1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/buffer_head.h> 11 #include <linux/workqueue.h> 12 #include <linux/kthread.h> 13 #include <linux/slab.h> 14 #include <linux/migrate.h> 15 #include <linux/ratelimit.h> 16 #include <linux/uuid.h> 17 #include <linux/semaphore.h> 18 #include <linux/error-injection.h> 19 #include <linux/crc32c.h> 20 #include <asm/unaligned.h> 21 #include "ctree.h" 22 #include "disk-io.h" 23 #include "transaction.h" 24 #include "btrfs_inode.h" 25 #include "volumes.h" 26 #include "print-tree.h" 27 #include "locking.h" 28 #include "tree-log.h" 29 #include "free-space-cache.h" 30 #include "free-space-tree.h" 31 #include "inode-map.h" 32 #include "check-integrity.h" 33 #include "rcu-string.h" 34 #include "dev-replace.h" 35 #include "raid56.h" 36 #include "sysfs.h" 37 #include "qgroup.h" 38 #include "compression.h" 39 #include "tree-checker.h" 40 #include "ref-verify.h" 41 42 #ifdef CONFIG_X86 43 #include <asm/cpufeature.h> 44 #endif 45 46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 47 BTRFS_HEADER_FLAG_RELOC |\ 48 BTRFS_SUPER_FLAG_ERROR |\ 49 BTRFS_SUPER_FLAG_SEEDING |\ 50 BTRFS_SUPER_FLAG_METADUMP |\ 51 BTRFS_SUPER_FLAG_METADUMP_V2) 52 53 static const struct extent_io_ops btree_extent_io_ops; 54 static void end_workqueue_fn(struct btrfs_work *work); 55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 57 struct btrfs_fs_info *fs_info); 58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 60 struct extent_io_tree *dirty_pages, 61 int mark); 62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 63 struct extent_io_tree *pinned_extents); 64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 66 67 /* 68 * btrfs_end_io_wq structs are used to do processing in task context when an IO 69 * is complete. This is used during reads to verify checksums, and it is used 70 * by writes to insert metadata for new file extents after IO is complete. 71 */ 72 struct btrfs_end_io_wq { 73 struct bio *bio; 74 bio_end_io_t *end_io; 75 void *private; 76 struct btrfs_fs_info *info; 77 blk_status_t status; 78 enum btrfs_wq_endio_type metadata; 79 struct btrfs_work work; 80 }; 81 82 static struct kmem_cache *btrfs_end_io_wq_cache; 83 84 int __init btrfs_end_io_wq_init(void) 85 { 86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 87 sizeof(struct btrfs_end_io_wq), 88 0, 89 SLAB_MEM_SPREAD, 90 NULL); 91 if (!btrfs_end_io_wq_cache) 92 return -ENOMEM; 93 return 0; 94 } 95 96 void __cold btrfs_end_io_wq_exit(void) 97 { 98 kmem_cache_destroy(btrfs_end_io_wq_cache); 99 } 100 101 /* 102 * async submit bios are used to offload expensive checksumming 103 * onto the worker threads. They checksum file and metadata bios 104 * just before they are sent down the IO stack. 105 */ 106 struct async_submit_bio { 107 void *private_data; 108 struct bio *bio; 109 extent_submit_bio_start_t *submit_bio_start; 110 int mirror_num; 111 /* 112 * bio_offset is optional, can be used if the pages in the bio 113 * can't tell us where in the file the bio should go 114 */ 115 u64 bio_offset; 116 struct btrfs_work work; 117 blk_status_t status; 118 }; 119 120 /* 121 * Lockdep class keys for extent_buffer->lock's in this root. For a given 122 * eb, the lockdep key is determined by the btrfs_root it belongs to and 123 * the level the eb occupies in the tree. 124 * 125 * Different roots are used for different purposes and may nest inside each 126 * other and they require separate keysets. As lockdep keys should be 127 * static, assign keysets according to the purpose of the root as indicated 128 * by btrfs_root->objectid. This ensures that all special purpose roots 129 * have separate keysets. 130 * 131 * Lock-nesting across peer nodes is always done with the immediate parent 132 * node locked thus preventing deadlock. As lockdep doesn't know this, use 133 * subclass to avoid triggering lockdep warning in such cases. 134 * 135 * The key is set by the readpage_end_io_hook after the buffer has passed 136 * csum validation but before the pages are unlocked. It is also set by 137 * btrfs_init_new_buffer on freshly allocated blocks. 138 * 139 * We also add a check to make sure the highest level of the tree is the 140 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 141 * needs update as well. 142 */ 143 #ifdef CONFIG_DEBUG_LOCK_ALLOC 144 # if BTRFS_MAX_LEVEL != 8 145 # error 146 # endif 147 148 static struct btrfs_lockdep_keyset { 149 u64 id; /* root objectid */ 150 const char *name_stem; /* lock name stem */ 151 char names[BTRFS_MAX_LEVEL + 1][20]; 152 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 153 } btrfs_lockdep_keysets[] = { 154 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 155 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 156 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 157 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 158 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 159 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 160 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 161 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 162 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 163 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 164 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 165 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 166 { .id = 0, .name_stem = "tree" }, 167 }; 168 169 void __init btrfs_init_lockdep(void) 170 { 171 int i, j; 172 173 /* initialize lockdep class names */ 174 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 175 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 176 177 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 178 snprintf(ks->names[j], sizeof(ks->names[j]), 179 "btrfs-%s-%02d", ks->name_stem, j); 180 } 181 } 182 183 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 184 int level) 185 { 186 struct btrfs_lockdep_keyset *ks; 187 188 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 189 190 /* find the matching keyset, id 0 is the default entry */ 191 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 192 if (ks->id == objectid) 193 break; 194 195 lockdep_set_class_and_name(&eb->lock, 196 &ks->keys[level], ks->names[level]); 197 } 198 199 #endif 200 201 /* 202 * extents on the btree inode are pretty simple, there's one extent 203 * that covers the entire device 204 */ 205 struct extent_map *btree_get_extent(struct btrfs_inode *inode, 206 struct page *page, size_t pg_offset, u64 start, u64 len, 207 int create) 208 { 209 struct btrfs_fs_info *fs_info = inode->root->fs_info; 210 struct extent_map_tree *em_tree = &inode->extent_tree; 211 struct extent_map *em; 212 int ret; 213 214 read_lock(&em_tree->lock); 215 em = lookup_extent_mapping(em_tree, start, len); 216 if (em) { 217 em->bdev = fs_info->fs_devices->latest_bdev; 218 read_unlock(&em_tree->lock); 219 goto out; 220 } 221 read_unlock(&em_tree->lock); 222 223 em = alloc_extent_map(); 224 if (!em) { 225 em = ERR_PTR(-ENOMEM); 226 goto out; 227 } 228 em->start = 0; 229 em->len = (u64)-1; 230 em->block_len = (u64)-1; 231 em->block_start = 0; 232 em->bdev = fs_info->fs_devices->latest_bdev; 233 234 write_lock(&em_tree->lock); 235 ret = add_extent_mapping(em_tree, em, 0); 236 if (ret == -EEXIST) { 237 free_extent_map(em); 238 em = lookup_extent_mapping(em_tree, start, len); 239 if (!em) 240 em = ERR_PTR(-EIO); 241 } else if (ret) { 242 free_extent_map(em); 243 em = ERR_PTR(ret); 244 } 245 write_unlock(&em_tree->lock); 246 247 out: 248 return em; 249 } 250 251 u32 btrfs_csum_data(const char *data, u32 seed, size_t len) 252 { 253 return crc32c(seed, data, len); 254 } 255 256 void btrfs_csum_final(u32 crc, u8 *result) 257 { 258 put_unaligned_le32(~crc, result); 259 } 260 261 /* 262 * compute the csum for a btree block, and either verify it or write it 263 * into the csum field of the block. 264 */ 265 static int csum_tree_block(struct btrfs_fs_info *fs_info, 266 struct extent_buffer *buf, 267 int verify) 268 { 269 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 270 char result[BTRFS_CSUM_SIZE]; 271 unsigned long len; 272 unsigned long cur_len; 273 unsigned long offset = BTRFS_CSUM_SIZE; 274 char *kaddr; 275 unsigned long map_start; 276 unsigned long map_len; 277 int err; 278 u32 crc = ~(u32)0; 279 280 len = buf->len - offset; 281 while (len > 0) { 282 err = map_private_extent_buffer(buf, offset, 32, 283 &kaddr, &map_start, &map_len); 284 if (err) 285 return err; 286 cur_len = min(len, map_len - (offset - map_start)); 287 crc = btrfs_csum_data(kaddr + offset - map_start, 288 crc, cur_len); 289 len -= cur_len; 290 offset += cur_len; 291 } 292 memset(result, 0, BTRFS_CSUM_SIZE); 293 294 btrfs_csum_final(crc, result); 295 296 if (verify) { 297 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 298 u32 val; 299 u32 found = 0; 300 memcpy(&found, result, csum_size); 301 302 read_extent_buffer(buf, &val, 0, csum_size); 303 btrfs_warn_rl(fs_info, 304 "%s checksum verify failed on %llu wanted %X found %X level %d", 305 fs_info->sb->s_id, buf->start, 306 val, found, btrfs_header_level(buf)); 307 return -EUCLEAN; 308 } 309 } else { 310 write_extent_buffer(buf, result, 0, csum_size); 311 } 312 313 return 0; 314 } 315 316 /* 317 * we can't consider a given block up to date unless the transid of the 318 * block matches the transid in the parent node's pointer. This is how we 319 * detect blocks that either didn't get written at all or got written 320 * in the wrong place. 321 */ 322 static int verify_parent_transid(struct extent_io_tree *io_tree, 323 struct extent_buffer *eb, u64 parent_transid, 324 int atomic) 325 { 326 struct extent_state *cached_state = NULL; 327 int ret; 328 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 329 330 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 331 return 0; 332 333 if (atomic) 334 return -EAGAIN; 335 336 if (need_lock) { 337 btrfs_tree_read_lock(eb); 338 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 339 } 340 341 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 342 &cached_state); 343 if (extent_buffer_uptodate(eb) && 344 btrfs_header_generation(eb) == parent_transid) { 345 ret = 0; 346 goto out; 347 } 348 btrfs_err_rl(eb->fs_info, 349 "parent transid verify failed on %llu wanted %llu found %llu", 350 eb->start, 351 parent_transid, btrfs_header_generation(eb)); 352 ret = 1; 353 354 /* 355 * Things reading via commit roots that don't have normal protection, 356 * like send, can have a really old block in cache that may point at a 357 * block that has been freed and re-allocated. So don't clear uptodate 358 * if we find an eb that is under IO (dirty/writeback) because we could 359 * end up reading in the stale data and then writing it back out and 360 * making everybody very sad. 361 */ 362 if (!extent_buffer_under_io(eb)) 363 clear_extent_buffer_uptodate(eb); 364 out: 365 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 366 &cached_state); 367 if (need_lock) 368 btrfs_tree_read_unlock_blocking(eb); 369 return ret; 370 } 371 372 /* 373 * Return 0 if the superblock checksum type matches the checksum value of that 374 * algorithm. Pass the raw disk superblock data. 375 */ 376 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 377 char *raw_disk_sb) 378 { 379 struct btrfs_super_block *disk_sb = 380 (struct btrfs_super_block *)raw_disk_sb; 381 u16 csum_type = btrfs_super_csum_type(disk_sb); 382 int ret = 0; 383 384 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 385 u32 crc = ~(u32)0; 386 char result[sizeof(crc)]; 387 388 /* 389 * The super_block structure does not span the whole 390 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 391 * is filled with zeros and is included in the checksum. 392 */ 393 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 394 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 395 btrfs_csum_final(crc, result); 396 397 if (memcmp(raw_disk_sb, result, sizeof(result))) 398 ret = 1; 399 } 400 401 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 402 btrfs_err(fs_info, "unsupported checksum algorithm %u", 403 csum_type); 404 ret = 1; 405 } 406 407 return ret; 408 } 409 410 static int verify_level_key(struct btrfs_fs_info *fs_info, 411 struct extent_buffer *eb, int level, 412 struct btrfs_key *first_key, u64 parent_transid) 413 { 414 int found_level; 415 struct btrfs_key found_key; 416 int ret; 417 418 found_level = btrfs_header_level(eb); 419 if (found_level != level) { 420 #ifdef CONFIG_BTRFS_DEBUG 421 WARN_ON(1); 422 btrfs_err(fs_info, 423 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 424 eb->start, level, found_level); 425 #endif 426 return -EIO; 427 } 428 429 if (!first_key) 430 return 0; 431 432 /* 433 * For live tree block (new tree blocks in current transaction), 434 * we need proper lock context to avoid race, which is impossible here. 435 * So we only checks tree blocks which is read from disk, whose 436 * generation <= fs_info->last_trans_committed. 437 */ 438 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 439 return 0; 440 if (found_level) 441 btrfs_node_key_to_cpu(eb, &found_key, 0); 442 else 443 btrfs_item_key_to_cpu(eb, &found_key, 0); 444 ret = btrfs_comp_cpu_keys(first_key, &found_key); 445 446 #ifdef CONFIG_BTRFS_DEBUG 447 if (ret) { 448 WARN_ON(1); 449 btrfs_err(fs_info, 450 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 451 eb->start, parent_transid, first_key->objectid, 452 first_key->type, first_key->offset, 453 found_key.objectid, found_key.type, 454 found_key.offset); 455 } 456 #endif 457 return ret; 458 } 459 460 /* 461 * helper to read a given tree block, doing retries as required when 462 * the checksums don't match and we have alternate mirrors to try. 463 * 464 * @parent_transid: expected transid, skip check if 0 465 * @level: expected level, mandatory check 466 * @first_key: expected key of first slot, skip check if NULL 467 */ 468 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info, 469 struct extent_buffer *eb, 470 u64 parent_transid, int level, 471 struct btrfs_key *first_key) 472 { 473 struct extent_io_tree *io_tree; 474 int failed = 0; 475 int ret; 476 int num_copies = 0; 477 int mirror_num = 0; 478 int failed_mirror = 0; 479 480 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 481 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 482 while (1) { 483 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE, 484 mirror_num); 485 if (!ret) { 486 if (verify_parent_transid(io_tree, eb, 487 parent_transid, 0)) 488 ret = -EIO; 489 else if (verify_level_key(fs_info, eb, level, 490 first_key, parent_transid)) 491 ret = -EUCLEAN; 492 else 493 break; 494 } 495 496 /* 497 * This buffer's crc is fine, but its contents are corrupted, so 498 * there is no reason to read the other copies, they won't be 499 * any less wrong. 500 */ 501 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags) || 502 ret == -EUCLEAN) 503 break; 504 505 num_copies = btrfs_num_copies(fs_info, 506 eb->start, eb->len); 507 if (num_copies == 1) 508 break; 509 510 if (!failed_mirror) { 511 failed = 1; 512 failed_mirror = eb->read_mirror; 513 } 514 515 mirror_num++; 516 if (mirror_num == failed_mirror) 517 mirror_num++; 518 519 if (mirror_num > num_copies) 520 break; 521 } 522 523 if (failed && !ret && failed_mirror) 524 repair_eb_io_failure(fs_info, eb, failed_mirror); 525 526 return ret; 527 } 528 529 /* 530 * checksum a dirty tree block before IO. This has extra checks to make sure 531 * we only fill in the checksum field in the first page of a multi-page block 532 */ 533 534 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 535 { 536 u64 start = page_offset(page); 537 u64 found_start; 538 struct extent_buffer *eb; 539 540 eb = (struct extent_buffer *)page->private; 541 if (page != eb->pages[0]) 542 return 0; 543 544 found_start = btrfs_header_bytenr(eb); 545 /* 546 * Please do not consolidate these warnings into a single if. 547 * It is useful to know what went wrong. 