1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <asm/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "bio.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "check-integrity.h" 33 #include "rcu-string.h" 34 #include "dev-replace.h" 35 #include "raid56.h" 36 #include "sysfs.h" 37 #include "qgroup.h" 38 #include "compression.h" 39 #include "tree-checker.h" 40 #include "ref-verify.h" 41 #include "block-group.h" 42 #include "discard.h" 43 #include "space-info.h" 44 #include "zoned.h" 45 #include "subpage.h" 46 #include "fs.h" 47 #include "accessors.h" 48 #include "extent-tree.h" 49 #include "root-tree.h" 50 #include "defrag.h" 51 #include "uuid-tree.h" 52 #include "relocation.h" 53 #include "scrub.h" 54 #include "super.h" 55 56 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 57 BTRFS_HEADER_FLAG_RELOC |\ 58 BTRFS_SUPER_FLAG_ERROR |\ 59 BTRFS_SUPER_FLAG_SEEDING |\ 60 BTRFS_SUPER_FLAG_METADUMP |\ 61 BTRFS_SUPER_FLAG_METADUMP_V2) 62 63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 65 struct btrfs_fs_info *fs_info); 66 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 67 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 68 struct extent_io_tree *dirty_pages, 69 int mark); 70 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 71 struct extent_io_tree *pinned_extents); 72 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 73 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 74 75 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 76 { 77 if (fs_info->csum_shash) 78 crypto_free_shash(fs_info->csum_shash); 79 } 80 81 /* 82 * Compute the csum of a btree block and store the result to provided buffer. 83 */ 84 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 85 { 86 struct btrfs_fs_info *fs_info = buf->fs_info; 87 const int num_pages = num_extent_pages(buf); 88 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 89 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 90 char *kaddr; 91 int i; 92 93 shash->tfm = fs_info->csum_shash; 94 crypto_shash_init(shash); 95 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start); 96 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 97 first_page_part - BTRFS_CSUM_SIZE); 98 99 for (i = 1; i < num_pages; i++) { 100 kaddr = page_address(buf->pages[i]); 101 crypto_shash_update(shash, kaddr, PAGE_SIZE); 102 } 103 memset(result, 0, BTRFS_CSUM_SIZE); 104 crypto_shash_final(shash, result); 105 } 106 107 /* 108 * we can't consider a given block up to date unless the transid of the 109 * block matches the transid in the parent node's pointer. This is how we 110 * detect blocks that either didn't get written at all or got written 111 * in the wrong place. 112 */ 113 static int verify_parent_transid(struct extent_io_tree *io_tree, 114 struct extent_buffer *eb, u64 parent_transid, 115 int atomic) 116 { 117 struct extent_state *cached_state = NULL; 118 int ret; 119 120 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 121 return 0; 122 123 if (atomic) 124 return -EAGAIN; 125 126 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, &cached_state); 127 if (extent_buffer_uptodate(eb) && 128 btrfs_header_generation(eb) == parent_transid) { 129 ret = 0; 130 goto out; 131 } 132 btrfs_err_rl(eb->fs_info, 133 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 134 eb->start, eb->read_mirror, 135 parent_transid, btrfs_header_generation(eb)); 136 ret = 1; 137 clear_extent_buffer_uptodate(eb); 138 out: 139 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, 140 &cached_state); 141 return ret; 142 } 143 144 static bool btrfs_supported_super_csum(u16 csum_type) 145 { 146 switch (csum_type) { 147 case BTRFS_CSUM_TYPE_CRC32: 148 case BTRFS_CSUM_TYPE_XXHASH: 149 case BTRFS_CSUM_TYPE_SHA256: 150 case BTRFS_CSUM_TYPE_BLAKE2: 151 return true; 152 default: 153 return false; 154 } 155 } 156 157 /* 158 * Return 0 if the superblock checksum type matches the checksum value of that 159 * algorithm. Pass the raw disk superblock data. 160 */ 161 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 162 const struct btrfs_super_block *disk_sb) 163 { 164 char result[BTRFS_CSUM_SIZE]; 165 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 166 167 shash->tfm = fs_info->csum_shash; 168 169 /* 170 * The super_block structure does not span the whole 171 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 172 * filled with zeros and is included in the checksum. 173 */ 174 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE, 175 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 176 177 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 178 return 1; 179 180 return 0; 181 } 182 183 int btrfs_verify_level_key(struct extent_buffer *eb, int level, 184 struct btrfs_key *first_key, u64 parent_transid) 185 { 186 struct btrfs_fs_info *fs_info = eb->fs_info; 187 int found_level; 188 struct btrfs_key found_key; 189 int ret; 190 191 found_level = btrfs_header_level(eb); 192 if (found_level != level) { 193 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 194 KERN_ERR "BTRFS: tree level check failed\n"); 195 btrfs_err(fs_info, 196 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 197 eb->start, level, found_level); 198 return -EIO; 199 } 200 201 if (!first_key) 202 return 0; 203 204 /* 205 * For live tree block (new tree blocks in current transaction), 206 * we need proper lock context to avoid race, which is impossible here. 207 * So we only checks tree blocks which is read from disk, whose 208 * generation <= fs_info->last_trans_committed. 209 */ 210 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 211 return 0; 212 213 /* We have @first_key, so this @eb must have at least one item */ 214 if (btrfs_header_nritems(eb) == 0) { 215 btrfs_err(fs_info, 216 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 217 eb->start); 218 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 219 return -EUCLEAN; 220 } 221 222 if (found_level) 223 btrfs_node_key_to_cpu(eb, &found_key, 0); 224 else 225 btrfs_item_key_to_cpu(eb, &found_key, 0); 226 ret = btrfs_comp_cpu_keys(first_key, &found_key); 227 228 if (ret) { 229 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 230 KERN_ERR "BTRFS: tree first key check failed\n"); 231 btrfs_err(fs_info, 232 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 233 eb->start, parent_transid, first_key->objectid, 234 first_key->type, first_key->offset, 235 found_key.objectid, found_key.type, 236 found_key.offset); 237 } 238 return ret; 239 } 240 241 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, 242 int mirror_num) 243 { 244 struct btrfs_fs_info *fs_info = eb->fs_info; 245 u64 start = eb->start; 246 int i, num_pages = num_extent_pages(eb); 247 int ret = 0; 248 249 if (sb_rdonly(fs_info->sb)) 250 return -EROFS; 251 252 for (i = 0; i < num_pages; i++) { 253 struct page *p = eb->pages[i]; 254 255 ret = btrfs_repair_io_failure(fs_info, 0, start, PAGE_SIZE, 256 start, p, start - page_offset(p), mirror_num); 257 if (ret) 258 break; 259 start += PAGE_SIZE; 260 } 261 262 return ret; 263 } 264 265 /* 266 * helper to read a given tree block, doing retries as required when 267 * the checksums don't match and we have alternate mirrors to try. 268 * 269 * @check: expected tree parentness check, see the comments of the 270 * structure for details. 271 */ 272 int btrfs_read_extent_buffer(struct extent_buffer *eb, 273 struct btrfs_tree_parent_check *check) 274 { 275 struct btrfs_fs_info *fs_info = eb->fs_info; 276 int failed = 0; 277 int ret; 278 int num_copies = 0; 279 int mirror_num = 0; 280 int failed_mirror = 0; 281 282 ASSERT(check); 283 284 while (1) { 285 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 286 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check); 287 if (!ret) 288 break; 289 290 num_copies = btrfs_num_copies(fs_info, 291 eb->start, eb->len); 292 if (num_copies == 1) 293 break; 294 295 if (!failed_mirror) { 296 failed = 1; 297 failed_mirror = eb->read_mirror; 298 } 299 300 mirror_num++; 301 if (mirror_num == failed_mirror) 302 mirror_num++; 303 304 if (mirror_num > num_copies) 305 break; 306 } 307 308 if (failed && !ret && failed_mirror) 309 btrfs_repair_eb_io_failure(eb, failed_mirror); 310 311 return ret; 312 } 313 314 static int csum_one_extent_buffer(struct extent_buffer *eb) 315 { 316 struct btrfs_fs_info *fs_info = eb->fs_info; 317 u8 result[BTRFS_CSUM_SIZE]; 318 int ret; 319 320 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 321 offsetof(struct btrfs_header, fsid), 322 BTRFS_FSID_SIZE) == 0); 323 csum_tree_block(eb, result); 324 325 if (btrfs_header_level(eb)) 326 ret = btrfs_check_node(eb); 327 else 328 ret = btrfs_check_leaf_full(eb); 329 330 if (ret < 0) 331 goto error; 332 333 /* 334 * Also check the generation, the eb reached here must be newer than 335 * last committed. Or something seriously wrong happened. 336 */ 337 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) { 338 ret = -EUCLEAN; 339 btrfs_err(fs_info, 340 "block=%llu bad generation, have %llu expect > %llu", 341 eb->start, btrfs_header_generation(eb), 342 fs_info->last_trans_committed); 343 goto error; 344 } 345 write_extent_buffer(eb, result, 0, fs_info->csum_size); 346 347 return 0; 348 349 error: 350 btrfs_print_tree(eb, 0); 351 btrfs_err(fs_info, "block=%llu write time tree block corruption detected", 352 eb->start); 353 /* 354 * Be noisy if this is an extent buffer from a log tree. We don't abort 355 * a transaction in case there's a bad log tree extent buffer, we just 356 * fallback to a transaction commit. Still we want to know when there is 357 * a bad log tree extent buffer, as that may signal a bug somewhere. 358 */ 359 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) || 360 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID); 361 return ret; 362 } 363 364 /* Checksum all dirty extent buffers in one bio_vec */ 365 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info, 366 struct bio_vec *bvec) 367 { 368 struct page *page = bvec->bv_page; 369 u64 bvec_start = page_offset(page) + bvec->bv_offset; 370 u64 cur; 371 int ret = 0; 372 373 for (cur = bvec_start; cur < bvec_start + bvec->bv_len; 374 cur += fs_info->nodesize) { 375 struct extent_buffer *eb; 376 bool uptodate; 377 378 eb = find_extent_buffer(fs_info, cur); 379 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur, 380 fs_info->nodesize); 381 382 /* A dirty eb shouldn't disappear from buffer_radix */ 383 if (WARN_ON(!eb)) 384 return -EUCLEAN; 385 386 if (WARN_ON(cur != btrfs_header_bytenr(eb))) { 387 free_extent_buffer(eb); 388 return -EUCLEAN; 389 } 390 if (WARN_ON(!uptodate)) { 391 free_extent_buffer(eb); 392 return -EUCLEAN; 393 } 394 395 ret = csum_one_extent_buffer(eb); 396 free_extent_buffer(eb); 397 if (ret < 0) 398 return ret; 399 } 400 return ret; 401 } 402 403 /* 404 * Checksum a dirty tree block before IO. This has extra checks to make sure 405 * we only fill in the checksum field in the first page of a multi-page block. 406 * For subpage extent buffers we need bvec to also read the offset in the page. 407 */ 408 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec) 409 { 410 struct page *page = bvec->bv_page; 411 u64 start = page_offset(page); 412 u64 found_start; 413 struct extent_buffer *eb; 414 415 if (fs_info->nodesize < PAGE_SIZE) 416 return csum_dirty_subpage_buffers(fs_info, bvec); 417 418 eb = (struct extent_buffer *)page->private; 419 if (page != eb->pages[0]) 420 return 0; 421 422 found_start = btrfs_header_bytenr(eb); 423 424 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) { 425 WARN_ON(found_start != 0); 426 return 0; 427 } 428 429 /* 430 * Please do not consolidate these warnings into a single if. 431 * It is useful to know what went wrong. 432 */ 433 if (WARN_ON(found_start != start)) 434 return -EUCLEAN; 435 if (WARN_ON(!PageUptodate(page))) 436 return -EUCLEAN; 437 438 return csum_one_extent_buffer(eb); 439 } 440 441 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio) 442 { 443 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info; 444 struct bvec_iter iter; 445 struct bio_vec bv; 446 int ret = 0; 447 448 bio_for_each_segment(bv, &bbio->bio, iter) { 449 ret = csum_dirty_buffer(fs_info, &bv); 450 if (ret) 451 break; 452 } 453 454 return errno_to_blk_status(ret); 455 } 456 457 static int check_tree_block_fsid(struct extent_buffer *eb) 458 { 459 struct btrfs_fs_info *fs_info = eb->fs_info; 460 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 461 u8 fsid[BTRFS_FSID_SIZE]; 462 u8 *metadata_uuid; 463 464 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 465 BTRFS_FSID_SIZE); 466 /* 467 * Checking the incompat flag is only valid for the current fs. For 468 * seed devices it's forbidden to have their uuid changed so reading 469 * ->fsid in this case is fine 470 */ 471 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 472 metadata_uuid = fs_devices->metadata_uuid; 473 else 474 metadata_uuid = fs_devices->fsid; 475 476 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) 477 return 0; 478 479 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 480 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 481 return 0; 482 483 return 1; 484 } 485 486 /* Do basic extent buffer checks at read time */ 487 static int validate_extent_buffer(struct extent_buffer *eb, 488 struct btrfs_tree_parent_check *check) 489 { 490 struct btrfs_fs_info *fs_info = eb->fs_info; 491 u64 found_start; 492 const u32 csum_size = fs_info->csum_size; 493 u8 found_level; 494 u8 result[BTRFS_CSUM_SIZE]; 495 const u8 *header_csum; 496 int ret = 0; 497 498 ASSERT(check); 499 500 found_start = btrfs_header_bytenr(eb); 501 if (found_start != eb->start) { 502 btrfs_err_rl(fs_info, 503 "bad tree block start, mirror %u want %llu have %llu", 504 eb->read_mirror, eb->start, found_start); 505 ret = -EIO; 506 goto out; 507 } 508 if (check_tree_block_fsid(eb)) { 509 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u", 510 eb->start, eb->read_mirror); 511 ret = -EIO; 512 goto out; 513 } 514 found_level = btrfs_header_level(eb); 515 if (found_level >= BTRFS_MAX_LEVEL) { 516 btrfs_err(fs_info, 517 "bad tree block level, mirror %u level %d on logical %llu", 518 eb->read_mirror, btrfs_header_level(eb), eb->start); 519 ret = -EIO; 520 goto out; 521 } 522 523 csum_tree_block(eb, result); 524 header_csum = page_address(eb->pages[0]) + 525 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum)); 526 527 if (memcmp(result, header_csum, csum_size) != 0) { 528 btrfs_warn_rl(fs_info, 529 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d", 530 eb->start, eb->read_mirror, 531 CSUM_FMT_VALUE(csum_size, header_csum), 532 CSUM_FMT_VALUE(csum_size, result), 533 btrfs_header_level(eb)); 534 ret = -EUCLEAN; 535 goto out; 536 } 537 538 if (found_level != check->level) { 539 btrfs_err(fs_info, 540 "level verify failed on logical %llu mirror %u wanted %u found %u", 541 eb->start, eb->read_mirror, check->level, found_level); 542 ret = -EIO; 543 goto out; 544 } 545 if (unlikely(check->transid && 546 btrfs_header_generation(eb) != check->transid)) { 547 btrfs_err_rl(eb->fs_info, 548 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 549 eb->start, eb->read_mirror, check->transid, 550 btrfs_header_generation(eb)); 551 ret = -EIO; 552 goto out; 553 } 554 if (check->has_first_key) { 555 struct btrfs_key *expect_key = &check->first_key; 556 struct btrfs_key found_key; 557 558 if (found_level) 559 btrfs_node_key_to_cpu(eb, &found_key, 0); 560 else 561 btrfs_item_key_to_cpu(eb, &found_key, 0); 562 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) { 563 btrfs_err(fs_info, 564 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 565 eb->start, check->transid, 566 expect_key->objectid, 567 expect_key->type, expect_key->offset, 568 found_key.objectid, found_key.type, 569 found_key.offset); 570 ret = -EUCLEAN; 571 goto out; 572 } 573 } 574 if (check->owner_root) { 575 ret = btrfs_check_eb_owner(eb, check->owner_root); 576 if (ret < 0) 577 goto out; 578 } 579 580 /* 581 * If this is a leaf block and it is corrupt, set the corrupt bit so 582 * that we don't try and read the other copies of this block, just 583 * return -EIO. 584 */ 585 if (found_level == 0 && btrfs_check_leaf_full(eb)) { 586 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 587 ret = -EIO; 588 } 589 590 if (found_level > 0 && btrfs_check_node(eb)) 591 ret = -EIO; 592 593 if (!ret) 594 set_extent_buffer_uptodate(eb); 595 else 596 btrfs_err(fs_info, 597 "read time tree block corruption detected on logical %llu mirror %u", 598 eb->start, eb->read_mirror); 599 out: 600 return ret; 601 } 602 603 static int validate_subpage_buffer(struct page *page, u64 start, u64 end, 604 int mirror, struct btrfs_tree_parent_check *check) 605 { 606 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 607 struct extent_buffer *eb; 608 bool reads_done; 609 int ret = 0; 610 611 ASSERT(check); 612 613 /* 614 * We don't allow bio merge for subpage metadata read, so we should 615 * only get one eb for each endio hook. 616 */ 617 ASSERT(end == start + fs_info->nodesize - 1); 618 ASSERT(PagePrivate(page)); 619 620 eb = find_extent_buffer(fs_info, start); 621 /* 622 * When we are reading one tree block, eb must have been inserted into 623 * the radix tree. If not, something is wrong. 624 */ 625 ASSERT(eb); 626 627 reads_done = atomic_dec_and_test(&eb->io_pages); 628 /* Subpage read must finish in page read */ 629 ASSERT(reads_done); 630 631 eb->read_mirror = mirror; 632 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 633 ret = -EIO; 634 goto err; 635 } 636 ret = validate_extent_buffer(eb, check); 637 if (ret < 0) 638 goto err; 639 640 set_extent_buffer_uptodate(eb); 641 642 free_extent_buffer(eb); 643 return ret; 644 err: 645 /* 646 * end_bio_extent_readpage decrements io_pages in case of error, 647 * make sure it has something to decrement. 648 */ 649 atomic_inc(&eb->io_pages); 650 clear_extent_buffer_uptodate(eb); 651 free_extent_buffer(eb); 652 return ret; 653 } 654 655 int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio, 656 struct page *page, u64 start, u64 end, 657 int mirror) 658 { 659 struct extent_buffer *eb; 660 int ret = 0; 661 int reads_done; 662 663 ASSERT(page->private); 664 665 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 666 return validate_subpage_buffer(page, start, end, mirror, 667 &bbio->parent_check); 668 669 eb = (struct extent_buffer *)page->private; 670 671 /* 672 * The pending IO might have been the only thing that kept this buffer 673 * in memory. Make sure we have a ref for all this other checks 674 */ 675 atomic_inc(&eb->refs); 676 677 reads_done = atomic_dec_and_test(&eb->io_pages); 678 if (!reads_done) 679 goto err; 680 681 eb->read_mirror = mirror; 682 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 683 ret = -EIO; 684 goto err; 685 } 686 ret = validate_extent_buffer(eb, &bbio->parent_check); 687 err: 688 if (ret) { 689 /* 690 * our io error hook is going to dec the io pages 691 * again, we have to make sure it has something 692 * to decrement 693 */ 694 atomic_inc(&eb->io_pages); 695 clear_extent_buffer_uptodate(eb); 696 } 697 free_extent_buffer(eb); 698 699 return ret; 700 } 701 702 #ifdef CONFIG_MIGRATION 703 static int btree_migrate_folio(struct address_space *mapping, 704 struct folio *dst, struct folio *src, enum migrate_mode mode) 705 { 706 /* 707 * we can't safely write a btree page from here, 708 * we haven't done the locking hook 709 */ 710 if (folio_test_dirty(src)) 711 return -EAGAIN; 712 /* 713 * Buffers may be managed in a filesystem specific way. 714 * We must have no buffers or drop them. 715 */ 716 if (folio_get_private(src) && 717 !filemap_release_folio(src, GFP_KERNEL)) 718 return -EAGAIN; 719 return migrate_folio(mapping, dst, src, mode); 720 } 721 #else 722 #define btree_migrate_folio NULL 723 #endif 724 725 static int btree_writepages(struct address_space *mapping, 726 struct writeback_control *wbc) 727 { 728 struct btrfs_fs_info *fs_info; 729 int ret; 730 731 if (wbc->sync_mode == WB_SYNC_NONE) { 732 733 if (wbc->for_kupdate) 734 return 0; 735 736 fs_info = BTRFS_I(mapping->host)->root->fs_info; 737 /* this is a bit racy, but that's ok */ 738 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 739 BTRFS_DIRTY_METADATA_THRESH, 740 fs_info->dirty_metadata_batch); 741 if (ret < 0) 742 return 0; 743 } 744 return btree_write_cache_pages(mapping, wbc); 745 } 746 747 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) 748 { 749 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 750 return false; 751 752 return try_release_extent_buffer(&folio->page); 753 } 754 755 static void btree_invalidate_folio(struct folio *folio, size_t offset, 756 size_t length) 757 { 758 struct extent_io_tree *tree; 759 tree = &BTRFS_I(folio->mapping->host)->io_tree; 760 extent_invalidate_folio(tree, folio, offset); 761 btree_release_folio(folio, GFP_NOFS); 762 if (folio_get_private(folio)) { 763 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info, 764 "folio private not zero on folio %llu", 765 (unsigned long long)folio_pos(folio)); 766 folio_detach_private(folio); 767 } 768 } 769 770 #ifdef DEBUG 771 static bool btree_dirty_folio(struct address_space *mapping, 772 struct folio *folio) 773 { 774 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 775 struct btrfs_subpage *subpage; 776 struct extent_buffer *eb; 777 int cur_bit = 0; 778 u64 page_start = folio_pos(folio); 779 780 if (fs_info->sectorsize == PAGE_SIZE) { 781 eb = folio_get_private(folio); 782 BUG_ON(!eb); 783 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 784 BUG_ON(!atomic_read(&eb->refs)); 785 btrfs_assert_tree_write_locked(eb); 786 return filemap_dirty_folio(mapping, folio); 787 } 788 subpage = folio_get_private(folio); 789 790 ASSERT(subpage->dirty_bitmap); 791 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) { 792 unsigned long flags; 793 u64 cur; 794 u16 tmp = (1 << cur_bit); 795 796 spin_lock_irqsave(&subpage->lock, flags); 797 if (!