bio_offset) 886 { 887 int ret; 888 889 /* 890 * when we're called for a write, we're already in the async 891 * submission context. Just jump into btrfs_map_bio 892 */ 893 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 894 if (ret) 895 bio_endio(bio, ret); 896 return ret; 897 } 898 899 static int check_async_write(struct inode *inode, unsigned long bio_flags) 900 { 901 if (bio_flags & EXTENT_BIO_TREE_LOG) 902 return 0; 903 #ifdef CONFIG_X86 904 if (cpu_has_xmm4_2) 905 return 0; 906 #endif 907 return 1; 908 } 909 910 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 911 int mirror_num, unsigned long bio_flags, 912 u64 bio_offset) 913 { 914 int async = check_async_write(inode, bio_flags); 915 int ret; 916 917 if (!(rw & REQ_WRITE)) { 918 /* 919 * called for a read, do the setup so that checksum validation 920 * can happen in the async kernel threads 921 */ 922 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 923 bio, 1); 924 if (ret) 925 goto out_w_error; 926 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 927 mirror_num, 0); 928 } else if (!async) { 929 ret = btree_csum_one_bio(bio); 930 if (ret) 931 goto out_w_error; 932 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 933 mirror_num, 0); 934 } else { 935 /* 936 * kthread helpers are used to submit writes so that 937 * checksumming can happen in parallel across all CPUs 938 */ 939 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 940 inode, rw, bio, mirror_num, 0, 941 bio_offset, 942 __btree_submit_bio_start, 943 __btree_submit_bio_done); 944 } 945 946 if (ret) { 947 out_w_error: 948 bio_endio(bio, ret); 949 } 950 return ret; 951 } 952 953 #ifdef CONFIG_MIGRATION 954 static int btree_migratepage(struct address_space *mapping, 955 struct page *newpage, struct page *page, 956 enum migrate_mode mode) 957 { 958 /* 959 * we can't safely write a btree page from here, 960 * we haven't done the locking hook 961 */ 962 if (PageDirty(page)) 963 return -EAGAIN; 964 /* 965 * Buffers may be managed in a filesystem specific way. 966 * We must have no buffers or drop them. 967 */ 968 if (page_has_private(page) && 969 !try_to_release_page(page, GFP_KERNEL)) 970 return -EAGAIN; 971 return migrate_page(mapping, newpage, page, mode); 972 } 973 #endif 974 975 976 static int btree_writepages(struct address_space *mapping, 977 struct writeback_control *wbc) 978 { 979 struct btrfs_fs_info *fs_info; 980 int ret; 981 982 if (wbc->sync_mode == WB_SYNC_NONE) { 983 984 if (wbc->for_kupdate) 985 return 0; 986 987 fs_info = BTRFS_I(mapping->host)->root->fs_info; 988 /* this is a bit racy, but that's ok */ 989 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 990 BTRFS_DIRTY_METADATA_THRESH); 991 if (ret < 0) 992 return 0; 993 } 994 return btree_write_cache_pages(mapping, wbc); 995 } 996 997 static int btree_readpage(struct file *file, struct page *page) 998 { 999 struct extent_io_tree *tree; 1000 tree = &BTRFS_I(page->mapping->host)->io_tree; 1001 return extent_read_full_page(tree, page, btree_get_extent, 0); 1002 } 1003 1004 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 1005 { 1006 if (PageWriteback(page) || PageDirty(page)) 1007 return 0; 1008 1009 return try_release_extent_buffer(page); 1010 } 1011 1012 static void btree_invalidatepage(struct page *page, unsigned int offset, 1013 unsigned int length) 1014 { 1015 struct extent_io_tree *tree; 1016 tree = &BTRFS_I(page->mapping->host)->io_tree; 1017 extent_invalidatepage(tree, page, offset); 1018 btree_releasepage(page, GFP_NOFS); 1019 if (PagePrivate(page)) { 1020 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 1021 "page private not zero on page %llu", 1022 (unsigned long long)page_offset(page)); 1023 ClearPagePrivate(page); 1024 set_page_private(page, 0); 1025 page_cache_release(page); 1026 } 1027 } 1028 1029 static int btree_set_page_dirty(struct page *page) 1030 { 1031 #ifdef DEBUG 1032 struct extent_buffer *eb; 1033 1034 BUG_ON(!PagePrivate(page)); 1035 eb = (struct extent_buffer *)page->private; 1036 BUG_ON(!eb); 1037 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1038 BUG_ON(!atomic_read(&eb->refs)); 1039 btrfs_assert_tree_locked(eb); 1040 #endif 1041 return __set_page_dirty_nobuffers(page); 1042 } 1043 1044 static const struct address_space_operations btree_aops = { 1045 .readpage = btree_readpage, 1046 .writepages = btree_writepages, 1047 .releasepage = btree_releasepage, 1048 .invalidatepage = btree_invalidatepage, 1049 #ifdef CONFIG_MIGRATION 1050 .migratepage = btree_migratepage, 1051 #endif 1052 .set_page_dirty = btree_set_page_dirty, 1053 }; 1054 1055 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1056 u64 parent_transid) 1057 { 1058 struct extent_buffer *buf = NULL; 1059 struct inode *btree_inode = root->fs_info->btree_inode; 1060 int ret = 0; 1061 1062 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1063 if (!buf) 1064 return 0; 1065 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1066 buf, 0, WAIT_NONE, btree_get_extent, 0); 1067 free_extent_buffer(buf); 1068 return ret; 1069 } 1070 1071 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1072 int mirror_num, struct extent_buffer **eb) 1073 { 1074 struct extent_buffer *buf = NULL; 1075 struct inode *btree_inode = root->fs_info->btree_inode; 1076 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1077 int ret; 1078 1079 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1080 if (!buf) 1081 return 0; 1082 1083 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1084 1085 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1086 btree_get_extent, mirror_num); 1087 if (ret) { 1088 free_extent_buffer(buf); 1089 return ret; 1090 } 1091 1092 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1093 free_extent_buffer(buf); 1094 return -EIO; 1095 } else if (extent_buffer_uptodate(buf)) { 1096 *eb = buf; 1097 } else { 1098 free_extent_buffer(buf); 1099 } 1100 return 0; 1101 } 1102 1103 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 1104 u64 bytenr, u32 blocksize) 1105 { 1106 return find_extent_buffer(root->fs_info, bytenr); 1107 } 1108 1109 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1110 u64 bytenr, u32 blocksize) 1111 { 1112 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1113 if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state))) 1114 return alloc_test_extent_buffer(root->fs_info, bytenr, 1115 blocksize); 1116 #endif 1117 return alloc_extent_buffer(root->fs_info, bytenr, blocksize); 1118 } 1119 1120 1121 int btrfs_write_tree_block(struct extent_buffer *buf) 1122 { 1123 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1124 buf->start + buf->len - 1); 1125 } 1126 1127 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1128 { 1129 return filemap_fdatawait_range(buf->pages[0]->mapping, 1130 buf->start, buf->start + buf->len - 1); 1131 } 1132 1133 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1134 u32 blocksize, u64 parent_transid) 1135 { 1136 struct extent_buffer *buf = NULL; 1137 int ret; 1138 1139 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1140 if (!buf) 1141 return NULL; 1142 1143 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1144 if (ret) { 1145 free_extent_buffer(buf); 1146 return NULL; 1147 } 1148 return buf; 1149 1150 } 1151 1152 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1153 struct extent_buffer *buf) 1154 { 1155 struct btrfs_fs_info *fs_info = root->fs_info; 1156 1157 if (btrfs_header_generation(buf) == 1158 fs_info->running_transaction->transid) { 1159 btrfs_assert_tree_locked(buf); 1160 1161 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1162 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 1163 -buf->len, 1164 fs_info->dirty_metadata_batch); 1165 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1166 btrfs_set_lock_blocking(buf); 1167 clear_extent_buffer_dirty(buf); 1168 } 1169 } 1170 } 1171 1172 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1173 { 1174 struct btrfs_subvolume_writers *writers; 1175 int ret; 1176 1177 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1178 if (!writers) 1179 return ERR_PTR(-ENOMEM); 1180 1181 ret = percpu_counter_init(&writers->counter, 0); 1182 if (ret < 0) { 1183 kfree(writers); 1184 return ERR_PTR(ret); 1185 } 1186 1187 init_waitqueue_head(&writers->wait); 1188 return writers; 1189 } 1190 1191 static void 1192 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1193 { 1194 percpu_counter_destroy(&writers->counter); 1195 kfree(writers); 1196 } 1197 1198 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 1199 u32 stripesize, struct btrfs_root *root, 1200 struct btrfs_fs_info *fs_info, 1201 u64 objectid) 1202 { 1203 root->node = NULL; 1204 root->commit_root = NULL; 1205 root->sectorsize = sectorsize; 1206 root->nodesize = nodesize; 1207 root->leafsize = leafsize; 1208 root->stripesize = stripesize; 1209 root->state = 0; 1210 root->orphan_cleanup_state = 0; 1211 1212 root->objectid = objectid; 1213 root->last_trans = 0; 1214 root->highest_objectid = 0; 1215 root->nr_delalloc_inodes = 0; 1216 root->nr_ordered_extents = 0; 1217 root->name = NULL; 1218 root->inode_tree = RB_ROOT; 1219 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1220 root->block_rsv = NULL; 1221 root->orphan_block_rsv = NULL; 1222 1223 INIT_LIST_HEAD(&root->dirty_list); 1224 INIT_LIST_HEAD(&root->root_list); 1225 INIT_LIST_HEAD(&root->delalloc_inodes); 1226 INIT_LIST_HEAD(&root->delalloc_root); 1227 INIT_LIST_HEAD(&root->ordered_extents); 1228 INIT_LIST_HEAD(&root->ordered_root); 1229 INIT_LIST_HEAD(&root->logged_list[0]); 1230 INIT_LIST_HEAD(&root->logged_list[1]); 1231 spin_lock_init(&root->orphan_lock); 1232 spin_lock_init(&root->inode_lock); 1233 spin_lock_init(&root->delalloc_lock); 1234 spin_lock_init(&root->ordered_extent_lock); 1235 spin_lock_init(&root->accounting_lock); 1236 spin_lock_init(&root->log_extents_lock[0]); 1237 spin_lock_init(&root->log_extents_lock[1]); 1238 mutex_init(&root->objectid_mutex); 1239 mutex_init(&root->log_mutex); 1240 mutex_init(&root->ordered_extent_mutex); 1241 mutex_init(&root->delalloc_mutex); 1242 init_waitqueue_head(&root->log_writer_wait); 1243 init_waitqueue_head(&root->log_commit_wait[0]); 1244 init_waitqueue_head(&root->log_commit_wait[1]); 1245 INIT_LIST_HEAD(&root->log_ctxs[0]); 1246 INIT_LIST_HEAD(&root->log_ctxs[1]); 1247 atomic_set(&root->log_commit[0], 0); 1248 atomic_set(&root->log_commit[1], 0); 1249 atomic_set(&root->log_writers, 0); 1250 atomic_set(&root->log_batch, 0); 1251 atomic_set(&root->orphan_inodes, 0); 1252 atomic_set(&root->refs, 1); 1253 atomic_set(&root->will_be_snapshoted, 0); 1254 root->log_transid = 0; 1255 root->log_transid_committed = -1; 1256 root->last_log_commit = 0; 1257 if (fs_info) 1258 extent_io_tree_init(&root->dirty_log_pages, 1259 fs_info->btree_inode->i_mapping); 1260 1261 memset(&root->root_key, 0, sizeof(root->root_key)); 1262 memset(&root->root_item, 0, sizeof(root->root_item)); 1263 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1264 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 1265 if (fs_info) 1266 root->defrag_trans_start = fs_info->generation; 1267 else 1268 root->defrag_trans_start = 0; 1269 init_completion(&root->kobj_unregister); 1270 root->root_key.objectid = objectid; 1271 root->anon_dev = 0; 1272 1273 spin_lock_init(&root->root_item_lock); 1274 } 1275 1276 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info) 1277 { 1278 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS); 1279 if (root) 1280 root->fs_info = fs_info; 1281 return root; 1282 } 1283 1284 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1285 /* Should only be used by the testing infrastructure */ 1286 struct btrfs_root *btrfs_alloc_dummy_root(void) 1287 { 1288 struct btrfs_root *root; 1289 1290 root = btrfs_alloc_root(NULL); 1291 if (!root) 1292 return ERR_PTR(-ENOMEM); 1293 __setup_root(4096, 4096, 4096, 4096, root, NULL, 1); 1294 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state); 1295 root->alloc_bytenr = 0; 1296 1297 return root; 1298 } 1299 #endif 1300 1301 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1302 struct btrfs_fs_info *fs_info, 1303 u64 objectid) 1304 { 1305 struct extent_buffer *leaf; 1306 struct btrfs_root *tree_root = fs_info->tree_root; 1307 struct btrfs_root *root; 1308 struct btrfs_key key; 1309 int ret = 0; 1310 uuid_le uuid; 1311 1312 root = btrfs_alloc_root(fs_info); 1313 if (!root) 1314 return ERR_PTR(-ENOMEM); 1315 1316 __setup_root(tree_root->nodesize, tree_root->leafsize, 