1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <asm/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "volumes.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "inode-map.h" 33 #include "check-integrity.h" 34 #include "rcu-string.h" 35 #include "dev-replace.h" 36 #include "raid56.h" 37 #include "sysfs.h" 38 #include "qgroup.h" 39 #include "compression.h" 40 #include "tree-checker.h" 41 #include "ref-verify.h" 42 #include "block-group.h" 43 #include "discard.h" 44 #include "space-info.h" 45 46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 47 BTRFS_HEADER_FLAG_RELOC |\ 48 BTRFS_SUPER_FLAG_ERROR |\ 49 BTRFS_SUPER_FLAG_SEEDING |\ 50 BTRFS_SUPER_FLAG_METADUMP |\ 51 BTRFS_SUPER_FLAG_METADUMP_V2) 52 53 static void end_workqueue_fn(struct btrfs_work *work); 54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 56 struct btrfs_fs_info *fs_info); 57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 59 struct extent_io_tree *dirty_pages, 60 int mark); 61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 62 struct extent_io_tree *pinned_extents); 63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 65 66 /* 67 * btrfs_end_io_wq structs are used to do processing in task context when an IO 68 * is complete. This is used during reads to verify checksums, and it is used 69 * by writes to insert metadata for new file extents after IO is complete. 70 */ 71 struct btrfs_end_io_wq { 72 struct bio *bio; 73 bio_end_io_t *end_io; 74 void *private; 75 struct btrfs_fs_info *info; 76 blk_status_t status; 77 enum btrfs_wq_endio_type metadata; 78 struct btrfs_work work; 79 }; 80 81 static struct kmem_cache *btrfs_end_io_wq_cache; 82 83 int __init btrfs_end_io_wq_init(void) 84 { 85 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 86 sizeof(struct btrfs_end_io_wq), 87 0, 88 SLAB_MEM_SPREAD, 89 NULL); 90 if (!btrfs_end_io_wq_cache) 91 return -ENOMEM; 92 return 0; 93 } 94 95 void __cold btrfs_end_io_wq_exit(void) 96 { 97 kmem_cache_destroy(btrfs_end_io_wq_cache); 98 } 99 100 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 101 { 102 if (fs_info->csum_shash) 103 crypto_free_shash(fs_info->csum_shash); 104 } 105 106 /* 107 * async submit bios are used to offload expensive checksumming 108 * onto the worker threads. They checksum file and metadata bios 109 * just before they are sent down the IO stack. 110 */ 111 struct async_submit_bio { 112 void *private_data; 113 struct bio *bio; 114 extent_submit_bio_start_t *submit_bio_start; 115 int mirror_num; 116 /* 117 * bio_offset is optional, can be used if the pages in the bio 118 * can't tell us where in the file the bio should go 119 */ 120 u64 bio_offset; 121 struct btrfs_work work; 122 blk_status_t status; 123 }; 124 125 /* 126 * Lockdep class keys for extent_buffer->lock's in this root. For a given 127 * eb, the lockdep key is determined by the btrfs_root it belongs to and 128 * the level the eb occupies in the tree. 129 * 130 * Different roots are used for different purposes and may nest inside each 131 * other and they require separate keysets. As lockdep keys should be 132 * static, assign keysets according to the purpose of the root as indicated 133 * by btrfs_root->root_key.objectid. This ensures that all special purpose 134 * roots have separate keysets. 135 * 136 * Lock-nesting across peer nodes is always done with the immediate parent 137 * node locked thus preventing deadlock. As lockdep doesn't know this, use 138 * subclass to avoid triggering lockdep warning in such cases. 139 * 140 * The key is set by the readpage_end_io_hook after the buffer has passed 141 * csum validation but before the pages are unlocked. It is also set by 142 * btrfs_init_new_buffer on freshly allocated blocks. 143 * 144 * We also add a check to make sure the highest level of the tree is the 145 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 146 * needs update as well. 147 */ 148 #ifdef CONFIG_DEBUG_LOCK_ALLOC 149 # if BTRFS_MAX_LEVEL != 8 150 # error 151 # endif 152 153 static struct btrfs_lockdep_keyset { 154 u64 id; /* root objectid */ 155 const char *name_stem; /* lock name stem */ 156 char names[BTRFS_MAX_LEVEL + 1][20]; 157 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 158 } btrfs_lockdep_keysets[] = { 159 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 160 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 161 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 162 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 163 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 164 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 165 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 166 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 167 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 168 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 169 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 170 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 171 { .id = 0, .name_stem = "tree" }, 172 }; 173 174 void __init btrfs_init_lockdep(void) 175 { 176 int i, j; 177 178 /* initialize lockdep class names */ 179 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 180 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 181 182 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 183 snprintf(ks->names[j], sizeof(ks->names[j]), 184 "btrfs-%s-%02d", ks->name_stem, j); 185 } 186 } 187 188 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 189 int level) 190 { 191 struct btrfs_lockdep_keyset *ks; 192 193 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 194 195 /* find the matching keyset, id 0 is the default entry */ 196 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 197 if (ks->id == objectid) 198 break; 199 200 lockdep_set_class_and_name(&eb->lock, 201 &ks->keys[level], ks->names[level]); 202 } 203 204 #endif 205 206 /* 207 * Compute the csum of a btree block and store the result to provided buffer. 208 */ 209 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 210 { 211 struct btrfs_fs_info *fs_info = buf->fs_info; 212 const int num_pages = fs_info->nodesize >> PAGE_SHIFT; 213 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 214 char *kaddr; 215 int i; 216 217 shash->tfm = fs_info->csum_shash; 218 crypto_shash_init(shash); 219 kaddr = page_address(buf->pages[0]); 220 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 221 PAGE_SIZE - BTRFS_CSUM_SIZE); 222 223 for (i = 1; i < num_pages; i++) { 224 kaddr = page_address(buf->pages[i]); 225 crypto_shash_update(shash, kaddr, PAGE_SIZE); 226 } 227 memset(result, 0, BTRFS_CSUM_SIZE); 228 crypto_shash_final(shash, result); 229 } 230 231 /* 232 * we can't consider a given block up to date unless the transid of the 233 * block matches the transid in the parent node's pointer. This is how we 234 * detect blocks that either didn't get written at all or got written 235 * in the wrong place. 236 */ 237 static int verify_parent_transid(struct extent_io_tree *io_tree, 238 struct extent_buffer *eb, u64 parent_transid, 239 int atomic) 240 { 241 struct extent_state *cached_state = NULL; 242 int ret; 243 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 244 245 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 246 return 0; 247 248 if (atomic) 249 return -EAGAIN; 250 251 if (need_lock) { 252 btrfs_tree_read_lock(eb); 253 btrfs_set_lock_blocking_read(eb); 254 } 255 256 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 257 &cached_state); 258 if (extent_buffer_uptodate(eb) && 259 btrfs_header_generation(eb) == parent_transid) { 260 ret = 0; 261 goto out; 262 } 263 btrfs_err_rl(eb->fs_info, 264 "parent transid verify failed on %llu wanted %llu found %llu", 265 eb->start, 266 parent_transid, btrfs_header_generation(eb)); 267 ret = 1; 268 269 /* 270 * Things reading via commit roots that don't have normal protection, 271 * like send, can have a really old block in cache that may point at a 272 * block that has been freed and re-allocated. So don't clear uptodate 273 * if we find an eb that is under IO (dirty/writeback) because we could 274 * end up reading in the stale data and then writing it back out and 275 * making everybody very sad. 276 */ 277 if (!extent_buffer_under_io(eb)) 278 clear_extent_buffer_uptodate(eb); 279 out: 280 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 281 &cached_state); 282 if (need_lock) 283 btrfs_tree_read_unlock_blocking(eb); 284 return ret; 285 } 286 287 static bool btrfs_supported_super_csum(u16 csum_type) 288 { 289 switch (csum_type) { 290 case BTRFS_CSUM_TYPE_CRC32: 291 case BTRFS_CSUM_TYPE_XXHASH: 292 case BTRFS_CSUM_TYPE_SHA256: 293 case BTRFS_CSUM_TYPE_BLAKE2: 294 return true; 295 default: 296 return false; 297 } 298 } 299 300 /* 301 * Return 0 if the superblock checksum type matches the checksum value of that 302 * algorithm. Pass the raw disk superblock data. 303 */ 304 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 305 char *raw_disk_sb) 306 { 307 struct btrfs_super_block *disk_sb = 308 (struct btrfs_super_block *)raw_disk_sb; 309 char result[BTRFS_CSUM_SIZE]; 310 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 311 312 shash->tfm = fs_info->csum_shash; 313 314 /* 315 * The super_block structure does not span the whole 316 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 317 * filled with zeros and is included in the checksum. 318 */ 319 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE, 320 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 321 322 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb))) 323 return 1; 324 325 return 0; 326 } 327 328 int btrfs_verify_level_key(struct extent_buffer *eb, int level, 329 struct btrfs_key *first_key, u64 parent_transid) 330 { 331 struct btrfs_fs_info *fs_info = eb->fs_info; 332 int found_level; 333 struct btrfs_key found_key; 334 int ret; 335 336 found_level = btrfs_header_level(eb); 337 if (found_level != level) { 338 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 339 KERN_ERR "BTRFS: tree level check failed\n"); 340 btrfs_err(fs_info, 341 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 342 eb->start, level, found_level); 343 return -EIO; 344 } 345 346 if (!first_key) 347 return 0; 348 349 /* 350 * For live tree block (new tree blocks in current transaction), 351 * we need proper lock context to avoid race, which is impossible here. 352 * So we only checks tree blocks which is read from disk, whose 353 * generation <= fs_info->last_trans_committed. 354 */ 355 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 356 return 0; 357 358 /* We have @first_key, so this @eb must have at least one item */ 359 if (btrfs_header_nritems(eb) == 0) { 360 btrfs_err(fs_info, 361 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 362 eb->start); 363 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 364 return -EUCLEAN; 365 } 366 367 if (found_level) 368 btrfs_node_key_to_cpu(eb, &found_key, 0); 369 else 370 btrfs_item_key_to_cpu(eb, &found_key, 0); 371 ret = btrfs_comp_cpu_keys(first_key, &found_key); 372 373 if (ret) { 374 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 375 KERN_ERR "BTRFS: tree first key check failed\n"); 376 btrfs_err(fs_info, 377 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 378 eb->start, parent_transid, first_key->objectid, 379 first_key->type, first_key->offset, 380 found_key.objectid, found_key.type, 381 found_key.offset); 382 } 383 return ret; 384 } 385 386 /* 387 * helper to read a given tree block, doing retries as required when 388 * the checksums don't match and we have alternate mirrors to try. 389 * 390 * @parent_transid: expected transid, skip check if 0 391 * @level: expected level, mandatory check 392 * @first_key: expected key of first slot, skip check if NULL 393 */ 394 static int btree_read_extent_buffer_pages(struct extent_buffer *eb, 395 u64 parent_transid, int level, 396 struct btrfs_key *first_key) 397 { 398 struct btrfs_fs_info *fs_info = eb->fs_info; 399 struct extent_io_tree *io_tree; 400 int failed = 0; 401 int ret; 402 int num_copies = 0; 403 int mirror_num = 0; 404 int failed_mirror = 0; 405 406 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 407 while (1) { 408 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 409 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num); 410 if (!ret) { 411 if (verify_parent_transid(io_tree, eb, 412 parent_transid, 0)) 413 ret = -EIO; 414 else if (btrfs_verify_level_key(eb, level, 415 first_key, parent_transid)) 416 ret = -EUCLEAN; 417 else 418 break; 419 } 420 421 num_copies = btrfs_num_copies(fs_info, 422 eb->start, eb->len); 423 if (num_copies == 1) 424 break; 425 426 if (!failed_mirror) { 427 failed = 1; 428 failed_mirror = eb->read_mirror; 429 } 430 431 mirror_num++; 432 if (mirror_num == failed_mirror) 433 mirror_num++; 434 435 if (mirror_num > num_copies) 436 break; 437 } 438 439 if (failed && !ret && failed_mirror) 440 btrfs_repair_eb_io_failure(eb, failed_mirror); 441 442 return ret; 443 } 444 445 /* 446 * checksum a dirty tree block before IO. This has extra checks to make sure 447 * we only fill in the checksum field in the first page of a multi-page block 448 */ 449 450 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 451 { 452 u64 start = page_offset(page); 453 u64 found_start; 454 u8 result[BTRFS_CSUM_SIZE]; 455 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 456 struct extent_buffer *eb; 457 int ret; 458 459 eb = (struct extent_buffer *)page->private; 460 if (page != eb->pages[0]) 461 return 0; 462 463 found_start = btrfs_header_bytenr(eb); 464 /* 465 * Please do not consolidate these warnings into a single if. 466 * It is useful to know what went wrong. 467 */ 468 if (WARN_ON(found_start != start)) 469 return -EUCLEAN; 470 if (WARN_ON(!PageUptodate(page))) 471 return -EUCLEAN; 472 473 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 474 offsetof(struct btrfs_header, fsid), 475 BTRFS_FSID_SIZE) == 0); 476 477 csum_tree_block(eb, result); 478 479 if (btrfs_header_level(eb)) 480 ret = btrfs_check_node(eb); 481 else 482 ret = btrfs_check_leaf_full(eb); 483 484 if (ret < 0) { 485 btrfs_print_tree(eb, 0); 486 btrfs_err(fs_info, 487 "block=%llu write time tree block corruption detected", 488 eb->start); 489 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 490 return ret; 491 } 492 write_extent_buffer(eb, result, 0, csum_size); 493 494 return 0; 495 } 496 497 static int check_tree_block_fsid(struct extent_buffer *eb) 498 { 499 struct btrfs_fs_info *fs_info = eb->fs_info; 500 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 501 u8 fsid[BTRFS_FSID_SIZE]; 502 u8 *metadata_uuid; 503 504 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 505 BTRFS_FSID_SIZE); 506 /* 507 * Checking the incompat flag is only valid for the current fs. For 508 * seed devices it's forbidden to have their uuid changed so reading 509 * ->fsid in this case is fine 510 */ 511 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 512 metadata_uuid = fs_devices->metadata_uuid; 513 else 514 metadata_uuid = fs_devices->fsid; 515 516 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) 517 return 0; 518 519 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 520 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 521 return 0; 522 523 return 1; 524 } 525 526 int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio, u64 phy_offset, 527 struct page *page, u64 start, u64 end, 528 int mirror) 529 { 530 u64 found_start; 531 int found_level; 532 struct extent_buffer *eb; 533 struct btrfs_fs_info *fs_info; 534 u16 csum_size; 535 int ret = 0; 536 u8 result[BTRFS_CSUM_SIZE]; 537 int reads_done; 538 539 if (!page->private) 540 goto out; 541 542 eb = (struct extent_buffer *)page->private; 543 fs_info = eb->fs_info; 544 csum_size = btrfs_super_csum_size(fs_info->super_copy); 545 546 /* the pending IO might have been the only thing that kept this buffer 547 * in memory. Make sure we have a ref for all this other checks 548 */ 549 atomic_inc(&eb->refs); 550 551 reads_done = atomic_dec_and_test(&eb->io_pages); 552 if (!reads_done) 553 goto err; 554 555 eb->read_mirror = mirror; 556 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 557 ret = -EIO; 558 goto err; 559 } 560 561 found_start = btrfs_header_bytenr(eb); 562 if (found_start != eb->start) { 563 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu", 564 eb->start, found_start); 565 ret = -EIO; 566 goto err; 567 } 568 if (check_tree_block_fsid(eb)) { 569 btrfs_err_rl(fs_info, "bad fsid on block %llu", 570 eb->start); 571 ret = -EIO; 572 goto err; 573 } 574 found_level = btrfs_header_level(eb); 575 if (found_level >= BTRFS_MAX_LEVEL) { 576 btrfs_err(fs_info, "bad tree block level %d on %llu", 577 (int)btrfs_header_level(eb), eb->start); 578 ret = -EIO; 579 goto err; 580 } 581 582 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 583 eb, found_level); 584 585 csum_tree_block(eb, result); 586 587 if (memcmp_extent_buffer(eb, result, 0, csum_size)) { 588 u8 val[BTRFS_CSUM_SIZE] = { 0 }; 589 590 read_extent_buffer(eb, &val, 0, csum_size); 591 btrfs_warn_rl(fs_info, 592 "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d", 593 fs_info->sb->s_id, eb->start, 594 CSUM_FMT_VALUE(csum_size, val), 595 CSUM_FMT_VALUE(csum_size, result), 596 btrfs_header_level(eb)); 597 ret = -EUCLEAN; 598 goto err; 599 } 600 601 /* 602 * If this is a leaf block and it is corrupt, set the corrupt bit so 603 * that we don't try and read the other copies of this block, just 604 * return -EIO. 605 */ 606 if (found_level == 0 && btrfs_check_leaf_full(eb)) { 607 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 608 ret = -EIO; 609 } 610 611 if (found_level > 0 && btrfs_check_node(eb)) 612 ret = -EIO; 613 614 if (!ret) 615 set_extent_buffer_uptodate(eb); 616 else 617 btrfs_err(fs_info, 618 "block=%llu read time tree block corruption detected", 619 eb->start); 620 err: 621 if (reads_done && 622 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 623 btree_readahead_hook(eb, ret); 624 625 if (ret) { 626 /* 627 * our io error hook is going to dec the io pages 628 * again, we have to make sure it has something 629 * to decrement 630 */ 631 atomic_inc(&eb->io_pages); 632 clear_extent_buffer_uptodate(eb); 633 } 634 free_extent_buffer(eb); 635 out: 636 return ret; 637 } 638 639 static void end_workqueue_bio(struct bio *bio) 640 { 641 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 642 struct btrfs_fs_info *fs_info; 643 struct btrfs_workqueue *wq; 644 645 fs_info = end_io_wq->info; 646 end_io_wq->status = bio->bi_status; 647 648 if (bio_op(bio) == REQ_OP_WRITE) { 649 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) 650 wq = fs_info->endio_meta_write_workers; 651 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) 652 wq = fs_info->endio_freespace_worker; 653 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 654 wq = fs_info->endio_raid56_workers; 655 else 656 wq = fs_info->endio_write_workers; 657 } else { 658 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 659 wq = fs_info->endio_raid56_workers; 660 else if (end_io_wq->metadata) 661 wq = fs_info->endio_meta_workers; 662 else 663 wq = fs_info->endio_workers; 664 } 665 666 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL); 667 btrfs_queue_work(wq, &end_io_wq->work); 668 } 669 670 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 671 enum btrfs_wq_endio_type metadata) 672 { 673 struct btrfs_end_io_wq *end_io_wq; 674 675 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 676 if (!end_io_wq) 677 return BLK_STS_RESOURCE; 678 679 end_io_wq->private = bio->bi_private; 680 end_io_wq->end_io = bio->bi_end_io; 681 end_io_wq->info = info; 682 end_io_wq->status = 0; 683 end_io_wq->bio = bio; 684 end_io_wq->metadata = metadata; 685 686 bio->bi_private = end_io_wq; 687 bio->bi_end_io = end_workqueue_bio; 688 return 0; 689 } 690 691 static void run_one_async_start(struct btrfs_work *work) 692 { 693 struct async_submit_bio *async; 694 blk_status_t ret; 695 696 async = container_of(work, struct async_submit_bio, work); 697 ret = async->submit_bio_start(async->private_data, async->bio, 698 async->bio_offset); 699 if (ret) 700 async->status = ret; 701 } 702 703 /* 704 * In order to insert checksums into the metadata in large chunks, we wait 705 * until bio submission time. All the pages in the bio are checksummed and 706 * sums are attached onto the ordered extent record. 