(tmp & subpage->dirty_bitmap)) { 798 spin_unlock_irqrestore(&subpage->lock, flags); 799 cur_bit++; 800 continue; 801 } 802 spin_unlock_irqrestore(&subpage->lock, flags); 803 cur = page_start + cur_bit * fs_info->sectorsize; 804 805 eb = find_extent_buffer(fs_info, cur); 806 ASSERT(eb); 807 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 808 ASSERT(atomic_read(&eb->refs)); 809 btrfs_assert_tree_write_locked(eb); 810 free_extent_buffer(eb); 811 812 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits); 813 } 814 return filemap_dirty_folio(mapping, folio); 815 } 816 #else 817 #define btree_dirty_folio filemap_dirty_folio 818 #endif 819 820 static const struct address_space_operations btree_aops = { 821 .writepages = btree_writepages, 822 .release_folio = btree_release_folio, 823 .invalidate_folio = btree_invalidate_folio, 824 .migrate_folio = btree_migrate_folio, 825 .dirty_folio = btree_dirty_folio, 826 }; 827 828 struct extent_buffer *btrfs_find_create_tree_block( 829 struct btrfs_fs_info *fs_info, 830 u64 bytenr, u64 owner_root, 831 int level) 832 { 833 if (btrfs_is_testing(fs_info)) 834 return alloc_test_extent_buffer(fs_info, bytenr); 835 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 836 } 837 838 /* 839 * Read tree block at logical address @bytenr and do variant basic but critical 840 * verification. 841 * 842 * @check: expected tree parentness check, see comments of the 843 * structure for details. 844 */ 845 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 846 struct btrfs_tree_parent_check *check) 847 { 848 struct extent_buffer *buf = NULL; 849 int ret; 850 851 ASSERT(check); 852 853 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root, 854 check->level); 855 if (IS_ERR(buf)) 856 return buf; 857 858 ret = btrfs_read_extent_buffer(buf, check); 859 if (ret) { 860 free_extent_buffer_stale(buf); 861 return ERR_PTR(ret); 862 } 863 if (btrfs_check_eb_owner(buf, check->owner_root)) { 864 free_extent_buffer_stale(buf); 865 return ERR_PTR(-EUCLEAN); 866 } 867 return buf; 868 869 } 870 871 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 872 u64 objectid) 873 { 874 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 875 876 memset(&root->root_key, 0, sizeof(root->root_key)); 877 memset(&root->root_item, 0, sizeof(root->root_item)); 878 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 879 root->fs_info = fs_info; 880 root->root_key.objectid = objectid; 881 root->node = NULL; 882 root->commit_root = NULL; 883 root->state = 0; 884 RB_CLEAR_NODE(&root->rb_node); 885 886 root->last_trans = 0; 887 root->free_objectid = 0; 888 root->nr_delalloc_inodes = 0; 889 root->nr_ordered_extents = 0; 890 root->inode_tree = RB_ROOT; 891 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 892 893 btrfs_init_root_block_rsv(root); 894 895 INIT_LIST_HEAD(&root->dirty_list); 896 INIT_LIST_HEAD(&root->root_list); 897 INIT_LIST_HEAD(&root->delalloc_inodes); 898 INIT_LIST_HEAD(&root->delalloc_root); 899 INIT_LIST_HEAD(&root->ordered_extents); 900 INIT_LIST_HEAD(&root->ordered_root); 901 INIT_LIST_HEAD(&root->reloc_dirty_list); 902 INIT_LIST_HEAD(&root->logged_list[0]); 903 INIT_LIST_HEAD(&root->logged_list[1]); 904 spin_lock_init(&root->inode_lock); 905 spin_lock_init(&root->delalloc_lock); 906 spin_lock_init(&root->ordered_extent_lock); 907 spin_lock_init(&root->accounting_lock); 908 spin_lock_init(&root->log_extents_lock[0]); 909 spin_lock_init(&root->log_extents_lock[1]); 910 spin_lock_init(&root->qgroup_meta_rsv_lock); 911 mutex_init(&root->objectid_mutex); 912 mutex_init(&root->log_mutex); 913 mutex_init(&root->ordered_extent_mutex); 914 mutex_init(&root->delalloc_mutex); 915 init_waitqueue_head(&root->qgroup_flush_wait); 916 init_waitqueue_head(&root->log_writer_wait); 917 init_waitqueue_head(&root->log_commit_wait[0]); 918 init_waitqueue_head(&root->log_commit_wait[1]); 919 INIT_LIST_HEAD(&root->log_ctxs[0]); 920 INIT_LIST_HEAD(&root->log_ctxs[1]); 921 atomic_set(&root->log_commit[0], 0); 922 atomic_set(&root->log_commit[1], 0); 923 atomic_set(&root->log_writers, 0); 924 atomic_set(&root->log_batch, 0); 925 refcount_set(&root->refs, 1); 926 atomic_set(&root->snapshot_force_cow, 0); 927 atomic_set(&root->nr_swapfiles, 0); 928 root->log_transid = 0; 929 root->log_transid_committed = -1; 930 root->last_log_commit = 0; 931 root->anon_dev = 0; 932 if (!dummy) { 933 extent_io_tree_init(fs_info, &root->dirty_log_pages, 934 IO_TREE_ROOT_DIRTY_LOG_PAGES); 935 extent_io_tree_init(fs_info, &root->log_csum_range, 936 IO_TREE_LOG_CSUM_RANGE); 937 } 938 939 spin_lock_init(&root->root_item_lock); 940 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 941 #ifdef CONFIG_BTRFS_DEBUG 942 INIT_LIST_HEAD(&root->leak_list); 943 spin_lock(&fs_info->fs_roots_radix_lock); 944 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 945 spin_unlock(&fs_info->fs_roots_radix_lock); 946 #endif 947 } 948 949 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 950 u64 objectid, gfp_t flags) 951 { 952 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 953 if (root) 954 __setup_root(root, fs_info, objectid); 955 return root; 956 } 957 958 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 959 /* Should only be used by the testing infrastructure */ 960 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 961 { 962 struct btrfs_root *root; 963 964 if (!fs_info) 965 return ERR_PTR(-EINVAL); 966 967 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 968 if (!root) 969 return ERR_PTR(-ENOMEM); 970 971 /* We don't use the stripesize in selftest, set it as sectorsize */ 972 root->alloc_bytenr = 0; 973 974 return root; 975 } 976 #endif 977 978 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) 979 { 980 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); 981 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); 982 983 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); 984 } 985 986 static int global_root_key_cmp(const void *k, const struct rb_node *node) 987 { 988 const struct btrfs_key *key = k; 989 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); 990 991 return btrfs_comp_cpu_keys(key, &root->root_key); 992 } 993 994 int btrfs_global_root_insert(struct btrfs_root *root) 995 { 996 struct btrfs_fs_info *fs_info = root->fs_info; 997 struct rb_node *tmp; 998 999 write_lock(&fs_info->global_root_lock); 1000 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); 1001 write_unlock(&fs_info->global_root_lock); 1002 ASSERT(!tmp); 1003 1004 return tmp ? -EEXIST : 0; 1005 } 1006 1007 void btrfs_global_root_delete(struct btrfs_root *root) 1008 { 1009 struct btrfs_fs_info *fs_info = root->fs_info; 1010 1011 write_lock(&fs_info->global_root_lock); 1012 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1013 write_unlock(&fs_info->global_root_lock); 1014 } 1015 1016 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, 1017 struct btrfs_key *key) 1018 { 1019 struct rb_node *node; 1020 struct btrfs_root *root = NULL; 1021 1022 read_lock(&fs_info->global_root_lock); 1023 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); 1024 if (node) 1025 root = container_of(node, struct btrfs_root, rb_node); 1026 read_unlock(&fs_info->global_root_lock); 1027 1028 return root; 1029 } 1030 1031 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) 1032 { 1033 struct btrfs_block_group *block_group; 1034 u64 ret; 1035 1036 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 1037 return 0; 1038 1039 if (bytenr) 1040 block_group = btrfs_lookup_block_group(fs_info, bytenr); 1041 else 1042 block_group = btrfs_lookup_first_block_group(fs_info, bytenr); 1043 ASSERT(block_group); 1044 if (!block_group) 1045 return 0; 1046 ret = block_group->global_root_id; 1047 btrfs_put_block_group(block_group); 1048 1049 return ret; 1050 } 1051 1052 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) 1053 { 1054 struct btrfs_key key = { 1055 .objectid = BTRFS_CSUM_TREE_OBJECTID, 1056 .type = BTRFS_ROOT_ITEM_KEY, 1057 .offset = btrfs_global_root_id(fs_info, bytenr), 1058 }; 1059 1060 return btrfs_global_root(fs_info, &key); 1061 } 1062 1063 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) 1064 { 1065 struct btrfs_key key = { 1066 .objectid = BTRFS_EXTENT_TREE_OBJECTID, 1067 .type = BTRFS_ROOT_ITEM_KEY, 1068 .offset = btrfs_global_root_id(fs_info, bytenr), 1069 }; 1070 1071 return btrfs_global_root(fs_info, &key); 1072 } 1073 1074 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info) 1075 { 1076 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) 1077 return fs_info->block_group_root; 1078 return btrfs_extent_root(fs_info, 0); 1079 } 1080 1081 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1082 u64 objectid) 1083 { 1084 struct btrfs_fs_info *fs_info = trans->fs_info; 1085 struct extent_buffer *leaf; 1086 struct btrfs_root *tree_root = fs_info->tree_root; 1087 struct btrfs_root *root; 1088 struct btrfs_key key; 1089 unsigned int nofs_flag; 1090 int ret = 0; 1091 1092 /* 1093 * We're holding a transaction handle, so use a NOFS memory allocation 1094 * context to avoid deadlock if reclaim happens. 1095 */ 1096 nofs_flag = memalloc_nofs_save(); 1097 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 1098 memalloc_nofs_restore(nofs_flag); 1099 if (!root) 1100 return ERR_PTR(-ENOMEM); 1101 1102 root->root_key.objectid = objectid; 1103 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1104 root->root_key.offset = 0; 1105 1106 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 1107 BTRFS_NESTING_NORMAL); 1108 if (IS_ERR(leaf)) { 1109 ret = PTR_ERR(leaf); 1110 leaf = NULL; 1111 goto fail; 1112 } 1113 1114 root->node = leaf; 1115 btrfs_mark_buffer_dirty(leaf); 1116 1117 root->commit_root = btrfs_root_node(root); 1118 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1119 1120 btrfs_set_root_flags(&root->root_item, 0); 1121 btrfs_set_root_limit(&root->root_item, 0); 1122 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1123 btrfs_set_root_generation(&root->root_item, trans->transid); 1124 btrfs_set_root_level(&root->root_item, 0); 1125 btrfs_set_root_refs(&root->root_item, 1); 1126 btrfs_set_root_used(&root->root_item, leaf->len); 1127 btrfs_set_root_last_snapshot(&root->root_item, 0); 1128 btrfs_set_root_dirid(&root->root_item, 0); 1129 if (is_fstree(objectid)) 1130 generate_random_guid(root->root_item.uuid); 1131 else 1132 export_guid(root->root_item.uuid, &guid_null); 1133 btrfs_set_root_drop_level(&root->root_item, 0); 1134 1135 btrfs_tree_unlock(leaf); 1136 1137 key.objectid = objectid; 1138 key.type = BTRFS_ROOT_ITEM_KEY; 1139 key.offset = 0; 1140 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1141 if (ret) 1142 goto fail; 1143 1144 return root; 1145 1146 fail: 1147 btrfs_put_root(root); 1148 1149 return ERR_PTR(ret); 1150 } 1151 1152 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1153 struct btrfs_fs_info *fs_info) 1154 { 1155 struct btrfs_root *root; 1156 1157 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 1158 if (!root) 1159 return ERR_PTR(-ENOMEM); 1160 1161 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1162 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1163 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1164 1165 return root; 1166 } 1167 1168 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 1169 struct btrfs_root *root) 1170 { 1171 struct extent_buffer *leaf; 1172 1173 /* 1174 * DON'T set SHAREABLE bit for log trees. 1175 * 1176 * Log trees are not exposed to user space thus can't be snapshotted, 1177 * and they go away before a real commit is actually done. 1178 * 1179 * They do store pointers to file data extents, and those reference 1180 * counts still get updated (along with back refs to the log tree). 1181 */ 1182 1183 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1184 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL); 1185 if (IS_ERR(leaf)) 1186 return PTR_ERR(leaf); 1187 1188 root->node = leaf; 1189 1190 btrfs_mark_buffer_dirty(root->node); 1191 btrfs_tree_unlock(root->node); 1192 1193 return 0; 1194 } 1195 1196 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1197 struct btrfs_fs_info *fs_info) 1198 { 1199 struct btrfs_root *log_root; 1200 1201 log_root = alloc_log_tree(trans, fs_info); 1202 if (IS_ERR(log_root)) 1203 return PTR_ERR(log_root); 1204 1205 if (!btrfs_is_zoned(fs_info)) { 1206 int ret = btrfs_alloc_log_tree_node(trans, log_root); 1207 1208 if (ret) { 1209 btrfs_put_root(log_root); 1210 return ret; 1211 } 1212 } 1213 1214 WARN_ON(fs_info->log_root_tree); 1215 fs_info->log_root_tree = log_root; 1216 return 0; 1217 } 1218 1219 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1220 struct btrfs_root *root) 1221 { 1222 struct btrfs_fs_info *fs_info = root->fs_info; 1223 struct btrfs_root *log_root; 1224 struct btrfs_inode_item *inode_item; 1225 int ret; 1226 1227 log_root = alloc_log_tree(trans, fs_info); 1228 if (IS_ERR(log_root)) 1229 return PTR_ERR(log_root); 1230 1231 ret = btrfs_alloc_log_tree_node(trans, log_root); 1232 if (ret) { 1233 btrfs_put_root(log_root); 1234 return ret; 1235 } 1236 1237 log_root->last_trans = trans->transid; 1238 log_root->root_key.offset = root->root_key.objectid; 1239 1240 inode_item = &log_root->root_item.inode; 1241 btrfs_set_stack_inode_generation(inode_item, 1); 1242 btrfs_set_stack_inode_size(inode_item, 3); 1243 btrfs_set_stack_inode_nlink(inode_item, 1); 1244 btrfs_set_stack_inode_nbytes(inode_item, 1245 fs_info->nodesize); 1246 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1247 1248 btrfs_set_root_node(&log_root->root_item, log_root->node); 1249 1250 WARN_ON(root->log_root); 1251 root->log_root = log_root; 1252 root->log_transid = 0; 1253 root->log_transid_committed = -1; 1254 root->last_log_commit = 0; 1255 return 0; 1256 } 1257 1258 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1259 struct btrfs_path *path, 1260 struct btrfs_key *key) 1261 { 1262 struct btrfs_root *root; 1263 struct btrfs_tree_parent_check check = { 0 }; 1264 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1265 u64 generation; 1266 int ret; 1267 int level; 1268 1269 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1270 if (!root) 1271 return ERR_PTR(-ENOMEM); 1272 1273 ret = btrfs_find_root(tree_root, key, path, 1274 &root->root_item, &root->root_key); 1275 if (ret) { 1276 if (ret > 0) 1277 ret = -ENOENT; 1278 goto fail; 1279 } 1280 1281 generation = btrfs_root_generation(&root->root_item); 1282 level = btrfs_root_level(&root->root_item); 1283 check.level = level; 1284 check.transid = generation; 1285 check.owner_root = key->objectid; 1286 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item), 1287 &check); 1288 if (IS_ERR(root->node)) { 1289 ret = PTR_ERR(root->node); 1290 root->node = NULL; 1291 goto fail; 1292 } 1293 if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1294 ret = -EIO; 1295 goto fail; 1296 } 1297 1298 /* 1299 * For real fs, and not log/reloc trees, root owner must 1300 * match its root node owner 1301 */ 1302 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) && 1303 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1304 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1305 root->root_key.objectid != btrfs_header_owner(root->node)) { 1306 btrfs_crit(fs_info, 1307 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu", 1308 root->root_key.objectid, root->node->start, 1309 btrfs_header_owner(root->node), 1310 root->root_key.objectid); 1311 ret = -EUCLEAN; 1312 goto fail; 1313 } 1314 root->commit_root = btrfs_root_node(root); 1315 return root; 1316 fail: 1317 btrfs_put_root(root); 1318 return ERR_PTR(ret); 1319 } 1320 1321 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1322 struct btrfs_key *key) 1323 { 1324 struct btrfs_root *root; 1325 struct btrfs_path *path; 1326 1327 path = btrfs_alloc_path(); 1328 if (!path) 1329 return ERR_PTR(-ENOMEM); 1330 root = read_tree_root_path(tree_root, path, key); 1331 btrfs_free_path(path); 1332 1333 return root; 1334 } 1335 1336 /* 1337 * Initialize subvolume root in-memory structure 1338 * 1339 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1340 */ 1341 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1342 { 1343 int ret; 1344 unsigned int nofs_flag; 1345 1346 /* 1347 * We might be called under a transaction (e.g. indirect backref 1348 * resolution) which could deadlock if it triggers memory reclaim 1349 */ 1350 nofs_flag = memalloc_nofs_save(); 1351 ret = btrfs_drew_lock_init(&root->snapshot_lock); 1352 memalloc_nofs_restore(nofs_flag); 1353 if (ret) 1354 goto fail; 1355 1356 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1357 !btrfs_is_data_reloc_root(root)) { 1358 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1359 btrfs_check_and_init_root_item(&root->root_item); 1360 } 1361 1362 /* 1363 * Don't assign anonymous block device to roots that are not exposed to 1364 * userspace, the id pool is limited to 1M 1365 */ 1366 if (is_fstree(root->root_key.objectid) && 1367 btrfs_root_refs(&root->root_item) > 0) { 1368 if (!anon_dev) { 1369 ret = get_anon_bdev(&root->anon_dev); 1370 if (ret) 1371 goto fail; 1372 } else { 1373 root->anon_dev = anon_dev; 1374 } 1375 } 1376 1377 mutex_lock(&root->objectid_mutex); 1378 ret = btrfs_init_root_free_objectid(root); 1379 if (ret) { 1380 mutex_unlock(&root->objectid_mutex); 1381 goto fail; 1382 } 1383 1384 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1385 1386 mutex_unlock(&root->objectid_mutex); 1387 1388 return 0; 1389 fail: 1390 /* The caller is responsible to call btrfs_free_fs_root */ 1391 return ret; 1392 } 1393 1394 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1395 u64 root_id) 1396 { 1397 struct btrfs_root *root; 1398 1399 spin_lock(&fs_info->fs_roots_radix_lock); 1400 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1401 (unsigned long)root_id); 1402 if (root) 1403 root = btrfs_grab_root(root); 1404 spin_unlock(&fs_info->fs_roots_radix_lock); 1405 return root; 1406 } 1407 1408 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1409 u64 objectid) 1410 { 1411 struct btrfs_key key = { 1412 .objectid = objectid, 1413 .type = BTRFS_ROOT_ITEM_KEY, 1414 .offset = 0, 1415 }; 1416 1417 if (objectid == BTRFS_ROOT_TREE_OBJECTID) 1418 return btrfs_grab_root(fs_info->tree_root); 1419 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 1420 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1421 if (objectid == BTRFS_CHUNK_TREE_OBJECTID) 1422 return btrfs_grab_root(fs_info->chunk_root); 1423 if (objectid == BTRFS_DEV_TREE_OBJECTID) 1424 return btrfs_grab_root(fs_info->dev_root); 1425 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 1426 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1427 if (objectid == BTRFS_QUOTA_TREE_OBJECTID) 1428 return btrfs_grab_root(fs_info->quota_root) ? 