548 */ 549 if (WARN_ON(found_start != start)) 550 return -EUCLEAN; 551 if (WARN_ON(!PageUptodate(page))) 552 return -EUCLEAN; 553 554 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid, 555 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0); 556 557 return csum_tree_block(fs_info, eb, 0); 558 } 559 560 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info, 561 struct extent_buffer *eb) 562 { 563 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 564 u8 fsid[BTRFS_FSID_SIZE]; 565 int ret = 1; 566 567 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 568 while (fs_devices) { 569 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 570 ret = 0; 571 break; 572 } 573 fs_devices = fs_devices->seed; 574 } 575 return ret; 576 } 577 578 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 579 u64 phy_offset, struct page *page, 580 u64 start, u64 end, int mirror) 581 { 582 u64 found_start; 583 int found_level; 584 struct extent_buffer *eb; 585 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 586 struct btrfs_fs_info *fs_info = root->fs_info; 587 int ret = 0; 588 int reads_done; 589 590 if (!page->private) 591 goto out; 592 593 eb = (struct extent_buffer *)page->private; 594 595 /* the pending IO might have been the only thing that kept this buffer 596 * in memory. Make sure we have a ref for all this other checks 597 */ 598 extent_buffer_get(eb); 599 600 reads_done = atomic_dec_and_test(&eb->io_pages); 601 if (!reads_done) 602 goto err; 603 604 eb->read_mirror = mirror; 605 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 606 ret = -EIO; 607 goto err; 608 } 609 610 found_start = btrfs_header_bytenr(eb); 611 if (found_start != eb->start) { 612 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu", 613 eb->start, found_start); 614 ret = -EIO; 615 goto err; 616 } 617 if (check_tree_block_fsid(fs_info, eb)) { 618 btrfs_err_rl(fs_info, "bad fsid on block %llu", 619 eb->start); 620 ret = -EIO; 621 goto err; 622 } 623 found_level = btrfs_header_level(eb); 624 if (found_level >= BTRFS_MAX_LEVEL) { 625 btrfs_err(fs_info, "bad tree block level %d on %llu", 626 (int)btrfs_header_level(eb), eb->start); 627 ret = -EIO; 628 goto err; 629 } 630 631 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 632 eb, found_level); 633 634 ret = csum_tree_block(fs_info, eb, 1); 635 if (ret) 636 goto err; 637 638 /* 639 * If this is a leaf block and it is corrupt, set the corrupt bit so 640 * that we don't try and read the other copies of this block, just 641 * return -EIO. 642 */ 643 if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) { 644 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 645 ret = -EIO; 646 } 647 648 if (found_level > 0 && btrfs_check_node(fs_info, eb)) 649 ret = -EIO; 650 651 if (!ret) 652 set_extent_buffer_uptodate(eb); 653 err: 654 if (reads_done && 655 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 656 btree_readahead_hook(eb, ret); 657 658 if (ret) { 659 /* 660 * our io error hook is going to dec the io pages 661 * again, we have to make sure it has something 662 * to decrement 663 */ 664 atomic_inc(&eb->io_pages); 665 clear_extent_buffer_uptodate(eb); 666 } 667 free_extent_buffer(eb); 668 out: 669 return ret; 670 } 671 672 static int btree_io_failed_hook(struct page *page, int failed_mirror) 673 { 674 struct extent_buffer *eb; 675 676 eb = (struct extent_buffer *)page->private; 677 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 678 eb->read_mirror = failed_mirror; 679 atomic_dec(&eb->io_pages); 680 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 681 btree_readahead_hook(eb, -EIO); 682 return -EIO; /* we fixed nothing */ 683 } 684 685 static void end_workqueue_bio(struct bio *bio) 686 { 687 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 688 struct btrfs_fs_info *fs_info; 689 struct btrfs_workqueue *wq; 690 btrfs_work_func_t func; 691 692 fs_info = end_io_wq->info; 693 end_io_wq->status = bio->bi_status; 694 695 if (bio_op(bio) == REQ_OP_WRITE) { 696 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 697 wq = fs_info->endio_meta_write_workers; 698 func = btrfs_endio_meta_write_helper; 699 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 700 wq = fs_info->endio_freespace_worker; 701 func = btrfs_freespace_write_helper; 702 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 703 wq = fs_info->endio_raid56_workers; 704 func = btrfs_endio_raid56_helper; 705 } else { 706 wq = fs_info->endio_write_workers; 707 func = btrfs_endio_write_helper; 708 } 709 } else { 710 if (unlikely(end_io_wq->metadata == 711 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 712 wq = fs_info->endio_repair_workers; 713 func = btrfs_endio_repair_helper; 714 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 715 wq = fs_info->endio_raid56_workers; 716 func = btrfs_endio_raid56_helper; 717 } else if (end_io_wq->metadata) { 718 wq = fs_info->endio_meta_workers; 719 func = btrfs_endio_meta_helper; 720 } else { 721 wq = fs_info->endio_workers; 722 func = btrfs_endio_helper; 723 } 724 } 725 726 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 727 btrfs_queue_work(wq, &end_io_wq->work); 728 } 729 730 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 731 enum btrfs_wq_endio_type metadata) 732 { 733 struct btrfs_end_io_wq *end_io_wq; 734 735 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 736 if (!end_io_wq) 737 return BLK_STS_RESOURCE; 738 739 end_io_wq->private = bio->bi_private; 740 end_io_wq->end_io = bio->bi_end_io; 741 end_io_wq->info = info; 742 end_io_wq->status = 0; 743 end_io_wq->bio = bio; 744 end_io_wq->metadata = metadata; 745 746 bio->bi_private = end_io_wq; 747 bio->bi_end_io = end_workqueue_bio; 748 return 0; 749 } 750 751 static void run_one_async_start(struct btrfs_work *work) 752 { 753 struct async_submit_bio *async; 754 blk_status_t ret; 755 756 async = container_of(work, struct async_submit_bio, work); 757 ret = async->submit_bio_start(async->private_data, async->bio, 758 async->bio_offset); 759 if (ret) 760 async->status = ret; 761 } 762 763 static void run_one_async_done(struct btrfs_work *work) 764 { 765 struct async_submit_bio *async; 766 767 async = container_of(work, struct async_submit_bio, work); 768 769 /* If an error occurred we just want to clean up the bio and move on */ 770 if (async->status) { 771 async->bio->bi_status = async->status; 772 bio_endio(async->bio); 773 return; 774 } 775 776 btrfs_submit_bio_done(async->private_data, async->bio, async->mirror_num); 777 } 778 779 static void run_one_async_free(struct btrfs_work *work) 780 { 781 struct async_submit_bio *async; 782 783 async = container_of(work, struct async_submit_bio, work); 784 kfree(async); 785 } 786 787 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 788 int mirror_num, unsigned long bio_flags, 789 u64 bio_offset, void *private_data, 790 extent_submit_bio_start_t *submit_bio_start) 791 { 792 struct async_submit_bio *async; 793 794 async = kmalloc(sizeof(*async), GFP_NOFS); 795 if (!async) 796 return BLK_STS_RESOURCE; 797 798 async->private_data = private_data; 799 async->bio = bio; 800 async->mirror_num = mirror_num; 801 async->submit_bio_start = submit_bio_start; 802 803 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 804 run_one_async_done, run_one_async_free); 805 806 async->bio_offset = bio_offset; 807 808 async->status = 0; 809 810 if (op_is_sync(bio->bi_opf)) 811 btrfs_set_work_high_priority(&async->work); 812 813 btrfs_queue_work(fs_info->workers, &async->work); 814 return 0; 815 } 816 817 static blk_status_t btree_csum_one_bio(struct bio *bio) 818 { 819 struct bio_vec *bvec; 820 struct btrfs_root *root; 821 int i, ret = 0; 822 823 ASSERT(!bio_flagged(bio, BIO_CLONED)); 824 bio_for_each_segment_all(bvec, bio, i) { 825 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 826 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 827 if (ret) 828 break; 829 } 830 831 return errno_to_blk_status(ret); 832 } 833 834 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio, 835 u64 bio_offset) 836 { 837 /* 838 * when we're called for a write, we're already in the async 839 * submission context. Just jump into btrfs_map_bio 840 */ 841 return btree_csum_one_bio(bio); 842 } 843 844 static int check_async_write(struct btrfs_inode *bi) 845 { 846 if (atomic_read(&bi->sync_writers)) 847 return 0; 848 #ifdef CONFIG_X86 849 if (static_cpu_has(X86_FEATURE_XMM4_2)) 850 return 0; 851 #endif 852 return 1; 853 } 854 855 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio, 856 int mirror_num, unsigned long bio_flags, 857 u64 bio_offset) 858 { 859 struct inode *inode = private_data; 860 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 861 int async = check_async_write(BTRFS_I(inode)); 862 blk_status_t ret; 863 864 if (bio_op(bio) != REQ_OP_WRITE) { 865 /* 866 * called for a read, do the setup so that checksum validation 867 * can happen in the async kernel threads 868 */ 869 ret = btrfs_bio_wq_end_io(fs_info, bio, 870 BTRFS_WQ_ENDIO_METADATA); 871 if (ret) 872 goto out_w_error; 873 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 874 } else if (!async) { 875 ret = btree_csum_one_bio(bio); 876 if (ret) 877 goto out_w_error; 878 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 879 } else { 880 /* 881 * kthread helpers are used to submit writes so that 882 * checksumming can happen in parallel across all CPUs 883 */ 884 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0, 885 bio_offset, private_data, 886 btree_submit_bio_start); 887 } 888 889 if (ret) 890 goto out_w_error; 891 return 0; 892 893 out_w_error: 894 bio->bi_status = ret; 895 bio_endio(bio); 896 return ret; 897 } 898 899 #ifdef CONFIG_MIGRATION 900 static int btree_migratepage(struct address_space *mapping, 901 struct page *newpage, struct page *page, 902 enum migrate_mode mode) 903 { 904 /* 905 * we can't safely write a btree page from here, 906 * we haven't done the locking hook 907 */ 908 if (PageDirty(page)) 909 return -EAGAIN; 910 /* 911 * Buffers may be managed in a filesystem specific way. 912 * We must have no buffers or drop them. 913 */ 914 if (page_has_private(page) && 915 !try_to_release_page(page, GFP_KERNEL)) 916 return -EAGAIN; 917 return migrate_page(mapping, newpage, page, mode); 918 } 919 #endif 920 921 922 static int btree_writepages(struct address_space *mapping, 923 struct writeback_control *wbc) 924 { 925 struct btrfs_fs_info *fs_info; 926 int ret; 927 928 if (wbc->sync_mode == WB_SYNC_NONE) { 929 930 if (wbc->for_kupdate) 931 return 0; 932 933 fs_info = BTRFS_I(mapping->host)->root->fs_info; 934 /* this is a bit racy, but that's ok */ 935 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 936 BTRFS_DIRTY_METADATA_THRESH, 937 fs_info->dirty_metadata_batch); 938 if (ret < 0) 939 return 0; 940 } 941 return btree_write_cache_pages(mapping, wbc); 942 } 943 944 static int btree_readpage(struct file *file, struct page *page) 945 { 946 struct extent_io_tree *tree; 947 tree = &BTRFS_I(page->mapping->host)->io_tree; 948 return extent_read_full_page(tree, page, btree_get_extent, 0); 949 } 950 951 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 952 { 953 if (PageWriteback(page) || PageDirty(page)) 954 return 0; 955 956 return try_release_extent_buffer(page); 957 } 958 959 static void btree_invalidatepage(struct page *page, unsigned int offset, 960 unsigned int length) 961 { 962 struct extent_io_tree *tree; 963 tree = &BTRFS_I(page->mapping->host)->io_tree; 964 extent_invalidatepage(tree, page, offset); 965 btree_releasepage(page, GFP_NOFS); 966 if (PagePrivate(page)) { 967 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 968 "page private not zero on page %llu", 969 (unsigned long long)page_offset(page)); 970 ClearPagePrivate(page); 971 set_page_private(page, 0); 972 put_page(page); 973 } 974 } 975 976 static int btree_set_page_dirty(struct page *page) 977 { 978 #ifdef DEBUG 979 struct extent_buffer *eb; 980 981 BUG_ON(!PagePrivate(page)); 982 eb = (struct extent_buffer *)page->private; 983 BUG_ON(!eb); 984 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 985 BUG_ON(!atomic_read(&eb->refs)); 986 btrfs_assert_tree_locked(eb); 987 #endif 988 return __set_page_dirty_nobuffers(page); 989 } 990 991 static const struct address_space_operations btree_aops = { 992 .readpage = btree_readpage, 993 .writepages = btree_writepages, 994 .releasepage = btree_releasepage, 995 .invalidatepage = btree_invalidatepage, 996 #ifdef CONFIG_MIGRATION 997 .migratepage = btree_migratepage, 998 #endif 999 .set_page_dirty = btree_set_page_dirty, 1000 }; 1001 1002 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr) 1003 { 1004 struct extent_buffer *buf = NULL; 1005 struct inode *btree_inode = fs_info->btree_inode; 1006 1007 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1008 if (IS_ERR(buf)) 1009 return; 1010 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1011 buf, WAIT_NONE, 0); 1012 free_extent_buffer(buf); 1013 } 1014 1015 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr, 1016 int mirror_num, struct extent_buffer **eb) 1017 { 1018 struct extent_buffer *buf = NULL; 1019 struct inode *btree_inode = fs_info->btree_inode; 1020 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1021 int ret; 1022 1023 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1024 if (IS_ERR(buf)) 1025 return 0; 1026 1027 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1028 1029 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK, 1030 mirror_num); 1031 if (ret) { 1032 free_extent_buffer(buf); 1033 return ret; 1034 } 1035 1036 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1037 free_extent_buffer(buf); 1038 return -EIO; 1039 } else if (extent_buffer_uptodate(buf)) { 1040 *eb = buf; 1041 } else { 1042 free_extent_buffer(buf); 1043 } 1044 return 0; 1045 } 1046 1047 struct extent_buffer *btrfs_find_create_tree_block( 1048 struct btrfs_fs_info *fs_info, 1049 u64 bytenr) 1050 { 1051 if (btrfs_is_testing(fs_info)) 1052 return alloc_test_extent_buffer(fs_info, bytenr); 1053 return alloc_extent_buffer(fs_info, bytenr); 1054 } 1055 1056 1057 int btrfs_write_tree_block(struct extent_buffer *buf) 1058 { 1059 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1060 buf->start + buf->len - 1); 1061 } 1062 1063 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1064 { 1065 filemap_fdatawait_range(buf->pages[0]->mapping, 1066 buf->start, buf->start + buf->len - 1); 1067 } 1068 1069 /* 1070 * Read tree block at logical address @bytenr and do variant basic but critical 1071 * verification. 1072 * 1073 * @parent_transid: expected transid of this tree block, skip check if 0 1074 * @level: expected level, mandatory check 1075 * @first_key: expected key in slot 0, skip check if NULL 1076 */ 1077 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 1078 u64 parent_transid, int level, 1079 struct btrfs_key *first_key) 1080 { 1081 struct extent_buffer *buf = NULL; 1082 int ret; 1083 1084 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1085 if (IS_ERR(buf)) 1086 return buf; 1087 1088 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid, 1089 level, first_key); 1090 if (ret) { 1091 free_extent_buffer(buf); 1092 return ERR_PTR(ret); 1093 } 1094 return buf; 1095 1096 } 1097 1098 void clean_tree_block(struct btrfs_fs_info *fs_info, 1099 struct extent_buffer *buf) 1100 { 1101 if (btrfs_header_generation(buf) == 1102 fs_info->running_transaction->transid) { 1103 btrfs_assert_tree_locked(buf); 1104 1105 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1106 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1107 -buf->len, 1108 fs_info->dirty_metadata_batch); 1109 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1110 btrfs_set_lock_blocking(buf); 1111 clear_extent_buffer_dirty(buf); 1112 } 1113 } 1114 } 1115 1116 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1117 { 1118 struct btrfs_subvolume_writers *writers; 1119 int ret; 1120 1121 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1122 if (!writers) 1123 return ERR_PTR(-ENOMEM); 1124 1125 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS); 1126 if (ret < 0) { 1127 kfree(writers); 1128 return ERR_PTR(ret); 1129 } 1130 1131 init_waitqueue_head(&writers->wait); 1132 return writers; 1133 } 1134 1135 static void 1136 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1137 { 1138 percpu_counter_destroy(&writers->counter); 1139 kfree(writers); 1140 } 1141 1142 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1143 u64 objectid) 1144 { 1145 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1146 root->node = NULL; 1147 root->commit_root = NULL; 1148 root->state = 0; 1149 root->orphan_cleanup_state = 0; 1150 1151 root->objectid = objectid; 1152 root->last_trans = 0; 1153 root->highest_objectid = 0; 1154 root->nr_delalloc_inodes = 0; 1155 root->nr_ordered_extents = 0; 1156 root->inode_tree = RB_ROOT; 1157 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1158 root->block_rsv = NULL; 1159 1160 INIT_LIST_HEAD(&root->dirty_list); 1161 INIT_LIST_HEAD(&root->root_list); 1162 INIT_LIST_HEAD(&root->delalloc_inodes); 1163 INIT_LIST_HEAD(&root->delalloc_root); 1164 INIT_LIST_HEAD(&root->ordered_extents); 1165 INIT_LIST_HEAD(&root->ordered_root); 1166 INIT_LIST_HEAD(&root->logged_list[0]); 1167 INIT_LIST_HEAD(&root->logged_list[1]); 1168 spin_lock_init(&root->inode_lock); 1169 spin_lock_init(&root->delalloc_lock); 1170 spin_lock_init(&root->ordered_extent_lock); 1171 spin_lock_init(&root->accounting_lock); 1172 spin_lock_init(&root->log_extents_lock[0]); 1173 spin_lock_init(&root->log_extents_lock[1]); 1174 spin_lock_init(&root->qgroup_meta_rsv_lock); 1175 mutex_init(&root->objectid_mutex); 1176 mutex_init(&root->log_mutex); 1177 mutex_init(&root->ordered_extent_mutex); 1178 mutex_init(&root->delalloc_mutex); 1179 init_waitqueue_head(&root->log_writer_wait); 1180 init_waitqueue_head(&root->log_commit_wait[0]); 1181 init_waitqueue_head(&root->log_commit_wait[1]); 1182 INIT_LIST_HEAD(&root->log_ctxs[0]); 1183 INIT_LIST_HEAD(&root->log_ctxs[1]); 1184 atomic_set(&root->log_commit[0], 0); 1185 atomic_set(&root->log_commit[1], 0); 1186 atomic_set(&root->log_writers, 0); 1187 atomic_set(&root->log_batch, 0); 1188 refcount_set(&root->refs, 1); 1189 atomic_set(&root->will_be_snapshotted, 0); 1190 atomic_set(&root->snapshot_force_cow, 0); 1191 root->log_transid = 0; 1192 root->log_transid_committed = -1; 