707 * 708 * At IO completion time the csums attached on the ordered extent record are 709 * inserted into the tree. 710 */ 711 static void run_one_async_done(struct btrfs_work *work) 712 { 713 struct async_submit_bio *async; 714 struct inode *inode; 715 blk_status_t ret; 716 717 async = container_of(work, struct async_submit_bio, work); 718 inode = async->private_data; 719 720 /* If an error occurred we just want to clean up the bio and move on */ 721 if (async->status) { 722 async->bio->bi_status = async->status; 723 bio_endio(async->bio); 724 return; 725 } 726 727 /* 728 * All of the bios that pass through here are from async helpers. 729 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context. 730 * This changes nothing when cgroups aren't in use. 731 */ 732 async->bio->bi_opf |= REQ_CGROUP_PUNT; 733 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num); 734 if (ret) { 735 async->bio->bi_status = ret; 736 bio_endio(async->bio); 737 } 738 } 739 740 static void run_one_async_free(struct btrfs_work *work) 741 { 742 struct async_submit_bio *async; 743 744 async = container_of(work, struct async_submit_bio, work); 745 kfree(async); 746 } 747 748 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 749 int mirror_num, unsigned long bio_flags, 750 u64 bio_offset, void *private_data, 751 extent_submit_bio_start_t *submit_bio_start) 752 { 753 struct async_submit_bio *async; 754 755 async = kmalloc(sizeof(*async), GFP_NOFS); 756 if (!async) 757 return BLK_STS_RESOURCE; 758 759 async->private_data = private_data; 760 async->bio = bio; 761 async->mirror_num = mirror_num; 762 async->submit_bio_start = submit_bio_start; 763 764 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done, 765 run_one_async_free); 766 767 async->bio_offset = bio_offset; 768 769 async->status = 0; 770 771 if (op_is_sync(bio->bi_opf)) 772 btrfs_set_work_high_priority(&async->work); 773 774 btrfs_queue_work(fs_info->workers, &async->work); 775 return 0; 776 } 777 778 static blk_status_t btree_csum_one_bio(struct bio *bio) 779 { 780 struct bio_vec *bvec; 781 struct btrfs_root *root; 782 int ret = 0; 783 struct bvec_iter_all iter_all; 784 785 ASSERT(!bio_flagged(bio, BIO_CLONED)); 786 bio_for_each_segment_all(bvec, bio, iter_all) { 787 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 788 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 789 if (ret) 790 break; 791 } 792 793 return errno_to_blk_status(ret); 794 } 795 796 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio, 797 u64 bio_offset) 798 { 799 /* 800 * when we're called for a write, we're already in the async 801 * submission context. Just jump into btrfs_map_bio 802 */ 803 return btree_csum_one_bio(bio); 804 } 805 806 static int check_async_write(struct btrfs_fs_info *fs_info, 807 struct btrfs_inode *bi) 808 { 809 if (atomic_read(&bi->sync_writers)) 810 return 0; 811 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags)) 812 return 0; 813 return 1; 814 } 815 816 blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio, 817 int mirror_num, unsigned long bio_flags) 818 { 819 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 820 int async = check_async_write(fs_info, BTRFS_I(inode)); 821 blk_status_t ret; 822 823 if (bio_op(bio) != REQ_OP_WRITE) { 824 /* 825 * called for a read, do the setup so that checksum validation 826 * can happen in the async kernel threads 827 */ 828 ret = btrfs_bio_wq_end_io(fs_info, bio, 829 BTRFS_WQ_ENDIO_METADATA); 830 if (ret) 831 goto out_w_error; 832 ret = btrfs_map_bio(fs_info, bio, mirror_num); 833 } else if (!async) { 834 ret = btree_csum_one_bio(bio); 835 if (ret) 836 goto out_w_error; 837 ret = btrfs_map_bio(fs_info, bio, mirror_num); 838 } else { 839 /* 840 * kthread helpers are used to submit writes so that 841 * checksumming can happen in parallel across all CPUs 842 */ 843 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0, 844 0, inode, btree_submit_bio_start); 845 } 846 847 if (ret) 848 goto out_w_error; 849 return 0; 850 851 out_w_error: 852 bio->bi_status = ret; 853 bio_endio(bio); 854 return ret; 855 } 856 857 #ifdef CONFIG_MIGRATION 858 static int btree_migratepage(struct address_space *mapping, 859 struct page *newpage, struct page *page, 860 enum migrate_mode mode) 861 { 862 /* 863 * we can't safely write a btree page from here, 864 * we haven't done the locking hook 865 */ 866 if (PageDirty(page)) 867 return -EAGAIN; 868 /* 869 * Buffers may be managed in a filesystem specific way. 870 * We must have no buffers or drop them. 871 */ 872 if (page_has_private(page) && 873 !try_to_release_page(page, GFP_KERNEL)) 874 return -EAGAIN; 875 return migrate_page(mapping, newpage, page, mode); 876 } 877 #endif 878 879 880 static int btree_writepages(struct address_space *mapping, 881 struct writeback_control *wbc) 882 { 883 struct btrfs_fs_info *fs_info; 884 int ret; 885 886 if (wbc->sync_mode == WB_SYNC_NONE) { 887 888 if (wbc->for_kupdate) 889 return 0; 890 891 fs_info = BTRFS_I(mapping->host)->root->fs_info; 892 /* this is a bit racy, but that's ok */ 893 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 894 BTRFS_DIRTY_METADATA_THRESH, 895 fs_info->dirty_metadata_batch); 896 if (ret < 0) 897 return 0; 898 } 899 return btree_write_cache_pages(mapping, wbc); 900 } 901 902 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 903 { 904 if (PageWriteback(page) || PageDirty(page)) 905 return 0; 906 907 return try_release_extent_buffer(page); 908 } 909 910 static void btree_invalidatepage(struct page *page, unsigned int offset, 911 unsigned int length) 912 { 913 struct extent_io_tree *tree; 914 tree = &BTRFS_I(page->mapping->host)->io_tree; 915 extent_invalidatepage(tree, page, offset); 916 btree_releasepage(page, GFP_NOFS); 917 if (PagePrivate(page)) { 918 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 919 "page private not zero on page %llu", 920 (unsigned long long)page_offset(page)); 921 detach_page_private(page); 922 } 923 } 924 925 static int btree_set_page_dirty(struct page *page) 926 { 927 #ifdef DEBUG 928 struct extent_buffer *eb; 929 930 BUG_ON(!PagePrivate(page)); 931 eb = (struct extent_buffer *)page->private; 932 BUG_ON(!eb); 933 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 934 BUG_ON(!atomic_read(&eb->refs)); 935 btrfs_assert_tree_locked(eb); 936 #endif 937 return __set_page_dirty_nobuffers(page); 938 } 939 940 static const struct address_space_operations btree_aops = { 941 .writepages = btree_writepages, 942 .releasepage = btree_releasepage, 943 .invalidatepage = btree_invalidatepage, 944 #ifdef CONFIG_MIGRATION 945 .migratepage = btree_migratepage, 946 #endif 947 .set_page_dirty = btree_set_page_dirty, 948 }; 949 950 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr) 951 { 952 struct extent_buffer *buf = NULL; 953 int ret; 954 955 buf = btrfs_find_create_tree_block(fs_info, bytenr); 956 if (IS_ERR(buf)) 957 return; 958 959 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0); 960 if (ret < 0) 961 free_extent_buffer_stale(buf); 962 else 963 free_extent_buffer(buf); 964 } 965 966 struct extent_buffer *btrfs_find_create_tree_block( 967 struct btrfs_fs_info *fs_info, 968 u64 bytenr) 969 { 970 if (btrfs_is_testing(fs_info)) 971 return alloc_test_extent_buffer(fs_info, bytenr); 972 return alloc_extent_buffer(fs_info, bytenr); 973 } 974 975 /* 976 * Read tree block at logical address @bytenr and do variant basic but critical 977 * verification. 978 * 979 * @parent_transid: expected transid of this tree block, skip check if 0 980 * @level: expected level, mandatory check 981 * @first_key: expected key in slot 0, skip check if NULL 982 */ 983 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 984 u64 parent_transid, int level, 985 struct btrfs_key *first_key) 986 { 987 struct extent_buffer *buf = NULL; 988 int ret; 989 990 buf = btrfs_find_create_tree_block(fs_info, bytenr); 991 if (IS_ERR(buf)) 992 return buf; 993 994 ret = btree_read_extent_buffer_pages(buf, parent_transid, 995 level, first_key); 996 if (ret) { 997 free_extent_buffer_stale(buf); 998 return ERR_PTR(ret); 999 } 1000 return buf; 1001 1002 } 1003 1004 void btrfs_clean_tree_block(struct extent_buffer *buf) 1005 { 1006 struct btrfs_fs_info *fs_info = buf->fs_info; 1007 if (btrfs_header_generation(buf) == 1008 fs_info->running_transaction->transid) { 1009 btrfs_assert_tree_locked(buf); 1010 1011 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1012 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1013 -buf->len, 1014 fs_info->dirty_metadata_batch); 1015 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1016 btrfs_set_lock_blocking_write(buf); 1017 clear_extent_buffer_dirty(buf); 1018 } 1019 } 1020 } 1021 1022 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1023 u64 objectid) 1024 { 1025 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1026 root->fs_info = fs_info; 1027 root->node = NULL; 1028 root->commit_root = NULL; 1029 root->state = 0; 1030 root->orphan_cleanup_state = 0; 1031 1032 root->last_trans = 0; 1033 root->highest_objectid = 0; 1034 root->nr_delalloc_inodes = 0; 1035 root->nr_ordered_extents = 0; 1036 root->inode_tree = RB_ROOT; 1037 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1038 root->block_rsv = NULL; 1039 1040 INIT_LIST_HEAD(&root->dirty_list); 1041 INIT_LIST_HEAD(&root->root_list); 1042 INIT_LIST_HEAD(&root->delalloc_inodes); 1043 INIT_LIST_HEAD(&root->delalloc_root); 1044 INIT_LIST_HEAD(&root->ordered_extents); 1045 INIT_LIST_HEAD(&root->ordered_root); 1046 INIT_LIST_HEAD(&root->reloc_dirty_list); 1047 INIT_LIST_HEAD(&root->logged_list[0]); 1048 INIT_LIST_HEAD(&root->logged_list[1]); 1049 spin_lock_init(&root->inode_lock); 1050 spin_lock_init(&root->delalloc_lock); 1051 spin_lock_init(&root->ordered_extent_lock); 1052 spin_lock_init(&root->accounting_lock); 1053 spin_lock_init(&root->log_extents_lock[0]); 1054 spin_lock_init(&root->log_extents_lock[1]); 1055 spin_lock_init(&root->qgroup_meta_rsv_lock); 1056 mutex_init(&root->objectid_mutex); 1057 mutex_init(&root->log_mutex); 1058 mutex_init(&root->ordered_extent_mutex); 1059 mutex_init(&root->delalloc_mutex); 1060 init_waitqueue_head(&root->qgroup_flush_wait); 1061 init_waitqueue_head(&root->log_writer_wait); 1062 init_waitqueue_head(&root->log_commit_wait[0]); 1063 init_waitqueue_head(&root->log_commit_wait[1]); 1064 INIT_LIST_HEAD(&root->log_ctxs[0]); 1065 INIT_LIST_HEAD(&root->log_ctxs[1]); 1066 atomic_set(&root->log_commit[0], 0); 1067 atomic_set(&root->log_commit[1], 0); 1068 atomic_set(&root->log_writers, 0); 1069 atomic_set(&root->log_batch, 0); 1070 refcount_set(&root->refs, 1); 1071 atomic_set(&root->snapshot_force_cow, 0); 1072 atomic_set(&root->nr_swapfiles, 0); 1073 root->log_transid = 0; 1074 root->log_transid_committed = -1; 1075 root->last_log_commit = 0; 1076 if (!dummy) { 1077 extent_io_tree_init(fs_info, &root->dirty_log_pages, 1078 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL); 1079 extent_io_tree_init(fs_info, &root->log_csum_range, 1080 IO_TREE_LOG_CSUM_RANGE, NULL); 1081 } 1082 1083 memset(&root->root_key, 0, sizeof(root->root_key)); 1084 memset(&root->root_item, 0, sizeof(root->root_item)); 1085 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1086 root->root_key.objectid = objectid; 1087 root->anon_dev = 0; 1088 1089 spin_lock_init(&root->root_item_lock); 1090 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 1091 #ifdef CONFIG_BTRFS_DEBUG 1092 INIT_LIST_HEAD(&root->leak_list); 1093 spin_lock(&fs_info->fs_roots_radix_lock); 1094 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 1095 spin_unlock(&fs_info->fs_roots_radix_lock); 1096 #endif 1097 } 1098 1099 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1100 u64 objectid, gfp_t flags) 1101 { 1102 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1103 if (root) 1104 __setup_root(root, fs_info, objectid); 1105 return root; 1106 } 1107 1108 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1109 /* Should only be used by the testing infrastructure */ 1110 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1111 { 1112 struct btrfs_root *root; 1113 1114 if (!fs_info) 1115 return ERR_PTR(-EINVAL); 1116 1117 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 1118 if (!root) 1119 return ERR_PTR(-ENOMEM); 1120 1121 /* We don't use the stripesize in selftest, set it as sectorsize */ 1122 root->alloc_bytenr = 0; 1123 1124 return root; 1125 } 1126 #endif 1127 1128 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1129 u64 objectid) 1130 { 1131 struct btrfs_fs_info *fs_info = trans->fs_info; 1132 struct extent_buffer *leaf; 1133 struct btrfs_root *tree_root = fs_info->tree_root; 1134 struct btrfs_root *root; 1135 struct btrfs_key key; 1136 unsigned int nofs_flag; 1137 int ret = 0; 1138 1139 /* 1140 * We're holding a transaction handle, so use a NOFS memory allocation 1141 * context to avoid deadlock if reclaim happens. 1142 */ 1143 nofs_flag = memalloc_nofs_save(); 1144 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 1145 memalloc_nofs_restore(nofs_flag); 1146 if (!root) 1147 return ERR_PTR(-ENOMEM); 1148 1149 root->root_key.objectid = objectid; 1150 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1151 root->root_key.offset = 0; 1152 1153 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 1154 BTRFS_NESTING_NORMAL); 1155 if (IS_ERR(leaf)) { 1156 ret = PTR_ERR(leaf); 1157 leaf = NULL; 1158 goto fail; 1159 } 1160 1161 root->node = leaf; 1162 btrfs_mark_buffer_dirty(leaf); 1163 1164 root->commit_root = btrfs_root_node(root); 1165 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1166 1167 root->root_item.flags = 0; 1168 root->root_item.byte_limit = 0; 1169 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1170 btrfs_set_root_generation(&root->root_item, trans->transid); 1171 btrfs_set_root_level(&root->root_item, 0); 1172 btrfs_set_root_refs(&root->root_item, 1); 1173 btrfs_set_root_used(&root->root_item, leaf->len); 1174 btrfs_set_root_last_snapshot(&root->root_item, 0); 1175 btrfs_set_root_dirid(&root->root_item, 0); 1176 if (is_fstree(objectid)) 1177 generate_random_guid(root->root_item.uuid); 1178 else 1179 export_guid(root->root_item.uuid, &guid_null); 1180 root->root_item.drop_level = 0; 1181 1182 key.objectid = objectid; 1183 key.type = BTRFS_ROOT_ITEM_KEY; 1184 key.offset = 0; 1185 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1186 if (ret) 1187 goto fail; 1188 1189 btrfs_tree_unlock(leaf); 1190 1191 return root; 1192 1193 fail: 1194 if (leaf) 1195 btrfs_tree_unlock(leaf); 1196 btrfs_put_root(root); 1197 1198 return ERR_PTR(ret); 1199 } 1200 1201 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1202 struct btrfs_fs_info *fs_info) 1203 { 1204 struct btrfs_root *root; 1205 struct extent_buffer *leaf; 1206 1207 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 1208 if (!root) 1209 return ERR_PTR(-ENOMEM); 1210 1211 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1212 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1213 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1214 1215 /* 1216 * DON'T set SHAREABLE bit for log trees. 1217 * 1218 * Log trees are not exposed to user space thus can't be snapshotted, 1219 * and they go away before a real commit is actually done. 1220 * 1221 * They do store pointers to file data extents, and those reference 1222 * counts still get updated (along with back refs to the log tree). 