1429 fs_info->quota_root : ERR_PTR(-ENOENT); 1430 if (objectid == BTRFS_UUID_TREE_OBJECTID) 1431 return btrfs_grab_root(fs_info->uuid_root) ? 1432 fs_info->uuid_root : ERR_PTR(-ENOENT); 1433 if (objectid == BTRFS_BLOCK_GROUP_TREE_OBJECTID) 1434 return btrfs_grab_root(fs_info->block_group_root) ? 1435 fs_info->block_group_root : ERR_PTR(-ENOENT); 1436 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) { 1437 struct btrfs_root *root = btrfs_global_root(fs_info, &key); 1438 1439 return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT); 1440 } 1441 return NULL; 1442 } 1443 1444 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1445 struct btrfs_root *root) 1446 { 1447 int ret; 1448 1449 ret = radix_tree_preload(GFP_NOFS); 1450 if (ret) 1451 return ret; 1452 1453 spin_lock(&fs_info->fs_roots_radix_lock); 1454 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1455 (unsigned long)root->root_key.objectid, 1456 root); 1457 if (ret == 0) { 1458 btrfs_grab_root(root); 1459 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1460 } 1461 spin_unlock(&fs_info->fs_roots_radix_lock); 1462 radix_tree_preload_end(); 1463 1464 return ret; 1465 } 1466 1467 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) 1468 { 1469 #ifdef CONFIG_BTRFS_DEBUG 1470 struct btrfs_root *root; 1471 1472 while (!list_empty(&fs_info->allocated_roots)) { 1473 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1474 1475 root = list_first_entry(&fs_info->allocated_roots, 1476 struct btrfs_root, leak_list); 1477 btrfs_err(fs_info, "leaked root %s refcount %d", 1478 btrfs_root_name(&root->root_key, buf), 1479 refcount_read(&root->refs)); 1480 while (refcount_read(&root->refs) > 1) 1481 btrfs_put_root(root); 1482 btrfs_put_root(root); 1483 } 1484 #endif 1485 } 1486 1487 static void free_global_roots(struct btrfs_fs_info *fs_info) 1488 { 1489 struct btrfs_root *root; 1490 struct rb_node *node; 1491 1492 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { 1493 root = rb_entry(node, struct btrfs_root, rb_node); 1494 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1495 btrfs_put_root(root); 1496 } 1497 } 1498 1499 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1500 { 1501 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1502 percpu_counter_destroy(&fs_info->delalloc_bytes); 1503 percpu_counter_destroy(&fs_info->ordered_bytes); 1504 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1505 btrfs_free_csum_hash(fs_info); 1506 btrfs_free_stripe_hash_table(fs_info); 1507 btrfs_free_ref_cache(fs_info); 1508 kfree(fs_info->balance_ctl); 1509 kfree(fs_info->delayed_root); 1510 free_global_roots(fs_info); 1511 btrfs_put_root(fs_info->tree_root); 1512 btrfs_put_root(fs_info->chunk_root); 1513 btrfs_put_root(fs_info->dev_root); 1514 btrfs_put_root(fs_info->quota_root); 1515 btrfs_put_root(fs_info->uuid_root); 1516 btrfs_put_root(fs_info->fs_root); 1517 btrfs_put_root(fs_info->data_reloc_root); 1518 btrfs_put_root(fs_info->block_group_root); 1519 btrfs_check_leaked_roots(fs_info); 1520 btrfs_extent_buffer_leak_debug_check(fs_info); 1521 kfree(fs_info->super_copy); 1522 kfree(fs_info->super_for_commit); 1523 kfree(fs_info->subpage_info); 1524 kvfree(fs_info); 1525 } 1526 1527 1528 /* 1529 * Get an in-memory reference of a root structure. 1530 * 1531 * For essential trees like root/extent tree, we grab it from fs_info directly. 1532 * For subvolume trees, we check the cached filesystem roots first. If not 1533 * found, then read it from disk and add it to cached fs roots. 1534 * 1535 * Caller should release the root by calling btrfs_put_root() after the usage. 1536 * 1537 * NOTE: Reloc and log trees can't be read by this function as they share the 1538 * same root objectid. 1539 * 1540 * @objectid: root id 1541 * @anon_dev: preallocated anonymous block device number for new roots, 1542 * pass 0 for new allocation. 1543 * @check_ref: whether to check root item references, If true, return -ENOENT 1544 * for orphan roots 1545 */ 1546 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1547 u64 objectid, dev_t anon_dev, 1548 bool check_ref) 1549 { 1550 struct btrfs_root *root; 1551 struct btrfs_path *path; 1552 struct btrfs_key key; 1553 int ret; 1554 1555 root = btrfs_get_global_root(fs_info, objectid); 1556 if (root) 1557 return root; 1558 again: 1559 root = btrfs_lookup_fs_root(fs_info, objectid); 1560 if (root) { 1561 /* Shouldn't get preallocated anon_dev for cached roots */ 1562 ASSERT(!anon_dev); 1563 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1564 btrfs_put_root(root); 1565 return ERR_PTR(-ENOENT); 1566 } 1567 return root; 1568 } 1569 1570 key.objectid = objectid; 1571 key.type = BTRFS_ROOT_ITEM_KEY; 1572 key.offset = (u64)-1; 1573 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1574 if (IS_ERR(root)) 1575 return root; 1576 1577 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1578 ret = -ENOENT; 1579 goto fail; 1580 } 1581 1582 ret = btrfs_init_fs_root(root, anon_dev); 1583 if (ret) 1584 goto fail; 1585 1586 path = btrfs_alloc_path(); 1587 if (!path) { 1588 ret = -ENOMEM; 1589 goto fail; 1590 } 1591 key.objectid = BTRFS_ORPHAN_OBJECTID; 1592 key.type = BTRFS_ORPHAN_ITEM_KEY; 1593 key.offset = objectid; 1594 1595 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1596 btrfs_free_path(path); 1597 if (ret < 0) 1598 goto fail; 1599 if (ret == 0) 1600 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1601 1602 ret = btrfs_insert_fs_root(fs_info, root); 1603 if (ret) { 1604 if (ret == -EEXIST) { 1605 btrfs_put_root(root); 1606 goto again; 1607 } 1608 goto fail; 1609 } 1610 return root; 1611 fail: 1612 /* 1613 * If our caller provided us an anonymous device, then it's his 1614 * responsibility to free it in case we fail. So we have to set our 1615 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() 1616 * and once again by our caller. 1617 */ 1618 if (anon_dev) 1619 root->anon_dev = 0; 1620 btrfs_put_root(root); 1621 return ERR_PTR(ret); 1622 } 1623 1624 /* 1625 * Get in-memory reference of a root structure 1626 * 1627 * @objectid: tree objectid 1628 * @check_ref: if set, verify that the tree exists and the item has at least 1629 * one reference 1630 */ 1631 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1632 u64 objectid, bool check_ref) 1633 { 1634 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref); 1635 } 1636 1637 /* 1638 * Get in-memory reference of a root structure, created as new, optionally pass 1639 * the anonymous block device id 1640 * 1641 * @objectid: tree objectid 1642 * @anon_dev: if zero, allocate a new anonymous block device or use the 1643 * parameter value 1644 */ 1645 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1646 u64 objectid, dev_t anon_dev) 1647 { 1648 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1649 } 1650 1651 /* 1652 * btrfs_get_fs_root_commit_root - return a root for the given objectid 1653 * @fs_info: the fs_info 1654 * @objectid: the objectid we need to lookup 1655 * 1656 * This is exclusively used for backref walking, and exists specifically because 1657 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1658 * creation time, which means we may have to read the tree_root in order to look 1659 * up a fs root that is not in memory. If the root is not in memory we will 1660 * read the tree root commit root and look up the fs root from there. This is a 1661 * temporary root, it will not be inserted into the radix tree as it doesn't 1662 * have the most uptodate information, it'll simply be discarded once the 1663 * backref code is finished using the root. 1664 */ 1665 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1666 struct btrfs_path *path, 1667 u64 objectid) 1668 { 1669 struct btrfs_root *root; 1670 struct btrfs_key key; 1671 1672 ASSERT(path->search_commit_root && path->skip_locking); 1673 1674 /* 1675 * This can return -ENOENT if we ask for a root that doesn't exist, but 1676 * since this is called via the backref walking code we won't be looking 1677 * up a root that doesn't exist, unless there's corruption. So if root 1678 * != NULL just return it. 1679 */ 1680 root = btrfs_get_global_root(fs_info, objectid); 1681 if (root) 1682 return root; 1683 1684 root = btrfs_lookup_fs_root(fs_info, objectid); 1685 if (root) 1686 return root; 1687 1688 key.objectid = objectid; 1689 key.type = BTRFS_ROOT_ITEM_KEY; 1690 key.offset = (u64)-1; 1691 root = read_tree_root_path(fs_info->tree_root, path, &key); 1692 btrfs_release_path(path); 1693 1694 return root; 1695 } 1696 1697 static int cleaner_kthread(void *arg) 1698 { 1699 struct btrfs_fs_info *fs_info = arg; 1700 int again; 1701 1702 while (1) { 1703 again = 0; 1704 1705 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1706 1707 /* Make the cleaner go to sleep early. */ 1708 if (btrfs_need_cleaner_sleep(fs_info)) 1709 goto sleep; 1710 1711 /* 1712 * Do not do anything if we might cause open_ctree() to block 1713 * before we have finished mounting the filesystem. 1714 */ 1715 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1716 goto sleep; 1717 1718 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1719 goto sleep; 1720 1721 /* 1722 * Avoid the problem that we change the status of the fs 1723 * during the above check and trylock. 1724 */ 1725 if (btrfs_need_cleaner_sleep(fs_info)) { 1726 mutex_unlock(&fs_info->cleaner_mutex); 1727 goto sleep; 1728 } 1729 1730 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags)) 1731 btrfs_sysfs_feature_update(fs_info); 1732 1733 btrfs_run_delayed_iputs(fs_info); 1734 1735 again = btrfs_clean_one_deleted_snapshot(fs_info); 1736 mutex_unlock(&fs_info->cleaner_mutex); 1737 1738 /* 1739 * The defragger has dealt with the R/O remount and umount, 1740 * needn't do anything special here. 1741 */ 1742 btrfs_run_defrag_inodes(fs_info); 1743 1744 /* 1745 * Acquires fs_info->reclaim_bgs_lock to avoid racing 1746 * with relocation (btrfs_relocate_chunk) and relocation 1747 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1748 * after acquiring fs_info->reclaim_bgs_lock. So we 1749 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1750 * unused block groups. 1751 */ 1752 btrfs_delete_unused_bgs(fs_info); 1753 1754 /* 1755 * Reclaim block groups in the reclaim_bgs list after we deleted 1756 * all unused block_groups. This possibly gives us some more free 1757 * space. 1758 */ 1759 btrfs_reclaim_bgs(fs_info); 1760 sleep: 1761 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1762 if (kthread_should_park()) 1763 kthread_parkme(); 1764 if (kthread_should_stop()) 1765 return 0; 1766 if (!again) { 1767 set_current_state(TASK_INTERRUPTIBLE); 1768 schedule(); 1769 __set_current_state(TASK_RUNNING); 1770 } 1771 } 1772 } 1773 1774 static int transaction_kthread(void *arg) 1775 { 1776 struct btrfs_root *root = arg; 1777 struct btrfs_fs_info *fs_info = root->fs_info; 1778 struct btrfs_trans_handle *trans; 1779 struct btrfs_transaction *cur; 1780 u64 transid; 1781 time64_t delta; 1782 unsigned long delay; 1783 bool cannot_commit; 1784 1785 do { 1786 cannot_commit = false; 1787 delay = msecs_to_jiffies(fs_info->commit_interval * 1000); 1788 mutex_lock(&fs_info->transaction_kthread_mutex); 1789 1790 spin_lock(&fs_info->trans_lock); 1791 cur = fs_info->running_transaction; 1792 if (!cur) { 1793 spin_unlock(&fs_info->trans_lock); 1794 goto sleep; 1795 } 1796 1797 delta = ktime_get_seconds() - cur->start_time; 1798 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && 1799 cur->state < TRANS_STATE_COMMIT_START && 1800 delta < fs_info->commit_interval) { 1801 spin_unlock(&fs_info->trans_lock); 1802 delay -= msecs_to_jiffies((delta - 1) * 1000); 1803 delay = min(delay, 1804 msecs_to_jiffies(fs_info->commit_interval * 1000)); 1805 goto sleep; 1806 } 1807 transid = cur->transid; 1808 spin_unlock(&fs_info->trans_lock); 1809 1810 /* If the file system is aborted, this will always fail. */ 1811 trans = btrfs_attach_transaction(root); 1812 if (IS_ERR(trans)) { 1813 if (PTR_ERR(trans) != -ENOENT) 1814 cannot_commit = true; 1815 goto sleep; 1816 } 1817 if (transid == trans->transid) { 1818 btrfs_commit_transaction(trans); 1819 } else { 1820 btrfs_end_transaction(trans); 1821 } 1822 sleep: 1823 wake_up_process(fs_info->cleaner_kthread); 1824 mutex_unlock(&fs_info->transaction_kthread_mutex); 1825 1826 if (BTRFS_FS_ERROR(fs_info)) 1827 btrfs_cleanup_transaction(fs_info); 1828 if (!kthread_should_stop() && 1829 (!btrfs_transaction_blocked(fs_info) || 1830 cannot_commit)) 1831 schedule_timeout_interruptible(delay); 1832 } while (!kthread_should_stop()); 1833 return 0; 1834 } 1835 1836 /* 1837 * This will find the highest generation in the array of root backups. The 1838 * index of the highest array is returned, or -EINVAL if we can't find 1839 * anything. 1840 * 1841 * We check to make sure the array is valid by comparing the 1842 * generation of the latest root in the array with the generation 1843 * in the super block. If they don't match we pitch it. 1844 */ 1845 static int find_newest_super_backup(struct btrfs_fs_info *info) 1846 { 1847 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1848 u64 cur; 1849 struct btrfs_root_backup *root_backup; 1850 int i; 1851 1852 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1853 root_backup = info->super_copy->super_roots + i; 1854 cur = btrfs_backup_tree_root_gen(root_backup); 1855 if (cur == newest_gen) 1856 return i; 1857 } 1858 1859 return -EINVAL; 1860 } 1861 1862 /* 1863 * copy all the root pointers into the super backup array. 1864 * this will bump the backup pointer by one when it is 1865 * done 1866 */ 1867 static void backup_super_roots(struct btrfs_fs_info *info) 1868 { 1869 const int next_backup = info->backup_root_index; 1870 struct btrfs_root_backup *root_backup; 1871 1872 root_backup = info->super_for_commit->super_roots + next_backup; 1873 1874 /* 1875 * make sure all of our padding and empty slots get zero filled 1876 * regardless of which ones we use today 1877 */ 1878 memset(root_backup, 0, sizeof(*root_backup)); 1879 1880 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1881 1882 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1883 btrfs_set_backup_tree_root_gen(root_backup, 1884 btrfs_header_generation(info->tree_root->node)); 1885 1886 btrfs_set_backup_tree_root_level(root_backup, 1887 btrfs_header_level(info->tree_root->node)); 1888 1889 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1890 btrfs_set_backup_chunk_root_gen(root_backup, 1891 btrfs_header_generation(info->chunk_root->node)); 1892 btrfs_set_backup_chunk_root_level(root_backup, 1893 btrfs_header_level(info->chunk_root->node)); 1894 1895 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) { 1896 struct btrfs_root *extent_root = btrfs_extent_root(info, 0); 1897 struct btrfs_root *csum_root = btrfs_csum_root(info, 0); 1898 1899 btrfs_set_backup_extent_root(root_backup, 1900 extent_root->node->start); 1901 btrfs_set_backup_extent_root_gen(root_backup, 1902 btrfs_header_generation(extent_root->node)); 1903 btrfs_set_backup_extent_root_level(root_backup, 1904 btrfs_header_level(extent_root->node)); 1905 1906 btrfs_set_backup_csum_root(root_backup, csum_root->node->start); 1907 btrfs_set_backup_csum_root_gen(root_backup, 1908 btrfs_header_generation(csum_root->node)); 1909 btrfs_set_backup_csum_root_level(root_backup, 1910 btrfs_header_level(csum_root->node)); 1911 } 1912 1913 /* 1914 * we might commit during log recovery, which happens before we set 1915 * the fs_root. Make sure it is valid before we fill it in. 1916 */ 1917 if (info->fs_root && info->fs_root->node) { 1918 btrfs_set_backup_fs_root(root_backup, 1919 info->fs_root->node->start); 1920 btrfs_set_backup_fs_root_gen(root_backup, 1921 btrfs_header_generation(info->fs_root->node)); 1922 btrfs_set_backup_fs_root_level(root_backup, 1923 btrfs_header_level(info->fs_root->node)); 1924 } 1925 1926 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1927 btrfs_set_backup_dev_root_gen(root_backup, 1928 btrfs_header_generation(info->dev_root->node)); 1929 btrfs_set_backup_dev_root_level(root_backup, 1930 btrfs_header_level(info->dev_root->node)); 1931 1932 btrfs_set_backup_total_bytes(root_backup, 1933 btrfs_super_total_bytes(info->super_copy)); 1934 btrfs_set_backup_bytes_used(root_backup, 1935 btrfs_super_bytes_used(info->super_copy)); 1936 btrfs_set_backup_num_devices(root_backup, 1937 btrfs_super_num_devices(info->super_copy)); 1938 1939 /* 1940 * if we don't copy this out to the super_copy, it won't get remembered 1941 * for the next commit 1942 */ 1943 memcpy(&info->super_copy->super_roots, 1944 &info->super_for_commit->super_roots, 1945 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1946 } 1947 1948 /* 1949 * read_backup_root - Reads a backup root based on the passed priority. Prio 0 1950 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1951 * 1952 * fs_info - filesystem whose backup roots need to be read 1953 * priority - priority of backup root required 1954 * 1955 * Returns backup root index on success and -EINVAL otherwise. 1956 */ 1957 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1958 { 1959 int backup_index = find_newest_super_backup(fs_info); 1960 struct btrfs_super_block *super = fs_info->super_copy; 1961 struct btrfs_root_backup *root_backup; 1962 1963 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1964 if (priority == 0) 1965 return backup_index; 1966 1967 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1968 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1969 } else { 1970 return -EINVAL; 1971 } 1972 1973 root_backup = super->super_roots + backup_index; 1974 1975 btrfs_set_super_generation(super, 1976 btrfs_backup_tree_root_gen(root_backup)); 1977 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1978 btrfs_set_super_root_level(super, 1979 btrfs_backup_tree_root_level(root_backup)); 1980 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1981 1982 /* 1983 * Fixme: the total bytes and num_devices need to match or we should 1984 * need a fsck 1985 */ 1986 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1987 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1988 1989 return backup_index; 1990 } 1991 1992 /* helper to cleanup workers */ 1993 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1994 { 1995 btrfs_destroy_workqueue(fs_info->fixup_workers); 1996 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1997 btrfs_destroy_workqueue(fs_info->hipri_workers); 1998 btrfs_destroy_workqueue(fs_info->workers); 1999 if (fs_info->endio_workers) 2000 destroy_workqueue(fs_info->endio_workers); 2001 if (fs_info->rmw_workers) 2002 destroy_workqueue(fs_info->rmw_workers); 2003 if (fs_info->compressed_write_workers) 2004 destroy_workqueue(fs_info->compressed_write_workers); 2005 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2006 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2007 btrfs_destroy_workqueue(fs_info->delayed_workers); 2008 btrfs_destroy_workqueue(fs_info->caching_workers); 2009 btrfs_destroy_workqueue(fs_info->flush_workers); 2010 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2011 if (fs_info->discard_ctl.discard_workers) 2012 destroy_workqueue(fs_info->discard_ctl.discard_workers); 2013 /* 2014 * Now that all other work queues are destroyed, we can safely destroy 2015 * the queues used for metadata I/O, since tasks from those other work 2016 * queues can do metadata I/O operations. 