xref: /openbmc/linux/fs/btrfs/disk-io.c (revision 1edd0337)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "bio.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41 #include "block-group.h"
42 #include "discard.h"
43 #include "space-info.h"
44 #include "zoned.h"
45 #include "subpage.h"
46 #include "fs.h"
47 #include "accessors.h"
48 #include "extent-tree.h"
49 #include "root-tree.h"
50 #include "defrag.h"
51 #include "uuid-tree.h"
52 #include "relocation.h"
53 #include "scrub.h"
54 #include "super.h"
55 
56 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
57 				 BTRFS_HEADER_FLAG_RELOC |\
58 				 BTRFS_SUPER_FLAG_ERROR |\
59 				 BTRFS_SUPER_FLAG_SEEDING |\
60 				 BTRFS_SUPER_FLAG_METADUMP |\
61 				 BTRFS_SUPER_FLAG_METADUMP_V2)
62 
63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
65 				      struct btrfs_fs_info *fs_info);
66 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
67 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
68 					struct extent_io_tree *dirty_pages,
69 					int mark);
70 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
71 				       struct extent_io_tree *pinned_extents);
72 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
73 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
74 
75 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
76 {
77 	if (fs_info->csum_shash)
78 		crypto_free_shash(fs_info->csum_shash);
79 }
80 
81 /*
82  * Compute the csum of a btree block and store the result to provided buffer.
83  */
84 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
85 {
86 	struct btrfs_fs_info *fs_info = buf->fs_info;
87 	const int num_pages = num_extent_pages(buf);
88 	const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
89 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
90 	char *kaddr;
91 	int i;
92 
93 	shash->tfm = fs_info->csum_shash;
94 	crypto_shash_init(shash);
95 	kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
96 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
97 			    first_page_part - BTRFS_CSUM_SIZE);
98 
99 	for (i = 1; i < num_pages; i++) {
100 		kaddr = page_address(buf->pages[i]);
101 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
102 	}
103 	memset(result, 0, BTRFS_CSUM_SIZE);
104 	crypto_shash_final(shash, result);
105 }
106 
107 /*
108  * we can't consider a given block up to date unless the transid of the
109  * block matches the transid in the parent node's pointer.  This is how we
110  * detect blocks that either didn't get written at all or got written
111  * in the wrong place.
112  */
113 static int verify_parent_transid(struct extent_io_tree *io_tree,
114 				 struct extent_buffer *eb, u64 parent_transid,
115 				 int atomic)
116 {
117 	struct extent_state *cached_state = NULL;
118 	int ret;
119 
120 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
121 		return 0;
122 
123 	if (atomic)
124 		return -EAGAIN;
125 
126 	lock_extent(io_tree, eb->start, eb->start + eb->len - 1, &cached_state);
127 	if (extent_buffer_uptodate(eb) &&
128 	    btrfs_header_generation(eb) == parent_transid) {
129 		ret = 0;
130 		goto out;
131 	}
132 	btrfs_err_rl(eb->fs_info,
133 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
134 			eb->start, eb->read_mirror,
135 			parent_transid, btrfs_header_generation(eb));
136 	ret = 1;
137 	clear_extent_buffer_uptodate(eb);
138 out:
139 	unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
140 		      &cached_state);
141 	return ret;
142 }
143 
144 static bool btrfs_supported_super_csum(u16 csum_type)
145 {
146 	switch (csum_type) {
147 	case BTRFS_CSUM_TYPE_CRC32:
148 	case BTRFS_CSUM_TYPE_XXHASH:
149 	case BTRFS_CSUM_TYPE_SHA256:
150 	case BTRFS_CSUM_TYPE_BLAKE2:
151 		return true;
152 	default:
153 		return false;
154 	}
155 }
156 
157 /*
158  * Return 0 if the superblock checksum type matches the checksum value of that
159  * algorithm. Pass the raw disk superblock data.
160  */
161 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
162 			   const struct btrfs_super_block *disk_sb)
163 {
164 	char result[BTRFS_CSUM_SIZE];
165 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
166 
167 	shash->tfm = fs_info->csum_shash;
168 
169 	/*
170 	 * The super_block structure does not span the whole
171 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
172 	 * filled with zeros and is included in the checksum.
173 	 */
174 	crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
175 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
176 
177 	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
178 		return 1;
179 
180 	return 0;
181 }
182 
183 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
184 			   struct btrfs_key *first_key, u64 parent_transid)
185 {
186 	struct btrfs_fs_info *fs_info = eb->fs_info;
187 	int found_level;
188 	struct btrfs_key found_key;
189 	int ret;
190 
191 	found_level = btrfs_header_level(eb);
192 	if (found_level != level) {
193 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
194 		     KERN_ERR "BTRFS: tree level check failed\n");
195 		btrfs_err(fs_info,
196 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
197 			  eb->start, level, found_level);
198 		return -EIO;
199 	}
200 
201 	if (!first_key)
202 		return 0;
203 
204 	/*
205 	 * For live tree block (new tree blocks in current transaction),
206 	 * we need proper lock context to avoid race, which is impossible here.
207 	 * So we only checks tree blocks which is read from disk, whose
208 	 * generation <= fs_info->last_trans_committed.
209 	 */
210 	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
211 		return 0;
212 
213 	/* We have @first_key, so this @eb must have at least one item */
214 	if (btrfs_header_nritems(eb) == 0) {
215 		btrfs_err(fs_info,
216 		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
217 			  eb->start);
218 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
219 		return -EUCLEAN;
220 	}
221 
222 	if (found_level)
223 		btrfs_node_key_to_cpu(eb, &found_key, 0);
224 	else
225 		btrfs_item_key_to_cpu(eb, &found_key, 0);
226 	ret = btrfs_comp_cpu_keys(first_key, &found_key);
227 
228 	if (ret) {
229 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
230 		     KERN_ERR "BTRFS: tree first key check failed\n");
231 		btrfs_err(fs_info,
232 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
233 			  eb->start, parent_transid, first_key->objectid,
234 			  first_key->type, first_key->offset,
235 			  found_key.objectid, found_key.type,
236 			  found_key.offset);
237 	}
238 	return ret;
239 }
240 
241 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
242 				      int mirror_num)
243 {
244 	struct btrfs_fs_info *fs_info = eb->fs_info;
245 	u64 start = eb->start;
246 	int i, num_pages = num_extent_pages(eb);
247 	int ret = 0;
248 
249 	if (sb_rdonly(fs_info->sb))
250 		return -EROFS;
251 
252 	for (i = 0; i < num_pages; i++) {
253 		struct page *p = eb->pages[i];
254 
255 		ret = btrfs_repair_io_failure(fs_info, 0, start, PAGE_SIZE,
256 				start, p, start - page_offset(p), mirror_num);
257 		if (ret)
258 			break;
259 		start += PAGE_SIZE;
260 	}
261 
262 	return ret;
263 }
264 
265 /*
266  * helper to read a given tree block, doing retries as required when
267  * the checksums don't match and we have alternate mirrors to try.
268  *
269  * @check:		expected tree parentness check, see the comments of the
270  *			structure for details.
271  */
272 int btrfs_read_extent_buffer(struct extent_buffer *eb,
273 			     struct btrfs_tree_parent_check *check)
274 {
275 	struct btrfs_fs_info *fs_info = eb->fs_info;
276 	int failed = 0;
277 	int ret;
278 	int num_copies = 0;
279 	int mirror_num = 0;
280 	int failed_mirror = 0;
281 
282 	ASSERT(check);
283 
284 	while (1) {
285 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
286 		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
287 		if (!ret)
288 			break;
289 
290 		num_copies = btrfs_num_copies(fs_info,
291 					      eb->start, eb->len);
292 		if (num_copies == 1)
293 			break;
294 
295 		if (!failed_mirror) {
296 			failed = 1;
297 			failed_mirror = eb->read_mirror;
298 		}
299 
300 		mirror_num++;
301 		if (mirror_num == failed_mirror)
302 			mirror_num++;
303 
304 		if (mirror_num > num_copies)
305 			break;
306 	}
307 
308 	if (failed && !ret && failed_mirror)
309 		btrfs_repair_eb_io_failure(eb, failed_mirror);
310 
311 	return ret;
312 }
313 
314 static int csum_one_extent_buffer(struct extent_buffer *eb)
315 {
316 	struct btrfs_fs_info *fs_info = eb->fs_info;
317 	u8 result[BTRFS_CSUM_SIZE];
318 	int ret;
319 
320 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
321 				    offsetof(struct btrfs_header, fsid),
322 				    BTRFS_FSID_SIZE) == 0);
323 	csum_tree_block(eb, result);
324 
325 	if (btrfs_header_level(eb))
326 		ret = btrfs_check_node(eb);
327 	else
328 		ret = btrfs_check_leaf_full(eb);
329 
330 	if (ret < 0)
331 		goto error;
332 
333 	/*
334 	 * Also check the generation, the eb reached here must be newer than
335 	 * last committed. Or something seriously wrong happened.
336 	 */
337 	if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
338 		ret = -EUCLEAN;
339 		btrfs_err(fs_info,
340 			"block=%llu bad generation, have %llu expect > %llu",
341 			  eb->start, btrfs_header_generation(eb),
342 			  fs_info->last_trans_committed);
343 		goto error;
344 	}
345 	write_extent_buffer(eb, result, 0, fs_info->csum_size);
346 
347 	return 0;
348 
349 error:
350 	btrfs_print_tree(eb, 0);
351 	btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
352 		  eb->start);
353 	/*
354 	 * Be noisy if this is an extent buffer from a log tree. We don't abort
355 	 * a transaction in case there's a bad log tree extent buffer, we just
356 	 * fallback to a transaction commit. Still we want to know when there is
357 	 * a bad log tree extent buffer, as that may signal a bug somewhere.
358 	 */
359 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
360 		btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
361 	return ret;
362 }
363 
364 /* Checksum all dirty extent buffers in one bio_vec */
365 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
366 				      struct bio_vec *bvec)
367 {
368 	struct page *page = bvec->bv_page;
369 	u64 bvec_start = page_offset(page) + bvec->bv_offset;
370 	u64 cur;
371 	int ret = 0;
372 
373 	for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
374 	     cur += fs_info->nodesize) {
375 		struct extent_buffer *eb;
376 		bool uptodate;
377 
378 		eb = find_extent_buffer(fs_info, cur);
379 		uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
380 						       fs_info->nodesize);
381 
382 		/* A dirty eb shouldn't disappear from buffer_radix */
383 		if (WARN_ON(!eb))
384 			return -EUCLEAN;
385 
386 		if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
387 			free_extent_buffer(eb);
388 			return -EUCLEAN;
389 		}
390 		if (WARN_ON(!uptodate)) {
391 			free_extent_buffer(eb);
392 			return -EUCLEAN;
393 		}
394 
395 		ret = csum_one_extent_buffer(eb);
396 		free_extent_buffer(eb);
397 		if (ret < 0)
398 			return ret;
399 	}
400 	return ret;
401 }
402 
403 /*
404  * Checksum a dirty tree block before IO.  This has extra checks to make sure
405  * we only fill in the checksum field in the first page of a multi-page block.
406  * For subpage extent buffers we need bvec to also read the offset in the page.
407  */
408 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
409 {
410 	struct page *page = bvec->bv_page;
411 	u64 start = page_offset(page);
412 	u64 found_start;
413 	struct extent_buffer *eb;
414 
415 	if (fs_info->nodesize < PAGE_SIZE)
416 		return csum_dirty_subpage_buffers(fs_info, bvec);
417 
418 	eb = (struct extent_buffer *)page->private;
419 	if (page != eb->pages[0])
420 		return 0;
421 
422 	found_start = btrfs_header_bytenr(eb);
423 
424 	if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
425 		WARN_ON(found_start != 0);
426 		return 0;
427 	}
428 
429 	/*
430 	 * Please do not consolidate these warnings into a single if.
431 	 * It is useful to know what went wrong.
432 	 */
433 	if (WARN_ON(found_start != start))
434 		return -EUCLEAN;
435 	if (WARN_ON(!PageUptodate(page)))
436 		return -EUCLEAN;
437 
438 	return csum_one_extent_buffer(eb);
439 }
440 
441 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
442 {
443 	struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
444 	struct bvec_iter iter;
445 	struct bio_vec bv;
446 	int ret = 0;
447 
448 	bio_for_each_segment(bv, &bbio->bio, iter) {
449 		ret = csum_dirty_buffer(fs_info, &bv);
450 		if (ret)
451 			break;
452 	}
453 
454 	return errno_to_blk_status(ret);
455 }
456 
457 static int check_tree_block_fsid(struct extent_buffer *eb)
458 {
459 	struct btrfs_fs_info *fs_info = eb->fs_info;
460 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
461 	u8 fsid[BTRFS_FSID_SIZE];
462 	u8 *metadata_uuid;
463 
464 	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
465 			   BTRFS_FSID_SIZE);
466 	/*
467 	 * Checking the incompat flag is only valid for the current fs. For
468 	 * seed devices it's forbidden to have their uuid changed so reading
469 	 * ->fsid in this case is fine
470 	 */
471 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
472 		metadata_uuid = fs_devices->metadata_uuid;
473 	else
474 		metadata_uuid = fs_devices->fsid;
475 
476 	if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
477 		return 0;
478 
479 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
480 		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
481 			return 0;
482 
483 	return 1;
484 }
485 
486 /* Do basic extent buffer checks at read time */
487 static int validate_extent_buffer(struct extent_buffer *eb,
488 				  struct btrfs_tree_parent_check *check)
489 {
490 	struct btrfs_fs_info *fs_info = eb->fs_info;
491 	u64 found_start;
492 	const u32 csum_size = fs_info->csum_size;
493 	u8 found_level;
494 	u8 result[BTRFS_CSUM_SIZE];
495 	const u8 *header_csum;
496 	int ret = 0;
497 
498 	ASSERT(check);
499 
500 	found_start = btrfs_header_bytenr(eb);
501 	if (found_start != eb->start) {
502 		btrfs_err_rl(fs_info,
503 			"bad tree block start, mirror %u want %llu have %llu",
504 			     eb->read_mirror, eb->start, found_start);
505 		ret = -EIO;
506 		goto out;
507 	}
508 	if (check_tree_block_fsid(eb)) {
509 		btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
510 			     eb->start, eb->read_mirror);
511 		ret = -EIO;
512 		goto out;
513 	}
514 	found_level = btrfs_header_level(eb);
515 	if (found_level >= BTRFS_MAX_LEVEL) {
516 		btrfs_err(fs_info,
517 			"bad tree block level, mirror %u level %d on logical %llu",
518 			eb->read_mirror, btrfs_header_level(eb), eb->start);
519 		ret = -EIO;
520 		goto out;
521 	}
522 
523 	csum_tree_block(eb, result);
524 	header_csum = page_address(eb->pages[0]) +
525 		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
526 
527 	if (memcmp(result, header_csum, csum_size) != 0) {
528 		btrfs_warn_rl(fs_info,
529 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
530 			      eb->start, eb->read_mirror,
531 			      CSUM_FMT_VALUE(csum_size, header_csum),
532 			      CSUM_FMT_VALUE(csum_size, result),
533 			      btrfs_header_level(eb));
534 		ret = -EUCLEAN;
535 		goto out;
536 	}
537 
538 	if (found_level != check->level) {
539 		btrfs_err(fs_info,
540 		"level verify failed on logical %llu mirror %u wanted %u found %u",
541 			  eb->start, eb->read_mirror, check->level, found_level);
542 		ret = -EIO;
543 		goto out;
544 	}
545 	if (unlikely(check->transid &&
546 		     btrfs_header_generation(eb) != check->transid)) {
547 		btrfs_err_rl(eb->fs_info,
548 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
549 				eb->start, eb->read_mirror, check->transid,
550 				btrfs_header_generation(eb));
551 		ret = -EIO;
552 		goto out;
553 	}
554 	if (check->has_first_key) {
555 		struct btrfs_key *expect_key = &check->first_key;
556 		struct btrfs_key found_key;
557 
558 		if (found_level)
559 			btrfs_node_key_to_cpu(eb, &found_key, 0);
560 		else
561 			btrfs_item_key_to_cpu(eb, &found_key, 0);
562 		if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
563 			btrfs_err(fs_info,
564 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
565 				  eb->start, check->transid,
566 				  expect_key->objectid,
567 				  expect_key->type, expect_key->offset,
568 				  found_key.objectid, found_key.type,
569 				  found_key.offset);
570 			ret = -EUCLEAN;
571 			goto out;
572 		}
573 	}
574 	if (check->owner_root) {
575 		ret = btrfs_check_eb_owner(eb, check->owner_root);
576 		if (ret < 0)
577 			goto out;
578 	}
579 
580 	/*
581 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
582 	 * that we don't try and read the other copies of this block, just
583 	 * return -EIO.
584 	 */
585 	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
586 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
587 		ret = -EIO;
588 	}
589 
590 	if (found_level > 0 && btrfs_check_node(eb))
591 		ret = -EIO;
592 
593 	if (!ret)
594 		set_extent_buffer_uptodate(eb);
595 	else
596 		btrfs_err(fs_info,
597 		"read time tree block corruption detected on logical %llu mirror %u",
598 			  eb->start, eb->read_mirror);
599 out:
600 	return ret;
601 }
602 
603 static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
604 				   int mirror, struct btrfs_tree_parent_check *check)
605 {
606 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
607 	struct extent_buffer *eb;
608 	bool reads_done;
609 	int ret = 0;
610 
611 	ASSERT(check);
612 
613 	/*
614 	 * We don't allow bio merge for subpage metadata read, so we should
615 	 * only get one eb for each endio hook.
616 	 */
617 	ASSERT(end == start + fs_info->nodesize - 1);
618 	ASSERT(PagePrivate(page));
619 
620 	eb = find_extent_buffer(fs_info, start);
621 	/*
622 	 * When we are reading one tree block, eb must have been inserted into
623 	 * the radix tree. If not, something is wrong.
624 	 */
625 	ASSERT(eb);
626 
627 	reads_done = atomic_dec_and_test(&eb->io_pages);
628 	/* Subpage read must finish in page read */
629 	ASSERT(reads_done);
630 
631 	eb->read_mirror = mirror;
632 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
633 		ret = -EIO;
634 		goto err;
635 	}
636 	ret = validate_extent_buffer(eb, check);
637 	if (ret < 0)
638 		goto err;
639 
640 	set_extent_buffer_uptodate(eb);
641 
642 	free_extent_buffer(eb);
643 	return ret;
644 err:
645 	/*
646 	 * end_bio_extent_readpage decrements io_pages in case of error,
647 	 * make sure it has something to decrement.
648 	 */
649 	atomic_inc(&eb->io_pages);
650 	clear_extent_buffer_uptodate(eb);
651 	free_extent_buffer(eb);
652 	return ret;
653 }
654 
655 int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
656 				   struct page *page, u64 start, u64 end,
657 				   int mirror)
658 {
659 	struct extent_buffer *eb;
660 	int ret = 0;
661 	int reads_done;
662 
663 	ASSERT(page->private);
664 
665 	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
666 		return validate_subpage_buffer(page, start, end, mirror,
667 					       &bbio->parent_check);
668 
669 	eb = (struct extent_buffer *)page->private;
670 
671 	/*
672 	 * The pending IO might have been the only thing that kept this buffer
673 	 * in memory.  Make sure we have a ref for all this other checks
674 	 */
675 	atomic_inc(&eb->refs);
676 
677 	reads_done = atomic_dec_and_test(&eb->io_pages);
678 	if (!reads_done)
679 		goto err;
680 
681 	eb->read_mirror = mirror;
682 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
683 		ret = -EIO;
684 		goto err;
685 	}
686 	ret = validate_extent_buffer(eb, &bbio->parent_check);
687 err:
688 	if (ret) {
689 		/*
690 		 * our io error hook is going to dec the io pages
691 		 * again, we have to make sure it has something
692 		 * to decrement
693 		 */
694 		atomic_inc(&eb->io_pages);
695 		clear_extent_buffer_uptodate(eb);
696 	}
697 	free_extent_buffer(eb);
698 
699 	return ret;
700 }
701 
702 #ifdef CONFIG_MIGRATION
703 static int btree_migrate_folio(struct address_space *mapping,
704 		struct folio *dst, struct folio *src, enum migrate_mode mode)
705 {
706 	/*
707 	 * we can't safely write a btree page from here,
708 	 * we haven't done the locking hook
709 	 */
710 	if (folio_test_dirty(src))
711 		return -EAGAIN;
712 	/*
713 	 * Buffers may be managed in a filesystem specific way.
714 	 * We must have no buffers or drop them.