1317 tree_root->sectorsize, tree_root->stripesize, 1318 root, fs_info, objectid); 1319 root->root_key.objectid = objectid; 1320 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1321 root->root_key.offset = 0; 1322 1323 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 1324 0, objectid, NULL, 0, 0, 0); 1325 if (IS_ERR(leaf)) { 1326 ret = PTR_ERR(leaf); 1327 leaf = NULL; 1328 goto fail; 1329 } 1330 1331 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1332 btrfs_set_header_bytenr(leaf, leaf->start); 1333 btrfs_set_header_generation(leaf, trans->transid); 1334 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1335 btrfs_set_header_owner(leaf, objectid); 1336 root->node = leaf; 1337 1338 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(), 1339 BTRFS_FSID_SIZE); 1340 write_extent_buffer(leaf, fs_info->chunk_tree_uuid, 1341 btrfs_header_chunk_tree_uuid(leaf), 1342 BTRFS_UUID_SIZE); 1343 btrfs_mark_buffer_dirty(leaf); 1344 1345 root->commit_root = btrfs_root_node(root); 1346 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1347 1348 root->root_item.flags = 0; 1349 root->root_item.byte_limit = 0; 1350 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1351 btrfs_set_root_generation(&root->root_item, trans->transid); 1352 btrfs_set_root_level(&root->root_item, 0); 1353 btrfs_set_root_refs(&root->root_item, 1); 1354 btrfs_set_root_used(&root->root_item, leaf->len); 1355 btrfs_set_root_last_snapshot(&root->root_item, 0); 1356 btrfs_set_root_dirid(&root->root_item, 0); 1357 uuid_le_gen(&uuid); 1358 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1359 root->root_item.drop_level = 0; 1360 1361 key.objectid = objectid; 1362 key.type = BTRFS_ROOT_ITEM_KEY; 1363 key.offset = 0; 1364 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1365 if (ret) 1366 goto fail; 1367 1368 btrfs_tree_unlock(leaf); 1369 1370 return root; 1371 1372 fail: 1373 if (leaf) { 1374 btrfs_tree_unlock(leaf); 1375 free_extent_buffer(root->commit_root); 1376 free_extent_buffer(leaf); 1377 } 1378 kfree(root); 1379 1380 return ERR_PTR(ret); 1381 } 1382 1383 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1384 struct btrfs_fs_info *fs_info) 1385 { 1386 struct btrfs_root *root; 1387 struct btrfs_root *tree_root = fs_info->tree_root; 1388 struct extent_buffer *leaf; 1389 1390 root = btrfs_alloc_root(fs_info); 1391 if (!root) 1392 return ERR_PTR(-ENOMEM); 1393 1394 __setup_root(tree_root->nodesize, tree_root->leafsize, 1395 tree_root->sectorsize, tree_root->stripesize, 1396 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1397 1398 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1399 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1400 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1401 1402 /* 1403 * DON'T set REF_COWS for log trees 1404 * 1405 * log trees do not get reference counted because they go away 1406 * before a real commit is actually done. They do store pointers 1407 * to file data extents, and those reference counts still get 1408 * updated (along with back refs to the log tree). 1409 */ 1410 1411 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 1412 BTRFS_TREE_LOG_OBJECTID, NULL, 1413 0, 0, 0); 1414 if (IS_ERR(leaf)) { 1415 kfree(root); 1416 return ERR_CAST(leaf); 1417 } 1418 1419 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1420 btrfs_set_header_bytenr(leaf, leaf->start); 1421 btrfs_set_header_generation(leaf, trans->transid); 1422 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1423 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1424 root->node = leaf; 1425 1426 write_extent_buffer(root->node, root->fs_info->fsid, 1427 btrfs_header_fsid(), BTRFS_FSID_SIZE); 1428 btrfs_mark_buffer_dirty(root->node); 1429 btrfs_tree_unlock(root->node); 1430 return root; 1431 } 1432 1433 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1434 struct btrfs_fs_info *fs_info) 1435 { 1436 struct btrfs_root *log_root; 1437 1438 log_root = alloc_log_tree(trans, fs_info); 1439 if (IS_ERR(log_root)) 1440 return PTR_ERR(log_root); 1441 WARN_ON(fs_info->log_root_tree); 1442 fs_info->log_root_tree = log_root; 1443 return 0; 1444 } 1445 1446 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1447 struct btrfs_root *root) 1448 { 1449 struct btrfs_root *log_root; 1450 struct btrfs_inode_item *inode_item; 1451 1452 log_root = alloc_log_tree(trans, root->fs_info); 1453 if (IS_ERR(log_root)) 1454 return PTR_ERR(log_root); 1455 1456 log_root->last_trans = trans->transid; 1457 log_root->root_key.offset = root->root_key.objectid; 1458 1459 inode_item = &log_root->root_item.inode; 1460 btrfs_set_stack_inode_generation(inode_item, 1); 1461 btrfs_set_stack_inode_size(inode_item, 3); 1462 btrfs_set_stack_inode_nlink(inode_item, 1); 1463 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize); 1464 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1465 1466 btrfs_set_root_node(&log_root->root_item, log_root->node); 1467 1468 WARN_ON(root->log_root); 1469 root->log_root = log_root; 1470 root->log_transid = 0; 1471 root->log_transid_committed = -1; 1472 root->last_log_commit = 0; 1473 return 0; 1474 } 1475 1476 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1477 struct btrfs_key *key) 1478 { 1479 struct btrfs_root *root; 1480 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1481 struct btrfs_path *path; 1482 u64 generation; 1483 u32 blocksize; 1484 int ret; 1485 1486 path = btrfs_alloc_path(); 1487 if (!path) 1488 return ERR_PTR(-ENOMEM); 1489 1490 root = btrfs_alloc_root(fs_info); 1491 if (!root) { 1492 ret = -ENOMEM; 1493 goto alloc_fail; 1494 } 1495 1496 __setup_root(tree_root->nodesize, tree_root->leafsize, 1497 tree_root->sectorsize, tree_root->stripesize, 1498 root, fs_info, key->objectid); 1499 1500 ret = btrfs_find_root(tree_root, key, path, 1501 &root->root_item, &root->root_key); 1502 if (ret) { 1503 if (ret > 0) 1504 ret = -ENOENT; 1505 goto find_fail; 1506 } 1507 1508 generation = btrfs_root_generation(&root->root_item); 1509 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1510 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1511 blocksize, generation); 1512 if (!root->node) { 1513 ret = -ENOMEM; 1514 goto find_fail; 1515 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1516 ret = -EIO; 1517 goto read_fail; 1518 } 1519 root->commit_root = btrfs_root_node(root); 1520 out: 1521 btrfs_free_path(path); 1522 return root; 1523 1524 read_fail: 1525 free_extent_buffer(root->node); 1526 find_fail: 1527 kfree(root); 1528 alloc_fail: 1529 root = ERR_PTR(ret); 1530 goto out; 1531 } 1532 1533 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1534 struct btrfs_key *location) 1535 { 1536 struct btrfs_root *root; 1537 1538 root = btrfs_read_tree_root(tree_root, location); 1539 if (IS_ERR(root)) 1540 return root; 1541 1542 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1543 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1544 btrfs_check_and_init_root_item(&root->root_item); 1545 } 1546 1547 return root; 1548 } 1549 1550 int btrfs_init_fs_root(struct btrfs_root *root) 1551 { 1552 int ret; 1553 struct btrfs_subvolume_writers *writers; 1554 1555 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1556 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1557 GFP_NOFS); 1558 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1559 ret = -ENOMEM; 1560 goto fail; 1561 } 1562 1563 writers = btrfs_alloc_subvolume_writers(); 1564 if (IS_ERR(writers)) { 1565 ret = PTR_ERR(writers); 1566 goto fail; 1567 } 1568 root->subv_writers = writers; 1569 1570 btrfs_init_free_ino_ctl(root); 1571 spin_lock_init(&root->cache_lock); 1572 init_waitqueue_head(&root->cache_wait); 1573 1574 ret = get_anon_bdev(&root->anon_dev); 1575 if (ret) 1576 goto free_writers; 1577 return 0; 1578 1579 free_writers: 1580 btrfs_free_subvolume_writers(root->subv_writers); 1581 fail: 1582 kfree(root->free_ino_ctl); 1583 kfree(root->free_ino_pinned); 1584 return ret; 1585 } 1586 1587 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1588 u64 root_id) 1589 { 1590 struct btrfs_root *root; 1591 1592 spin_lock(&fs_info->fs_roots_radix_lock); 1593 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1594 (unsigned long)root_id); 1595 spin_unlock(&fs_info->fs_roots_radix_lock); 1596 return root; 1597 } 1598 1599 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1600 struct btrfs_root *root) 1601 { 1602 int ret; 1603 1604 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1605 if (ret) 1606 return ret; 1607 1608 spin_lock(&fs_info->fs_roots_radix_lock); 1609 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1610 (unsigned long)root->root_key.objectid, 1611 root); 1612 if (ret == 0) 1613 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1614 spin_unlock(&fs_info->fs_roots_radix_lock); 1615 radix_tree_preload_end(); 1616 1617 return ret; 1618 } 1619 1620 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1621 struct btrfs_key *location, 1622 bool check_ref) 1623 { 1624 struct btrfs_root *root; 1625 int ret; 1626 1627 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1628 return fs_info->tree_root; 1629 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1630 return fs_info->extent_root; 1631 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1632 return fs_info->chunk_root; 1633 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1634 return fs_info->dev_root; 1635 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1636 return fs_info->csum_root; 1637 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1638 return fs_info->quota_root ? fs_info->quota_root : 1639 ERR_PTR(-ENOENT); 1640 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1641 return fs_info->uuid_root ? fs_info->uuid_root : 1642 ERR_PTR(-ENOENT); 1643 again: 1644 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1645 if (root) { 1646 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1647 return ERR_PTR(-ENOENT); 1648 return root; 1649 } 1650 1651 root = btrfs_read_fs_root(fs_info->tree_root, location); 1652 if (IS_ERR(root)) 1653 return root; 1654 1655 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1656 ret = -ENOENT; 1657 goto fail; 1658 } 1659 1660 ret = btrfs_init_fs_root(root); 1661 if (ret) 1662 goto fail; 1663 1664 ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID, 1665 location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL); 1666 if (ret < 0) 1667 goto fail; 1668 if (ret == 0) 1669 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1670 1671 ret = btrfs_insert_fs_root(fs_info, root); 1672 if (ret) { 1673 if (ret == -EEXIST) { 1674 free_fs_root(root); 1675 goto again; 1676 } 1677 goto fail; 1678 } 1679 return root; 1680 fail: 1681 free_fs_root(root); 1682 return ERR_PTR(ret); 1683 } 1684 1685 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1686 { 1687 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1688 int ret = 0; 1689 struct btrfs_device *device; 1690 struct backing_dev_info *bdi; 1691 1692 rcu_read_lock(); 1693 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1694 if (!device->bdev) 1695 continue; 1696 bdi = blk_get_backing_dev_info(device->bdev); 1697 if (bdi && bdi_congested(bdi, bdi_bits)) { 1698 ret = 1; 1699 break; 1700 } 1701 } 1702 rcu_read_unlock(); 1703 return ret; 1704 } 1705 1706 /* 1707 * If this fails, caller must call bdi_destroy() to get rid of the 1708 * bdi again. 1709 */ 1710 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1711 { 1712 int err; 1713 1714 bdi->capabilities = BDI_CAP_MAP_COPY; 1715 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY); 1716 if (err) 1717 return err; 1718 1719 bdi->ra_pages = default_backing_dev_info.ra_pages; 1720 bdi->congested_fn = btrfs_congested_fn; 1721 bdi->congested_data = info; 1722 return 0; 1723 } 1724 1725 /* 1726 * called by the kthread helper functions to finally call the bio end_io 1727 * functions. This is where read checksum verification actually happens 1728 */ 1729 static void end_workqueue_fn(struct btrfs_work *work) 1730 { 1731 struct bio *bio; 1732 struct end_io_wq *end_io_wq; 1733 int error; 1734 1735 end_io_wq = container_of(work, struct end_io_wq, work); 1736 bio = end_io_wq->bio; 1737 1738 error = end_io_wq->error; 1739 bio->bi_private = end_io_wq->private; 1740 bio->bi_end_io = end_io_wq->end_io; 1741 kfree(end_io_wq); 1742 bio_endio_nodec(bio, error); 1743 } 1744 1745 static int cleaner_kthread(void *arg) 1746 { 1747 struct btrfs_root *root = arg; 1748 int again; 1749 1750 do { 1751 again = 0; 1752 1753 /* Make the cleaner go to sleep early. */ 1754 if (btrfs_need_cleaner_sleep(root)) 1755 goto sleep; 1756 1757 if (!mutex_trylock(&root->fs_info->cleaner_mutex)) 1758 goto sleep; 1759 1760 /* 1761 * Avoid the problem that we change the status of the fs 1762 * during the above check and trylock. 