1193 root->last_log_commit = 0; 1194 if (!dummy) 1195 extent_io_tree_init(&root->dirty_log_pages, NULL); 1196 1197 memset(&root->root_key, 0, sizeof(root->root_key)); 1198 memset(&root->root_item, 0, sizeof(root->root_item)); 1199 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1200 if (!dummy) 1201 root->defrag_trans_start = fs_info->generation; 1202 else 1203 root->defrag_trans_start = 0; 1204 root->root_key.objectid = objectid; 1205 root->anon_dev = 0; 1206 1207 spin_lock_init(&root->root_item_lock); 1208 } 1209 1210 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1211 gfp_t flags) 1212 { 1213 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1214 if (root) 1215 root->fs_info = fs_info; 1216 return root; 1217 } 1218 1219 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1220 /* Should only be used by the testing infrastructure */ 1221 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1222 { 1223 struct btrfs_root *root; 1224 1225 if (!fs_info) 1226 return ERR_PTR(-EINVAL); 1227 1228 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1229 if (!root) 1230 return ERR_PTR(-ENOMEM); 1231 1232 /* We don't use the stripesize in selftest, set it as sectorsize */ 1233 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 1234 root->alloc_bytenr = 0; 1235 1236 return root; 1237 } 1238 #endif 1239 1240 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1241 struct btrfs_fs_info *fs_info, 1242 u64 objectid) 1243 { 1244 struct extent_buffer *leaf; 1245 struct btrfs_root *tree_root = fs_info->tree_root; 1246 struct btrfs_root *root; 1247 struct btrfs_key key; 1248 int ret = 0; 1249 uuid_le uuid = NULL_UUID_LE; 1250 1251 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1252 if (!root) 1253 return ERR_PTR(-ENOMEM); 1254 1255 __setup_root(root, fs_info, objectid); 1256 root->root_key.objectid = objectid; 1257 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1258 root->root_key.offset = 0; 1259 1260 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1261 if (IS_ERR(leaf)) { 1262 ret = PTR_ERR(leaf); 1263 leaf = NULL; 1264 goto fail; 1265 } 1266 1267 root->node = leaf; 1268 btrfs_mark_buffer_dirty(leaf); 1269 1270 root->commit_root = btrfs_root_node(root); 1271 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1272 1273 root->root_item.flags = 0; 1274 root->root_item.byte_limit = 0; 1275 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1276 btrfs_set_root_generation(&root->root_item, trans->transid); 1277 btrfs_set_root_level(&root->root_item, 0); 1278 btrfs_set_root_refs(&root->root_item, 1); 1279 btrfs_set_root_used(&root->root_item, leaf->len); 1280 btrfs_set_root_last_snapshot(&root->root_item, 0); 1281 btrfs_set_root_dirid(&root->root_item, 0); 1282 if (is_fstree(objectid)) 1283 uuid_le_gen(&uuid); 1284 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1285 root->root_item.drop_level = 0; 1286 1287 key.objectid = objectid; 1288 key.type = BTRFS_ROOT_ITEM_KEY; 1289 key.offset = 0; 1290 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1291 if (ret) 1292 goto fail; 1293 1294 btrfs_tree_unlock(leaf); 1295 1296 return root; 1297 1298 fail: 1299 if (leaf) { 1300 btrfs_tree_unlock(leaf); 1301 free_extent_buffer(root->commit_root); 1302 free_extent_buffer(leaf); 1303 } 1304 kfree(root); 1305 1306 return ERR_PTR(ret); 1307 } 1308 1309 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1310 struct btrfs_fs_info *fs_info) 1311 { 1312 struct btrfs_root *root; 1313 struct extent_buffer *leaf; 1314 1315 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1316 if (!root) 1317 return ERR_PTR(-ENOMEM); 1318 1319 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1320 1321 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1322 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1323 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1324 1325 /* 1326 * DON'T set REF_COWS for log trees 1327 * 1328 * log trees do not get reference counted because they go away 1329 * before a real commit is actually done. They do store pointers 1330 * to file data extents, and those reference counts still get 1331 * updated (along with back refs to the log tree). 1332 */ 1333 1334 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1335 NULL, 0, 0, 0); 1336 if (IS_ERR(leaf)) { 1337 kfree(root); 1338 return ERR_CAST(leaf); 1339 } 1340 1341 root->node = leaf; 1342 1343 btrfs_mark_buffer_dirty(root->node); 1344 btrfs_tree_unlock(root->node); 1345 return root; 1346 } 1347 1348 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1349 struct btrfs_fs_info *fs_info) 1350 { 1351 struct btrfs_root *log_root; 1352 1353 log_root = alloc_log_tree(trans, fs_info); 1354 if (IS_ERR(log_root)) 1355 return PTR_ERR(log_root); 1356 WARN_ON(fs_info->log_root_tree); 1357 fs_info->log_root_tree = log_root; 1358 return 0; 1359 } 1360 1361 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1362 struct btrfs_root *root) 1363 { 1364 struct btrfs_fs_info *fs_info = root->fs_info; 1365 struct btrfs_root *log_root; 1366 struct btrfs_inode_item *inode_item; 1367 1368 log_root = alloc_log_tree(trans, fs_info); 1369 if (IS_ERR(log_root)) 1370 return PTR_ERR(log_root); 1371 1372 log_root->last_trans = trans->transid; 1373 log_root->root_key.offset = root->root_key.objectid; 1374 1375 inode_item = &log_root->root_item.inode; 1376 btrfs_set_stack_inode_generation(inode_item, 1); 1377 btrfs_set_stack_inode_size(inode_item, 3); 1378 btrfs_set_stack_inode_nlink(inode_item, 1); 1379 btrfs_set_stack_inode_nbytes(inode_item, 1380 fs_info->nodesize); 1381 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1382 1383 btrfs_set_root_node(&log_root->root_item, log_root->node); 1384 1385 WARN_ON(root->log_root); 1386 root->log_root = log_root; 1387 root->log_transid = 0; 1388 root->log_transid_committed = -1; 1389 root->last_log_commit = 0; 1390 return 0; 1391 } 1392 1393 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1394 struct btrfs_key *key) 1395 { 1396 struct btrfs_root *root; 1397 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1398 struct btrfs_path *path; 1399 u64 generation; 1400 int ret; 1401 int level; 1402 1403 path = btrfs_alloc_path(); 1404 if (!path) 1405 return ERR_PTR(-ENOMEM); 1406 1407 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1408 if (!root) { 1409 ret = -ENOMEM; 1410 goto alloc_fail; 1411 } 1412 1413 __setup_root(root, fs_info, key->objectid); 1414 1415 ret = btrfs_find_root(tree_root, key, path, 1416 &root->root_item, &root->root_key); 1417 if (ret) { 1418 if (ret > 0) 1419 ret = -ENOENT; 1420 goto find_fail; 1421 } 1422 1423 generation = btrfs_root_generation(&root->root_item); 1424 level = btrfs_root_level(&root->root_item); 1425 root->node = read_tree_block(fs_info, 1426 btrfs_root_bytenr(&root->root_item), 1427 generation, level, NULL); 1428 if (IS_ERR(root->node)) { 1429 ret = PTR_ERR(root->node); 1430 goto find_fail; 1431 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1432 ret = -EIO; 1433 free_extent_buffer(root->node); 1434 goto find_fail; 1435 } 1436 root->commit_root = btrfs_root_node(root); 1437 out: 1438 btrfs_free_path(path); 1439 return root; 1440 1441 find_fail: 1442 kfree(root); 1443 alloc_fail: 1444 root = ERR_PTR(ret); 1445 goto out; 1446 } 1447 1448 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1449 struct btrfs_key *location) 1450 { 1451 struct btrfs_root *root; 1452 1453 root = btrfs_read_tree_root(tree_root, location); 1454 if (IS_ERR(root)) 1455 return root; 1456 1457 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1458 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1459 btrfs_check_and_init_root_item(&root->root_item); 1460 } 1461 1462 return root; 1463 } 1464 1465 int btrfs_init_fs_root(struct btrfs_root *root) 1466 { 1467 int ret; 1468 struct btrfs_subvolume_writers *writers; 1469 1470 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1471 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1472 GFP_NOFS); 1473 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1474 ret = -ENOMEM; 1475 goto fail; 1476 } 1477 1478 writers = btrfs_alloc_subvolume_writers(); 1479 if (IS_ERR(writers)) { 1480 ret = PTR_ERR(writers); 1481 goto fail; 1482 } 1483 root->subv_writers = writers; 1484 1485 btrfs_init_free_ino_ctl(root); 1486 spin_lock_init(&root->ino_cache_lock); 1487 init_waitqueue_head(&root->ino_cache_wait); 1488 1489 ret = get_anon_bdev(&root->anon_dev); 1490 if (ret) 1491 goto fail; 1492 1493 mutex_lock(&root->objectid_mutex); 1494 ret = btrfs_find_highest_objectid(root, 1495 &root->highest_objectid); 1496 if (ret) { 1497 mutex_unlock(&root->objectid_mutex); 1498 goto fail; 1499 } 1500 1501 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1502 1503 mutex_unlock(&root->objectid_mutex); 1504 1505 return 0; 1506 fail: 1507 /* The caller is responsible to call btrfs_free_fs_root */ 1508 return ret; 1509 } 1510 1511 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1512 u64 root_id) 1513 { 1514 struct btrfs_root *root; 1515 1516 spin_lock(&fs_info->fs_roots_radix_lock); 1517 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1518 (unsigned long)root_id); 1519 spin_unlock(&fs_info->fs_roots_radix_lock); 1520 return root; 1521 } 1522 1523 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1524 struct btrfs_root *root) 1525 { 1526 int ret; 1527 1528 ret = radix_tree_preload(GFP_NOFS); 1529 if (ret) 1530 return ret; 1531 1532 spin_lock(&fs_info->fs_roots_radix_lock); 1533 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1534 (unsigned long)root->root_key.objectid, 1535 root); 1536 if (ret == 0) 1537 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1538 spin_unlock(&fs_info->fs_roots_radix_lock); 1539 radix_tree_preload_end(); 1540 1541 return ret; 1542 } 1543 1544 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1545 struct btrfs_key *location, 1546 bool check_ref) 1547 { 1548 struct btrfs_root *root; 1549 struct btrfs_path *path; 1550 struct btrfs_key key; 1551 int ret; 1552 1553 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1554 return fs_info->tree_root; 1555 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1556 return fs_info->extent_root; 1557 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1558 return fs_info->chunk_root; 1559 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1560 return fs_info->dev_root; 1561 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1562 return fs_info->csum_root; 1563 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1564 return fs_info->quota_root ? fs_info->quota_root : 1565 ERR_PTR(-ENOENT); 1566 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1567 return fs_info->uuid_root ? fs_info->uuid_root : 1568 ERR_PTR(-ENOENT); 1569 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1570 return fs_info->free_space_root ? fs_info->free_space_root : 1571 ERR_PTR(-ENOENT); 1572 again: 1573 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1574 if (root) { 1575 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1576 return ERR_PTR(-ENOENT); 1577 return root; 1578 } 1579 1580 root = btrfs_read_fs_root(fs_info->tree_root, location); 1581 if (IS_ERR(root)) 1582 return root; 1583 1584 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1585 ret = -ENOENT; 1586 goto fail; 1587 } 1588 1589 ret = btrfs_init_fs_root(root); 1590 if (ret) 1591 goto fail; 1592 1593 path = btrfs_alloc_path(); 1594 if (!path) { 1595 ret = -ENOMEM; 1596 goto fail; 1597 } 1598 key.objectid = BTRFS_ORPHAN_OBJECTID; 1599 key.type = BTRFS_ORPHAN_ITEM_KEY; 1600 key.offset = location->objectid; 1601 1602 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1603 btrfs_free_path(path); 1604 if (ret < 0) 1605 goto fail; 1606 if (ret == 0) 1607 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1608 1609 ret = btrfs_insert_fs_root(fs_info, root); 1610 if (ret) { 1611 if (ret == -EEXIST) { 1612 btrfs_free_fs_root(root); 1613 goto again; 1614 } 1615 goto fail; 1616 } 1617 return root; 1618 fail: 1619 btrfs_free_fs_root(root); 1620 return ERR_PTR(ret); 1621 } 1622 1623 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1624 { 1625 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1626 int ret = 0; 1627 struct btrfs_device *device; 1628 struct backing_dev_info *bdi; 1629 1630 rcu_read_lock(); 1631 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1632 if (!device->bdev) 1633 continue; 1634 bdi = device->bdev->bd_bdi; 1635 if (bdi_congested(bdi, bdi_bits)) { 1636 ret = 1; 1637 break; 1638 } 1639 } 1640 rcu_read_unlock(); 1641 return ret; 1642 } 1643 1644 /* 1645 * called by the kthread helper functions to finally call the bio end_io 1646 * functions. This is where read checksum verification actually happens 1647 */ 1648 static void end_workqueue_fn(struct btrfs_work *work) 1649 { 1650 struct bio *bio; 1651 struct btrfs_end_io_wq *end_io_wq; 1652 1653 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1654 bio = end_io_wq->bio; 1655 1656 bio->bi_status = end_io_wq->status; 1657 bio->bi_private = end_io_wq->private; 1658 bio->bi_end_io = end_io_wq->end_io; 1659 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1660 bio_endio(bio); 1661 } 1662 1663 static int cleaner_kthread(void *arg) 1664 { 1665 struct btrfs_root *root = arg; 1666 struct btrfs_fs_info *fs_info = root->fs_info; 1667 int again; 1668 struct btrfs_trans_handle *trans; 1669 1670 do { 1671 again = 0; 1672 1673 /* Make the cleaner go to sleep early. */ 1674 if (btrfs_need_cleaner_sleep(fs_info)) 1675 goto sleep; 1676 1677 /* 1678 * Do not do anything if we might cause open_ctree() to block 1679 * before we have finished mounting the filesystem. 1680 */ 1681 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1682 goto sleep; 1683 1684 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1685 goto sleep; 1686 1687 /* 1688 * Avoid the problem that we change the status of the fs 1689 * during the above check and trylock. 1690 */ 1691 if (btrfs_need_cleaner_sleep(fs_info)) { 1692 mutex_unlock(&fs_info->cleaner_mutex); 1693 goto sleep; 1694 } 1695 1696 mutex_lock(&fs_info->cleaner_delayed_iput_mutex); 1697 btrfs_run_delayed_iputs(fs_info); 1698 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex); 1699 1700 again = btrfs_clean_one_deleted_snapshot(root); 1701 mutex_unlock(&fs_info->cleaner_mutex); 1702 1703 /* 1704 * The defragger has dealt with the R/O remount and umount, 1705 * needn't do anything special here. 1706 */ 1707 btrfs_run_defrag_inodes(fs_info); 1708 1709 /* 1710 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1711 * with relocation (btrfs_relocate_chunk) and relocation 1712 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1713 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1714 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1715 * unused block groups. 1716 */ 1717 btrfs_delete_unused_bgs(fs_info); 1718 sleep: 1719 if (!again) { 1720 set_current_state(TASK_INTERRUPTIBLE); 1721 if (!kthread_should_stop()) 1722 schedule(); 1723 __set_current_state(TASK_RUNNING); 1724 } 1725 } while (!kthread_should_stop()); 1726 1727 /* 1728 * Transaction kthread is stopped before us and wakes us up. 1729 * However we might have started a new transaction and COWed some 1730 * tree blocks when deleting unused block groups for example. So 1731 * make sure we commit the transaction we started to have a clean 1732 * shutdown when evicting the btree inode - if it has dirty pages 1733 * when we do the final iput() on it, eviction will trigger a 1734 * writeback for it which will fail with null pointer dereferences 1735 * since work queues and other resources were already released and 1736 * destroyed by the time the iput/eviction/writeback is made. 1737 */ 1738 trans = btrfs_attach_transaction(root); 1739 if (IS_ERR(trans)) { 1740 if (PTR_ERR(trans) != -ENOENT) 1741 btrfs_err(fs_info, 1742 "cleaner transaction attach returned %ld", 1743 PTR_ERR(trans)); 1744 } else { 1745 int ret; 1746 1747 ret = btrfs_commit_transaction(trans); 1748 if (ret) 1749 btrfs_err(fs_info, 1750 "cleaner open transaction commit returned %d", 1751 ret); 1752 } 1753 1754 return 0; 1755 } 1756 1757 static int transaction_kthread(void *arg) 1758 { 1759 struct btrfs_root *root = arg; 1760 struct btrfs_fs_info *fs_info = root->fs_info; 1761 struct btrfs_trans_handle *trans; 1762 struct btrfs_transaction *cur; 1763 u64 transid; 1764 time64_t now; 1765 unsigned long delay; 1766 bool cannot_commit; 1767 1768 do { 1769 cannot_commit = false; 1770 delay = HZ * fs_info->commit_interval; 1771 mutex_lock(&fs_info->transaction_kthread_mutex); 1772 1773 spin_lock(&fs_info->trans_lock); 1774 cur = fs_info->running_transaction; 1775 if (!cur) { 1776 spin_unlock(&fs_info->trans_lock); 1777 goto sleep; 1778 } 1779 1780 now = ktime_get_seconds(); 1781 if (cur->state < TRANS_STATE_BLOCKED && 1782 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) && 1783 (now < cur->start_time || 1784 now - cur->start_time < fs_info->commit_interval)) { 1785 spin_unlock(&fs_info->trans_lock); 1786 delay = HZ * 5; 1787 goto sleep; 1788 } 1789 transid = cur->transid; 1790 spin_unlock(&fs_info->trans_lock); 1791 1792 /* If the file system is aborted, this will always fail. */ 1793 trans = btrfs_attach_transaction(root); 1794 if (IS_ERR(trans)) { 1795 if (PTR_ERR(trans) != -ENOENT) 1796 cannot_commit = true; 1797 goto sleep; 1798 } 1799 if (transid == trans->transid) { 1800 btrfs_commit_transaction(trans); 1801 } else { 1802 btrfs_end_transaction(trans); 1803 } 1804 sleep: 1805 wake_up_process(fs_info->cleaner_kthread); 1806 mutex_unlock(&fs_info->transaction_kthread_mutex); 1807 1808 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1809 &fs_info->fs_state))) 1810 btrfs_cleanup_transaction(fs_info); 1811 if (!kthread_should_stop() && 1812 (!btrfs_transaction_blocked(fs_info) || 1813 cannot_commit)) 1814 schedule_timeout_interruptible(delay); 1815 } while (!kthread_should_stop()); 1816 return 0; 1817 } 1818 1819 /* 1820 * this will find the highest generation in the array of 1821 * root backups. The index of the highest array is returned, 1822 * or -1 if we can't find anything. 