715 	 */
716 	if (folio_get_private(src) &&
717 	    !filemap_release_folio(src, GFP_KERNEL))
718 		return -EAGAIN;
719 	return migrate_folio(mapping, dst, src, mode);
720 }
721 #else
722 #define btree_migrate_folio NULL
723 #endif
724 
725 static int btree_writepages(struct address_space *mapping,
726 			    struct writeback_control *wbc)
727 {
728 	struct btrfs_fs_info *fs_info;
729 	int ret;
730 
731 	if (wbc->sync_mode == WB_SYNC_NONE) {
732 
733 		if (wbc->for_kupdate)
734 			return 0;
735 
736 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
737 		/* this is a bit racy, but that's ok */
738 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
739 					     BTRFS_DIRTY_METADATA_THRESH,
740 					     fs_info->dirty_metadata_batch);
741 		if (ret < 0)
742 			return 0;
743 	}
744 	return btree_write_cache_pages(mapping, wbc);
745 }
746 
747 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
748 {
749 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
750 		return false;
751 
752 	return try_release_extent_buffer(&folio->page);
753 }
754 
755 static void btree_invalidate_folio(struct folio *folio, size_t offset,
756 				 size_t length)
757 {
758 	struct extent_io_tree *tree;
759 	tree = &BTRFS_I(folio->mapping->host)->io_tree;
760 	extent_invalidate_folio(tree, folio, offset);
761 	btree_release_folio(folio, GFP_NOFS);
762 	if (folio_get_private(folio)) {
763 		btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
764 			   "folio private not zero on folio %llu",
765 			   (unsigned long long)folio_pos(folio));
766 		folio_detach_private(folio);
767 	}
768 }
769 
770 #ifdef DEBUG
771 static bool btree_dirty_folio(struct address_space *mapping,
772 		struct folio *folio)
773 {
774 	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
775 	struct btrfs_subpage *subpage;
776 	struct extent_buffer *eb;
777 	int cur_bit = 0;
778 	u64 page_start = folio_pos(folio);
779 
780 	if (fs_info->sectorsize == PAGE_SIZE) {
781 		eb = folio_get_private(folio);
782 		BUG_ON(!eb);
783 		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
784 		BUG_ON(!atomic_read(&eb->refs));
785 		btrfs_assert_tree_write_locked(eb);
786 		return filemap_dirty_folio(mapping, folio);
787 	}
788 	subpage = folio_get_private(folio);
789 
790 	ASSERT(subpage->dirty_bitmap);
791 	while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
792 		unsigned long flags;
793 		u64 cur;
794 		u16 tmp = (1 << cur_bit);
795 
796 		spin_lock_irqsave(&subpage->lock, flags);
797 		if (!(tmp & subpage->dirty_bitmap)) {
798 			spin_unlock_irqrestore(&subpage->lock, flags);
799 			cur_bit++;
800 			continue;
801 		}
802 		spin_unlock_irqrestore(&subpage->lock, flags);
803 		cur = page_start + cur_bit * fs_info->sectorsize;
804 
805 		eb = find_extent_buffer(fs_info, cur);
806 		ASSERT(eb);
807 		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
808 		ASSERT(atomic_read(&eb->refs));
809 		btrfs_assert_tree_write_locked(eb);
810 		free_extent_buffer(eb);
811 
812 		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
813 	}
814 	return filemap_dirty_folio(mapping, folio);
815 }
816 #else
817 #define btree_dirty_folio filemap_dirty_folio
818 #endif
819 
820 static const struct address_space_operations btree_aops = {
821 	.writepages	= btree_writepages,
822 	.release_folio	= btree_release_folio,
823 	.invalidate_folio = btree_invalidate_folio,
824 	.migrate_folio	= btree_migrate_folio,
825 	.dirty_folio	= btree_dirty_folio,
826 };
827 
828 struct extent_buffer *btrfs_find_create_tree_block(
829 						struct btrfs_fs_info *fs_info,
830 						u64 bytenr, u64 owner_root,
831 						int level)
832 {
833 	if (btrfs_is_testing(fs_info))
834 		return alloc_test_extent_buffer(fs_info, bytenr);
835 	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
836 }
837 
838 /*
839  * Read tree block at logical address @bytenr and do variant basic but critical
840  * verification.
841  *
842  * @check:		expected tree parentness check, see comments of the
843  *			structure for details.
844  */
845 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
846 				      struct btrfs_tree_parent_check *check)
847 {
848 	struct extent_buffer *buf = NULL;
849 	int ret;
850 
851 	ASSERT(check);
852 
853 	buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
854 					   check->level);
855 	if (IS_ERR(buf))
856 		return buf;
857 
858 	ret = btrfs_read_extent_buffer(buf, check);
859 	if (ret) {
860 		free_extent_buffer_stale(buf);
861 		return ERR_PTR(ret);
862 	}
863 	if (btrfs_check_eb_owner(buf, check->owner_root)) {
864 		free_extent_buffer_stale(buf);
865 		return ERR_PTR(-EUCLEAN);
866 	}
867 	return buf;
868 
869 }
870 
871 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
872 			 u64 objectid)
873 {
874 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
875 
876 	memset(&root->root_key, 0, sizeof(root->root_key));
877 	memset(&root->root_item, 0, sizeof(root->root_item));
878 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
879 	root->fs_info = fs_info;
880 	root->root_key.objectid = objectid;
881 	root->node = NULL;
882 	root->commit_root = NULL;
883 	root->state = 0;
884 	RB_CLEAR_NODE(&root->rb_node);
885 
886 	root->last_trans = 0;
887 	root->free_objectid = 0;
888 	root->nr_delalloc_inodes = 0;
889 	root->nr_ordered_extents = 0;
890 	root->inode_tree = RB_ROOT;
891 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
892 
893 	btrfs_init_root_block_rsv(root);
894 
895 	INIT_LIST_HEAD(&root->dirty_list);
896 	INIT_LIST_HEAD(&root->root_list);
897 	INIT_LIST_HEAD(&root->delalloc_inodes);
898 	INIT_LIST_HEAD(&root->delalloc_root);
899 	INIT_LIST_HEAD(&root->ordered_extents);
900 	INIT_LIST_HEAD(&root->ordered_root);
901 	INIT_LIST_HEAD(&root->reloc_dirty_list);
902 	INIT_LIST_HEAD(&root->logged_list[0]);
903 	INIT_LIST_HEAD(&root->logged_list[1]);
904 	spin_lock_init(&root->inode_lock);
905 	spin_lock_init(&root->delalloc_lock);
906 	spin_lock_init(&root->ordered_extent_lock);
907 	spin_lock_init(&root->accounting_lock);
908 	spin_lock_init(&root->log_extents_lock[0]);
909 	spin_lock_init(&root->log_extents_lock[1]);
910 	spin_lock_init(&root->qgroup_meta_rsv_lock);
911 	mutex_init(&root->objectid_mutex);
912 	mutex_init(&root->log_mutex);
913 	mutex_init(&root->ordered_extent_mutex);
914 	mutex_init(&root->delalloc_mutex);
915 	init_waitqueue_head(&root->qgroup_flush_wait);
916 	init_waitqueue_head(&root->log_writer_wait);
917 	init_waitqueue_head(&root->log_commit_wait[0]);
918 	init_waitqueue_head(&root->log_commit_wait[1]);
919 	INIT_LIST_HEAD(&root->log_ctxs[0]);
920 	INIT_LIST_HEAD(&root->log_ctxs[1]);
921 	atomic_set(&root->log_commit[0], 0);
922 	atomic_set(&root->log_commit[1], 0);
923 	atomic_set(&root->log_writers, 0);
924 	atomic_set(&root->log_batch, 0);
925 	refcount_set(&root->refs, 1);
926 	atomic_set(&root->snapshot_force_cow, 0);
927 	atomic_set(&root->nr_swapfiles, 0);
928 	root->log_transid = 0;
929 	root->log_transid_committed = -1;
930 	root->last_log_commit = 0;
931 	root->anon_dev = 0;
932 	if (!dummy) {
933 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
934 				    IO_TREE_ROOT_DIRTY_LOG_PAGES);
935 		extent_io_tree_init(fs_info, &root->log_csum_range,
936 				    IO_TREE_LOG_CSUM_RANGE);
937 	}
938 
939 	spin_lock_init(&root->root_item_lock);
940 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
941 #ifdef CONFIG_BTRFS_DEBUG
942 	INIT_LIST_HEAD(&root->leak_list);
943 	spin_lock(&fs_info->fs_roots_radix_lock);
944 	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
945 	spin_unlock(&fs_info->fs_roots_radix_lock);
946 #endif
947 }
948 
949 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
950 					   u64 objectid, gfp_t flags)
951 {
952 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
953 	if (root)
954 		__setup_root(root, fs_info, objectid);
955 	return root;
956 }
957 
958 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
959 /* Should only be used by the testing infrastructure */
960 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
961 {
962 	struct btrfs_root *root;
963 
964 	if (!fs_info)
965 		return ERR_PTR(-EINVAL);
966 
967 	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
968 	if (!root)
969 		return ERR_PTR(-ENOMEM);
970 
971 	/* We don't use the stripesize in selftest, set it as sectorsize */
972 	root->alloc_bytenr = 0;
973 
974 	return root;
975 }
976 #endif
977 
978 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
979 {
980 	const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
981 	const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
982 
983 	return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
984 }
985 
986 static int global_root_key_cmp(const void *k, const struct rb_node *node)
987 {
988 	const struct btrfs_key *key = k;
989 	const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
990 
991 	return btrfs_comp_cpu_keys(key, &root->root_key);
992 }
993 
994 int btrfs_global_root_insert(struct btrfs_root *root)
995 {
996 	struct btrfs_fs_info *fs_info = root->fs_info;
997 	struct rb_node *tmp;
998 
999 	write_lock(&fs_info->global_root_lock);
1000 	tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
1001 	write_unlock(&fs_info->global_root_lock);
1002 	ASSERT(!tmp);
1003 
1004 	return tmp ? -EEXIST : 0;
1005 }
1006 
1007 void btrfs_global_root_delete(struct btrfs_root *root)
1008 {
1009 	struct btrfs_fs_info *fs_info = root->fs_info;
1010 
1011 	write_lock(&fs_info->global_root_lock);
1012 	rb_erase(&root->rb_node, &fs_info->global_root_tree);
1013 	write_unlock(&fs_info->global_root_lock);
1014 }
1015 
1016 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
1017 				     struct btrfs_key *key)
1018 {
1019 	struct rb_node *node;
1020 	struct btrfs_root *root = NULL;
1021 
1022 	read_lock(&fs_info->global_root_lock);
1023 	node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
1024 	if (node)
1025 		root = container_of(node, struct btrfs_root, rb_node);
1026 	read_unlock(&fs_info->global_root_lock);
1027 
1028 	return root;
1029 }
1030 
1031 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
1032 {
1033 	struct btrfs_block_group *block_group;
1034 	u64 ret;
1035 
1036 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1037 		return 0;
1038 
1039 	if (bytenr)
1040 		block_group = btrfs_lookup_block_group(fs_info, bytenr);
1041 	else
1042 		block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
1043 	ASSERT(block_group);
1044 	if (!block_group)
1045 		return 0;
1046 	ret = block_group->global_root_id;
1047 	btrfs_put_block_group(block_group);
1048 
1049 	return ret;
1050 }
1051 
1052 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1053 {
1054 	struct btrfs_key key = {
1055 		.objectid = BTRFS_CSUM_TREE_OBJECTID,
1056 		.type = BTRFS_ROOT_ITEM_KEY,
1057 		.offset = btrfs_global_root_id(fs_info, bytenr),
1058 	};
1059 
1060 	return btrfs_global_root(fs_info, &key);
1061 }
1062 
1063 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1064 {
1065 	struct btrfs_key key = {
1066 		.objectid = BTRFS_EXTENT_TREE_OBJECTID,
1067 		.type = BTRFS_ROOT_ITEM_KEY,
1068 		.offset = btrfs_global_root_id(fs_info, bytenr),
1069 	};
1070 
1071 	return btrfs_global_root(fs_info, &key);
1072 }
1073 
1074 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
1075 {
1076 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
1077 		return fs_info->block_group_root;
1078 	return btrfs_extent_root(fs_info, 0);
1079 }
1080 
1081 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1082 				     u64 objectid)
1083 {
1084 	struct btrfs_fs_info *fs_info = trans->fs_info;
1085 	struct extent_buffer *leaf;
1086 	struct btrfs_root *tree_root = fs_info->tree_root;
1087 	struct btrfs_root *root;
1088 	struct btrfs_key key;
1089 	unsigned int nofs_flag;
1090 	int ret = 0;
1091 
1092 	/*
1093 	 * We're holding a transaction handle, so use a NOFS memory allocation
1094 	 * context to avoid deadlock if reclaim happens.
1095 	 */
1096 	nofs_flag = memalloc_nofs_save();
1097 	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1098 	memalloc_nofs_restore(nofs_flag);
1099 	if (!root)
1100 		return ERR_PTR(-ENOMEM);
1101 
1102 	root->root_key.objectid = objectid;
1103 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1104 	root->root_key.offset = 0;
1105 
1106 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1107 				      BTRFS_NESTING_NORMAL);
1108 	if (IS_ERR(leaf)) {
1109 		ret = PTR_ERR(leaf);
1110 		leaf = NULL;
1111 		goto fail;
1112 	}
1113 
1114 	root->node = leaf;
1115 	btrfs_mark_buffer_dirty(leaf);
1116 
1117 	root->commit_root = btrfs_root_node(root);
1118 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1119 
1120 	btrfs_set_root_flags(&root->root_item, 0);
1121 	btrfs_set_root_limit(&root->root_item, 0);
1122 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1123 	btrfs_set_root_generation(&root->root_item, trans->transid);
1124 	btrfs_set_root_level(&root->root_item, 0);
1125 	btrfs_set_root_refs(&root->root_item, 1);
1126 	btrfs_set_root_used(&root->root_item, leaf->len);
1127 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1128 	btrfs_set_root_dirid(&root->root_item, 0);
1129 	if (is_fstree(objectid))
1130 		generate_random_guid(root->root_item.uuid);
1131 	else
1132 		export_guid(root->root_item.uuid, &guid_null);
1133 	btrfs_set_root_drop_level(&root->root_item, 0);
1134 
1135 	btrfs_tree_unlock(leaf);
1136 
1137 	key.objectid = objectid;
1138 	key.type = BTRFS_ROOT_ITEM_KEY;
1139 	key.offset = 0;
1140 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1141 	if (ret)
1142 		goto fail;
1143 
1144 	return root;
1145 
1146 fail:
1147 	btrfs_put_root(root);
1148 
1149 	return ERR_PTR(ret);
1150 }
1151 
1152 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1153 					 struct btrfs_fs_info *fs_info)
1154 {
1155 	struct btrfs_root *root;
1156 
1157 	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1158 	if (!root)
1159 		return ERR_PTR(-ENOMEM);
1160 
1161 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1162 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1163 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1164 
1165 	return root;
1166 }
1167 
1168 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1169 			      struct btrfs_root *root)
1170 {
1171 	struct extent_buffer *leaf;
1172 
1173 	/*
1174 	 * DON'T set SHAREABLE bit for log trees.
1175 	 *
1176 	 * Log trees are not exposed to user space thus can't be snapshotted,
1177 	 * and they go away before a real commit is actually done.
1178 	 *
1179 	 * They do store pointers to file data extents, and those reference
1180 	 * counts still get updated (along with back refs to the log tree).
1181 	 */
1182 
1183 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1184 			NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1185 	if (IS_ERR(leaf))
1186 		return PTR_ERR(leaf);
1187 
1188 	root->node = leaf;
1189 
1190 	btrfs_mark_buffer_dirty(root->node);
1191 	btrfs_tree_unlock(root->node);
1192 
1193 	return 0;
1194 }
1195 
1196 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1197 			     struct btrfs_fs_info *fs_info)
1198 {
1199 	struct btrfs_root *log_root;
1200 
1201 	log_root = alloc_log_tree(trans, fs_info);
1202 	if (IS_ERR(log_root))
1203 		return PTR_ERR(log_root);
1204 
1205 	if (!btrfs_is_zoned(fs_info)) {
1206 		int ret = btrfs_alloc_log_tree_node(trans, log_root);
1207 
1208 		if (ret) {
1209 			btrfs_put_root(log_root);
1210 			return ret;
1211 		}
1212 	}
1213 
1214 	WARN_ON(fs_info->log_root_tree);
1215 	fs_info->log_root_tree = log_root;
1216 	return 0;
1217 }
1218 
1219 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1220 		       struct btrfs_root *root)
1221 {
1222 	struct btrfs_fs_info *fs_info = root->fs_info;
1223 	struct btrfs_root *log_root;
1224 	struct btrfs_inode_item *inode_item;
1225 	int ret;
1226 
1227 	log_root = alloc_log_tree(trans, fs_info);
1228 	if (IS_ERR(log_root))
1229 		return PTR_ERR(log_root);
1230 
1231 	ret = btrfs_alloc_log_tree_node(trans, log_root);
1232 	if (ret) {
1233 		btrfs_put_root(log_root);
1234 		return ret;
1235 	}
1236 
1237 	log_root->last_trans = trans->transid;
1238 	log_root->root_key.offset = root->root_key.objectid;
1239 
1240 	inode_item = &log_root->root_item.inode;
1241 	btrfs_set_stack_inode_generation(inode_item, 1);
1242 	btrfs_set_stack_inode_size(inode_item, 3);
1243 	btrfs_set_stack_inode_nlink(inode_item, 1);
1244 	btrfs_set_stack_inode_nbytes(inode_item,
1245 				     fs_info->nodesize);
1246 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1247 
1248 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1249 
1250 	WARN_ON(root->log_root);
1251 	root->log_root = log_root;
1252 	root->log_transid = 0;
1253 	root->log_transid_committed = -1;
1254 	root->last_log_commit = 0;
1255 	return 0;
1256 }
1257 
1258 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1259 					      struct btrfs_path *path,
1260 					      struct btrfs_key *key)
1261 {
1262 	struct btrfs_root *root;
1263 	struct btrfs_tree_parent_check check = { 0 };
1264 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1265 	u64 generation;
1266 	int ret;
1267 	int level;
1268 
1269 	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1270 	if (!root)
1271 		return ERR_PTR(-ENOMEM);
1272 
1273 	ret = btrfs_find_root(tree_root, key, path,
1274 			      &root->root_item, &root->root_key);
1275 	if (ret) {
1276 		if (ret > 0)
1277 			ret = -ENOENT;
1278 		goto fail;
1279 	}
1280 
1281 	generation = btrfs_root_generation(&root->root_item);
1282 	level = btrfs_root_level(&root->root_item);
1283 	check.level = level;
1284 	check.transid = generation;
1285 	check.owner_root = key->objectid;
1286 	root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1287 				     &check);
1288 	if (IS_ERR(root->node)) {
1289 		ret = PTR_ERR(root->node);
1290 		root->node = NULL;
1291 		goto fail;
1292 	}
1293 	if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1294 		ret = -EIO;
1295 		goto fail;
1296 	}
1297 
1298 	/*
1299 	 * For real fs, and not log/reloc trees, root owner must
1300 	 * match its root node owner
1301 	 */
1302 	if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1303 	    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1304 	    root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1305 	    root->root_key.objectid != btrfs_header_owner(root->node)) {
1306 		btrfs_crit(fs_info,
1307 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1308 			   root->root_key.objectid, root->node->start,
1309 			   btrfs_header_owner(root->node),
1310 			   root->root_key.objectid);
1311 		ret = -EUCLEAN;
1312 		goto fail;
1313 	}
1314 	root->commit_root = btrfs_root_node(root);
1315 	return root;
1316 fail:
1317 	btrfs_put_root(root);
1318 	return ERR_PTR(ret);
1319 }
1320 
1321 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1322 					struct btrfs_key *key)
1323 {
1324 	struct btrfs_root *root;
1325 	struct btrfs_path *path;
1326 
1327 	path = btrfs_alloc_path();
1328 	if (!path)
1329 		return ERR_PTR(-ENOMEM);
1330 	root = read_tree_root_path(tree_root, path, key);
1331 	btrfs_free_path(path);
1332 
1333 	return root;
1334 }
1335 
1336 /*
1337  * Initialize subvolume root in-memory structure
1338  *
1339  * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1340  */
1341 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1342 {
1343 	int ret;
1344 	unsigned int nofs_flag;
1345 
1346 	/*
1347 	 * We might be called under a transaction (e.g. indirect backref
1348 	 * resolution) which could deadlock if it triggers memory reclaim
1349 	 */
1350 	nofs_flag = memalloc_nofs_save();
1351 	ret = btrfs_drew_lock_init(&root->snapshot_lock);
1352 	memalloc_nofs_restore(nofs_flag);
1353 	if (ret)
1354 		goto fail;
1355 
1356 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1357 	    !btrfs_is_data_reloc_root(root)) {
1358 		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1359 		btrfs_check_and_init_root_item(&root->root_item);
1360 	}
1361 
1362 	/*
1363 	 * Don't assign anonymous block device to roots that are not exposed to
1364 	 * userspace, the id pool is limited to 1M
1365 	 */
1366 	if (is_fstree(root->root_key.objectid) &&
1367 	    btrfs_root_refs(&root->root_item) > 0) {
1368 		if (!anon_dev) {
1369 			ret = get_anon_bdev(&root->anon_dev);
1370 			if (ret)
1371 				goto fail;
1372 		} else {
1373 			root->anon_dev = anon_dev;
1374 		}
1375 	}
1376 
1377 	mutex_lock(&root->objectid_mutex);
1378 	ret = btrfs_init_root_free_objectid(root);
1379 	if (ret) {
1380 		mutex_unlock(&root->objectid_mutex);
1381 		goto fail;
1382 	}
1383 
1384 	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1385 
1386 	mutex_unlock(&root->objectid_mutex);
1387 
1388 	return 0;
1389 fail:
1390 	/* The caller is responsible to call btrfs_free_fs_root */
1391 	return ret;
1392 }
1393 
1394 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1395 					       u64 root_id)
1396 {
1397 	struct btrfs_root *root;
1398 
1399 	spin_lock(&fs_info->fs_roots_radix_lock);
1400 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1401 				 (unsigned long)root_id);
1402 	if (root)
1403 		root = btrfs_grab_root(root);
1404 	spin_unlock(&fs_info->fs_roots_radix_lock);
1405 	return root;
1406 }
1407 
1408 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1409 						u64 objectid)
1410 {
1411 	struct btrfs_key key = {
1412 		.objectid = objectid,
1413 		.type = BTRFS_ROOT_ITEM_KEY,
1414 		.offset = 0,
1415 	};
1416 
1417 	if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1418 		return btrfs_grab_root(fs_info->tree_root);
1419 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1420 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1421 	if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1422 		return btrfs_grab_root(fs_info->chunk_root);
1423 	if (objectid == BTRFS_DEV_TREE_OBJECTID)
1424 		return btrfs_grab_root(fs_info->dev_root);
1425 	if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1426 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1427 	if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1428 		return btrfs_grab_root(fs_info->quota_root) ?