1763 */ 1764 if (btrfs_need_cleaner_sleep(root)) { 1765 mutex_unlock(&root->fs_info->cleaner_mutex); 1766 goto sleep; 1767 } 1768 1769 btrfs_run_delayed_iputs(root); 1770 again = btrfs_clean_one_deleted_snapshot(root); 1771 mutex_unlock(&root->fs_info->cleaner_mutex); 1772 1773 /* 1774 * The defragger has dealt with the R/O remount and umount, 1775 * needn't do anything special here. 1776 */ 1777 btrfs_run_defrag_inodes(root->fs_info); 1778 sleep: 1779 if (!try_to_freeze() && !again) { 1780 set_current_state(TASK_INTERRUPTIBLE); 1781 if (!kthread_should_stop()) 1782 schedule(); 1783 __set_current_state(TASK_RUNNING); 1784 } 1785 } while (!kthread_should_stop()); 1786 return 0; 1787 } 1788 1789 static int transaction_kthread(void *arg) 1790 { 1791 struct btrfs_root *root = arg; 1792 struct btrfs_trans_handle *trans; 1793 struct btrfs_transaction *cur; 1794 u64 transid; 1795 unsigned long now; 1796 unsigned long delay; 1797 bool cannot_commit; 1798 1799 do { 1800 cannot_commit = false; 1801 delay = HZ * root->fs_info->commit_interval; 1802 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1803 1804 spin_lock(&root->fs_info->trans_lock); 1805 cur = root->fs_info->running_transaction; 1806 if (!cur) { 1807 spin_unlock(&root->fs_info->trans_lock); 1808 goto sleep; 1809 } 1810 1811 now = get_seconds(); 1812 if (cur->state < TRANS_STATE_BLOCKED && 1813 (now < cur->start_time || 1814 now - cur->start_time < root->fs_info->commit_interval)) { 1815 spin_unlock(&root->fs_info->trans_lock); 1816 delay = HZ * 5; 1817 goto sleep; 1818 } 1819 transid = cur->transid; 1820 spin_unlock(&root->fs_info->trans_lock); 1821 1822 /* If the file system is aborted, this will always fail. */ 1823 trans = btrfs_attach_transaction(root); 1824 if (IS_ERR(trans)) { 1825 if (PTR_ERR(trans) != -ENOENT) 1826 cannot_commit = true; 1827 goto sleep; 1828 } 1829 if (transid == trans->transid) { 1830 btrfs_commit_transaction(trans, root); 1831 } else { 1832 btrfs_end_transaction(trans, root); 1833 } 1834 sleep: 1835 wake_up_process(root->fs_info->cleaner_kthread); 1836 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1837 1838 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1839 &root->fs_info->fs_state))) 1840 btrfs_cleanup_transaction(root); 1841 if (!try_to_freeze()) { 1842 set_current_state(TASK_INTERRUPTIBLE); 1843 if (!kthread_should_stop() && 1844 (!btrfs_transaction_blocked(root->fs_info) || 1845 cannot_commit)) 1846 schedule_timeout(delay); 1847 __set_current_state(TASK_RUNNING); 1848 } 1849 } while (!kthread_should_stop()); 1850 return 0; 1851 } 1852 1853 /* 1854 * this will find the highest generation in the array of 1855 * root backups. The index of the highest array is returned, 1856 * or -1 if we can't find anything. 1857 * 1858 * We check to make sure the array is valid by comparing the 1859 * generation of the latest root in the array with the generation 1860 * in the super block. If they don't match we pitch it. 1861 */ 1862 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1863 { 1864 u64 cur; 1865 int newest_index = -1; 1866 struct btrfs_root_backup *root_backup; 1867 int i; 1868 1869 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1870 root_backup = info->super_copy->super_roots + i; 1871 cur = btrfs_backup_tree_root_gen(root_backup); 1872 if (cur == newest_gen) 1873 newest_index = i; 1874 } 1875 1876 /* check to see if we actually wrapped around */ 1877 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1878 root_backup = info->super_copy->super_roots; 1879 cur = btrfs_backup_tree_root_gen(root_backup); 1880 if (cur == newest_gen) 1881 newest_index = 0; 1882 } 1883 return newest_index; 1884 } 1885 1886 1887 /* 1888 * find the oldest backup so we know where to store new entries 1889 * in the backup array. This will set the backup_root_index 1890 * field in the fs_info struct 1891 */ 1892 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1893 u64 newest_gen) 1894 { 1895 int newest_index = -1; 1896 1897 newest_index = find_newest_super_backup(info, newest_gen); 1898 /* if there was garbage in there, just move along */ 1899 if (newest_index == -1) { 1900 info->backup_root_index = 0; 1901 } else { 1902 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1903 } 1904 } 1905 1906 /* 1907 * copy all the root pointers into the super backup array. 1908 * this will bump the backup pointer by one when it is 1909 * done 1910 */ 1911 static void backup_super_roots(struct btrfs_fs_info *info) 1912 { 1913 int next_backup; 1914 struct btrfs_root_backup *root_backup; 1915 int last_backup; 1916 1917 next_backup = info->backup_root_index; 1918 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1919 BTRFS_NUM_BACKUP_ROOTS; 1920 1921 /* 1922 * just overwrite the last backup if we're at the same generation 1923 * this happens only at umount 1924 */ 1925 root_backup = info->super_for_commit->super_roots + last_backup; 1926 if (btrfs_backup_tree_root_gen(root_backup) == 1927 btrfs_header_generation(info->tree_root->node)) 1928 next_backup = last_backup; 1929 1930 root_backup = info->super_for_commit->super_roots + next_backup; 1931 1932 /* 1933 * make sure all of our padding and empty slots get zero filled 1934 * regardless of which ones we use today 1935 */ 1936 memset(root_backup, 0, sizeof(*root_backup)); 1937 1938 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1939 1940 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1941 btrfs_set_backup_tree_root_gen(root_backup, 1942 btrfs_header_generation(info->tree_root->node)); 1943 1944 btrfs_set_backup_tree_root_level(root_backup, 1945 btrfs_header_level(info->tree_root->node)); 1946 1947 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1948 btrfs_set_backup_chunk_root_gen(root_backup, 1949 btrfs_header_generation(info->chunk_root->node)); 1950 btrfs_set_backup_chunk_root_level(root_backup, 1951 btrfs_header_level(info->chunk_root->node)); 1952 1953 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1954 btrfs_set_backup_extent_root_gen(root_backup, 1955 btrfs_header_generation(info->extent_root->node)); 1956 btrfs_set_backup_extent_root_level(root_backup, 1957 btrfs_header_level(info->extent_root->node)); 1958 1959 /* 1960 * we might commit during log recovery, which happens before we set 1961 * the fs_root. Make sure it is valid before we fill it in. 1962 */ 1963 if (info->fs_root && info->fs_root->node) { 1964 btrfs_set_backup_fs_root(root_backup, 1965 info->fs_root->node->start); 1966 btrfs_set_backup_fs_root_gen(root_backup, 1967 btrfs_header_generation(info->fs_root->node)); 1968 btrfs_set_backup_fs_root_level(root_backup, 1969 btrfs_header_level(info->fs_root->node)); 1970 } 1971 1972 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1973 btrfs_set_backup_dev_root_gen(root_backup, 1974 btrfs_header_generation(info->dev_root->node)); 1975 btrfs_set_backup_dev_root_level(root_backup, 1976 btrfs_header_level(info->dev_root->node)); 1977 1978 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1979 btrfs_set_backup_csum_root_gen(root_backup, 1980 btrfs_header_generation(info->csum_root->node)); 1981 btrfs_set_backup_csum_root_level(root_backup, 1982 btrfs_header_level(info->csum_root->node)); 1983 1984 btrfs_set_backup_total_bytes(root_backup, 1985 btrfs_super_total_bytes(info->super_copy)); 1986 btrfs_set_backup_bytes_used(root_backup, 1987 btrfs_super_bytes_used(info->super_copy)); 1988 btrfs_set_backup_num_devices(root_backup, 1989 btrfs_super_num_devices(info->super_copy)); 1990 1991 /* 1992 * if we don't copy this out to the super_copy, it won't get remembered 1993 * for the next commit 1994 */ 1995 memcpy(&info->super_copy->super_roots, 1996 &info->super_for_commit->super_roots, 1997 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1998 } 1999 2000 /* 2001 * this copies info out of the root backup array and back into 2002 * the in-memory super block. It is meant to help iterate through 2003 * the array, so you send it the number of backups you've already 2004 * tried and the last backup index you used. 2005 * 2006 * this returns -1 when it has tried all the backups 2007 */ 2008 static noinline int next_root_backup(struct btrfs_fs_info *info, 2009 struct btrfs_super_block *super, 2010 int *num_backups_tried, int *backup_index) 2011 { 2012 struct btrfs_root_backup *root_backup; 2013 int newest = *backup_index; 2014 2015 if (*num_backups_tried == 0) { 2016 u64 gen = btrfs_super_generation(super); 2017 2018 newest = find_newest_super_backup(info, gen); 2019 if (newest == -1) 2020 return -1; 2021 2022 *backup_index = newest; 2023 *num_backups_tried = 1; 2024 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 2025 /* we've tried all the backups, all done */ 2026 return -1; 2027 } else { 2028 /* jump to the next oldest backup */ 2029 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 2030 BTRFS_NUM_BACKUP_ROOTS; 2031 *backup_index = newest; 2032 *num_backups_tried += 1; 2033 } 2034 root_backup = super->super_roots + newest; 2035 2036 btrfs_set_super_generation(super, 2037 btrfs_backup_tree_root_gen(root_backup)); 2038 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2039 btrfs_set_super_root_level(super, 2040 btrfs_backup_tree_root_level(root_backup)); 2041 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2042 2043 /* 2044 * fixme: the total bytes and num_devices need to match or we should 2045 * need a fsck 2046 */ 2047 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2048 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2049 return 0; 2050 } 2051 2052 /* helper to cleanup workers */ 2053 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2054 { 2055 btrfs_destroy_workqueue(fs_info->fixup_workers); 2056 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2057 btrfs_destroy_workqueue(fs_info->workers); 2058 btrfs_destroy_workqueue(fs_info->endio_workers); 2059 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2060 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2061 btrfs_destroy_workqueue(fs_info->rmw_workers); 2062 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2063 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2064 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2065 btrfs_destroy_workqueue(fs_info->submit_workers); 2066 btrfs_destroy_workqueue(fs_info->delayed_workers); 2067 btrfs_destroy_workqueue(fs_info->caching_workers); 2068 btrfs_destroy_workqueue(fs_info->readahead_workers); 2069 btrfs_destroy_workqueue(fs_info->flush_workers); 2070 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2071 btrfs_destroy_workqueue(fs_info->extent_workers); 2072 } 2073 2074 static void free_root_extent_buffers(struct btrfs_root *root) 2075 { 2076 if (root) { 2077 free_extent_buffer(root->node); 2078 free_extent_buffer(root->commit_root); 2079 root->node = NULL; 2080 root->commit_root = NULL; 2081 } 2082 } 2083 2084 /* helper to cleanup tree roots */ 2085 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2086 { 2087 free_root_extent_buffers(info->tree_root); 2088 2089 free_root_extent_buffers(info->dev_root); 2090 free_root_extent_buffers(info->extent_root); 2091 free_root_extent_buffers(info->csum_root); 2092 free_root_extent_buffers(info->quota_root); 2093 free_root_extent_buffers(info->uuid_root); 2094 if (chunk_root) 2095 free_root_extent_buffers(info->chunk_root); 2096 } 2097 2098 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2099 { 2100 int ret; 2101 struct btrfs_root *gang[8]; 2102 int i; 2103 2104 while (!list_empty(&fs_info->dead_roots)) { 2105 gang[0] = list_entry(fs_info->dead_roots.next, 2106 struct btrfs_root, root_list); 2107 list_del(&gang[0]->root_list); 2108 2109 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2110 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2111 } else { 2112 free_extent_buffer(gang[0]->node); 2113 free_extent_buffer(gang[0]->commit_root); 2114 btrfs_put_fs_root(gang[0]); 2115 } 2116 } 2117 2118 while (1) { 2119 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2120 (void **)gang, 0, 2121 ARRAY_SIZE(gang)); 2122 if (!ret) 2123 break; 2124 for (i = 0; i < ret; i++) 2125 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2126 } 