2017 */ 2018 if (fs_info->endio_meta_workers) 2019 destroy_workqueue(fs_info->endio_meta_workers); 2020 } 2021 2022 static void free_root_extent_buffers(struct btrfs_root *root) 2023 { 2024 if (root) { 2025 free_extent_buffer(root->node); 2026 free_extent_buffer(root->commit_root); 2027 root->node = NULL; 2028 root->commit_root = NULL; 2029 } 2030 } 2031 2032 static void free_global_root_pointers(struct btrfs_fs_info *fs_info) 2033 { 2034 struct btrfs_root *root, *tmp; 2035 2036 rbtree_postorder_for_each_entry_safe(root, tmp, 2037 &fs_info->global_root_tree, 2038 rb_node) 2039 free_root_extent_buffers(root); 2040 } 2041 2042 /* helper to cleanup tree roots */ 2043 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 2044 { 2045 free_root_extent_buffers(info->tree_root); 2046 2047 free_global_root_pointers(info); 2048 free_root_extent_buffers(info->dev_root); 2049 free_root_extent_buffers(info->quota_root); 2050 free_root_extent_buffers(info->uuid_root); 2051 free_root_extent_buffers(info->fs_root); 2052 free_root_extent_buffers(info->data_reloc_root); 2053 free_root_extent_buffers(info->block_group_root); 2054 if (free_chunk_root) 2055 free_root_extent_buffers(info->chunk_root); 2056 } 2057 2058 void btrfs_put_root(struct btrfs_root *root) 2059 { 2060 if (!root) 2061 return; 2062 2063 if (refcount_dec_and_test(&root->refs)) { 2064 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2065 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 2066 if (root->anon_dev) 2067 free_anon_bdev(root->anon_dev); 2068 btrfs_drew_lock_destroy(&root->snapshot_lock); 2069 free_root_extent_buffers(root); 2070 #ifdef CONFIG_BTRFS_DEBUG 2071 spin_lock(&root->fs_info->fs_roots_radix_lock); 2072 list_del_init(&root->leak_list); 2073 spin_unlock(&root->fs_info->fs_roots_radix_lock); 2074 #endif 2075 kfree(root); 2076 } 2077 } 2078 2079 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2080 { 2081 int ret; 2082 struct btrfs_root *gang[8]; 2083 int i; 2084 2085 while (!list_empty(&fs_info->dead_roots)) { 2086 gang[0] = list_entry(fs_info->dead_roots.next, 2087 struct btrfs_root, root_list); 2088 list_del(&gang[0]->root_list); 2089 2090 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 2091 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2092 btrfs_put_root(gang[0]); 2093 } 2094 2095 while (1) { 2096 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2097 (void **)gang, 0, 2098 ARRAY_SIZE(gang)); 2099 if (!ret) 2100 break; 2101 for (i = 0; i < ret; i++) 2102 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2103 } 2104 } 2105 2106 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2107 { 2108 mutex_init(&fs_info->scrub_lock); 2109 atomic_set(&fs_info->scrubs_running, 0); 2110 atomic_set(&fs_info->scrub_pause_req, 0); 2111 atomic_set(&fs_info->scrubs_paused, 0); 2112 atomic_set(&fs_info->scrub_cancel_req, 0); 2113 init_waitqueue_head(&fs_info->scrub_pause_wait); 2114 refcount_set(&fs_info->scrub_workers_refcnt, 0); 2115 } 2116 2117 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2118 { 2119 spin_lock_init(&fs_info->balance_lock); 2120 mutex_init(&fs_info->balance_mutex); 2121 atomic_set(&fs_info->balance_pause_req, 0); 2122 atomic_set(&fs_info->balance_cancel_req, 0); 2123 fs_info->balance_ctl = NULL; 2124 init_waitqueue_head(&fs_info->balance_wait_q); 2125 atomic_set(&fs_info->reloc_cancel_req, 0); 2126 } 2127 2128 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2129 { 2130 struct inode *inode = fs_info->btree_inode; 2131 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, 2132 fs_info->tree_root); 2133 2134 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2135 set_nlink(inode, 1); 2136 /* 2137 * we set the i_size on the btree inode to the max possible int. 2138 * the real end of the address space is determined by all of 2139 * the devices in the system 2140 */ 2141 inode->i_size = OFFSET_MAX; 2142 inode->i_mapping->a_ops = &btree_aops; 2143 2144 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2145 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 2146 IO_TREE_BTREE_INODE_IO); 2147 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2148 2149 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 2150 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID; 2151 BTRFS_I(inode)->location.type = 0; 2152 BTRFS_I(inode)->location.offset = 0; 2153 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2154 __insert_inode_hash(inode, hash); 2155 } 2156 2157 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2158 { 2159 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2160 init_rwsem(&fs_info->dev_replace.rwsem); 2161 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2162 } 2163 2164 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2165 { 2166 spin_lock_init(&fs_info->qgroup_lock); 2167 mutex_init(&fs_info->qgroup_ioctl_lock); 2168 fs_info->qgroup_tree = RB_ROOT; 2169 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2170 fs_info->qgroup_seq = 1; 2171 fs_info->qgroup_ulist = NULL; 2172 fs_info->qgroup_rescan_running = false; 2173 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL; 2174 mutex_init(&fs_info->qgroup_rescan_lock); 2175 } 2176 2177 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) 2178 { 2179 u32 max_active = fs_info->thread_pool_size; 2180 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2181 2182 fs_info->workers = 2183 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16); 2184 fs_info->hipri_workers = 2185 btrfs_alloc_workqueue(fs_info, "worker-high", 2186 flags | WQ_HIGHPRI, max_active, 16); 2187 2188 fs_info->delalloc_workers = 2189 btrfs_alloc_workqueue(fs_info, "delalloc", 2190 flags, max_active, 2); 2191 2192 fs_info->flush_workers = 2193 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2194 flags, max_active, 0); 2195 2196 fs_info->caching_workers = 2197 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2198 2199 fs_info->fixup_workers = 2200 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2201 2202 fs_info->endio_workers = 2203 alloc_workqueue("btrfs-endio", flags, max_active); 2204 fs_info->endio_meta_workers = 2205 alloc_workqueue("btrfs-endio-meta", flags, max_active); 2206 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active); 2207 fs_info->endio_write_workers = 2208 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2209 max_active, 2); 2210 fs_info->compressed_write_workers = 2211 alloc_workqueue("btrfs-compressed-write", flags, max_active); 2212 fs_info->endio_freespace_worker = 2213 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2214 max_active, 0); 2215 fs_info->delayed_workers = 2216 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2217 max_active, 0); 2218 fs_info->qgroup_rescan_workers = 2219 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2220 fs_info->discard_ctl.discard_workers = 2221 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1); 2222 2223 if (!(fs_info->workers && fs_info->hipri_workers && 2224 fs_info->delalloc_workers && fs_info->flush_workers && 2225 fs_info->endio_workers && fs_info->endio_meta_workers && 2226 fs_info->compressed_write_workers && 2227 fs_info->endio_write_workers && 2228 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2229 fs_info->caching_workers && fs_info->fixup_workers && 2230 fs_info->delayed_workers && fs_info->qgroup_rescan_workers && 2231 fs_info->discard_ctl.discard_workers)) { 2232 return -ENOMEM; 2233 } 2234 2235 return 0; 2236 } 2237 2238 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2239 { 2240 struct crypto_shash *csum_shash; 2241 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2242 2243 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2244 2245 if (IS_ERR(csum_shash)) { 2246 btrfs_err(fs_info, "error allocating %s hash for checksum", 2247 csum_driver); 2248 return PTR_ERR(csum_shash); 2249 } 2250 2251 fs_info->csum_shash = csum_shash; 2252 2253 btrfs_info(fs_info, "using %s (%s) checksum algorithm", 2254 btrfs_super_csum_name(csum_type), 2255 crypto_shash_driver_name(csum_shash)); 2256 return 0; 2257 } 2258 2259 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2260 struct btrfs_fs_devices *fs_devices) 2261 { 2262 int ret; 2263 struct btrfs_tree_parent_check check = { 0 }; 2264 struct btrfs_root *log_tree_root; 2265 struct btrfs_super_block *disk_super = fs_info->super_copy; 2266 u64 bytenr = btrfs_super_log_root(disk_super); 2267 int level = btrfs_super_log_root_level(disk_super); 2268 2269 if (fs_devices->rw_devices == 0) { 2270 btrfs_warn(fs_info, "log replay required on RO media"); 2271 return -EIO; 2272 } 2273 2274 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2275 GFP_KERNEL); 2276 if (!log_tree_root) 2277 return -ENOMEM; 2278 2279 check.level = level; 2280 check.transid = fs_info->generation + 1; 2281 check.owner_root = BTRFS_TREE_LOG_OBJECTID; 2282 log_tree_root->node = read_tree_block(fs_info, bytenr, &check); 2283 if (IS_ERR(log_tree_root->node)) { 2284 btrfs_warn(fs_info, "failed to read log tree"); 2285 ret = PTR_ERR(log_tree_root->node); 2286 log_tree_root->node = NULL; 2287 btrfs_put_root(log_tree_root); 2288 return ret; 2289 } 2290 if (!extent_buffer_uptodate(log_tree_root->node)) { 2291 btrfs_err(fs_info, "failed to read log tree"); 2292 btrfs_put_root(log_tree_root); 2293 return -EIO; 2294 } 2295 2296 /* returns with log_tree_root freed on success */ 2297 ret = btrfs_recover_log_trees(log_tree_root); 2298 if (ret) { 2299 btrfs_handle_fs_error(fs_info, ret, 2300 "Failed to recover log tree"); 2301 btrfs_put_root(log_tree_root); 2302 return ret; 2303 } 2304 2305 if (sb_rdonly(fs_info->sb)) { 2306 ret = btrfs_commit_super(fs_info); 2307 if (ret) 2308 return ret; 2309 } 2310 2311 return 0; 2312 } 2313 2314 static int load_global_roots_objectid(struct btrfs_root *tree_root, 2315 struct btrfs_path *path, u64 objectid, 2316 const char *name) 2317 { 2318 struct btrfs_fs_info *fs_info = tree_root->fs_info; 2319 struct btrfs_root *root; 2320 u64 max_global_id = 0; 2321 int ret; 2322 struct btrfs_key key = { 2323 .objectid = objectid, 2324 .type = BTRFS_ROOT_ITEM_KEY, 2325 .offset = 0, 2326 }; 2327 bool found = false; 2328 2329 /* If we have IGNOREDATACSUMS skip loading these roots. */ 2330 if (objectid == BTRFS_CSUM_TREE_OBJECTID && 2331 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2332 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2333 return 0; 2334 } 2335 2336 while (1) { 2337 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 2338 if (ret < 0) 2339 break; 2340 2341 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2342 ret = btrfs_next_leaf(tree_root, path); 2343 if (ret) { 2344 if (ret > 0) 2345 ret = 0; 2346 break; 2347 } 2348 } 2349 ret = 0; 2350 2351 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2352 if (key.objectid != objectid) 2353 break; 2354 btrfs_release_path(path); 2355 2356 /* 2357 * Just worry about this for extent tree, it'll be the same for 2358 * everybody. 2359 */ 2360 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2361 max_global_id = max(max_global_id, key.offset); 2362 2363 found = true; 2364 root = read_tree_root_path(tree_root, path, &key); 2365 if (IS_ERR(root)) { 2366 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2367 ret = PTR_ERR(root); 2368 break; 2369 } 2370 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2371 ret = btrfs_global_root_insert(root); 2372 if (ret) { 2373 btrfs_put_root(root); 2374 break; 2375 } 2376 key.offset++; 2377 } 2378 btrfs_release_path(path); 2379 2380 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2381 fs_info->nr_global_roots = max_global_id + 1; 2382 2383 if (!found || ret) { 2384 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 2385 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2386 2387 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2388 ret = ret ? ret : -ENOENT; 2389 else 2390 ret = 0; 2391 btrfs_err(fs_info, "failed to load root %s", name); 2392 } 2393 return ret; 2394 } 2395 2396 static int load_global_roots(struct btrfs_root *tree_root) 2397 { 2398 struct btrfs_path *path; 2399 int ret = 0; 2400 2401 path = btrfs_alloc_path(); 2402 if (!path) 2403 return -ENOMEM; 2404 2405 ret = load_global_roots_objectid(tree_root, path, 2406 BTRFS_EXTENT_TREE_OBJECTID, "extent"); 2407 if (ret) 2408 goto out; 2409 ret = load_global_roots_objectid(tree_root, path, 2410 BTRFS_CSUM_TREE_OBJECTID, "csum"); 2411 if (ret) 2412 goto out; 2413 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) 2414 goto out; 2415 ret = load_global_roots_objectid(tree_root, path, 2416 BTRFS_FREE_SPACE_TREE_OBJECTID, 2417 "free space"); 2418 out: 2419 btrfs_free_path(path); 2420 return ret; 2421 } 2422 2423 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2424 { 2425 struct btrfs_root *tree_root = fs_info->tree_root; 2426 struct btrfs_root *root; 2427 struct btrfs_key location; 2428 int ret; 2429 2430 BUG_ON(!fs_info->tree_root); 2431 2432 ret = load_global_roots(tree_root); 2433 if (ret) 2434 return ret; 2435 2436 location.type = BTRFS_ROOT_ITEM_KEY; 2437 location.offset = 0; 2438 2439 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 2440 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; 2441 root = btrfs_read_tree_root(tree_root, &location); 2442 if (IS_ERR(root)) { 2443 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2444 ret = PTR_ERR(root); 2445 goto out; 2446 } 2447 } else { 2448 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2449 fs_info->block_group_root = root; 2450 } 2451 } 2452 2453 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2454 root = btrfs_read_tree_root(tree_root, &location); 2455 if (IS_ERR(root)) { 2456 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2457 ret = PTR_ERR(root); 2458 goto out; 2459 } 2460 } else { 2461 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2462 fs_info->dev_root = root; 2463 } 2464 /* Initialize fs_info for all devices in any case */ 2465 ret = btrfs_init_devices_late(fs_info); 2466 if (ret) 2467 goto out; 2468 2469 /* 2470 * This tree can share blocks with some other fs tree during relocation 2471 * and we need a proper setup by btrfs_get_fs_root 2472 */ 2473 root = btrfs_get_fs_root(tree_root->fs_info, 2474 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2475 if (IS_ERR(root)) { 2476 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2477 ret = PTR_ERR(root); 2478 goto out; 2479 } 2480 } else { 2481 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2482 fs_info->data_reloc_root = root; 2483 } 2484 2485 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2486 root = btrfs_read_tree_root(tree_root, &location); 2487 if (!IS_ERR(root)) { 2488 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2489 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2490 fs_info->quota_root = root; 2491 } 2492 2493 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2494 root = btrfs_read_tree_root(tree_root, &location); 2495 if (IS_ERR(root)) { 2496 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2497 ret = PTR_ERR(root); 2498 if (ret != -ENOENT) 2499 goto out; 2500 } 2501 } else { 2502 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2503 fs_info->uuid_root = root; 2504 } 2505 2506 return 0; 2507 out: 2508 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2509 location.objectid, ret); 2510 return ret; 2511 } 2512 2513 /* 2514 * Real super block validation 2515 * NOTE: super csum type and incompat features will not be checked here. 2516 * 2517 * @sb: super block to check 2518 * @mirror_num: the super block number to check its bytenr: 2519 * 0 the primary (1st) sb 2520 * 1, 2 2nd and 3rd backup copy 2521 * -1 skip bytenr check 2522 */ 2523 int btrfs_validate_super(struct btrfs_fs_info *fs_info, 2524 struct btrfs_super_block *sb, int mirror_num) 2525 { 2526 u64 nodesize = btrfs_super_nodesize(sb); 2527 u64 sectorsize = btrfs_super_sectorsize(sb); 2528 int ret = 0; 2529 2530 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2531 btrfs_err(fs_info, "no valid FS found"); 2532 ret = -EINVAL; 2533 } 2534 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2535 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2536 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2537 ret = -EINVAL; 2538 } 2539 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2540 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2541 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2542 ret = -EINVAL; 2543 } 2544 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2545 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2546 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2547 ret = -EINVAL; 2548 } 2549 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2550 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2551 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2552 ret = -EINVAL; 2553 } 2554 2555 /* 2556 * Check sectorsize and nodesize first, other check will need it. 2557 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2558 */ 2559 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2560 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2561 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2562 ret = -EINVAL; 2563 } 2564 2565 /* 2566 * We only support at most two sectorsizes: 4K and PAGE_SIZE. 2567 * 2568 * We can support 16K sectorsize with 64K page size without problem, 2569 * but such sectorsize/pagesize combination doesn't make much sense. 2570 * 4K will be our future standard, PAGE_SIZE is supported from the very 2571 * beginning. 2572 */ 2573 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) { 2574 btrfs_err(fs_info, 2575 "sectorsize %llu not yet supported for page size %lu", 2576 sectorsize, PAGE_SIZE); 2577 ret = -EINVAL; 2578 } 2579 2580 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2581 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2582 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2583 ret = -EINVAL; 2584 } 2585 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2586 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2587 le32_to_cpu(sb->__unused_leafsize), nodesize); 2588 ret = -EINVAL; 2589 } 2590 2591 /* Root alignment check */ 2592 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2593 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2594 btrfs_super_root(sb)); 2595 ret = -EINVAL; 2596 } 2597 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2598 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2599 btrfs_super_chunk_root(sb)); 2600 ret = -EINVAL; 2601 } 2602 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2603 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2604 btrfs_super_log_root(sb)); 2605 ret = -EINVAL; 2606 } 2607 2608 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, 2609 BTRFS_FSID_SIZE)) { 2610 btrfs_err(fs_info, 2611 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2612 fs_info->super_copy->fsid, fs_info->fs_devices->fsid); 2613 ret = -EINVAL; 2614 } 2615 2616 if (btrfs_fs_incompat(fs_info, METADATA_UUID) && 2617 memcmp(fs_info->fs_devices->metadata_uuid, 2618 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) { 2619 btrfs_err(fs_info, 2620 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2621 fs_info->super_copy->metadata_uuid, 2622 fs_info->fs_devices->metadata_uuid); 2623 ret = -EINVAL; 2624 } 2625 2626 /* 2627 * Artificial requirement for block-group-tree to force newer features 2628 * (free-space-tree, no-holes) so the test matrix is smaller. 