1429 			fs_info->quota_root : ERR_PTR(-ENOENT);
1430 	if (objectid == BTRFS_UUID_TREE_OBJECTID)
1431 		return btrfs_grab_root(fs_info->uuid_root) ?
1432 			fs_info->uuid_root : ERR_PTR(-ENOENT);
1433 	if (objectid == BTRFS_BLOCK_GROUP_TREE_OBJECTID)
1434 		return btrfs_grab_root(fs_info->block_group_root) ?
1435 			fs_info->block_group_root : ERR_PTR(-ENOENT);
1436 	if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
1437 		struct btrfs_root *root = btrfs_global_root(fs_info, &key);
1438 
1439 		return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
1440 	}
1441 	return NULL;
1442 }
1443 
1444 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1445 			 struct btrfs_root *root)
1446 {
1447 	int ret;
1448 
1449 	ret = radix_tree_preload(GFP_NOFS);
1450 	if (ret)
1451 		return ret;
1452 
1453 	spin_lock(&fs_info->fs_roots_radix_lock);
1454 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1455 				(unsigned long)root->root_key.objectid,
1456 				root);
1457 	if (ret == 0) {
1458 		btrfs_grab_root(root);
1459 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1460 	}
1461 	spin_unlock(&fs_info->fs_roots_radix_lock);
1462 	radix_tree_preload_end();
1463 
1464 	return ret;
1465 }
1466 
1467 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1468 {
1469 #ifdef CONFIG_BTRFS_DEBUG
1470 	struct btrfs_root *root;
1471 
1472 	while (!list_empty(&fs_info->allocated_roots)) {
1473 		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1474 
1475 		root = list_first_entry(&fs_info->allocated_roots,
1476 					struct btrfs_root, leak_list);
1477 		btrfs_err(fs_info, "leaked root %s refcount %d",
1478 			  btrfs_root_name(&root->root_key, buf),
1479 			  refcount_read(&root->refs));
1480 		while (refcount_read(&root->refs) > 1)
1481 			btrfs_put_root(root);
1482 		btrfs_put_root(root);
1483 	}
1484 #endif
1485 }
1486 
1487 static void free_global_roots(struct btrfs_fs_info *fs_info)
1488 {
1489 	struct btrfs_root *root;
1490 	struct rb_node *node;
1491 
1492 	while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1493 		root = rb_entry(node, struct btrfs_root, rb_node);
1494 		rb_erase(&root->rb_node, &fs_info->global_root_tree);
1495 		btrfs_put_root(root);
1496 	}
1497 }
1498 
1499 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1500 {
1501 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1502 	percpu_counter_destroy(&fs_info->delalloc_bytes);
1503 	percpu_counter_destroy(&fs_info->ordered_bytes);
1504 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1505 	btrfs_free_csum_hash(fs_info);
1506 	btrfs_free_stripe_hash_table(fs_info);
1507 	btrfs_free_ref_cache(fs_info);
1508 	kfree(fs_info->balance_ctl);
1509 	kfree(fs_info->delayed_root);
1510 	free_global_roots(fs_info);
1511 	btrfs_put_root(fs_info->tree_root);
1512 	btrfs_put_root(fs_info->chunk_root);
1513 	btrfs_put_root(fs_info->dev_root);
1514 	btrfs_put_root(fs_info->quota_root);
1515 	btrfs_put_root(fs_info->uuid_root);
1516 	btrfs_put_root(fs_info->fs_root);
1517 	btrfs_put_root(fs_info->data_reloc_root);
1518 	btrfs_put_root(fs_info->block_group_root);
1519 	btrfs_check_leaked_roots(fs_info);
1520 	btrfs_extent_buffer_leak_debug_check(fs_info);
1521 	kfree(fs_info->super_copy);
1522 	kfree(fs_info->super_for_commit);
1523 	kfree(fs_info->subpage_info);
1524 	kvfree(fs_info);
1525 }
1526 
1527 
1528 /*
1529  * Get an in-memory reference of a root structure.
1530  *
1531  * For essential trees like root/extent tree, we grab it from fs_info directly.
1532  * For subvolume trees, we check the cached filesystem roots first. If not
1533  * found, then read it from disk and add it to cached fs roots.
1534  *
1535  * Caller should release the root by calling btrfs_put_root() after the usage.
1536  *
1537  * NOTE: Reloc and log trees can't be read by this function as they share the
1538  *	 same root objectid.
1539  *
1540  * @objectid:	root id
1541  * @anon_dev:	preallocated anonymous block device number for new roots,
1542  * 		pass 0 for new allocation.
1543  * @check_ref:	whether to check root item references, If true, return -ENOENT
1544  *		for orphan roots
1545  */
1546 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1547 					     u64 objectid, dev_t anon_dev,
1548 					     bool check_ref)
1549 {
1550 	struct btrfs_root *root;
1551 	struct btrfs_path *path;
1552 	struct btrfs_key key;
1553 	int ret;
1554 
1555 	root = btrfs_get_global_root(fs_info, objectid);
1556 	if (root)
1557 		return root;
1558 again:
1559 	root = btrfs_lookup_fs_root(fs_info, objectid);
1560 	if (root) {
1561 		/* Shouldn't get preallocated anon_dev for cached roots */
1562 		ASSERT(!anon_dev);
1563 		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1564 			btrfs_put_root(root);
1565 			return ERR_PTR(-ENOENT);
1566 		}
1567 		return root;
1568 	}
1569 
1570 	key.objectid = objectid;
1571 	key.type = BTRFS_ROOT_ITEM_KEY;
1572 	key.offset = (u64)-1;
1573 	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1574 	if (IS_ERR(root))
1575 		return root;
1576 
1577 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1578 		ret = -ENOENT;
1579 		goto fail;
1580 	}
1581 
1582 	ret = btrfs_init_fs_root(root, anon_dev);
1583 	if (ret)
1584 		goto fail;
1585 
1586 	path = btrfs_alloc_path();
1587 	if (!path) {
1588 		ret = -ENOMEM;
1589 		goto fail;
1590 	}
1591 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1592 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1593 	key.offset = objectid;
1594 
1595 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1596 	btrfs_free_path(path);
1597 	if (ret < 0)
1598 		goto fail;
1599 	if (ret == 0)
1600 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1601 
1602 	ret = btrfs_insert_fs_root(fs_info, root);
1603 	if (ret) {
1604 		if (ret == -EEXIST) {
1605 			btrfs_put_root(root);
1606 			goto again;
1607 		}
1608 		goto fail;
1609 	}
1610 	return root;
1611 fail:
1612 	/*
1613 	 * If our caller provided us an anonymous device, then it's his
1614 	 * responsibility to free it in case we fail. So we have to set our
1615 	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1616 	 * and once again by our caller.
1617 	 */
1618 	if (anon_dev)
1619 		root->anon_dev = 0;
1620 	btrfs_put_root(root);
1621 	return ERR_PTR(ret);
1622 }
1623 
1624 /*
1625  * Get in-memory reference of a root structure
1626  *
1627  * @objectid:	tree objectid
1628  * @check_ref:	if set, verify that the tree exists and the item has at least
1629  *		one reference
1630  */
1631 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1632 				     u64 objectid, bool check_ref)
1633 {
1634 	return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1635 }
1636 
1637 /*
1638  * Get in-memory reference of a root structure, created as new, optionally pass
1639  * the anonymous block device id
1640  *
1641  * @objectid:	tree objectid
1642  * @anon_dev:	if zero, allocate a new anonymous block device or use the
1643  *		parameter value
1644  */
1645 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1646 					 u64 objectid, dev_t anon_dev)
1647 {
1648 	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1649 }
1650 
1651 /*
1652  * btrfs_get_fs_root_commit_root - return a root for the given objectid
1653  * @fs_info:	the fs_info
1654  * @objectid:	the objectid we need to lookup
1655  *
1656  * This is exclusively used for backref walking, and exists specifically because
1657  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1658  * creation time, which means we may have to read the tree_root in order to look
1659  * up a fs root that is not in memory.  If the root is not in memory we will
1660  * read the tree root commit root and look up the fs root from there.  This is a
1661  * temporary root, it will not be inserted into the radix tree as it doesn't
1662  * have the most uptodate information, it'll simply be discarded once the
1663  * backref code is finished using the root.
1664  */
1665 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1666 						 struct btrfs_path *path,
1667 						 u64 objectid)
1668 {
1669 	struct btrfs_root *root;
1670 	struct btrfs_key key;
1671 
1672 	ASSERT(path->search_commit_root && path->skip_locking);
1673 
1674 	/*
1675 	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1676 	 * since this is called via the backref walking code we won't be looking
1677 	 * up a root that doesn't exist, unless there's corruption.  So if root
1678 	 * != NULL just return it.
1679 	 */
1680 	root = btrfs_get_global_root(fs_info, objectid);
1681 	if (root)
1682 		return root;
1683 
1684 	root = btrfs_lookup_fs_root(fs_info, objectid);
1685 	if (root)
1686 		return root;
1687 
1688 	key.objectid = objectid;
1689 	key.type = BTRFS_ROOT_ITEM_KEY;
1690 	key.offset = (u64)-1;
1691 	root = read_tree_root_path(fs_info->tree_root, path, &key);
1692 	btrfs_release_path(path);
1693 
1694 	return root;
1695 }
1696 
1697 static int cleaner_kthread(void *arg)
1698 {
1699 	struct btrfs_fs_info *fs_info = arg;
1700 	int again;
1701 
1702 	while (1) {
1703 		again = 0;
1704 
1705 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1706 
1707 		/* Make the cleaner go to sleep early. */
1708 		if (btrfs_need_cleaner_sleep(fs_info))
1709 			goto sleep;
1710 
1711 		/*
1712 		 * Do not do anything if we might cause open_ctree() to block
1713 		 * before we have finished mounting the filesystem.
1714 		 */
1715 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1716 			goto sleep;
1717 
1718 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1719 			goto sleep;
1720 
1721 		/*
1722 		 * Avoid the problem that we change the status of the fs
1723 		 * during the above check and trylock.
1724 		 */
1725 		if (btrfs_need_cleaner_sleep(fs_info)) {
1726 			mutex_unlock(&fs_info->cleaner_mutex);
1727 			goto sleep;
1728 		}
1729 
1730 		if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1731 			btrfs_sysfs_feature_update(fs_info);
1732 
1733 		btrfs_run_delayed_iputs(fs_info);
1734 
1735 		again = btrfs_clean_one_deleted_snapshot(fs_info);
1736 		mutex_unlock(&fs_info->cleaner_mutex);
1737 
1738 		/*
1739 		 * The defragger has dealt with the R/O remount and umount,
1740 		 * needn't do anything special here.
1741 		 */
1742 		btrfs_run_defrag_inodes(fs_info);
1743 
1744 		/*
1745 		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1746 		 * with relocation (btrfs_relocate_chunk) and relocation
1747 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1748 		 * after acquiring fs_info->reclaim_bgs_lock. So we
1749 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1750 		 * unused block groups.
1751 		 */
1752 		btrfs_delete_unused_bgs(fs_info);
1753 
1754 		/*
1755 		 * Reclaim block groups in the reclaim_bgs list after we deleted
1756 		 * all unused block_groups. This possibly gives us some more free
1757 		 * space.
1758 		 */
1759 		btrfs_reclaim_bgs(fs_info);
1760 sleep:
1761 		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1762 		if (kthread_should_park())
1763 			kthread_parkme();
1764 		if (kthread_should_stop())
1765 			return 0;
1766 		if (!again) {
1767 			set_current_state(TASK_INTERRUPTIBLE);
1768 			schedule();
1769 			__set_current_state(TASK_RUNNING);
1770 		}
1771 	}
1772 }
1773 
1774 static int transaction_kthread(void *arg)
1775 {
1776 	struct btrfs_root *root = arg;
1777 	struct btrfs_fs_info *fs_info = root->fs_info;
1778 	struct btrfs_trans_handle *trans;
1779 	struct btrfs_transaction *cur;
1780 	u64 transid;
1781 	time64_t delta;
1782 	unsigned long delay;
1783 	bool cannot_commit;
1784 
1785 	do {
1786 		cannot_commit = false;
1787 		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1788 		mutex_lock(&fs_info->transaction_kthread_mutex);
1789 
1790 		spin_lock(&fs_info->trans_lock);
1791 		cur = fs_info->running_transaction;
1792 		if (!cur) {
1793 			spin_unlock(&fs_info->trans_lock);
1794 			goto sleep;
1795 		}
1796 
1797 		delta = ktime_get_seconds() - cur->start_time;
1798 		if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1799 		    cur->state < TRANS_STATE_COMMIT_START &&
1800 		    delta < fs_info->commit_interval) {
1801 			spin_unlock(&fs_info->trans_lock);
1802 			delay -= msecs_to_jiffies((delta - 1) * 1000);
1803 			delay = min(delay,
1804 				    msecs_to_jiffies(fs_info->commit_interval * 1000));
1805 			goto sleep;
1806 		}
1807 		transid = cur->transid;
1808 		spin_unlock(&fs_info->trans_lock);
1809 
1810 		/* If the file system is aborted, this will always fail. */
1811 		trans = btrfs_attach_transaction(root);
1812 		if (IS_ERR(trans)) {
1813 			if (PTR_ERR(trans) != -ENOENT)
1814 				cannot_commit = true;
1815 			goto sleep;
1816 		}
1817 		if (transid == trans->transid) {
1818 			btrfs_commit_transaction(trans);
1819 		} else {
1820 			btrfs_end_transaction(trans);
1821 		}
1822 sleep:
1823 		wake_up_process(fs_info->cleaner_kthread);
1824 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1825 
1826 		if (BTRFS_FS_ERROR(fs_info))
1827 			btrfs_cleanup_transaction(fs_info);
1828 		if (!kthread_should_stop() &&
1829 				(!btrfs_transaction_blocked(fs_info) ||
1830 				 cannot_commit))
1831 			schedule_timeout_interruptible(delay);
1832 	} while (!kthread_should_stop());
1833 	return 0;
1834 }
1835 
1836 /*
1837  * This will find the highest generation in the array of root backups.  The
1838  * index of the highest array is returned, or -EINVAL if we can't find
1839  * anything.
1840  *
1841  * We check to make sure the array is valid by comparing the
1842  * generation of the latest  root in the array with the generation
1843  * in the super block.  If they don't match we pitch it.
1844  */
1845 static int find_newest_super_backup(struct btrfs_fs_info *info)
1846 {
1847 	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1848 	u64 cur;
1849 	struct btrfs_root_backup *root_backup;
1850 	int i;
1851 
1852 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1853 		root_backup = info->super_copy->super_roots + i;
1854 		cur = btrfs_backup_tree_root_gen(root_backup);
1855 		if (cur == newest_gen)
1856 			return i;
1857 	}
1858 
1859 	return -EINVAL;
1860 }
1861 
1862 /*
1863  * copy all the root pointers into the super backup array.
1864  * this will bump the backup pointer by one when it is
1865  * done
1866  */
1867 static void backup_super_roots(struct btrfs_fs_info *info)
1868 {
1869 	const int next_backup = info->backup_root_index;
1870 	struct btrfs_root_backup *root_backup;
1871 
1872 	root_backup = info->super_for_commit->super_roots + next_backup;
1873 
1874 	/*
1875 	 * make sure all of our padding and empty slots get zero filled
1876 	 * regardless of which ones we use today
1877 	 */
1878 	memset(root_backup, 0, sizeof(*root_backup));
1879 
1880 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1881 
1882 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1883 	btrfs_set_backup_tree_root_gen(root_backup,
1884 			       btrfs_header_generation(info->tree_root->node));
1885 
1886 	btrfs_set_backup_tree_root_level(root_backup,
1887 			       btrfs_header_level(info->tree_root->node));
1888 
1889 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1890 	btrfs_set_backup_chunk_root_gen(root_backup,
1891 			       btrfs_header_generation(info->chunk_root->node));
1892 	btrfs_set_backup_chunk_root_level(root_backup,
1893 			       btrfs_header_level(info->chunk_root->node));
1894 
1895 	if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1896 		struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1897 		struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1898 
1899 		btrfs_set_backup_extent_root(root_backup,
1900 					     extent_root->node->start);
1901 		btrfs_set_backup_extent_root_gen(root_backup,
1902 				btrfs_header_generation(extent_root->node));
1903 		btrfs_set_backup_extent_root_level(root_backup,
1904 					btrfs_header_level(extent_root->node));
1905 
1906 		btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1907 		btrfs_set_backup_csum_root_gen(root_backup,
1908 					       btrfs_header_generation(csum_root->node));
1909 		btrfs_set_backup_csum_root_level(root_backup,
1910 						 btrfs_header_level(csum_root->node));
1911 	}
1912 
1913 	/*
1914 	 * we might commit during log recovery, which happens before we set
1915 	 * the fs_root.  Make sure it is valid before we fill it in.
1916 	 */
1917 	if (info->fs_root && info->fs_root->node) {
1918 		btrfs_set_backup_fs_root(root_backup,
1919 					 info->fs_root->node->start);
1920 		btrfs_set_backup_fs_root_gen(root_backup,
1921 			       btrfs_header_generation(info->fs_root->node));
1922 		btrfs_set_backup_fs_root_level(root_backup,
1923 			       btrfs_header_level(info->fs_root->node));
1924 	}
1925 
1926 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1927 	btrfs_set_backup_dev_root_gen(root_backup,
1928 			       btrfs_header_generation(info->dev_root->node));
1929 	btrfs_set_backup_dev_root_level(root_backup,
1930 				       btrfs_header_level(info->dev_root->node));
1931 
1932 	btrfs_set_backup_total_bytes(root_backup,
1933 			     btrfs_super_total_bytes(info->super_copy));
1934 	btrfs_set_backup_bytes_used(root_backup,
1935 			     btrfs_super_bytes_used(info->super_copy));
1936 	btrfs_set_backup_num_devices(root_backup,
1937 			     btrfs_super_num_devices(info->super_copy));
1938 
1939 	/*
1940 	 * if we don't copy this out to the super_copy, it won't get remembered
1941 	 * for the next commit
1942 	 */
1943 	memcpy(&info->super_copy->super_roots,
1944 	       &info->super_for_commit->super_roots,
1945 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1946 }
1947 
1948 /*
1949  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1950  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1951  *
1952  * fs_info - filesystem whose backup roots need to be read
1953  * priority - priority of backup root required
1954  *
1955  * Returns backup root index on success and -EINVAL otherwise.