2127 2128 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2129 btrfs_free_log_root_tree(NULL, fs_info); 2130 btrfs_destroy_pinned_extent(fs_info->tree_root, 2131 fs_info->pinned_extents); 2132 } 2133 } 2134 2135 int open_ctree(struct super_block *sb, 2136 struct btrfs_fs_devices *fs_devices, 2137 char *options) 2138 { 2139 u32 sectorsize; 2140 u32 nodesize; 2141 u32 leafsize; 2142 u32 blocksize; 2143 u32 stripesize; 2144 u64 generation; 2145 u64 features; 2146 struct btrfs_key location; 2147 struct buffer_head *bh; 2148 struct btrfs_super_block *disk_super; 2149 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2150 struct btrfs_root *tree_root; 2151 struct btrfs_root *extent_root; 2152 struct btrfs_root *csum_root; 2153 struct btrfs_root *chunk_root; 2154 struct btrfs_root *dev_root; 2155 struct btrfs_root *quota_root; 2156 struct btrfs_root *uuid_root; 2157 struct btrfs_root *log_tree_root; 2158 int ret; 2159 int err = -EINVAL; 2160 int num_backups_tried = 0; 2161 int backup_index = 0; 2162 int max_active; 2163 int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2164 bool create_uuid_tree; 2165 bool check_uuid_tree; 2166 2167 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info); 2168 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info); 2169 if (!tree_root || !chunk_root) { 2170 err = -ENOMEM; 2171 goto fail; 2172 } 2173 2174 ret = init_srcu_struct(&fs_info->subvol_srcu); 2175 if (ret) { 2176 err = ret; 2177 goto fail; 2178 } 2179 2180 ret = setup_bdi(fs_info, &fs_info->bdi); 2181 if (ret) { 2182 err = ret; 2183 goto fail_srcu; 2184 } 2185 2186 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0); 2187 if (ret) { 2188 err = ret; 2189 goto fail_bdi; 2190 } 2191 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE * 2192 (1 + ilog2(nr_cpu_ids)); 2193 2194 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0); 2195 if (ret) { 2196 err = ret; 2197 goto fail_dirty_metadata_bytes; 2198 } 2199 2200 ret = percpu_counter_init(&fs_info->bio_counter, 0); 2201 if (ret) { 2202 err = ret; 2203 goto fail_delalloc_bytes; 2204 } 2205 2206 fs_info->btree_inode = new_inode(sb); 2207 if (!fs_info->btree_inode) { 2208 err = -ENOMEM; 2209 goto fail_bio_counter; 2210 } 2211 2212 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2213 2214 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2215 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2216 INIT_LIST_HEAD(&fs_info->trans_list); 2217 INIT_LIST_HEAD(&fs_info->dead_roots); 2218 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2219 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2220 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2221 spin_lock_init(&fs_info->delalloc_root_lock); 2222 spin_lock_init(&fs_info->trans_lock); 2223 spin_lock_init(&fs_info->fs_roots_radix_lock); 2224 spin_lock_init(&fs_info->delayed_iput_lock); 2225 spin_lock_init(&fs_info->defrag_inodes_lock); 2226 spin_lock_init(&fs_info->free_chunk_lock); 2227 spin_lock_init(&fs_info->tree_mod_seq_lock); 2228 spin_lock_init(&fs_info->super_lock); 2229 spin_lock_init(&fs_info->qgroup_op_lock); 2230 spin_lock_init(&fs_info->buffer_lock); 2231 rwlock_init(&fs_info->tree_mod_log_lock); 2232 mutex_init(&fs_info->reloc_mutex); 2233 mutex_init(&fs_info->delalloc_root_mutex); 2234 seqlock_init(&fs_info->profiles_lock); 2235 2236 init_completion(&fs_info->kobj_unregister); 2237 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2238 INIT_LIST_HEAD(&fs_info->space_info); 2239 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2240 btrfs_mapping_init(&fs_info->mapping_tree); 2241 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2242 BTRFS_BLOCK_RSV_GLOBAL); 2243 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, 2244 BTRFS_BLOCK_RSV_DELALLOC); 2245 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2246 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2247 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2248 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2249 BTRFS_BLOCK_RSV_DELOPS); 2250 atomic_set(&fs_info->nr_async_submits, 0); 2251 atomic_set(&fs_info->async_delalloc_pages, 0); 2252 atomic_set(&fs_info->async_submit_draining, 0); 2253 atomic_set(&fs_info->nr_async_bios, 0); 2254 atomic_set(&fs_info->defrag_running, 0); 2255 atomic_set(&fs_info->qgroup_op_seq, 0); 2256 atomic64_set(&fs_info->tree_mod_seq, 0); 2257 fs_info->sb = sb; 2258 fs_info->max_inline = 8192 * 1024; 2259 fs_info->metadata_ratio = 0; 2260 fs_info->defrag_inodes = RB_ROOT; 2261 fs_info->free_chunk_space = 0; 2262 fs_info->tree_mod_log = RB_ROOT; 2263 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2264 fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64); 2265 /* readahead state */ 2266 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT); 2267 spin_lock_init(&fs_info->reada_lock); 2268 2269 fs_info->thread_pool_size = min_t(unsigned long, 2270 num_online_cpus() + 2, 8); 2271 2272 INIT_LIST_HEAD(&fs_info->ordered_roots); 2273 spin_lock_init(&fs_info->ordered_root_lock); 2274 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2275 GFP_NOFS); 2276 if (!fs_info->delayed_root) { 2277 err = -ENOMEM; 2278 goto fail_iput; 2279 } 2280 btrfs_init_delayed_root(fs_info->delayed_root); 2281 2282 mutex_init(&fs_info->scrub_lock); 2283 atomic_set(&fs_info->scrubs_running, 0); 2284 atomic_set(&fs_info->scrub_pause_req, 0); 2285 atomic_set(&fs_info->scrubs_paused, 0); 2286 atomic_set(&fs_info->scrub_cancel_req, 0); 2287 init_waitqueue_head(&fs_info->replace_wait); 2288 init_waitqueue_head(&fs_info->scrub_pause_wait); 2289 fs_info->scrub_workers_refcnt = 0; 2290 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2291 fs_info->check_integrity_print_mask = 0; 2292 #endif 2293 2294 spin_lock_init(&fs_info->balance_lock); 2295 mutex_init(&fs_info->balance_mutex); 2296 atomic_set(&fs_info->balance_running, 0); 2297 atomic_set(&fs_info->balance_pause_req, 0); 2298 atomic_set(&fs_info->balance_cancel_req, 0); 2299 fs_info->balance_ctl = NULL; 2300 init_waitqueue_head(&fs_info->balance_wait_q); 2301 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2302 2303 sb->s_blocksize = 4096; 2304 sb->s_blocksize_bits = blksize_bits(4096); 2305 sb->s_bdi = &fs_info->bdi; 2306 2307 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2308 set_nlink(fs_info->btree_inode, 1); 2309 /* 2310 * we set the i_size on the btree inode to the max possible int. 2311 * the real end of the address space is determined by all of 2312 * the devices in the system 2313 */ 2314 fs_info->btree_inode->i_size = OFFSET_MAX; 2315 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 2316 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 2317 2318 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2319 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2320 fs_info->btree_inode->i_mapping); 2321 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0; 2322 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2323 2324 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2325 2326 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2327 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2328 sizeof(struct btrfs_key)); 2329 set_bit(BTRFS_INODE_DUMMY, 2330 &BTRFS_I(fs_info->btree_inode)->runtime_flags); 2331 btrfs_insert_inode_hash(fs_info->btree_inode); 2332 2333 spin_lock_init(&fs_info->block_group_cache_lock); 2334 fs_info->block_group_cache_tree = RB_ROOT; 2335 fs_info->first_logical_byte = (u64)-1; 2336 2337 extent_io_tree_init(&fs_info->freed_extents[0], 2338 fs_info->btree_inode->i_mapping); 2339 extent_io_tree_init(&fs_info->freed_extents[1], 2340 fs_info->btree_inode->i_mapping); 2341 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2342 fs_info->do_barriers = 1; 2343 2344 2345 mutex_init(&fs_info->ordered_operations_mutex); 2346 mutex_init(&fs_info->ordered_extent_flush_mutex); 2347 mutex_init(&fs_info->tree_log_mutex); 2348 mutex_init(&fs_info->chunk_mutex); 2349 mutex_init(&fs_info->transaction_kthread_mutex); 2350 mutex_init(&fs_info->cleaner_mutex); 2351 mutex_init(&fs_info->volume_mutex); 2352 init_rwsem(&fs_info->commit_root_sem); 2353 init_rwsem(&fs_info->cleanup_work_sem); 2354 init_rwsem(&fs_info->subvol_sem); 2355 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2356 fs_info->dev_replace.lock_owner = 0; 2357 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2358 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2359 mutex_init(&fs_info->dev_replace.lock_management_lock); 2360 mutex_init(&fs_info->dev_replace.lock); 2361 2362 spin_lock_init(&fs_info->qgroup_lock); 2363 mutex_init(&fs_info->qgroup_ioctl_lock); 2364 fs_info->qgroup_tree = RB_ROOT; 2365 fs_info->qgroup_op_tree = RB_ROOT; 2366 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2367 fs_info->qgroup_seq = 1; 2368 fs_info->quota_enabled = 0; 2369 fs_info->pending_quota_state = 0; 2370 fs_info->qgroup_ulist = NULL; 2371 mutex_init(&fs_info->qgroup_rescan_lock); 2372 2373 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2374 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2375 2376 init_waitqueue_head(&fs_info->transaction_throttle); 2377 init_waitqueue_head(&fs_info->transaction_wait); 2378 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2379 init_waitqueue_head(&fs_info->async_submit_wait); 2380 2381 ret = btrfs_alloc_stripe_hash_table(fs_info); 2382 if (ret) { 2383 err = ret; 2384 goto fail_alloc; 2385 } 2386 2387 __setup_root(4096, 4096, 4096, 4096, tree_root, 2388 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2389 2390 invalidate_bdev(fs_devices->latest_bdev); 2391 2392 /* 2393 * Read super block and check the signature bytes only 2394 */ 2395 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2396 if (!bh) { 2397 err = -EINVAL; 2398 goto fail_alloc; 2399 } 2400 2401 /* 2402 * We want to check superblock checksum, the type is stored inside. 2403 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2404 */ 2405 if (btrfs_check_super_csum(bh->b_data)) { 2406 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n"); 2407 err = -EINVAL; 2408 goto fail_alloc; 2409 } 2410 2411 /* 2412 * super_copy is zeroed at allocation time and we never touch the 2413 * following bytes up to INFO_SIZE, the checksum is calculated from 2414 * the whole block of INFO_SIZE 2415 */ 2416 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2417 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2418 sizeof(*fs_info->super_for_commit)); 2419 brelse(bh); 2420 2421 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2422 2423 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2424 if (ret) { 2425 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n"); 2426 err = -EINVAL; 2427 goto fail_alloc; 2428 } 2429 2430 disk_super = fs_info->super_copy; 2431 if (!btrfs_super_root(disk_super)) 2432 goto fail_alloc; 2433 2434 /* check FS state, whether FS is broken. */ 2435 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2436 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2437 2438 /* 2439 * run through our array of backup supers and setup 2440 * our ring pointer to the oldest one 2441 */ 2442 generation = btrfs_super_generation(disk_super); 2443 find_oldest_super_backup(fs_info, generation); 2444 2445 /* 2446 * In the long term, we'll store the compression type in the super 2447 * block, and it'll be used for per file compression control. 2448 */ 2449 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2450 2451 ret = btrfs_parse_options(tree_root, options); 2452 if (ret) { 2453 err = ret; 2454 goto fail_alloc; 2455 } 2456 2457 features = btrfs_super_incompat_flags(disk_super) & 2458 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2459 if (features) { 2460 printk(KERN_ERR "BTRFS: couldn't mount because of " 2461 "unsupported optional features (%Lx).