1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/crc32c.h> 30 #include <linux/slab.h> 31 #include <linux/migrate.h> 32 #include <linux/ratelimit.h> 33 #include <asm/unaligned.h> 34 #include "compat.h" 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "volumes.h" 40 #include "print-tree.h" 41 #include "async-thread.h" 42 #include "locking.h" 43 #include "tree-log.h" 44 #include "free-space-cache.h" 45 #include "inode-map.h" 46 #include "check-integrity.h" 47 48 static struct extent_io_ops btree_extent_io_ops; 49 static void end_workqueue_fn(struct btrfs_work *work); 50 static void free_fs_root(struct btrfs_root *root); 51 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 52 int read_only); 53 static int btrfs_destroy_ordered_operations(struct btrfs_root *root); 54 static int btrfs_destroy_ordered_extents(struct btrfs_root *root); 55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 56 struct btrfs_root *root); 57 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t); 58 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 59 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 60 struct extent_io_tree *dirty_pages, 61 int mark); 62 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 63 struct extent_io_tree *pinned_extents); 64 static int btrfs_cleanup_transaction(struct btrfs_root *root); 65 66 /* 67 * end_io_wq structs are used to do processing in task context when an IO is 68 * complete. This is used during reads to verify checksums, and it is used 69 * by writes to insert metadata for new file extents after IO is complete. 70 */ 71 struct end_io_wq { 72 struct bio *bio; 73 bio_end_io_t *end_io; 74 void *private; 75 struct btrfs_fs_info *info; 76 int error; 77 int metadata; 78 struct list_head list; 79 struct btrfs_work work; 80 }; 81 82 /* 83 * async submit bios are used to offload expensive checksumming 84 * onto the worker threads. They checksum file and metadata bios 85 * just before they are sent down the IO stack. 86 */ 87 struct async_submit_bio { 88 struct inode *inode; 89 struct bio *bio; 90 struct list_head list; 91 extent_submit_bio_hook_t *submit_bio_start; 92 extent_submit_bio_hook_t *submit_bio_done; 93 int rw; 94 int mirror_num; 95 unsigned long bio_flags; 96 /* 97 * bio_offset is optional, can be used if the pages in the bio 98 * can't tell us where in the file the bio should go 99 */ 100 u64 bio_offset; 101 struct btrfs_work work; 102 }; 103 104 /* 105 * Lockdep class keys for extent_buffer->lock's in this root. For a given 106 * eb, the lockdep key is determined by the btrfs_root it belongs to and 107 * the level the eb occupies in the tree. 108 * 109 * Different roots are used for different purposes and may nest inside each 110 * other and they require separate keysets. As lockdep keys should be 111 * static, assign keysets according to the purpose of the root as indicated 112 * by btrfs_root->objectid. This ensures that all special purpose roots 113 * have separate keysets. 114 * 115 * Lock-nesting across peer nodes is always done with the immediate parent 116 * node locked thus preventing deadlock. As lockdep doesn't know this, use 117 * subclass to avoid triggering lockdep warning in such cases. 118 * 119 * The key is set by the readpage_end_io_hook after the buffer has passed 120 * csum validation but before the pages are unlocked. It is also set by 121 * btrfs_init_new_buffer on freshly allocated blocks. 122 * 123 * We also add a check to make sure the highest level of the tree is the 124 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 125 * needs update as well. 126 */ 127 #ifdef CONFIG_DEBUG_LOCK_ALLOC 128 # if BTRFS_MAX_LEVEL != 8 129 # error 130 # endif 131 132 static struct btrfs_lockdep_keyset { 133 u64 id; /* root objectid */ 134 const char *name_stem; /* lock name stem */ 135 char names[BTRFS_MAX_LEVEL + 1][20]; 136 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 137 } btrfs_lockdep_keysets[] = { 138 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 139 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 140 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 141 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 142 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 143 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 144 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" }, 145 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 146 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 147 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 148 { .id = 0, .name_stem = "tree" }, 149 }; 150 151 void __init btrfs_init_lockdep(void) 152 { 153 int i, j; 154 155 /* initialize lockdep class names */ 156 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 157 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 158 159 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 160 snprintf(ks->names[j], sizeof(ks->names[j]), 161 "btrfs-%s-%02d", ks->name_stem, j); 162 } 163 } 164 165 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 166 int level) 167 { 168 struct btrfs_lockdep_keyset *ks; 169 170 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 171 172 /* find the matching keyset, id 