1956  */
1957 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1958 {
1959 	int backup_index = find_newest_super_backup(fs_info);
1960 	struct btrfs_super_block *super = fs_info->super_copy;
1961 	struct btrfs_root_backup *root_backup;
1962 
1963 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1964 		if (priority == 0)
1965 			return backup_index;
1966 
1967 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1968 		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1969 	} else {
1970 		return -EINVAL;
1971 	}
1972 
1973 	root_backup = super->super_roots + backup_index;
1974 
1975 	btrfs_set_super_generation(super,
1976 				   btrfs_backup_tree_root_gen(root_backup));
1977 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1978 	btrfs_set_super_root_level(super,
1979 				   btrfs_backup_tree_root_level(root_backup));
1980 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1981 
1982 	/*
1983 	 * Fixme: the total bytes and num_devices need to match or we should
1984 	 * need a fsck
1985 	 */
1986 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1987 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1988 
1989 	return backup_index;
1990 }
1991 
1992 /* helper to cleanup workers */
1993 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1994 {
1995 	btrfs_destroy_workqueue(fs_info->fixup_workers);
1996 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1997 	btrfs_destroy_workqueue(fs_info->hipri_workers);
1998 	btrfs_destroy_workqueue(fs_info->workers);
1999 	if (fs_info->endio_workers)
2000 		destroy_workqueue(fs_info->endio_workers);
2001 	if (fs_info->rmw_workers)
2002 		destroy_workqueue(fs_info->rmw_workers);
2003 	if (fs_info->compressed_write_workers)
2004 		destroy_workqueue(fs_info->compressed_write_workers);
2005 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2006 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2007 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2008 	btrfs_destroy_workqueue(fs_info->caching_workers);
2009 	btrfs_destroy_workqueue(fs_info->flush_workers);
2010 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2011 	if (fs_info->discard_ctl.discard_workers)
2012 		destroy_workqueue(fs_info->discard_ctl.discard_workers);
2013 	/*
2014 	 * Now that all other work queues are destroyed, we can safely destroy
2015 	 * the queues used for metadata I/O, since tasks from those other work
2016 	 * queues can do metadata I/O operations.
2017 	 */
2018 	if (fs_info->endio_meta_workers)
2019 		destroy_workqueue(fs_info->endio_meta_workers);
2020 }
2021 
2022 static void free_root_extent_buffers(struct btrfs_root *root)
2023 {
2024 	if (root) {
2025 		free_extent_buffer(root->node);
2026 		free_extent_buffer(root->commit_root);
2027 		root->node = NULL;
2028 		root->commit_root = NULL;
2029 	}
2030 }
2031 
2032 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
2033 {
2034 	struct btrfs_root *root, *tmp;
2035 
2036 	rbtree_postorder_for_each_entry_safe(root, tmp,
2037 					     &fs_info->global_root_tree,
2038 					     rb_node)
2039 		free_root_extent_buffers(root);
2040 }
2041 
2042 /* helper to cleanup tree roots */
2043 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2044 {
2045 	free_root_extent_buffers(info->tree_root);
2046 
2047 	free_global_root_pointers(info);
2048 	free_root_extent_buffers(info->dev_root);
2049 	free_root_extent_buffers(info->quota_root);
2050 	free_root_extent_buffers(info->uuid_root);
2051 	free_root_extent_buffers(info->fs_root);
2052 	free_root_extent_buffers(info->data_reloc_root);
2053 	free_root_extent_buffers(info->block_group_root);
2054 	if (free_chunk_root)
2055 		free_root_extent_buffers(info->chunk_root);
2056 }
2057 
2058 void btrfs_put_root(struct btrfs_root *root)
2059 {
2060 	if (!root)
2061 		return;
2062 
2063 	if (refcount_dec_and_test(&root->refs)) {
2064 		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2065 		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2066 		if (root->anon_dev)
2067 			free_anon_bdev(root->anon_dev);
2068 		btrfs_drew_lock_destroy(&root->snapshot_lock);
2069 		free_root_extent_buffers(root);
2070 #ifdef CONFIG_BTRFS_DEBUG
2071 		spin_lock(&root->fs_info->fs_roots_radix_lock);
2072 		list_del_init(&root->leak_list);
2073 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
2074 #endif
2075 		kfree(root);
2076 	}
2077 }
2078 
2079 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2080 {
2081 	int ret;
2082 	struct btrfs_root *gang[8];
2083 	int i;
2084 
2085 	while (!list_empty(&fs_info->dead_roots)) {
2086 		gang[0] = list_entry(fs_info->dead_roots.next,
2087 				     struct btrfs_root, root_list);
2088 		list_del(&gang[0]->root_list);
2089 
2090 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2091 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2092 		btrfs_put_root(gang[0]);
2093 	}
2094 
2095 	while (1) {
2096 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2097 					     (void **)gang, 0,
2098 					     ARRAY_SIZE(gang));
2099 		if (!ret)
2100 			break;
2101 		for (i = 0; i < ret; i++)
2102 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2103 	}
2104 }
2105 
2106 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2107 {
2108 	mutex_init(&fs_info->scrub_lock);
2109 	atomic_set(&fs_info->scrubs_running, 0);
2110 	atomic_set(&fs_info->scrub_pause_req, 0);
2111 	atomic_set(&fs_info->scrubs_paused, 0);
2112 	atomic_set(&fs_info->scrub_cancel_req, 0);
2113 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2114 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2115 }
2116 
2117 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2118 {
2119 	spin_lock_init(&fs_info->balance_lock);
2120 	mutex_init(&fs_info->balance_mutex);
2121 	atomic_set(&fs_info->balance_pause_req, 0);
2122 	atomic_set(&fs_info->balance_cancel_req, 0);
2123 	fs_info->balance_ctl = NULL;
2124 	init_waitqueue_head(&fs_info->balance_wait_q);
2125 	atomic_set(&fs_info->reloc_cancel_req, 0);
2126 }
2127 
2128 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2129 {
2130 	struct inode *inode = fs_info->btree_inode;
2131 	unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
2132 					      fs_info->tree_root);
2133 
2134 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2135 	set_nlink(inode, 1);
2136 	/*
2137 	 * we set the i_size on the btree inode to the max possible int.
2138 	 * the real end of the address space is determined by all of
2139 	 * the devices in the system
2140 	 */
2141 	inode->i_size = OFFSET_MAX;
2142 	inode->i_mapping->a_ops = &btree_aops;
2143 
2144 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2145 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2146 			    IO_TREE_BTREE_INODE_IO);
2147 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2148 
2149 	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2150 	BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
2151 	BTRFS_I(inode)->location.type = 0;
2152 	BTRFS_I(inode)->location.offset = 0;
2153 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2154 	__insert_inode_hash(inode, hash);
2155 }
2156 
2157 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2158 {
2159 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2160 	init_rwsem(&fs_info->dev_replace.rwsem);
2161 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2162 }
2163 
2164 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2165 {
2166 	spin_lock_init(&fs_info->qgroup_lock);
2167 	mutex_init(&fs_info->qgroup_ioctl_lock);
2168 	fs_info->qgroup_tree = RB_ROOT;
2169 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2170 	fs_info->qgroup_seq = 1;
2171 	fs_info->qgroup_ulist = NULL;
2172 	fs_info->qgroup_rescan_running = false;
2173 	fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
2174 	mutex_init(&fs_info->qgroup_rescan_lock);
2175 }
2176 
2177 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2178 {
2179 	u32 max_active = fs_info->thread_pool_size;
2180 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2181 
2182 	fs_info->workers =
2183 		btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2184 	fs_info->hipri_workers =
2185 		btrfs_alloc_workqueue(fs_info, "worker-high",
2186 				      flags | WQ_HIGHPRI, max_active, 16);
2187 
2188 	fs_info->delalloc_workers =
2189 		btrfs_alloc_workqueue(fs_info, "delalloc",
2190 				      flags, max_active, 2);
2191 
2192 	fs_info->flush_workers =
2193 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2194 				      flags, max_active, 0);
2195 
2196 	fs_info->caching_workers =
2197 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2198 
2199 	fs_info->fixup_workers =
2200 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2201 
2202 	fs_info->endio_workers =
2203 		alloc_workqueue("btrfs-endio", flags, max_active);
2204 	fs_info->endio_meta_workers =
2205 		alloc_workqueue("btrfs-endio-meta", flags, max_active);
2206 	fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2207 	fs_info->endio_write_workers =
2208 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2209 				      max_active, 2);
2210 	fs_info->compressed_write_workers =
2211 		alloc_workqueue("btrfs-compressed-write", flags, max_active);
2212 	fs_info->endio_freespace_worker =
2213 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2214 				      max_active, 0);
2215 	fs_info->delayed_workers =
2216 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2217 				      max_active, 0);
2218 	fs_info->qgroup_rescan_workers =
2219 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2220 	fs_info->discard_ctl.discard_workers =
2221 		alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2222 
2223 	if (!(fs_info->workers && fs_info->hipri_workers &&
2224 	      fs_info->delalloc_workers && fs_info->flush_workers &&
2225 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2226 	      fs_info->compressed_write_workers &&
2227 	      fs_info->endio_write_workers &&
2228 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2229 	      fs_info->caching_workers && fs_info->fixup_workers &&
2230 	      fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2231 	      fs_info->discard_ctl.discard_workers)) {
2232 		return -ENOMEM;
2233 	}
2234 
2235 	return 0;
2236 }
2237 
2238 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2239 {
2240 	struct crypto_shash *csum_shash;
2241 	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2242 
2243 	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2244 
2245 	if (IS_ERR(csum_shash)) {
2246 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2247 			  csum_driver);
2248 		return PTR_ERR(csum_shash);
2249 	}
2250 
2251 	fs_info->csum_shash = csum_shash;
2252 
2253 	btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2254 			btrfs_super_csum_name(csum_type),
2255 			crypto_shash_driver_name(csum_shash));
2256 	return 0;
2257 }
2258 
2259 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2260 			    struct btrfs_fs_devices *fs_devices)
2261 {
2262 	int ret;
2263 	struct btrfs_tree_parent_check check = { 0 };
2264 	struct btrfs_root *log_tree_root;
2265 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2266 	u64 bytenr = btrfs_super_log_root(disk_super);
2267 	int level = btrfs_super_log_root_level(disk_super);
2268 
2269 	if (fs_devices->rw_devices == 0) {
2270 		btrfs_warn(fs_info, "log replay required on RO media");
2271 		return -EIO;
2272 	}
2273 
2274 	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2275 					 GFP_KERNEL);
2276 	if (!log_tree_root)
2277 		return -ENOMEM;
2278 
2279 	check.level = level;
2280 	check.transid = fs_info->generation + 1;
2281 	check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2282 	log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2283 	if (IS_ERR(log_tree_root->node)) {
2284 		btrfs_warn(fs_info, "failed to read log tree");
2285 		ret = PTR_ERR(log_tree_root->node);
2286 		log_tree_root->node = NULL;
2287 		btrfs_put_root(log_tree_root);
2288 		return ret;
2289 	}
2290 	if (!extent_buffer_uptodate(log_tree_root->node)) {
2291 		btrfs_err(fs_info, "failed to read log tree");
2292 		btrfs_put_root(log_tree_root);
2293 		return -EIO;
2294 	}
2295 
2296 	/* returns with log_tree_root freed on success */
2297 	ret = btrfs_recover_log_trees(log_tree_root);
2298 	if (ret) {
2299 		btrfs_handle_fs_error(fs_info, ret,
2300 				      "Failed to recover log tree");
2301 		btrfs_put_root(log_tree_root);
2302 		return ret;
2303 	}
2304 
2305 	if (sb_rdonly(fs_info->sb)) {
2306 		ret = btrfs_commit_super(fs_info);
2307 		if (ret)
2308 			return ret;
2309 	}
2310 
2311 	return 0;
2312 }
2313 
2314 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2315 				      struct btrfs_path *path, u64 objectid,
2316 				      const char *name)
2317 {
2318 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
2319 	struct btrfs_root *root;
2320 	u64 max_global_id = 0;
2321 	int ret;
2322 	struct btrfs_key key = {
2323 		.objectid = objectid,
2324 		.type = BTRFS_ROOT_ITEM_KEY,
2325 		.offset = 0,
2326 	};
2327 	bool found = false;
2328 
2329 	/* If we have IGNOREDATACSUMS skip loading these roots. */
2330 	if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2331 	    btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2332 		set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2333 		return 0;
2334 	}
2335 
2336 	while (1) {
2337 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2338 		if (ret < 0)
2339 			break;
2340 
2341 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2342 			ret = btrfs_next_leaf(tree_root, path);
2343 			if (ret) {
2344 				if (ret > 0)
2345 					ret = 0;
2346 				break;
2347 			}
2348 		}
2349 		ret = 0;
2350 
2351 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2352 		if (key.objectid != objectid)
2353 			break;
2354 		btrfs_release_path(path);
2355 
2356 		/*
2357 		 * Just worry about this for extent tree, it'll be the same for
2358 		 * everybody.
2359 		 */
2360 		if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2361 			max_global_id = max(max_global_id, key.offset);
2362 
2363 		found = true;
2364 		root = read_tree_root_path(tree_root, path, &key);
2365 		if (IS_ERR(root)) {
2366 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2367 				ret = PTR_ERR(root);
2368 			break;
2369 		}
2370 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2371 		ret = btrfs_global_root_insert(root);
2372 		if (ret) {
2373 			btrfs_put_root(root);
2374 			break;
2375 		}
2376 		key.offset++;
2377 	}
2378 	btrfs_release_path(path);
2379 
2380 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2381 		fs_info->nr_global_roots = max_global_id + 1;
2382 
2383 	if (!found || ret) {
2384 		if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2385 			set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2386 
2387 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2388 			ret = ret ? ret : -ENOENT;
2389 		else
2390 			ret = 0;
2391 		btrfs_err(fs_info, "failed to load root %s", name);
2392 	}
2393 	return ret;
2394 }
2395 
2396 static int load_global_roots(struct btrfs_root *tree_root)
2397 {
2398 	struct btrfs_path *path;
2399 	int ret = 0;
2400 
2401 	path = btrfs_alloc_path();
2402 	if (!path)
2403 		return -ENOMEM;
2404 
2405 	ret = load_global_roots_objectid(tree_root, path,
2406 					 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2407 	if (ret)
2408 		goto out;
2409 	ret = load_global_roots_objectid(tree_root, path,
2410 					 BTRFS_CSUM_TREE_OBJECTID, "csum");
2411 	if (ret)
2412 		goto out;
2413 	if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2414 		goto out;
2415 	ret = load_global_roots_objectid(tree_root, path,
2416 					 BTRFS_FREE_SPACE_TREE_OBJECTID,
2417 					 "free space");
2418 out:
2419 	btrfs_free_path(path);
2420 	return ret;
2421 }
2422 
2423 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2424 {
2425 	struct btrfs_root *tree_root = fs_info->tree_root;
2426 	struct btrfs_root *root;
2427 	struct btrfs_key location;
2428 	int ret;
2429 
2430 	BUG_ON(!fs_info->tree_root);
2431 
2432 	ret = load_global_roots(tree_root);
2433 	if (ret)
2434 		return ret;
2435 
2436 	location.type = BTRFS_ROOT_ITEM_KEY;
2437 	location.offset = 0;
2438 
2439 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2440 		location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2441 		root = btrfs_read_tree_root(tree_root, &location);
2442 		if (IS_ERR(root)) {
2443 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2444 				ret = PTR_ERR(root);
2445 				goto out;
2446 			}
2447 		} else {
2448 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2449 			fs_info->block_group_root = root;
2450 		}
2451 	}
2452 
2453 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2454 	root = btrfs_read_tree_root(tree_root, &location);
2455 	if (IS_ERR(root)) {
2456 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2457 			ret = PTR_ERR(root);
2458 			goto out;
2459 		}
2460 	} else {
2461 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2462 		fs_info->dev_root = root;
2463 	}
2464 	/* Initialize fs_info for all devices in any case */
2465 	ret = btrfs_init_devices_late(fs_info);
2466 	if (ret)
2467 		goto out;
2468 
2469 	/*
2470 	 * This tree can share blocks with some other fs tree during relocation
2471 	 * and we need a proper setup by btrfs_get_fs_root
2472 	 */
2473 	root = btrfs_get_fs_root(tree_root->fs_info,
2474 				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2475 	if (IS_ERR(root)) {
2476 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2477 			ret = PTR_ERR(root);
2478 			goto out;
2479 		}
2480 	} else {
2481 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2482 		fs_info->data_reloc_root = root;
2483 	}
2484 
2485 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2486 	root = btrfs_read_tree_root(tree_root, &location);
2487 	if (!IS_ERR(root)) {
2488 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2489 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2490 		fs_info->quota_root = root;
2491 	}
2492 
2493 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2494 	root = btrfs_read_tree_root(tree_root, &location);
2495 	if (IS_ERR(root)) {
2496 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2497 			ret = PTR_ERR(root);
2498 			if (ret != -ENOENT)
2499 				goto out;
2500 		}
2501 	} else {
2502 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2503 		fs_info->uuid_root = root;
2504 	}
2505 
2506 	return 0;
2507 out:
2508 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2509 		   location.objectid, ret);
2510 	return ret;
2511 }
2512 
2513 /*
2514  * Real super block validation
2515  * NOTE: super csum type and incompat features will not be checked here.
2516  *
2517  * @sb:		super block to check
2518  * @mirror_num:	the super block number to check its bytenr:
2519  * 		0	the primary (1st) sb
2520  * 		1, 2	2nd and 3rd backup copy
2521  * 	       -1	skip bytenr check
2522  */
2523 int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2524 			 struct btrfs_super_block *sb, int mirror_num)
2525 {
2526 	u64 nodesize = btrfs_super_nodesize(sb);
2527 	u64 sectorsize = btrfs_super_sectorsize(sb);
2528 	int ret = 0;
2529 
2530 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2531 		btrfs_err(fs_info, "no valid FS found");
2532 		ret = -EINVAL;
2533 	}
2534 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2535 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2536 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2537 		ret = -EINVAL;
2538 	}
2539 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2540 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2541 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2542 		ret = -EINVAL;
2543 	}
2544 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2545 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2546 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2547 		ret = -EINVAL;
2548 	}
2549 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2550 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2551 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2552 		ret = -EINVAL;
2553 	}
2554 
2555 	/*
2556 	 * Check sectorsize and nodesize first, other check will need it.
2557 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2558 	 */
2559 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2560 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2561 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2562 		ret = -EINVAL;
2563 	}
2564 
2565 	/*
2566 	 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2567 	 *
2568 	 * We can support 16K sectorsize with 64K page size without problem,
2569 	 * but such sectorsize/pagesize combination doesn't make much sense.
2570 	 * 4K will be our future standard, PAGE_SIZE is supported from the very
2571 	 * beginning.
2572 	 */
2573 	if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2574 		btrfs_err(fs_info,
2575 			"sectorsize %llu not yet supported for page size %lu",
2576 			sectorsize, PAGE_SIZE);
2577 		ret = -EINVAL;
2578 	}
2579 
2580 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2581 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2582 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2583 		ret = -EINVAL;
2584 	}
2585 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2586 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2587 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2588 		ret = -EINVAL;
2589 	}
2590 
2591 	/* Root alignment check */
2592 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2593 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2594 			   btrfs_super_root(sb));
2595 		ret = -EINVAL;
2596 	}
2597 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2598 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2599 			   btrfs_super_chunk_root(sb));
2600 		ret = -EINVAL;
2601 	}
2602 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2603 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2604 			   btrfs_super_log_root(sb));
2605 		ret = -EINVAL;
2606 	}
2607 
2608 	if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2609 		   BTRFS_FSID_SIZE)) {
2610 		btrfs_err(fs_info,
2611 		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2612 			fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2613 		ret = -EINVAL;
2614 	}
2615 
2616 	if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2617 	    memcmp(fs_info->fs_devices->metadata_uuid,
2618 		   fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2619 		btrfs_err(fs_info,
2620 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2621 			fs_info->super_copy->metadata_uuid,
2622 			fs_info->fs_devices->metadata_uuid);
2623 		ret = -EINVAL;
2624 	}
2625 
2626 	/*
2627 	 * Artificial requirement for block-group-tree to force newer features
2628 	 * (free-space-tree, no-holes) so the test matrix is smaller.
2629 	 */
2630 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2631 	    (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2632 	     !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2633 		btrfs_err(fs_info,
2634 		"block-group-tree feature requires fres-space-tree and no-holes");
2635 		ret = -EINVAL;
2636 	}
2637 
2638 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2639 		   BTRFS_FSID_SIZE) != 0) {
2640 		btrfs_err(fs_info,
2641 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2642 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2643 		ret = -EINVAL;
2644 	}
2645 
2646 	/*
2647 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2648 	 * done later
2649 	 */
2650 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2651 		btrfs_err(fs_info, "bytes_used is too small %llu",
2652 			  btrfs_super_bytes_used(sb));
2653 		ret = -EINVAL;
2654 	}
2655 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2656 		btrfs_err(fs_info, "invalid stripesize %u",
2657 			  btrfs_super_stripesize(sb));
2658 		ret = -EINVAL;
2659 	}
2660 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2661 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2662 			   btrfs_super_num_devices(sb));
2663 	if (btrfs_super_num_devices(sb) == 0) {
2664 		btrfs_err(fs_info, "number of devices is 0");
2665 		ret = -EINVAL;
2666 	}
2667 
2668 	if (mirror_num >= 0 &&
2669 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2670 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2671 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2672 		ret = -EINVAL;
2673 	}
2674 
2675 	/*
2676 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2677 	 * and one chunk
2678 	 */
2679 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2680 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2681 			  btrfs_super_sys_array_size(sb),
2682 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2683 		ret = -EINVAL;
2684 	}
2685 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2686 			+ sizeof(struct btrfs_chunk)) {
2687 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2688 			  btrfs_super_sys_array_size(sb),
2689 			  sizeof(struct btrfs_disk_key)
2690 			  + sizeof(struct btrfs_chunk));
2691 		ret = -EINVAL;
2692 	}
2693 
2694 	/*
2695 	 * The generation is a global counter, we'll trust it more than the others
2696 	 * but it's still possible that it's the one that's wrong.