\n", 2462 features); 2463 err = -EINVAL; 2464 goto fail_alloc; 2465 } 2466 2467 if (btrfs_super_leafsize(disk_super) != 2468 btrfs_super_nodesize(disk_super)) { 2469 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2470 "blocksizes don't match. node %d leaf %d\n", 2471 btrfs_super_nodesize(disk_super), 2472 btrfs_super_leafsize(disk_super)); 2473 err = -EINVAL; 2474 goto fail_alloc; 2475 } 2476 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) { 2477 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2478 "blocksize (%d) was too large\n", 2479 btrfs_super_leafsize(disk_super)); 2480 err = -EINVAL; 2481 goto fail_alloc; 2482 } 2483 2484 features = btrfs_super_incompat_flags(disk_super); 2485 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2486 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 2487 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2488 2489 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2490 printk(KERN_ERR "BTRFS: has skinny extents\n"); 2491 2492 /* 2493 * flag our filesystem as having big metadata blocks if 2494 * they are bigger than the page size 2495 */ 2496 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) { 2497 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2498 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n"); 2499 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2500 } 2501 2502 nodesize = btrfs_super_nodesize(disk_super); 2503 leafsize = btrfs_super_leafsize(disk_super); 2504 sectorsize = btrfs_super_sectorsize(disk_super); 2505 stripesize = btrfs_super_stripesize(disk_super); 2506 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids)); 2507 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2508 2509 /* 2510 * mixed block groups end up with duplicate but slightly offset 2511 * extent buffers for the same range. It leads to corruptions 2512 */ 2513 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2514 (sectorsize != leafsize)) { 2515 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes " 2516 "are not allowed for mixed block groups on %s\n", 2517 sb->s_id); 2518 goto fail_alloc; 2519 } 2520 2521 /* 2522 * Needn't use the lock because there is no other task which will 2523 * update the flag. 2524 */ 2525 btrfs_set_super_incompat_flags(disk_super, features); 2526 2527 features = btrfs_super_compat_ro_flags(disk_super) & 2528 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2529 if (!(sb->s_flags & MS_RDONLY) && features) { 2530 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 2531 "unsupported option features (%Lx).\n", 2532 features); 2533 err = -EINVAL; 2534 goto fail_alloc; 2535 } 2536 2537 max_active = fs_info->thread_pool_size; 2538 2539 fs_info->workers = 2540 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI, 2541 max_active, 16); 2542 2543 fs_info->delalloc_workers = 2544 btrfs_alloc_workqueue("delalloc", flags, max_active, 2); 2545 2546 fs_info->flush_workers = 2547 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0); 2548 2549 fs_info->caching_workers = 2550 btrfs_alloc_workqueue("cache", flags, max_active, 0); 2551 2552 /* 2553 * a higher idle thresh on the submit workers makes it much more 2554 * likely that bios will be send down in a sane order to the 2555 * devices 2556 */ 2557 fs_info->submit_workers = 2558 btrfs_alloc_workqueue("submit", flags, 2559 min_t(u64, fs_devices->num_devices, 2560 max_active), 64); 2561 2562 fs_info->fixup_workers = 2563 btrfs_alloc_workqueue("fixup", flags, 1, 0); 2564 2565 /* 2566 * endios are largely parallel and should have a very 2567 * low idle thresh 2568 */ 2569 fs_info->endio_workers = 2570 btrfs_alloc_workqueue("endio", flags, max_active, 4); 2571 fs_info->endio_meta_workers = 2572 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4); 2573 fs_info->endio_meta_write_workers = 2574 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2); 2575 fs_info->endio_raid56_workers = 2576 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4); 2577 fs_info->rmw_workers = 2578 btrfs_alloc_workqueue("rmw", flags, max_active, 2); 2579 fs_info->endio_write_workers = 2580 btrfs_alloc_workqueue("endio-write", flags, max_active, 2); 2581 fs_info->endio_freespace_worker = 2582 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0); 2583 fs_info->delayed_workers = 2584 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0); 2585 fs_info->readahead_workers = 2586 btrfs_alloc_workqueue("readahead", flags, max_active, 2); 2587 fs_info->qgroup_rescan_workers = 2588 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0); 2589 fs_info->extent_workers = 2590 btrfs_alloc_workqueue("extent-refs", flags, 2591 min_t(u64, fs_devices->num_devices, 2592 max_active), 8); 2593 2594 if (!(fs_info->workers && fs_info->delalloc_workers && 2595 fs_info->submit_workers && fs_info->flush_workers && 2596 fs_info->endio_workers && fs_info->endio_meta_workers && 2597 fs_info->endio_meta_write_workers && 2598 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2599 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2600 fs_info->caching_workers && fs_info->readahead_workers && 2601 fs_info->fixup_workers && fs_info->delayed_workers && 2602 fs_info->fixup_workers && fs_info->extent_workers && 2603 fs_info->qgroup_rescan_workers)) { 2604 err = -ENOMEM; 2605 goto fail_sb_buffer; 2606 } 2607 2608 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2609 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2610 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 2611 2612 tree_root->nodesize = nodesize; 2613 tree_root->leafsize = leafsize; 2614 tree_root->sectorsize = sectorsize; 2615 tree_root->stripesize = stripesize; 2616 2617 sb->s_blocksize = sectorsize; 2618 sb->s_blocksize_bits = blksize_bits(sectorsize); 2619 2620 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 2621 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id); 2622 goto fail_sb_buffer; 2623 } 2624 2625 if (sectorsize != PAGE_SIZE) { 2626 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) " 2627 "found on %s\n", (unsigned long)sectorsize, sb->s_id); 2628 goto fail_sb_buffer; 2629 } 2630 2631 mutex_lock(&fs_info->chunk_mutex); 2632 ret = btrfs_read_sys_array(tree_root); 2633 mutex_unlock(&fs_info->chunk_mutex); 2634 if (ret) { 2635 printk(KERN_WARNING "BTRFS: failed to read the system " 2636 "array on %s\n", sb->s_id); 2637 goto fail_sb_buffer; 2638 } 2639 2640 blocksize = btrfs_level_size(tree_root, 2641 btrfs_super_chunk_root_level(disk_super)); 2642 generation = btrfs_super_chunk_root_generation(disk_super); 2643 2644 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2645 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2646 2647 chunk_root->node = read_tree_block(chunk_root, 2648 btrfs_super_chunk_root(disk_super), 2649 blocksize, generation); 2650 if (!chunk_root->node || 2651 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { 2652 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n", 2653 sb->s_id); 2654 goto fail_tree_roots; 2655 } 2656 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2657 chunk_root->commit_root = btrfs_root_node(chunk_root); 2658 2659 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2660 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2661 2662 ret = btrfs_read_chunk_tree(chunk_root); 2663 if (ret) { 2664 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n", 2665 sb->s_id); 2666 goto fail_tree_roots; 2667 } 2668 2669 /* 2670 * keep the device that is marked to be the target device for the 2671 * dev_replace procedure 2672 */ 2673 btrfs_close_extra_devices(fs_info, fs_devices, 0); 2674 2675 if (!fs_devices->latest_bdev) { 2676 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n", 2677 sb->s_id); 2678 goto fail_tree_roots; 2679 } 2680 2681 retry_root_backup: 2682 blocksize = btrfs_level_size(tree_root, 2683 btrfs_super_root_level(disk_super)); 2684 generation = btrfs_super_generation(disk_super); 2685 2686 tree_root->node = read_tree_block(tree_root, 2687 btrfs_super_root(disk_super), 2688 blocksize, generation); 2689 if (!tree_root->node || 2690 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { 2691 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n", 2692 sb->s_id); 2693 2694 goto recovery_tree_root; 2695 } 2696 2697 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2698 tree_root->commit_root = btrfs_root_node(tree_root); 2699 btrfs_set_root_refs(&tree_root->root_item, 1); 2700 2701 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2702 location.type = BTRFS_ROOT_ITEM_KEY; 2703 location.offset = 0; 2704 2705 extent_root = btrfs_read_tree_root(tree_root, &location); 2706 if (IS_ERR(extent_root)) { 2707 ret = PTR_ERR(extent_root); 2708 goto recovery_tree_root; 2709 } 2710 set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state); 2711 fs_info->extent_root = extent_root; 2712 2713 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2714 dev_root = btrfs_read_tree_root(tree_root, &location); 2715 if (IS_ERR(dev_root)) { 2716 ret = PTR_ERR(dev_root); 2717 goto recovery_tree_root; 2718 } 2719 set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state); 2720 fs_info->dev_root = dev_root; 2721 btrfs_init_devices_late(fs_info); 2722 2723 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2724 csum_root = btrfs_read_tree_root(tree_root, &location); 2725 if (IS_ERR(csum_root)) { 2726 ret = PTR_ERR(csum_root); 2727 goto recovery_tree_root; 2728 } 2729 set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state); 2730 fs_info->csum_root = csum_root; 2731 2732 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2733 quota_root = btrfs_read_tree_root(tree_root, &location); 2734 if (!IS_ERR(quota_root)) { 2735 set_bit(BTRFS_ROOT_TRACK_DIRTY, "a_root->state); 2736 fs_info->quota_enabled = 1; 2737 fs_info->pending_quota_state = 1; 2738 fs_info->quota_root = quota_root; 2739 } 2740 2741 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2742 uuid_root = btrfs_read_tree_root(tree_root, &location); 2743 if (IS_ERR(uuid_root)) { 2744 ret = PTR_ERR(uuid_root); 2745 if (ret != -ENOENT) 2746 goto recovery_tree_root; 2747 create_uuid_tree = true; 2748 check_uuid_tree = false; 2749 } else { 2750 set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state); 2751 fs_info->uuid_root = uuid_root; 2752 create_uuid_tree = false; 2753 check_uuid_tree = 2754 generation != btrfs_super_uuid_tree_generation(disk_super); 2755 } 2756 2757 fs_info->generation = generation; 2758 fs_info->last_trans_committed = generation; 2759 2760 ret = btrfs_recover_balance(fs_info); 2761 if (ret) { 2762 printk(KERN_WARNING "BTRFS: failed to recover balance\n"); 2763 goto fail_block_groups; 2764 } 2765 2766 ret = btrfs_init_dev_stats(fs_info); 2767 if (ret) { 2768 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n", 2769 ret); 2770 goto fail_block_groups; 2771 } 2772 2773 ret = btrfs_init_dev_replace(fs_info); 2774 if (ret) { 2775 pr_err("BTRFS: failed to init dev_replace: %d\n", ret); 2776 goto fail_block_groups; 2777 } 2778 2779 btrfs_close_extra_devices(fs_info, fs_devices, 1); 2780 2781 ret = btrfs_sysfs_add_one(fs_info); 2782 if (ret) { 2783 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret); 2784 goto fail_block_groups; 2785 } 2786 2787 ret = btrfs_init_space_info(fs_info); 2788 if (ret) { 2789 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret); 2790 goto fail_sysfs; 2791 } 2792 2793 ret = btrfs_read_block_groups(extent_root); 2794 if (ret) { 2795 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret); 2796 goto fail_sysfs; 2797 } 2798 fs_info->num_tolerated_disk_barrier_failures = 2799 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 2800 if (fs_info->fs_devices->missing_devices > 2801 fs_info->num_tolerated_disk_barrier_failures && 2802 !