1223 */ 1224 1225 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1226 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL); 1227 if (IS_ERR(leaf)) { 1228 btrfs_put_root(root); 1229 return ERR_CAST(leaf); 1230 } 1231 1232 root->node = leaf; 1233 1234 btrfs_mark_buffer_dirty(root->node); 1235 btrfs_tree_unlock(root->node); 1236 return root; 1237 } 1238 1239 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1240 struct btrfs_fs_info *fs_info) 1241 { 1242 struct btrfs_root *log_root; 1243 1244 log_root = alloc_log_tree(trans, fs_info); 1245 if (IS_ERR(log_root)) 1246 return PTR_ERR(log_root); 1247 WARN_ON(fs_info->log_root_tree); 1248 fs_info->log_root_tree = log_root; 1249 return 0; 1250 } 1251 1252 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1253 struct btrfs_root *root) 1254 { 1255 struct btrfs_fs_info *fs_info = root->fs_info; 1256 struct btrfs_root *log_root; 1257 struct btrfs_inode_item *inode_item; 1258 1259 log_root = alloc_log_tree(trans, fs_info); 1260 if (IS_ERR(log_root)) 1261 return PTR_ERR(log_root); 1262 1263 log_root->last_trans = trans->transid; 1264 log_root->root_key.offset = root->root_key.objectid; 1265 1266 inode_item = &log_root->root_item.inode; 1267 btrfs_set_stack_inode_generation(inode_item, 1); 1268 btrfs_set_stack_inode_size(inode_item, 3); 1269 btrfs_set_stack_inode_nlink(inode_item, 1); 1270 btrfs_set_stack_inode_nbytes(inode_item, 1271 fs_info->nodesize); 1272 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1273 1274 btrfs_set_root_node(&log_root->root_item, log_root->node); 1275 1276 WARN_ON(root->log_root); 1277 root->log_root = log_root; 1278 root->log_transid = 0; 1279 root->log_transid_committed = -1; 1280 root->last_log_commit = 0; 1281 return 0; 1282 } 1283 1284 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1285 struct btrfs_path *path, 1286 struct btrfs_key *key) 1287 { 1288 struct btrfs_root *root; 1289 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1290 u64 generation; 1291 int ret; 1292 int level; 1293 1294 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1295 if (!root) 1296 return ERR_PTR(-ENOMEM); 1297 1298 ret = btrfs_find_root(tree_root, key, path, 1299 &root->root_item, &root->root_key); 1300 if (ret) { 1301 if (ret > 0) 1302 ret = -ENOENT; 1303 goto fail; 1304 } 1305 1306 generation = btrfs_root_generation(&root->root_item); 1307 level = btrfs_root_level(&root->root_item); 1308 root->node = read_tree_block(fs_info, 1309 btrfs_root_bytenr(&root->root_item), 1310 generation, level, NULL); 1311 if (IS_ERR(root->node)) { 1312 ret = PTR_ERR(root->node); 1313 root->node = NULL; 1314 goto fail; 1315 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1316 ret = -EIO; 1317 goto fail; 1318 } 1319 root->commit_root = btrfs_root_node(root); 1320 return root; 1321 fail: 1322 btrfs_put_root(root); 1323 return ERR_PTR(ret); 1324 } 1325 1326 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1327 struct btrfs_key *key) 1328 { 1329 struct btrfs_root *root; 1330 struct btrfs_path *path; 1331 1332 path = btrfs_alloc_path(); 1333 if (!path) 1334 return ERR_PTR(-ENOMEM); 1335 root = read_tree_root_path(tree_root, path, key); 1336 btrfs_free_path(path); 1337 1338 return root; 1339 } 1340 1341 /* 1342 * Initialize subvolume root in-memory structure 1343 * 1344 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1345 */ 1346 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1347 { 1348 int ret; 1349 unsigned int nofs_flag; 1350 1351 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1352 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1353 GFP_NOFS); 1354 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1355 ret = -ENOMEM; 1356 goto fail; 1357 } 1358 1359 /* 1360 * We might be called under a transaction (e.g. indirect backref 1361 * resolution) which could deadlock if it triggers memory reclaim 1362 */ 1363 nofs_flag = memalloc_nofs_save(); 1364 ret = btrfs_drew_lock_init(&root->snapshot_lock); 1365 memalloc_nofs_restore(nofs_flag); 1366 if (ret) 1367 goto fail; 1368 1369 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1370 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) { 1371 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1372 btrfs_check_and_init_root_item(&root->root_item); 1373 } 1374 1375 btrfs_init_free_ino_ctl(root); 1376 spin_lock_init(&root->ino_cache_lock); 1377 init_waitqueue_head(&root->ino_cache_wait); 1378 1379 /* 1380 * Don't assign anonymous block device to roots that are not exposed to 1381 * userspace, the id pool is limited to 1M 1382 */ 1383 if (is_fstree(root->root_key.objectid) && 1384 btrfs_root_refs(&root->root_item) > 0) { 1385 if (!anon_dev) { 1386 ret = get_anon_bdev(&root->anon_dev); 1387 if (ret) 1388 goto fail; 1389 } else { 1390 root->anon_dev = anon_dev; 1391 } 1392 } 1393 1394 mutex_lock(&root->objectid_mutex); 1395 ret = btrfs_find_highest_objectid(root, 1396 &root->highest_objectid); 1397 if (ret) { 1398 mutex_unlock(&root->objectid_mutex); 1399 goto fail; 1400 } 1401 1402 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1403 1404 mutex_unlock(&root->objectid_mutex); 1405 1406 return 0; 1407 fail: 1408 /* The caller is responsible to call btrfs_free_fs_root */ 1409 return ret; 1410 } 1411 1412 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1413 u64 root_id) 1414 { 1415 struct btrfs_root *root; 1416 1417 spin_lock(&fs_info->fs_roots_radix_lock); 1418 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1419 (unsigned long)root_id); 1420 if (root) 1421 root = btrfs_grab_root(root); 1422 spin_unlock(&fs_info->fs_roots_radix_lock); 1423 return root; 1424 } 1425 1426 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1427 u64 objectid) 1428 { 1429 if (objectid == BTRFS_ROOT_TREE_OBJECTID) 1430 return btrfs_grab_root(fs_info->tree_root); 1431 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 1432 return btrfs_grab_root(fs_info->extent_root); 1433 if (objectid == BTRFS_CHUNK_TREE_OBJECTID) 1434 return btrfs_grab_root(fs_info->chunk_root); 1435 if (objectid == BTRFS_DEV_TREE_OBJECTID) 1436 return btrfs_grab_root(fs_info->dev_root); 1437 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 1438 return btrfs_grab_root(fs_info->csum_root); 1439 if (objectid == BTRFS_QUOTA_TREE_OBJECTID) 1440 return btrfs_grab_root(fs_info->quota_root) ? 1441 fs_info->quota_root : ERR_PTR(-ENOENT); 1442 if (objectid == BTRFS_UUID_TREE_OBJECTID) 1443 return btrfs_grab_root(fs_info->uuid_root) ? 1444 fs_info->uuid_root : ERR_PTR(-ENOENT); 1445 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1446 return btrfs_grab_root(fs_info->free_space_root) ? 1447 fs_info->free_space_root : ERR_PTR(-ENOENT); 1448 return NULL; 1449 } 1450 1451 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1452 struct btrfs_root *root) 1453 { 1454 int ret; 1455 1456 ret = radix_tree_preload(GFP_NOFS); 1457 if (ret) 1458 return ret; 1459 1460 spin_lock(&fs_info->fs_roots_radix_lock); 1461 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1462 (unsigned long)root->root_key.objectid, 1463 root); 1464 if (ret == 0) { 1465 btrfs_grab_root(root); 1466 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1467 } 1468 spin_unlock(&fs_info->fs_roots_radix_lock); 1469 radix_tree_preload_end(); 1470 1471 return ret; 1472 } 1473 1474 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) 1475 { 1476 #ifdef CONFIG_BTRFS_DEBUG 1477 struct btrfs_root *root; 1478 1479 while (!list_empty(&fs_info->allocated_roots)) { 1480 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1481 1482 root = list_first_entry(&fs_info->allocated_roots, 1483 struct btrfs_root, leak_list); 1484 btrfs_err(fs_info, "leaked root %s refcount %d", 1485 btrfs_root_name(root->root_key.objectid, buf), 1486 refcount_read(&root->refs)); 1487 while (refcount_read(&root->refs) > 1) 1488 btrfs_put_root(root); 1489 btrfs_put_root(root); 1490 } 1491 #endif 1492 } 1493 1494 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1495 { 1496 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1497 percpu_counter_destroy(&fs_info->delalloc_bytes); 1498 percpu_counter_destroy(&fs_info->dio_bytes); 1499 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1500 btrfs_free_csum_hash(fs_info); 1501 btrfs_free_stripe_hash_table(fs_info); 1502 btrfs_free_ref_cache(fs_info); 1503 kfree(fs_info->balance_ctl); 1504 kfree(fs_info->delayed_root); 1505 btrfs_put_root(fs_info->extent_root); 1506 btrfs_put_root(fs_info->tree_root); 1507 btrfs_put_root(fs_info->chunk_root); 1508 btrfs_put_root(fs_info->dev_root); 1509 btrfs_put_root(fs_info->csum_root); 1510 btrfs_put_root(fs_info->quota_root); 1511 btrfs_put_root(fs_info->uuid_root); 1512 btrfs_put_root(fs_info->free_space_root); 1513 btrfs_put_root(fs_info->fs_root); 1514 btrfs_put_root(fs_info->data_reloc_root); 1515 btrfs_check_leaked_roots(fs_info); 1516 btrfs_extent_buffer_leak_debug_check(fs_info); 1517 kfree(fs_info->super_copy); 1518 kfree(fs_info->super_for_commit); 1519 kvfree(fs_info); 1520 } 1521 1522 1523 /* 1524 * Get an in-memory reference of a root structure. 1525 * 1526 * For essential trees like root/extent tree, we grab it from fs_info directly. 1527 * For subvolume trees, we check the cached filesystem roots first. If not 1528 * found, then read it from disk and add it to cached fs roots. 1529 * 1530 * Caller should release the root by calling btrfs_put_root() after the usage. 1531 * 1532 * NOTE: Reloc and log trees can't be read by this function as they share the 1533 * same root objectid. 1534 * 1535 * @objectid: root id 1536 * @anon_dev: preallocated anonymous block device number for new roots, 1537 * pass 0 for new allocation. 1538 * @check_ref: whether to check root item references, If true, return -ENOENT 1539 * for orphan roots 1540 */ 1541 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1542 u64 objectid, dev_t anon_dev, 1543 bool check_ref) 1544 { 1545 struct btrfs_root *root; 1546 struct btrfs_path *path; 1547 struct btrfs_key key; 1548 int ret; 1549 1550 root = btrfs_get_global_root(fs_info, objectid); 1551 if (root) 1552 return root; 1553 again: 1554 root = btrfs_lookup_fs_root(fs_info, objectid); 1555 if (root) { 1556 /* Shouldn't get preallocated anon_dev for cached roots */ 1557 ASSERT(!anon_dev); 1558 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1559 btrfs_put_root(root); 1560 return ERR_PTR(-ENOENT); 1561 } 1562 return root; 1563 } 1564 1565 key.objectid = objectid; 1566 key.type = BTRFS_ROOT_ITEM_KEY; 1567 key.offset = (u64)-1; 1568 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1569 if (IS_ERR(root)) 1570 return root; 1571 1572 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1573 ret = -ENOENT; 1574 goto fail; 1575 } 1576 1577 ret = btrfs_init_fs_root(root, anon_dev); 1578 if (ret) 1579 goto fail; 1580 1581 path = btrfs_alloc_path(); 1582 if (!path) { 1583 ret = -ENOMEM; 1584 goto fail; 1585 } 1586 key.objectid = BTRFS_ORPHAN_OBJECTID; 1587 key.type = BTRFS_ORPHAN_ITEM_KEY; 1588 key.offset = objectid; 1589 1590 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1591 btrfs_free_path(path); 1592 if (ret < 0) 1593 goto fail; 1594 if (ret == 0) 1595 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1596 1597 ret = btrfs_insert_fs_root(fs_info, root); 1598 if (ret) { 1599 btrfs_put_root(root); 1600 if (ret == -EEXIST) 1601 goto again; 1602 goto fail; 1603 } 1604 return root; 1605 fail: 1606 btrfs_put_root(root); 1607 return ERR_PTR(ret); 1608 } 1609 1610 /* 1611 * Get in-memory reference of a root structure 1612 * 1613 * @objectid: tree objectid 1614 * @check_ref: if set, verify that the tree exists and the item has at least 1615 * one reference 1616 */ 1617 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1618 u64 objectid, bool check_ref) 1619 { 1620 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref); 1621 } 1622 1623 /* 1624 * Get in-memory reference of a root structure, created as new, optionally pass 1625 * the anonymous block device id 1626 * 1627 * @objectid: tree objectid 1628 * @anon_dev: if zero, allocate a new anonymous block device or use the 1629 * parameter value 1630 */ 1631 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1632 u64 objectid, dev_t anon_dev) 1633 { 1634 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1635 } 1636 1637 /* 1638 * btrfs_get_fs_root_commit_root - return a root for the given objectid 1639 * @fs_info: the fs_info 1640 * @objectid: the objectid we need to lookup 1641 * 1642 * This is exclusively used for backref walking, and exists specifically because 1643 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1644 * creation time, which means we may have to read the tree_root in order to look 1645 * up a fs root that is not in memory. If the root is not in memory we will 1646 * read the tree root commit root and look up the fs root from there. This is a 1647 * temporary root, it will not be inserted into the radix tree as it doesn't 1648 * have the most uptodate information, it'll simply be discarded once the 1649 * backref code is finished using the root. 1650 */ 1651 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1652 struct btrfs_path *path, 1653 u64 objectid) 1654 { 1655 struct btrfs_root *root; 1656 struct btrfs_key key; 1657 1658 ASSERT(path->search_commit_root && path->skip_locking); 1659 1660 /* 1661 * This can return -ENOENT if we ask for a root that doesn't exist, but 1662 * since this is called via the backref walking code we won't be looking 1663 * up a root that doesn't exist, unless there's corruption. So if root 1664 * != NULL just return it. 1665 */ 1666 root = btrfs_get_global_root(fs_info, objectid); 1667 if (root) 1668 return root; 1669 1670 root = btrfs_lookup_fs_root(fs_info, objectid); 1671 if (root) 1672 return root; 1673 1674 key.objectid = objectid; 1675 key.type = BTRFS_ROOT_ITEM_KEY; 1676 key.offset = (u64)-1; 1677 root = read_tree_root_path(fs_info->tree_root, path, &key); 1678 btrfs_release_path(path); 1679 1680 return root; 1681 } 1682 1683 /* 1684 * called by the kthread helper functions to finally call the bio end_io 1685 * functions. This is where read checksum verification actually happens 1686 */ 1687 static void end_workqueue_fn(struct btrfs_work *work) 1688 { 1689 struct bio *bio; 1690 struct btrfs_end_io_wq *end_io_wq; 1691 1692 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1693 bio = end_io_wq->bio; 1694 1695 bio->bi_status = end_io_wq->status; 1696 bio->bi_private = end_io_wq->private; 1697 bio->bi_end_io = end_io_wq->end_io; 1698 bio_endio(bio); 1699 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1700 } 1701 1702 static int cleaner_kthread(void *arg) 1703 { 1704 struct btrfs_root *root = arg; 1705 struct btrfs_fs_info *fs_info = root->fs_info; 1706 int again; 1707 1708 while (1) { 1709 again = 0; 1710 1711 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1712 1713 /* Make the cleaner go to sleep early. */ 1714 if (btrfs_need_cleaner_sleep(fs_info)) 1715 goto sleep; 1716 1717 /* 1718 * Do not do anything if we might cause open_ctree() to block 1719 * before we have finished mounting the filesystem. 1720 */ 1721 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1722 goto sleep; 1723 1724 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1725 goto sleep; 1726 1727 /* 1728 * Avoid the problem that we change the status of the fs 1729 * during the above check and trylock. 1730 */ 1731 if (btrfs_need_cleaner_sleep(fs_info)) { 1732 mutex_unlock(&fs_info->cleaner_mutex); 1733 goto sleep; 1734 } 1735 1736 btrfs_run_delayed_iputs(fs_info); 1737 1738 again = btrfs_clean_one_deleted_snapshot(root); 1739 mutex_unlock(&fs_info->cleaner_mutex); 1740 1741 /* 1742 * The defragger has dealt with the R/O remount and umount, 1743 * needn't do anything special here. 1744 */ 1745 btrfs_run_defrag_inodes(fs_info); 1746 1747 /* 1748 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1749 * with relocation (btrfs_relocate_chunk) and relocation 1750 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1751 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1752 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1753 * unused block groups. 1754 */ 1755 btrfs_delete_unused_bgs(fs_info); 1756 sleep: 1757 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1758 if (kthread_should_park()) 1759 kthread_parkme(); 1760 if (kthread_should_stop()) 1761 return 0; 1762 if (!again) { 1763 set_current_state(TASK_INTERRUPTIBLE); 1764 schedule(); 1765 __set_current_state(TASK_RUNNING); 1766 } 1767 } 1768 } 1769 1770 static int transaction_kthread(void *arg) 1771 { 1772 struct btrfs_root *root = arg; 1773 struct btrfs_fs_info *fs_info = root->fs_info; 1774 struct btrfs_trans_handle *trans; 1775 struct btrfs_transaction *cur; 1776 u64 transid; 1777 time64_t now; 1778 unsigned long delay; 1779 bool cannot_commit; 1780 1781 do { 1782 cannot_commit = false; 1783 delay = HZ * fs_info->commit_interval; 1784 mutex_lock(&fs_info->transaction_kthread_mutex); 1785 1786 spin_lock(&fs_info->trans_lock); 1787 cur = fs_info->running_transaction; 1788 if (!cur) { 1789 spin_unlock(&fs_info->trans_lock); 1790 goto sleep; 1791 } 1792 1793 now = ktime_get_seconds(); 1794 if (cur->state < TRANS_STATE_COMMIT_START && 1795 (now < cur->start_time || 1796 now - cur->start_time < fs_info->commit_interval)) { 1797 spin_unlock(&fs_info->trans_lock); 1798 delay = HZ * 5; 1799 goto sleep; 1800 } 1801 transid = cur->transid; 1802 spin_unlock(&fs_info->trans_lock); 1803 1804 /* If the file system is aborted, this will always fail. */ 1805 trans = btrfs_attach_transaction(root); 1806 if (IS_ERR(trans)) { 1807 if (PTR_ERR(trans) != -ENOENT) 1808 cannot_commit = true; 1809 goto sleep; 1810 } 1811 if (transid == trans->transid) { 1812 btrfs_commit_transaction(trans); 1813 } else { 1814 btrfs_end_transaction(trans); 1815 } 1816 sleep: 1817 wake_up_process(fs_info->cleaner_kthread); 1818 mutex_unlock(&fs_info->transaction_kthread_mutex); 1819 1820 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1821 &fs_info->fs_state))) 1822 btrfs_cleanup_transaction(fs_info); 1823 if (!kthread_should_stop() && 1824 (!btrfs_transaction_blocked(fs_info) || 1825 cannot_commit)) 1826 schedule_timeout_interruptible(delay); 1827 } while (!kthread_should_stop()); 1828 return 0; 1829 } 1830 1831 /* 1832 * This will find the highest generation in the array of root backups. The 1833 * index of the highest array is returned, or -EINVAL if we can't find 1834 * anything. 