2697 	 */
2698 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2699 		btrfs_warn(fs_info,
2700 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2701 			btrfs_super_generation(sb),
2702 			btrfs_super_chunk_root_generation(sb));
2703 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2704 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2705 		btrfs_warn(fs_info,
2706 			"suspicious: generation < cache_generation: %llu < %llu",
2707 			btrfs_super_generation(sb),
2708 			btrfs_super_cache_generation(sb));
2709 
2710 	return ret;
2711 }
2712 
2713 /*
2714  * Validation of super block at mount time.
2715  * Some checks already done early at mount time, like csum type and incompat
2716  * flags will be skipped.
2717  */
2718 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2719 {
2720 	return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2721 }
2722 
2723 /*
2724  * Validation of super block at write time.
2725  * Some checks like bytenr check will be skipped as their values will be
2726  * overwritten soon.
2727  * Extra checks like csum type and incompat flags will be done here.
2728  */
2729 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2730 				      struct btrfs_super_block *sb)
2731 {
2732 	int ret;
2733 
2734 	ret = btrfs_validate_super(fs_info, sb, -1);
2735 	if (ret < 0)
2736 		goto out;
2737 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2738 		ret = -EUCLEAN;
2739 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2740 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2741 		goto out;
2742 	}
2743 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2744 		ret = -EUCLEAN;
2745 		btrfs_err(fs_info,
2746 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2747 			  btrfs_super_incompat_flags(sb),
2748 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2749 		goto out;
2750 	}
2751 out:
2752 	if (ret < 0)
2753 		btrfs_err(fs_info,
2754 		"super block corruption detected before writing it to disk");
2755 	return ret;
2756 }
2757 
2758 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2759 {
2760 	struct btrfs_tree_parent_check check = {
2761 		.level = level,
2762 		.transid = gen,
2763 		.owner_root = root->root_key.objectid
2764 	};
2765 	int ret = 0;
2766 
2767 	root->node = read_tree_block(root->fs_info, bytenr, &check);
2768 	if (IS_ERR(root->node)) {
2769 		ret = PTR_ERR(root->node);
2770 		root->node = NULL;
2771 		return ret;
2772 	}
2773 	if (!extent_buffer_uptodate(root->node)) {
2774 		free_extent_buffer(root->node);
2775 		root->node = NULL;
2776 		return -EIO;
2777 	}
2778 
2779 	btrfs_set_root_node(&root->root_item, root->node);
2780 	root->commit_root = btrfs_root_node(root);
2781 	btrfs_set_root_refs(&root->root_item, 1);
2782 	return ret;
2783 }
2784 
2785 static int load_important_roots(struct btrfs_fs_info *fs_info)
2786 {
2787 	struct btrfs_super_block *sb = fs_info->super_copy;
2788 	u64 gen, bytenr;
2789 	int level, ret;
2790 
2791 	bytenr = btrfs_super_root(sb);
2792 	gen = btrfs_super_generation(sb);
2793 	level = btrfs_super_root_level(sb);
2794 	ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2795 	if (ret) {
2796 		btrfs_warn(fs_info, "couldn't read tree root");
2797 		return ret;
2798 	}
2799 	return 0;
2800 }
2801 
2802 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2803 {
2804 	int backup_index = find_newest_super_backup(fs_info);
2805 	struct btrfs_super_block *sb = fs_info->super_copy;
2806 	struct btrfs_root *tree_root = fs_info->tree_root;
2807 	bool handle_error = false;
2808 	int ret = 0;
2809 	int i;
2810 
2811 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2812 		if (handle_error) {
2813 			if (!IS_ERR(tree_root->node))
2814 				free_extent_buffer(tree_root->node);
2815 			tree_root->node = NULL;
2816 
2817 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2818 				break;
2819 
2820 			free_root_pointers(fs_info, 0);
2821 
2822 			/*
2823 			 * Don't use the log in recovery mode, it won't be
2824 			 * valid
2825 			 */
2826 			btrfs_set_super_log_root(sb, 0);
2827 
2828 			/* We can't trust the free space cache either */
2829 			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2830 
2831 			ret = read_backup_root(fs_info, i);
2832 			backup_index = ret;
2833 			if (ret < 0)
2834 				return ret;
2835 		}
2836 
2837 		ret = load_important_roots(fs_info);
2838 		if (ret) {
2839 			handle_error = true;
2840 			continue;
2841 		}
2842 
2843 		/*
2844 		 * No need to hold btrfs_root::objectid_mutex since the fs
2845 		 * hasn't been fully initialised and we are the only user
2846 		 */
2847 		ret = btrfs_init_root_free_objectid(tree_root);
2848 		if (ret < 0) {
2849 			handle_error = true;
2850 			continue;
2851 		}
2852 
2853 		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2854 
2855 		ret = btrfs_read_roots(fs_info);
2856 		if (ret < 0) {
2857 			handle_error = true;
2858 			continue;
2859 		}
2860 
2861 		/* All successful */
2862 		fs_info->generation = btrfs_header_generation(tree_root->node);
2863 		fs_info->last_trans_committed = fs_info->generation;
2864 		fs_info->last_reloc_trans = 0;
2865 
2866 		/* Always begin writing backup roots after the one being used */
2867 		if (backup_index < 0) {
2868 			fs_info->backup_root_index = 0;
2869 		} else {
2870 			fs_info->backup_root_index = backup_index + 1;
2871 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2872 		}
2873 		break;
2874 	}
2875 
2876 	return ret;
2877 }
2878 
2879 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2880 {
2881 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2882 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2883 	INIT_LIST_HEAD(&fs_info->trans_list);
2884 	INIT_LIST_HEAD(&fs_info->dead_roots);
2885 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2886 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2887 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2888 	spin_lock_init(&fs_info->delalloc_root_lock);
2889 	spin_lock_init(&fs_info->trans_lock);
2890 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2891 	spin_lock_init(&fs_info->delayed_iput_lock);
2892 	spin_lock_init(&fs_info->defrag_inodes_lock);
2893 	spin_lock_init(&fs_info->super_lock);
2894 	spin_lock_init(&fs_info->buffer_lock);
2895 	spin_lock_init(&fs_info->unused_bgs_lock);
2896 	spin_lock_init(&fs_info->treelog_bg_lock);
2897 	spin_lock_init(&fs_info->zone_active_bgs_lock);
2898 	spin_lock_init(&fs_info->relocation_bg_lock);
2899 	rwlock_init(&fs_info->tree_mod_log_lock);
2900 	rwlock_init(&fs_info->global_root_lock);
2901 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2902 	mutex_init(&fs_info->reclaim_bgs_lock);
2903 	mutex_init(&fs_info->reloc_mutex);
2904 	mutex_init(&fs_info->delalloc_root_mutex);
2905 	mutex_init(&fs_info->zoned_meta_io_lock);
2906 	mutex_init(&fs_info->zoned_data_reloc_io_lock);
2907 	seqlock_init(&fs_info->profiles_lock);
2908 
2909 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2910 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2911 	btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2912 	btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2913 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start,
2914 				     BTRFS_LOCKDEP_TRANS_COMMIT_START);
2915 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2916 				     BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2917 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2918 				     BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2919 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2920 				     BTRFS_LOCKDEP_TRANS_COMPLETED);
2921 
2922 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2923 	INIT_LIST_HEAD(&fs_info->space_info);
2924 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2925 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2926 	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2927 	INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2928 #ifdef CONFIG_BTRFS_DEBUG
2929 	INIT_LIST_HEAD(&fs_info->allocated_roots);
2930 	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2931 	spin_lock_init(&fs_info->eb_leak_lock);
2932 #endif
2933 	extent_map_tree_init(&fs_info->mapping_tree);
2934 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2935 			     BTRFS_BLOCK_RSV_GLOBAL);
2936 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2937 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2938 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2939 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2940 			     BTRFS_BLOCK_RSV_DELOPS);
2941 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2942 			     BTRFS_BLOCK_RSV_DELREFS);
2943 
2944 	atomic_set(&fs_info->async_delalloc_pages, 0);
2945 	atomic_set(&fs_info->defrag_running, 0);
2946 	atomic_set(&fs_info->nr_delayed_iputs, 0);
2947 	atomic64_set(&fs_info->tree_mod_seq, 0);
2948 	fs_info->global_root_tree = RB_ROOT;
2949 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2950 	fs_info->metadata_ratio = 0;
2951 	fs_info->defrag_inodes = RB_ROOT;
2952 	atomic64_set(&fs_info->free_chunk_space, 0);
2953 	fs_info->tree_mod_log = RB_ROOT;
2954 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2955 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2956 	btrfs_init_ref_verify(fs_info);
2957 
2958 	fs_info->thread_pool_size = min_t(unsigned long,
2959 					  num_online_cpus() + 2, 8);
2960 
2961 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2962 	spin_lock_init(&fs_info->ordered_root_lock);
2963 
2964 	btrfs_init_scrub(fs_info);
2965 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2966 	fs_info->check_integrity_print_mask = 0;
2967 #endif
2968 	btrfs_init_balance(fs_info);
2969 	btrfs_init_async_reclaim_work(fs_info);
2970 
2971 	rwlock_init(&fs_info->block_group_cache_lock);
2972 	fs_info->block_group_cache_tree = RB_ROOT_CACHED;
2973 
2974 	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2975 			    IO_TREE_FS_EXCLUDED_EXTENTS);
2976 
2977 	mutex_init(&fs_info->ordered_operations_mutex);
2978 	mutex_init(&fs_info->tree_log_mutex);
2979 	mutex_init(&fs_info->chunk_mutex);
2980 	mutex_init(&fs_info->transaction_kthread_mutex);
2981 	mutex_init(&fs_info->cleaner_mutex);
2982 	mutex_init(&fs_info->ro_block_group_mutex);
2983 	init_rwsem(&fs_info->commit_root_sem);
2984 	init_rwsem(&fs_info->cleanup_work_sem);
2985 	init_rwsem(&fs_info->subvol_sem);
2986 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2987 
2988 	btrfs_init_dev_replace_locks(fs_info);
2989 	btrfs_init_qgroup(fs_info);
2990 	btrfs_discard_init(fs_info);
2991 
2992 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2993 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2994 
2995 	init_waitqueue_head(&fs_info->transaction_throttle);
2996 	init_waitqueue_head(&fs_info->transaction_wait);
2997 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2998 	init_waitqueue_head(&fs_info->async_submit_wait);
2999 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
3000 
3001 	/* Usable values until the real ones are cached from the superblock */
3002 	fs_info->nodesize = 4096;
3003 	fs_info->sectorsize = 4096;
3004 	fs_info->sectorsize_bits = ilog2(4096);
3005 	fs_info->stripesize = 4096;
3006 
3007 	fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
3008 
3009 	spin_lock_init(&fs_info->swapfile_pins_lock);
3010 	fs_info->swapfile_pins = RB_ROOT;
3011 
3012 	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3013 	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
3014 }
3015 
3016 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3017 {
3018 	int ret;
3019 
3020 	fs_info->sb = sb;
3021 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3022 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
3023 
3024 	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
3025 	if (ret)
3026 		return ret;
3027 
3028 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3029 	if (ret)
3030 		return ret;
3031 
3032 	fs_info->dirty_metadata_batch = PAGE_SIZE *
3033 					(1 + ilog2(nr_cpu_ids));
3034 
3035 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3036 	if (ret)
3037 		return ret;
3038 
3039 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3040 			GFP_KERNEL);
3041 	if (ret)
3042 		return ret;
3043 
3044 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3045 					GFP_KERNEL);
3046 	if (!fs_info->delayed_root)
3047 		return -ENOMEM;
3048 	btrfs_init_delayed_root(fs_info->delayed_root);
3049 
3050 	if (sb_rdonly(sb))
3051 		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3052 
3053 	return btrfs_alloc_stripe_hash_table(fs_info);
3054 }
3055 
3056 static int btrfs_uuid_rescan_kthread(void *data)
3057 {
3058 	struct btrfs_fs_info *fs_info = data;
3059 	int ret;
3060 
3061 	/*
3062 	 * 1st step is to iterate through the existing UUID tree and
3063 	 * to delete all entries that contain outdated data.
3064 	 * 2nd step is to add all missing entries to the UUID tree.
3065 	 */
3066 	ret = btrfs_uuid_tree_iterate(fs_info);
3067 	if (ret < 0) {
3068 		if (ret != -EINTR)
3069 			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3070 				   ret);
3071 		up(&fs_info->uuid_tree_rescan_sem);
3072 		return ret;
3073 	}
3074 	return btrfs_uuid_scan_kthread(data);
3075 }
3076 
3077 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3078 {
3079 	struct task_struct *task;
3080 
3081 	down(&fs_info->uuid_tree_rescan_sem);
3082 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3083 	if (IS_ERR(task)) {
3084 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
3085 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
3086 		up(&fs_info->uuid_tree_rescan_sem);
3087 		return PTR_ERR(task);
3088 	}
3089 
3090 	return 0;
3091 }
3092 
3093 /*
3094  * Some options only have meaning at mount time and shouldn't persist across
3095  * remounts, or be displayed. Clear these at the end of mount and remount
3096  * code paths.
3097  */
3098 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3099 {
3100 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3101 	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
3102 }
3103 
3104 /*
3105  * Mounting logic specific to read-write file systems. Shared by open_ctree
3106  * and btrfs_remount when remounting from read-only to read-write.
3107  */
3108 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3109 {
3110 	int ret;
3111 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3112 	bool clear_free_space_tree = false;
3113 
3114 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3115 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3116 		clear_free_space_tree = true;
3117 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3118 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3119 		btrfs_warn(fs_info, "free space tree is invalid");
3120 		clear_free_space_tree = true;
3121 	}
3122 
3123 	if (clear_free_space_tree) {
3124 		btrfs_info(fs_info, "clearing free space tree");
3125 		ret = btrfs_clear_free_space_tree(fs_info);
3126 		if (ret) {
3127 			btrfs_warn(fs_info,
3128 				   "failed to clear free space tree: %d", ret);
3129 			goto out;
3130 		}
3131 	}
3132 
3133 	/*
3134 	 * btrfs_find_orphan_roots() is responsible for finding all the dead
3135 	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3136 	 * them into the fs_info->fs_roots_radix tree. This must be done before
3137 	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3138 	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3139 	 * item before the root's tree is deleted - this means that if we unmount
3140 	 * or crash before the deletion completes, on the next mount we will not
3141 	 * delete what remains of the tree because the orphan item does not
3142 	 * exists anymore, which is what tells us we have a pending deletion.
3143 	 */
3144 	ret = btrfs_find_orphan_roots(fs_info);
3145 	if (ret)
3146 		goto out;
3147 
3148 	ret = btrfs_cleanup_fs_roots(fs_info);
3149 	if (ret)
3150 		goto out;
3151 
3152 	down_read(&fs_info->cleanup_work_sem);
3153 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3154 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3155 		up_read(&fs_info->cleanup_work_sem);
3156 		goto out;
3157 	}
3158 	up_read(&fs_info->cleanup_work_sem);
3159 
3160 	mutex_lock(&fs_info->cleaner_mutex);
3161 	ret = btrfs_recover_relocation(fs_info);
3162 	mutex_unlock(&fs_info->cleaner_mutex);
3163 	if (ret < 0) {
3164 		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3165 		goto out;
3166 	}
3167 
3168 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3169 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3170 		btrfs_info(fs_info, "creating free space tree");
3171 		ret = btrfs_create_free_space_tree(fs_info);
3172 		if (ret) {
3173 			btrfs_warn(fs_info,
3174 				"failed to create free space tree: %d", ret);
3175 			goto out;
3176 		}
3177 	}
3178 
3179 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3180 		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3181 		if (ret)
3182 			goto out;
3183 	}
3184 
3185 	ret = btrfs_resume_balance_async(fs_info);
3186 	if (ret)
3187 		goto out;
3188 
3189 	ret = btrfs_resume_dev_replace_async(fs_info);
3190 	if (ret) {
3191 		btrfs_warn(fs_info, "failed to resume dev_replace");
3192 		goto out;
3193 	}
3194 
3195 	btrfs_qgroup_rescan_resume(fs_info);
3196 
3197 	if (!fs_info->uuid_root) {
3198 		btrfs_info(fs_info, "creating UUID tree");
3199 		ret = btrfs_create_uuid_tree(fs_info);
3200 		if (ret) {
3201 			btrfs_warn(fs_info,
3202 				   "failed to create the UUID tree %d", ret);
3203 			goto out;
3204 		}
3205 	}
3206 
3207 out:
3208 	return ret;
3209 }
3210 
3211 /*
3212  * Do various sanity and dependency checks of different features.
3213  *
3214  * @is_rw_mount:	If the mount is read-write.
3215  *
3216  * This is the place for less strict checks (like for subpage or artificial
3217  * feature dependencies).
3218  *
3219  * For strict checks or possible corruption detection, see
3220  * btrfs_validate_super().
3221  *
3222  * This should be called after btrfs_parse_options(), as some mount options
3223  * (space cache related) can modify on-disk format like free space tree and
3224  * screw up certain feature dependencies.
3225  */
3226 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3227 {
3228 	struct btrfs_super_block *disk_super = fs_info->super_copy;
3229 	u64 incompat = btrfs_super_incompat_flags(disk_super);
3230 	const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3231 	const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3232 
3233 	if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3234 		btrfs_err(fs_info,
3235 		"cannot mount because of unknown incompat features (0x%llx)",
3236 		    incompat);
3237 		return -EINVAL;
3238 	}
3239 
3240 	/* Runtime limitation for mixed block groups. */
3241 	if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3242 	    (fs_info->sectorsize != fs_info->nodesize)) {
3243 		btrfs_err(fs_info,
3244 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3245 			fs_info->nodesize, fs_info->sectorsize);
3246 		return -EINVAL;
3247 	}
3248 
3249 	/* Mixed backref is an always-enabled feature. */
3250 	incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3251 
3252 	/* Set compression related flags just in case. */
3253 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3254 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3255 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3256 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3257 
3258 	/*
3259 	 * An ancient flag, which should really be marked deprecated.
3260 	 * Such runtime limitation doesn't really need a incompat flag.
3261 	 */
3262 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3263 		incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3264 
3265 	if (compat_ro_unsupp && is_rw_mount) {
3266 		btrfs_err(fs_info,
3267 	"cannot mount read-write because of unknown compat_ro features (0x%llx)",
3268 		       compat_ro);
3269 		return -EINVAL;
3270 	}
3271 
3272 	/*
3273 	 * We have unsupported RO compat features, although RO mounted, we
3274 	 * should not cause any metadata writes, including log replay.
3275 	 * Or we could screw up whatever the new feature requires.
3276 	 */
3277 	if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3278 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3279 		btrfs_err(fs_info,
3280 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3281 			  compat_ro);
3282 		return -EINVAL;
3283 	}
3284 
3285 	/*
3286 	 * Artificial limitations for block group tree, to force
3287 	 * block-group-tree to rely on no-holes and free-space-tree.
3288 	 */
3289 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3290 	    (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3291 	     !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3292 		btrfs_err(fs_info,
3293 "block-group-tree feature requires no-holes and free-space-tree features");
3294 		return -EINVAL;
3295 	}
3296 
3297 	/*
3298 	 * Subpage runtime limitation on v1 cache.
3299 	 *
3300 	 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3301 	 * we're already defaulting to v2 cache, no need to bother v1 as it's
3302 	 * going to be deprecated anyway.