(sb->s_flags & MS_RDONLY)) { 2803 printk(KERN_WARNING "BTRFS: " 2804 "too many missing devices, writeable mount is not allowed\n"); 2805 goto fail_sysfs; 2806 } 2807 2808 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2809 "btrfs-cleaner"); 2810 if (IS_ERR(fs_info->cleaner_kthread)) 2811 goto fail_sysfs; 2812 2813 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2814 tree_root, 2815 "btrfs-transaction"); 2816 if (IS_ERR(fs_info->transaction_kthread)) 2817 goto fail_cleaner; 2818 2819 if (!btrfs_test_opt(tree_root, SSD) && 2820 !btrfs_test_opt(tree_root, NOSSD) && 2821 !fs_info->fs_devices->rotating) { 2822 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD " 2823 "mode\n"); 2824 btrfs_set_opt(fs_info->mount_opt, SSD); 2825 } 2826 2827 /* Set the real inode map cache flag */ 2828 if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE)) 2829 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE); 2830 2831 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2832 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) { 2833 ret = btrfsic_mount(tree_root, fs_devices, 2834 btrfs_test_opt(tree_root, 2835 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 2836 1 : 0, 2837 fs_info->check_integrity_print_mask); 2838 if (ret) 2839 printk(KERN_WARNING "BTRFS: failed to initialize" 2840 " integrity check module %s\n", sb->s_id); 2841 } 2842 #endif 2843 ret = btrfs_read_qgroup_config(fs_info); 2844 if (ret) 2845 goto fail_trans_kthread; 2846 2847 /* do not make disk changes in broken FS */ 2848 if (btrfs_super_log_root(disk_super) != 0) { 2849 u64 bytenr = btrfs_super_log_root(disk_super); 2850 2851 if (fs_devices->rw_devices == 0) { 2852 printk(KERN_WARNING "BTRFS: log replay required " 2853 "on RO media\n"); 2854 err = -EIO; 2855 goto fail_qgroup; 2856 } 2857 blocksize = 2858 btrfs_level_size(tree_root, 2859 btrfs_super_log_root_level(disk_super)); 2860 2861 log_tree_root = btrfs_alloc_root(fs_info); 2862 if (!log_tree_root) { 2863 err = -ENOMEM; 2864 goto fail_qgroup; 2865 } 2866 2867 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2868 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2869 2870 log_tree_root->node = read_tree_block(tree_root, bytenr, 2871 blocksize, 2872 generation + 1); 2873 if (!log_tree_root->node || 2874 !extent_buffer_uptodate(log_tree_root->node)) { 2875 printk(KERN_ERR "BTRFS: failed to read log tree\n"); 2876 free_extent_buffer(log_tree_root->node); 2877 kfree(log_tree_root); 2878 goto fail_qgroup; 2879 } 2880 /* returns with log_tree_root freed on success */ 2881 ret = btrfs_recover_log_trees(log_tree_root); 2882 if (ret) { 2883 btrfs_error(tree_root->fs_info, ret, 2884 "Failed to recover log tree"); 2885 free_extent_buffer(log_tree_root->node); 2886 kfree(log_tree_root); 2887 goto fail_qgroup; 2888 } 2889 2890 if (sb->s_flags & MS_RDONLY) { 2891 ret = btrfs_commit_super(tree_root); 2892 if (ret) 2893 goto fail_qgroup; 2894 } 2895 } 2896 2897 ret = btrfs_find_orphan_roots(tree_root); 2898 if (ret) 2899 goto fail_qgroup; 2900 2901 if (!(sb->s_flags & MS_RDONLY)) { 2902 ret = btrfs_cleanup_fs_roots(fs_info); 2903 if (ret) 2904 goto fail_qgroup; 2905 2906 mutex_lock(&fs_info->cleaner_mutex); 2907 ret = btrfs_recover_relocation(tree_root); 2908 mutex_unlock(&fs_info->cleaner_mutex); 2909 if (ret < 0) { 2910 printk(KERN_WARNING 2911 "BTRFS: failed to recover relocation\n"); 2912 err = -EINVAL; 2913 goto fail_qgroup; 2914 } 2915 } 2916 2917 location.objectid = BTRFS_FS_TREE_OBJECTID; 2918 location.type = BTRFS_ROOT_ITEM_KEY; 2919 location.offset = 0; 2920 2921 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 2922 if (IS_ERR(fs_info->fs_root)) { 2923 err = PTR_ERR(fs_info->fs_root); 2924 goto fail_qgroup; 2925 } 2926 2927 if (sb->s_flags & MS_RDONLY) 2928 return 0; 2929 2930 down_read(&fs_info->cleanup_work_sem); 2931 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 2932 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 2933 up_read(&fs_info->cleanup_work_sem); 2934 close_ctree(tree_root); 2935 return ret; 2936 } 2937 up_read(&fs_info->cleanup_work_sem); 2938 2939 ret = btrfs_resume_balance_async(fs_info); 2940 if (ret) { 2941 printk(KERN_WARNING "BTRFS: failed to resume balance\n"); 2942 close_ctree(tree_root); 2943 return ret; 2944 } 2945 2946 ret = btrfs_resume_dev_replace_async(fs_info); 2947 if (ret) { 2948 pr_warn("BTRFS: failed to resume dev_replace\n"); 2949 close_ctree(tree_root); 2950 return ret; 2951 } 2952 2953 btrfs_qgroup_rescan_resume(fs_info); 2954 2955 if (create_uuid_tree) { 2956 pr_info("BTRFS: creating UUID tree\n"); 2957 ret = btrfs_create_uuid_tree(fs_info); 2958 if (ret) { 2959 pr_warn("BTRFS: failed to create the UUID tree %d\n", 2960 ret); 2961 close_ctree(tree_root); 2962 return ret; 2963 } 2964 } else if (check_uuid_tree || 2965 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) { 2966 pr_info("BTRFS: checking UUID tree\n"); 2967 ret = btrfs_check_uuid_tree(fs_info); 2968 if (ret) { 2969 pr_warn("BTRFS: failed to check the UUID tree %d\n", 2970 ret); 2971 close_ctree(tree_root); 2972 return ret; 2973 } 2974 } else { 2975 fs_info->update_uuid_tree_gen = 1; 2976 } 2977 2978 return 0; 2979 2980 fail_qgroup: 2981 btrfs_free_qgroup_config(fs_info); 2982 fail_trans_kthread: 2983 kthread_stop(fs_info->transaction_kthread); 2984 btrfs_cleanup_transaction(fs_info->tree_root); 2985 btrfs_free_fs_roots(fs_info); 2986 fail_cleaner: 2987 kthread_stop(fs_info->cleaner_kthread); 2988 2989 /* 2990 * make sure we're done with the btree inode before we stop our 2991 * kthreads 2992 */ 2993 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 2994 2995 fail_sysfs: 2996 btrfs_sysfs_remove_one(fs_info); 2997 2998 fail_block_groups: 2999 btrfs_put_block_group_cache(fs_info); 3000 btrfs_free_block_groups(fs_info); 3001 3002 fail_tree_roots: 3003 free_root_pointers(fs_info, 1); 3004 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3005 3006 fail_sb_buffer: 3007 btrfs_stop_all_workers(fs_info); 3008 fail_alloc: 3009 fail_iput: 3010 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3011 3012 iput(fs_info->btree_inode); 3013 fail_bio_counter: 3014 percpu_counter_destroy(&fs_info->bio_counter); 3015 fail_delalloc_bytes: 3016 percpu_counter_destroy(&fs_info->delalloc_bytes); 3017 fail_dirty_metadata_bytes: 3018 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3019 fail_bdi: 3020 bdi_destroy(&fs_info->bdi); 3021 fail_srcu: 3022 cleanup_srcu_struct(&fs_info->subvol_srcu); 3023 fail: 3024 btrfs_free_stripe_hash_table(fs_info); 3025 btrfs_close_devices(fs_info->fs_devices); 3026 return err; 3027 3028 recovery_tree_root: 3029 if (!btrfs_test_opt(tree_root, RECOVERY)) 3030 goto fail_tree_roots; 3031 3032 free_root_pointers(fs_info, 0); 3033 3034 /* don't use the log in recovery mode, it won't be valid */ 3035 btrfs_set_super_log_root(disk_super, 0); 3036 3037 /* we can't trust the free space cache either */ 3038 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3039 3040 ret = next_root_backup(fs_info, fs_info->super_copy, 3041 &num_backups_tried, &backup_index); 3042 if (ret == -1) 3043 goto fail_block_groups; 3044 goto retry_root_backup; 3045 } 3046 3047 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3048 { 3049 if (uptodate) { 3050 set_buffer_uptodate(bh); 3051 } else { 3052 struct btrfs_device *device = (struct btrfs_device *) 3053 bh->b_private; 3054 3055 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to " 3056 "I/O error on %s\n", 3057 rcu_str_deref(device->name)); 3058 /* note, we dont' set_buffer_write_io_error because we have 3059 * our own ways of dealing with the IO errors 3060 */ 3061 clear_buffer_uptodate(bh); 3062 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3063 } 3064 unlock_buffer(bh); 3065 put_bh(bh); 3066 } 3067 3068 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3069 { 3070 struct buffer_head *bh; 3071 struct buffer_head *latest = NULL; 3072 struct btrfs_super_block *super; 3073 int i; 3074 u64 transid = 0; 3075 u64 bytenr; 3076 3077 /* we would like to check all the supers, but that would make 3078 * a btrfs mount succeed after a mkfs from a different FS. 3079 * So, we need to add a special mount option to scan for 3080 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3081 */ 3082 for (i = 0; i < 1; i++) { 3083 bytenr = btrfs_sb_offset(i); 3084 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3085 i_size_read(bdev->bd_inode)) 3086 break; 3087 bh = __bread(bdev, bytenr / 4096, 3088 BTRFS_SUPER_INFO_SIZE); 3089 if (!bh) 3090 continue; 3091 3092 super = (struct btrfs_super_block *)bh->b_data; 3093 if (btrfs_super_bytenr(super) != bytenr || 3094 btrfs_super_magic(super) != BTRFS_MAGIC) { 3095 brelse(bh); 3096 continue; 3097 } 3098 3099 if (!latest || btrfs_super_generation(super) > transid) { 3100 brelse(latest); 3101 latest = bh; 3102 transid = btrfs_super_generation(super); 3103 } else { 3104 brelse(bh); 3105 } 3106 } 3107 return latest; 3108 } 3109 3110 /* 3111 * this should be called twice, once with wait == 0 and 3112 * once with wait == 1. When wait == 0 is done, all the buffer heads 3113 * we write are pinned. 3114 * 3115 * They are released when wait == 1 is done. 3116 * max_mirrors must be the same for both runs, and it indicates how 3117 * many supers on this one device should be written. 3118 * 3119 * max_mirrors == 0 means to write them all. 3120 */ 3121 static int write_dev_supers(struct btrfs_device *device, 3122 struct btrfs_super_block *sb, 3123 int do_barriers, int wait, int max_mirrors) 3124 { 3125 struct buffer_head *bh; 3126 int i; 3127 int ret; 3128 int errors = 0; 3129 u32 crc; 3130 u64 bytenr; 3131 3132 if (max_mirrors == 0) 3133 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3134 3135 for (i = 0; i < max_mirrors; i++) { 3136 bytenr = btrfs_sb_offset(i); 3137 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 3138 break; 3139 3140 if (wait) { 3141 bh = __find_get_block(device->bdev, bytenr / 4096, 3142 BTRFS_SUPER_INFO_SIZE); 3143 if (!bh) { 3144 errors++; 3145 continue; 3146 } 3147 wait_on_buffer(bh); 3148 if (!buffer_uptodate(bh)) 3149 errors++; 3150 3151 /* drop our reference */ 3152 brelse(bh); 3153 3154 /* drop the reference from the wait == 0 run */ 3155 brelse(bh); 3156 continue; 3157 } else { 3158 btrfs_set_super_bytenr(sb, bytenr); 3159 3160 crc = ~(u32)0; 3161 crc = btrfs_csum_data((char *)sb + 3162 BTRFS_CSUM_SIZE, crc, 3163 BTRFS_SUPER_INFO_SIZE - 3164 BTRFS_CSUM_SIZE); 3165 btrfs_csum_final(crc, sb->csum); 3166 3167 /* 3168 * one reference for us, and we leave it for the 3169 * caller 3170 */ 3171 bh = __getblk(device->bdev, bytenr / 4096, 3172 BTRFS_SUPER_INFO_SIZE); 3173 if (!bh) { 3174 printk(KERN_ERR "BTRFS: couldn't get super " 3175 "buffer head for bytenr %Lu\n", bytenr); 3176 errors++; 3177 continue; 3178 } 3179 3180 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3181 3182 /* one reference for submit_bh */ 3183 get_bh(bh); 3184 3185 set_buffer_uptodate(bh); 3186 lock_buffer(bh); 3187 bh->b_end_io = btrfs_end_buffer_write_sync; 3188 bh->b_private = device; 3189 } 3190 3191 /* 3192 * we fua the first super. The others we allow 3193 * to go down lazy. 3194 */ 3195 if (i == 0) 3196 ret = btrfsic_submit_bh(WRITE_FUA, bh); 3197 else 3198 ret = btrfsic_submit_bh(WRITE_SYNC, bh); 3199 if (ret) 3200 errors++; 3201 } 3202 return errors < i ? 0 : -1; 3203 } 3204 3205 /* 3206 * endio for the write_dev_flush, this will wake anyone waiting 3207 * for the barrier when it is done 3208 */ 3209 static void btrfs_end_empty_barrier(struct bio *bio, int err) 3210 { 3211 if (err) { 3212 if (err == -EOPNOTSUPP) 3213 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 3214 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3215 } 3216 if (bio->bi_private) 3217 complete(bio->bi_private); 3218 bio_put(bio); 3219 } 3220 3221 /* 3222 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 3223 * sent down. With wait == 1, it waits for the previous flush. 3224 * 3225 * any device where the flush fails with eopnotsupp are flagged as not-barrier 3226 * capable 3227 */ 3228 static int write_dev_flush(struct btrfs_device *device, int wait) 3229 { 3230 struct bio *bio; 3231 int ret = 0; 3232 3233 if (device->nobarriers) 3234 return 0; 3235 3236 if (wait) { 3237 bio = device->flush_bio; 3238 if (!bio) 3239 return 0; 3240 3241 wait_for_completion(&device->flush_wait); 3242 3243 if (bio_flagged(bio, BIO_EOPNOTSUPP)) { 3244 printk_in_rcu("BTRFS: disabling barriers on dev %s\n", 3245 rcu_str_deref(device->name)); 3246 device->nobarriers = 1; 3247 } else if (!bio_flagged(bio, BIO_UPTODATE)) { 3248 ret = -EIO; 3249 btrfs_dev_stat_inc_and_print(device, 3250 BTRFS_DEV_STAT_FLUSH_ERRS); 3251 } 3252 3253 /* drop the reference from the wait == 0 run */ 3254 bio_put(bio); 3255 device->flush_bio = NULL; 3256 3257 return ret; 3258 } 3259 3260 /* 3261 * one reference for us, and we leave it for the 3262 * caller 3263 */ 3264 device->flush_bio = NULL; 3265 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 3266 if (!bio) 3267 return -ENOMEM; 3268 3269 bio->bi_end_io = btrfs_end_empty_barrier; 3270 bio->bi_bdev = device->bdev; 3271 init_completion(&device->flush_wait); 3272 bio->bi_private = &device->flush_wait; 3273 device->flush_bio = bio; 3274 3275 bio_get(bio); 3276 btrfsic_submit_bio(WRITE_FLUSH, bio); 3277 3278 return 0; 3279 } 3280 3281 /* 3282 * send an empty flush down to each device in parallel, 3283 * then wait for them 3284 */ 3285 static int barrier_all_devices(struct btrfs_fs_info *info) 3286 { 3287 struct list_head *head; 3288 struct btrfs_device *dev; 3289 int errors_send = 0; 3290 int errors_wait = 0; 3291 int ret; 3292 3293 /* send down all the barriers */ 3294 head = &info->fs_devices->devices; 3295 list_for_each_entry_rcu(dev, head, dev_list) { 3296 if (dev->missing) 3297 continue; 3298 if (!dev->bdev) { 3299 