1835 * 1836 * We check to make sure the array is valid by comparing the 1837 * generation of the latest root in the array with the generation 1838 * in the super block. If they don't match we pitch it. 1839 */ 1840 static int find_newest_super_backup(struct btrfs_fs_info *info) 1841 { 1842 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1843 u64 cur; 1844 struct btrfs_root_backup *root_backup; 1845 int i; 1846 1847 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1848 root_backup = info->super_copy->super_roots + i; 1849 cur = btrfs_backup_tree_root_gen(root_backup); 1850 if (cur == newest_gen) 1851 return i; 1852 } 1853 1854 return -EINVAL; 1855 } 1856 1857 /* 1858 * copy all the root pointers into the super backup array. 1859 * this will bump the backup pointer by one when it is 1860 * done 1861 */ 1862 static void backup_super_roots(struct btrfs_fs_info *info) 1863 { 1864 const int next_backup = info->backup_root_index; 1865 struct btrfs_root_backup *root_backup; 1866 1867 root_backup = info->super_for_commit->super_roots + next_backup; 1868 1869 /* 1870 * make sure all of our padding and empty slots get zero filled 1871 * regardless of which ones we use today 1872 */ 1873 memset(root_backup, 0, sizeof(*root_backup)); 1874 1875 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1876 1877 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1878 btrfs_set_backup_tree_root_gen(root_backup, 1879 btrfs_header_generation(info->tree_root->node)); 1880 1881 btrfs_set_backup_tree_root_level(root_backup, 1882 btrfs_header_level(info->tree_root->node)); 1883 1884 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1885 btrfs_set_backup_chunk_root_gen(root_backup, 1886 btrfs_header_generation(info->chunk_root->node)); 1887 btrfs_set_backup_chunk_root_level(root_backup, 1888 btrfs_header_level(info->chunk_root->node)); 1889 1890 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1891 btrfs_set_backup_extent_root_gen(root_backup, 1892 btrfs_header_generation(info->extent_root->node)); 1893 btrfs_set_backup_extent_root_level(root_backup, 1894 btrfs_header_level(info->extent_root->node)); 1895 1896 /* 1897 * we might commit during log recovery, which happens before we set 1898 * the fs_root. Make sure it is valid before we fill it in. 1899 */ 1900 if (info->fs_root && info->fs_root->node) { 1901 btrfs_set_backup_fs_root(root_backup, 1902 info->fs_root->node->start); 1903 btrfs_set_backup_fs_root_gen(root_backup, 1904 btrfs_header_generation(info->fs_root->node)); 1905 btrfs_set_backup_fs_root_level(root_backup, 1906 btrfs_header_level(info->fs_root->node)); 1907 } 1908 1909 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1910 btrfs_set_backup_dev_root_gen(root_backup, 1911 btrfs_header_generation(info->dev_root->node)); 1912 btrfs_set_backup_dev_root_level(root_backup, 1913 btrfs_header_level(info->dev_root->node)); 1914 1915 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1916 btrfs_set_backup_csum_root_gen(root_backup, 1917 btrfs_header_generation(info->csum_root->node)); 1918 btrfs_set_backup_csum_root_level(root_backup, 1919 btrfs_header_level(info->csum_root->node)); 1920 1921 btrfs_set_backup_total_bytes(root_backup, 1922 btrfs_super_total_bytes(info->super_copy)); 1923 btrfs_set_backup_bytes_used(root_backup, 1924 btrfs_super_bytes_used(info->super_copy)); 1925 btrfs_set_backup_num_devices(root_backup, 1926 btrfs_super_num_devices(info->super_copy)); 1927 1928 /* 1929 * if we don't copy this out to the super_copy, it won't get remembered 1930 * for the next commit 1931 */ 1932 memcpy(&info->super_copy->super_roots, 1933 &info->super_for_commit->super_roots, 1934 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1935 } 1936 1937 /* 1938 * read_backup_root - Reads a backup root based on the passed priority. Prio 0 1939 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1940 * 1941 * fs_info - filesystem whose backup roots need to be read 1942 * priority - priority of backup root required 1943 * 1944 * Returns backup root index on success and -EINVAL otherwise. 1945 */ 1946 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1947 { 1948 int backup_index = find_newest_super_backup(fs_info); 1949 struct btrfs_super_block *super = fs_info->super_copy; 1950 struct btrfs_root_backup *root_backup; 1951 1952 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1953 if (priority == 0) 1954 return backup_index; 1955 1956 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1957 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1958 } else { 1959 return -EINVAL; 1960 } 1961 1962 root_backup = super->super_roots + backup_index; 1963 1964 btrfs_set_super_generation(super, 1965 btrfs_backup_tree_root_gen(root_backup)); 1966 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1967 btrfs_set_super_root_level(super, 1968 btrfs_backup_tree_root_level(root_backup)); 1969 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1970 1971 /* 1972 * Fixme: the total bytes and num_devices need to match or we should 1973 * need a fsck 1974 */ 1975 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1976 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1977 1978 return backup_index; 1979 } 1980 1981 /* helper to cleanup workers */ 1982 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1983 { 1984 btrfs_destroy_workqueue(fs_info->fixup_workers); 1985 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1986 btrfs_destroy_workqueue(fs_info->workers); 1987 btrfs_destroy_workqueue(fs_info->endio_workers); 1988 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 1989 btrfs_destroy_workqueue(fs_info->rmw_workers); 1990 btrfs_destroy_workqueue(fs_info->endio_write_workers); 1991 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 1992 btrfs_destroy_workqueue(fs_info->delayed_workers); 1993 btrfs_destroy_workqueue(fs_info->caching_workers); 1994 btrfs_destroy_workqueue(fs_info->readahead_workers); 1995 btrfs_destroy_workqueue(fs_info->flush_workers); 1996 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 1997 if (fs_info->discard_ctl.discard_workers) 1998 destroy_workqueue(fs_info->discard_ctl.discard_workers); 1999 /* 2000 * Now that all other work queues are destroyed, we can safely destroy 2001 * the queues used for metadata I/O, since tasks from those other work 2002 * queues can do metadata I/O operations. 2003 */ 2004 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2005 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2006 } 2007 2008 static void free_root_extent_buffers(struct btrfs_root *root) 2009 { 2010 if (root) { 2011 free_extent_buffer(root->node); 2012 free_extent_buffer(root->commit_root); 2013 root->node = NULL; 2014 root->commit_root = NULL; 2015 } 2016 } 2017 2018 /* helper to cleanup tree roots */ 2019 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 2020 { 2021 free_root_extent_buffers(info->tree_root); 2022 2023 free_root_extent_buffers(info->dev_root); 2024 free_root_extent_buffers(info->extent_root); 2025 free_root_extent_buffers(info->csum_root); 2026 free_root_extent_buffers(info->quota_root); 2027 free_root_extent_buffers(info->uuid_root); 2028 free_root_extent_buffers(info->fs_root); 2029 free_root_extent_buffers(info->data_reloc_root); 2030 if (free_chunk_root) 2031 free_root_extent_buffers(info->chunk_root); 2032 free_root_extent_buffers(info->free_space_root); 2033 } 2034 2035 void btrfs_put_root(struct btrfs_root *root) 2036 { 2037 if (!root) 2038 return; 2039 2040 if (refcount_dec_and_test(&root->refs)) { 2041 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2042 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 2043 if (root->anon_dev) 2044 free_anon_bdev(root->anon_dev); 2045 btrfs_drew_lock_destroy(&root->snapshot_lock); 2046 free_root_extent_buffers(root); 2047 kfree(root->free_ino_ctl); 2048 kfree(root->free_ino_pinned); 2049 #ifdef CONFIG_BTRFS_DEBUG 2050 spin_lock(&root->fs_info->fs_roots_radix_lock); 2051 list_del_init(&root->leak_list); 2052 spin_unlock(&root->fs_info->fs_roots_radix_lock); 2053 #endif 2054 kfree(root); 2055 } 2056 } 2057 2058 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2059 { 2060 int ret; 2061 struct btrfs_root *gang[8]; 2062 int i; 2063 2064 while (!list_empty(&fs_info->dead_roots)) { 2065 gang[0] = list_entry(fs_info->dead_roots.next, 2066 struct btrfs_root, root_list); 2067 list_del(&gang[0]->root_list); 2068 2069 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 2070 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2071 btrfs_put_root(gang[0]); 2072 } 2073 2074 while (1) { 2075 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2076 (void **)gang, 0, 2077 ARRAY_SIZE(gang)); 2078 if (!ret) 2079 break; 2080 for (i = 0; i < ret; i++) 2081 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2082 } 2083 } 2084 2085 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2086 { 2087 mutex_init(&fs_info->scrub_lock); 2088 atomic_set(&fs_info->scrubs_running, 0); 2089 atomic_set(&fs_info->scrub_pause_req, 0); 2090 atomic_set(&fs_info->scrubs_paused, 0); 2091 atomic_set(&fs_info->scrub_cancel_req, 0); 2092 init_waitqueue_head(&fs_info->scrub_pause_wait); 2093 refcount_set(&fs_info->scrub_workers_refcnt, 0); 2094 } 2095 2096 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2097 { 2098 spin_lock_init(&fs_info->balance_lock); 2099 mutex_init(&fs_info->balance_mutex); 2100 atomic_set(&fs_info->balance_pause_req, 0); 2101 atomic_set(&fs_info->balance_cancel_req, 0); 2102 fs_info->balance_ctl = NULL; 2103 init_waitqueue_head(&fs_info->balance_wait_q); 2104 } 2105 2106 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2107 { 2108 struct inode *inode = fs_info->btree_inode; 2109 2110 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2111 set_nlink(inode, 1); 2112 /* 2113 * we set the i_size on the btree inode to the max possible int. 2114 * the real end of the address space is determined by all of 2115 * the devices in the system 2116 */ 2117 inode->i_size = OFFSET_MAX; 2118 inode->i_mapping->a_ops = &btree_aops; 2119 2120 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2121 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 2122 IO_TREE_BTREE_INODE_IO, inode); 2123 BTRFS_I(inode)->io_tree.track_uptodate = false; 2124 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2125 2126 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 2127 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); 2128 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2129 btrfs_insert_inode_hash(inode); 2130 } 2131 2132 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2133 { 2134 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2135 init_rwsem(&fs_info->dev_replace.rwsem); 2136 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2137 } 2138 2139 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2140 { 2141 spin_lock_init(&fs_info->qgroup_lock); 2142 mutex_init(&fs_info->qgroup_ioctl_lock); 2143 fs_info->qgroup_tree = RB_ROOT; 2144 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2145 fs_info->qgroup_seq = 1; 2146 fs_info->qgroup_ulist = NULL; 2147 fs_info->qgroup_rescan_running = false; 2148 mutex_init(&fs_info->qgroup_rescan_lock); 2149 } 2150 2151 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2152 struct btrfs_fs_devices *fs_devices) 2153 { 2154 u32 max_active = fs_info->thread_pool_size; 2155 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2156 2157 fs_info->workers = 2158 btrfs_alloc_workqueue(fs_info, "worker", 2159 flags | WQ_HIGHPRI, max_active, 16); 2160 2161 fs_info->delalloc_workers = 2162 btrfs_alloc_workqueue(fs_info, "delalloc", 2163 flags, max_active, 2); 2164 2165 fs_info->flush_workers = 2166 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2167 flags, max_active, 0); 2168 2169 fs_info->caching_workers = 2170 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2171 2172 fs_info->fixup_workers = 2173 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2174 2175 /* 2176 * endios are largely parallel and should have a very 2177 * low idle thresh 2178 */ 2179 fs_info->endio_workers = 2180 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2181 fs_info->endio_meta_workers = 2182 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2183 max_active, 4); 2184 fs_info->endio_meta_write_workers = 2185 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2186 max_active, 2); 2187 fs_info->endio_raid56_workers = 2188 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2189 max_active, 4); 2190 fs_info->rmw_workers = 2191 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2192 fs_info->endio_write_workers = 2193 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2194 max_active, 2); 2195 fs_info->endio_freespace_worker = 2196 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2197 max_active, 0); 2198 fs_info->delayed_workers = 2199 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2200 max_active, 0); 2201 fs_info->readahead_workers = 2202 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2203 max_active, 2); 2204 fs_info->qgroup_rescan_workers = 2205 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2206 fs_info->discard_ctl.discard_workers = 2207 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1); 2208 2209 if (!(fs_info->workers && fs_info->delalloc_workers && 2210 fs_info->flush_workers && 2211 fs_info->endio_workers && fs_info->endio_meta_workers && 2212 fs_info->endio_meta_write_workers && 2213 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2214 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2215 fs_info->caching_workers && fs_info->readahead_workers && 2216 fs_info->fixup_workers && fs_info->delayed_workers && 2217 fs_info->qgroup_rescan_workers && 2218 fs_info->discard_ctl.discard_workers)) { 2219 return -ENOMEM; 2220 } 2221 2222 return 0; 2223 } 2224 2225 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2226 { 2227 struct crypto_shash *csum_shash; 2228 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2229 2230 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2231 2232 if (IS_ERR(csum_shash)) { 2233 btrfs_err(fs_info, "error allocating %s hash for checksum", 2234 csum_driver); 2235 return PTR_ERR(csum_shash); 2236 } 2237 2238 fs_info->csum_shash = csum_shash; 2239 2240 return 0; 2241 } 2242 2243 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2244 struct btrfs_fs_devices *fs_devices) 2245 { 2246 int ret; 2247 struct btrfs_root *log_tree_root; 2248 struct btrfs_super_block *disk_super = fs_info->super_copy; 2249 u64 bytenr = btrfs_super_log_root(disk_super); 2250 int level = btrfs_super_log_root_level(disk_super); 2251 2252 if (fs_devices->rw_devices == 0) { 2253 btrfs_warn(fs_info, "log replay required on RO media"); 2254 return -EIO; 2255 } 2256 2257 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2258 GFP_KERNEL); 2259 if (!log_tree_root) 2260 return -ENOMEM; 2261 2262 log_tree_root->node = read_tree_block(fs_info, bytenr, 2263 fs_info->generation + 1, 2264 level, NULL); 2265 if (IS_ERR(log_tree_root->node)) { 2266 btrfs_warn(fs_info, "failed to read log tree"); 2267 ret = PTR_ERR(log_tree_root->node); 2268 log_tree_root->node = NULL; 2269 btrfs_put_root(log_tree_root); 2270 return ret; 2271 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2272 btrfs_err(fs_info, "failed to read log tree"); 2273 btrfs_put_root(log_tree_root); 2274 return -EIO; 2275 } 2276 /* returns with log_tree_root freed on success */ 2277 ret = btrfs_recover_log_trees(log_tree_root); 2278 if (ret) { 2279 btrfs_handle_fs_error(fs_info, ret, 2280 "Failed to recover log tree"); 2281 btrfs_put_root(log_tree_root); 2282 return ret; 2283 } 2284 2285 if (sb_rdonly(fs_info->sb)) { 2286 ret = btrfs_commit_super(fs_info); 2287 if (ret) 2288 return ret; 2289 } 2290 2291 return 0; 2292 } 2293 2294 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2295 { 2296 struct btrfs_root *tree_root = fs_info->tree_root; 2297 struct btrfs_root *root; 2298 struct btrfs_key location; 2299 int ret; 2300 2301 BUG_ON(!fs_info->tree_root); 2302 2303 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2304 location.type = BTRFS_ROOT_ITEM_KEY; 2305 location.offset = 0; 2306 2307 root = btrfs_read_tree_root(tree_root, &location); 2308 if (IS_ERR(root)) { 2309 ret = PTR_ERR(root); 2310 goto out; 2311 } 2312 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2313 fs_info->extent_root = root; 2314 2315 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2316 root = btrfs_read_tree_root(tree_root, &location); 2317 if (IS_ERR(root)) { 2318 ret = PTR_ERR(root); 2319 goto out; 2320 } 2321 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2322 fs_info->dev_root = root; 2323 btrfs_init_devices_late(fs_info); 2324 2325 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2326 root = btrfs_read_tree_root(tree_root, &location); 2327 if (IS_ERR(root)) { 2328 ret = PTR_ERR(root); 2329 goto out; 2330 } 2331 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2332 fs_info->csum_root = root; 2333 2334 /* 2335 * This tree can share blocks with some other fs tree during relocation 2336 * and we need a proper setup by btrfs_get_fs_root 2337 */ 2338 root = btrfs_get_fs_root(tree_root->fs_info, 2339 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2340 if (IS_ERR(root)) { 2341 ret = PTR_ERR(root); 2342 goto out; 2343 } 2344 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2345 fs_info->data_reloc_root = root; 2346 2347 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2348 root = btrfs_read_tree_root(tree_root, &location); 2349 if (!IS_ERR(root)) { 2350 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2351 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2352 fs_info->quota_root = root; 2353 } 2354 2355 