1823 * 1824 * We check to make sure the array is valid by comparing the 1825 * generation of the latest root in the array with the generation 1826 * in the super block. If they don't match we pitch it. 1827 */ 1828 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1829 { 1830 u64 cur; 1831 int newest_index = -1; 1832 struct btrfs_root_backup *root_backup; 1833 int i; 1834 1835 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1836 root_backup = info->super_copy->super_roots + i; 1837 cur = btrfs_backup_tree_root_gen(root_backup); 1838 if (cur == newest_gen) 1839 newest_index = i; 1840 } 1841 1842 /* check to see if we actually wrapped around */ 1843 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1844 root_backup = info->super_copy->super_roots; 1845 cur = btrfs_backup_tree_root_gen(root_backup); 1846 if (cur == newest_gen) 1847 newest_index = 0; 1848 } 1849 return newest_index; 1850 } 1851 1852 1853 /* 1854 * find the oldest backup so we know where to store new entries 1855 * in the backup array. This will set the backup_root_index 1856 * field in the fs_info struct 1857 */ 1858 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1859 u64 newest_gen) 1860 { 1861 int newest_index = -1; 1862 1863 newest_index = find_newest_super_backup(info, newest_gen); 1864 /* if there was garbage in there, just move along */ 1865 if (newest_index == -1) { 1866 info->backup_root_index = 0; 1867 } else { 1868 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1869 } 1870 } 1871 1872 /* 1873 * copy all the root pointers into the super backup array. 1874 * this will bump the backup pointer by one when it is 1875 * done 1876 */ 1877 static void backup_super_roots(struct btrfs_fs_info *info) 1878 { 1879 int next_backup; 1880 struct btrfs_root_backup *root_backup; 1881 int last_backup; 1882 1883 next_backup = info->backup_root_index; 1884 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1885 BTRFS_NUM_BACKUP_ROOTS; 1886 1887 /* 1888 * just overwrite the last backup if we're at the same generation 1889 * this happens only at umount 1890 */ 1891 root_backup = info->super_for_commit->super_roots + last_backup; 1892 if (btrfs_backup_tree_root_gen(root_backup) == 1893 btrfs_header_generation(info->tree_root->node)) 1894 next_backup = last_backup; 1895 1896 root_backup = info->super_for_commit->super_roots + next_backup; 1897 1898 /* 1899 * make sure all of our padding and empty slots get zero filled 1900 * regardless of which ones we use today 1901 */ 1902 memset(root_backup, 0, sizeof(*root_backup)); 1903 1904 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1905 1906 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1907 btrfs_set_backup_tree_root_gen(root_backup, 1908 btrfs_header_generation(info->tree_root->node)); 1909 1910 btrfs_set_backup_tree_root_level(root_backup, 1911 btrfs_header_level(info->tree_root->node)); 1912 1913 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1914 btrfs_set_backup_chunk_root_gen(root_backup, 1915 btrfs_header_generation(info->chunk_root->node)); 1916 btrfs_set_backup_chunk_root_level(root_backup, 1917 btrfs_header_level(info->chunk_root->node)); 1918 1919 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1920 btrfs_set_backup_extent_root_gen(root_backup, 1921 btrfs_header_generation(info->extent_root->node)); 1922 btrfs_set_backup_extent_root_level(root_backup, 1923 btrfs_header_level(info->extent_root->node)); 1924 1925 /* 1926 * we might commit during log recovery, which happens before we set 1927 * the fs_root. Make sure it is valid before we fill it in. 1928 */ 1929 if (info->fs_root && info->fs_root->node) { 1930 btrfs_set_backup_fs_root(root_backup, 1931 info->fs_root->node->start); 1932 btrfs_set_backup_fs_root_gen(root_backup, 1933 btrfs_header_generation(info->fs_root->node)); 1934 btrfs_set_backup_fs_root_level(root_backup, 1935 btrfs_header_level(info->fs_root->node)); 1936 } 1937 1938 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1939 btrfs_set_backup_dev_root_gen(root_backup, 1940 btrfs_header_generation(info->dev_root->node)); 1941 btrfs_set_backup_dev_root_level(root_backup, 1942 btrfs_header_level(info->dev_root->node)); 1943 1944 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1945 btrfs_set_backup_csum_root_gen(root_backup, 1946 btrfs_header_generation(info->csum_root->node)); 1947 btrfs_set_backup_csum_root_level(root_backup, 1948 btrfs_header_level(info->csum_root->node)); 1949 1950 btrfs_set_backup_total_bytes(root_backup, 1951 btrfs_super_total_bytes(info->super_copy)); 1952 btrfs_set_backup_bytes_used(root_backup, 1953 btrfs_super_bytes_used(info->super_copy)); 1954 btrfs_set_backup_num_devices(root_backup, 1955 btrfs_super_num_devices(info->super_copy)); 1956 1957 /* 1958 * if we don't copy this out to the super_copy, it won't get remembered 1959 * for the next commit 1960 */ 1961 memcpy(&info->super_copy->super_roots, 1962 &info->super_for_commit->super_roots, 1963 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1964 } 1965 1966 /* 1967 * this copies info out of the root backup array and back into 1968 * the in-memory super block. It is meant to help iterate through 1969 * the array, so you send it the number of backups you've already 1970 * tried and the last backup index you used. 1971 * 1972 * this returns -1 when it has tried all the backups 1973 */ 1974 static noinline int next_root_backup(struct btrfs_fs_info *info, 1975 struct btrfs_super_block *super, 1976 int *num_backups_tried, int *backup_index) 1977 { 1978 struct btrfs_root_backup *root_backup; 1979 int newest = *backup_index; 1980 1981 if (*num_backups_tried == 0) { 1982 u64 gen = btrfs_super_generation(super); 1983 1984 newest = find_newest_super_backup(info, gen); 1985 if (newest == -1) 1986 return -1; 1987 1988 *backup_index = newest; 1989 *num_backups_tried = 1; 1990 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 1991 /* we've tried all the backups, all done */ 1992 return -1; 1993 } else { 1994 /* jump to the next oldest backup */ 1995 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 1996 BTRFS_NUM_BACKUP_ROOTS; 1997 *backup_index = newest; 1998 *num_backups_tried += 1; 1999 } 2000 root_backup = super->super_roots + newest; 2001 2002 btrfs_set_super_generation(super, 2003 btrfs_backup_tree_root_gen(root_backup)); 2004 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2005 btrfs_set_super_root_level(super, 2006 btrfs_backup_tree_root_level(root_backup)); 2007 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2008 2009 /* 2010 * fixme: the total bytes and num_devices need to match or we should 2011 * need a fsck 2012 */ 2013 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2014 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2015 return 0; 2016 } 2017 2018 /* helper to cleanup workers */ 2019 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2020 { 2021 btrfs_destroy_workqueue(fs_info->fixup_workers); 2022 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2023 btrfs_destroy_workqueue(fs_info->workers); 2024 btrfs_destroy_workqueue(fs_info->endio_workers); 2025 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2026 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 2027 btrfs_destroy_workqueue(fs_info->rmw_workers); 2028 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2029 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2030 btrfs_destroy_workqueue(fs_info->submit_workers); 2031 btrfs_destroy_workqueue(fs_info->delayed_workers); 2032 btrfs_destroy_workqueue(fs_info->caching_workers); 2033 btrfs_destroy_workqueue(fs_info->readahead_workers); 2034 btrfs_destroy_workqueue(fs_info->flush_workers); 2035 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2036 btrfs_destroy_workqueue(fs_info->extent_workers); 2037 /* 2038 * Now that all other work queues are destroyed, we can safely destroy 2039 * the queues used for metadata I/O, since tasks from those other work 2040 * queues can do metadata I/O operations. 2041 */ 2042 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2043 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2044 } 2045 2046 static void free_root_extent_buffers(struct btrfs_root *root) 2047 { 2048 if (root) { 2049 free_extent_buffer(root->node); 2050 free_extent_buffer(root->commit_root); 2051 root->node = NULL; 2052 root->commit_root = NULL; 2053 } 2054 } 2055 2056 /* helper to cleanup tree roots */ 2057 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2058 { 2059 free_root_extent_buffers(info->tree_root); 2060 2061 free_root_extent_buffers(info->dev_root); 2062 free_root_extent_buffers(info->extent_root); 2063 free_root_extent_buffers(info->csum_root); 2064 free_root_extent_buffers(info->quota_root); 2065 free_root_extent_buffers(info->uuid_root); 2066 if (chunk_root) 2067 free_root_extent_buffers(info->chunk_root); 2068 free_root_extent_buffers(info->free_space_root); 2069 } 2070 2071 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2072 { 2073 int ret; 2074 struct btrfs_root *gang[8]; 2075 int i; 2076 2077 while (!list_empty(&fs_info->dead_roots)) { 2078 gang[0] = list_entry(fs_info->dead_roots.next, 2079 struct btrfs_root, root_list); 2080 list_del(&gang[0]->root_list); 2081 2082 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2083 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2084 } else { 2085 free_extent_buffer(gang[0]->node); 2086 free_extent_buffer(gang[0]->commit_root); 2087 btrfs_put_fs_root(gang[0]); 2088 } 2089 } 2090 2091 while (1) { 2092 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2093 (void **)gang, 0, 2094 ARRAY_SIZE(gang)); 2095 if (!ret) 2096 break; 2097 for (i = 0; i < ret; i++) 2098 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2099 } 2100 2101 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2102 btrfs_free_log_root_tree(NULL, fs_info); 2103 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 2104 } 2105 } 2106 2107 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2108 { 2109 mutex_init(&fs_info->scrub_lock); 2110 atomic_set(&fs_info->scrubs_running, 0); 2111 atomic_set(&fs_info->scrub_pause_req, 0); 2112 atomic_set(&fs_info->scrubs_paused, 0); 2113 atomic_set(&fs_info->scrub_cancel_req, 0); 2114 init_waitqueue_head(&fs_info->scrub_pause_wait); 2115 fs_info->scrub_workers_refcnt = 0; 2116 } 2117 2118 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2119 { 2120 spin_lock_init(&fs_info->balance_lock); 2121 mutex_init(&fs_info->balance_mutex); 2122 atomic_set(&fs_info->balance_pause_req, 0); 2123 atomic_set(&fs_info->balance_cancel_req, 0); 2124 fs_info->balance_ctl = NULL; 2125 init_waitqueue_head(&fs_info->balance_wait_q); 2126 } 2127 2128 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2129 { 2130 struct inode *inode = fs_info->btree_inode; 2131 2132 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2133 set_nlink(inode, 1); 2134 /* 2135 * we set the i_size on the btree inode to the max possible int. 2136 * the real end of the address space is determined by all of 2137 * the devices in the system 2138 */ 2139 inode->i_size = OFFSET_MAX; 2140 inode->i_mapping->a_ops = &btree_aops; 2141 2142 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2143 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode); 2144 BTRFS_I(inode)->io_tree.track_uptodate = 0; 2145 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2146 2147 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops; 2148 2149 BTRFS_I(inode)->root = fs_info->tree_root; 2150 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); 2151 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2152 btrfs_insert_inode_hash(inode); 2153 } 2154 2155 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2156 { 2157 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2158 rwlock_init(&fs_info->dev_replace.lock); 2159 atomic_set(&fs_info->dev_replace.read_locks, 0); 2160 atomic_set(&fs_info->dev_replace.blocking_readers, 0); 2161 init_waitqueue_head(&fs_info->replace_wait); 2162 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq); 2163 } 2164 2165 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2166 { 2167 spin_lock_init(&fs_info->qgroup_lock); 2168 mutex_init(&fs_info->qgroup_ioctl_lock); 2169 fs_info->qgroup_tree = RB_ROOT; 2170 fs_info->qgroup_op_tree = RB_ROOT; 2171 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2172 fs_info->qgroup_seq = 1; 2173 fs_info->qgroup_ulist = NULL; 2174 fs_info->qgroup_rescan_running = false; 2175 mutex_init(&fs_info->qgroup_rescan_lock); 2176 } 2177 2178 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2179 struct btrfs_fs_devices *fs_devices) 2180 { 2181 u32 max_active = fs_info->thread_pool_size; 2182 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2183 2184 fs_info->workers = 2185 btrfs_alloc_workqueue(fs_info, "worker", 2186 flags | WQ_HIGHPRI, max_active, 16); 2187 2188 fs_info->delalloc_workers = 2189 btrfs_alloc_workqueue(fs_info, "delalloc", 2190 flags, max_active, 2); 2191 2192 fs_info->flush_workers = 2193 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2194 flags, max_active, 0); 2195 2196 fs_info->caching_workers = 2197 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2198 2199 /* 2200 * a higher idle thresh on the submit workers makes it much more 2201 * likely that bios will be send down in a sane order to the 2202 * devices 2203 */ 2204 fs_info->submit_workers = 2205 btrfs_alloc_workqueue(fs_info, "submit", flags, 2206 min_t(u64, fs_devices->num_devices, 2207 max_active), 64); 2208 2209 fs_info->fixup_workers = 2210 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2211 2212 /* 2213 * endios are largely parallel and should have a very 2214 * low idle thresh 2215 */ 2216 fs_info->endio_workers = 2217 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2218 fs_info->endio_meta_workers = 2219 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2220 max_active, 4); 2221 fs_info->endio_meta_write_workers = 2222 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2223 max_active, 2); 2224 fs_info->endio_raid56_workers = 2225 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2226 max_active, 4); 2227 fs_info->endio_repair_workers = 2228 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0); 2229 fs_info->rmw_workers = 2230 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2231 fs_info->endio_write_workers = 2232 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2233 max_active, 2); 2234 fs_info->endio_freespace_worker = 2235 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2236 max_active, 0); 2237 fs_info->delayed_workers = 2238 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2239 max_active, 0); 2240 fs_info->readahead_workers = 2241 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2242 max_active, 2); 2243 fs_info->qgroup_rescan_workers = 2244 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2245 fs_info->extent_workers = 2246 btrfs_alloc_workqueue(fs_info, "extent-refs", flags, 2247 min_t(u64, fs_devices->num_devices, 2248 max_active), 8); 2249 2250 if (!