errors_send++; 3300 continue; 3301 } 3302 if (!dev->in_fs_metadata || !dev->writeable) 3303 continue; 3304 3305 ret = write_dev_flush(dev, 0); 3306 if (ret) 3307 errors_send++; 3308 } 3309 3310 /* wait for all the barriers */ 3311 list_for_each_entry_rcu(dev, head, dev_list) { 3312 if (dev->missing) 3313 continue; 3314 if (!dev->bdev) { 3315 errors_wait++; 3316 continue; 3317 } 3318 if (!dev->in_fs_metadata || !dev->writeable) 3319 continue; 3320 3321 ret = write_dev_flush(dev, 1); 3322 if (ret) 3323 errors_wait++; 3324 } 3325 if (errors_send > info->num_tolerated_disk_barrier_failures || 3326 errors_wait > info->num_tolerated_disk_barrier_failures) 3327 return -EIO; 3328 return 0; 3329 } 3330 3331 int btrfs_calc_num_tolerated_disk_barrier_failures( 3332 struct btrfs_fs_info *fs_info) 3333 { 3334 struct btrfs_ioctl_space_info space; 3335 struct btrfs_space_info *sinfo; 3336 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3337 BTRFS_BLOCK_GROUP_SYSTEM, 3338 BTRFS_BLOCK_GROUP_METADATA, 3339 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3340 int num_types = 4; 3341 int i; 3342 int c; 3343 int num_tolerated_disk_barrier_failures = 3344 (int)fs_info->fs_devices->num_devices; 3345 3346 for (i = 0; i < num_types; i++) { 3347 struct btrfs_space_info *tmp; 3348 3349 sinfo = NULL; 3350 rcu_read_lock(); 3351 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) { 3352 if (tmp->flags == types[i]) { 3353 sinfo = tmp; 3354 break; 3355 } 3356 } 3357 rcu_read_unlock(); 3358 3359 if (!sinfo) 3360 continue; 3361 3362 down_read(&sinfo->groups_sem); 3363 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3364 if (!list_empty(&sinfo->block_groups[c])) { 3365 u64 flags; 3366 3367 btrfs_get_block_group_info( 3368 &sinfo->block_groups[c], &space); 3369 if (space.total_bytes == 0 || 3370 space.used_bytes == 0) 3371 continue; 3372 flags = space.flags; 3373 /* 3374 * return 3375 * 0: if dup, single or RAID0 is configured for 3376 * any of metadata, system or data, else 3377 * 1: if RAID5 is configured, or if RAID1 or 3378 * RAID10 is configured and only two mirrors 3379 * are used, else 3380 * 2: if RAID6 is configured, else 3381 * num_mirrors - 1: if RAID1 or RAID10 is 3382 * configured and more than 3383 * 2 mirrors are used. 3384 */ 3385 if (num_tolerated_disk_barrier_failures > 0 && 3386 ((flags & (BTRFS_BLOCK_GROUP_DUP | 3387 BTRFS_BLOCK_GROUP_RAID0)) || 3388 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) 3389 == 0))) 3390 num_tolerated_disk_barrier_failures = 0; 3391 else if (num_tolerated_disk_barrier_failures > 1) { 3392 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 3393 BTRFS_BLOCK_GROUP_RAID5 | 3394 BTRFS_BLOCK_GROUP_RAID10)) { 3395 num_tolerated_disk_barrier_failures = 1; 3396 } else if (flags & 3397 BTRFS_BLOCK_GROUP_RAID6) { 3398 num_tolerated_disk_barrier_failures = 2; 3399 } 3400 } 3401 } 3402 } 3403 up_read(&sinfo->groups_sem); 3404 } 3405 3406 return num_tolerated_disk_barrier_failures; 3407 } 3408 3409 static int write_all_supers(struct btrfs_root *root, int max_mirrors) 3410 { 3411 struct list_head *head; 3412 struct btrfs_device *dev; 3413 struct btrfs_super_block *sb; 3414 struct btrfs_dev_item *dev_item; 3415 int ret; 3416 int do_barriers; 3417 int max_errors; 3418 int total_errors = 0; 3419 u64 flags; 3420 3421 do_barriers = !btrfs_test_opt(root, NOBARRIER); 3422 backup_super_roots(root->fs_info); 3423 3424 sb = root->fs_info->super_for_commit; 3425 dev_item = &sb->dev_item; 3426 3427 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 3428 head = &root->fs_info->fs_devices->devices; 3429 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 3430 3431 if (do_barriers) { 3432 ret = barrier_all_devices(root->fs_info); 3433 if (ret) { 3434 mutex_unlock( 3435 &root->fs_info->fs_devices->device_list_mutex); 3436 btrfs_error(root->fs_info, ret, 3437 "errors while submitting device barriers."); 3438 return ret; 3439 } 3440 } 3441 3442 list_for_each_entry_rcu(dev, head, dev_list) { 3443 if (!dev->bdev) { 3444 total_errors++; 3445 continue; 3446 } 3447 if (!dev->in_fs_metadata || !dev->writeable) 3448 continue; 3449 3450 btrfs_set_stack_device_generation(dev_item, 0); 3451 btrfs_set_stack_device_type(dev_item, dev->type); 3452 btrfs_set_stack_device_id(dev_item, dev->devid); 3453 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 3454 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 3455 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3456 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3457 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3458 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3459 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 3460 3461 flags = btrfs_super_flags(sb); 3462 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3463 3464 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 3465 if (ret) 3466 total_errors++; 3467 } 3468 if (total_errors > max_errors) { 3469 btrfs_err(root->fs_info, "%d errors while writing supers", 3470 total_errors); 3471 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3472 3473 /* FUA is masked off if unsupported and can't be the reason */ 3474 btrfs_error(root->fs_info, -EIO, 3475 "%d errors while writing supers", total_errors); 3476 return -EIO; 3477 } 3478 3479 total_errors = 0; 3480 list_for_each_entry_rcu(dev, head, dev_list) { 3481 if (!dev->bdev) 3482 continue; 3483 if (!dev->in_fs_metadata || !dev->writeable) 3484 continue; 3485 3486 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 3487 if (ret) 3488 total_errors++; 3489 } 3490 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3491 if (total_errors > max_errors) { 3492 btrfs_error(root->fs_info, -EIO, 3493 "%d errors while writing supers", total_errors); 3494 return -EIO; 3495 } 3496 return 0; 3497 } 3498 3499 int write_ctree_super(struct btrfs_trans_handle *trans, 3500 struct btrfs_root *root, int max_mirrors) 3501 { 3502 return write_all_supers(root, max_mirrors); 3503 } 3504 3505 /* Drop a fs root from the radix tree and free it. */ 3506 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3507 struct btrfs_root *root) 3508 { 3509 spin_lock(&fs_info->fs_roots_radix_lock); 3510 radix_tree_delete(&fs_info->fs_roots_radix, 3511 (unsigned long)root->root_key.objectid); 3512 spin_unlock(&fs_info->fs_roots_radix_lock); 3513 3514 if (btrfs_root_refs(&root->root_item) == 0) 3515 synchronize_srcu(&fs_info->subvol_srcu); 3516 3517 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3518 btrfs_free_log(NULL, root); 3519 3520 if (root->free_ino_pinned) 3521 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3522 if (root->free_ino_ctl) 3523 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3524 free_fs_root(root); 3525 } 3526 3527 static void free_fs_root(struct btrfs_root *root) 3528 { 3529 iput(root->cache_inode); 3530 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3531 btrfs_free_block_rsv(root, root->orphan_block_rsv); 3532 root->orphan_block_rsv = NULL; 3533 if (root->anon_dev) 3534 free_anon_bdev(root->anon_dev); 3535 if (root->subv_writers) 3536 btrfs_free_subvolume_writers(root->subv_writers); 3537 free_extent_buffer(root->node); 3538 free_extent_buffer(root->commit_root); 3539 kfree(root->free_ino_ctl); 3540 kfree(root->free_ino_pinned); 3541 kfree(root->name); 3542 btrfs_put_fs_root(root); 3543 } 3544 3545 void btrfs_free_fs_root(struct btrfs_root *root) 3546 { 3547 free_fs_root(root); 3548 } 3549 3550 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3551 { 3552 u64 root_objectid = 0; 3553 struct btrfs_root *gang[8]; 3554 int i = 0; 3555 int err = 0; 3556 unsigned int ret = 0; 3557 int index; 3558 3559 while (1) { 3560 index = srcu_read_lock(&fs_info->subvol_srcu); 3561 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3562 (void **)gang, root_objectid, 3563 ARRAY_SIZE(gang)); 3564 if (!ret) { 3565 srcu_read_unlock(&fs_info->subvol_srcu, index); 3566 break; 3567 } 3568 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3569 3570 for (i = 0; i < ret; i++) { 3571 /* Avoid to grab roots in dead_roots */ 3572 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3573 gang[i] = NULL; 3574 continue; 3575 } 3576 /* grab all the search result for later use */ 3577 gang[i] = btrfs_grab_fs_root(gang[i]); 3578 } 3579 srcu_read_unlock(&fs_info->subvol_srcu, index); 3580 3581 for (i = 0; i < ret; i++) { 3582 if (!gang[i]) 3583 continue; 3584 root_objectid = gang[i]->root_key.objectid; 3585 err = btrfs_orphan_cleanup(gang[i]); 3586 if (err) 3587 break; 3588 btrfs_put_fs_root(gang[i]); 3589 } 3590 root_objectid++; 3591 } 3592 3593 /* release the uncleaned roots due to error */ 3594 for (; i < ret; i++) { 3595 if (gang[i]) 3596 btrfs_put_fs_root(gang[i]); 3597 } 3598 return err; 3599 } 3600 3601 int btrfs_commit_super(struct btrfs_root *root) 3602 { 3603 struct btrfs_trans_handle *trans; 3604 3605 mutex_lock(&root->fs_info->cleaner_mutex); 3606 btrfs_run_delayed_iputs(root); 3607 mutex_unlock(&root->fs_info->cleaner_mutex); 3608 wake_up_process(root->fs_info->cleaner_kthread); 3609 3610 /* wait until ongoing cleanup work done */ 3611 down_write(&root->fs_info->cleanup_work_sem); 3612 up_write(&root->fs_info->cleanup_work_sem); 3613 3614 trans = btrfs_join_transaction(root); 3615 if (IS_ERR(trans)) 3616 return PTR_ERR(trans); 3617 return btrfs_commit_transaction(trans, root); 3618 } 3619 3620 int close_ctree(struct btrfs_root *root) 3621 { 3622 struct btrfs_fs_info *fs_info = root->fs_info; 3623 int ret; 3624 3625 fs_info->closing = 1; 3626 smp_mb(); 3627 3628 /* wait for the uuid_scan task to finish */ 3629 down(&fs_info->uuid_tree_rescan_sem); 3630 /* avoid complains from lockdep et al., set sem back to initial state */ 3631 up(&fs_info->uuid_tree_rescan_sem); 3632 3633 /* pause restriper - we want to resume on mount */ 3634 btrfs_pause_balance(fs_info); 3635 3636 btrfs_dev_replace_suspend_for_unmount(fs_info); 3637 3638 btrfs_scrub_cancel(fs_info); 3639 3640 /* wait for any defraggers to finish */ 3641 wait_event(fs_info->transaction_wait, 3642 (atomic_read(&fs_info->defrag_running) == 0)); 3643 3644 /* clear out the rbtree of defraggable inodes */ 3645 btrfs_cleanup_defrag_inodes(fs_info); 3646 3647 cancel_work_sync(&fs_info->async_reclaim_work); 3648 3649 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3650 ret = btrfs_commit_super(root); 3651 if (ret) 3652 btrfs_err(root->fs_info, "commit super ret %d", ret); 3653 } 3654 3655 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3656 btrfs_error_commit_super(root); 3657 3658 kthread_stop(fs_info->transaction_kthread); 3659 kthread_stop(fs_info->cleaner_kthread); 3660 3661 fs_info->closing = 2; 3662 smp_mb(); 3663 3664 btrfs_free_qgroup_config(root->fs_info); 3665 3666 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3667 btrfs_info(root->fs_info, "at unmount delalloc count %lld", 3668 percpu_counter_sum(&fs_info->delalloc_bytes)); 3669 } 3670 3671 btrfs_sysfs_remove_one(fs_info); 3672 3673 btrfs_free_fs_roots(fs_info); 3674 3675 btrfs_put_block_group_cache(fs_info); 3676 3677 btrfs_free_block_groups(fs_info); 3678 3679 /* 3680 * we must make sure there is not any read request to 3681 * submit after we stopping all workers. 3682 */ 3683 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3684 btrfs_stop_all_workers(fs_info); 3685 3686 free_root_pointers(fs_info, 1); 3687 3688 iput(fs_info->btree_inode); 3689 3690 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3691 if (btrfs_test_opt(root, CHECK_INTEGRITY)) 3692 btrfsic_unmount(root, fs_info->fs_devices); 3693 #endif 3694 3695 btrfs_close_devices(fs_info->fs_devices); 3696 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3697 3698 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3699 percpu_counter_destroy(&fs_info->delalloc_bytes); 3700 percpu_counter_destroy(&fs_info->bio_counter); 3701 bdi_destroy(&fs_info->bdi); 3702 cleanup_srcu_struct(&fs_info->subvol_srcu); 3703 3704 btrfs_free_stripe_hash_table(fs_info); 3705 3706 btrfs_free_block_rsv(root, root->orphan_block_rsv); 3707 root->orphan_block_rsv = NULL; 3708 3709 return 0; 3710 } 3711 3712 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 3713 int atomic) 3714 { 3715 int ret; 3716 struct inode *btree_inode = buf->pages[0]->mapping->host; 3717 3718 ret = extent_buffer_uptodate(buf); 3719 if (!ret) 3720 return ret; 3721 3722 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3723 parent_transid, atomic); 3724 if (ret == -EAGAIN) 3725 return ret; 3726 return !ret; 3727 } 3728 3729 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 3730 { 3731 return set_extent_buffer_uptodate(buf); 3732 } 3733 3734 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3735 { 3736 struct btrfs_root *root; 3737 u64 transid = btrfs_header_generation(buf); 3738 int was_dirty; 3739 3740 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3741 /* 3742 * This is a fast path so only do this check if we have sanity tests 3743 * enabled. Normal people shouldn't be marking dummy buffers as dirty 3744 * outside of the sanity tests. 