3303 	 */
3304 	if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3305 		btrfs_warn(fs_info,
3306 	"v1 space cache is not supported for page size %lu with sectorsize %u",
3307 			   PAGE_SIZE, fs_info->sectorsize);
3308 		return -EINVAL;
3309 	}
3310 
3311 	/* This can be called by remount, we need to protect the super block. */
3312 	spin_lock(&fs_info->super_lock);
3313 	btrfs_set_super_incompat_flags(disk_super, incompat);
3314 	spin_unlock(&fs_info->super_lock);
3315 
3316 	return 0;
3317 }
3318 
3319 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3320 		      char *options)
3321 {
3322 	u32 sectorsize;
3323 	u32 nodesize;
3324 	u32 stripesize;
3325 	u64 generation;
3326 	u64 features;
3327 	u16 csum_type;
3328 	struct btrfs_super_block *disk_super;
3329 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3330 	struct btrfs_root *tree_root;
3331 	struct btrfs_root *chunk_root;
3332 	int ret;
3333 	int err = -EINVAL;
3334 	int level;
3335 
3336 	ret = init_mount_fs_info(fs_info, sb);
3337 	if (ret) {
3338 		err = ret;
3339 		goto fail;
3340 	}
3341 
3342 	/* These need to be init'ed before we start creating inodes and such. */
3343 	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3344 				     GFP_KERNEL);
3345 	fs_info->tree_root = tree_root;
3346 	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3347 				      GFP_KERNEL);
3348 	fs_info->chunk_root = chunk_root;
3349 	if (!tree_root || !chunk_root) {
3350 		err = -ENOMEM;
3351 		goto fail;
3352 	}
3353 
3354 	fs_info->btree_inode = new_inode(sb);
3355 	if (!fs_info->btree_inode) {
3356 		err = -ENOMEM;
3357 		goto fail;
3358 	}
3359 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3360 	btrfs_init_btree_inode(fs_info);
3361 
3362 	invalidate_bdev(fs_devices->latest_dev->bdev);
3363 
3364 	/*
3365 	 * Read super block and check the signature bytes only
3366 	 */
3367 	disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3368 	if (IS_ERR(disk_super)) {
3369 		err = PTR_ERR(disk_super);
3370 		goto fail_alloc;
3371 	}
3372 
3373 	/*
3374 	 * Verify the type first, if that or the checksum value are
3375 	 * corrupted, we'll find out
3376 	 */
3377 	csum_type = btrfs_super_csum_type(disk_super);
3378 	if (!btrfs_supported_super_csum(csum_type)) {
3379 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3380 			  csum_type);
3381 		err = -EINVAL;
3382 		btrfs_release_disk_super(disk_super);
3383 		goto fail_alloc;
3384 	}
3385 
3386 	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3387 
3388 	ret = btrfs_init_csum_hash(fs_info, csum_type);
3389 	if (ret) {
3390 		err = ret;
3391 		btrfs_release_disk_super(disk_super);
3392 		goto fail_alloc;
3393 	}
3394 
3395 	/*
3396 	 * We want to check superblock checksum, the type is stored inside.
3397 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3398 	 */
3399 	if (btrfs_check_super_csum(fs_info, disk_super)) {
3400 		btrfs_err(fs_info, "superblock checksum mismatch");
3401 		err = -EINVAL;
3402 		btrfs_release_disk_super(disk_super);
3403 		goto fail_alloc;
3404 	}
3405 
3406 	/*
3407 	 * super_copy is zeroed at allocation time and we never touch the
3408 	 * following bytes up to INFO_SIZE, the checksum is calculated from
3409 	 * the whole block of INFO_SIZE
3410 	 */
3411 	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3412 	btrfs_release_disk_super(disk_super);
3413 
3414 	disk_super = fs_info->super_copy;
3415 
3416 
3417 	features = btrfs_super_flags(disk_super);
3418 	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3419 		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3420 		btrfs_set_super_flags(disk_super, features);
3421 		btrfs_info(fs_info,
3422 			"found metadata UUID change in progress flag, clearing");
3423 	}
3424 
3425 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3426 	       sizeof(*fs_info->super_for_commit));
3427 
3428 	ret = btrfs_validate_mount_super(fs_info);
3429 	if (ret) {
3430 		btrfs_err(fs_info, "superblock contains fatal errors");
3431 		err = -EINVAL;
3432 		goto fail_alloc;
3433 	}
3434 
3435 	if (!btrfs_super_root(disk_super))
3436 		goto fail_alloc;
3437 
3438 	/* check FS state, whether FS is broken. */
3439 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3440 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3441 
3442 	/*
3443 	 * In the long term, we'll store the compression type in the super
3444 	 * block, and it'll be used for per file compression control.
3445 	 */
3446 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3447 
3448 
3449 	/* Set up fs_info before parsing mount options */
3450 	nodesize = btrfs_super_nodesize(disk_super);
3451 	sectorsize = btrfs_super_sectorsize(disk_super);
3452 	stripesize = sectorsize;
3453 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3454 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3455 
3456 	fs_info->nodesize = nodesize;
3457 	fs_info->sectorsize = sectorsize;
3458 	fs_info->sectorsize_bits = ilog2(sectorsize);
3459 	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3460 	fs_info->stripesize = stripesize;
3461 
3462 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3463 	if (ret) {
3464 		err = ret;
3465 		goto fail_alloc;
3466 	}
3467 
3468 	ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3469 	if (ret < 0) {
3470 		err = ret;
3471 		goto fail_alloc;
3472 	}
3473 
3474 	if (sectorsize < PAGE_SIZE) {
3475 		struct btrfs_subpage_info *subpage_info;
3476 
3477 		/*
3478 		 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3479 		 * going to be deprecated.
3480 		 *
3481 		 * Force to use v2 cache for subpage case.
3482 		 */
3483 		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3484 		btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3485 			"forcing free space tree for sector size %u with page size %lu",
3486 			sectorsize, PAGE_SIZE);
3487 
3488 		btrfs_warn(fs_info,
3489 		"read-write for sector size %u with page size %lu is experimental",
3490 			   sectorsize, PAGE_SIZE);
3491 		subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3492 		if (!subpage_info)
3493 			goto fail_alloc;
3494 		btrfs_init_subpage_info(subpage_info, sectorsize);
3495 		fs_info->subpage_info = subpage_info;
3496 	}
3497 
3498 	ret = btrfs_init_workqueues(fs_info);
3499 	if (ret) {
3500 		err = ret;
3501 		goto fail_sb_buffer;
3502 	}
3503 
3504 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3505 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3506 
3507 	sb->s_blocksize = sectorsize;
3508 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3509 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3510 
3511 	mutex_lock(&fs_info->chunk_mutex);
3512 	ret = btrfs_read_sys_array(fs_info);
3513 	mutex_unlock(&fs_info->chunk_mutex);
3514 	if (ret) {
3515 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3516 		goto fail_sb_buffer;
3517 	}
3518 
3519 	generation = btrfs_super_chunk_root_generation(disk_super);
3520 	level = btrfs_super_chunk_root_level(disk_super);
3521 	ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3522 			      generation, level);
3523 	if (ret) {
3524 		btrfs_err(fs_info, "failed to read chunk root");
3525 		goto fail_tree_roots;
3526 	}
3527 
3528 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3529 			   offsetof(struct btrfs_header, chunk_tree_uuid),
3530 			   BTRFS_UUID_SIZE);
3531 
3532 	ret = btrfs_read_chunk_tree(fs_info);
3533 	if (ret) {
3534 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3535 		goto fail_tree_roots;
3536 	}
3537 
3538 	/*
3539 	 * At this point we know all the devices that make this filesystem,
3540 	 * including the seed devices but we don't know yet if the replace
3541 	 * target is required. So free devices that are not part of this
3542 	 * filesystem but skip the replace target device which is checked
3543 	 * below in btrfs_init_dev_replace().
3544 	 */
3545 	btrfs_free_extra_devids(fs_devices);
3546 	if (!fs_devices->latest_dev->bdev) {
3547 		btrfs_err(fs_info, "failed to read devices");
3548 		goto fail_tree_roots;
3549 	}
3550 
3551 	ret = init_tree_roots(fs_info);
3552 	if (ret)
3553 		goto fail_tree_roots;
3554 
3555 	/*
3556 	 * Get zone type information of zoned block devices. This will also
3557 	 * handle emulation of a zoned filesystem if a regular device has the
3558 	 * zoned incompat feature flag set.
3559 	 */
3560 	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3561 	if (ret) {
3562 		btrfs_err(fs_info,
3563 			  "zoned: failed to read device zone info: %d",
3564 			  ret);
3565 		goto fail_block_groups;
3566 	}
3567 
3568 	/*
3569 	 * If we have a uuid root and we're not being told to rescan we need to
3570 	 * check the generation here so we can set the
3571 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3572 	 * transaction during a balance or the log replay without updating the
3573 	 * uuid generation, and then if we crash we would rescan the uuid tree,
3574 	 * even though it was perfectly fine.
3575 	 */
3576 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3577 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3578 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3579 
3580 	ret = btrfs_verify_dev_extents(fs_info);
3581 	if (ret) {
3582 		btrfs_err(fs_info,
3583 			  "failed to verify dev extents against chunks: %d",
3584 			  ret);
3585 		goto fail_block_groups;
3586 	}
3587 	ret = btrfs_recover_balance(fs_info);
3588 	if (ret) {
3589 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3590 		goto fail_block_groups;
3591 	}
3592 
3593 	ret = btrfs_init_dev_stats(fs_info);
3594 	if (ret) {
3595 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3596 		goto fail_block_groups;
3597 	}
3598 
3599 	ret = btrfs_init_dev_replace(fs_info);
3600 	if (ret) {
3601 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3602 		goto fail_block_groups;
3603 	}
3604 
3605 	ret = btrfs_check_zoned_mode(fs_info);
3606 	if (ret) {
3607 		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3608 			  ret);
3609 		goto fail_block_groups;
3610 	}
3611 
3612 	ret = btrfs_sysfs_add_fsid(fs_devices);
3613 	if (ret) {
3614 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3615 				ret);
3616 		goto fail_block_groups;
3617 	}
3618 
3619 	ret = btrfs_sysfs_add_mounted(fs_info);
3620 	if (ret) {
3621 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3622 		goto fail_fsdev_sysfs;
3623 	}
3624 
3625 	ret = btrfs_init_space_info(fs_info);
3626 	if (ret) {
3627 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3628 		goto fail_sysfs;
3629 	}
3630 
3631 	ret = btrfs_read_block_groups(fs_info);
3632 	if (ret) {
3633 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3634 		goto fail_sysfs;
3635 	}
3636 
3637 	btrfs_free_zone_cache(fs_info);
3638 
3639 	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3640 	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3641 		btrfs_warn(fs_info,
3642 		"writable mount is not allowed due to too many missing devices");
3643 		goto fail_sysfs;
3644 	}
3645 
3646 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3647 					       "btrfs-cleaner");
3648 	if (IS_ERR(fs_info->cleaner_kthread))
3649 		goto fail_sysfs;
3650 
3651 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3652 						   tree_root,
3653 						   "btrfs-transaction");
3654 	if (IS_ERR(fs_info->transaction_kthread))
3655 		goto fail_cleaner;
3656 
3657 	if (!btrfs_test_opt(fs_info, NOSSD) &&
3658 	    !fs_info->fs_devices->rotating) {
3659 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3660 	}
3661 
3662 	/*
3663 	 * For devices supporting discard turn on discard=async automatically,
3664 	 * unless it's already set or disabled. This could be turned off by
3665 	 * nodiscard for the same mount.
3666 	 */
3667 	if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
3668 	      btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
3669 	      btrfs_test_opt(fs_info, NODISCARD)) &&
3670 	    fs_info->fs_devices->discardable) {
3671 		btrfs_set_and_info(fs_info, DISCARD_ASYNC,
3672 				   "auto enabling async discard");
3673 		btrfs_clear_opt(fs_info->mount_opt, NODISCARD);
3674 	}
3675 
3676 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3677 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3678 		ret = btrfsic_mount(fs_info, fs_devices,
3679 				    btrfs_test_opt(fs_info,
3680 					CHECK_INTEGRITY_DATA) ? 1 : 0,
3681 				    fs_info->check_integrity_print_mask);
3682 		if (ret)
3683 			btrfs_warn(fs_info,
3684 				"failed to initialize integrity check module: %d",
3685 				ret);
3686 	}
3687 #endif
3688 	ret = btrfs_read_qgroup_config(fs_info);
3689 	if (ret)
3690 		goto fail_trans_kthread;
3691 
3692 	if (btrfs_build_ref_tree(fs_info))
3693 		btrfs_err(fs_info, "couldn't build ref tree");
3694 
3695 	/* do not make disk changes in broken FS or nologreplay is given */
3696 	if (btrfs_super_log_root(disk_super) != 0 &&
3697 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3698 		btrfs_info(fs_info, "start tree-log replay");
3699 		ret = btrfs_replay_log(fs_info, fs_devices);
3700 		if (ret) {
3701 			err = ret;
3702 			goto fail_qgroup;
3703 		}
3704 	}
3705 
3706 	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3707 	if (IS_ERR(fs_info->fs_root)) {
3708 		err = PTR_ERR(fs_info->fs_root);
3709 		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3710 		fs_info->fs_root = NULL;
3711 		goto fail_qgroup;
3712 	}
3713 
3714 	if (sb_rdonly(sb))
3715 		goto clear_oneshot;
3716 
3717 	ret = btrfs_start_pre_rw_mount(fs_info);
3718 	if (ret) {
3719 		close_ctree(fs_info);
3720 		return ret;
3721 	}
3722 	btrfs_discard_resume(fs_info);
3723 
3724 	if (fs_info->uuid_root &&
3725 	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3726 	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3727 		btrfs_info(fs_info, "checking UUID tree");
3728 		ret = btrfs_check_uuid_tree(fs_info);
3729 		if (ret) {
3730 			btrfs_warn(fs_info,
3731 				"failed to check the UUID tree: %d", ret);
3732 			close_ctree(fs_info);
3733 			return ret;
3734 		}
3735 	}
3736 
3737 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3738 
3739 	/* Kick the cleaner thread so it'll start deleting snapshots. */
3740 	if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3741 		wake_up_process(fs_info->cleaner_kthread);
3742 
3743 clear_oneshot:
3744 	btrfs_clear_oneshot_options(fs_info);
3745 	return 0;
3746 
3747 fail_qgroup:
3748 	btrfs_free_qgroup_config(fs_info);
3749 fail_trans_kthread:
3750 	kthread_stop(fs_info->transaction_kthread);
3751 	btrfs_cleanup_transaction(fs_info);
3752 	btrfs_free_fs_roots(fs_info);
3753 fail_cleaner:
3754 	kthread_stop(fs_info->cleaner_kthread);
3755 
3756 	/*
3757 	 * make sure we're done with the btree inode before we stop our
3758 	 * kthreads
3759 	 */
3760 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3761 
3762 fail_sysfs:
3763 	btrfs_sysfs_remove_mounted(fs_info);
3764 
3765 fail_fsdev_sysfs:
3766 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3767 
3768 fail_block_groups:
3769 	btrfs_put_block_group_cache(fs_info);
3770 
3771 fail_tree_roots:
3772 	if (fs_info->data_reloc_root)
3773 		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3774 	free_root_pointers(fs_info, true);
3775 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3776 
3777 fail_sb_buffer:
3778 	btrfs_stop_all_workers(fs_info);
3779 	btrfs_free_block_groups(fs_info);
3780 fail_alloc:
3781 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3782 
3783 	iput(fs_info->btree_inode);
3784 fail:
3785 	btrfs_close_devices(fs_info->fs_devices);
3786 	return err;
3787 }
3788 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3789 
3790 static void btrfs_end_super_write(struct bio *bio)
3791 {
3792 	struct btrfs_device *device = bio->bi_private;
3793 	struct bio_vec *bvec;
3794 	struct bvec_iter_all iter_all;
3795 	struct page *page;
3796 
3797 	bio_for_each_segment_all(bvec, bio, iter_all) {
3798 		page = bvec->bv_page;
3799 
3800 		if (bio->bi_status) {
3801 			btrfs_warn_rl_in_rcu(device->fs_info,
3802 				"lost page write due to IO error on %s (%d)",
3803 				btrfs_dev_name(device),
3804 				blk_status_to_errno(bio->bi_status));
3805 			ClearPageUptodate(page);
3806 			SetPageError(page);
3807 			btrfs_dev_stat_inc_and_print(device,
3808 						     BTRFS_DEV_STAT_WRITE_ERRS);
3809 		} else {
3810 			SetPageUptodate(page);
3811 		}
3812 
3813 		put_page(page);
3814 		unlock_page(page);
3815 	}
3816 
3817 	bio_put(bio);
3818 }
3819 
3820 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3821 						   int copy_num, bool drop_cache)
3822 {
3823 	struct btrfs_super_block *super;
3824 	struct page *page;
3825 	u64 bytenr, bytenr_orig;
3826 	struct address_space *mapping = bdev->bd_inode->i_mapping;
3827 	int ret;
3828 
3829 	bytenr_orig = btrfs_sb_offset(copy_num);
3830 	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3831 	if (ret == -ENOENT)
3832 		return ERR_PTR(-EINVAL);
3833 	else if (ret)
3834 		return ERR_PTR(ret);
3835 
3836 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3837 		return ERR_PTR(-EINVAL);
3838 
3839 	if (drop_cache) {
3840 		/* This should only be called with the primary sb. */
3841 		ASSERT(copy_num == 0);
3842 
3843 		/*
3844 		 * Drop the page of the primary superblock, so later read will
3845 		 * always read from the device.
3846 		 */
3847 		invalidate_inode_pages2_range(mapping,
3848 				bytenr >> PAGE_SHIFT,
3849 				(bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3850 	}
3851 
3852 	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3853 	if (IS_ERR(page))
3854 		return ERR_CAST(page);
3855 
3856 	super = page_address(page);
3857 	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3858 		btrfs_release_disk_super(super);
3859 		return ERR_PTR(-ENODATA);
3860 	}
3861 
3862 	if (btrfs_super_bytenr(super) != bytenr_orig) {
3863 		btrfs_release_disk_super(super);
3864 		return ERR_PTR(-EINVAL);
3865 	}
3866 
3867 	return super;
3868 }
3869 
3870 
3871 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3872 {
3873 	struct btrfs_super_block *super, *latest = NULL;
3874 	int i;
3875 	u64 transid = 0;
3876 
3877 	/* we would like to check all the supers, but that would make
3878 	 * a btrfs mount succeed after a mkfs from a different FS.
3879 	 * So, we need to add a special mount option to scan for
3880 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3881 	 */
3882 	for (i = 0; i < 1; i++) {
3883 		super = btrfs_read_dev_one_super(bdev, i, false);
3884 		if (IS_ERR(super))
3885 			continue;
3886 
3887 		if (!latest || btrfs_super_generation(super) > transid) {
3888 			if (latest)
3889 				btrfs_release_disk_super(super);
3890 
3891 			latest = super;
3892 			transid = btrfs_super_generation(super);
3893 		}
3894 	}
3895 
3896 	return super;
3897 }
3898 
3899 /*
3900  * Write superblock @sb to the @device. Do not wait for completion, all the
3901  * pages we use for writing are locked.
3902  *
3903  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3904  * the expected device size at commit time. Note that max_mirrors must be
3905  * same for write and wait phases.
3906  *
3907  * Return number of errors when page is not found or submission fails.
3908  */
3909 static int write_dev_supers(struct btrfs_device *device,
3910 			    struct btrfs_super_block *sb, int max_mirrors)
3911 {
3912 	struct btrfs_fs_info *fs_info = device->fs_info;
3913 	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3914 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3915 	int i;
3916 	int errors = 0;
3917 	int ret;
3918 	u64 bytenr, bytenr_orig;
3919 
3920 	if (max_mirrors == 0)
3921 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3922 
3923 	shash->tfm = fs_info->csum_shash;
3924 
3925 	for (i = 0; i < max_mirrors; i++) {
3926 		struct page *page;
3927 		struct bio *bio;
3928 		struct btrfs_super_block *disk_super;
3929 
3930 		bytenr_orig = btrfs_sb_offset(i);
3931 		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3932 		if (ret == -ENOENT) {
3933 			continue;
3934 		} else if (ret < 0) {
3935 			btrfs_err(device->fs_info,
3936 				"couldn't get super block location for mirror %d",
3937 				i);
3938 			errors++;
3939 			continue;
3940 		}
3941 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3942 		    device->commit_total_bytes)
3943 			break;
3944 
3945 		btrfs_set_super_bytenr(sb, bytenr_orig);
3946 
3947 		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3948 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3949 				    sb->csum);
3950 
3951 		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3952 					   GFP_NOFS);
3953 		if (!page) {
3954 			btrfs_err(device->fs_info,
3955 			    "couldn't get super block page for bytenr %llu",
3956 			    bytenr);
3957 			errors++;
3958 			continue;
3959 		}
3960 
3961 		/* Bump the refcount for wait_dev_supers() */
3962 		get_page(page);
3963 
3964 		disk_super = page_address(page);
3965 		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3966 
3967 		/*
3968 		 * Directly use bios here instead of relying on the page cache
3969 		 * to do I/O, so we don't lose the ability to do integrity
3970 		 * checking.
3971 		 */
3972 		bio = bio_alloc(device->bdev, 1,
3973 				REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3974 				GFP_NOFS);
3975 		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3976 		bio->bi_private = device;
3977 		bio->bi_end_io = btrfs_end_super_write;
3978 		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3979 			       offset_in_page(bytenr));
3980 
3981 		/*
3982 		 * We FUA only the first super block.  The others we allow to
3983 		 * go down lazy and there's a short window where the on-disk
3984 		 * copies might still contain the older version.