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2356 root = btrfs_read_tree_root(tree_root, &location); 2357 if (IS_ERR(root)) { 2358 ret = PTR_ERR(root); 2359 if (ret != -ENOENT) 2360 goto out; 2361 } else { 2362 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2363 fs_info->uuid_root = root; 2364 } 2365 2366 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2367 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2368 root = btrfs_read_tree_root(tree_root, &location); 2369 if (IS_ERR(root)) { 2370 ret = PTR_ERR(root); 2371 goto out; 2372 } 2373 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2374 fs_info->free_space_root = root; 2375 } 2376 2377 return 0; 2378 out: 2379 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2380 location.objectid, ret); 2381 return ret; 2382 } 2383 2384 /* 2385 * Real super block validation 2386 * NOTE: super csum type and incompat features will not be checked here. 2387 * 2388 * @sb: super block to check 2389 * @mirror_num: the super block number to check its bytenr: 2390 * 0 the primary (1st) sb 2391 * 1, 2 2nd and 3rd backup copy 2392 * -1 skip bytenr check 2393 */ 2394 static int validate_super(struct btrfs_fs_info *fs_info, 2395 struct btrfs_super_block *sb, int mirror_num) 2396 { 2397 u64 nodesize = btrfs_super_nodesize(sb); 2398 u64 sectorsize = btrfs_super_sectorsize(sb); 2399 int ret = 0; 2400 2401 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2402 btrfs_err(fs_info, "no valid FS found"); 2403 ret = -EINVAL; 2404 } 2405 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2406 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2407 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2408 ret = -EINVAL; 2409 } 2410 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2411 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2412 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2413 ret = -EINVAL; 2414 } 2415 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2416 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2417 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2418 ret = -EINVAL; 2419 } 2420 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2421 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2422 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2423 ret = -EINVAL; 2424 } 2425 2426 /* 2427 * Check sectorsize and nodesize first, other check will need it. 2428 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2429 */ 2430 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2431 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2432 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2433 ret = -EINVAL; 2434 } 2435 /* Only PAGE SIZE is supported yet */ 2436 if (sectorsize != PAGE_SIZE) { 2437 btrfs_err(fs_info, 2438 "sectorsize %llu not supported yet, only support %lu", 2439 sectorsize, PAGE_SIZE); 2440 ret = -EINVAL; 2441 } 2442 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2443 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2444 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2445 ret = -EINVAL; 2446 } 2447 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2448 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2449 le32_to_cpu(sb->__unused_leafsize), nodesize); 2450 ret = -EINVAL; 2451 } 2452 2453 /* Root alignment check */ 2454 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2455 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2456 btrfs_super_root(sb)); 2457 ret = -EINVAL; 2458 } 2459 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2460 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2461 btrfs_super_chunk_root(sb)); 2462 ret = -EINVAL; 2463 } 2464 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2465 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2466 btrfs_super_log_root(sb)); 2467 ret = -EINVAL; 2468 } 2469 2470 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2471 BTRFS_FSID_SIZE) != 0) { 2472 btrfs_err(fs_info, 2473 "dev_item UUID does not match metadata fsid: %pU != %pU", 2474 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2475 ret = -EINVAL; 2476 } 2477 2478 /* 2479 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2480 * done later 2481 */ 2482 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2483 btrfs_err(fs_info, "bytes_used is too small %llu", 2484 btrfs_super_bytes_used(sb)); 2485 ret = -EINVAL; 2486 } 2487 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2488 btrfs_err(fs_info, "invalid stripesize %u", 2489 btrfs_super_stripesize(sb)); 2490 ret = -EINVAL; 2491 } 2492 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2493 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2494 btrfs_super_num_devices(sb)); 2495 if (btrfs_super_num_devices(sb) == 0) { 2496 btrfs_err(fs_info, "number of devices is 0"); 2497 ret = -EINVAL; 2498 } 2499 2500 if (mirror_num >= 0 && 2501 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2502 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2503 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2504 ret = -EINVAL; 2505 } 2506 2507 /* 2508 * Obvious sys_chunk_array corruptions, it must hold at least one key 2509 * and one chunk 2510 */ 2511 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2512 btrfs_err(fs_info, "system chunk array too big %u > %u", 2513 btrfs_super_sys_array_size(sb), 2514 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2515 ret = -EINVAL; 2516 } 2517 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2518 + sizeof(struct btrfs_chunk)) { 2519 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2520 btrfs_super_sys_array_size(sb), 2521 sizeof(struct btrfs_disk_key) 2522 + sizeof(struct btrfs_chunk)); 2523 ret = -EINVAL; 2524 } 2525 2526 /* 2527 * The generation is a global counter, we'll trust it more than the others 2528 * but it's still possible that it's the one that's wrong. 2529 */ 2530 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2531 btrfs_warn(fs_info, 2532 "suspicious: generation < chunk_root_generation: %llu < %llu", 2533 btrfs_super_generation(sb), 2534 btrfs_super_chunk_root_generation(sb)); 2535 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2536 && btrfs_super_cache_generation(sb) != (u64)-1) 2537 btrfs_warn(fs_info, 2538 "suspicious: generation < cache_generation: %llu < %llu", 2539 btrfs_super_generation(sb), 2540 btrfs_super_cache_generation(sb)); 2541 2542 return ret; 2543 } 2544 2545 /* 2546 * Validation of super block at mount time. 2547 * Some checks already done early at mount time, like csum type and incompat 2548 * flags will be skipped. 2549 */ 2550 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2551 { 2552 return validate_super(fs_info, fs_info->super_copy, 0); 2553 } 2554 2555 /* 2556 * Validation of super block at write time. 2557 * Some checks like bytenr check will be skipped as their values will be 2558 * overwritten soon. 2559 * Extra checks like csum type and incompat flags will be done here. 2560 */ 2561 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2562 struct btrfs_super_block *sb) 2563 { 2564 int ret; 2565 2566 ret = validate_super(fs_info, sb, -1); 2567 if (ret < 0) 2568 goto out; 2569 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2570 ret = -EUCLEAN; 2571 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2572 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2573 goto out; 2574 } 2575 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2576 ret = -EUCLEAN; 2577 btrfs_err(fs_info, 2578 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2579 btrfs_super_incompat_flags(sb), 2580 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2581 goto out; 2582 } 2583 out: 2584 if (ret < 0) 2585 btrfs_err(fs_info, 2586 "super block corruption detected before writing it to disk"); 2587 return ret; 2588 } 2589 2590 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2591 { 2592 int backup_index = find_newest_super_backup(fs_info); 2593 struct btrfs_super_block *sb = fs_info->super_copy; 2594 struct btrfs_root *tree_root = fs_info->tree_root; 2595 bool handle_error = false; 2596 int ret = 0; 2597 int i; 2598 2599 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2600 u64 generation; 2601 int level; 2602 2603 if (handle_error) { 2604 if (!IS_ERR(tree_root->node)) 2605 free_extent_buffer(tree_root->node); 2606 tree_root->node = NULL; 2607 2608 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2609 break; 2610 2611 free_root_pointers(fs_info, 0); 2612 2613 /* 2614 * Don't use the log in recovery mode, it won't be 2615 * valid 2616 */ 2617 btrfs_set_super_log_root(sb, 0); 2618 2619 /* We can't trust the free space cache either */ 2620 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2621 2622 ret = read_backup_root(fs_info, i); 2623 backup_index = ret; 2624 if (ret < 0) 2625 return ret; 2626 } 2627 generation = btrfs_super_generation(sb); 2628 level = btrfs_super_root_level(sb); 2629 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb), 2630 generation, level, NULL); 2631 if (IS_ERR(tree_root->node)) { 2632 handle_error = true; 2633 ret = PTR_ERR(tree_root->node); 2634 tree_root->node = NULL; 2635 btrfs_warn(fs_info, "couldn't read tree root"); 2636 continue; 2637 2638 } else if (!extent_buffer_uptodate(tree_root->node)) { 2639 handle_error = true; 2640 ret = -EIO; 2641 btrfs_warn(fs_info, "error while reading tree root"); 2642 continue; 2643 } 2644 2645 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2646 tree_root->commit_root = btrfs_root_node(tree_root); 2647 btrfs_set_root_refs(&tree_root->root_item, 1); 2648 2649 /* 2650 * No need to hold btrfs_root::objectid_mutex since the fs 2651 * hasn't been fully initialised and we are the only user 2652 */ 2653 ret = btrfs_find_highest_objectid(tree_root, 2654 &tree_root->highest_objectid); 2655 if (ret < 0) { 2656 handle_error = true; 2657 continue; 2658 } 2659 2660 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 2661 2662 ret = btrfs_read_roots(fs_info); 2663 if (ret < 0) { 2664 handle_error = true; 2665 continue; 2666 } 2667 2668 /* All successful */ 2669 fs_info->generation = generation; 2670 fs_info->last_trans_committed = generation; 2671 2672 /* Always begin writing backup roots after the one being used */ 2673 if (backup_index < 0) { 2674 fs_info->backup_root_index = 0; 2675 } else { 2676 fs_info->backup_root_index = backup_index + 1; 2677 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2678 } 2679 break; 2680 } 2681 2682 return ret; 2683 } 2684 2685 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2686 { 2687 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2688 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2689 INIT_LIST_HEAD(&fs_info->trans_list); 2690 INIT_LIST_HEAD(&fs_info->dead_roots); 2691 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2692 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2693 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2694 spin_lock_init(&fs_info->delalloc_root_lock); 2695 spin_lock_init(&fs_info->trans_lock); 2696 spin_lock_init(&fs_info->fs_roots_radix_lock); 2697 spin_lock_init(&fs_info->delayed_iput_lock); 2698 spin_lock_init(&fs_info->defrag_inodes_lock); 2699 spin_lock_init(&fs_info->super_lock); 2700 spin_lock_init(&fs_info->buffer_lock); 2701 spin_lock_init(&fs_info->unused_bgs_lock); 2702 rwlock_init(&fs_info->tree_mod_log_lock); 2703 mutex_init(&fs_info->unused_bg_unpin_mutex); 2704 mutex_init(&fs_info->delete_unused_bgs_mutex); 2705 mutex_init(&fs_info->reloc_mutex); 2706 mutex_init(&fs_info->delalloc_root_mutex); 2707 seqlock_init(&fs_info->profiles_lock); 2708 2709 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2710 INIT_LIST_HEAD(&fs_info->space_info); 2711 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2712 INIT_LIST_HEAD(&fs_info->unused_bgs); 2713 #ifdef CONFIG_BTRFS_DEBUG 2714 INIT_LIST_HEAD(&fs_info->allocated_roots); 2715 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2716 spin_lock_init(&fs_info->eb_leak_lock); 2717 #endif 2718 extent_map_tree_init(&fs_info->mapping_tree); 2719 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2720 BTRFS_BLOCK_RSV_GLOBAL); 2721 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2722 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2723 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2724 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2725 BTRFS_BLOCK_RSV_DELOPS); 2726 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2727 BTRFS_BLOCK_RSV_DELREFS); 2728 2729 atomic_set(&fs_info->async_delalloc_pages, 0); 2730 atomic_set(&fs_info->defrag_running, 0); 2731 atomic_set(&fs_info->reada_works_cnt, 0); 2732 atomic_set(&fs_info->nr_delayed_iputs, 0); 2733 atomic64_set(&fs_info->tree_mod_seq, 0); 2734 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2735 fs_info->metadata_ratio = 0; 2736 fs_info->defrag_inodes = RB_ROOT; 2737 atomic64_set(&fs_info->free_chunk_space, 0); 2738 fs_info->tree_mod_log = RB_ROOT; 2739 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2740 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2741 /* readahead state */ 2742 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2743 spin_lock_init(&fs_info->reada_lock); 2744 btrfs_init_ref_verify(fs_info); 2745 2746 fs_info->thread_pool_size = min_t(unsigned long, 2747 num_online_cpus() + 2, 8); 2748 2749 INIT_LIST_HEAD(&fs_info->ordered_roots); 2750 spin_lock_init(&fs_info->ordered_root_lock); 2751 2752 btrfs_init_scrub(fs_info); 2753 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2754 fs_info->check_integrity_print_mask = 0; 2755 #endif 2756 btrfs_init_balance(fs_info); 2757 btrfs_init_async_reclaim_work(fs_info); 2758 2759 spin_lock_init(&fs_info->block_group_cache_lock); 2760 fs_info->block_group_cache_tree = RB_ROOT; 2761 fs_info->first_logical_byte = (u64)-1; 2762 2763 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2764 IO_TREE_FS_EXCLUDED_EXTENTS, NULL); 2765 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2766 2767 mutex_init(&fs_info->ordered_operations_mutex); 2768 mutex_init(&fs_info->tree_log_mutex); 2769 mutex_init(&fs_info->chunk_mutex); 2770 mutex_init(&fs_info->transaction_kthread_mutex); 2771 mutex_init(&fs_info->cleaner_mutex); 2772 mutex_init(&fs_info->ro_block_group_mutex); 2773 init_rwsem(&fs_info->commit_root_sem); 2774 init_rwsem(&fs_info->cleanup_work_sem); 2775 init_rwsem(&fs_info->subvol_sem); 2776 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2777 2778 btrfs_init_dev_replace_locks(fs_info); 2779 btrfs_init_qgroup(fs_info); 2780 btrfs_discard_init(fs_info); 2781 2782 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2783 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2784 2785 init_waitqueue_head(&fs_info->transaction_throttle); 2786 init_waitqueue_head(&fs_info->transaction_wait); 2787 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2788 init_waitqueue_head(&fs_info->async_submit_wait); 2789 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2790 2791 /* Usable values until the real ones are cached from the superblock */ 2792 fs_info->nodesize = 4096; 2793 fs_info->sectorsize = 4096; 2794 fs_info->stripesize = 4096; 2795 2796 spin_lock_init(&fs_info->swapfile_pins_lock); 2797 fs_info->swapfile_pins = RB_ROOT; 2798 2799 fs_info->send_in_progress = 0; 2800 } 2801 2802 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 2803 { 2804 int ret; 2805 2806 fs_info->sb = sb; 2807 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2808 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2809 2810 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL); 2811 if (ret) 2812 return ret; 2813 2814 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2815 if (ret) 2816 return ret; 2817 2818 fs_info->dirty_metadata_batch = PAGE_SIZE * 2819 (1 + ilog2(nr_cpu_ids)); 2820 2821 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2822 if (ret) 2823 return ret; 2824 2825 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2826 GFP_KERNEL); 2827 if (ret) 2828 return ret; 2829 2830 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2831 GFP_KERNEL); 2832 if (!fs_info->delayed_root) 2833 return -ENOMEM; 2834 btrfs_init_delayed_root(fs_info->delayed_root); 2835 2836 return btrfs_alloc_stripe_hash_table(fs_info); 2837 } 2838 2839 static int btrfs_uuid_rescan_kthread(void *data) 2840 { 2841 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 2842 int ret; 2843 2844 /* 2845 * 1st step is to iterate through the existing UUID tree and 2846 * to delete all entries that contain outdated data. 2847 * 2nd step is to add all missing entries to the UUID tree. 2848 */ 2849 ret = btrfs_uuid_tree_iterate(fs_info); 2850 if (ret < 0) { 2851 if (ret != -EINTR) 2852 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 2853 ret); 2854 up(&fs_info->uuid_tree_rescan_sem); 2855 return ret; 2856 } 2857 return btrfs_uuid_scan_kthread(data); 2858 } 2859 2860 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 2861 { 2862 struct task_struct *task; 2863 2864 down(&fs_info->uuid_tree_rescan_sem); 2865 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 2866 if (IS_ERR(task)) { 2867 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 2868 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 2869 up(&fs_info->uuid_tree_rescan_sem); 2870 return PTR_ERR(task); 2871 } 2872 2873 return 0; 2874 } 2875 2876 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 2877 char *options) 2878 { 2879 u32 sectorsize; 2880 u32 nodesize; 2881 u32 stripesize; 2882 u64 generation; 2883 u64 features; 2884 u16 csum_type; 2885 struct btrfs_super_block *disk_super; 2886 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2887 struct btrfs_root *tree_root; 2888 struct btrfs_root *chunk_root; 2889 int ret; 2890 int err = -EINVAL; 2891 int clear_free_space_tree = 0; 2892 int level; 2893 2894 ret = init_mount_fs_info(fs_info, sb); 2895 if (ret) { 2896 err = ret; 2897 goto fail; 2898 } 2899 2900 /* These need to be init'ed before we start creating inodes and such. */ 2901 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 2902 GFP_KERNEL); 2903 fs_info->tree_root = tree_root; 2904 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 2905 GFP_KERNEL); 2906 fs_info->chunk_root = chunk_root; 2907 if (!tree_root || !chunk_root) { 2908 err = -ENOMEM; 2909 goto fail; 2910 } 2911 2912 fs_info->btree_inode = new_inode(sb); 2913 if (!fs_info->btree_inode) { 2914 err = -ENOMEM; 2915 goto fail; 2916 } 2917 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2918 btrfs_init_btree_inode(fs_info); 2919 2920 invalidate_bdev(fs_devices->latest_bdev); 2921 2922 /* 2923 * Read super block and check the signature bytes only 2924 */ 2925 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev); 2926 if (IS_ERR(disk_super)) { 2927 err = PTR_ERR(disk_super); 2928 goto fail_alloc; 2929 } 2930 2931 /* 2932 * Verify the type first, if that or the checksum value are 2933 * corrupted, we'll find out 2934 */ 2935 csum_type = btrfs_super_csum_type(disk_super); 2936 if (!btrfs_supported_super_csum(csum_type)) { 2937 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 2938 csum_type); 2939 err = -EINVAL; 2940 btrfs_release_disk_super(disk_super); 2941 goto fail_alloc; 2942 } 2943 2944 ret = btrfs_init_csum_hash(fs_info, csum_type); 2945 if (ret) { 2946 err = ret; 2947 btrfs_release_disk_super(disk_super); 2948 goto fail_alloc; 2949 } 2950 2951 /* 2952 * We want to check superblock checksum, the type is stored inside. 