3745 */ 3746 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags))) 3747 return; 3748 #endif 3749 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3750 btrfs_assert_tree_locked(buf); 3751 if (transid != root->fs_info->generation) 3752 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, " 3753 "found %llu running %llu\n", 3754 buf->start, transid, root->fs_info->generation); 3755 was_dirty = set_extent_buffer_dirty(buf); 3756 if (!was_dirty) 3757 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes, 3758 buf->len, 3759 root->fs_info->dirty_metadata_batch); 3760 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3761 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) { 3762 btrfs_print_leaf(root, buf); 3763 ASSERT(0); 3764 } 3765 #endif 3766 } 3767 3768 static void __btrfs_btree_balance_dirty(struct btrfs_root *root, 3769 int flush_delayed) 3770 { 3771 /* 3772 * looks as though older kernels can get into trouble with 3773 * this code, they end up stuck in balance_dirty_pages forever 3774 */ 3775 int ret; 3776 3777 if (current->flags & PF_MEMALLOC) 3778 return; 3779 3780 if (flush_delayed) 3781 btrfs_balance_delayed_items(root); 3782 3783 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes, 3784 BTRFS_DIRTY_METADATA_THRESH); 3785 if (ret > 0) { 3786 balance_dirty_pages_ratelimited( 3787 root->fs_info->btree_inode->i_mapping); 3788 } 3789 return; 3790 } 3791 3792 void btrfs_btree_balance_dirty(struct btrfs_root *root) 3793 { 3794 __btrfs_btree_balance_dirty(root, 1); 3795 } 3796 3797 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root) 3798 { 3799 __btrfs_btree_balance_dirty(root, 0); 3800 } 3801 3802 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 3803 { 3804 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3805 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 3806 } 3807 3808 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 3809 int read_only) 3810 { 3811 /* 3812 * Placeholder for checks 3813 */ 3814 return 0; 3815 } 3816 3817 static void btrfs_error_commit_super(struct btrfs_root *root) 3818 { 3819 mutex_lock(&root->fs_info->cleaner_mutex); 3820 btrfs_run_delayed_iputs(root); 3821 mutex_unlock(&root->fs_info->cleaner_mutex); 3822 3823 down_write(&root->fs_info->cleanup_work_sem); 3824 up_write(&root->fs_info->cleanup_work_sem); 3825 3826 /* cleanup FS via transaction */ 3827 btrfs_cleanup_transaction(root); 3828 } 3829 3830 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 3831 { 3832 struct btrfs_ordered_extent *ordered; 3833 3834 spin_lock(&root->ordered_extent_lock); 3835 /* 3836 * This will just short circuit the ordered completion stuff which will 3837 * make sure the ordered extent gets properly cleaned up. 3838 */ 3839 list_for_each_entry(ordered, &root->ordered_extents, 3840 root_extent_list) 3841 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 3842 spin_unlock(&root->ordered_extent_lock); 3843 } 3844 3845 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 3846 { 3847 struct btrfs_root *root; 3848 struct list_head splice; 3849 3850 INIT_LIST_HEAD(&splice); 3851 3852 spin_lock(&fs_info->ordered_root_lock); 3853 list_splice_init(&fs_info->ordered_roots, &splice); 3854 while (!list_empty(&splice)) { 3855 root = list_first_entry(&splice, struct btrfs_root, 3856 ordered_root); 3857 list_move_tail(&root->ordered_root, 3858 &fs_info->ordered_roots); 3859 3860 spin_unlock(&fs_info->ordered_root_lock); 3861 btrfs_destroy_ordered_extents(root); 3862 3863 cond_resched(); 3864 spin_lock(&fs_info->ordered_root_lock); 3865 } 3866 spin_unlock(&fs_info->ordered_root_lock); 3867 } 3868 3869 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 3870 struct btrfs_root *root) 3871 { 3872 struct rb_node *node; 3873 struct btrfs_delayed_ref_root *delayed_refs; 3874 struct btrfs_delayed_ref_node *ref; 3875 int ret = 0; 3876 3877 delayed_refs = &trans->delayed_refs; 3878 3879 spin_lock(&delayed_refs->lock); 3880 if (atomic_read(&delayed_refs->num_entries) == 0) { 3881 spin_unlock(&delayed_refs->lock); 3882 btrfs_info(root->fs_info, "delayed_refs has NO entry"); 3883 return ret; 3884 } 3885 3886 while ((node = rb_first(&delayed_refs->href_root)) != NULL) { 3887 struct btrfs_delayed_ref_head *head; 3888 bool pin_bytes = false; 3889 3890 head = rb_entry(node, struct btrfs_delayed_ref_head, 3891 href_node); 3892 if (!mutex_trylock(&head->mutex)) { 3893 atomic_inc(&head->node.refs); 3894 spin_unlock(&delayed_refs->lock); 3895 3896 mutex_lock(&head->mutex); 3897 mutex_unlock(&head->mutex); 3898 btrfs_put_delayed_ref(&head->node); 3899 spin_lock(&delayed_refs->lock); 3900 continue; 3901 } 3902 spin_lock(&head->lock); 3903 while ((node = rb_first(&head->ref_root)) != NULL) { 3904 ref = rb_entry(node, struct btrfs_delayed_ref_node, 3905 rb_node); 3906 ref->in_tree = 0; 3907 rb_erase(&ref->rb_node, &head->ref_root); 3908 atomic_dec(&delayed_refs->num_entries); 3909 btrfs_put_delayed_ref(ref); 3910 } 3911 if (head->must_insert_reserved) 3912 pin_bytes = true; 3913 btrfs_free_delayed_extent_op(head->extent_op); 3914 delayed_refs->num_heads--; 3915 if (head->processing == 0) 3916 delayed_refs->num_heads_ready--; 3917 atomic_dec(&delayed_refs->num_entries); 3918 head->node.in_tree = 0; 3919 rb_erase(&head->href_node, &delayed_refs->href_root); 3920 spin_unlock(&head->lock); 3921 spin_unlock(&delayed_refs->lock); 3922 mutex_unlock(&head->mutex); 3923 3924 if (pin_bytes) 3925 btrfs_pin_extent(root, head->node.bytenr, 3926 head->node.num_bytes, 1); 3927 btrfs_put_delayed_ref(&head->node); 3928 cond_resched(); 3929 spin_lock(&delayed_refs->lock); 3930 } 3931 3932 spin_unlock(&delayed_refs->lock); 3933 3934 return ret; 3935 } 3936 3937 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 3938 { 3939 struct btrfs_inode *btrfs_inode; 3940 struct list_head splice; 3941 3942 INIT_LIST_HEAD(&splice); 3943 3944 spin_lock(&root->delalloc_lock); 3945 list_splice_init(&root->delalloc_inodes, &splice); 3946 3947 while (!list_empty(&splice)) { 3948 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 3949 delalloc_inodes); 3950 3951 list_del_init(&btrfs_inode->delalloc_inodes); 3952 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 3953 &btrfs_inode->runtime_flags); 3954 spin_unlock(&root->delalloc_lock); 3955 3956 btrfs_invalidate_inodes(btrfs_inode->root); 3957 3958 spin_lock(&root->delalloc_lock); 3959 } 3960 3961 spin_unlock(&root->delalloc_lock); 3962 } 3963 3964 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 3965 { 3966 struct btrfs_root *root; 3967 struct list_head splice; 3968 3969 INIT_LIST_HEAD(&splice); 3970 3971 spin_lock(&fs_info->delalloc_root_lock); 3972 list_splice_init(&fs_info->delalloc_roots, &splice); 3973 while (!list_empty(&splice)) { 3974 root = list_first_entry(&splice, struct btrfs_root, 3975 delalloc_root); 3976 list_del_init(&root->delalloc_root); 3977 root = btrfs_grab_fs_root(root); 3978 BUG_ON(!root); 3979 spin_unlock(&fs_info->delalloc_root_lock); 3980 3981 btrfs_destroy_delalloc_inodes(root); 3982 btrfs_put_fs_root(root); 3983 3984 spin_lock(&fs_info->delalloc_root_lock); 3985 } 3986 spin_unlock(&fs_info->delalloc_root_lock); 3987 } 3988 3989 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 3990 struct extent_io_tree *dirty_pages, 3991 int mark) 3992 { 3993 int ret; 3994 struct extent_buffer *eb; 3995 u64 start = 0; 3996 u64 end; 3997 3998 while (1) { 3999 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4000 mark, NULL); 4001 if (ret) 4002 break; 4003 4004 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 4005 while (start <= end) { 4006 eb = btrfs_find_tree_block(root, start, 4007 root->leafsize); 4008 start += root->leafsize; 4009 if (!eb) 4010 continue; 4011 wait_on_extent_buffer_writeback(eb); 4012 4013 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4014 &eb->bflags)) 4015 clear_extent_buffer_dirty(eb); 4016 free_extent_buffer_stale(eb); 4017 } 4018 } 4019 4020 return ret; 4021 } 4022 4023 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 4024 struct extent_io_tree *pinned_extents) 4025 { 4026 struct extent_io_tree *unpin; 4027 u64 start; 4028 u64 end; 4029 int ret; 4030 bool loop = true; 4031 4032 unpin = pinned_extents; 4033 again: 4034 while (1) { 4035 ret = find_first_extent_bit(unpin, 0, &start, &end, 4036 EXTENT_DIRTY, NULL); 4037 if (ret) 4038 break; 4039 4040 /* opt_discard */ 4041 if (btrfs_test_opt(root, DISCARD)) 4042 ret = btrfs_error_discard_extent(root, start, 4043 end + 1 - start, 4044 NULL); 4045 4046 clear_extent_dirty(unpin, start, end, GFP_NOFS); 4047 btrfs_error_unpin_extent_range(root, start, end); 4048 cond_resched(); 4049 } 4050 4051 if (loop) { 4052 if (unpin == &root->fs_info->freed_extents[0]) 4053 unpin = &root->fs_info->freed_extents[1]; 4054 else 4055 unpin = &root->fs_info->freed_extents[0]; 4056 loop = false; 4057 goto again; 4058 } 4059 4060 return 0; 4061 } 4062 4063 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4064 struct btrfs_root *root) 4065 { 4066 btrfs_destroy_delayed_refs(cur_trans, root); 4067 4068 cur_trans->state = TRANS_STATE_COMMIT_START; 4069 wake_up(&root->fs_info->transaction_blocked_wait); 4070 4071 cur_trans->state = TRANS_STATE_UNBLOCKED; 4072 wake_up(&root->fs_info->transaction_wait); 4073 4074 btrfs_destroy_delayed_inodes(root); 4075 btrfs_assert_delayed_root_empty(root); 4076 4077 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages, 4078 EXTENT_DIRTY); 4079 btrfs_destroy_pinned_extent(root, 4080 root->fs_info->pinned_extents); 4081 4082 cur_trans->state =TRANS_STATE_COMPLETED; 4083 wake_up(&cur_trans->commit_wait); 4084 4085 /* 4086 memset(cur_trans, 0, sizeof(*cur_trans)); 4087 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 4088 */ 4089 } 4090 4091 static int btrfs_cleanup_transaction(struct btrfs_root *root) 4092 { 4093 struct btrfs_transaction *t; 4094 4095 mutex_lock(&root->fs_info->transaction_kthread_mutex); 4096 4097 spin_lock(&root->fs_info->trans_lock); 4098 while (!list_empty(&root->fs_info->trans_list)) { 4099 t = list_first_entry(&root->fs_info->trans_list, 4100 struct btrfs_transaction, list); 4101 if (t->state >= TRANS_STATE_COMMIT_START) { 4102 atomic_inc(&t->use_count); 4103 spin_unlock(&root->fs_info->trans_lock); 4104 btrfs_wait_for_commit(root, t->transid); 4105 btrfs_put_transaction(t); 4106 spin_lock(&root->fs_info->trans_lock); 4107 continue; 4108 } 4109 if (t == root->fs_info->running_transaction) { 4110 t->state = TRANS_STATE_COMMIT_DOING; 4111 spin_unlock(&root->fs_info->trans_lock); 4112 /* 4113 * We wait for 0 num_writers since we don't hold a trans 4114 * handle open currently for this transaction. 4115 */ 4116 wait_event(t->writer_wait, 4117 atomic_read(&t->num_writers) == 0); 4118 } else { 4119 spin_unlock(&root->fs_info->trans_lock); 4120 } 4121 btrfs_cleanup_one_transaction(t, root); 4122 4123 spin_lock(&root->fs_info->trans_lock); 4124 if (t == root->fs_info->running_transaction) 4125 root->fs_info->running_transaction = NULL; 4126 list_del_init(&t->list); 4127 spin_unlock(&root->fs_info->trans_lock); 4128 4129 btrfs_put_transaction(t); 4130 trace_btrfs_transaction_commit(root); 4131 spin_lock(&root->fs_info->trans_lock); 4132 } 4133 spin_unlock(&root->fs_info->trans_lock); 4134 btrfs_destroy_all_ordered_extents(root->fs_info); 4135 btrfs_destroy_delayed_inodes(root); 4136 btrfs_assert_delayed_root_empty(root); 4137 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents); 4138 btrfs_destroy_all_delalloc_inodes(root->fs_info); 4139 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 4140 4141 return 0; 4142 } 4143 4144 static struct extent_io_ops btree_extent_io_ops = { 4145 .readpage_end_io_hook = btree_readpage_end_io_hook, 4146 .readpage_io_failed_hook = btree_io_failed_hook, 4147 .submit_bio_hook = btree_submit_bio_hook, 4148 /* note we're sharing with inode.c for the merge bio hook */ 4149 .merge_bio_hook = btrfs_merge_bio_hook, 4150 }; 4151