2629 */ 2630 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 2631 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || 2632 !btrfs_fs_incompat(fs_info, NO_HOLES))) { 2633 btrfs_err(fs_info, 2634 "block-group-tree feature requires fres-space-tree and no-holes"); 2635 ret = -EINVAL; 2636 } 2637 2638 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2639 BTRFS_FSID_SIZE) != 0) { 2640 btrfs_err(fs_info, 2641 "dev_item UUID does not match metadata fsid: %pU != %pU", 2642 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2643 ret = -EINVAL; 2644 } 2645 2646 /* 2647 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2648 * done later 2649 */ 2650 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2651 btrfs_err(fs_info, "bytes_used is too small %llu", 2652 btrfs_super_bytes_used(sb)); 2653 ret = -EINVAL; 2654 } 2655 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2656 btrfs_err(fs_info, "invalid stripesize %u", 2657 btrfs_super_stripesize(sb)); 2658 ret = -EINVAL; 2659 } 2660 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2661 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2662 btrfs_super_num_devices(sb)); 2663 if (btrfs_super_num_devices(sb) == 0) { 2664 btrfs_err(fs_info, "number of devices is 0"); 2665 ret = -EINVAL; 2666 } 2667 2668 if (mirror_num >= 0 && 2669 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2670 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2671 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2672 ret = -EINVAL; 2673 } 2674 2675 /* 2676 * Obvious sys_chunk_array corruptions, it must hold at least one key 2677 * and one chunk 2678 */ 2679 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2680 btrfs_err(fs_info, "system chunk array too big %u > %u", 2681 btrfs_super_sys_array_size(sb), 2682 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2683 ret = -EINVAL; 2684 } 2685 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2686 + sizeof(struct btrfs_chunk)) { 2687 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2688 btrfs_super_sys_array_size(sb), 2689 sizeof(struct btrfs_disk_key) 2690 + sizeof(struct btrfs_chunk)); 2691 ret = -EINVAL; 2692 } 2693 2694 /* 2695 * The generation is a global counter, we'll trust it more than the others 2696 * but it's still possible that it's the one that's wrong. 2697 */ 2698 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2699 btrfs_warn(fs_info, 2700 "suspicious: generation < chunk_root_generation: %llu < %llu", 2701 btrfs_super_generation(sb), 2702 btrfs_super_chunk_root_generation(sb)); 2703 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2704 && btrfs_super_cache_generation(sb) != (u64)-1) 2705 btrfs_warn(fs_info, 2706 "suspicious: generation < cache_generation: %llu < %llu", 2707 btrfs_super_generation(sb), 2708 btrfs_super_cache_generation(sb)); 2709 2710 return ret; 2711 } 2712 2713 /* 2714 * Validation of super block at mount time. 2715 * Some checks already done early at mount time, like csum type and incompat 2716 * flags will be skipped. 2717 */ 2718 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2719 { 2720 return btrfs_validate_super(fs_info, fs_info->super_copy, 0); 2721 } 2722 2723 /* 2724 * Validation of super block at write time. 2725 * Some checks like bytenr check will be skipped as their values will be 2726 * overwritten soon. 2727 * Extra checks like csum type and incompat flags will be done here. 2728 */ 2729 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2730 struct btrfs_super_block *sb) 2731 { 2732 int ret; 2733 2734 ret = btrfs_validate_super(fs_info, sb, -1); 2735 if (ret < 0) 2736 goto out; 2737 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2738 ret = -EUCLEAN; 2739 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2740 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2741 goto out; 2742 } 2743 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2744 ret = -EUCLEAN; 2745 btrfs_err(fs_info, 2746 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2747 btrfs_super_incompat_flags(sb), 2748 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2749 goto out; 2750 } 2751 out: 2752 if (ret < 0) 2753 btrfs_err(fs_info, 2754 "super block corruption detected before writing it to disk"); 2755 return ret; 2756 } 2757 2758 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) 2759 { 2760 struct btrfs_tree_parent_check check = { 2761 .level = level, 2762 .transid = gen, 2763 .owner_root = root->root_key.objectid 2764 }; 2765 int ret = 0; 2766 2767 root->node = read_tree_block(root->fs_info, bytenr, &check); 2768 if (IS_ERR(root->node)) { 2769 ret = PTR_ERR(root->node); 2770 root->node = NULL; 2771 return ret; 2772 } 2773 if (!extent_buffer_uptodate(root->node)) { 2774 free_extent_buffer(root->node); 2775 root->node = NULL; 2776 return -EIO; 2777 } 2778 2779 btrfs_set_root_node(&root->root_item, root->node); 2780 root->commit_root = btrfs_root_node(root); 2781 btrfs_set_root_refs(&root->root_item, 1); 2782 return ret; 2783 } 2784 2785 static int load_important_roots(struct btrfs_fs_info *fs_info) 2786 { 2787 struct btrfs_super_block *sb = fs_info->super_copy; 2788 u64 gen, bytenr; 2789 int level, ret; 2790 2791 bytenr = btrfs_super_root(sb); 2792 gen = btrfs_super_generation(sb); 2793 level = btrfs_super_root_level(sb); 2794 ret = load_super_root(fs_info->tree_root, bytenr, gen, level); 2795 if (ret) { 2796 btrfs_warn(fs_info, "couldn't read tree root"); 2797 return ret; 2798 } 2799 return 0; 2800 } 2801 2802 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2803 { 2804 int backup_index = find_newest_super_backup(fs_info); 2805 struct btrfs_super_block *sb = fs_info->super_copy; 2806 struct btrfs_root *tree_root = fs_info->tree_root; 2807 bool handle_error = false; 2808 int ret = 0; 2809 int i; 2810 2811 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2812 if (handle_error) { 2813 if (!IS_ERR(tree_root->node)) 2814 free_extent_buffer(tree_root->node); 2815 tree_root->node = NULL; 2816 2817 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2818 break; 2819 2820 free_root_pointers(fs_info, 0); 2821 2822 /* 2823 * Don't use the log in recovery mode, it won't be 2824 * valid 2825 */ 2826 btrfs_set_super_log_root(sb, 0); 2827 2828 /* We can't trust the free space cache either */ 2829 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2830 2831 ret = read_backup_root(fs_info, i); 2832 backup_index = ret; 2833 if (ret < 0) 2834 return ret; 2835 } 2836 2837 ret = load_important_roots(fs_info); 2838 if (ret) { 2839 handle_error = true; 2840 continue; 2841 } 2842 2843 /* 2844 * No need to hold btrfs_root::objectid_mutex since the fs 2845 * hasn't been fully initialised and we are the only user 2846 */ 2847 ret = btrfs_init_root_free_objectid(tree_root); 2848 if (ret < 0) { 2849 handle_error = true; 2850 continue; 2851 } 2852 2853 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 2854 2855 ret = btrfs_read_roots(fs_info); 2856 if (ret < 0) { 2857 handle_error = true; 2858 continue; 2859 } 2860 2861 /* All successful */ 2862 fs_info->generation = btrfs_header_generation(tree_root->node); 2863 fs_info->last_trans_committed = fs_info->generation; 2864 fs_info->last_reloc_trans = 0; 2865 2866 /* Always begin writing backup roots after the one being used */ 2867 if (backup_index < 0) { 2868 fs_info->backup_root_index = 0; 2869 } else { 2870 fs_info->backup_root_index = backup_index + 1; 2871 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2872 } 2873 break; 2874 } 2875 2876 return ret; 2877 } 2878 2879 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2880 { 2881 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2882 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2883 INIT_LIST_HEAD(&fs_info->trans_list); 2884 INIT_LIST_HEAD(&fs_info->dead_roots); 2885 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2886 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2887 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2888 spin_lock_init(&fs_info->delalloc_root_lock); 2889 spin_lock_init(&fs_info->trans_lock); 2890 spin_lock_init(&fs_info->fs_roots_radix_lock); 2891 spin_lock_init(&fs_info->delayed_iput_lock); 2892 spin_lock_init(&fs_info->defrag_inodes_lock); 2893 spin_lock_init(&fs_info->super_lock); 2894 spin_lock_init(&fs_info->buffer_lock); 2895 spin_lock_init(&fs_info->unused_bgs_lock); 2896 spin_lock_init(&fs_info->treelog_bg_lock); 2897 spin_lock_init(&fs_info->zone_active_bgs_lock); 2898 spin_lock_init(&fs_info->relocation_bg_lock); 2899 rwlock_init(&fs_info->tree_mod_log_lock); 2900 rwlock_init(&fs_info->global_root_lock); 2901 mutex_init(&fs_info->unused_bg_unpin_mutex); 2902 mutex_init(&fs_info->reclaim_bgs_lock); 2903 mutex_init(&fs_info->reloc_mutex); 2904 mutex_init(&fs_info->delalloc_root_mutex); 2905 mutex_init(&fs_info->zoned_meta_io_lock); 2906 mutex_init(&fs_info->zoned_data_reloc_io_lock); 2907 seqlock_init(&fs_info->profiles_lock); 2908 2909 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); 2910 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); 2911 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); 2912 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); 2913 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start, 2914 BTRFS_LOCKDEP_TRANS_COMMIT_START); 2915 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, 2916 BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2917 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, 2918 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2919 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, 2920 BTRFS_LOCKDEP_TRANS_COMPLETED); 2921 2922 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2923 INIT_LIST_HEAD(&fs_info->space_info); 2924 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2925 INIT_LIST_HEAD(&fs_info->unused_bgs); 2926 INIT_LIST_HEAD(&fs_info->reclaim_bgs); 2927 INIT_LIST_HEAD(&fs_info->zone_active_bgs); 2928 #ifdef CONFIG_BTRFS_DEBUG 2929 INIT_LIST_HEAD(&fs_info->allocated_roots); 2930 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2931 spin_lock_init(&fs_info->eb_leak_lock); 2932 #endif 2933 extent_map_tree_init(&fs_info->mapping_tree); 2934 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2935 BTRFS_BLOCK_RSV_GLOBAL); 2936 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2937 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2938 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2939 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2940 BTRFS_BLOCK_RSV_DELOPS); 2941 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2942 BTRFS_BLOCK_RSV_DELREFS); 2943 2944 atomic_set(&fs_info->async_delalloc_pages, 0); 2945 atomic_set(&fs_info->defrag_running, 0); 2946 atomic_set(&fs_info->nr_delayed_iputs, 0); 2947 atomic64_set(&fs_info->tree_mod_seq, 0); 2948 fs_info->global_root_tree = RB_ROOT; 2949 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2950 fs_info->metadata_ratio = 0; 2951 fs_info->defrag_inodes = RB_ROOT; 2952 atomic64_set(&fs_info->free_chunk_space, 0); 2953 fs_info->tree_mod_log = RB_ROOT; 2954 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2955 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2956 btrfs_init_ref_verify(fs_info); 2957 2958 fs_info->thread_pool_size = min_t(unsigned long, 2959 num_online_cpus() + 2, 8); 2960 2961 INIT_LIST_HEAD(&fs_info->ordered_roots); 2962 spin_lock_init(&fs_info->ordered_root_lock); 2963 2964 btrfs_init_scrub(fs_info); 2965 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2966 fs_info->check_integrity_print_mask = 0; 2967 #endif 2968 btrfs_init_balance(fs_info); 2969 btrfs_init_async_reclaim_work(fs_info); 2970 2971 rwlock_init(&fs_info->block_group_cache_lock); 2972 fs_info->block_group_cache_tree = RB_ROOT_CACHED; 2973 2974 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2975 IO_TREE_FS_EXCLUDED_EXTENTS); 2976 2977 mutex_init(&fs_info->ordered_operations_mutex); 2978 mutex_init(&fs_info->tree_log_mutex); 2979 mutex_init(&fs_info->chunk_mutex); 2980 mutex_init(&fs_info->transaction_kthread_mutex); 2981 mutex_init(&fs_info->cleaner_mutex); 2982 mutex_init(&fs_info->ro_block_group_mutex); 2983 init_rwsem(&fs_info->commit_root_sem); 2984 init_rwsem(&fs_info->cleanup_work_sem); 2985 init_rwsem(&fs_info->subvol_sem); 2986 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2987 2988 btrfs_init_dev_replace_locks(fs_info); 2989 btrfs_init_qgroup(fs_info); 2990 btrfs_discard_init(fs_info); 2991 2992 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2993 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2994 2995 init_waitqueue_head(&fs_info->transaction_throttle); 2996 init_waitqueue_head(&fs_info->transaction_wait); 2997 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2998 init_waitqueue_head(&fs_info->async_submit_wait); 2999 init_waitqueue_head(&fs_info->delayed_iputs_wait); 3000 3001 /* Usable values until the real ones are cached from the superblock */ 3002 fs_info->nodesize = 4096; 3003 fs_info->sectorsize = 4096; 3004 fs_info->sectorsize_bits = ilog2(4096); 3005 fs_info->stripesize = 4096; 3006 3007 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; 3008 3009 spin_lock_init(&fs_info->swapfile_pins_lock); 3010 fs_info->swapfile_pins = RB_ROOT; 3011 3012 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; 3013 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); 3014 } 3015 3016 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 3017 { 3018 int ret; 3019 3020 fs_info->sb = sb; 3021 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 3022 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 3023 3024 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 3025 if (ret) 3026 return ret; 3027 3028 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 3029 if (ret) 3030 return ret; 3031 3032 fs_info->dirty_metadata_batch = PAGE_SIZE * 3033 (1 + ilog2(nr_cpu_ids)); 3034 3035 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 3036 if (ret) 3037 return ret; 3038 3039 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 3040 GFP_KERNEL); 3041 if (ret) 3042 return ret; 3043 3044 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 3045 GFP_KERNEL); 3046 if (!fs_info->delayed_root) 3047 return -ENOMEM; 3048 btrfs_init_delayed_root(fs_info->delayed_root); 3049 3050 if (sb_rdonly(sb)) 3051 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 3052 3053 return btrfs_alloc_stripe_hash_table(fs_info); 3054 } 3055 3056 static int btrfs_uuid_rescan_kthread(void *data) 3057 { 3058 struct btrfs_fs_info *fs_info = data; 3059 int ret; 3060 3061 /* 3062 * 1st step is to iterate through the existing UUID tree and 3063 * to delete all entries that contain outdated data. 3064 * 2nd step is to add all missing entries to the UUID tree. 3065 */ 3066 ret = btrfs_uuid_tree_iterate(fs_info); 3067 if (ret < 0) { 3068 if (ret != -EINTR) 3069 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 3070 ret); 3071 up(&fs_info->uuid_tree_rescan_sem); 3072 return ret; 3073 } 3074 return btrfs_uuid_scan_kthread(data); 3075 } 3076 3077 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 3078 { 3079 struct task_struct *task; 3080 3081 down(&fs_info->uuid_tree_rescan_sem); 3082 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 3083 if (IS_ERR(task)) { 3084 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 3085 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 3086 up(&fs_info->uuid_tree_rescan_sem); 3087 return PTR_ERR(task); 3088 } 3089 3090 return 0; 3091 } 3092 3093 /* 3094 * Some options only have meaning at mount time and shouldn't persist across 3095 * remounts, or be displayed. Clear these at the end of mount and remount 3096 * code paths. 3097 */ 3098 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info) 3099 { 3100 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3101 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE); 3102 } 3103 3104 /* 3105 * Mounting logic specific to read-write file systems. Shared by open_ctree 3106 * and btrfs_remount when remounting from read-only to read-write. 3107 */ 3108 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 3109 { 3110 int ret; 3111 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 3112 bool clear_free_space_tree = false; 3113 3114 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3115 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3116 clear_free_space_tree = true; 3117 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3118 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3119 btrfs_warn(fs_info, "free space tree is invalid"); 3120 clear_free_space_tree = true; 3121 } 3122 3123 if (clear_free_space_tree) { 3124 btrfs_info(fs_info, "clearing free space tree"); 3125 ret = btrfs_clear_free_space_tree(fs_info); 3126 if (ret) { 3127 btrfs_warn(fs_info, 3128 "failed to clear free space tree: %d", ret); 3129 goto out; 3130 } 3131 } 3132 3133 /* 3134 * btrfs_find_orphan_roots() is responsible for finding all the dead 3135 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load 3136 * them into the fs_info->fs_roots_radix tree. This must be done before 3137 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it 3138 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan 3139 * item before the root's tree is deleted - this means that if we unmount 3140 * or crash before the deletion completes, on the next mount we will not 3141 * delete what remains of the tree because the orphan item does not 3142 * exists anymore, which is what tells us we have a pending deletion. 3143 */ 3144 ret = btrfs_find_orphan_roots(fs_info); 3145 if (ret) 3146 goto out; 3147 3148 ret = btrfs_cleanup_fs_roots(fs_info); 3149 if (ret) 3150 goto out; 3151 3152 down_read(&fs_info->cleanup_work_sem); 3153 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3154 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3155 up_read(&fs_info->cleanup_work_sem); 3156 goto out; 3157 } 3158 up_read(&fs_info->cleanup_work_sem); 3159 3160 mutex_lock(&fs_info->cleaner_mutex); 3161 ret = btrfs_recover_relocation(fs_info); 3162 mutex_unlock(&fs_info->cleaner_mutex); 3163 if (ret < 0) { 3164 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 3165 goto out; 3166 } 3167 3168 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3169 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3170 btrfs_info(fs_info, "creating free space tree"); 3171 ret = btrfs_create_free_space_tree(fs_info); 3172 if (ret) { 3173 btrfs_warn(fs_info, 3174 "failed to create free space tree: %d", ret); 3175 goto out; 3176 } 3177 } 3178 3179 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 3180 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 3181 if (ret) 3182 goto out; 3183 } 3184 3185 ret = btrfs_resume_balance_async(fs_info); 3186 if (ret) 3187 goto out; 3188 3189 ret = btrfs_resume_dev_replace_async(fs_info); 3190 if (ret) { 3191 btrfs_warn(fs_info, "failed to resume dev_replace"); 3192 goto out; 3193 } 3194 3195 btrfs_qgroup_rescan_resume(fs_info); 3196 3197 if (!fs_info->uuid_root) { 3198 btrfs_info(fs_info, "creating UUID tree"); 3199 ret = btrfs_create_uuid_tree(fs_info); 3200 if (ret) { 3201 btrfs_warn(fs_info, 3202 "failed to create the UUID tree %d", ret); 3203 goto out; 3204 } 3205 } 3206 3207 out: 3208 return ret; 3209 } 3210 3211 /* 3212 * Do various sanity and dependency checks of different features. 3213 * 3214 * @is_rw_mount: If the mount is read-write. 3215 * 3216 * This is the place for less strict checks (like for subpage or artificial 3217 * feature dependencies). 3218 * 3219 * For strict checks or possible corruption detection, see 3220 * btrfs_validate_super(). 3221 * 3222 * This should be called after btrfs_parse_options(), as some mount options 3223 * (space cache related) can modify on-disk format like free space tree and 3224 * screw up certain feature dependencies. 3225 */ 3226 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount) 3227 { 3228 struct btrfs_super_block *disk_super = fs_info->super_copy; 3229 u64 incompat = btrfs_super_incompat_flags(disk_super); 3230 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super); 3231 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); 3232 3233 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 3234 btrfs_err(fs_info, 3235 "cannot mount because of unknown incompat features (0x%llx)", 3236 incompat); 3237 return -EINVAL; 3238 } 3239 3240 /* Runtime limitation for mixed block groups. */ 3241 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3242 (fs_info->sectorsize != fs_info->nodesize)) { 3243 btrfs_err(fs_info, 3244 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3245 fs_info->nodesize, fs_info->sectorsize); 3246 return -EINVAL; 3247 } 3248 3249 /* Mixed backref is an always-enabled feature. */ 3250 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3251 3252 /* Set compression related flags just in case. */ 3253 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3254 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3255 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3256 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3257 3258 /* 3259 * An ancient flag, which should really be marked deprecated. 