(fs_info->workers && fs_info->delalloc_workers && 2251 fs_info->submit_workers && fs_info->flush_workers && 2252 fs_info->endio_workers && fs_info->endio_meta_workers && 2253 fs_info->endio_meta_write_workers && 2254 fs_info->endio_repair_workers && 2255 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2256 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2257 fs_info->caching_workers && fs_info->readahead_workers && 2258 fs_info->fixup_workers && fs_info->delayed_workers && 2259 fs_info->extent_workers && 2260 fs_info->qgroup_rescan_workers)) { 2261 return -ENOMEM; 2262 } 2263 2264 return 0; 2265 } 2266 2267 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2268 struct btrfs_fs_devices *fs_devices) 2269 { 2270 int ret; 2271 struct btrfs_root *log_tree_root; 2272 struct btrfs_super_block *disk_super = fs_info->super_copy; 2273 u64 bytenr = btrfs_super_log_root(disk_super); 2274 int level = btrfs_super_log_root_level(disk_super); 2275 2276 if (fs_devices->rw_devices == 0) { 2277 btrfs_warn(fs_info, "log replay required on RO media"); 2278 return -EIO; 2279 } 2280 2281 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2282 if (!log_tree_root) 2283 return -ENOMEM; 2284 2285 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2286 2287 log_tree_root->node = read_tree_block(fs_info, bytenr, 2288 fs_info->generation + 1, 2289 level, NULL); 2290 if (IS_ERR(log_tree_root->node)) { 2291 btrfs_warn(fs_info, "failed to read log tree"); 2292 ret = PTR_ERR(log_tree_root->node); 2293 kfree(log_tree_root); 2294 return ret; 2295 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2296 btrfs_err(fs_info, "failed to read log tree"); 2297 free_extent_buffer(log_tree_root->node); 2298 kfree(log_tree_root); 2299 return -EIO; 2300 } 2301 /* returns with log_tree_root freed on success */ 2302 ret = btrfs_recover_log_trees(log_tree_root); 2303 if (ret) { 2304 btrfs_handle_fs_error(fs_info, ret, 2305 "Failed to recover log tree"); 2306 free_extent_buffer(log_tree_root->node); 2307 kfree(log_tree_root); 2308 return ret; 2309 } 2310 2311 if (sb_rdonly(fs_info->sb)) { 2312 ret = btrfs_commit_super(fs_info); 2313 if (ret) 2314 return ret; 2315 } 2316 2317 return 0; 2318 } 2319 2320 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2321 { 2322 struct btrfs_root *tree_root = fs_info->tree_root; 2323 struct btrfs_root *root; 2324 struct btrfs_key location; 2325 int ret; 2326 2327 BUG_ON(!fs_info->tree_root); 2328 2329 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2330 location.type = BTRFS_ROOT_ITEM_KEY; 2331 location.offset = 0; 2332 2333 root = btrfs_read_tree_root(tree_root, &location); 2334 if (IS_ERR(root)) { 2335 ret = PTR_ERR(root); 2336 goto out; 2337 } 2338 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2339 fs_info->extent_root = root; 2340 2341 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2342 root = btrfs_read_tree_root(tree_root, &location); 2343 if (IS_ERR(root)) { 2344 ret = PTR_ERR(root); 2345 goto out; 2346 } 2347 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2348 fs_info->dev_root = root; 2349 btrfs_init_devices_late(fs_info); 2350 2351 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2352 root = btrfs_read_tree_root(tree_root, &location); 2353 if (IS_ERR(root)) { 2354 ret = PTR_ERR(root); 2355 goto out; 2356 } 2357 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2358 fs_info->csum_root = root; 2359 2360 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2361 root = btrfs_read_tree_root(tree_root, &location); 2362 if (!IS_ERR(root)) { 2363 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2364 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2365 fs_info->quota_root = root; 2366 } 2367 2368 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2369 root = btrfs_read_tree_root(tree_root, &location); 2370 if (IS_ERR(root)) { 2371 ret = PTR_ERR(root); 2372 if (ret != -ENOENT) 2373 goto out; 2374 } else { 2375 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2376 fs_info->uuid_root = root; 2377 } 2378 2379 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2380 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2381 root = btrfs_read_tree_root(tree_root, &location); 2382 if (IS_ERR(root)) { 2383 ret = PTR_ERR(root); 2384 goto out; 2385 } 2386 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2387 fs_info->free_space_root = root; 2388 } 2389 2390 return 0; 2391 out: 2392 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2393 location.objectid, ret); 2394 return ret; 2395 } 2396 2397 /* 2398 * Real super block validation 2399 * NOTE: super csum type and incompat features will not be checked here. 2400 * 2401 * @sb: super block to check 2402 * @mirror_num: the super block number to check its bytenr: 2403 * 0 the primary (1st) sb 2404 * 1, 2 2nd and 3rd backup copy 2405 * -1 skip bytenr check 2406 */ 2407 static int validate_super(struct btrfs_fs_info *fs_info, 2408 struct btrfs_super_block *sb, int mirror_num) 2409 { 2410 u64 nodesize = btrfs_super_nodesize(sb); 2411 u64 sectorsize = btrfs_super_sectorsize(sb); 2412 int ret = 0; 2413 2414 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2415 btrfs_err(fs_info, "no valid FS found"); 2416 ret = -EINVAL; 2417 } 2418 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2419 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2420 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2421 ret = -EINVAL; 2422 } 2423 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2424 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2425 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2426 ret = -EINVAL; 2427 } 2428 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2429 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2430 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2431 ret = -EINVAL; 2432 } 2433 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2434 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2435 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2436 ret = -EINVAL; 2437 } 2438 2439 /* 2440 * Check sectorsize and nodesize first, other check will need it. 2441 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2442 */ 2443 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2444 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2445 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2446 ret = -EINVAL; 2447 } 2448 /* Only PAGE SIZE is supported yet */ 2449 if (sectorsize != PAGE_SIZE) { 2450 btrfs_err(fs_info, 2451 "sectorsize %llu not supported yet, only support %lu", 2452 sectorsize, PAGE_SIZE); 2453 ret = -EINVAL; 2454 } 2455 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2456 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2457 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2458 ret = -EINVAL; 2459 } 2460 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2461 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2462 le32_to_cpu(sb->__unused_leafsize), nodesize); 2463 ret = -EINVAL; 2464 } 2465 2466 /* Root alignment check */ 2467 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2468 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2469 btrfs_super_root(sb)); 2470 ret = -EINVAL; 2471 } 2472 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2473 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2474 btrfs_super_chunk_root(sb)); 2475 ret = -EINVAL; 2476 } 2477 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2478 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2479 btrfs_super_log_root(sb)); 2480 ret = -EINVAL; 2481 } 2482 2483 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) { 2484 btrfs_err(fs_info, 2485 "dev_item UUID does not match fsid: %pU != %pU", 2486 fs_info->fsid, sb->dev_item.fsid); 2487 ret = -EINVAL; 2488 } 2489 2490 /* 2491 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2492 * done later 2493 */ 2494 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2495 btrfs_err(fs_info, "bytes_used is too small %llu", 2496 btrfs_super_bytes_used(sb)); 2497 ret = -EINVAL; 2498 } 2499 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2500 btrfs_err(fs_info, "invalid stripesize %u", 2501 btrfs_super_stripesize(sb)); 2502 ret = -EINVAL; 2503 } 2504 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2505 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2506 btrfs_super_num_devices(sb)); 2507 if (btrfs_super_num_devices(sb) == 0) { 2508 btrfs_err(fs_info, "number of devices is 0"); 2509 ret = -EINVAL; 2510 } 2511 2512 if (mirror_num >= 0 && 2513 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2514 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2515 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2516 ret = -EINVAL; 2517 } 2518 2519 /* 2520 * Obvious sys_chunk_array corruptions, it must hold at least one key 2521 * and one chunk 2522 */ 2523 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2524 btrfs_err(fs_info, "system chunk array too big %u > %u", 2525 btrfs_super_sys_array_size(sb), 2526 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2527 ret = -EINVAL; 2528 } 2529 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2530 + sizeof(struct btrfs_chunk)) { 2531 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2532 btrfs_super_sys_array_size(sb), 2533 sizeof(struct btrfs_disk_key) 2534 + sizeof(struct btrfs_chunk)); 2535 ret = -EINVAL; 2536 } 2537 2538 /* 2539 * The generation is a global counter, we'll trust it more than the others 2540 * but it's still possible that it's the one that's wrong. 2541 */ 2542 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2543 btrfs_warn(fs_info, 2544 "suspicious: generation < chunk_root_generation: %llu < %llu", 2545 btrfs_super_generation(sb), 2546 btrfs_super_chunk_root_generation(sb)); 2547 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2548 && btrfs_super_cache_generation(sb) != (u64)-1) 2549 btrfs_warn(fs_info, 2550 "suspicious: generation < cache_generation: %llu < %llu", 2551 btrfs_super_generation(sb), 2552 btrfs_super_cache_generation(sb)); 2553 2554 return ret; 2555 } 2556 2557 /* 2558 * Validation of super block at mount time. 2559 * Some checks already done early at mount time, like csum type and incompat 2560 * flags will be skipped. 2561 */ 2562 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2563 { 2564 return validate_super(fs_info, fs_info->super_copy, 0); 2565 } 2566 2567 /* 2568 * Validation of super block at write time. 2569 * Some checks like bytenr check will be skipped as their values will be 2570 * overwritten soon. 2571 * Extra checks like csum type and incompat flags will be done here. 2572 */ 2573 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2574 struct btrfs_super_block *sb) 2575 { 2576 int ret; 2577 2578 ret = validate_super(fs_info, sb, -1); 2579 if (ret < 0) 2580 goto out; 2581 if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) { 2582 ret = -EUCLEAN; 2583 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2584 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2585 goto out; 2586 } 2587 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2588 ret = -EUCLEAN; 2589 btrfs_err(fs_info, 2590 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2591 btrfs_super_incompat_flags(sb), 2592 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2593 goto out; 2594 } 2595 out: 2596 if (ret < 0) 2597 btrfs_err(fs_info, 2598 "super block corruption detected before writing it to disk"); 2599 return ret; 2600 } 2601 2602 int open_ctree(struct super_block *sb, 2603 struct btrfs_fs_devices *fs_devices, 2604 char *options) 2605 { 2606 u32 sectorsize; 2607 u32 nodesize; 2608 u32 stripesize; 2609 u64 generation; 2610 u64 features; 2611 struct btrfs_key location; 2612 struct buffer_head *bh; 2613 struct btrfs_super_block *disk_super; 2614 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2615 struct btrfs_root *tree_root; 2616 struct btrfs_root *chunk_root; 2617 int ret; 2618 int err = -EINVAL; 2619 int num_backups_tried = 0; 2620 int backup_index = 0; 2621 int clear_free_space_tree = 0; 2622 int level; 2623 2624 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2625 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2626 if (!tree_root || !chunk_root) { 2627 err = -ENOMEM; 2628 goto fail; 2629 } 2630 2631 ret = init_srcu_struct(&fs_info->subvol_srcu); 2632 if (ret) { 2633 err = ret; 2634 goto fail; 2635 } 2636 2637 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2638 if (ret) { 2639 err = ret; 2640 goto fail_srcu; 2641 } 2642 fs_info->dirty_metadata_batch = PAGE_SIZE * 2643 (1 + ilog2(nr_cpu_ids)); 2644 2645 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2646 if (ret) { 2647 err = ret; 2648 goto fail_dirty_metadata_bytes; 2649 } 2650 2651 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL); 2652 if (ret) { 2653 err = ret; 2654 goto fail_delalloc_bytes; 2655 } 2656 2657 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2658 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2659 INIT_LIST_HEAD(&fs_info->trans_list); 2660 INIT_LIST_HEAD(&fs_info->dead_roots); 2661 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2662 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2663 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2664 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs); 2665 spin_lock_init(&fs_info->pending_raid_kobjs_lock); 2666 spin_lock_init(&fs_info->delalloc_root_lock); 2667 spin_lock_init(&fs_info->trans_lock); 2668 spin_lock_init(&fs_info->fs_roots_radix_lock); 2669 spin_lock_init(&fs_info->delayed_iput_lock); 2670 spin_lock_init(&fs_info->defrag_inodes_lock); 2671 spin_lock_init(&fs_info->tree_mod_seq_lock); 2672 spin_lock_init(&fs_info->super_lock); 2673 spin_lock_init(&fs_info->qgroup_op_lock); 2674 spin_lock_init(&fs_info->buffer_lock); 2675 spin_lock_init(&fs_info->unused_bgs_lock); 2676 rwlock_init(&fs_info->tree_mod_log_lock); 2677 mutex_init(&fs_info->unused_bg_unpin_mutex); 2678 mutex_init(&fs_info->delete_unused_bgs_mutex); 2679 mutex_init(&fs_info->reloc_mutex); 2680 mutex_init(&fs_info->delalloc_root_mutex); 2681 mutex_init(&fs_info->cleaner_delayed_iput_mutex); 2682 seqlock_init(&fs_info->profiles_lock); 2683 2684 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2685 INIT_LIST_HEAD(&fs_info->space_info); 2686 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2687 INIT_LIST_HEAD(&fs_info->unused_bgs); 2688 btrfs_mapping_init(&fs_info->mapping_tree); 2689 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2690 BTRFS_BLOCK_RSV_GLOBAL); 2691 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2692 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2693 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2694 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2695 BTRFS_BLOCK_RSV_DELOPS); 2696 atomic_set(&fs_info->async_delalloc_pages, 0); 2697 atomic_set(&fs_info->defrag_running, 0); 2698 atomic_set(&fs_info->qgroup_op_seq, 0); 2699 atomic_set(&fs_info->reada_works_cnt, 0); 2700 atomic64_set(&fs_info->tree_mod_seq, 0); 2701 fs_info->sb = sb; 2702 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2703 fs_info->metadata_ratio = 0; 2704 fs_info->defrag_inodes = RB_ROOT; 2705 atomic64_set(&fs_info->free_chunk_space, 0); 2706 fs_info->tree_mod_log = RB_ROOT; 2707 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2708 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2709 /* readahead state */ 2710 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2711 spin_lock_init(&fs_info->reada_lock); 2712 btrfs_init_ref_verify(fs_info); 2713 2714 fs_info->thread_pool_size = min_t(unsigned long, 2715 num_online_cpus() + 2, 8); 2716 2717 INIT_LIST_HEAD(&fs_info->ordered_roots); 2718 spin_lock_init(&fs_info->ordered_root_lock); 2719 2720 fs_info->btree_inode = new_inode(sb); 2721 if (!fs_info->btree_inode) { 2722 err = -ENOMEM; 2723 goto fail_bio_counter; 2724 } 2725 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2726 2727 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2728 GFP_KERNEL); 2729 if (!fs_info->delayed_root) { 2730 err = -ENOMEM; 2731 goto fail_iput; 2732 } 2733 btrfs_init_delayed_root(fs_info->delayed_root); 2734 2735 btrfs_init_scrub(fs_info); 2736 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2737 fs_info->check_integrity_print_mask = 0; 2738 #endif 2739 btrfs_init_balance(fs_info); 2740 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2741 2742 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2743 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2744 2745 btrfs_init_btree_inode(fs_info); 2746 2747 spin_lock_init(&fs_info->block_group_cache_lock); 2748 fs_info->block_group_cache_tree = RB_ROOT; 2749 fs_info->first_logical_byte = (u64)-1; 2750 2751 extent_io_tree_init(&fs_info->freed_extents[0], NULL); 2752 extent_io_tree_init(&fs_info->freed_extents[1], NULL); 2753 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2754 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2755 2756 mutex_init(&fs_info->ordered_operations_mutex); 2757 mutex_init(&fs_info->tree_log_mutex); 2758 mutex_init(&fs_info->chunk_mutex); 2759 mutex_init(&fs_info->transaction_kthread_mutex); 2760 mutex_init(&fs_info->cleaner_mutex); 2761 mutex_init(&fs_info->ro_block_group_mutex); 2762 init_rwsem(&fs_info->commit_root_sem); 2763 init_rwsem(&fs_info->cleanup_work_sem); 2764 init_rwsem(&fs_info->subvol_sem); 2765 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2766 2767 btrfs_init_dev_replace_locks(fs_info); 2768 btrfs_init_qgroup(fs_info); 2769 2770 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2771 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2772 2773 init_waitqueue_head(&fs_info->transaction_throttle); 2774 init_waitqueue_head(&fs_info->transaction_wait); 2775 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2776 init_waitqueue_head(&fs_info->async_submit_wait); 2777 2778 INIT_LIST_HEAD(&fs_info->pinned_chunks); 2779 2780 /* Usable values until the real ones are cached from the superblock */ 2781 fs_info->nodesize = 4096; 2782 fs_info->sectorsize = 4096; 2783 fs_info->stripesize = 4096; 2784 2785 ret = btrfs_alloc_stripe_hash_table(fs_info); 2786 if (ret) { 2787 err = ret; 2788 goto fail_alloc; 2789 } 2790 2791 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 2792 2793 invalidate_bdev(fs_devices->latest_bdev); 2794 2795 /* 2796 * Read super block and check the signature bytes only 2797 */ 2798 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2799 if (IS_ERR(bh)) { 2800 err = PTR_ERR(bh); 2801 goto fail_alloc; 2802 } 2803 2804 /* 2805 * We want to check superblock checksum, the type is stored inside. 