2953 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2954 */ 2955 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) { 2956 btrfs_err(fs_info, "superblock checksum mismatch"); 2957 err = -EINVAL; 2958 btrfs_release_disk_super(disk_super); 2959 goto fail_alloc; 2960 } 2961 2962 /* 2963 * super_copy is zeroed at allocation time and we never touch the 2964 * following bytes up to INFO_SIZE, the checksum is calculated from 2965 * the whole block of INFO_SIZE 2966 */ 2967 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 2968 btrfs_release_disk_super(disk_super); 2969 2970 disk_super = fs_info->super_copy; 2971 2972 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, 2973 BTRFS_FSID_SIZE)); 2974 2975 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) { 2976 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid, 2977 fs_info->super_copy->metadata_uuid, 2978 BTRFS_FSID_SIZE)); 2979 } 2980 2981 features = btrfs_super_flags(disk_super); 2982 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 2983 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 2984 btrfs_set_super_flags(disk_super, features); 2985 btrfs_info(fs_info, 2986 "found metadata UUID change in progress flag, clearing"); 2987 } 2988 2989 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2990 sizeof(*fs_info->super_for_commit)); 2991 2992 ret = btrfs_validate_mount_super(fs_info); 2993 if (ret) { 2994 btrfs_err(fs_info, "superblock contains fatal errors"); 2995 err = -EINVAL; 2996 goto fail_alloc; 2997 } 2998 2999 if (!btrfs_super_root(disk_super)) 3000 goto fail_alloc; 3001 3002 /* check FS state, whether FS is broken. */ 3003 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3004 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 3005 3006 /* 3007 * In the long term, we'll store the compression type in the super 3008 * block, and it'll be used for per file compression control. 3009 */ 3010 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 3011 3012 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 3013 if (ret) { 3014 err = ret; 3015 goto fail_alloc; 3016 } 3017 3018 features = btrfs_super_incompat_flags(disk_super) & 3019 ~BTRFS_FEATURE_INCOMPAT_SUPP; 3020 if (features) { 3021 btrfs_err(fs_info, 3022 "cannot mount because of unsupported optional features (%llx)", 3023 features); 3024 err = -EINVAL; 3025 goto fail_alloc; 3026 } 3027 3028 features = btrfs_super_incompat_flags(disk_super); 3029 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3030 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3031 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3032 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3033 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3034 3035 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 3036 btrfs_info(fs_info, "has skinny extents"); 3037 3038 /* 3039 * flag our filesystem as having big metadata blocks if 3040 * they are bigger than the page size 3041 */ 3042 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 3043 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 3044 btrfs_info(fs_info, 3045 "flagging fs with big metadata feature"); 3046 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3047 } 3048 3049 nodesize = btrfs_super_nodesize(disk_super); 3050 sectorsize = btrfs_super_sectorsize(disk_super); 3051 stripesize = sectorsize; 3052 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3053 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3054 3055 /* Cache block sizes */ 3056 fs_info->nodesize = nodesize; 3057 fs_info->sectorsize = sectorsize; 3058 fs_info->stripesize = stripesize; 3059 3060 /* 3061 * mixed block groups end up with duplicate but slightly offset 3062 * extent buffers for the same range. It leads to corruptions 3063 */ 3064 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3065 (sectorsize != nodesize)) { 3066 btrfs_err(fs_info, 3067 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3068 nodesize, sectorsize); 3069 goto fail_alloc; 3070 } 3071 3072 /* 3073 * Needn't use the lock because there is no other task which will 3074 * update the flag. 3075 */ 3076 btrfs_set_super_incompat_flags(disk_super, features); 3077 3078 features = btrfs_super_compat_ro_flags(disk_super) & 3079 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 3080 if (!sb_rdonly(sb) && features) { 3081 btrfs_err(fs_info, 3082 "cannot mount read-write because of unsupported optional features (%llx)", 3083 features); 3084 err = -EINVAL; 3085 goto fail_alloc; 3086 } 3087 3088 ret = btrfs_init_workqueues(fs_info, fs_devices); 3089 if (ret) { 3090 err = ret; 3091 goto fail_sb_buffer; 3092 } 3093 3094 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3095 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3096 3097 sb->s_blocksize = sectorsize; 3098 sb->s_blocksize_bits = blksize_bits(sectorsize); 3099 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3100 3101 mutex_lock(&fs_info->chunk_mutex); 3102 ret = btrfs_read_sys_array(fs_info); 3103 mutex_unlock(&fs_info->chunk_mutex); 3104 if (ret) { 3105 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3106 goto fail_sb_buffer; 3107 } 3108 3109 generation = btrfs_super_chunk_root_generation(disk_super); 3110 level = btrfs_super_chunk_root_level(disk_super); 3111 3112 chunk_root->node = read_tree_block(fs_info, 3113 btrfs_super_chunk_root(disk_super), 3114 generation, level, NULL); 3115 if (IS_ERR(chunk_root->node) || 3116 !extent_buffer_uptodate(chunk_root->node)) { 3117 btrfs_err(fs_info, "failed to read chunk root"); 3118 if (!IS_ERR(chunk_root->node)) 3119 free_extent_buffer(chunk_root->node); 3120 chunk_root->node = NULL; 3121 goto fail_tree_roots; 3122 } 3123 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 3124 chunk_root->commit_root = btrfs_root_node(chunk_root); 3125 3126 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3127 offsetof(struct btrfs_header, chunk_tree_uuid), 3128 BTRFS_UUID_SIZE); 3129 3130 ret = btrfs_read_chunk_tree(fs_info); 3131 if (ret) { 3132 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3133 goto fail_tree_roots; 3134 } 3135 3136 /* 3137 * Keep the devid that is marked to be the target device for the 3138 * device replace procedure 3139 */ 3140 btrfs_free_extra_devids(fs_devices, 0); 3141 3142 if (!fs_devices->latest_bdev) { 3143 btrfs_err(fs_info, "failed to read devices"); 3144 goto fail_tree_roots; 3145 } 3146 3147 ret = init_tree_roots(fs_info); 3148 if (ret) 3149 goto fail_tree_roots; 3150 3151 /* 3152 * If we have a uuid root and we're not being told to rescan we need to 3153 * check the generation here so we can set the 3154 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3155 * transaction during a balance or the log replay without updating the 3156 * uuid generation, and then if we crash we would rescan the uuid tree, 3157 * even though it was perfectly fine. 3158 */ 3159 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3160 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3161 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3162 3163 ret = btrfs_verify_dev_extents(fs_info); 3164 if (ret) { 3165 btrfs_err(fs_info, 3166 "failed to verify dev extents against chunks: %d", 3167 ret); 3168 goto fail_block_groups; 3169 } 3170 ret = btrfs_recover_balance(fs_info); 3171 if (ret) { 3172 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3173 goto fail_block_groups; 3174 } 3175 3176 ret = btrfs_init_dev_stats(fs_info); 3177 if (ret) { 3178 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3179 goto fail_block_groups; 3180 } 3181 3182 ret = btrfs_init_dev_replace(fs_info); 3183 if (ret) { 3184 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3185 goto fail_block_groups; 3186 } 3187 3188 btrfs_free_extra_devids(fs_devices, 1); 3189 3190 ret = btrfs_sysfs_add_fsid(fs_devices); 3191 if (ret) { 3192 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3193 ret); 3194 goto fail_block_groups; 3195 } 3196 3197 ret = btrfs_sysfs_add_mounted(fs_info); 3198 if (ret) { 3199 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3200 goto fail_fsdev_sysfs; 3201 } 3202 3203 ret = btrfs_init_space_info(fs_info); 3204 if (ret) { 3205 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3206 goto fail_sysfs; 3207 } 3208 3209 ret = btrfs_read_block_groups(fs_info); 3210 if (ret) { 3211 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3212 goto fail_sysfs; 3213 } 3214 3215 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) { 3216 btrfs_warn(fs_info, 3217 "writable mount is not allowed due to too many missing devices"); 3218 goto fail_sysfs; 3219 } 3220 3221 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3222 "btrfs-cleaner"); 3223 if (IS_ERR(fs_info->cleaner_kthread)) 3224 goto fail_sysfs; 3225 3226 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3227 tree_root, 3228 "btrfs-transaction"); 3229 if (IS_ERR(fs_info->transaction_kthread)) 3230 goto fail_cleaner; 3231 3232 if (!btrfs_test_opt(fs_info, NOSSD) && 3233 !fs_info->fs_devices->rotating) { 3234 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3235 } 3236 3237 /* 3238 * Mount does not set all options immediately, we can do it now and do 3239 * not have to wait for transaction commit 3240 */ 3241 btrfs_apply_pending_changes(fs_info); 3242 3243 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3244 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3245 ret = btrfsic_mount(fs_info, fs_devices, 3246 btrfs_test_opt(fs_info, 3247 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3248 1 : 0, 3249 fs_info->check_integrity_print_mask); 3250 if (ret) 3251 btrfs_warn(fs_info, 3252 "failed to initialize integrity check module: %d", 3253 ret); 3254 } 3255 #endif 3256 ret = btrfs_read_qgroup_config(fs_info); 3257 if (ret) 3258 goto fail_trans_kthread; 3259 3260 if (btrfs_build_ref_tree(fs_info)) 3261 btrfs_err(fs_info, "couldn't build ref tree"); 3262 3263 /* do not make disk changes in broken FS or nologreplay is given */ 3264 if (btrfs_super_log_root(disk_super) != 0 && 3265 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3266 btrfs_info(fs_info, "start tree-log replay"); 3267 ret = btrfs_replay_log(fs_info, fs_devices); 3268 if (ret) { 3269 err = ret; 3270 goto fail_qgroup; 3271 } 3272 } 3273 3274 ret = btrfs_find_orphan_roots(fs_info); 3275 if (ret) 3276 goto fail_qgroup; 3277 3278 if (!sb_rdonly(sb)) { 3279 ret = btrfs_cleanup_fs_roots(fs_info); 3280 if (ret) 3281 goto fail_qgroup; 3282 3283 mutex_lock(&fs_info->cleaner_mutex); 3284 ret = btrfs_recover_relocation(tree_root); 3285 mutex_unlock(&fs_info->cleaner_mutex); 3286 if (ret < 0) { 3287 btrfs_warn(fs_info, "failed to recover relocation: %d", 3288 ret); 3289 err = -EINVAL; 3290 goto fail_qgroup; 3291 } 3292 } 3293 3294 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3295 if (IS_ERR(fs_info->fs_root)) { 3296 err = PTR_ERR(fs_info->fs_root); 3297 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3298 fs_info->fs_root = NULL; 3299 goto fail_qgroup; 3300 } 3301 3302 if (sb_rdonly(sb)) 3303 return 0; 3304 3305 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3306 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3307 clear_free_space_tree = 1; 3308 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3309 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3310 btrfs_warn(fs_info, "free space tree is invalid"); 3311 clear_free_space_tree = 1; 3312 } 3313 3314 if (clear_free_space_tree) { 3315 btrfs_info(fs_info, "clearing free space tree"); 3316 ret = btrfs_clear_free_space_tree(fs_info); 3317 if (ret) { 3318 btrfs_warn(fs_info, 3319 "failed to clear free space tree: %d", ret); 3320 close_ctree(fs_info); 3321 return ret; 3322 } 3323 } 3324 3325 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3326 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3327 btrfs_info(fs_info, "creating free space tree"); 3328 ret = btrfs_create_free_space_tree(fs_info); 3329 if (ret) { 3330 btrfs_warn(fs_info, 3331 "failed to create free space tree: %d", ret); 3332 close_ctree(fs_info); 3333 return ret; 3334 } 3335 } 3336 3337 down_read(&fs_info->cleanup_work_sem); 3338 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3339 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3340 up_read(&fs_info->cleanup_work_sem); 3341 close_ctree(fs_info); 3342 return ret; 3343 } 3344 up_read(&fs_info->cleanup_work_sem); 3345 3346 ret = btrfs_resume_balance_async(fs_info); 3347 if (ret) { 3348 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3349 close_ctree(fs_info); 3350 return ret; 3351 } 3352 3353 ret = btrfs_resume_dev_replace_async(fs_info); 3354 if (ret) { 3355 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3356 close_ctree(fs_info); 3357 return ret; 3358 } 3359 3360 btrfs_qgroup_rescan_resume(fs_info); 3361 btrfs_discard_resume(fs_info); 3362 3363 if (!fs_info->uuid_root) { 3364 btrfs_info(fs_info, "creating UUID tree"); 3365 ret = btrfs_create_uuid_tree(fs_info); 3366 if (ret) { 3367 btrfs_warn(fs_info, 3368 "failed to create the UUID tree: %d", ret); 3369 close_ctree(fs_info); 3370 return ret; 3371 } 3372 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3373 fs_info->generation != 3374 btrfs_super_uuid_tree_generation(disk_super)) { 3375 btrfs_info(fs_info, "checking UUID tree"); 3376 ret = btrfs_check_uuid_tree(fs_info); 3377 if (ret) { 3378 btrfs_warn(fs_info, 3379 "failed to check the UUID tree: %d", ret); 3380 close_ctree(fs_info); 3381 return ret; 3382 } 3383 } 3384 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3385 3386 /* 3387 * backuproot only affect mount behavior, and if open_ctree succeeded, 3388 * no need to keep the flag 3389 */ 3390 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3391 3392 return 0; 3393 3394 fail_qgroup: 3395 btrfs_free_qgroup_config(fs_info); 3396 fail_trans_kthread: 3397 kthread_stop(fs_info->transaction_kthread); 3398 btrfs_cleanup_transaction(fs_info); 3399 btrfs_free_fs_roots(fs_info); 3400 fail_cleaner: 3401 kthread_stop(fs_info->cleaner_kthread); 3402 3403 /* 3404 * make sure we're done with the btree inode before we stop our 3405 * kthreads 3406 */ 3407 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3408 3409 fail_sysfs: 3410 btrfs_sysfs_remove_mounted(fs_info); 3411 3412 fail_fsdev_sysfs: 3413 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3414 3415 fail_block_groups: 3416 btrfs_put_block_group_cache(fs_info); 3417 3418 fail_tree_roots: 3419 if (fs_info->data_reloc_root) 3420 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3421 free_root_pointers(fs_info, true); 3422 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3423 3424 fail_sb_buffer: 3425 btrfs_stop_all_workers(fs_info); 3426 btrfs_free_block_groups(fs_info); 3427 fail_alloc: 3428 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3429 3430 iput(fs_info->btree_inode); 3431 fail: 3432 btrfs_close_devices(fs_info->fs_devices); 3433 return err; 3434 } 3435 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3436 3437 static void btrfs_end_super_write(struct bio *bio) 3438 { 3439 struct btrfs_device *device = bio->bi_private; 3440 struct bio_vec *bvec; 3441 struct bvec_iter_all iter_all; 3442 struct page *page; 3443 3444 bio_for_each_segment_all(bvec, bio, iter_all) { 3445 page = bvec->bv_page; 3446 3447 if (bio->bi_status) { 3448 btrfs_warn_rl_in_rcu(device->fs_info, 3449 "lost page write due to IO error on %s (%d)", 3450 rcu_str_deref(device->name), 3451 blk_status_to_errno(bio->bi_status)); 3452 ClearPageUptodate(page); 3453 SetPageError(page); 3454 btrfs_dev_stat_inc_and_print(device, 3455 BTRFS_DEV_STAT_WRITE_ERRS); 3456 } else { 3457 SetPageUptodate(page); 3458 } 3459 3460 put_page(page); 3461 unlock_page(page); 3462 } 3463 3464 bio_put(bio); 3465 } 3466 3467 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3468 int copy_num) 3469 { 3470 struct btrfs_super_block *super; 3471 struct page *page; 3472 u64 bytenr; 3473 struct address_space *mapping = bdev->bd_inode->i_mapping; 3474 3475 bytenr = btrfs_sb_offset(copy_num); 3476 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3477 return ERR_PTR(-EINVAL); 3478 3479 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 3480 if (IS_ERR(page)) 3481 return ERR_CAST(page); 3482 3483 super = page_address(page); 3484 if (btrfs_super_magic(super) != BTRFS_MAGIC) { 3485 btrfs_release_disk_super(super); 3486 return ERR_PTR(-ENODATA); 3487 } 3488 3489 if (btrfs_super_bytenr(super) != bytenr) { 3490 btrfs_release_disk_super(super); 3491 return ERR_PTR(-EINVAL); 3492 } 3493 3494 return super; 3495 } 3496 3497 3498 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 3499 { 3500 struct btrfs_super_block *super, *latest = NULL; 3501 int i; 3502 u64 transid = 0; 3503 3504 /* we would like to check all the supers, but that would make 3505 * a btrfs mount succeed after a mkfs from a different FS. 3506 * So, we need to add a special mount option to scan for 3507 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3508 */ 3509 for (i = 0; i < 1; i++) { 3510 super = btrfs_read_dev_one_super(bdev, i); 3511 if (IS_ERR(super)) 3512 continue; 3513 3514 if (!latest || btrfs_super_generation(super) > transid) { 3515 if (latest) 3516 btrfs_release_disk_super(super); 3517 3518 latest = super; 3519 transid = btrfs_super_generation(super); 3520 } 3521 } 3522 3523 return super; 3524 } 3525 3526 /* 3527 * Write superblock @sb to the @device. Do not wait for completion, all the 3528 * pages we use for writing are locked. 