3260 * Such runtime limitation doesn't really need a incompat flag. 3261 */ 3262 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) 3263 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3264 3265 if (compat_ro_unsupp && is_rw_mount) { 3266 btrfs_err(fs_info, 3267 "cannot mount read-write because of unknown compat_ro features (0x%llx)", 3268 compat_ro); 3269 return -EINVAL; 3270 } 3271 3272 /* 3273 * We have unsupported RO compat features, although RO mounted, we 3274 * should not cause any metadata writes, including log replay. 3275 * Or we could screw up whatever the new feature requires. 3276 */ 3277 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) && 3278 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3279 btrfs_err(fs_info, 3280 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", 3281 compat_ro); 3282 return -EINVAL; 3283 } 3284 3285 /* 3286 * Artificial limitations for block group tree, to force 3287 * block-group-tree to rely on no-holes and free-space-tree. 3288 */ 3289 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 3290 (!btrfs_fs_incompat(fs_info, NO_HOLES) || 3291 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { 3292 btrfs_err(fs_info, 3293 "block-group-tree feature requires no-holes and free-space-tree features"); 3294 return -EINVAL; 3295 } 3296 3297 /* 3298 * Subpage runtime limitation on v1 cache. 3299 * 3300 * V1 space cache still has some hard codeed PAGE_SIZE usage, while 3301 * we're already defaulting to v2 cache, no need to bother v1 as it's 3302 * going to be deprecated anyway. 3303 */ 3304 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { 3305 btrfs_warn(fs_info, 3306 "v1 space cache is not supported for page size %lu with sectorsize %u", 3307 PAGE_SIZE, fs_info->sectorsize); 3308 return -EINVAL; 3309 } 3310 3311 /* This can be called by remount, we need to protect the super block. */ 3312 spin_lock(&fs_info->super_lock); 3313 btrfs_set_super_incompat_flags(disk_super, incompat); 3314 spin_unlock(&fs_info->super_lock); 3315 3316 return 0; 3317 } 3318 3319 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 3320 char *options) 3321 { 3322 u32 sectorsize; 3323 u32 nodesize; 3324 u32 stripesize; 3325 u64 generation; 3326 u64 features; 3327 u16 csum_type; 3328 struct btrfs_super_block *disk_super; 3329 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3330 struct btrfs_root *tree_root; 3331 struct btrfs_root *chunk_root; 3332 int ret; 3333 int err = -EINVAL; 3334 int level; 3335 3336 ret = init_mount_fs_info(fs_info, sb); 3337 if (ret) { 3338 err = ret; 3339 goto fail; 3340 } 3341 3342 /* These need to be init'ed before we start creating inodes and such. */ 3343 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3344 GFP_KERNEL); 3345 fs_info->tree_root = tree_root; 3346 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3347 GFP_KERNEL); 3348 fs_info->chunk_root = chunk_root; 3349 if (!tree_root || !chunk_root) { 3350 err = -ENOMEM; 3351 goto fail; 3352 } 3353 3354 fs_info->btree_inode = new_inode(sb); 3355 if (!fs_info->btree_inode) { 3356 err = -ENOMEM; 3357 goto fail; 3358 } 3359 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 3360 btrfs_init_btree_inode(fs_info); 3361 3362 invalidate_bdev(fs_devices->latest_dev->bdev); 3363 3364 /* 3365 * Read super block and check the signature bytes only 3366 */ 3367 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev); 3368 if (IS_ERR(disk_super)) { 3369 err = PTR_ERR(disk_super); 3370 goto fail_alloc; 3371 } 3372 3373 /* 3374 * Verify the type first, if that or the checksum value are 3375 * corrupted, we'll find out 3376 */ 3377 csum_type = btrfs_super_csum_type(disk_super); 3378 if (!btrfs_supported_super_csum(csum_type)) { 3379 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3380 csum_type); 3381 err = -EINVAL; 3382 btrfs_release_disk_super(disk_super); 3383 goto fail_alloc; 3384 } 3385 3386 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3387 3388 ret = btrfs_init_csum_hash(fs_info, csum_type); 3389 if (ret) { 3390 err = ret; 3391 btrfs_release_disk_super(disk_super); 3392 goto fail_alloc; 3393 } 3394 3395 /* 3396 * We want to check superblock checksum, the type is stored inside. 3397 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3398 */ 3399 if (btrfs_check_super_csum(fs_info, disk_super)) { 3400 btrfs_err(fs_info, "superblock checksum mismatch"); 3401 err = -EINVAL; 3402 btrfs_release_disk_super(disk_super); 3403 goto fail_alloc; 3404 } 3405 3406 /* 3407 * super_copy is zeroed at allocation time and we never touch the 3408 * following bytes up to INFO_SIZE, the checksum is calculated from 3409 * the whole block of INFO_SIZE 3410 */ 3411 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3412 btrfs_release_disk_super(disk_super); 3413 3414 disk_super = fs_info->super_copy; 3415 3416 3417 features = btrfs_super_flags(disk_super); 3418 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 3419 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 3420 btrfs_set_super_flags(disk_super, features); 3421 btrfs_info(fs_info, 3422 "found metadata UUID change in progress flag, clearing"); 3423 } 3424 3425 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3426 sizeof(*fs_info->super_for_commit)); 3427 3428 ret = btrfs_validate_mount_super(fs_info); 3429 if (ret) { 3430 btrfs_err(fs_info, "superblock contains fatal errors"); 3431 err = -EINVAL; 3432 goto fail_alloc; 3433 } 3434 3435 if (!btrfs_super_root(disk_super)) 3436 goto fail_alloc; 3437 3438 /* check FS state, whether FS is broken. */ 3439 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3440 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 3441 3442 /* 3443 * In the long term, we'll store the compression type in the super 3444 * block, and it'll be used for per file compression control. 3445 */ 3446 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 3447 3448 3449 /* Set up fs_info before parsing mount options */ 3450 nodesize = btrfs_super_nodesize(disk_super); 3451 sectorsize = btrfs_super_sectorsize(disk_super); 3452 stripesize = sectorsize; 3453 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3454 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3455 3456 fs_info->nodesize = nodesize; 3457 fs_info->sectorsize = sectorsize; 3458 fs_info->sectorsize_bits = ilog2(sectorsize); 3459 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3460 fs_info->stripesize = stripesize; 3461 3462 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 3463 if (ret) { 3464 err = ret; 3465 goto fail_alloc; 3466 } 3467 3468 ret = btrfs_check_features(fs_info, !sb_rdonly(sb)); 3469 if (ret < 0) { 3470 err = ret; 3471 goto fail_alloc; 3472 } 3473 3474 if (sectorsize < PAGE_SIZE) { 3475 struct btrfs_subpage_info *subpage_info; 3476 3477 /* 3478 * V1 space cache has some hardcoded PAGE_SIZE usage, and is 3479 * going to be deprecated. 3480 * 3481 * Force to use v2 cache for subpage case. 3482 */ 3483 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 3484 btrfs_set_and_info(fs_info, FREE_SPACE_TREE, 3485 "forcing free space tree for sector size %u with page size %lu", 3486 sectorsize, PAGE_SIZE); 3487 3488 btrfs_warn(fs_info, 3489 "read-write for sector size %u with page size %lu is experimental", 3490 sectorsize, PAGE_SIZE); 3491 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL); 3492 if (!subpage_info) 3493 goto fail_alloc; 3494 btrfs_init_subpage_info(subpage_info, sectorsize); 3495 fs_info->subpage_info = subpage_info; 3496 } 3497 3498 ret = btrfs_init_workqueues(fs_info); 3499 if (ret) { 3500 err = ret; 3501 goto fail_sb_buffer; 3502 } 3503 3504 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3505 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3506 3507 sb->s_blocksize = sectorsize; 3508 sb->s_blocksize_bits = blksize_bits(sectorsize); 3509 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3510 3511 mutex_lock(&fs_info->chunk_mutex); 3512 ret = btrfs_read_sys_array(fs_info); 3513 mutex_unlock(&fs_info->chunk_mutex); 3514 if (ret) { 3515 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3516 goto fail_sb_buffer; 3517 } 3518 3519 generation = btrfs_super_chunk_root_generation(disk_super); 3520 level = btrfs_super_chunk_root_level(disk_super); 3521 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super), 3522 generation, level); 3523 if (ret) { 3524 btrfs_err(fs_info, "failed to read chunk root"); 3525 goto fail_tree_roots; 3526 } 3527 3528 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3529 offsetof(struct btrfs_header, chunk_tree_uuid), 3530 BTRFS_UUID_SIZE); 3531 3532 ret = btrfs_read_chunk_tree(fs_info); 3533 if (ret) { 3534 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3535 goto fail_tree_roots; 3536 } 3537 3538 /* 3539 * At this point we know all the devices that make this filesystem, 3540 * including the seed devices but we don't know yet if the replace 3541 * target is required. So free devices that are not part of this 3542 * filesystem but skip the replace target device which is checked 3543 * below in btrfs_init_dev_replace(). 3544 */ 3545 btrfs_free_extra_devids(fs_devices); 3546 if (!fs_devices->latest_dev->bdev) { 3547 btrfs_err(fs_info, "failed to read devices"); 3548 goto fail_tree_roots; 3549 } 3550 3551 ret = init_tree_roots(fs_info); 3552 if (ret) 3553 goto fail_tree_roots; 3554 3555 /* 3556 * Get zone type information of zoned block devices. This will also 3557 * handle emulation of a zoned filesystem if a regular device has the 3558 * zoned incompat feature flag set. 3559 */ 3560 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3561 if (ret) { 3562 btrfs_err(fs_info, 3563 "zoned: failed to read device zone info: %d", 3564 ret); 3565 goto fail_block_groups; 3566 } 3567 3568 /* 3569 * If we have a uuid root and we're not being told to rescan we need to 3570 * check the generation here so we can set the 3571 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3572 * transaction during a balance or the log replay without updating the 3573 * uuid generation, and then if we crash we would rescan the uuid tree, 3574 * even though it was perfectly fine. 3575 */ 3576 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3577 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3578 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3579 3580 ret = btrfs_verify_dev_extents(fs_info); 3581 if (ret) { 3582 btrfs_err(fs_info, 3583 "failed to verify dev extents against chunks: %d", 3584 ret); 3585 goto fail_block_groups; 3586 } 3587 ret = btrfs_recover_balance(fs_info); 3588 if (ret) { 3589 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3590 goto fail_block_groups; 3591 } 3592 3593 ret = btrfs_init_dev_stats(fs_info); 3594 if (ret) { 3595 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3596 goto fail_block_groups; 3597 } 3598 3599 ret = btrfs_init_dev_replace(fs_info); 3600 if (ret) { 3601 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3602 goto fail_block_groups; 3603 } 3604 3605 ret = btrfs_check_zoned_mode(fs_info); 3606 if (ret) { 3607 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3608 ret); 3609 goto fail_block_groups; 3610 } 3611 3612 ret = btrfs_sysfs_add_fsid(fs_devices); 3613 if (ret) { 3614 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3615 ret); 3616 goto fail_block_groups; 3617 } 3618 3619 ret = btrfs_sysfs_add_mounted(fs_info); 3620 if (ret) { 3621 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3622 goto fail_fsdev_sysfs; 3623 } 3624 3625 ret = btrfs_init_space_info(fs_info); 3626 if (ret) { 3627 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3628 goto fail_sysfs; 3629 } 3630 3631 ret = btrfs_read_block_groups(fs_info); 3632 if (ret) { 3633 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3634 goto fail_sysfs; 3635 } 3636 3637 btrfs_free_zone_cache(fs_info); 3638 3639 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && 3640 !btrfs_check_rw_degradable(fs_info, NULL)) { 3641 btrfs_warn(fs_info, 3642 "writable mount is not allowed due to too many missing devices"); 3643 goto fail_sysfs; 3644 } 3645 3646 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, 3647 "btrfs-cleaner"); 3648 if (IS_ERR(fs_info->cleaner_kthread)) 3649 goto fail_sysfs; 3650 3651 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3652 tree_root, 3653 "btrfs-transaction"); 3654 if (IS_ERR(fs_info->transaction_kthread)) 3655 goto fail_cleaner; 3656 3657 if (!btrfs_test_opt(fs_info, NOSSD) && 3658 !fs_info->fs_devices->rotating) { 3659 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3660 } 3661 3662 /* 3663 * For devices supporting discard turn on discard=async automatically, 3664 * unless it's already set or disabled. This could be turned off by 3665 * nodiscard for the same mount. 3666 */ 3667 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) || 3668 btrfs_test_opt(fs_info, DISCARD_ASYNC) || 3669 btrfs_test_opt(fs_info, NODISCARD)) && 3670 fs_info->fs_devices->discardable) { 3671 btrfs_set_and_info(fs_info, DISCARD_ASYNC, 3672 "auto enabling async discard"); 3673 btrfs_clear_opt(fs_info->mount_opt, NODISCARD); 3674 } 3675 3676 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3677 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3678 ret = btrfsic_mount(fs_info, fs_devices, 3679 btrfs_test_opt(fs_info, 3680 CHECK_INTEGRITY_DATA) ? 1 : 0, 3681 fs_info->check_integrity_print_mask); 3682 if (ret) 3683 btrfs_warn(fs_info, 3684 "failed to initialize integrity check module: %d", 3685 ret); 3686 } 3687 #endif 3688 ret = btrfs_read_qgroup_config(fs_info); 3689 if (ret) 3690 goto fail_trans_kthread; 3691 3692 if (btrfs_build_ref_tree(fs_info)) 3693 btrfs_err(fs_info, "couldn't build ref tree"); 3694 3695 /* do not make disk changes in broken FS or nologreplay is given */ 3696 if (btrfs_super_log_root(disk_super) != 0 && 3697 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3698 btrfs_info(fs_info, "start tree-log replay"); 3699 ret = btrfs_replay_log(fs_info, fs_devices); 3700 if (ret) { 3701 err = ret; 3702 goto fail_qgroup; 3703 } 3704 } 3705 3706 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3707 if (IS_ERR(fs_info->fs_root)) { 3708 err = PTR_ERR(fs_info->fs_root); 3709 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3710 fs_info->fs_root = NULL; 3711 goto fail_qgroup; 3712 } 3713 3714 if (sb_rdonly(sb)) 3715 goto clear_oneshot; 3716 3717 ret = btrfs_start_pre_rw_mount(fs_info); 3718 if (ret) { 3719 close_ctree(fs_info); 3720 return ret; 3721 } 3722 btrfs_discard_resume(fs_info); 3723 3724 if (fs_info->uuid_root && 3725 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3726 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3727 btrfs_info(fs_info, "checking UUID tree"); 3728 ret = btrfs_check_uuid_tree(fs_info); 3729 if (ret) { 3730 btrfs_warn(fs_info, 3731 "failed to check the UUID tree: %d", ret); 3732 close_ctree(fs_info); 3733 return ret; 3734 } 3735 } 3736 3737 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3738 3739 /* Kick the cleaner thread so it'll start deleting snapshots. */ 3740 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) 3741 wake_up_process(fs_info->cleaner_kthread); 3742 3743 clear_oneshot: 3744 btrfs_clear_oneshot_options(fs_info); 3745 return 0; 3746 3747 fail_qgroup: 3748 btrfs_free_qgroup_config(fs_info); 3749 fail_trans_kthread: 3750 kthread_stop(fs_info->transaction_kthread); 3751 btrfs_cleanup_transaction(fs_info); 3752 btrfs_free_fs_roots(fs_info); 3753 fail_cleaner: 3754 kthread_stop(fs_info->cleaner_kthread); 3755 3756 /* 3757 * make sure we're done with the btree inode before we stop our 3758 * kthreads 3759 */ 3760 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3761 3762 fail_sysfs: 3763 btrfs_sysfs_remove_mounted(fs_info); 3764 3765 fail_fsdev_sysfs: 3766 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3767 3768 fail_block_groups: 3769 btrfs_put_block_group_cache(fs_info); 3770 3771 fail_tree_roots: 3772 if (fs_info->data_reloc_root) 3773 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3774 free_root_pointers(fs_info, true); 3775 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3776 3777 fail_sb_buffer: 3778 btrfs_stop_all_workers(fs_info); 3779 btrfs_free_block_groups(fs_info); 3780 fail_alloc: 3781 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3782 3783 iput(fs_info->btree_inode); 3784 fail: 3785 btrfs_close_devices(fs_info->fs_devices); 3786 return err; 3787 } 3788 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3789 3790 static void btrfs_end_super_write(struct bio *bio) 3791 { 3792 struct btrfs_device *device = bio->bi_private; 3793 struct bio_vec *bvec; 3794 struct bvec_iter_all iter_all; 3795 struct page *page; 3796 3797 bio_for_each_segment_all(bvec, bio, iter_all) { 3798 page = bvec->bv_page; 3799 3800 if (bio->bi_status) { 3801 btrfs_warn_rl_in_rcu(device->fs_info, 3802 "lost page write due to IO error on %s (%d)", 3803 btrfs_dev_name(device), 3804 blk_status_to_errno(bio->bi_status)); 3805 ClearPageUptodate(page); 3806 SetPageError(page); 3807 btrfs_dev_stat_inc_and_print(device, 3808 BTRFS_DEV_STAT_WRITE_ERRS); 3809 } else { 3810 SetPageUptodate(page); 3811 } 3812 3813 put_page(page); 3814 unlock_page(page); 3815 } 3816 3817 bio_put(bio); 3818 } 3819 3820 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3821 int copy_num, bool drop_cache) 3822 { 3823 struct btrfs_super_block *super; 3824 struct page *page; 3825 u64 bytenr, bytenr_orig; 3826 struct address_space *mapping = bdev->bd_inode->i_mapping; 3827 int ret; 3828 3829 bytenr_orig = btrfs_sb_offset(copy_num); 3830 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 3831 if (ret == -ENOENT) 3832 return ERR_PTR(-EINVAL); 3833 else if (ret) 3834 return ERR_PTR(ret); 3835 3836 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) 3837 return ERR_PTR(-EINVAL); 3838 3839 if (drop_cache) { 3840 /* This should only be called with the primary sb. */ 3841 ASSERT(copy_num == 0); 3842 3843 /* 3844 * Drop the page of the primary superblock, so later read will 3845 * always read from the device. 3846 */ 3847 invalidate_inode_pages2_range(mapping, 3848 bytenr >> PAGE_SHIFT, 3849 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT); 3850 } 3851 3852 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 3853 if (IS_ERR(page)) 3854 return ERR_CAST(page); 3855 3856 super = page_address(page); 3857 if (btrfs_super_magic(super) != BTRFS_MAGIC) { 3858 btrfs_release_disk_super(super); 3859 return ERR_PTR(-ENODATA); 3860 } 3861 3862 if (btrfs_super_bytenr(super) != bytenr_orig) { 3863 btrfs_release_disk_super(super); 3864 return ERR_PTR(-EINVAL); 3865 } 3866 3867 return super; 3868 } 3869 3870 3871 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 3872 { 3873 struct btrfs_super_block *super, *latest = NULL; 3874 int i; 3875 u64 transid = 0; 3876 3877 /* we would like to check all the supers, but that would make 3878 * a btrfs mount succeed after a mkfs from a different FS. 3879 * So, we need to add a special mount option to scan for 3880 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3881 */ 3882 for (i = 0; i < 1; i++) { 3883 super = btrfs_read_dev_one_super(bdev, i, false); 3884 if (IS_ERR(super)) 3885 continue; 3886 3887 if (!latest || btrfs_super_generation(super) > transid) { 3888 if (latest) 3889 btrfs_release_disk_super(super); 3890 3891 latest = super; 3892 transid = btrfs_super_generation(super); 3893 } 3894 } 3895 3896 return super; 3897 } 3898 3899 /* 3900 * Write superblock @sb to the @device. Do not wait for completion, all the 3901 * pages we use for writing are locked. 3902 * 3903 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3904 * the expected device size at commit time. Note that max_mirrors must be 3905 * same for write and wait phases. 3906 * 3907 * Return number of errors when page is not found or submission fails. 