2806 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2807 */ 2808 if (btrfs_check_super_csum(fs_info, bh->b_data)) { 2809 btrfs_err(fs_info, "superblock checksum mismatch"); 2810 err = -EINVAL; 2811 brelse(bh); 2812 goto fail_alloc; 2813 } 2814 2815 /* 2816 * super_copy is zeroed at allocation time and we never touch the 2817 * following bytes up to INFO_SIZE, the checksum is calculated from 2818 * the whole block of INFO_SIZE 2819 */ 2820 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2821 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2822 sizeof(*fs_info->super_for_commit)); 2823 brelse(bh); 2824 2825 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2826 2827 ret = btrfs_validate_mount_super(fs_info); 2828 if (ret) { 2829 btrfs_err(fs_info, "superblock contains fatal errors"); 2830 err = -EINVAL; 2831 goto fail_alloc; 2832 } 2833 2834 disk_super = fs_info->super_copy; 2835 if (!btrfs_super_root(disk_super)) 2836 goto fail_alloc; 2837 2838 /* check FS state, whether FS is broken. */ 2839 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2840 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2841 2842 /* 2843 * run through our array of backup supers and setup 2844 * our ring pointer to the oldest one 2845 */ 2846 generation = btrfs_super_generation(disk_super); 2847 find_oldest_super_backup(fs_info, generation); 2848 2849 /* 2850 * In the long term, we'll store the compression type in the super 2851 * block, and it'll be used for per file compression control. 2852 */ 2853 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2854 2855 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 2856 if (ret) { 2857 err = ret; 2858 goto fail_alloc; 2859 } 2860 2861 features = btrfs_super_incompat_flags(disk_super) & 2862 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2863 if (features) { 2864 btrfs_err(fs_info, 2865 "cannot mount because of unsupported optional features (%llx)", 2866 features); 2867 err = -EINVAL; 2868 goto fail_alloc; 2869 } 2870 2871 features = btrfs_super_incompat_flags(disk_super); 2872 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2873 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 2874 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2875 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 2876 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 2877 2878 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2879 btrfs_info(fs_info, "has skinny extents"); 2880 2881 /* 2882 * flag our filesystem as having big metadata blocks if 2883 * they are bigger than the page size 2884 */ 2885 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 2886 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2887 btrfs_info(fs_info, 2888 "flagging fs with big metadata feature"); 2889 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2890 } 2891 2892 nodesize = btrfs_super_nodesize(disk_super); 2893 sectorsize = btrfs_super_sectorsize(disk_super); 2894 stripesize = sectorsize; 2895 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2896 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2897 2898 /* Cache block sizes */ 2899 fs_info->nodesize = nodesize; 2900 fs_info->sectorsize = sectorsize; 2901 fs_info->stripesize = stripesize; 2902 2903 /* 2904 * mixed block groups end up with duplicate but slightly offset 2905 * extent buffers for the same range. It leads to corruptions 2906 */ 2907 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2908 (sectorsize != nodesize)) { 2909 btrfs_err(fs_info, 2910 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 2911 nodesize, sectorsize); 2912 goto fail_alloc; 2913 } 2914 2915 /* 2916 * Needn't use the lock because there is no other task which will 2917 * update the flag. 2918 */ 2919 btrfs_set_super_incompat_flags(disk_super, features); 2920 2921 features = btrfs_super_compat_ro_flags(disk_super) & 2922 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2923 if (!sb_rdonly(sb) && features) { 2924 btrfs_err(fs_info, 2925 "cannot mount read-write because of unsupported optional features (%llx)", 2926 features); 2927 err = -EINVAL; 2928 goto fail_alloc; 2929 } 2930 2931 ret = btrfs_init_workqueues(fs_info, fs_devices); 2932 if (ret) { 2933 err = ret; 2934 goto fail_sb_buffer; 2935 } 2936 2937 sb->s_bdi->congested_fn = btrfs_congested_fn; 2938 sb->s_bdi->congested_data = fs_info; 2939 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 2940 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE; 2941 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 2942 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 2943 2944 sb->s_blocksize = sectorsize; 2945 sb->s_blocksize_bits = blksize_bits(sectorsize); 2946 memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE); 2947 2948 mutex_lock(&fs_info->chunk_mutex); 2949 ret = btrfs_read_sys_array(fs_info); 2950 mutex_unlock(&fs_info->chunk_mutex); 2951 if (ret) { 2952 btrfs_err(fs_info, "failed to read the system array: %d", ret); 2953 goto fail_sb_buffer; 2954 } 2955 2956 generation = btrfs_super_chunk_root_generation(disk_super); 2957 level = btrfs_super_chunk_root_level(disk_super); 2958 2959 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2960 2961 chunk_root->node = read_tree_block(fs_info, 2962 btrfs_super_chunk_root(disk_super), 2963 generation, level, NULL); 2964 if (IS_ERR(chunk_root->node) || 2965 !extent_buffer_uptodate(chunk_root->node)) { 2966 btrfs_err(fs_info, "failed to read chunk root"); 2967 if (!IS_ERR(chunk_root->node)) 2968 free_extent_buffer(chunk_root->node); 2969 chunk_root->node = NULL; 2970 goto fail_tree_roots; 2971 } 2972 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2973 chunk_root->commit_root = btrfs_root_node(chunk_root); 2974 2975 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2976 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2977 2978 ret = btrfs_read_chunk_tree(fs_info); 2979 if (ret) { 2980 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 2981 goto fail_tree_roots; 2982 } 2983 2984 /* 2985 * Keep the devid that is marked to be the target device for the 2986 * device replace procedure 2987 */ 2988 btrfs_free_extra_devids(fs_devices, 0); 2989 2990 if (!fs_devices->latest_bdev) { 2991 btrfs_err(fs_info, "failed to read devices"); 2992 goto fail_tree_roots; 2993 } 2994 2995 retry_root_backup: 2996 generation = btrfs_super_generation(disk_super); 2997 level = btrfs_super_root_level(disk_super); 2998 2999 tree_root->node = read_tree_block(fs_info, 3000 btrfs_super_root(disk_super), 3001 generation, level, NULL); 3002 if (IS_ERR(tree_root->node) || 3003 !extent_buffer_uptodate(tree_root->node)) { 3004 btrfs_warn(fs_info, "failed to read tree root"); 3005 if (!IS_ERR(tree_root->node)) 3006 free_extent_buffer(tree_root->node); 3007 tree_root->node = NULL; 3008 goto recovery_tree_root; 3009 } 3010 3011 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 3012 tree_root->commit_root = btrfs_root_node(tree_root); 3013 btrfs_set_root_refs(&tree_root->root_item, 1); 3014 3015 mutex_lock(&tree_root->objectid_mutex); 3016 ret = btrfs_find_highest_objectid(tree_root, 3017 &tree_root->highest_objectid); 3018 if (ret) { 3019 mutex_unlock(&tree_root->objectid_mutex); 3020 goto recovery_tree_root; 3021 } 3022 3023 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 3024 3025 mutex_unlock(&tree_root->objectid_mutex); 3026 3027 ret = btrfs_read_roots(fs_info); 3028 if (ret) 3029 goto recovery_tree_root; 3030 3031 fs_info->generation = generation; 3032 fs_info->last_trans_committed = generation; 3033 3034 ret = btrfs_verify_dev_extents(fs_info); 3035 if (ret) { 3036 btrfs_err(fs_info, 3037 "failed to verify dev extents against chunks: %d", 3038 ret); 3039 goto fail_block_groups; 3040 } 3041 ret = btrfs_recover_balance(fs_info); 3042 if (ret) { 3043 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3044 goto fail_block_groups; 3045 } 3046 3047 ret = btrfs_init_dev_stats(fs_info); 3048 if (ret) { 3049 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3050 goto fail_block_groups; 3051 } 3052 3053 ret = btrfs_init_dev_replace(fs_info); 3054 if (ret) { 3055 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3056 goto fail_block_groups; 3057 } 3058 3059 btrfs_free_extra_devids(fs_devices, 1); 3060 3061 ret = btrfs_sysfs_add_fsid(fs_devices, NULL); 3062 if (ret) { 3063 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3064 ret); 3065 goto fail_block_groups; 3066 } 3067 3068 ret = btrfs_sysfs_add_device(fs_devices); 3069 if (ret) { 3070 btrfs_err(fs_info, "failed to init sysfs device interface: %d", 3071 ret); 3072 goto fail_fsdev_sysfs; 3073 } 3074 3075 ret = btrfs_sysfs_add_mounted(fs_info); 3076 if (ret) { 3077 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3078 goto fail_fsdev_sysfs; 3079 } 3080 3081 ret = btrfs_init_space_info(fs_info); 3082 if (ret) { 3083 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3084 goto fail_sysfs; 3085 } 3086 3087 ret = btrfs_read_block_groups(fs_info); 3088 if (ret) { 3089 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3090 goto fail_sysfs; 3091 } 3092 3093 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) { 3094 btrfs_warn(fs_info, 3095 "writeable mount is not allowed due to too many missing devices"); 3096 goto fail_sysfs; 3097 } 3098 3099 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3100 "btrfs-cleaner"); 3101 if (IS_ERR(fs_info->cleaner_kthread)) 3102 goto fail_sysfs; 3103 3104 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3105 tree_root, 3106 "btrfs-transaction"); 3107 if (IS_ERR(fs_info->transaction_kthread)) 3108 goto fail_cleaner; 3109 3110 if (!btrfs_test_opt(fs_info, NOSSD) && 3111 !fs_info->fs_devices->rotating) { 3112 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3113 } 3114 3115 /* 3116 * Mount does not set all options immediately, we can do it now and do 3117 * not have to wait for transaction commit 3118 */ 3119 btrfs_apply_pending_changes(fs_info); 3120 3121 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3122 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3123 ret = btrfsic_mount(fs_info, fs_devices, 3124 btrfs_test_opt(fs_info, 3125 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3126 1 : 0, 3127 fs_info->check_integrity_print_mask); 3128 if (ret) 3129 btrfs_warn(fs_info, 3130 "failed to initialize integrity check module: %d", 3131 ret); 3132 } 3133 #endif 3134 ret = btrfs_read_qgroup_config(fs_info); 3135 if (ret) 3136 goto fail_trans_kthread; 3137 3138 if (btrfs_build_ref_tree(fs_info)) 3139 btrfs_err(fs_info, "couldn't build ref tree"); 3140 3141 /* do not make disk changes in broken FS or nologreplay is given */ 3142 if (btrfs_super_log_root(disk_super) != 0 && 3143 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3144 ret = btrfs_replay_log(fs_info, fs_devices); 3145 if (ret) { 3146 err = ret; 3147 goto fail_qgroup; 3148 } 3149 } 3150 3151 ret = btrfs_find_orphan_roots(fs_info); 3152 if (ret) 3153 goto fail_qgroup; 3154 3155 if (!sb_rdonly(sb)) { 3156 ret = btrfs_cleanup_fs_roots(fs_info); 3157 if (ret) 3158 goto fail_qgroup; 3159 3160 mutex_lock(&fs_info->cleaner_mutex); 3161 ret = btrfs_recover_relocation(tree_root); 3162 mutex_unlock(&fs_info->cleaner_mutex); 3163 if (ret < 0) { 3164 btrfs_warn(fs_info, "failed to recover relocation: %d", 3165 ret); 3166 err = -EINVAL; 3167 goto fail_qgroup; 3168 } 3169 } 3170 3171 location.objectid = BTRFS_FS_TREE_OBJECTID; 3172 location.type = BTRFS_ROOT_ITEM_KEY; 3173 location.offset = 0; 3174 3175 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 3176 if (IS_ERR(fs_info->fs_root)) { 3177 err = PTR_ERR(fs_info->fs_root); 3178 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3179 goto fail_qgroup; 3180 } 3181 3182 if (sb_rdonly(sb)) 3183 return 0; 3184 3185 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3186 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3187 clear_free_space_tree = 1; 3188 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3189 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3190 btrfs_warn(fs_info, "free space tree is invalid"); 3191 clear_free_space_tree = 1; 3192 } 3193 3194 if (clear_free_space_tree) { 3195 btrfs_info(fs_info, "clearing free space tree"); 3196 ret = btrfs_clear_free_space_tree(fs_info); 3197 if (ret) { 3198 btrfs_warn(fs_info, 3199 "failed to clear free space tree: %d", ret); 3200 close_ctree(fs_info); 3201 return ret; 3202 } 3203 } 3204 3205 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3206 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3207 btrfs_info(fs_info, "creating free space tree"); 3208 ret = btrfs_create_free_space_tree(fs_info); 3209 if (ret) { 3210 btrfs_warn(fs_info, 3211 "failed to create free space tree: %d", ret); 3212 close_ctree(fs_info); 3213 return ret; 3214 } 3215 } 3216 3217 down_read(&fs_info->cleanup_work_sem); 3218 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3219 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3220 up_read(&fs_info->cleanup_work_sem); 3221 close_ctree(fs_info); 3222 return ret; 3223 } 3224 up_read(&fs_info->cleanup_work_sem); 3225 3226 ret = btrfs_resume_balance_async(fs_info); 3227 if (ret) { 3228 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3229 close_ctree(fs_info); 3230 return ret; 3231 } 3232 3233 ret = btrfs_resume_dev_replace_async(fs_info); 3234 if (ret) { 3235 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3236 close_ctree(fs_info); 3237 return ret; 3238 } 3239 3240 btrfs_qgroup_rescan_resume(fs_info); 3241 3242 if (!fs_info->uuid_root) { 3243 btrfs_info(fs_info, "creating UUID tree"); 3244 ret = btrfs_create_uuid_tree(fs_info); 3245 if (ret) { 3246 btrfs_warn(fs_info, 3247 "failed to create the UUID tree: %d", ret); 3248 close_ctree(fs_info); 3249 return ret; 3250 } 3251 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3252 fs_info->generation != 3253 btrfs_super_uuid_tree_generation(disk_super)) { 3254 btrfs_info(fs_info, "checking UUID tree"); 3255 ret = btrfs_check_uuid_tree(fs_info); 3256 if (ret) { 3257 btrfs_warn(fs_info, 3258 "failed to check the UUID tree: %d", ret); 3259 close_ctree(fs_info); 3260 return ret; 3261 } 3262 } else { 3263 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3264 } 3265 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3266 3267 /* 3268 * backuproot only affect mount behavior, and if open_ctree succeeded, 3269 * no need to keep the flag 3270 */ 3271 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3272 3273 return 0; 3274 3275 fail_qgroup: 3276 btrfs_free_qgroup_config(fs_info); 3277 fail_trans_kthread: 3278 kthread_stop(fs_info->transaction_kthread); 3279 btrfs_cleanup_transaction(fs_info); 3280 btrfs_free_fs_roots(fs_info); 3281 fail_cleaner: 3282 kthread_stop(fs_info->cleaner_kthread); 3283 3284 /* 3285 * make sure we're done with the btree inode before we stop our 3286 * kthreads 3287 */ 3288 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3289 3290 fail_sysfs: 3291 btrfs_sysfs_remove_mounted(fs_info); 3292 3293 fail_fsdev_sysfs: 3294 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3295 3296 fail_block_groups: 3297 btrfs_put_block_group_cache(fs_info); 3298 3299 fail_tree_roots: 3300 free_root_pointers(fs_info, 1); 3301 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3302 3303 fail_sb_buffer: 3304 btrfs_stop_all_workers(fs_info); 3305 btrfs_free_block_groups(fs_info); 3306 fail_alloc: 3307 fail_iput: 3308 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3309 3310 iput(fs_info->btree_inode); 3311 fail_bio_counter: 3312 percpu_counter_destroy(&fs_info->bio_counter); 3313 fail_delalloc_bytes: 3314 percpu_counter_destroy(&fs_info->delalloc_bytes); 3315 fail_dirty_metadata_bytes: 3316 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3317 fail_srcu: 3318 cleanup_srcu_struct(&fs_info->subvol_srcu); 3319 fail: 3320 btrfs_free_stripe_hash_table(fs_info); 3321 btrfs_close_devices(fs_info->fs_devices); 3322 return err; 3323 3324 recovery_tree_root: 3325 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 3326 goto fail_tree_roots; 3327 3328 free_root_pointers(fs_info, 0); 3329 3330 /* don't use the log in recovery mode, it won't be valid */ 3331 btrfs_set_super_log_root(disk_super, 0); 3332 3333 /* we can't trust the free space cache either */ 3334 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3335 3336 ret = next_root_backup(fs_info, fs_info->super_copy, 3337 &num_backups_tried, &backup_index); 3338 if (ret == -1) 3339 goto fail_block_groups; 3340 goto retry_root_backup; 3341 } 3342 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3343 3344 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3345 { 3346 if (uptodate) { 3347 set_buffer_uptodate(bh); 3348 } else { 3349 struct btrfs_device *device = (struct btrfs_device *) 3350 bh->b_private; 3351 3352 btrfs_warn_rl_in_rcu(device->fs_info, 3353 "lost page write due to IO error on %s", 3354 rcu_str_deref(device->name)); 3355 /* note, we don't set_buffer_write_io_error because we have 3356 * our own ways of dealing with the IO errors 3357 */ 3358 clear_buffer_uptodate(bh); 3359 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3360 } 3361 unlock_buffer(bh); 3362 put_bh(bh); 3363 } 3364 3365 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, 3366 struct buffer_head **bh_ret) 3367 { 3368 struct buffer_head *bh; 3369 struct btrfs_super_block *super; 3370 u64 bytenr; 3371 3372 bytenr = btrfs_sb_offset(copy_num); 3373 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3374 return -EINVAL; 3375 3376 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE); 3377 /* 3378 * If we fail to read from the underlying devices, as of now 3379 * the best option we have is to mark it EIO. 3380 */ 3381 if (!bh) 3382 return -EIO; 3383 3384 super = (struct btrfs_super_block *)bh->b_data; 3385 if (btrfs_super_bytenr(super) != bytenr || 3386 btrfs_super_magic(super) != BTRFS_MAGIC) { 3387 brelse(bh); 3388 return -EINVAL; 3389 } 3390 3391 *bh_ret = bh; 3392 return 0; 3393 } 3394 3395 3396 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3397 { 3398 struct buffer_head *bh; 3399 struct buffer_head *latest = NULL; 3400 struct btrfs_super_block *super; 3401 int i; 3402 u64 transid = 0; 3403 int ret = -EINVAL; 3404 3405 /* we would like to check all the supers, but that would make 3406 * a btrfs mount succeed after a mkfs from a different FS. 3407 * So, we need to add a special mount option to scan for 3408 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3409 */ 3410 for (i = 0; i < 1; i++) { 3411 ret = btrfs_read_dev_one_super(bdev, i, &bh); 3412 if (ret) 3413 continue; 3414 3415 super = (struct btrfs_super_block *)bh->b_data; 3416 3417 if (!latest || btrfs_super_generation(super) > transid) { 3418 brelse(latest); 3419 latest = bh; 3420 transid = btrfs_super_generation(super); 3421 } else { 3422 brelse(bh); 3423 } 3424 } 3425 3426 if (!latest) 3427 return ERR_PTR(ret); 3428 3429 return latest; 3430 } 3431 3432 /* 3433 * Write superblock @sb to the @device. Do not wait for completion, all the 3434 * buffer heads we write are pinned. 