3529 * 3530 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3531 * the expected device size at commit time. Note that max_mirrors must be 3532 * same for write and wait phases. 3533 * 3534 * Return number of errors when page is not found or submission fails. 3535 */ 3536 static int write_dev_supers(struct btrfs_device *device, 3537 struct btrfs_super_block *sb, int max_mirrors) 3538 { 3539 struct btrfs_fs_info *fs_info = device->fs_info; 3540 struct address_space *mapping = device->bdev->bd_inode->i_mapping; 3541 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3542 int i; 3543 int errors = 0; 3544 u64 bytenr; 3545 3546 if (max_mirrors == 0) 3547 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3548 3549 shash->tfm = fs_info->csum_shash; 3550 3551 for (i = 0; i < max_mirrors; i++) { 3552 struct page *page; 3553 struct bio *bio; 3554 struct btrfs_super_block *disk_super; 3555 3556 bytenr = btrfs_sb_offset(i); 3557 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3558 device->commit_total_bytes) 3559 break; 3560 3561 btrfs_set_super_bytenr(sb, bytenr); 3562 3563 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3564 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 3565 sb->csum); 3566 3567 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT, 3568 GFP_NOFS); 3569 if (!page) { 3570 btrfs_err(device->fs_info, 3571 "couldn't get super block page for bytenr %llu", 3572 bytenr); 3573 errors++; 3574 continue; 3575 } 3576 3577 /* Bump the refcount for wait_dev_supers() */ 3578 get_page(page); 3579 3580 disk_super = page_address(page); 3581 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3582 3583 /* 3584 * Directly use bios here instead of relying on the page cache 3585 * to do I/O, so we don't lose the ability to do integrity 3586 * checking. 3587 */ 3588 bio = bio_alloc(GFP_NOFS, 1); 3589 bio_set_dev(bio, device->bdev); 3590 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3591 bio->bi_private = device; 3592 bio->bi_end_io = btrfs_end_super_write; 3593 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE, 3594 offset_in_page(bytenr)); 3595 3596 /* 3597 * We FUA only the first super block. The others we allow to 3598 * go down lazy and there's a short window where the on-disk 3599 * copies might still contain the older version. 3600 */ 3601 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO; 3602 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3603 bio->bi_opf |= REQ_FUA; 3604 3605 btrfsic_submit_bio(bio); 3606 } 3607 return errors < i ? 0 : -1; 3608 } 3609 3610 /* 3611 * Wait for write completion of superblocks done by write_dev_supers, 3612 * @max_mirrors same for write and wait phases. 3613 * 3614 * Return number of errors when page is not found or not marked up to 3615 * date. 3616 */ 3617 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3618 { 3619 int i; 3620 int errors = 0; 3621 bool primary_failed = false; 3622 u64 bytenr; 3623 3624 if (max_mirrors == 0) 3625 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3626 3627 for (i = 0; i < max_mirrors; i++) { 3628 struct page *page; 3629 3630 bytenr = btrfs_sb_offset(i); 3631 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3632 device->commit_total_bytes) 3633 break; 3634 3635 page = find_get_page(device->bdev->bd_inode->i_mapping, 3636 bytenr >> PAGE_SHIFT); 3637 if (!page) { 3638 errors++; 3639 if (i == 0) 3640 primary_failed = true; 3641 continue; 3642 } 3643 /* Page is submitted locked and unlocked once the IO completes */ 3644 wait_on_page_locked(page); 3645 if (PageError(page)) { 3646 errors++; 3647 if (i == 0) 3648 primary_failed = true; 3649 } 3650 3651 /* Drop our reference */ 3652 put_page(page); 3653 3654 /* Drop the reference from the writing run */ 3655 put_page(page); 3656 } 3657 3658 /* log error, force error return */ 3659 if (primary_failed) { 3660 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3661 device->devid); 3662 return -1; 3663 } 3664 3665 return errors < i ? 0 : -1; 3666 } 3667 3668 /* 3669 * endio for the write_dev_flush, this will wake anyone waiting 3670 * for the barrier when it is done 3671 */ 3672 static void btrfs_end_empty_barrier(struct bio *bio) 3673 { 3674 complete(bio->bi_private); 3675 } 3676 3677 /* 3678 * Submit a flush request to the device if it supports it. Error handling is 3679 * done in the waiting counterpart. 3680 */ 3681 static void write_dev_flush(struct btrfs_device *device) 3682 { 3683 struct request_queue *q = bdev_get_queue(device->bdev); 3684 struct bio *bio = device->flush_bio; 3685 3686 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 3687 return; 3688 3689 bio_reset(bio); 3690 bio->bi_end_io = btrfs_end_empty_barrier; 3691 bio_set_dev(bio, device->bdev); 3692 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 3693 init_completion(&device->flush_wait); 3694 bio->bi_private = &device->flush_wait; 3695 3696 btrfsic_submit_bio(bio); 3697 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3698 } 3699 3700 /* 3701 * If the flush bio has been submitted by write_dev_flush, wait for it. 3702 */ 3703 static blk_status_t wait_dev_flush(struct btrfs_device *device) 3704 { 3705 struct bio *bio = device->flush_bio; 3706 3707 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3708 return BLK_STS_OK; 3709 3710 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3711 wait_for_completion_io(&device->flush_wait); 3712 3713 return bio->bi_status; 3714 } 3715 3716 static int check_barrier_error(struct btrfs_fs_info *fs_info) 3717 { 3718 if (!btrfs_check_rw_degradable(fs_info, NULL)) 3719 return -EIO; 3720 return 0; 3721 } 3722 3723 /* 3724 * send an empty flush down to each device in parallel, 3725 * then wait for them 3726 */ 3727 static int barrier_all_devices(struct btrfs_fs_info *info) 3728 { 3729 struct list_head *head; 3730 struct btrfs_device *dev; 3731 int errors_wait = 0; 3732 blk_status_t ret; 3733 3734 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3735 /* send down all the barriers */ 3736 head = &info->fs_devices->devices; 3737 list_for_each_entry(dev, head, dev_list) { 3738 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3739 continue; 3740 if (!dev->bdev) 3741 continue; 3742 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3743 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3744 continue; 3745 3746 write_dev_flush(dev); 3747 dev->last_flush_error = BLK_STS_OK; 3748 } 3749 3750 /* wait for all the barriers */ 3751 list_for_each_entry(dev, head, dev_list) { 3752 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3753 continue; 3754 if (!dev->bdev) { 3755 errors_wait++; 3756 continue; 3757 } 3758 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3759 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3760 continue; 3761 3762 ret = wait_dev_flush(dev); 3763 if (ret) { 3764 dev->last_flush_error = ret; 3765 btrfs_dev_stat_inc_and_print(dev, 3766 BTRFS_DEV_STAT_FLUSH_ERRS); 3767 errors_wait++; 3768 } 3769 } 3770 3771 if (errors_wait) { 3772 /* 3773 * At some point we need the status of all disks 3774 * to arrive at the volume status. So error checking 3775 * is being pushed to a separate loop. 3776 */ 3777 return check_barrier_error(info); 3778 } 3779 return 0; 3780 } 3781 3782 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3783 { 3784 int raid_type; 3785 int min_tolerated = INT_MAX; 3786 3787 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3788 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3789 min_tolerated = min_t(int, min_tolerated, 3790 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3791 tolerated_failures); 3792 3793 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3794 if (raid_type == BTRFS_RAID_SINGLE) 3795 continue; 3796 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 3797 continue; 3798 min_tolerated = min_t(int, min_tolerated, 3799 btrfs_raid_array[raid_type]. 3800 tolerated_failures); 3801 } 3802 3803 if (min_tolerated == INT_MAX) { 3804 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3805 min_tolerated = 0; 3806 } 3807 3808 return min_tolerated; 3809 } 3810 3811 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3812 { 3813 struct list_head *head; 3814 struct btrfs_device *dev; 3815 struct btrfs_super_block *sb; 3816 struct btrfs_dev_item *dev_item; 3817 int ret; 3818 int do_barriers; 3819 int max_errors; 3820 int total_errors = 0; 3821 u64 flags; 3822 3823 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 3824 3825 /* 3826 * max_mirrors == 0 indicates we're from commit_transaction, 3827 * not from fsync where the tree roots in fs_info have not 3828 * been consistent on disk. 3829 */ 3830 if (max_mirrors == 0) 3831 backup_super_roots(fs_info); 3832 3833 sb = fs_info->super_for_commit; 3834 dev_item = &sb->dev_item; 3835 3836 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3837 head = &fs_info->fs_devices->devices; 3838 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 3839 3840 if (do_barriers) { 3841 ret = barrier_all_devices(fs_info); 3842 if (ret) { 3843 mutex_unlock( 3844 &fs_info->fs_devices->device_list_mutex); 3845 btrfs_handle_fs_error(fs_info, ret, 3846 "errors while submitting device barriers."); 3847 return ret; 3848 } 3849 } 3850 3851 list_for_each_entry(dev, head, dev_list) { 3852 if (!dev->bdev) { 3853 total_errors++; 3854 continue; 3855 } 3856 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3857 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3858 continue; 3859 3860 btrfs_set_stack_device_generation(dev_item, 0); 3861 btrfs_set_stack_device_type(dev_item, dev->type); 3862 btrfs_set_stack_device_id(dev_item, dev->devid); 3863 btrfs_set_stack_device_total_bytes(dev_item, 3864 dev->commit_total_bytes); 3865 btrfs_set_stack_device_bytes_used(dev_item, 3866 dev->commit_bytes_used); 3867 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3868 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3869 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3870 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3871 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 3872 BTRFS_FSID_SIZE); 3873 3874 flags = btrfs_super_flags(sb); 3875 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3876 3877 ret = btrfs_validate_write_super(fs_info, sb); 3878 if (ret < 0) { 3879 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3880 btrfs_handle_fs_error(fs_info, -EUCLEAN, 3881 "unexpected superblock corruption detected"); 3882 return -EUCLEAN; 3883 } 3884 3885 ret = write_dev_supers(dev, sb, max_mirrors); 3886 if (ret) 3887 total_errors++; 3888 } 3889 if (total_errors > max_errors) { 3890 btrfs_err(fs_info, "%d errors while writing supers", 3891 total_errors); 3892 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3893 3894 /* FUA is masked off if unsupported and can't be the reason */ 3895 btrfs_handle_fs_error(fs_info, -EIO, 3896 "%d errors while writing supers", 3897 total_errors); 3898 return -EIO; 3899 } 3900 3901 total_errors = 0; 3902 list_for_each_entry(dev, head, dev_list) { 3903 if (!dev->bdev) 3904 continue; 3905 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3906 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3907 continue; 3908 3909 ret = wait_dev_supers(dev, max_mirrors); 3910 if (ret) 3911 total_errors++; 3912 } 3913 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3914 if (total_errors > max_errors) { 3915 btrfs_handle_fs_error(fs_info, -EIO, 3916 "%d errors while writing supers", 3917 total_errors); 3918 return -EIO; 3919 } 3920 return 0; 3921 } 3922 3923 /* Drop a fs root from the radix tree and free it. */ 3924 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3925 struct btrfs_root *root) 3926 { 3927 bool drop_ref = false; 3928 3929 spin_lock(&fs_info->fs_roots_radix_lock); 3930 radix_tree_delete(&fs_info->fs_roots_radix, 3931 (unsigned long)root->root_key.objectid); 3932 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 3933 drop_ref = true; 3934 spin_unlock(&fs_info->fs_roots_radix_lock); 3935 3936 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3937 ASSERT(root->log_root == NULL); 3938 if (root->reloc_root) { 3939 btrfs_put_root(root->reloc_root); 3940 root->reloc_root = NULL; 3941 } 3942 } 3943 3944 if (root->free_ino_pinned) 3945 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3946 if (root->free_ino_ctl) 3947 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3948 if (root->ino_cache_inode) { 3949 iput(root->ino_cache_inode); 3950 root->ino_cache_inode = NULL; 3951 } 3952 if (drop_ref) 3953 btrfs_put_root(root); 3954 } 3955 3956 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3957 { 3958 u64 root_objectid = 0; 3959 struct btrfs_root *gang[8]; 3960 int i = 0; 3961 int err = 0; 3962 unsigned int ret = 0; 3963 3964 while (1) { 3965 spin_lock(&fs_info->fs_roots_radix_lock); 3966 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3967 (void **)gang, root_objectid, 3968 ARRAY_SIZE(gang)); 3969 if (!ret) { 3970 spin_unlock(&fs_info->fs_roots_radix_lock); 3971 break; 3972 } 3973 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3974 3975 for (i = 0; i < ret; i++) { 3976 /* Avoid to grab roots in dead_roots */ 3977 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3978 gang[i] = NULL; 3979 continue; 3980 } 3981 /* grab all the search result for later use */ 3982 gang[i] = btrfs_grab_root(gang[i]); 3983 } 3984 spin_unlock(&fs_info->fs_roots_radix_lock); 3985 3986 for (i = 0; i < ret; i++) { 3987 if (!gang[i]) 3988 continue; 3989 root_objectid = gang[i]->root_key.objectid; 3990 err = btrfs_orphan_cleanup(gang[i]); 3991 if (err) 3992 break; 3993 btrfs_put_root(gang[i]); 3994 } 3995 root_objectid++; 3996 } 3997 3998 /* release the uncleaned roots due to error */ 3999 for (; i < ret; i++) { 4000 if (gang[i]) 4001 btrfs_put_root(gang[i]); 4002 } 4003 return err; 4004 } 4005 4006 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4007 { 4008 struct btrfs_root *root = fs_info->tree_root; 4009 struct btrfs_trans_handle *trans; 4010 4011 mutex_lock(&fs_info->cleaner_mutex); 4012 btrfs_run_delayed_iputs(fs_info); 4013 mutex_unlock(&fs_info->cleaner_mutex); 4014 wake_up_process(fs_info->cleaner_kthread); 4015 4016 /* wait until ongoing cleanup work done */ 4017 down_write(&fs_info->cleanup_work_sem); 4018 up_write(&fs_info->cleanup_work_sem); 4019 4020 trans = btrfs_join_transaction(root); 4021 if (IS_ERR(trans)) 4022 return PTR_ERR(trans); 4023 return btrfs_commit_transaction(trans); 4024 } 4025 4026 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4027 { 4028 int ret; 4029 4030 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4031 /* 4032 * We don't want the cleaner to start new transactions, add more delayed 4033 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4034 * because that frees the task_struct, and the transaction kthread might 4035 * still try to wake up the cleaner. 4036 */ 4037 kthread_park(fs_info->cleaner_kthread); 4038 4039 /* wait for the qgroup rescan worker to stop */ 4040 btrfs_qgroup_wait_for_completion(fs_info, false); 4041 4042 /* wait for the uuid_scan task to finish */ 4043 down(&fs_info->uuid_tree_rescan_sem); 4044 /* avoid complains from lockdep et al., set sem back to initial state */ 4045 up(&fs_info->uuid_tree_rescan_sem); 4046 4047 /* pause restriper - we want to resume on mount */ 4048 btrfs_pause_balance(fs_info); 4049 4050 btrfs_dev_replace_suspend_for_unmount(fs_info); 4051 4052 btrfs_scrub_cancel(fs_info); 4053 4054 /* wait for any defraggers to finish */ 4055 wait_event(fs_info->transaction_wait, 4056 (atomic_read(&fs_info->defrag_running) == 0)); 4057 4058 /* clear out the rbtree of defraggable inodes */ 4059 btrfs_cleanup_defrag_inodes(fs_info); 4060 4061 cancel_work_sync(&fs_info->async_reclaim_work); 4062 cancel_work_sync(&fs_info->async_data_reclaim_work); 4063 4064 /* Cancel or finish ongoing discard work */ 4065 btrfs_discard_cleanup(fs_info); 4066 4067 if (!sb_rdonly(fs_info->sb)) { 4068 /* 4069 * The cleaner kthread is stopped, so do one final pass over 4070 * unused block groups. 4071 */ 4072 btrfs_delete_unused_bgs(fs_info); 4073 4074 /* 4075 * There might be existing delayed inode workers still running 4076 * and holding an empty delayed inode item. We must wait for 4077 * them to complete first because they can create a transaction. 4078 * This happens when someone calls btrfs_balance_delayed_items() 4079 * and then a transaction commit runs the same delayed nodes 4080 * before any delayed worker has done something with the nodes. 4081 * We must wait for any worker here and not at transaction 4082 * commit time since that could cause a deadlock. 