3908 */ 3909 static int write_dev_supers(struct btrfs_device *device, 3910 struct btrfs_super_block *sb, int max_mirrors) 3911 { 3912 struct btrfs_fs_info *fs_info = device->fs_info; 3913 struct address_space *mapping = device->bdev->bd_inode->i_mapping; 3914 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3915 int i; 3916 int errors = 0; 3917 int ret; 3918 u64 bytenr, bytenr_orig; 3919 3920 if (max_mirrors == 0) 3921 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3922 3923 shash->tfm = fs_info->csum_shash; 3924 3925 for (i = 0; i < max_mirrors; i++) { 3926 struct page *page; 3927 struct bio *bio; 3928 struct btrfs_super_block *disk_super; 3929 3930 bytenr_orig = btrfs_sb_offset(i); 3931 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 3932 if (ret == -ENOENT) { 3933 continue; 3934 } else if (ret < 0) { 3935 btrfs_err(device->fs_info, 3936 "couldn't get super block location for mirror %d", 3937 i); 3938 errors++; 3939 continue; 3940 } 3941 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3942 device->commit_total_bytes) 3943 break; 3944 3945 btrfs_set_super_bytenr(sb, bytenr_orig); 3946 3947 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3948 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 3949 sb->csum); 3950 3951 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT, 3952 GFP_NOFS); 3953 if (!page) { 3954 btrfs_err(device->fs_info, 3955 "couldn't get super block page for bytenr %llu", 3956 bytenr); 3957 errors++; 3958 continue; 3959 } 3960 3961 /* Bump the refcount for wait_dev_supers() */ 3962 get_page(page); 3963 3964 disk_super = page_address(page); 3965 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3966 3967 /* 3968 * Directly use bios here instead of relying on the page cache 3969 * to do I/O, so we don't lose the ability to do integrity 3970 * checking. 3971 */ 3972 bio = bio_alloc(device->bdev, 1, 3973 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, 3974 GFP_NOFS); 3975 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3976 bio->bi_private = device; 3977 bio->bi_end_io = btrfs_end_super_write; 3978 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE, 3979 offset_in_page(bytenr)); 3980 3981 /* 3982 * We FUA only the first super block. The others we allow to 3983 * go down lazy and there's a short window where the on-disk 3984 * copies might still contain the older version. 3985 */ 3986 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3987 bio->bi_opf |= REQ_FUA; 3988 3989 btrfsic_check_bio(bio); 3990 submit_bio(bio); 3991 3992 if (btrfs_advance_sb_log(device, i)) 3993 errors++; 3994 } 3995 return errors < i ? 0 : -1; 3996 } 3997 3998 /* 3999 * Wait for write completion of superblocks done by write_dev_supers, 4000 * @max_mirrors same for write and wait phases. 4001 * 4002 * Return number of errors when page is not found or not marked up to 4003 * date. 4004 */ 4005 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 4006 { 4007 int i; 4008 int errors = 0; 4009 bool primary_failed = false; 4010 int ret; 4011 u64 bytenr; 4012 4013 if (max_mirrors == 0) 4014 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 4015 4016 for (i = 0; i < max_mirrors; i++) { 4017 struct page *page; 4018 4019 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 4020 if (ret == -ENOENT) { 4021 break; 4022 } else if (ret < 0) { 4023 errors++; 4024 if (i == 0) 4025 primary_failed = true; 4026 continue; 4027 } 4028 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 4029 device->commit_total_bytes) 4030 break; 4031 4032 page = find_get_page(device->bdev->bd_inode->i_mapping, 4033 bytenr >> PAGE_SHIFT); 4034 if (!page) { 4035 errors++; 4036 if (i == 0) 4037 primary_failed = true; 4038 continue; 4039 } 4040 /* Page is submitted locked and unlocked once the IO completes */ 4041 wait_on_page_locked(page); 4042 if (PageError(page)) { 4043 errors++; 4044 if (i == 0) 4045 primary_failed = true; 4046 } 4047 4048 /* Drop our reference */ 4049 put_page(page); 4050 4051 /* Drop the reference from the writing run */ 4052 put_page(page); 4053 } 4054 4055 /* log error, force error return */ 4056 if (primary_failed) { 4057 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 4058 device->devid); 4059 return -1; 4060 } 4061 4062 return errors < i ? 0 : -1; 4063 } 4064 4065 /* 4066 * endio for the write_dev_flush, this will wake anyone waiting 4067 * for the barrier when it is done 4068 */ 4069 static void btrfs_end_empty_barrier(struct bio *bio) 4070 { 4071 bio_uninit(bio); 4072 complete(bio->bi_private); 4073 } 4074 4075 /* 4076 * Submit a flush request to the device if it supports it. Error handling is 4077 * done in the waiting counterpart. 4078 */ 4079 static void write_dev_flush(struct btrfs_device *device) 4080 { 4081 struct bio *bio = &device->flush_bio; 4082 4083 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4084 /* 4085 * When a disk has write caching disabled, we skip submission of a bio 4086 * with flush and sync requests before writing the superblock, since 4087 * it's not needed. However when the integrity checker is enabled, this 4088 * results in reports that there are metadata blocks referred by a 4089 * superblock that were not properly flushed. So don't skip the bio 4090 * submission only when the integrity checker is enabled for the sake 4091 * of simplicity, since this is a debug tool and not meant for use in 4092 * non-debug builds. 4093 */ 4094 if (!bdev_write_cache(device->bdev)) 4095 return; 4096 #endif 4097 4098 bio_init(bio, device->bdev, NULL, 0, 4099 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); 4100 bio->bi_end_io = btrfs_end_empty_barrier; 4101 init_completion(&device->flush_wait); 4102 bio->bi_private = &device->flush_wait; 4103 4104 btrfsic_check_bio(bio); 4105 submit_bio(bio); 4106 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 4107 } 4108 4109 /* 4110 * If the flush bio has been submitted by write_dev_flush, wait for it. 4111 */ 4112 static blk_status_t wait_dev_flush(struct btrfs_device *device) 4113 { 4114 struct bio *bio = &device->flush_bio; 4115 4116 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 4117 return BLK_STS_OK; 4118 4119 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 4120 wait_for_completion_io(&device->flush_wait); 4121 4122 return bio->bi_status; 4123 } 4124 4125 static int check_barrier_error(struct btrfs_fs_info *fs_info) 4126 { 4127 if (!btrfs_check_rw_degradable(fs_info, NULL)) 4128 return -EIO; 4129 return 0; 4130 } 4131 4132 /* 4133 * send an empty flush down to each device in parallel, 4134 * then wait for them 4135 */ 4136 static int barrier_all_devices(struct btrfs_fs_info *info) 4137 { 4138 struct list_head *head; 4139 struct btrfs_device *dev; 4140 int errors_wait = 0; 4141 blk_status_t ret; 4142 4143 lockdep_assert_held(&info->fs_devices->device_list_mutex); 4144 /* send down all the barriers */ 4145 head = &info->fs_devices->devices; 4146 list_for_each_entry(dev, head, dev_list) { 4147 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 4148 continue; 4149 if (!dev->bdev) 4150 continue; 4151 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4152 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4153 continue; 4154 4155 write_dev_flush(dev); 4156 dev->last_flush_error = BLK_STS_OK; 4157 } 4158 4159 /* wait for all the barriers */ 4160 list_for_each_entry(dev, head, dev_list) { 4161 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 4162 continue; 4163 if (!dev->bdev) { 4164 errors_wait++; 4165 continue; 4166 } 4167 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4168 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4169 continue; 4170 4171 ret = wait_dev_flush(dev); 4172 if (ret) { 4173 dev->last_flush_error = ret; 4174 btrfs_dev_stat_inc_and_print(dev, 4175 BTRFS_DEV_STAT_FLUSH_ERRS); 4176 errors_wait++; 4177 } 4178 } 4179 4180 if (errors_wait) { 4181 /* 4182 * At some point we need the status of all disks 4183 * to arrive at the volume status. So error checking 4184 * is being pushed to a separate loop. 4185 */ 4186 return check_barrier_error(info); 4187 } 4188 return 0; 4189 } 4190 4191 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 4192 { 4193 int raid_type; 4194 int min_tolerated = INT_MAX; 4195 4196 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 4197 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 4198 min_tolerated = min_t(int, min_tolerated, 4199 btrfs_raid_array[BTRFS_RAID_SINGLE]. 4200 tolerated_failures); 4201 4202 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4203 if (raid_type == BTRFS_RAID_SINGLE) 4204 continue; 4205 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 4206 continue; 4207 min_tolerated = min_t(int, min_tolerated, 4208 btrfs_raid_array[raid_type]. 4209 tolerated_failures); 4210 } 4211 4212 if (min_tolerated == INT_MAX) { 4213 pr_warn("BTRFS: unknown raid flag: %llu", flags); 4214 min_tolerated = 0; 4215 } 4216 4217 return min_tolerated; 4218 } 4219 4220 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 4221 { 4222 struct list_head *head; 4223 struct btrfs_device *dev; 4224 struct btrfs_super_block *sb; 4225 struct btrfs_dev_item *dev_item; 4226 int ret; 4227 int do_barriers; 4228 int max_errors; 4229 int total_errors = 0; 4230 u64 flags; 4231 4232 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 4233 4234 /* 4235 * max_mirrors == 0 indicates we're from commit_transaction, 4236 * not from fsync where the tree roots in fs_info have not 4237 * been consistent on disk. 4238 */ 4239 if (max_mirrors == 0) 4240 backup_super_roots(fs_info); 4241 4242 sb = fs_info->super_for_commit; 4243 dev_item = &sb->dev_item; 4244 4245 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4246 head = &fs_info->fs_devices->devices; 4247 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4248 4249 if (do_barriers) { 4250 ret = barrier_all_devices(fs_info); 4251 if (ret) { 4252 mutex_unlock( 4253 &fs_info->fs_devices->device_list_mutex); 4254 btrfs_handle_fs_error(fs_info, ret, 4255 "errors while submitting device barriers."); 4256 return ret; 4257 } 4258 } 4259 4260 list_for_each_entry(dev, head, dev_list) { 4261 if (!dev->bdev) { 4262 total_errors++; 4263 continue; 4264 } 4265 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4266 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4267 continue; 4268 4269 btrfs_set_stack_device_generation(dev_item, 0); 4270 btrfs_set_stack_device_type(dev_item, dev->type); 4271 btrfs_set_stack_device_id(dev_item, dev->devid); 4272 btrfs_set_stack_device_total_bytes(dev_item, 4273 dev->commit_total_bytes); 4274 btrfs_set_stack_device_bytes_used(dev_item, 4275 dev->commit_bytes_used); 4276 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4277 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4278 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4279 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4280 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4281 BTRFS_FSID_SIZE); 4282 4283 flags = btrfs_super_flags(sb); 4284 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4285 4286 ret = btrfs_validate_write_super(fs_info, sb); 4287 if (ret < 0) { 4288 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4289 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4290 "unexpected superblock corruption detected"); 4291 return -EUCLEAN; 4292 } 4293 4294 ret = write_dev_supers(dev, sb, max_mirrors); 4295 if (ret) 4296 total_errors++; 4297 } 4298 if (total_errors > max_errors) { 4299 btrfs_err(fs_info, "%d errors while writing supers", 4300 total_errors); 4301 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4302 4303 /* FUA is masked off if unsupported and can't be the reason */ 4304 btrfs_handle_fs_error(fs_info, -EIO, 4305 "%d errors while writing supers", 4306 total_errors); 4307 return -EIO; 4308 } 4309 4310 total_errors = 0; 4311 list_for_each_entry(dev, head, dev_list) { 4312 if (!dev->bdev) 4313 continue; 4314 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4315 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4316 continue; 4317 4318 ret = wait_dev_supers(dev, max_mirrors); 4319 if (ret) 4320 total_errors++; 4321 } 4322 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4323 if (total_errors > max_errors) { 4324 btrfs_handle_fs_error(fs_info, -EIO, 4325 "%d errors while writing supers", 4326 total_errors); 4327 return -EIO; 4328 } 4329 return 0; 4330 } 4331 4332 /* Drop a fs root from the radix tree and free it. */ 4333 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4334 struct btrfs_root *root) 4335 { 4336 bool drop_ref = false; 4337 4338 spin_lock(&fs_info->fs_roots_radix_lock); 4339 radix_tree_delete(&fs_info->fs_roots_radix, 4340 (unsigned long)root->root_key.objectid); 4341 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4342 drop_ref = true; 4343 spin_unlock(&fs_info->fs_roots_radix_lock); 4344 4345 if (BTRFS_FS_ERROR(fs_info)) { 4346 ASSERT(root->log_root == NULL); 4347 if (root->reloc_root) { 4348 btrfs_put_root(root->reloc_root); 4349 root->reloc_root = NULL; 4350 } 4351 } 4352 4353 if (drop_ref) 4354 btrfs_put_root(root); 4355 } 4356 4357 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 4358 { 4359 u64 root_objectid = 0; 4360 struct btrfs_root *gang[8]; 4361 int i = 0; 4362 int err = 0; 4363 unsigned int ret = 0; 4364 4365 while (1) { 4366 spin_lock(&fs_info->fs_roots_radix_lock); 4367 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4368 (void **)gang, root_objectid, 4369 ARRAY_SIZE(gang)); 4370 if (!ret) { 4371 spin_unlock(&fs_info->fs_roots_radix_lock); 4372 break; 4373 } 4374 root_objectid = gang[ret - 1]->root_key.objectid + 1; 4375 4376 for (i = 0; i < ret; i++) { 4377 /* Avoid to grab roots in dead_roots */ 4378 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 4379 gang[i] = NULL; 4380 continue; 4381 } 4382 /* grab all the search result for later use */ 4383 gang[i] = btrfs_grab_root(gang[i]); 4384 } 4385 spin_unlock(&fs_info->fs_roots_radix_lock); 4386 4387 for (i = 0; i < ret; i++) { 4388 if (!gang[i]) 4389 continue; 4390 root_objectid = gang[i]->root_key.objectid; 4391 err = btrfs_orphan_cleanup(gang[i]); 4392 if (err) 4393 break; 4394 btrfs_put_root(gang[i]); 4395 } 4396 root_objectid++; 4397 } 4398 4399 /* release the uncleaned roots due to error */ 4400 for (; i < ret; i++) { 4401 if (gang[i]) 4402 btrfs_put_root(gang[i]); 4403 } 4404 return err; 4405 } 4406 4407 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4408 { 4409 struct btrfs_root *root = fs_info->tree_root; 4410 struct btrfs_trans_handle *trans; 4411 4412 mutex_lock(&fs_info->cleaner_mutex); 4413 btrfs_run_delayed_iputs(fs_info); 4414 mutex_unlock(&fs_info->cleaner_mutex); 4415 wake_up_process(fs_info->cleaner_kthread); 4416 4417 /* wait until ongoing cleanup work done */ 4418 down_write(&fs_info->cleanup_work_sem); 4419 up_write(&fs_info->cleanup_work_sem); 4420 4421 trans = btrfs_join_transaction(root); 4422 if (IS_ERR(trans)) 4423 return PTR_ERR(trans); 4424 return btrfs_commit_transaction(trans); 4425 } 4426 4427 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) 4428 { 4429 struct btrfs_transaction *trans; 4430 struct btrfs_transaction *tmp; 4431 bool found = false; 4432 4433 if (list_empty(&fs_info->trans_list)) 4434 return; 4435 4436 /* 4437 * This function is only called at the very end of close_ctree(), 4438 * thus no other running transaction, no need to take trans_lock. 4439 */ 4440 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); 4441 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { 4442 struct extent_state *cached = NULL; 4443 u64 dirty_bytes = 0; 4444 u64 cur = 0; 4445 u64 found_start; 4446 u64 found_end; 4447 4448 found = true; 4449 while (!find_first_extent_bit(&trans->dirty_pages, cur, 4450 &found_start, &found_end, EXTENT_DIRTY, &cached)) { 4451 dirty_bytes += found_end + 1 - found_start; 4452 cur = found_end + 1; 4453 } 4454 btrfs_warn(fs_info, 4455 "transaction %llu (with %llu dirty metadata bytes) is not committed", 4456 trans->transid, dirty_bytes); 4457 btrfs_cleanup_one_transaction(trans, fs_info); 4458 4459 if (trans == fs_info->running_transaction) 4460 fs_info->running_transaction = NULL; 4461 list_del_init(&trans->list); 4462 4463 btrfs_put_transaction(trans); 4464 trace_btrfs_transaction_commit(fs_info); 4465 } 4466 ASSERT(!found); 4467 } 4468 4469 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4470 { 4471 int ret; 4472 4473 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4474 4475 /* 4476 * If we had UNFINISHED_DROPS we could still be processing them, so 4477 * clear that bit and wake up relocation so it can stop. 4478 * We must do this before stopping the block group reclaim task, because 4479 * at btrfs_relocate_block_group() we wait for this bit, and after the 4480 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we 4481 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will 4482 * return 1. 4483 */ 4484 btrfs_wake_unfinished_drop(fs_info); 4485 4486 /* 4487 * We may have the reclaim task running and relocating a data block group, 4488 * in which case it may create delayed iputs. So stop it before we park 4489 * the cleaner kthread otherwise we can get new delayed iputs after 4490 * parking the cleaner, and that can make the async reclaim task to hang 4491 * if it's waiting for delayed iputs to complete, since the cleaner is 4492 * parked and can not run delayed iputs - this will make us hang when 4493 * trying to stop the async reclaim task. 4494 */ 4495 cancel_work_sync(&fs_info->reclaim_bgs_work); 4496 /* 4497 * We don't want the cleaner to start new transactions, add more delayed 4498 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4499 * because that frees the task_struct, and the transaction kthread might 4500 * still try to wake up the cleaner. 4501 */ 4502 kthread_park(fs_info->cleaner_kthread); 4503 4504 /* wait for the qgroup rescan worker to stop */ 4505 btrfs_qgroup_wait_for_completion(fs_info, false); 4506 4507 /* wait for the uuid_scan task to finish */ 4508 down(&fs_info->uuid_tree_rescan_sem); 4509 /* avoid complains from lockdep et al., set sem back to initial state */ 4510 up(&fs_info->uuid_tree_rescan_sem); 4511 4512 /* pause restriper - we want to resume on mount */ 4513 btrfs_pause_balance(fs_info); 4514 4515 btrfs_dev_replace_suspend_for_unmount(fs_info); 4516 4517 btrfs_scrub_cancel(fs_info); 4518 4519 /* wait for any defraggers to finish */ 4520 wait_event(fs_info->transaction_wait, 4521 (atomic_read(&fs_info->defrag_running) == 0)); 4522 4523 /* clear out the rbtree of defraggable inodes */ 4524 btrfs_cleanup_defrag_inodes(fs_info); 4525 4526 /* 4527 * After we parked the cleaner kthread, ordered extents may have 4528 * completed and created new delayed iputs. If one of the async reclaim 4529 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we 4530 * can hang forever trying to stop it, because if a delayed iput is 4531 * added after it ran btrfs_run_delayed_iputs() and before it called 4532 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is 4533 * no one else to run iputs. 4534 * 4535 * So wait for all ongoing ordered extents to complete and then run 4536 * delayed iputs. This works because once we reach this point no one 4537 * can either create new ordered extents nor create delayed iputs 4538 * through some other means. 4539 * 4540 * Also note that btrfs_wait_ordered_roots() is not safe here, because 4541 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, 4542 * but the delayed iput for the respective inode is made only when doing 4543 * the final btrfs_put_ordered_extent() (which must happen at 4544 * btrfs_finish_ordered_io() when we are unmounting). 4545 */ 4546 btrfs_flush_workqueue(fs_info->endio_write_workers); 4547 /* Ordered extents for free space inodes. */ 4548 btrfs_flush_workqueue(fs_info->endio_freespace_worker); 4549 btrfs_run_delayed_iputs(fs_info); 4550 4551 cancel_work_sync(&fs_info->async_reclaim_work); 4552 cancel_work_sync(&fs_info->async_data_reclaim_work); 4553 cancel_work_sync(&fs_info->preempt_reclaim_work); 4554 4555 /* Cancel or finish ongoing discard work */ 4556 btrfs_discard_cleanup(fs_info); 4557 4558 if (!sb_rdonly(fs_info->sb)) { 4559 /* 4560 * The cleaner kthread is stopped, so do one final pass over 4561 * unused block groups. 