3435 * 3436 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3437 * the expected device size at commit time. Note that max_mirrors must be 3438 * same for write and wait phases. 3439 * 3440 * Return number of errors when buffer head is not found or submission fails. 3441 */ 3442 static int write_dev_supers(struct btrfs_device *device, 3443 struct btrfs_super_block *sb, int max_mirrors) 3444 { 3445 struct buffer_head *bh; 3446 int i; 3447 int ret; 3448 int errors = 0; 3449 u32 crc; 3450 u64 bytenr; 3451 int op_flags; 3452 3453 if (max_mirrors == 0) 3454 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3455 3456 for (i = 0; i < max_mirrors; i++) { 3457 bytenr = btrfs_sb_offset(i); 3458 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3459 device->commit_total_bytes) 3460 break; 3461 3462 btrfs_set_super_bytenr(sb, bytenr); 3463 3464 crc = ~(u32)0; 3465 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc, 3466 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 3467 btrfs_csum_final(crc, sb->csum); 3468 3469 /* One reference for us, and we leave it for the caller */ 3470 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, 3471 BTRFS_SUPER_INFO_SIZE); 3472 if (!bh) { 3473 btrfs_err(device->fs_info, 3474 "couldn't get super buffer head for bytenr %llu", 3475 bytenr); 3476 errors++; 3477 continue; 3478 } 3479 3480 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3481 3482 /* one reference for submit_bh */ 3483 get_bh(bh); 3484 3485 set_buffer_uptodate(bh); 3486 lock_buffer(bh); 3487 bh->b_end_io = btrfs_end_buffer_write_sync; 3488 bh->b_private = device; 3489 3490 /* 3491 * we fua the first super. The others we allow 3492 * to go down lazy. 3493 */ 3494 op_flags = REQ_SYNC | REQ_META | REQ_PRIO; 3495 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3496 op_flags |= REQ_FUA; 3497 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh); 3498 if (ret) 3499 errors++; 3500 } 3501 return errors < i ? 0 : -1; 3502 } 3503 3504 /* 3505 * Wait for write completion of superblocks done by write_dev_supers, 3506 * @max_mirrors same for write and wait phases. 3507 * 3508 * Return number of errors when buffer head is not found or not marked up to 3509 * date. 3510 */ 3511 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3512 { 3513 struct buffer_head *bh; 3514 int i; 3515 int errors = 0; 3516 bool primary_failed = false; 3517 u64 bytenr; 3518 3519 if (max_mirrors == 0) 3520 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3521 3522 for (i = 0; i < max_mirrors; i++) { 3523 bytenr = btrfs_sb_offset(i); 3524 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3525 device->commit_total_bytes) 3526 break; 3527 3528 bh = __find_get_block(device->bdev, 3529 bytenr / BTRFS_BDEV_BLOCKSIZE, 3530 BTRFS_SUPER_INFO_SIZE); 3531 if (!bh) { 3532 errors++; 3533 if (i == 0) 3534 primary_failed = true; 3535 continue; 3536 } 3537 wait_on_buffer(bh); 3538 if (!buffer_uptodate(bh)) { 3539 errors++; 3540 if (i == 0) 3541 primary_failed = true; 3542 } 3543 3544 /* drop our reference */ 3545 brelse(bh); 3546 3547 /* drop the reference from the writing run */ 3548 brelse(bh); 3549 } 3550 3551 /* log error, force error return */ 3552 if (primary_failed) { 3553 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3554 device->devid); 3555 return -1; 3556 } 3557 3558 return errors < i ? 0 : -1; 3559 } 3560 3561 /* 3562 * endio for the write_dev_flush, this will wake anyone waiting 3563 * for the barrier when it is done 3564 */ 3565 static void btrfs_end_empty_barrier(struct bio *bio) 3566 { 3567 complete(bio->bi_private); 3568 } 3569 3570 /* 3571 * Submit a flush request to the device if it supports it. Error handling is 3572 * done in the waiting counterpart. 3573 */ 3574 static void write_dev_flush(struct btrfs_device *device) 3575 { 3576 struct request_queue *q = bdev_get_queue(device->bdev); 3577 struct bio *bio = device->flush_bio; 3578 3579 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 3580 return; 3581 3582 bio_reset(bio); 3583 bio->bi_end_io = btrfs_end_empty_barrier; 3584 bio_set_dev(bio, device->bdev); 3585 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 3586 init_completion(&device->flush_wait); 3587 bio->bi_private = &device->flush_wait; 3588 3589 btrfsic_submit_bio(bio); 3590 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3591 } 3592 3593 /* 3594 * If the flush bio has been submitted by write_dev_flush, wait for it. 3595 */ 3596 static blk_status_t wait_dev_flush(struct btrfs_device *device) 3597 { 3598 struct bio *bio = device->flush_bio; 3599 3600 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3601 return BLK_STS_OK; 3602 3603 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3604 wait_for_completion_io(&device->flush_wait); 3605 3606 return bio->bi_status; 3607 } 3608 3609 static int check_barrier_error(struct btrfs_fs_info *fs_info) 3610 { 3611 if (!btrfs_check_rw_degradable(fs_info, NULL)) 3612 return -EIO; 3613 return 0; 3614 } 3615 3616 /* 3617 * send an empty flush down to each device in parallel, 3618 * then wait for them 3619 */ 3620 static int barrier_all_devices(struct btrfs_fs_info *info) 3621 { 3622 struct list_head *head; 3623 struct btrfs_device *dev; 3624 int errors_wait = 0; 3625 blk_status_t ret; 3626 3627 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3628 /* send down all the barriers */ 3629 head = &info->fs_devices->devices; 3630 list_for_each_entry(dev, head, dev_list) { 3631 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3632 continue; 3633 if (!dev->bdev) 3634 continue; 3635 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3636 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3637 continue; 3638 3639 write_dev_flush(dev); 3640 dev->last_flush_error = BLK_STS_OK; 3641 } 3642 3643 /* wait for all the barriers */ 3644 list_for_each_entry(dev, head, dev_list) { 3645 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3646 continue; 3647 if (!dev->bdev) { 3648 errors_wait++; 3649 continue; 3650 } 3651 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3652 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3653 continue; 3654 3655 ret = wait_dev_flush(dev); 3656 if (ret) { 3657 dev->last_flush_error = ret; 3658 btrfs_dev_stat_inc_and_print(dev, 3659 BTRFS_DEV_STAT_FLUSH_ERRS); 3660 errors_wait++; 3661 } 3662 } 3663 3664 if (errors_wait) { 3665 /* 3666 * At some point we need the status of all disks 3667 * to arrive at the volume status. So error checking 3668 * is being pushed to a separate loop. 3669 */ 3670 return check_barrier_error(info); 3671 } 3672 return 0; 3673 } 3674 3675 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3676 { 3677 int raid_type; 3678 int min_tolerated = INT_MAX; 3679 3680 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3681 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3682 min_tolerated = min(min_tolerated, 3683 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3684 tolerated_failures); 3685 3686 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3687 if (raid_type == BTRFS_RAID_SINGLE) 3688 continue; 3689 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 3690 continue; 3691 min_tolerated = min(min_tolerated, 3692 btrfs_raid_array[raid_type]. 3693 tolerated_failures); 3694 } 3695 3696 if (min_tolerated == INT_MAX) { 3697 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3698 min_tolerated = 0; 3699 } 3700 3701 return min_tolerated; 3702 } 3703 3704 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3705 { 3706 struct list_head *head; 3707 struct btrfs_device *dev; 3708 struct btrfs_super_block *sb; 3709 struct btrfs_dev_item *dev_item; 3710 int ret; 3711 int do_barriers; 3712 int max_errors; 3713 int total_errors = 0; 3714 u64 flags; 3715 3716 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 3717 3718 /* 3719 * max_mirrors == 0 indicates we're from commit_transaction, 3720 * not from fsync where the tree roots in fs_info have not 3721 * been consistent on disk. 3722 */ 3723 if (max_mirrors == 0) 3724 backup_super_roots(fs_info); 3725 3726 sb = fs_info->super_for_commit; 3727 dev_item = &sb->dev_item; 3728 3729 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3730 head = &fs_info->fs_devices->devices; 3731 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 3732 3733 if (do_barriers) { 3734 ret = barrier_all_devices(fs_info); 3735 if (ret) { 3736 mutex_unlock( 3737 &fs_info->fs_devices->device_list_mutex); 3738 btrfs_handle_fs_error(fs_info, ret, 3739 "errors while submitting device barriers."); 3740 return ret; 3741 } 3742 } 3743 3744 list_for_each_entry(dev, head, dev_list) { 3745 if (!dev->bdev) { 3746 total_errors++; 3747 continue; 3748 } 3749 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3750 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3751 continue; 3752 3753 btrfs_set_stack_device_generation(dev_item, 0); 3754 btrfs_set_stack_device_type(dev_item, dev->type); 3755 btrfs_set_stack_device_id(dev_item, dev->devid); 3756 btrfs_set_stack_device_total_bytes(dev_item, 3757 dev->commit_total_bytes); 3758 btrfs_set_stack_device_bytes_used(dev_item, 3759 dev->commit_bytes_used); 3760 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3761 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3762 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3763 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3764 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE); 3765 3766 flags = btrfs_super_flags(sb); 3767 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3768 3769 ret = btrfs_validate_write_super(fs_info, sb); 3770 if (ret < 0) { 3771 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3772 btrfs_handle_fs_error(fs_info, -EUCLEAN, 3773 "unexpected superblock corruption detected"); 3774 return -EUCLEAN; 3775 } 3776 3777 ret = write_dev_supers(dev, sb, max_mirrors); 3778 if (ret) 3779 total_errors++; 3780 } 3781 if (total_errors > max_errors) { 3782 btrfs_err(fs_info, "%d errors while writing supers", 3783 total_errors); 3784 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3785 3786 /* FUA is masked off if unsupported and can't be the reason */ 3787 btrfs_handle_fs_error(fs_info, -EIO, 3788 "%d errors while writing supers", 3789 total_errors); 3790 return -EIO; 3791 } 3792 3793 total_errors = 0; 3794 list_for_each_entry(dev, head, dev_list) { 3795 if (!dev->bdev) 3796 continue; 3797 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3798 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3799 continue; 3800 3801 ret = wait_dev_supers(dev, max_mirrors); 3802 if (ret) 3803 total_errors++; 3804 } 3805 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3806 if (total_errors > max_errors) { 3807 btrfs_handle_fs_error(fs_info, -EIO, 3808 "%d errors while writing supers", 3809 total_errors); 3810 return -EIO; 3811 } 3812 return 0; 3813 } 3814 3815 /* Drop a fs root from the radix tree and free it. */ 3816 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3817 struct btrfs_root *root) 3818 { 3819 spin_lock(&fs_info->fs_roots_radix_lock); 3820 radix_tree_delete(&fs_info->fs_roots_radix, 3821 (unsigned long)root->root_key.objectid); 3822 spin_unlock(&fs_info->fs_roots_radix_lock); 3823 3824 if (btrfs_root_refs(&root->root_item) == 0) 3825 synchronize_srcu(&fs_info->subvol_srcu); 3826 3827 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3828 btrfs_free_log(NULL, root); 3829 if (root->reloc_root) { 3830 free_extent_buffer(root->reloc_root->node); 3831 free_extent_buffer(root->reloc_root->commit_root); 3832 btrfs_put_fs_root(root->reloc_root); 3833 root->reloc_root = NULL; 3834 } 3835 } 3836 3837 if (root->free_ino_pinned) 3838 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3839 if (root->free_ino_ctl) 3840 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3841 btrfs_free_fs_root(root); 3842 } 3843 3844 void btrfs_free_fs_root(struct btrfs_root *root) 3845 { 3846 iput(root->ino_cache_inode); 3847 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3848 if (root->anon_dev) 3849 free_anon_bdev(root->anon_dev); 3850 if (root->subv_writers) 3851 btrfs_free_subvolume_writers(root->subv_writers); 3852 free_extent_buffer(root->node); 3853 free_extent_buffer(root->commit_root); 3854 kfree(root->free_ino_ctl); 3855 kfree(root->free_ino_pinned); 3856 btrfs_put_fs_root(root); 3857 } 3858 3859 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3860 { 3861 u64 root_objectid = 0; 3862 struct btrfs_root *gang[8]; 3863 int i = 0; 3864 int err = 0; 3865 unsigned int ret = 0; 3866 int index; 3867 3868 while (1) { 3869 index = srcu_read_lock(&fs_info->subvol_srcu); 3870 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3871 (void **)gang, root_objectid, 3872 ARRAY_SIZE(gang)); 3873 if (!ret) { 3874 srcu_read_unlock(&fs_info->subvol_srcu, index); 3875 break; 3876 } 3877 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3878 3879 for (i = 0; i < ret; i++) { 3880 /* Avoid to grab roots in dead_roots */ 3881 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3882 gang[i] = NULL; 3883 continue; 3884 } 3885 /* grab all the search result for later use */ 3886 gang[i] = btrfs_grab_fs_root(gang[i]); 3887 } 3888 srcu_read_unlock(&fs_info->subvol_srcu, index); 3889 3890 for (i = 0; i < ret; i++) { 3891 if (!gang[i]) 3892 continue; 3893 root_objectid = gang[i]->root_key.objectid; 3894 err = btrfs_orphan_cleanup(gang[i]); 3895 if (err) 3896 break; 3897 btrfs_put_fs_root(gang[i]); 3898 } 3899 root_objectid++; 3900 } 3901 3902 /* release the uncleaned roots due to error */ 3903 for (; i < ret; i++) { 3904 if (gang[i]) 3905 btrfs_put_fs_root(gang[i]); 3906 } 3907 return err; 3908 } 3909 3910 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 3911 { 3912 struct btrfs_root *root = fs_info->tree_root; 3913 struct btrfs_trans_handle *trans; 3914 3915 mutex_lock(&fs_info->cleaner_mutex); 3916 btrfs_run_delayed_iputs(fs_info); 3917 mutex_unlock(&fs_info->cleaner_mutex); 3918 wake_up_process(fs_info->cleaner_kthread); 3919 3920 /* wait until ongoing cleanup work done */ 3921 down_write(&fs_info->cleanup_work_sem); 3922 up_write(&fs_info->cleanup_work_sem); 3923 3924 trans = btrfs_join_transaction(root); 3925 if (IS_ERR(trans)) 3926 return PTR_ERR(trans); 3927 return btrfs_commit_transaction(trans); 3928 } 3929 3930 void close_ctree(struct btrfs_fs_info *fs_info) 3931 { 3932 int ret; 3933 3934 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 3935 3936 /* wait for the qgroup rescan worker to stop */ 3937 btrfs_qgroup_wait_for_completion(fs_info, false); 3938 3939 /* wait for the uuid_scan task to finish */ 3940 down(&fs_info->uuid_tree_rescan_sem); 3941 /* avoid complains from lockdep et al., set sem back to initial state */ 3942 up(&fs_info->uuid_tree_rescan_sem); 3943 3944 /* pause restriper - we want to resume on mount */ 3945 btrfs_pause_balance(fs_info); 3946 3947 btrfs_dev_replace_suspend_for_unmount(fs_info); 3948 3949 btrfs_scrub_cancel(fs_info); 3950 3951 /* wait for any defraggers to finish */ 3952 wait_event(fs_info->transaction_wait, 3953 (atomic_read(&fs_info->defrag_running) == 0)); 3954 3955 /* clear out the rbtree of defraggable inodes */ 3956 btrfs_cleanup_defrag_inodes(fs_info); 3957 3958 cancel_work_sync(&fs_info->async_reclaim_work); 3959 3960 if (!sb_rdonly(fs_info->sb)) { 3961 /* 3962 * If the cleaner thread is stopped and there are 3963 * block groups queued for removal, the deletion will be 3964 * skipped when we quit the cleaner thread. 