4083 * This is a very rare case. 4084 */ 4085 btrfs_flush_workqueue(fs_info->delayed_workers); 4086 4087 ret = btrfs_commit_super(fs_info); 4088 if (ret) 4089 btrfs_err(fs_info, "commit super ret %d", ret); 4090 } 4091 4092 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) || 4093 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) 4094 btrfs_error_commit_super(fs_info); 4095 4096 kthread_stop(fs_info->transaction_kthread); 4097 kthread_stop(fs_info->cleaner_kthread); 4098 4099 ASSERT(list_empty(&fs_info->delayed_iputs)); 4100 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4101 4102 if (btrfs_check_quota_leak(fs_info)) { 4103 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4104 btrfs_err(fs_info, "qgroup reserved space leaked"); 4105 } 4106 4107 btrfs_free_qgroup_config(fs_info); 4108 ASSERT(list_empty(&fs_info->delalloc_roots)); 4109 4110 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4111 btrfs_info(fs_info, "at unmount delalloc count %lld", 4112 percpu_counter_sum(&fs_info->delalloc_bytes)); 4113 } 4114 4115 if (percpu_counter_sum(&fs_info->dio_bytes)) 4116 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4117 percpu_counter_sum(&fs_info->dio_bytes)); 4118 4119 btrfs_sysfs_remove_mounted(fs_info); 4120 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4121 4122 btrfs_put_block_group_cache(fs_info); 4123 4124 /* 4125 * we must make sure there is not any read request to 4126 * submit after we stopping all workers. 4127 */ 4128 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4129 btrfs_stop_all_workers(fs_info); 4130 4131 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4132 free_root_pointers(fs_info, true); 4133 btrfs_free_fs_roots(fs_info); 4134 4135 /* 4136 * We must free the block groups after dropping the fs_roots as we could 4137 * have had an IO error and have left over tree log blocks that aren't 4138 * cleaned up until the fs roots are freed. This makes the block group 4139 * accounting appear to be wrong because there's pending reserved bytes, 4140 * so make sure we do the block group cleanup afterwards. 4141 */ 4142 btrfs_free_block_groups(fs_info); 4143 4144 iput(fs_info->btree_inode); 4145 4146 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4147 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4148 btrfsic_unmount(fs_info->fs_devices); 4149 #endif 4150 4151 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4152 btrfs_close_devices(fs_info->fs_devices); 4153 } 4154 4155 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4156 int atomic) 4157 { 4158 int ret; 4159 struct inode *btree_inode = buf->pages[0]->mapping->host; 4160 4161 ret = extent_buffer_uptodate(buf); 4162 if (!ret) 4163 return ret; 4164 4165 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4166 parent_transid, atomic); 4167 if (ret == -EAGAIN) 4168 return ret; 4169 return !ret; 4170 } 4171 4172 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4173 { 4174 struct btrfs_fs_info *fs_info; 4175 struct btrfs_root *root; 4176 u64 transid = btrfs_header_generation(buf); 4177 int was_dirty; 4178 4179 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4180 /* 4181 * This is a fast path so only do this check if we have sanity tests 4182 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4183 * outside of the sanity tests. 4184 */ 4185 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4186 return; 4187 #endif 4188 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4189 fs_info = root->fs_info; 4190 btrfs_assert_tree_locked(buf); 4191 if (transid != fs_info->generation) 4192 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4193 buf->start, transid, fs_info->generation); 4194 was_dirty = set_extent_buffer_dirty(buf); 4195 if (!was_dirty) 4196 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4197 buf->len, 4198 fs_info->dirty_metadata_batch); 4199 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4200 /* 4201 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4202 * but item data not updated. 4203 * So here we should only check item pointers, not item data. 4204 */ 4205 if (btrfs_header_level(buf) == 0 && 4206 btrfs_check_leaf_relaxed(buf)) { 4207 btrfs_print_leaf(buf); 4208 ASSERT(0); 4209 } 4210 #endif 4211 } 4212 4213 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4214 int flush_delayed) 4215 { 4216 /* 4217 * looks as though older kernels can get into trouble with 4218 * this code, they end up stuck in balance_dirty_pages forever 4219 */ 4220 int ret; 4221 4222 if (current->flags & PF_MEMALLOC) 4223 return; 4224 4225 if (flush_delayed) 4226 btrfs_balance_delayed_items(fs_info); 4227 4228 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4229 BTRFS_DIRTY_METADATA_THRESH, 4230 fs_info->dirty_metadata_batch); 4231 if (ret > 0) { 4232 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4233 } 4234 } 4235 4236 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4237 { 4238 __btrfs_btree_balance_dirty(fs_info, 1); 4239 } 4240 4241 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4242 { 4243 __btrfs_btree_balance_dirty(fs_info, 0); 4244 } 4245 4246 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level, 4247 struct btrfs_key *first_key) 4248 { 4249 return btree_read_extent_buffer_pages(buf, parent_transid, 4250 level, first_key); 4251 } 4252 4253 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4254 { 4255 /* cleanup FS via transaction */ 4256 btrfs_cleanup_transaction(fs_info); 4257 4258 mutex_lock(&fs_info->cleaner_mutex); 4259 btrfs_run_delayed_iputs(fs_info); 4260 mutex_unlock(&fs_info->cleaner_mutex); 4261 4262 down_write(&fs_info->cleanup_work_sem); 4263 up_write(&fs_info->cleanup_work_sem); 4264 } 4265 4266 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4267 { 4268 struct btrfs_root *gang[8]; 4269 u64 root_objectid = 0; 4270 int ret; 4271 4272 spin_lock(&fs_info->fs_roots_radix_lock); 4273 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4274 (void **)gang, root_objectid, 4275 ARRAY_SIZE(gang))) != 0) { 4276 int i; 4277 4278 for (i = 0; i < ret; i++) 4279 gang[i] = btrfs_grab_root(gang[i]); 4280 spin_unlock(&fs_info->fs_roots_radix_lock); 4281 4282 for (i = 0; i < ret; i++) { 4283 if (!gang[i]) 4284 continue; 4285 root_objectid = gang[i]->root_key.objectid; 4286 btrfs_free_log(NULL, gang[i]); 4287 btrfs_put_root(gang[i]); 4288 } 4289 root_objectid++; 4290 spin_lock(&fs_info->fs_roots_radix_lock); 4291 } 4292 spin_unlock(&fs_info->fs_roots_radix_lock); 4293 btrfs_free_log_root_tree(NULL, fs_info); 4294 } 4295 4296 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4297 { 4298 struct btrfs_ordered_extent *ordered; 4299 4300 spin_lock(&root->ordered_extent_lock); 4301 /* 4302 * This will just short circuit the ordered completion stuff which will 4303 * make sure the ordered extent gets properly cleaned up. 4304 */ 4305 list_for_each_entry(ordered, &root->ordered_extents, 4306 root_extent_list) 4307 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4308 spin_unlock(&root->ordered_extent_lock); 4309 } 4310 4311 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4312 { 4313 struct btrfs_root *root; 4314 struct list_head splice; 4315 4316 INIT_LIST_HEAD(&splice); 4317 4318 spin_lock(&fs_info->ordered_root_lock); 4319 list_splice_init(&fs_info->ordered_roots, &splice); 4320 while (!list_empty(&splice)) { 4321 root = list_first_entry(&splice, struct btrfs_root, 4322 ordered_root); 4323 list_move_tail(&root->ordered_root, 4324 &fs_info->ordered_roots); 4325 4326 spin_unlock(&fs_info->ordered_root_lock); 4327 btrfs_destroy_ordered_extents(root); 4328 4329 cond_resched(); 4330 spin_lock(&fs_info->ordered_root_lock); 4331 } 4332 spin_unlock(&fs_info->ordered_root_lock); 4333 4334 /* 4335 * We need this here because if we've been flipped read-only we won't 4336 * get sync() from the umount, so we need to make sure any ordered 4337 * extents that haven't had their dirty pages IO start writeout yet 4338 * actually get run and error out properly. 4339 */ 4340 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4341 } 4342 4343 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4344 struct btrfs_fs_info *fs_info) 4345 { 4346 struct rb_node *node; 4347 struct btrfs_delayed_ref_root *delayed_refs; 4348 struct btrfs_delayed_ref_node *ref; 4349 int ret = 0; 4350 4351 delayed_refs = &trans->delayed_refs; 4352 4353 spin_lock(&delayed_refs->lock); 4354 if (atomic_read(&delayed_refs->num_entries) == 0) { 4355 spin_unlock(&delayed_refs->lock); 4356 btrfs_debug(fs_info, "delayed_refs has NO entry"); 4357 return ret; 4358 } 4359 4360 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4361 struct btrfs_delayed_ref_head *head; 4362 struct rb_node *n; 4363 bool pin_bytes = false; 4364 4365 head = rb_entry(node, struct btrfs_delayed_ref_head, 4366 href_node); 4367 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4368 continue; 4369 4370 spin_lock(&head->lock); 4371 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4372 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4373 ref_node); 4374 ref->in_tree = 0; 4375 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4376 RB_CLEAR_NODE(&ref->ref_node); 4377 if (!list_empty(&ref->add_list)) 4378 list_del(&ref->add_list); 4379 atomic_dec(&delayed_refs->num_entries); 4380 btrfs_put_delayed_ref(ref); 4381 } 4382 if (head->must_insert_reserved) 4383 pin_bytes = true; 4384 btrfs_free_delayed_extent_op(head->extent_op); 4385 btrfs_delete_ref_head(delayed_refs, head); 4386 spin_unlock(&head->lock); 4387 spin_unlock(&delayed_refs->lock); 4388 mutex_unlock(&head->mutex); 4389 4390 if (pin_bytes) { 4391 struct btrfs_block_group *cache; 4392 4393 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 4394 BUG_ON(!cache); 4395 4396 spin_lock(&cache->space_info->lock); 4397 spin_lock(&cache->lock); 4398 cache->pinned += head->num_bytes; 4399 btrfs_space_info_update_bytes_pinned(fs_info, 4400 cache->space_info, head->num_bytes); 4401 cache->reserved -= head->num_bytes; 4402 cache->space_info->bytes_reserved -= head->num_bytes; 4403 spin_unlock(&cache->lock); 4404 spin_unlock(&cache->space_info->lock); 4405 percpu_counter_add_batch( 4406 &cache->space_info->total_bytes_pinned, 4407 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH); 4408 4409 btrfs_put_block_group(cache); 4410 4411 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 4412 head->bytenr + head->num_bytes - 1); 4413 } 4414 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4415 btrfs_put_delayed_ref_head(head); 4416 cond_resched(); 4417 spin_lock(&delayed_refs->lock); 4418 } 4419 btrfs_qgroup_destroy_extent_records(trans); 4420 4421 spin_unlock(&delayed_refs->lock); 4422 4423 return ret; 4424 } 4425 4426 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4427 { 4428 struct btrfs_inode *btrfs_inode; 4429 struct list_head splice; 4430 4431 INIT_LIST_HEAD(&splice); 4432 4433 spin_lock(&root->delalloc_lock); 4434 list_splice_init(&root->delalloc_inodes, &splice); 4435 4436 while (!list_empty(&splice)) { 4437 struct inode *inode = NULL; 4438 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4439 delalloc_inodes); 4440 __btrfs_del_delalloc_inode(root, btrfs_inode); 4441 spin_unlock(&root->delalloc_lock); 4442 4443 /* 4444 * Make sure we get a live inode and that it'll not disappear 4445 * meanwhile. 4446 */ 4447 inode = igrab(&btrfs_inode->vfs_inode); 4448 if (inode) { 4449 invalidate_inode_pages2(inode->i_mapping); 4450 iput(inode); 4451 } 4452 spin_lock(&root->delalloc_lock); 4453 } 4454 spin_unlock(&root->delalloc_lock); 4455 } 4456 4457 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4458 { 4459 struct btrfs_root *root; 4460 struct list_head splice; 4461 4462 INIT_LIST_HEAD(&splice); 4463 4464 spin_lock(&fs_info->delalloc_root_lock); 4465 list_splice_init(&fs_info->delalloc_roots, &splice); 4466 while (!list_empty(&splice)) { 4467 root = list_first_entry(&splice, struct btrfs_root, 4468 delalloc_root); 4469 root = btrfs_grab_root(root); 4470 BUG_ON(!root); 4471 spin_unlock(&fs_info->delalloc_root_lock); 4472 4473 btrfs_destroy_delalloc_inodes(root); 4474 btrfs_put_root(root); 4475 4476 spin_lock(&fs_info->delalloc_root_lock); 4477 } 4478 spin_unlock(&fs_info->delalloc_root_lock); 4479 } 4480 4481 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4482 struct extent_io_tree *dirty_pages, 4483 int mark) 4484 { 4485 int ret; 4486 struct extent_buffer *eb; 4487 u64 start = 0; 4488 u64 end; 4489 4490 while (1) { 4491 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4492 mark, NULL); 4493 if (ret) 4494 break; 4495 4496 clear_extent_bits(dirty_pages, start, end, mark); 4497 while (start <= end) { 4498 eb = find_extent_buffer(fs_info, start); 4499 start += fs_info->nodesize; 4500 if (!eb) 4501 continue; 4502 wait_on_extent_buffer_writeback(eb); 4503 4504 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4505 &eb->bflags)) 4506 clear_extent_buffer_dirty(eb); 4507 free_extent_buffer_stale(eb); 4508 } 4509 } 4510 4511 return ret; 4512 } 4513 4514 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4515 struct extent_io_tree *unpin) 4516 { 4517 u64 start; 4518 u64 end; 4519 int ret; 4520 4521 while (1) { 4522 struct extent_state *cached_state = NULL; 4523 4524 /* 4525 * The btrfs_finish_extent_commit() may get the same range as 4526 * ours between find_first_extent_bit and clear_extent_dirty. 4527 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4528 * the same extent range. 4529 */ 4530 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4531 ret = find_first_extent_bit(unpin, 0, &start, &end, 4532 EXTENT_DIRTY, &cached_state); 4533 if (ret) { 4534 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4535 break; 4536 } 4537 4538 clear_extent_dirty(unpin, start, end, &cached_state); 4539 free_extent_state(cached_state); 4540 btrfs_error_unpin_extent_range(fs_info, start, end); 4541 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4542 cond_resched(); 4543 } 4544 4545 return 0; 4546 } 4547 4548 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 4549 { 4550 struct inode *inode; 4551 4552 inode = cache->io_ctl.inode; 4553 if (inode) { 4554 invalidate_inode_pages2(inode->i_mapping); 4555 BTRFS_I(inode)->generation = 0; 4556 cache->io_ctl.inode = NULL; 4557 iput(inode); 4558 } 4559 ASSERT(cache->io_ctl.pages == NULL); 4560 btrfs_put_block_group(cache); 4561 } 4562 4563 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4564 struct btrfs_fs_info *fs_info) 4565 { 4566 struct btrfs_block_group *cache; 4567 4568 spin_lock(&cur_trans->dirty_bgs_lock); 4569 while (!list_empty(&cur_trans->dirty_bgs)) { 4570 cache = list_first_entry(&cur_trans->dirty_bgs, 4571 struct btrfs_block_group, 4572 dirty_list); 4573 4574 if (!list_empty(&cache->io_list)) { 4575 spin_unlock(&cur_trans->dirty_bgs_lock); 4576 list_del_init(&cache->io_list); 4577 btrfs_cleanup_bg_io(cache); 4578 spin_lock(&cur_trans->dirty_bgs_lock); 4579 } 4580 4581 list_del_init(&cache->dirty_list); 4582 spin_lock(&cache->lock); 4583 cache->disk_cache_state = BTRFS_DC_ERROR; 4584 spin_unlock(&cache->lock); 4585 4586 spin_unlock(&cur_trans->dirty_bgs_lock); 4587 btrfs_put_block_group(cache); 4588 btrfs_delayed_refs_rsv_release(fs_info, 1); 4589 spin_lock(&cur_trans->dirty_bgs_lock); 4590 } 4591 spin_unlock(&cur_trans->dirty_bgs_lock); 4592 4593 /* 4594 * Refer to the definition of io_bgs member for details why it's safe 4595 * to use it without any locking 4596 */ 4597 while (!list_empty(&cur_trans->io_bgs)) { 4598 cache = list_first_entry(&cur_trans->io_bgs, 4599 struct btrfs_block_group, 4600 io_list); 4601 4602 list_del_init(&cache->io_list); 4603 spin_lock(&cache->lock); 4604 cache->disk_cache_state = BTRFS_DC_ERROR; 4605 spin_unlock(&cache->lock); 4606 btrfs_cleanup_bg_io(cache); 4607 } 4608 } 4609 4610 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4611 struct btrfs_fs_info *fs_info) 4612 { 4613 struct btrfs_device *dev, *tmp; 4614 4615 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4616 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4617 ASSERT(list_empty(&cur_trans->io_bgs)); 4618 4619 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4620 post_commit_list) { 4621 list_del_init(&dev->post_commit_list); 4622 } 4623 4624 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4625 4626 cur_trans->state = TRANS_STATE_COMMIT_START; 4627 wake_up(&fs_info->transaction_blocked_wait); 4628 4629 cur_trans->state = TRANS_STATE_UNBLOCKED; 4630 wake_up(&fs_info->transaction_wait); 4631 4632 btrfs_destroy_delayed_inodes(fs_info); 4633 4634 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4635 EXTENT_DIRTY); 4636 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 4637 4638 cur_trans->state =TRANS_STATE_COMPLETED; 4639 wake_up(&cur_trans->commit_wait); 4640 } 4641 4642 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4643 { 4644 struct btrfs_transaction *t; 4645 4646 mutex_lock(&fs_info->transaction_kthread_mutex); 4647 4648 spin_lock(&fs_info->trans_lock); 4649 while (!list_empty(&fs_info->trans_list)) { 4650 t = list_first_entry(&fs_info->trans_list, 4651 struct btrfs_transaction, list); 4652 if (t->state >= TRANS_STATE_COMMIT_START) { 4653 refcount_inc(&t->use_count); 4654 spin_unlock(&fs_info->trans_lock); 4655 btrfs_wait_for_commit(fs_info, t->transid); 4656 btrfs_put_transaction(t); 4657 spin_lock(&fs_info->trans_lock); 4658 continue; 4659 } 4660 if (t == fs_info->running_transaction) { 4661 t->state = TRANS_STATE_COMMIT_DOING; 4662 spin_unlock(&fs_info->trans_lock); 4663 /* 4664 * We wait for 0 num_writers since we don't hold a trans 4665 * handle open currently for this transaction. 4666 */ 4667 wait_event(t->writer_wait, 4668 atomic_read(&t->num_writers) == 0); 4669 } else { 4670 spin_unlock(&fs_info->trans_lock); 4671 } 4672 btrfs_cleanup_one_transaction(t, fs_info); 4673 4674 spin_lock(&fs_info->trans_lock); 4675 if (t == fs_info->running_transaction) 4676 fs_info->running_transaction = NULL; 4677 list_del_init(&t->list); 4678 spin_unlock(&fs_info->trans_lock); 4679 4680 btrfs_put_transaction(t); 4681 trace_btrfs_transaction_commit(fs_info->tree_root); 4682 spin_lock(&fs_info->trans_lock); 4683 } 4684 spin_unlock(&fs_info->trans_lock); 4685 btrfs_destroy_all_ordered_extents(fs_info); 4686 btrfs_destroy_delayed_inodes(fs_info); 4687 btrfs_assert_delayed_root_empty(fs_info); 4688 btrfs_destroy_all_delalloc_inodes(fs_info); 4689 btrfs_drop_all_logs(fs_info); 4690 mutex_unlock(&fs_info->transaction_kthread_mutex); 4691 4692 return 0; 4693 } 4694