3985 		 */
3986 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3987 			bio->bi_opf |= REQ_FUA;
3988 
3989 		btrfsic_check_bio(bio);
3990 		submit_bio(bio);
3991 
3992 		if (btrfs_advance_sb_log(device, i))
3993 			errors++;
3994 	}
3995 	return errors < i ? 0 : -1;
3996 }
3997 
3998 /*
3999  * Wait for write completion of superblocks done by write_dev_supers,
4000  * @max_mirrors same for write and wait phases.
4001  *
4002  * Return number of errors when page is not found or not marked up to
4003  * date.
4004  */
4005 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
4006 {
4007 	int i;
4008 	int errors = 0;
4009 	bool primary_failed = false;
4010 	int ret;
4011 	u64 bytenr;
4012 
4013 	if (max_mirrors == 0)
4014 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4015 
4016 	for (i = 0; i < max_mirrors; i++) {
4017 		struct page *page;
4018 
4019 		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
4020 		if (ret == -ENOENT) {
4021 			break;
4022 		} else if (ret < 0) {
4023 			errors++;
4024 			if (i == 0)
4025 				primary_failed = true;
4026 			continue;
4027 		}
4028 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4029 		    device->commit_total_bytes)
4030 			break;
4031 
4032 		page = find_get_page(device->bdev->bd_inode->i_mapping,
4033 				     bytenr >> PAGE_SHIFT);
4034 		if (!page) {
4035 			errors++;
4036 			if (i == 0)
4037 				primary_failed = true;
4038 			continue;
4039 		}
4040 		/* Page is submitted locked and unlocked once the IO completes */
4041 		wait_on_page_locked(page);
4042 		if (PageError(page)) {
4043 			errors++;
4044 			if (i == 0)
4045 				primary_failed = true;
4046 		}
4047 
4048 		/* Drop our reference */
4049 		put_page(page);
4050 
4051 		/* Drop the reference from the writing run */
4052 		put_page(page);
4053 	}
4054 
4055 	/* log error, force error return */
4056 	if (primary_failed) {
4057 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
4058 			  device->devid);
4059 		return -1;
4060 	}
4061 
4062 	return errors < i ? 0 : -1;
4063 }
4064 
4065 /*
4066  * endio for the write_dev_flush, this will wake anyone waiting
4067  * for the barrier when it is done
4068  */
4069 static void btrfs_end_empty_barrier(struct bio *bio)
4070 {
4071 	bio_uninit(bio);
4072 	complete(bio->bi_private);
4073 }
4074 
4075 /*
4076  * Submit a flush request to the device if it supports it. Error handling is
4077  * done in the waiting counterpart.
4078  */
4079 static void write_dev_flush(struct btrfs_device *device)
4080 {
4081 	struct bio *bio = &device->flush_bio;
4082 
4083 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4084 	/*
4085 	 * When a disk has write caching disabled, we skip submission of a bio
4086 	 * with flush and sync requests before writing the superblock, since
4087 	 * it's not needed. However when the integrity checker is enabled, this
4088 	 * results in reports that there are metadata blocks referred by a
4089 	 * superblock that were not properly flushed. So don't skip the bio
4090 	 * submission only when the integrity checker is enabled for the sake
4091 	 * of simplicity, since this is a debug tool and not meant for use in
4092 	 * non-debug builds.
4093 	 */
4094 	if (!bdev_write_cache(device->bdev))
4095 		return;
4096 #endif
4097 
4098 	bio_init(bio, device->bdev, NULL, 0,
4099 		 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
4100 	bio->bi_end_io = btrfs_end_empty_barrier;
4101 	init_completion(&device->flush_wait);
4102 	bio->bi_private = &device->flush_wait;
4103 
4104 	btrfsic_check_bio(bio);
4105 	submit_bio(bio);
4106 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4107 }
4108 
4109 /*
4110  * If the flush bio has been submitted by write_dev_flush, wait for it.
4111  */
4112 static blk_status_t wait_dev_flush(struct btrfs_device *device)
4113 {
4114 	struct bio *bio = &device->flush_bio;
4115 
4116 	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
4117 		return BLK_STS_OK;
4118 
4119 	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4120 	wait_for_completion_io(&device->flush_wait);
4121 
4122 	return bio->bi_status;
4123 }
4124 
4125 static int check_barrier_error(struct btrfs_fs_info *fs_info)
4126 {
4127 	if (!btrfs_check_rw_degradable(fs_info, NULL))
4128 		return -EIO;
4129 	return 0;
4130 }
4131 
4132 /*
4133  * send an empty flush down to each device in parallel,
4134  * then wait for them
4135  */
4136 static int barrier_all_devices(struct btrfs_fs_info *info)
4137 {
4138 	struct list_head *head;
4139 	struct btrfs_device *dev;
4140 	int errors_wait = 0;
4141 	blk_status_t ret;
4142 
4143 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
4144 	/* send down all the barriers */
4145 	head = &info->fs_devices->devices;
4146 	list_for_each_entry(dev, head, dev_list) {
4147 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4148 			continue;
4149 		if (!dev->bdev)
4150 			continue;
4151 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4152 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4153 			continue;
4154 
4155 		write_dev_flush(dev);
4156 		dev->last_flush_error = BLK_STS_OK;
4157 	}
4158 
4159 	/* wait for all the barriers */
4160 	list_for_each_entry(dev, head, dev_list) {
4161 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4162 			continue;
4163 		if (!dev->bdev) {
4164 			errors_wait++;
4165 			continue;
4166 		}
4167 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4168 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4169 			continue;
4170 
4171 		ret = wait_dev_flush(dev);
4172 		if (ret) {
4173 			dev->last_flush_error = ret;
4174 			btrfs_dev_stat_inc_and_print(dev,
4175 					BTRFS_DEV_STAT_FLUSH_ERRS);
4176 			errors_wait++;
4177 		}
4178 	}
4179 
4180 	if (errors_wait) {
4181 		/*
4182 		 * At some point we need the status of all disks
4183 		 * to arrive at the volume status. So error checking
4184 		 * is being pushed to a separate loop.
4185 		 */
4186 		return check_barrier_error(info);
4187 	}
4188 	return 0;
4189 }
4190 
4191 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4192 {
4193 	int raid_type;
4194 	int min_tolerated = INT_MAX;
4195 
4196 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4197 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4198 		min_tolerated = min_t(int, min_tolerated,
4199 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
4200 				    tolerated_failures);
4201 
4202 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4203 		if (raid_type == BTRFS_RAID_SINGLE)
4204 			continue;
4205 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4206 			continue;
4207 		min_tolerated = min_t(int, min_tolerated,
4208 				    btrfs_raid_array[raid_type].
4209 				    tolerated_failures);
4210 	}
4211 
4212 	if (min_tolerated == INT_MAX) {
4213 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4214 		min_tolerated = 0;
4215 	}
4216 
4217 	return min_tolerated;
4218 }
4219 
4220 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4221 {
4222 	struct list_head *head;
4223 	struct btrfs_device *dev;
4224 	struct btrfs_super_block *sb;
4225 	struct btrfs_dev_item *dev_item;
4226 	int ret;
4227 	int do_barriers;
4228 	int max_errors;
4229 	int total_errors = 0;
4230 	u64 flags;
4231 
4232 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4233 
4234 	/*
4235 	 * max_mirrors == 0 indicates we're from commit_transaction,
4236 	 * not from fsync where the tree roots in fs_info have not
4237 	 * been consistent on disk.
4238 	 */
4239 	if (max_mirrors == 0)
4240 		backup_super_roots(fs_info);
4241 
4242 	sb = fs_info->super_for_commit;
4243 	dev_item = &sb->dev_item;
4244 
4245 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4246 	head = &fs_info->fs_devices->devices;
4247 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4248 
4249 	if (do_barriers) {
4250 		ret = barrier_all_devices(fs_info);
4251 		if (ret) {
4252 			mutex_unlock(
4253 				&fs_info->fs_devices->device_list_mutex);
4254 			btrfs_handle_fs_error(fs_info, ret,
4255 					      "errors while submitting device barriers.");
4256 			return ret;
4257 		}
4258 	}
4259 
4260 	list_for_each_entry(dev, head, dev_list) {
4261 		if (!dev->bdev) {
4262 			total_errors++;
4263 			continue;
4264 		}
4265 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4266 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4267 			continue;
4268 
4269 		btrfs_set_stack_device_generation(dev_item, 0);
4270 		btrfs_set_stack_device_type(dev_item, dev->type);
4271 		btrfs_set_stack_device_id(dev_item, dev->devid);
4272 		btrfs_set_stack_device_total_bytes(dev_item,
4273 						   dev->commit_total_bytes);
4274 		btrfs_set_stack_device_bytes_used(dev_item,
4275 						  dev->commit_bytes_used);
4276 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4277 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4278 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4279 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4280 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4281 		       BTRFS_FSID_SIZE);
4282 
4283 		flags = btrfs_super_flags(sb);
4284 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4285 
4286 		ret = btrfs_validate_write_super(fs_info, sb);
4287 		if (ret < 0) {
4288 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4289 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4290 				"unexpected superblock corruption detected");
4291 			return -EUCLEAN;
4292 		}
4293 
4294 		ret = write_dev_supers(dev, sb, max_mirrors);
4295 		if (ret)
4296 			total_errors++;
4297 	}
4298 	if (total_errors > max_errors) {
4299 		btrfs_err(fs_info, "%d errors while writing supers",
4300 			  total_errors);
4301 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4302 
4303 		/* FUA is masked off if unsupported and can't be the reason */
4304 		btrfs_handle_fs_error(fs_info, -EIO,
4305 				      "%d errors while writing supers",
4306 				      total_errors);
4307 		return -EIO;
4308 	}
4309 
4310 	total_errors = 0;
4311 	list_for_each_entry(dev, head, dev_list) {
4312 		if (!dev->bdev)
4313 			continue;
4314 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4315 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4316 			continue;
4317 
4318 		ret = wait_dev_supers(dev, max_mirrors);
4319 		if (ret)
4320 			total_errors++;
4321 	}
4322 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4323 	if (total_errors > max_errors) {
4324 		btrfs_handle_fs_error(fs_info, -EIO,
4325 				      "%d errors while writing supers",
4326 				      total_errors);
4327 		return -EIO;
4328 	}
4329 	return 0;
4330 }
4331 
4332 /* Drop a fs root from the radix tree and free it. */
4333 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4334 				  struct btrfs_root *root)
4335 {
4336 	bool drop_ref = false;
4337 
4338 	spin_lock(&fs_info->fs_roots_radix_lock);
4339 	radix_tree_delete(&fs_info->fs_roots_radix,
4340 			  (unsigned long)root->root_key.objectid);
4341 	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4342 		drop_ref = true;
4343 	spin_unlock(&fs_info->fs_roots_radix_lock);
4344 
4345 	if (BTRFS_FS_ERROR(fs_info)) {
4346 		ASSERT(root->log_root == NULL);
4347 		if (root->reloc_root) {
4348 			btrfs_put_root(root->reloc_root);
4349 			root->reloc_root = NULL;
4350 		}
4351 	}
4352 
4353 	if (drop_ref)
4354 		btrfs_put_root(root);
4355 }
4356 
4357 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4358 {
4359 	u64 root_objectid = 0;
4360 	struct btrfs_root *gang[8];
4361 	int i = 0;
4362 	int err = 0;
4363 	unsigned int ret = 0;
4364 
4365 	while (1) {
4366 		spin_lock(&fs_info->fs_roots_radix_lock);
4367 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4368 					     (void **)gang, root_objectid,
4369 					     ARRAY_SIZE(gang));
4370 		if (!ret) {
4371 			spin_unlock(&fs_info->fs_roots_radix_lock);
4372 			break;
4373 		}
4374 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
4375 
4376 		for (i = 0; i < ret; i++) {
4377 			/* Avoid to grab roots in dead_roots */
4378 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4379 				gang[i] = NULL;
4380 				continue;
4381 			}
4382 			/* grab all the search result for later use */
4383 			gang[i] = btrfs_grab_root(gang[i]);
4384 		}
4385 		spin_unlock(&fs_info->fs_roots_radix_lock);
4386 
4387 		for (i = 0; i < ret; i++) {
4388 			if (!gang[i])
4389 				continue;
4390 			root_objectid = gang[i]->root_key.objectid;
4391 			err = btrfs_orphan_cleanup(gang[i]);
4392 			if (err)
4393 				break;
4394 			btrfs_put_root(gang[i]);
4395 		}
4396 		root_objectid++;
4397 	}
4398 
4399 	/* release the uncleaned roots due to error */
4400 	for (; i < ret; i++) {
4401 		if (gang[i])
4402 			btrfs_put_root(gang[i]);
4403 	}
4404 	return err;
4405 }
4406 
4407 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4408 {
4409 	struct btrfs_root *root = fs_info->tree_root;
4410 	struct btrfs_trans_handle *trans;
4411 
4412 	mutex_lock(&fs_info->cleaner_mutex);
4413 	btrfs_run_delayed_iputs(fs_info);
4414 	mutex_unlock(&fs_info->cleaner_mutex);
4415 	wake_up_process(fs_info->cleaner_kthread);
4416 
4417 	/* wait until ongoing cleanup work done */
4418 	down_write(&fs_info->cleanup_work_sem);
4419 	up_write(&fs_info->cleanup_work_sem);
4420 
4421 	trans = btrfs_join_transaction(root);
4422 	if (IS_ERR(trans))
4423 		return PTR_ERR(trans);
4424 	return btrfs_commit_transaction(trans);
4425 }
4426 
4427 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4428 {
4429 	struct btrfs_transaction *trans;
4430 	struct btrfs_transaction *tmp;
4431 	bool found = false;
4432 
4433 	if (list_empty(&fs_info->trans_list))
4434 		return;
4435 
4436 	/*
4437 	 * This function is only called at the very end of close_ctree(),
4438 	 * thus no other running transaction, no need to take trans_lock.
4439 	 */
4440 	ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4441 	list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4442 		struct extent_state *cached = NULL;
4443 		u64 dirty_bytes = 0;
4444 		u64 cur = 0;
4445 		u64 found_start;
4446 		u64 found_end;
4447 
4448 		found = true;
4449 		while (!find_first_extent_bit(&trans->dirty_pages, cur,
4450 			&found_start, &found_end, EXTENT_DIRTY, &cached)) {
4451 			dirty_bytes += found_end + 1 - found_start;
4452 			cur = found_end + 1;
4453 		}
4454 		btrfs_warn(fs_info,
4455 	"transaction %llu (with %llu dirty metadata bytes) is not committed",
4456 			   trans->transid, dirty_bytes);
4457 		btrfs_cleanup_one_transaction(trans, fs_info);
4458 
4459 		if (trans == fs_info->running_transaction)
4460 			fs_info->running_transaction = NULL;
4461 		list_del_init(&trans->list);
4462 
4463 		btrfs_put_transaction(trans);
4464 		trace_btrfs_transaction_commit(fs_info);
4465 	}
4466 	ASSERT(!found);
4467 }
4468 
4469 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4470 {
4471 	int ret;
4472 
4473 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4474 
4475 	/*
4476 	 * If we had UNFINISHED_DROPS we could still be processing them, so
4477 	 * clear that bit and wake up relocation so it can stop.
4478 	 * We must do this before stopping the block group reclaim task, because
4479 	 * at btrfs_relocate_block_group() we wait for this bit, and after the
4480 	 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4481 	 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4482 	 * return 1.
4483 	 */
4484 	btrfs_wake_unfinished_drop(fs_info);
4485 
4486 	/*
4487 	 * We may have the reclaim task running and relocating a data block group,
4488 	 * in which case it may create delayed iputs. So stop it before we park
4489 	 * the cleaner kthread otherwise we can get new delayed iputs after
4490 	 * parking the cleaner, and that can make the async reclaim task to hang
4491 	 * if it's waiting for delayed iputs to complete, since the cleaner is
4492 	 * parked and can not run delayed iputs - this will make us hang when
4493 	 * trying to stop the async reclaim task.
4494 	 */
4495 	cancel_work_sync(&fs_info->reclaim_bgs_work);
4496 	/*
4497 	 * We don't want the cleaner to start new transactions, add more delayed
4498 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4499 	 * because that frees the task_struct, and the transaction kthread might
4500 	 * still try to wake up the cleaner.
4501 	 */
4502 	kthread_park(fs_info->cleaner_kthread);
4503 
4504 	/* wait for the qgroup rescan worker to stop */
4505 	btrfs_qgroup_wait_for_completion(fs_info, false);
4506 
4507 	/* wait for the uuid_scan task to finish */
4508 	down(&fs_info->uuid_tree_rescan_sem);
4509 	/* avoid complains from lockdep et al., set sem back to initial state */
4510 	up(&fs_info->uuid_tree_rescan_sem);
4511 
4512 	/* pause restriper - we want to resume on mount */
4513 	btrfs_pause_balance(fs_info);
4514 
4515 	btrfs_dev_replace_suspend_for_unmount(fs_info);
4516 
4517 	btrfs_scrub_cancel(fs_info);
4518 
4519 	/* wait for any defraggers to finish */
4520 	wait_event(fs_info->transaction_wait,
4521 		   (atomic_read(&fs_info->defrag_running) == 0));
4522 
4523 	/* clear out the rbtree of defraggable inodes */
4524 	btrfs_cleanup_defrag_inodes(fs_info);
4525 
4526 	/*
4527 	 * After we parked the cleaner kthread, ordered extents may have
4528 	 * completed and created new delayed iputs. If one of the async reclaim
4529 	 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4530 	 * can hang forever trying to stop it, because if a delayed iput is
4531 	 * added after it ran btrfs_run_delayed_iputs() and before it called
4532 	 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4533 	 * no one else to run iputs.
4534 	 *
4535 	 * So wait for all ongoing ordered extents to complete and then run
4536 	 * delayed iputs. This works because once we reach this point no one
4537 	 * can either create new ordered extents nor create delayed iputs
4538 	 * through some other means.
4539 	 *
4540 	 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4541 	 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4542 	 * but the delayed iput for the respective inode is made only when doing
4543 	 * the final btrfs_put_ordered_extent() (which must happen at
4544 	 * btrfs_finish_ordered_io() when we are unmounting).
4545 	 */
4546 	btrfs_flush_workqueue(fs_info->endio_write_workers);
4547 	/* Ordered extents for free space inodes. */
4548 	btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4549 	btrfs_run_delayed_iputs(fs_info);
4550 
4551 	cancel_work_sync(&fs_info->async_reclaim_work);
4552 	cancel_work_sync(&fs_info->async_data_reclaim_work);
4553 	cancel_work_sync(&fs_info->preempt_reclaim_work);
4554 
4555 	/* Cancel or finish ongoing discard work */
4556 	btrfs_discard_cleanup(fs_info);
4557 
4558 	if (!sb_rdonly(fs_info->sb)) {
4559 		/*
4560 		 * The cleaner kthread is stopped, so do one final pass over
4561 		 * unused block groups.
4562 		 */
4563 		btrfs_delete_unused_bgs(fs_info);
4564 
4565 		/*
4566 		 * There might be existing delayed inode workers still running
4567 		 * and holding an empty delayed inode item. We must wait for
4568 		 * them to complete first because they can create a transaction.
4569 		 * This happens when someone calls btrfs_balance_delayed_items()
4570 		 * and then a transaction commit runs the same delayed nodes
4571 		 * before any delayed worker has done something with the nodes.
4572 		 * We must wait for any worker here and not at transaction
4573 		 * commit time since that could cause a deadlock.
4574 		 * This is a very rare case.
4575 		 */
4576 		btrfs_flush_workqueue(fs_info->delayed_workers);
4577 
4578 		ret = btrfs_commit_super(fs_info);
4579 		if (ret)
4580 			btrfs_err(fs_info, "commit super ret %d", ret);
4581 	}
4582 
4583 	if (BTRFS_FS_ERROR(fs_info))
4584 		btrfs_error_commit_super(fs_info);
4585 
4586 	kthread_stop(fs_info->transaction_kthread);
4587 	kthread_stop(fs_info->cleaner_kthread);
4588 
4589 	ASSERT(list_empty(&fs_info->delayed_iputs));
4590 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4591 
4592 	if (btrfs_check_quota_leak(fs_info)) {
4593 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4594 		btrfs_err(fs_info, "qgroup reserved space leaked");
4595 	}
4596 
4597 	btrfs_free_qgroup_config(fs_info);
4598 	ASSERT(list_empty(&fs_info->delalloc_roots));
4599 
4600 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4601 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4602 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4603 	}
4604 
4605 	if (percpu_counter_sum(&fs_info->ordered_bytes))
4606 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4607 			   percpu_counter_sum(&fs_info->ordered_bytes));
4608 
4609 	btrfs_sysfs_remove_mounted(fs_info);
4610 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4611 
4612 	btrfs_put_block_group_cache(fs_info);
4613 
4614 	/*
4615 	 * we must make sure there is not any read request to
4616 	 * submit after we stopping all workers.