3965 */ 3966 btrfs_delete_unused_bgs(fs_info); 3967 3968 ret = btrfs_commit_super(fs_info); 3969 if (ret) 3970 btrfs_err(fs_info, "commit super ret %d", ret); 3971 } 3972 3973 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) || 3974 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) 3975 btrfs_error_commit_super(fs_info); 3976 3977 kthread_stop(fs_info->transaction_kthread); 3978 kthread_stop(fs_info->cleaner_kthread); 3979 3980 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 3981 3982 btrfs_free_qgroup_config(fs_info); 3983 ASSERT(list_empty(&fs_info->delalloc_roots)); 3984 3985 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3986 btrfs_info(fs_info, "at unmount delalloc count %lld", 3987 percpu_counter_sum(&fs_info->delalloc_bytes)); 3988 } 3989 3990 btrfs_sysfs_remove_mounted(fs_info); 3991 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3992 3993 btrfs_free_fs_roots(fs_info); 3994 3995 btrfs_put_block_group_cache(fs_info); 3996 3997 /* 3998 * we must make sure there is not any read request to 3999 * submit after we stopping all workers. 4000 */ 4001 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4002 btrfs_stop_all_workers(fs_info); 4003 4004 btrfs_free_block_groups(fs_info); 4005 4006 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4007 free_root_pointers(fs_info, 1); 4008 4009 iput(fs_info->btree_inode); 4010 4011 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4012 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4013 btrfsic_unmount(fs_info->fs_devices); 4014 #endif 4015 4016 btrfs_close_devices(fs_info->fs_devices); 4017 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4018 4019 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 4020 percpu_counter_destroy(&fs_info->delalloc_bytes); 4021 percpu_counter_destroy(&fs_info->bio_counter); 4022 cleanup_srcu_struct(&fs_info->subvol_srcu); 4023 4024 btrfs_free_stripe_hash_table(fs_info); 4025 btrfs_free_ref_cache(fs_info); 4026 4027 while (!list_empty(&fs_info->pinned_chunks)) { 4028 struct extent_map *em; 4029 4030 em = list_first_entry(&fs_info->pinned_chunks, 4031 struct extent_map, list); 4032 list_del_init(&em->list); 4033 free_extent_map(em); 4034 } 4035 } 4036 4037 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4038 int atomic) 4039 { 4040 int ret; 4041 struct inode *btree_inode = buf->pages[0]->mapping->host; 4042 4043 ret = extent_buffer_uptodate(buf); 4044 if (!ret) 4045 return ret; 4046 4047 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4048 parent_transid, atomic); 4049 if (ret == -EAGAIN) 4050 return ret; 4051 return !ret; 4052 } 4053 4054 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4055 { 4056 struct btrfs_fs_info *fs_info; 4057 struct btrfs_root *root; 4058 u64 transid = btrfs_header_generation(buf); 4059 int was_dirty; 4060 4061 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4062 /* 4063 * This is a fast path so only do this check if we have sanity tests 4064 * enabled. Normal people shouldn't be using umapped buffers as dirty 4065 * outside of the sanity tests. 4066 */ 4067 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4068 return; 4069 #endif 4070 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4071 fs_info = root->fs_info; 4072 btrfs_assert_tree_locked(buf); 4073 if (transid != fs_info->generation) 4074 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4075 buf->start, transid, fs_info->generation); 4076 was_dirty = set_extent_buffer_dirty(buf); 4077 if (!was_dirty) 4078 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4079 buf->len, 4080 fs_info->dirty_metadata_batch); 4081 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4082 /* 4083 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4084 * but item data not updated. 4085 * So here we should only check item pointers, not item data. 4086 */ 4087 if (btrfs_header_level(buf) == 0 && 4088 btrfs_check_leaf_relaxed(fs_info, buf)) { 4089 btrfs_print_leaf(buf); 4090 ASSERT(0); 4091 } 4092 #endif 4093 } 4094 4095 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4096 int flush_delayed) 4097 { 4098 /* 4099 * looks as though older kernels can get into trouble with 4100 * this code, they end up stuck in balance_dirty_pages forever 4101 */ 4102 int ret; 4103 4104 if (current->flags & PF_MEMALLOC) 4105 return; 4106 4107 if (flush_delayed) 4108 btrfs_balance_delayed_items(fs_info); 4109 4110 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4111 BTRFS_DIRTY_METADATA_THRESH, 4112 fs_info->dirty_metadata_batch); 4113 if (ret > 0) { 4114 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4115 } 4116 } 4117 4118 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4119 { 4120 __btrfs_btree_balance_dirty(fs_info, 1); 4121 } 4122 4123 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4124 { 4125 __btrfs_btree_balance_dirty(fs_info, 0); 4126 } 4127 4128 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level, 4129 struct btrfs_key *first_key) 4130 { 4131 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4132 struct btrfs_fs_info *fs_info = root->fs_info; 4133 4134 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid, 4135 level, first_key); 4136 } 4137 4138 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4139 { 4140 /* cleanup FS via transaction */ 4141 btrfs_cleanup_transaction(fs_info); 4142 4143 mutex_lock(&fs_info->cleaner_mutex); 4144 btrfs_run_delayed_iputs(fs_info); 4145 mutex_unlock(&fs_info->cleaner_mutex); 4146 4147 down_write(&fs_info->cleanup_work_sem); 4148 up_write(&fs_info->cleanup_work_sem); 4149 } 4150 4151 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4152 { 4153 struct btrfs_ordered_extent *ordered; 4154 4155 spin_lock(&root->ordered_extent_lock); 4156 /* 4157 * This will just short circuit the ordered completion stuff which will 4158 * make sure the ordered extent gets properly cleaned up. 4159 */ 4160 list_for_each_entry(ordered, &root->ordered_extents, 4161 root_extent_list) 4162 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4163 spin_unlock(&root->ordered_extent_lock); 4164 } 4165 4166 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4167 { 4168 struct btrfs_root *root; 4169 struct list_head splice; 4170 4171 INIT_LIST_HEAD(&splice); 4172 4173 spin_lock(&fs_info->ordered_root_lock); 4174 list_splice_init(&fs_info->ordered_roots, &splice); 4175 while (!list_empty(&splice)) { 4176 root = list_first_entry(&splice, struct btrfs_root, 4177 ordered_root); 4178 list_move_tail(&root->ordered_root, 4179 &fs_info->ordered_roots); 4180 4181 spin_unlock(&fs_info->ordered_root_lock); 4182 btrfs_destroy_ordered_extents(root); 4183 4184 cond_resched(); 4185 spin_lock(&fs_info->ordered_root_lock); 4186 } 4187 spin_unlock(&fs_info->ordered_root_lock); 4188 } 4189 4190 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4191 struct btrfs_fs_info *fs_info) 4192 { 4193 struct rb_node *node; 4194 struct btrfs_delayed_ref_root *delayed_refs; 4195 struct btrfs_delayed_ref_node *ref; 4196 int ret = 0; 4197 4198 delayed_refs = &trans->delayed_refs; 4199 4200 spin_lock(&delayed_refs->lock); 4201 if (atomic_read(&delayed_refs->num_entries) == 0) { 4202 spin_unlock(&delayed_refs->lock); 4203 btrfs_info(fs_info, "delayed_refs has NO entry"); 4204 return ret; 4205 } 4206 4207 while ((node = rb_first(&delayed_refs->href_root)) != NULL) { 4208 struct btrfs_delayed_ref_head *head; 4209 struct rb_node *n; 4210 bool pin_bytes = false; 4211 4212 head = rb_entry(node, struct btrfs_delayed_ref_head, 4213 href_node); 4214 if (!mutex_trylock(&head->mutex)) { 4215 refcount_inc(&head->refs); 4216 spin_unlock(&delayed_refs->lock); 4217 4218 mutex_lock(&head->mutex); 4219 mutex_unlock(&head->mutex); 4220 btrfs_put_delayed_ref_head(head); 4221 spin_lock(&delayed_refs->lock); 4222 continue; 4223 } 4224 spin_lock(&head->lock); 4225 while ((n = rb_first(&head->ref_tree)) != NULL) { 4226 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4227 ref_node); 4228 ref->in_tree = 0; 4229 rb_erase(&ref->ref_node, &head->ref_tree); 4230 RB_CLEAR_NODE(&ref->ref_node); 4231 if (!list_empty(&ref->add_list)) 4232 list_del(&ref->add_list); 4233 atomic_dec(&delayed_refs->num_entries); 4234 btrfs_put_delayed_ref(ref); 4235 } 4236 if (head->must_insert_reserved) 4237 pin_bytes = true; 4238 btrfs_free_delayed_extent_op(head->extent_op); 4239 delayed_refs->num_heads--; 4240 if (head->processing == 0) 4241 delayed_refs->num_heads_ready--; 4242 atomic_dec(&delayed_refs->num_entries); 4243 rb_erase(&head->href_node, &delayed_refs->href_root); 4244 RB_CLEAR_NODE(&head->href_node); 4245 spin_unlock(&head->lock); 4246 spin_unlock(&delayed_refs->lock); 4247 mutex_unlock(&head->mutex); 4248 4249 if (pin_bytes) 4250 btrfs_pin_extent(fs_info, head->bytenr, 4251 head->num_bytes, 1); 4252 btrfs_put_delayed_ref_head(head); 4253 cond_resched(); 4254 spin_lock(&delayed_refs->lock); 4255 } 4256 4257 spin_unlock(&delayed_refs->lock); 4258 4259 return ret; 4260 } 4261 4262 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4263 { 4264 struct btrfs_inode *btrfs_inode; 4265 struct list_head splice; 4266 4267 INIT_LIST_HEAD(&splice); 4268 4269 spin_lock(&root->delalloc_lock); 4270 list_splice_init(&root->delalloc_inodes, &splice); 4271 4272 while (!list_empty(&splice)) { 4273 struct inode *inode = NULL; 4274 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4275 delalloc_inodes); 4276 __btrfs_del_delalloc_inode(root, btrfs_inode); 4277 spin_unlock(&root->delalloc_lock); 4278 4279 /* 4280 * Make sure we get a live inode and that it'll not disappear 4281 * meanwhile. 4282 */ 4283 inode = igrab(&btrfs_inode->vfs_inode); 4284 if (inode) { 4285 invalidate_inode_pages2(inode->i_mapping); 4286 iput(inode); 4287 } 4288 spin_lock(&root->delalloc_lock); 4289 } 4290 spin_unlock(&root->delalloc_lock); 4291 } 4292 4293 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4294 { 4295 struct btrfs_root *root; 4296 struct list_head splice; 4297 4298 INIT_LIST_HEAD(&splice); 4299 4300 spin_lock(&fs_info->delalloc_root_lock); 4301 list_splice_init(&fs_info->delalloc_roots, &splice); 4302 while (!list_empty(&splice)) { 4303 root = list_first_entry(&splice, struct btrfs_root, 4304 delalloc_root); 4305 root = btrfs_grab_fs_root(root); 4306 BUG_ON(!root); 4307 spin_unlock(&fs_info->delalloc_root_lock); 4308 4309 btrfs_destroy_delalloc_inodes(root); 4310 btrfs_put_fs_root(root); 4311 4312 spin_lock(&fs_info->delalloc_root_lock); 4313 } 4314 spin_unlock(&fs_info->delalloc_root_lock); 4315 } 4316 4317 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4318 struct extent_io_tree *dirty_pages, 4319 int mark) 4320 { 4321 int ret; 4322 struct extent_buffer *eb; 4323 u64 start = 0; 4324 u64 end; 4325 4326 while (1) { 4327 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4328 mark, NULL); 4329 if (ret) 4330 break; 4331 4332 clear_extent_bits(dirty_pages, start, end, mark); 4333 while (start <= end) { 4334 eb = find_extent_buffer(fs_info, start); 4335 start += fs_info->nodesize; 4336 if (!eb) 4337 continue; 4338 wait_on_extent_buffer_writeback(eb); 4339 4340 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4341 &eb->bflags)) 4342 clear_extent_buffer_dirty(eb); 4343 free_extent_buffer_stale(eb); 4344 } 4345 } 4346 4347 return ret; 4348 } 4349 4350 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4351 struct extent_io_tree *pinned_extents) 4352 { 4353 struct extent_io_tree *unpin; 4354 u64 start; 4355 u64 end; 4356 int ret; 4357 bool loop = true; 4358 4359 unpin = pinned_extents; 4360 again: 4361 while (1) { 4362 ret = find_first_extent_bit(unpin, 0, &start, &end, 4363 EXTENT_DIRTY, NULL); 4364 if (ret) 4365 break; 4366 4367 clear_extent_dirty(unpin, start, end); 4368 btrfs_error_unpin_extent_range(fs_info, start, end); 4369 cond_resched(); 4370 } 4371 4372 if (loop) { 4373 if (unpin == &fs_info->freed_extents[0]) 4374 unpin = &fs_info->freed_extents[1]; 4375 else 4376 unpin = &fs_info->freed_extents[0]; 4377 loop = false; 4378 goto again; 4379 } 4380 4381 return 0; 4382 } 4383 4384 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache) 4385 { 4386 struct inode *inode; 4387 4388 inode = cache->io_ctl.inode; 4389 if (inode) { 4390 invalidate_inode_pages2(inode->i_mapping); 4391 BTRFS_I(inode)->generation = 0; 4392 cache->io_ctl.inode = NULL; 4393 iput(inode); 4394 } 4395 btrfs_put_block_group(cache); 4396 } 4397 4398 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4399 struct btrfs_fs_info *fs_info) 4400 { 4401 struct btrfs_block_group_cache *cache; 4402 4403 spin_lock(&cur_trans->dirty_bgs_lock); 4404 while (!list_empty(&cur_trans->dirty_bgs)) { 4405 cache = list_first_entry(&cur_trans->dirty_bgs, 4406 struct btrfs_block_group_cache, 4407 dirty_list); 4408 4409 if (!list_empty(&cache->io_list)) { 4410 spin_unlock(&cur_trans->dirty_bgs_lock); 4411 list_del_init(&cache->io_list); 4412 btrfs_cleanup_bg_io(cache); 4413 spin_lock(&cur_trans->dirty_bgs_lock); 4414 } 4415 4416 list_del_init(&cache->dirty_list); 4417 spin_lock(&cache->lock); 4418 cache->disk_cache_state = BTRFS_DC_ERROR; 4419 spin_unlock(&cache->lock); 4420 4421 spin_unlock(&cur_trans->dirty_bgs_lock); 4422 btrfs_put_block_group(cache); 4423 spin_lock(&cur_trans->dirty_bgs_lock); 4424 } 4425 spin_unlock(&cur_trans->dirty_bgs_lock); 4426 4427 /* 4428 * Refer to the definition of io_bgs member for details why it's safe 4429 * to use it without any locking 4430 */ 4431 while (!list_empty(&cur_trans->io_bgs)) { 4432 cache = list_first_entry(&cur_trans->io_bgs, 4433 struct btrfs_block_group_cache, 4434 io_list); 4435 4436 list_del_init(&cache->io_list); 4437 spin_lock(&cache->lock); 4438 cache->disk_cache_state = BTRFS_DC_ERROR; 4439 spin_unlock(&cache->lock); 4440 btrfs_cleanup_bg_io(cache); 4441 } 4442 } 4443 4444 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4445 struct btrfs_fs_info *fs_info) 4446 { 4447 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4448 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4449 ASSERT(list_empty(&cur_trans->io_bgs)); 4450 4451 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4452 4453 cur_trans->state = TRANS_STATE_COMMIT_START; 4454 wake_up(&fs_info->transaction_blocked_wait); 4455 4456 cur_trans->state = TRANS_STATE_UNBLOCKED; 4457 wake_up(&fs_info->transaction_wait); 4458 4459 btrfs_destroy_delayed_inodes(fs_info); 4460 btrfs_assert_delayed_root_empty(fs_info); 4461 4462 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4463 EXTENT_DIRTY); 4464 btrfs_destroy_pinned_extent(fs_info, 4465 fs_info->pinned_extents); 4466 4467 cur_trans->state =TRANS_STATE_COMPLETED; 4468 wake_up(&cur_trans->commit_wait); 4469 } 4470 4471 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4472 { 4473 struct btrfs_transaction *t; 4474 4475 mutex_lock(&fs_info->transaction_kthread_mutex); 4476 4477 spin_lock(&fs_info->trans_lock); 4478 while (!list_empty(&fs_info->trans_list)) { 4479 t = list_first_entry(&fs_info->trans_list, 4480 struct btrfs_transaction, list); 4481 if (t->state >= TRANS_STATE_COMMIT_START) { 4482 refcount_inc(&t->use_count); 4483 spin_unlock(&fs_info->trans_lock); 4484 btrfs_wait_for_commit(fs_info, t->transid); 4485 btrfs_put_transaction(t); 4486 spin_lock(&fs_info->trans_lock); 4487 continue; 4488 } 4489 if (t == fs_info->running_transaction) { 4490 t->state = TRANS_STATE_COMMIT_DOING; 4491 spin_unlock(&fs_info->trans_lock); 4492 /* 4493 * We wait for 0 num_writers since we don't hold a trans 4494 * handle open currently for this transaction. 4495 */ 4496 wait_event(t->writer_wait, 4497 atomic_read(&t->num_writers) == 0); 4498 } else { 4499 spin_unlock(&fs_info->trans_lock); 4500 } 4501 btrfs_cleanup_one_transaction(t, fs_info); 4502 4503 spin_lock(&fs_info->trans_lock); 4504 if (t == fs_info->running_transaction) 4505 fs_info->running_transaction = NULL; 4506 list_del_init(&t->list); 4507 spin_unlock(&fs_info->trans_lock); 4508 4509 btrfs_put_transaction(t); 4510 trace_btrfs_transaction_commit(fs_info->tree_root); 4511 spin_lock(&fs_info->trans_lock); 4512 } 4513 spin_unlock(&fs_info->trans_lock); 4514 btrfs_destroy_all_ordered_extents(fs_info); 4515 btrfs_destroy_delayed_inodes(fs_info); 4516 btrfs_assert_delayed_root_empty(fs_info); 4517 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 4518 btrfs_destroy_all_delalloc_inodes(fs_info); 4519 mutex_unlock(&fs_info->transaction_kthread_mutex); 4520 4521 return 0; 4522 } 4523 4524 static const struct extent_io_ops btree_extent_io_ops = { 4525 /* mandatory callbacks */ 4526 .submit_bio_hook = btree_submit_bio_hook, 4527 .readpage_end_io_hook = btree_readpage_end_io_hook, 4528 .readpage_io_failed_hook = btree_io_failed_hook, 4529 4530 /* optional callbacks */ 4531 }; 4532