4562 */ 4563 btrfs_delete_unused_bgs(fs_info); 4564 4565 /* 4566 * There might be existing delayed inode workers still running 4567 * and holding an empty delayed inode item. We must wait for 4568 * them to complete first because they can create a transaction. 4569 * This happens when someone calls btrfs_balance_delayed_items() 4570 * and then a transaction commit runs the same delayed nodes 4571 * before any delayed worker has done something with the nodes. 4572 * We must wait for any worker here and not at transaction 4573 * commit time since that could cause a deadlock. 4574 * This is a very rare case. 4575 */ 4576 btrfs_flush_workqueue(fs_info->delayed_workers); 4577 4578 ret = btrfs_commit_super(fs_info); 4579 if (ret) 4580 btrfs_err(fs_info, "commit super ret %d", ret); 4581 } 4582 4583 if (BTRFS_FS_ERROR(fs_info)) 4584 btrfs_error_commit_super(fs_info); 4585 4586 kthread_stop(fs_info->transaction_kthread); 4587 kthread_stop(fs_info->cleaner_kthread); 4588 4589 ASSERT(list_empty(&fs_info->delayed_iputs)); 4590 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4591 4592 if (btrfs_check_quota_leak(fs_info)) { 4593 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4594 btrfs_err(fs_info, "qgroup reserved space leaked"); 4595 } 4596 4597 btrfs_free_qgroup_config(fs_info); 4598 ASSERT(list_empty(&fs_info->delalloc_roots)); 4599 4600 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4601 btrfs_info(fs_info, "at unmount delalloc count %lld", 4602 percpu_counter_sum(&fs_info->delalloc_bytes)); 4603 } 4604 4605 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4606 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4607 percpu_counter_sum(&fs_info->ordered_bytes)); 4608 4609 btrfs_sysfs_remove_mounted(fs_info); 4610 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4611 4612 btrfs_put_block_group_cache(fs_info); 4613 4614 /* 4615 * we must make sure there is not any read request to 4616 * submit after we stopping all workers. 4617 */ 4618 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4619 btrfs_stop_all_workers(fs_info); 4620 4621 /* We shouldn't have any transaction open at this point */ 4622 warn_about_uncommitted_trans(fs_info); 4623 4624 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4625 free_root_pointers(fs_info, true); 4626 btrfs_free_fs_roots(fs_info); 4627 4628 /* 4629 * We must free the block groups after dropping the fs_roots as we could 4630 * have had an IO error and have left over tree log blocks that aren't 4631 * cleaned up until the fs roots are freed. This makes the block group 4632 * accounting appear to be wrong because there's pending reserved bytes, 4633 * so make sure we do the block group cleanup afterwards. 4634 */ 4635 btrfs_free_block_groups(fs_info); 4636 4637 iput(fs_info->btree_inode); 4638 4639 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4640 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4641 btrfsic_unmount(fs_info->fs_devices); 4642 #endif 4643 4644 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4645 btrfs_close_devices(fs_info->fs_devices); 4646 } 4647 4648 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4649 int atomic) 4650 { 4651 int ret; 4652 struct inode *btree_inode = buf->pages[0]->mapping->host; 4653 4654 ret = extent_buffer_uptodate(buf); 4655 if (!ret) 4656 return ret; 4657 4658 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4659 parent_transid, atomic); 4660 if (ret == -EAGAIN) 4661 return ret; 4662 return !ret; 4663 } 4664 4665 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4666 { 4667 struct btrfs_fs_info *fs_info = buf->fs_info; 4668 u64 transid = btrfs_header_generation(buf); 4669 int was_dirty; 4670 4671 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4672 /* 4673 * This is a fast path so only do this check if we have sanity tests 4674 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4675 * outside of the sanity tests. 4676 */ 4677 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4678 return; 4679 #endif 4680 btrfs_assert_tree_write_locked(buf); 4681 if (transid != fs_info->generation) 4682 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4683 buf->start, transid, fs_info->generation); 4684 was_dirty = set_extent_buffer_dirty(buf); 4685 if (!was_dirty) 4686 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4687 buf->len, 4688 fs_info->dirty_metadata_batch); 4689 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4690 /* 4691 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4692 * but item data not updated. 4693 * So here we should only check item pointers, not item data. 4694 */ 4695 if (btrfs_header_level(buf) == 0 && 4696 btrfs_check_leaf_relaxed(buf)) { 4697 btrfs_print_leaf(buf); 4698 ASSERT(0); 4699 } 4700 #endif 4701 } 4702 4703 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4704 int flush_delayed) 4705 { 4706 /* 4707 * looks as though older kernels can get into trouble with 4708 * this code, they end up stuck in balance_dirty_pages forever 4709 */ 4710 int ret; 4711 4712 if (current->flags & PF_MEMALLOC) 4713 return; 4714 4715 if (flush_delayed) 4716 btrfs_balance_delayed_items(fs_info); 4717 4718 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4719 BTRFS_DIRTY_METADATA_THRESH, 4720 fs_info->dirty_metadata_batch); 4721 if (ret > 0) { 4722 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4723 } 4724 } 4725 4726 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4727 { 4728 __btrfs_btree_balance_dirty(fs_info, 1); 4729 } 4730 4731 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4732 { 4733 __btrfs_btree_balance_dirty(fs_info, 0); 4734 } 4735 4736 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4737 { 4738 /* cleanup FS via transaction */ 4739 btrfs_cleanup_transaction(fs_info); 4740 4741 mutex_lock(&fs_info->cleaner_mutex); 4742 btrfs_run_delayed_iputs(fs_info); 4743 mutex_unlock(&fs_info->cleaner_mutex); 4744 4745 down_write(&fs_info->cleanup_work_sem); 4746 up_write(&fs_info->cleanup_work_sem); 4747 } 4748 4749 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4750 { 4751 struct btrfs_root *gang[8]; 4752 u64 root_objectid = 0; 4753 int ret; 4754 4755 spin_lock(&fs_info->fs_roots_radix_lock); 4756 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4757 (void **)gang, root_objectid, 4758 ARRAY_SIZE(gang))) != 0) { 4759 int i; 4760 4761 for (i = 0; i < ret; i++) 4762 gang[i] = btrfs_grab_root(gang[i]); 4763 spin_unlock(&fs_info->fs_roots_radix_lock); 4764 4765 for (i = 0; i < ret; i++) { 4766 if (!gang[i]) 4767 continue; 4768 root_objectid = gang[i]->root_key.objectid; 4769 btrfs_free_log(NULL, gang[i]); 4770 btrfs_put_root(gang[i]); 4771 } 4772 root_objectid++; 4773 spin_lock(&fs_info->fs_roots_radix_lock); 4774 } 4775 spin_unlock(&fs_info->fs_roots_radix_lock); 4776 btrfs_free_log_root_tree(NULL, fs_info); 4777 } 4778 4779 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4780 { 4781 struct btrfs_ordered_extent *ordered; 4782 4783 spin_lock(&root->ordered_extent_lock); 4784 /* 4785 * This will just short circuit the ordered completion stuff which will 4786 * make sure the ordered extent gets properly cleaned up. 4787 */ 4788 list_for_each_entry(ordered, &root->ordered_extents, 4789 root_extent_list) 4790 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4791 spin_unlock(&root->ordered_extent_lock); 4792 } 4793 4794 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4795 { 4796 struct btrfs_root *root; 4797 struct list_head splice; 4798 4799 INIT_LIST_HEAD(&splice); 4800 4801 spin_lock(&fs_info->ordered_root_lock); 4802 list_splice_init(&fs_info->ordered_roots, &splice); 4803 while (!list_empty(&splice)) { 4804 root = list_first_entry(&splice, struct btrfs_root, 4805 ordered_root); 4806 list_move_tail(&root->ordered_root, 4807 &fs_info->ordered_roots); 4808 4809 spin_unlock(&fs_info->ordered_root_lock); 4810 btrfs_destroy_ordered_extents(root); 4811 4812 cond_resched(); 4813 spin_lock(&fs_info->ordered_root_lock); 4814 } 4815 spin_unlock(&fs_info->ordered_root_lock); 4816 4817 /* 4818 * We need this here because if we've been flipped read-only we won't 4819 * get sync() from the umount, so we need to make sure any ordered 4820 * extents that haven't had their dirty pages IO start writeout yet 4821 * actually get run and error out properly. 4822 */ 4823 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4824 } 4825 4826 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4827 struct btrfs_fs_info *fs_info) 4828 { 4829 struct rb_node *node; 4830 struct btrfs_delayed_ref_root *delayed_refs; 4831 struct btrfs_delayed_ref_node *ref; 4832 int ret = 0; 4833 4834 delayed_refs = &trans->delayed_refs; 4835 4836 spin_lock(&delayed_refs->lock); 4837 if (atomic_read(&delayed_refs->num_entries) == 0) { 4838 spin_unlock(&delayed_refs->lock); 4839 btrfs_debug(fs_info, "delayed_refs has NO entry"); 4840 return ret; 4841 } 4842 4843 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4844 struct btrfs_delayed_ref_head *head; 4845 struct rb_node *n; 4846 bool pin_bytes = false; 4847 4848 head = rb_entry(node, struct btrfs_delayed_ref_head, 4849 href_node); 4850 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4851 continue; 4852 4853 spin_lock(&head->lock); 4854 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4855 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4856 ref_node); 4857 ref->in_tree = 0; 4858 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4859 RB_CLEAR_NODE(&ref->ref_node); 4860 if (!list_empty(&ref->add_list)) 4861 list_del(&ref->add_list); 4862 atomic_dec(&delayed_refs->num_entries); 4863 btrfs_put_delayed_ref(ref); 4864 } 4865 if (head->must_insert_reserved) 4866 pin_bytes = true; 4867 btrfs_free_delayed_extent_op(head->extent_op); 4868 btrfs_delete_ref_head(delayed_refs, head); 4869 spin_unlock(&head->lock); 4870 spin_unlock(&delayed_refs->lock); 4871 mutex_unlock(&head->mutex); 4872 4873 if (pin_bytes) { 4874 struct btrfs_block_group *cache; 4875 4876 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 4877 BUG_ON(!cache); 4878 4879 spin_lock(&cache->space_info->lock); 4880 spin_lock(&cache->lock); 4881 cache->pinned += head->num_bytes; 4882 btrfs_space_info_update_bytes_pinned(fs_info, 4883 cache->space_info, head->num_bytes); 4884 cache->reserved -= head->num_bytes; 4885 cache->space_info->bytes_reserved -= head->num_bytes; 4886 spin_unlock(&cache->lock); 4887 spin_unlock(&cache->space_info->lock); 4888 4889 btrfs_put_block_group(cache); 4890 4891 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 4892 head->bytenr + head->num_bytes - 1); 4893 } 4894 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4895 btrfs_put_delayed_ref_head(head); 4896 cond_resched(); 4897 spin_lock(&delayed_refs->lock); 4898 } 4899 btrfs_qgroup_destroy_extent_records(trans); 4900 4901 spin_unlock(&delayed_refs->lock); 4902 4903 return ret; 4904 } 4905 4906 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4907 { 4908 struct btrfs_inode *btrfs_inode; 4909 struct list_head splice; 4910 4911 INIT_LIST_HEAD(&splice); 4912 4913 spin_lock(&root->delalloc_lock); 4914 list_splice_init(&root->delalloc_inodes, &splice); 4915 4916 while (!list_empty(&splice)) { 4917 struct inode *inode = NULL; 4918 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4919 delalloc_inodes); 4920 __btrfs_del_delalloc_inode(root, btrfs_inode); 4921 spin_unlock(&root->delalloc_lock); 4922 4923 /* 4924 * Make sure we get a live inode and that it'll not disappear 4925 * meanwhile. 4926 */ 4927 inode = igrab(&btrfs_inode->vfs_inode); 4928 if (inode) { 4929 invalidate_inode_pages2(inode->i_mapping); 4930 iput(inode); 4931 } 4932 spin_lock(&root->delalloc_lock); 4933 } 4934 spin_unlock(&root->delalloc_lock); 4935 } 4936 4937 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4938 { 4939 struct btrfs_root *root; 4940 struct list_head splice; 4941 4942 INIT_LIST_HEAD(&splice); 4943 4944 spin_lock(&fs_info->delalloc_root_lock); 4945 list_splice_init(&fs_info->delalloc_roots, &splice); 4946 while (!list_empty(&splice)) { 4947 root = list_first_entry(&splice, struct btrfs_root, 4948 delalloc_root); 4949 root = btrfs_grab_root(root); 4950 BUG_ON(!root); 4951 spin_unlock(&fs_info->delalloc_root_lock); 4952 4953 btrfs_destroy_delalloc_inodes(root); 4954 btrfs_put_root(root); 4955 4956 spin_lock(&fs_info->delalloc_root_lock); 4957 } 4958 spin_unlock(&fs_info->delalloc_root_lock); 4959 } 4960 4961 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4962 struct extent_io_tree *dirty_pages, 4963 int mark) 4964 { 4965 int ret; 4966 struct extent_buffer *eb; 4967 u64 start = 0; 4968 u64 end; 4969 4970 while (1) { 4971 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4972 mark, NULL); 4973 if (ret) 4974 break; 4975 4976 clear_extent_bits(dirty_pages, start, end, mark); 4977 while (start <= end) { 4978 eb = find_extent_buffer(fs_info, start); 4979 start += fs_info->nodesize; 4980 if (!eb) 4981 continue; 4982 4983 btrfs_tree_lock(eb); 4984 wait_on_extent_buffer_writeback(eb); 4985 btrfs_clear_buffer_dirty(NULL, eb); 4986 btrfs_tree_unlock(eb); 4987 4988 free_extent_buffer_stale(eb); 4989 } 4990 } 4991 4992 return ret; 4993 } 4994 4995 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4996 struct extent_io_tree *unpin) 4997 { 4998 u64 start; 4999 u64 end; 5000 int ret; 5001 5002 while (1) { 5003 struct extent_state *cached_state = NULL; 5004 5005 /* 5006 * The btrfs_finish_extent_commit() may get the same range as 5007 * ours between find_first_extent_bit and clear_extent_dirty. 5008 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 5009 * the same extent range. 5010 */ 5011 mutex_lock(&fs_info->unused_bg_unpin_mutex); 5012 ret = find_first_extent_bit(unpin, 0, &start, &end, 5013 EXTENT_DIRTY, &cached_state); 5014 if (ret) { 5015 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 5016 break; 5017 } 5018 5019 clear_extent_dirty(unpin, start, end, &cached_state); 5020 free_extent_state(cached_state); 5021 btrfs_error_unpin_extent_range(fs_info, start, end); 5022 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 5023 cond_resched(); 5024 } 5025 5026 return 0; 5027 } 5028 5029 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 5030 { 5031 struct inode *inode; 5032 5033 inode = cache->io_ctl.inode; 5034 if (inode) { 5035 invalidate_inode_pages2(inode->i_mapping); 5036 BTRFS_I(inode)->generation = 0; 5037 cache->io_ctl.inode = NULL; 5038 iput(inode); 5039 } 5040 ASSERT(cache->io_ctl.pages == NULL); 5041 btrfs_put_block_group(cache); 5042 } 5043 5044 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 5045 struct btrfs_fs_info *fs_info) 5046 { 5047 struct btrfs_block_group *cache; 5048 5049 spin_lock(&cur_trans->dirty_bgs_lock); 5050 while (!list_empty(&cur_trans->dirty_bgs)) { 5051 cache = list_first_entry(&cur_trans->dirty_bgs, 5052 struct btrfs_block_group, 5053 dirty_list); 5054 5055 if (!list_empty(&cache->io_list)) { 5056 spin_unlock(&cur_trans->dirty_bgs_lock); 5057 list_del_init(&cache->io_list); 5058 btrfs_cleanup_bg_io(cache); 5059 spin_lock(&cur_trans->dirty_bgs_lock); 5060 } 5061 5062 list_del_init(&cache->dirty_list); 5063 spin_lock(&cache->lock); 5064 cache->disk_cache_state = BTRFS_DC_ERROR; 5065 spin_unlock(&cache->lock); 5066 5067 spin_unlock(&cur_trans->dirty_bgs_lock); 5068 btrfs_put_block_group(cache); 5069 btrfs_delayed_refs_rsv_release(fs_info, 1); 5070 spin_lock(&cur_trans->dirty_bgs_lock); 5071 } 5072 spin_unlock(&cur_trans->dirty_bgs_lock); 5073 5074 /* 5075 * Refer to the definition of io_bgs member for details why it's safe 5076 * to use it without any locking 5077 */ 5078 while (!list_empty(&cur_trans->io_bgs)) { 5079 cache = list_first_entry(&cur_trans->io_bgs, 5080 struct btrfs_block_group, 5081 io_list); 5082 5083 list_del_init(&cache->io_list); 5084 spin_lock(&cache->lock); 5085 cache->disk_cache_state = BTRFS_DC_ERROR; 5086 spin_unlock(&cache->lock); 5087 btrfs_cleanup_bg_io(cache); 5088 } 5089 } 5090 5091 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 5092 struct btrfs_fs_info *fs_info) 5093 { 5094 struct btrfs_device *dev, *tmp; 5095 5096 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 5097 ASSERT(list_empty(&cur_trans->dirty_bgs)); 5098 ASSERT(list_empty(&cur_trans->io_bgs)); 5099 5100 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 5101 post_commit_list) { 5102 list_del_init(&dev->post_commit_list); 5103 } 5104 5105 btrfs_destroy_delayed_refs(cur_trans, fs_info); 5106 5107 cur_trans->state = TRANS_STATE_COMMIT_START; 5108 wake_up(&fs_info->transaction_blocked_wait); 5109 5110 cur_trans->state = TRANS_STATE_UNBLOCKED; 5111 wake_up(&fs_info->transaction_wait); 5112 5113 btrfs_destroy_delayed_inodes(fs_info); 5114 5115 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 5116 EXTENT_DIRTY); 5117 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 5118 5119 btrfs_free_redirty_list(cur_trans); 5120 5121 cur_trans->state =TRANS_STATE_COMPLETED; 5122 wake_up(&cur_trans->commit_wait); 5123 } 5124 5125 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 5126 { 5127 struct btrfs_transaction *t; 5128 5129 mutex_lock(&fs_info->transaction_kthread_mutex); 5130 5131 spin_lock(&fs_info->trans_lock); 5132 while (!list_empty(&fs_info->trans_list)) { 5133 t = list_first_entry(&fs_info->trans_list, 5134 struct btrfs_transaction, list); 5135 if (t->state >= TRANS_STATE_COMMIT_START) { 5136 refcount_inc(&t->use_count); 5137 spin_unlock(&fs_info->trans_lock); 5138 btrfs_wait_for_commit(fs_info, t->transid); 5139 btrfs_put_transaction(t); 5140 spin_lock(&fs_info->trans_lock); 5141 continue; 5142 } 5143 if (t == fs_info->running_transaction) { 5144 t->state = TRANS_STATE_COMMIT_DOING; 5145 spin_unlock(&fs_info->trans_lock); 5146 /* 5147 * We wait for 0 num_writers since we don't hold a trans 5148 * handle open currently for this transaction. 5149 */ 5150 wait_event(t->writer_wait, 5151 atomic_read(&t->num_writers) == 0); 5152 } else { 5153 spin_unlock(&fs_info->trans_lock); 5154 } 5155 btrfs_cleanup_one_transaction(t, fs_info); 5156 5157 spin_lock(&fs_info->trans_lock); 5158 if (t == fs_info->running_transaction) 5159 fs_info->running_transaction = NULL; 5160 list_del_init(&t->list); 5161 spin_unlock(&fs_info->trans_lock); 5162 5163 btrfs_put_transaction(t); 5164 trace_btrfs_transaction_commit(fs_info); 5165 spin_lock(&fs_info->trans_lock); 5166 } 5167 spin_unlock(&fs_info->trans_lock); 5168 btrfs_destroy_all_ordered_extents(fs_info); 5169 btrfs_destroy_delayed_inodes(fs_info); 5170 btrfs_assert_delayed_root_empty(fs_info); 5171 btrfs_destroy_all_delalloc_inodes(fs_info); 5172 btrfs_drop_all_logs(fs_info); 5173 mutex_unlock(&fs_info->transaction_kthread_mutex); 5174 5175 return 0; 5176 } 5177 5178 int btrfs_init_root_free_objectid(struct btrfs_root *root) 5179 { 5180 struct btrfs_path *path; 5181 int ret; 5182 struct extent_buffer *l; 5183 struct btrfs_key search_key; 5184 struct btrfs_key found_key; 5185 int slot; 5186 5187 path = btrfs_alloc_path(); 5188 if (!path) 5189 return -ENOMEM; 5190 5191 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 5192 search_key.type = -1; 5193 search_key.offset = (u64)-1; 5194 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 5195 if (ret < 0) 5196 goto error; 5197 BUG_ON(ret == 0); /* Corruption */ 5198 if (path->slots[0] > 0) { 5199 slot = path->slots[0] - 1; 5200 l = path->nodes[0]; 5201 btrfs_item_key_to_cpu(l, &found_key, slot); 5202 root->free_objectid = max_t(u64, found_key.objectid + 1, 5203 BTRFS_FIRST_FREE_OBJECTID); 5204 } else { 5205 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 5206 } 5207 ret = 0; 5208 error: 5209 btrfs_free_path(path); 5210 return ret; 5211 } 5212 5213 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 5214 { 5215 int ret; 5216 mutex_lock(&root->objectid_mutex); 5217 5218 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 5219 btrfs_warn(root->fs_info, 5220 "the objectid of root %llu reaches its highest value", 5221 root->root_key.objectid); 5222 ret = -ENOSPC; 5223 goto out; 5224 } 5225 5226 *objectid = root->free_objectid++; 5227 ret = 0; 5228 out: 5229 mutex_unlock(&root->objectid_mutex); 5230 return ret; 5231 } 5232