4617 	 */
4618 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4619 	btrfs_stop_all_workers(fs_info);
4620 
4621 	/* We shouldn't have any transaction open at this point */
4622 	warn_about_uncommitted_trans(fs_info);
4623 
4624 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4625 	free_root_pointers(fs_info, true);
4626 	btrfs_free_fs_roots(fs_info);
4627 
4628 	/*
4629 	 * We must free the block groups after dropping the fs_roots as we could
4630 	 * have had an IO error and have left over tree log blocks that aren't
4631 	 * cleaned up until the fs roots are freed.  This makes the block group
4632 	 * accounting appear to be wrong because there's pending reserved bytes,
4633 	 * so make sure we do the block group cleanup afterwards.
4634 	 */
4635 	btrfs_free_block_groups(fs_info);
4636 
4637 	iput(fs_info->btree_inode);
4638 
4639 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4640 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4641 		btrfsic_unmount(fs_info->fs_devices);
4642 #endif
4643 
4644 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4645 	btrfs_close_devices(fs_info->fs_devices);
4646 }
4647 
4648 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4649 			  int atomic)
4650 {
4651 	int ret;
4652 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4653 
4654 	ret = extent_buffer_uptodate(buf);
4655 	if (!ret)
4656 		return ret;
4657 
4658 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4659 				    parent_transid, atomic);
4660 	if (ret == -EAGAIN)
4661 		return ret;
4662 	return !ret;
4663 }
4664 
4665 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4666 {
4667 	struct btrfs_fs_info *fs_info = buf->fs_info;
4668 	u64 transid = btrfs_header_generation(buf);
4669 	int was_dirty;
4670 
4671 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4672 	/*
4673 	 * This is a fast path so only do this check if we have sanity tests
4674 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4675 	 * outside of the sanity tests.
4676 	 */
4677 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4678 		return;
4679 #endif
4680 	btrfs_assert_tree_write_locked(buf);
4681 	if (transid != fs_info->generation)
4682 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4683 			buf->start, transid, fs_info->generation);
4684 	was_dirty = set_extent_buffer_dirty(buf);
4685 	if (!was_dirty)
4686 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4687 					 buf->len,
4688 					 fs_info->dirty_metadata_batch);
4689 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4690 	/*
4691 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4692 	 * but item data not updated.
4693 	 * So here we should only check item pointers, not item data.
4694 	 */
4695 	if (btrfs_header_level(buf) == 0 &&
4696 	    btrfs_check_leaf_relaxed(buf)) {
4697 		btrfs_print_leaf(buf);
4698 		ASSERT(0);
4699 	}
4700 #endif
4701 }
4702 
4703 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4704 					int flush_delayed)
4705 {
4706 	/*
4707 	 * looks as though older kernels can get into trouble with
4708 	 * this code, they end up stuck in balance_dirty_pages forever
4709 	 */
4710 	int ret;
4711 
4712 	if (current->flags & PF_MEMALLOC)
4713 		return;
4714 
4715 	if (flush_delayed)
4716 		btrfs_balance_delayed_items(fs_info);
4717 
4718 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4719 				     BTRFS_DIRTY_METADATA_THRESH,
4720 				     fs_info->dirty_metadata_batch);
4721 	if (ret > 0) {
4722 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4723 	}
4724 }
4725 
4726 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4727 {
4728 	__btrfs_btree_balance_dirty(fs_info, 1);
4729 }
4730 
4731 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4732 {
4733 	__btrfs_btree_balance_dirty(fs_info, 0);
4734 }
4735 
4736 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4737 {
4738 	/* cleanup FS via transaction */
4739 	btrfs_cleanup_transaction(fs_info);
4740 
4741 	mutex_lock(&fs_info->cleaner_mutex);
4742 	btrfs_run_delayed_iputs(fs_info);
4743 	mutex_unlock(&fs_info->cleaner_mutex);
4744 
4745 	down_write(&fs_info->cleanup_work_sem);
4746 	up_write(&fs_info->cleanup_work_sem);
4747 }
4748 
4749 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4750 {
4751 	struct btrfs_root *gang[8];
4752 	u64 root_objectid = 0;
4753 	int ret;
4754 
4755 	spin_lock(&fs_info->fs_roots_radix_lock);
4756 	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4757 					     (void **)gang, root_objectid,
4758 					     ARRAY_SIZE(gang))) != 0) {
4759 		int i;
4760 
4761 		for (i = 0; i < ret; i++)
4762 			gang[i] = btrfs_grab_root(gang[i]);
4763 		spin_unlock(&fs_info->fs_roots_radix_lock);
4764 
4765 		for (i = 0; i < ret; i++) {
4766 			if (!gang[i])
4767 				continue;
4768 			root_objectid = gang[i]->root_key.objectid;
4769 			btrfs_free_log(NULL, gang[i]);
4770 			btrfs_put_root(gang[i]);
4771 		}
4772 		root_objectid++;
4773 		spin_lock(&fs_info->fs_roots_radix_lock);
4774 	}
4775 	spin_unlock(&fs_info->fs_roots_radix_lock);
4776 	btrfs_free_log_root_tree(NULL, fs_info);
4777 }
4778 
4779 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4780 {
4781 	struct btrfs_ordered_extent *ordered;
4782 
4783 	spin_lock(&root->ordered_extent_lock);
4784 	/*
4785 	 * This will just short circuit the ordered completion stuff which will
4786 	 * make sure the ordered extent gets properly cleaned up.
4787 	 */
4788 	list_for_each_entry(ordered, &root->ordered_extents,
4789 			    root_extent_list)
4790 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4791 	spin_unlock(&root->ordered_extent_lock);
4792 }
4793 
4794 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4795 {
4796 	struct btrfs_root *root;
4797 	struct list_head splice;
4798 
4799 	INIT_LIST_HEAD(&splice);
4800 
4801 	spin_lock(&fs_info->ordered_root_lock);
4802 	list_splice_init(&fs_info->ordered_roots, &splice);
4803 	while (!list_empty(&splice)) {
4804 		root = list_first_entry(&splice, struct btrfs_root,
4805 					ordered_root);
4806 		list_move_tail(&root->ordered_root,
4807 			       &fs_info->ordered_roots);
4808 
4809 		spin_unlock(&fs_info->ordered_root_lock);
4810 		btrfs_destroy_ordered_extents(root);
4811 
4812 		cond_resched();
4813 		spin_lock(&fs_info->ordered_root_lock);
4814 	}
4815 	spin_unlock(&fs_info->ordered_root_lock);
4816 
4817 	/*
4818 	 * We need this here because if we've been flipped read-only we won't
4819 	 * get sync() from the umount, so we need to make sure any ordered
4820 	 * extents that haven't had their dirty pages IO start writeout yet
4821 	 * actually get run and error out properly.
4822 	 */
4823 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4824 }
4825 
4826 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4827 				      struct btrfs_fs_info *fs_info)
4828 {
4829 	struct rb_node *node;
4830 	struct btrfs_delayed_ref_root *delayed_refs;
4831 	struct btrfs_delayed_ref_node *ref;
4832 	int ret = 0;
4833 
4834 	delayed_refs = &trans->delayed_refs;
4835 
4836 	spin_lock(&delayed_refs->lock);
4837 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4838 		spin_unlock(&delayed_refs->lock);
4839 		btrfs_debug(fs_info, "delayed_refs has NO entry");
4840 		return ret;
4841 	}
4842 
4843 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4844 		struct btrfs_delayed_ref_head *head;
4845 		struct rb_node *n;
4846 		bool pin_bytes = false;
4847 
4848 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4849 				href_node);
4850 		if (btrfs_delayed_ref_lock(delayed_refs, head))
4851 			continue;
4852 
4853 		spin_lock(&head->lock);
4854 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4855 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4856 				       ref_node);
4857 			ref->in_tree = 0;
4858 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4859 			RB_CLEAR_NODE(&ref->ref_node);
4860 			if (!list_empty(&ref->add_list))
4861 				list_del(&ref->add_list);
4862 			atomic_dec(&delayed_refs->num_entries);
4863 			btrfs_put_delayed_ref(ref);
4864 		}
4865 		if (head->must_insert_reserved)
4866 			pin_bytes = true;
4867 		btrfs_free_delayed_extent_op(head->extent_op);
4868 		btrfs_delete_ref_head(delayed_refs, head);
4869 		spin_unlock(&head->lock);
4870 		spin_unlock(&delayed_refs->lock);
4871 		mutex_unlock(&head->mutex);
4872 
4873 		if (pin_bytes) {
4874 			struct btrfs_block_group *cache;
4875 
4876 			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4877 			BUG_ON(!cache);
4878 
4879 			spin_lock(&cache->space_info->lock);
4880 			spin_lock(&cache->lock);
4881 			cache->pinned += head->num_bytes;
4882 			btrfs_space_info_update_bytes_pinned(fs_info,
4883 				cache->space_info, head->num_bytes);
4884 			cache->reserved -= head->num_bytes;
4885 			cache->space_info->bytes_reserved -= head->num_bytes;
4886 			spin_unlock(&cache->lock);
4887 			spin_unlock(&cache->space_info->lock);
4888 
4889 			btrfs_put_block_group(cache);
4890 
4891 			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4892 				head->bytenr + head->num_bytes - 1);
4893 		}
4894 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4895 		btrfs_put_delayed_ref_head(head);
4896 		cond_resched();
4897 		spin_lock(&delayed_refs->lock);
4898 	}
4899 	btrfs_qgroup_destroy_extent_records(trans);
4900 
4901 	spin_unlock(&delayed_refs->lock);
4902 
4903 	return ret;
4904 }
4905 
4906 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4907 {
4908 	struct btrfs_inode *btrfs_inode;
4909 	struct list_head splice;
4910 
4911 	INIT_LIST_HEAD(&splice);
4912 
4913 	spin_lock(&root->delalloc_lock);
4914 	list_splice_init(&root->delalloc_inodes, &splice);
4915 
4916 	while (!list_empty(&splice)) {
4917 		struct inode *inode = NULL;
4918 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4919 					       delalloc_inodes);
4920 		__btrfs_del_delalloc_inode(root, btrfs_inode);
4921 		spin_unlock(&root->delalloc_lock);
4922 
4923 		/*
4924 		 * Make sure we get a live inode and that it'll not disappear
4925 		 * meanwhile.
4926 		 */
4927 		inode = igrab(&btrfs_inode->vfs_inode);
4928 		if (inode) {
4929 			invalidate_inode_pages2(inode->i_mapping);
4930 			iput(inode);
4931 		}
4932 		spin_lock(&root->delalloc_lock);
4933 	}
4934 	spin_unlock(&root->delalloc_lock);
4935 }
4936 
4937 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4938 {
4939 	struct btrfs_root *root;
4940 	struct list_head splice;
4941 
4942 	INIT_LIST_HEAD(&splice);
4943 
4944 	spin_lock(&fs_info->delalloc_root_lock);
4945 	list_splice_init(&fs_info->delalloc_roots, &splice);
4946 	while (!list_empty(&splice)) {
4947 		root = list_first_entry(&splice, struct btrfs_root,
4948 					 delalloc_root);
4949 		root = btrfs_grab_root(root);
4950 		BUG_ON(!root);
4951 		spin_unlock(&fs_info->delalloc_root_lock);
4952 
4953 		btrfs_destroy_delalloc_inodes(root);
4954 		btrfs_put_root(root);
4955 
4956 		spin_lock(&fs_info->delalloc_root_lock);
4957 	}
4958 	spin_unlock(&fs_info->delalloc_root_lock);
4959 }
4960 
4961 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4962 					struct extent_io_tree *dirty_pages,
4963 					int mark)
4964 {
4965 	int ret;
4966 	struct extent_buffer *eb;
4967 	u64 start = 0;
4968 	u64 end;
4969 
4970 	while (1) {
4971 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4972 					    mark, NULL);
4973 		if (ret)
4974 			break;
4975 
4976 		clear_extent_bits(dirty_pages, start, end, mark);
4977 		while (start <= end) {
4978 			eb = find_extent_buffer(fs_info, start);
4979 			start += fs_info->nodesize;
4980 			if (!eb)
4981 				continue;
4982 
4983 			btrfs_tree_lock(eb);
4984 			wait_on_extent_buffer_writeback(eb);
4985 			btrfs_clear_buffer_dirty(NULL, eb);
4986 			btrfs_tree_unlock(eb);
4987 
4988 			free_extent_buffer_stale(eb);
4989 		}
4990 	}
4991 
4992 	return ret;
4993 }
4994 
4995 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4996 				       struct extent_io_tree *unpin)
4997 {
4998 	u64 start;
4999 	u64 end;
5000 	int ret;
5001 
5002 	while (1) {
5003 		struct extent_state *cached_state = NULL;
5004 
5005 		/*
5006 		 * The btrfs_finish_extent_commit() may get the same range as
5007 		 * ours between find_first_extent_bit and clear_extent_dirty.
5008 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
5009 		 * the same extent range.
5010 		 */
5011 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
5012 		ret = find_first_extent_bit(unpin, 0, &start, &end,
5013 					    EXTENT_DIRTY, &cached_state);
5014 		if (ret) {
5015 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5016 			break;
5017 		}
5018 
5019 		clear_extent_dirty(unpin, start, end, &cached_state);
5020 		free_extent_state(cached_state);
5021 		btrfs_error_unpin_extent_range(fs_info, start, end);
5022 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5023 		cond_resched();
5024 	}
5025 
5026 	return 0;
5027 }
5028 
5029 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
5030 {
5031 	struct inode *inode;
5032 
5033 	inode = cache->io_ctl.inode;
5034 	if (inode) {
5035 		invalidate_inode_pages2(inode->i_mapping);
5036 		BTRFS_I(inode)->generation = 0;
5037 		cache->io_ctl.inode = NULL;
5038 		iput(inode);
5039 	}
5040 	ASSERT(cache->io_ctl.pages == NULL);
5041 	btrfs_put_block_group(cache);
5042 }
5043 
5044 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
5045 			     struct btrfs_fs_info *fs_info)
5046 {
5047 	struct btrfs_block_group *cache;
5048 
5049 	spin_lock(&cur_trans->dirty_bgs_lock);
5050 	while (!list_empty(&cur_trans->dirty_bgs)) {
5051 		cache = list_first_entry(&cur_trans->dirty_bgs,
5052 					 struct btrfs_block_group,
5053 					 dirty_list);
5054 
5055 		if (!list_empty(&cache->io_list)) {
5056 			spin_unlock(&cur_trans->dirty_bgs_lock);
5057 			list_del_init(&cache->io_list);
5058 			btrfs_cleanup_bg_io(cache);
5059 			spin_lock(&cur_trans->dirty_bgs_lock);
5060 		}
5061 
5062 		list_del_init(&cache->dirty_list);
5063 		spin_lock(&cache->lock);
5064 		cache->disk_cache_state = BTRFS_DC_ERROR;
5065 		spin_unlock(&cache->lock);
5066 
5067 		spin_unlock(&cur_trans->dirty_bgs_lock);
5068 		btrfs_put_block_group(cache);
5069 		btrfs_delayed_refs_rsv_release(fs_info, 1);
5070 		spin_lock(&cur_trans->dirty_bgs_lock);
5071 	}
5072 	spin_unlock(&cur_trans->dirty_bgs_lock);
5073 
5074 	/*
5075 	 * Refer to the definition of io_bgs member for details why it's safe
5076 	 * to use it without any locking
5077 	 */
5078 	while (!list_empty(&cur_trans->io_bgs)) {
5079 		cache = list_first_entry(&cur_trans->io_bgs,
5080 					 struct btrfs_block_group,
5081 					 io_list);
5082 
5083 		list_del_init(&cache->io_list);
5084 		spin_lock(&cache->lock);
5085 		cache->disk_cache_state = BTRFS_DC_ERROR;
5086 		spin_unlock(&cache->lock);
5087 		btrfs_cleanup_bg_io(cache);
5088 	}
5089 }
5090 
5091 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
5092 				   struct btrfs_fs_info *fs_info)
5093 {
5094 	struct btrfs_device *dev, *tmp;
5095 
5096 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
5097 	ASSERT(list_empty(&cur_trans->dirty_bgs));
5098 	ASSERT(list_empty(&cur_trans->io_bgs));
5099 
5100 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
5101 				 post_commit_list) {
5102 		list_del_init(&dev->post_commit_list);
5103 	}
5104 
5105 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
5106 
5107 	cur_trans->state = TRANS_STATE_COMMIT_START;
5108 	wake_up(&fs_info->transaction_blocked_wait);
5109 
5110 	cur_trans->state = TRANS_STATE_UNBLOCKED;
5111 	wake_up(&fs_info->transaction_wait);
5112 
5113 	btrfs_destroy_delayed_inodes(fs_info);
5114 
5115 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
5116 				     EXTENT_DIRTY);
5117 	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
5118 
5119 	btrfs_free_redirty_list(cur_trans);
5120 
5121 	cur_trans->state =TRANS_STATE_COMPLETED;
5122 	wake_up(&cur_trans->commit_wait);
5123 }
5124 
5125 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
5126 {
5127 	struct btrfs_transaction *t;
5128 
5129 	mutex_lock(&fs_info->transaction_kthread_mutex);
5130 
5131 	spin_lock(&fs_info->trans_lock);
5132 	while (!list_empty(&fs_info->trans_list)) {
5133 		t = list_first_entry(&fs_info->trans_list,
5134 				     struct btrfs_transaction, list);
5135 		if (t->state >= TRANS_STATE_COMMIT_START) {
5136 			refcount_inc(&t->use_count);
5137 			spin_unlock(&fs_info->trans_lock);
5138 			btrfs_wait_for_commit(fs_info, t->transid);
5139 			btrfs_put_transaction(t);
5140 			spin_lock(&fs_info->trans_lock);
5141 			continue;
5142 		}
5143 		if (t == fs_info->running_transaction) {
5144 			t->state = TRANS_STATE_COMMIT_DOING;
5145 			spin_unlock(&fs_info->trans_lock);
5146 			/*
5147 			 * We wait for 0 num_writers since we don't hold a trans
5148 			 * handle open currently for this transaction.
5149 			 */
5150 			wait_event(t->writer_wait,
5151 				   atomic_read(&t->num_writers) == 0);
5152 		} else {
5153 			spin_unlock(&fs_info->trans_lock);
5154 		}
5155 		btrfs_cleanup_one_transaction(t, fs_info);
5156 
5157 		spin_lock(&fs_info->trans_lock);
5158 		if (t == fs_info->running_transaction)
5159 			fs_info->running_transaction = NULL;
5160 		list_del_init(&t->list);
5161 		spin_unlock(&fs_info->trans_lock);
5162 
5163 		btrfs_put_transaction(t);
5164 		trace_btrfs_transaction_commit(fs_info);
5165 		spin_lock(&fs_info->trans_lock);
5166 	}
5167 	spin_unlock(&fs_info->trans_lock);
5168 	btrfs_destroy_all_ordered_extents(fs_info);
5169 	btrfs_destroy_delayed_inodes(fs_info);
5170 	btrfs_assert_delayed_root_empty(fs_info);
5171 	btrfs_destroy_all_delalloc_inodes(fs_info);
5172 	btrfs_drop_all_logs(fs_info);
5173 	mutex_unlock(&fs_info->transaction_kthread_mutex);
5174 
5175 	return 0;
5176 }
5177 
5178 int btrfs_init_root_free_objectid(struct btrfs_root *root)
5179 {
5180 	struct btrfs_path *path;
5181 	int ret;
5182 	struct extent_buffer *l;
5183 	struct btrfs_key search_key;
5184 	struct btrfs_key found_key;
5185 	int slot;
5186 
5187 	path = btrfs_alloc_path();
5188 	if (!path)
5189 		return -ENOMEM;
5190 
5191 	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5192 	search_key.type = -1;
5193 	search_key.offset = (u64)-1;
5194 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5195 	if (ret < 0)
5196 		goto error;
5197 	BUG_ON(ret == 0); /* Corruption */
5198 	if (path->slots[0] > 0) {
5199 		slot = path->slots[0] - 1;
5200 		l = path->nodes[0];
5201 		btrfs_item_key_to_cpu(l, &found_key, slot);
5202 		root->free_objectid = max_t(u64, found_key.objectid + 1,
5203 					    BTRFS_FIRST_FREE_OBJECTID);
5204 	} else {
5205 		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
5206 	}
5207 	ret = 0;
5208 error:
5209 	btrfs_free_path(path);
5210 	return ret;
5211 }
5212 
5213 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
5214 {
5215 	int ret;
5216 	mutex_lock(&root->objectid_mutex);
5217 
5218 	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
5219 		btrfs_warn(root->fs_info,
5220 			   "the objectid of root %llu reaches its highest value",
5221 			   root->root_key.objectid);
5222 		ret = -ENOSPC;
5223 		goto out;
5224 	}
5225 
5226 	*objectid = root->free_objectid++;
5227 	ret = 0;
5228 out:
5229 	mutex_unlock(&root->objectid_mutex);
5230 	return ret;
5231 }
5232