0 is the default entry */ 173 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 174 if (ks->id == objectid) 175 break; 176 177 lockdep_set_class_and_name(&eb->lock, 178 &ks->keys[level], ks->names[level]); 179 } 180 181 #endif 182 183 /* 184 * extents on the btree inode are pretty simple, there's one extent 185 * that covers the entire device 186 */ 187 static struct extent_map *btree_get_extent(struct inode *inode, 188 struct page *page, size_t pg_offset, u64 start, u64 len, 189 int create) 190 { 191 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 192 struct extent_map *em; 193 int ret; 194 195 read_lock(&em_tree->lock); 196 em = lookup_extent_mapping(em_tree, start, len); 197 if (em) { 198 em->bdev = 199 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 200 read_unlock(&em_tree->lock); 201 goto out; 202 } 203 read_unlock(&em_tree->lock); 204 205 em = alloc_extent_map(); 206 if (!em) { 207 em = ERR_PTR(-ENOMEM); 208 goto out; 209 } 210 em->start = 0; 211 em->len = (u64)-1; 212 em->block_len = (u64)-1; 213 em->block_start = 0; 214 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 215 216 write_lock(&em_tree->lock); 217 ret = add_extent_mapping(em_tree, em); 218 if (ret == -EEXIST) { 219 u64 failed_start = em->start; 220 u64 failed_len = em->len; 221 222 free_extent_map(em); 223 em = lookup_extent_mapping(em_tree, start, len); 224 if (em) { 225 ret = 0; 226 } else { 227 em = lookup_extent_mapping(em_tree, failed_start, 228 failed_len); 229 ret = -EIO; 230 } 231 } else if (ret) { 232 free_extent_map(em); 233 em = NULL; 234 } 235 write_unlock(&em_tree->lock); 236 237 if (ret) 238 em = ERR_PTR(ret); 239 out: 240 return em; 241 } 242 243 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) 244 { 245 return crc32c(seed, data, len); 246 } 247 248 void btrfs_csum_final(u32 crc, char *result) 249 { 250 put_unaligned_le32(~crc, result); 251 } 252 253 /* 254 * compute the csum for a btree block, and either verify it or write it 255 * into the csum field of the block. 256 */ 257 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 258 int verify) 259 { 260 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 261 char *result = NULL; 262 unsigned long len; 263 unsigned long cur_len; 264 unsigned long offset = BTRFS_CSUM_SIZE; 265 char *kaddr; 266 unsigned long map_start; 267 unsigned long map_len; 268 int err; 269 u32 crc = ~(u32)0; 270 unsigned long inline_result; 271 272 len = buf->len - offset; 273 while (len > 0) { 274 err = map_private_extent_buffer(buf, offset, 32, 275 &kaddr, &map_start, &map_len); 276 if (err) 277 return 1; 278 cur_len = min(len, map_len - (offset - map_start)); 279 crc = btrfs_csum_data(root, kaddr + offset - map_start, 280 crc, cur_len); 281 len -= cur_len; 282 offset += cur_len; 283 } 284 if (csum_size > sizeof(inline_result)) { 285 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 286 if (!result) 287 return 1; 288 } else { 289 result = (char *)&inline_result; 290 } 291 292 btrfs_csum_final(crc, result); 293 294 if (verify) { 295 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 296 u32 val; 297 u32 found = 0; 298 memcpy(&found, result, csum_size); 299 300 read_extent_buffer(buf, &val, 0, csum_size); 301 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify " 302 "failed on %llu wanted %X found %X " 303 "level %d\n", 304 root->fs_info->sb->s_id, 305 (unsigned long long)buf->start, val, found, 306 btrfs_header_level(buf)); 307 if (result != (char *)&inline_result) 308 kfree(result); 309 return 1; 310 } 311 } else { 312 write_extent_buffer(buf, result, 0, csum_size); 313 } 314 if (result != (char *)&inline_result) 315 kfree(result); 316 return 0; 317 } 318 319 /* 320 * we can't consider a given block up to date unless the transid of the 321 * block matches the transid in the parent node's pointer. This is how we 322 * detect blocks that either didn't get written at all or got written 323 * in the wrong place. 324 */ 325 static int verify_parent_transid(struct extent_io_tree *io_tree, 326 struct extent_buffer *eb, u64 parent_transid) 327 { 328 struct extent_state *cached_state = NULL; 329 int ret; 330 331 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 332 return 0; 333 334 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 335 0, &cached_state, GFP_NOFS); 336 if (extent_buffer_uptodate(io_tree, eb, cached_state) && 337 btrfs_header_generation(eb) == parent_transid) { 338 ret = 0; 339 goto out; 340 } 341 printk_ratelimited("parent transid verify failed on %llu wanted %llu " 342 "found %llu\n", 343 (unsigned long long)eb->start, 344 (unsigned long long)parent_transid, 345 (unsigned long long)btrfs_header_generation(eb)); 346 ret = 1; 347 clear_extent_buffer_uptodate(io_tree, eb, &cached_state); 348 out: 349 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 350 &cached_state, GFP_NOFS); 351 return ret; 352 } 353 354 /* 355 * helper to read a given tree block, doing retries as required when 356 * the checksums don't match and we have alternate mirrors to try. 357 */ 358 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 359 struct extent_buffer *eb, 360 u64 start, u64 parent_transid) 361 { 362 struct extent_io_tree *io_tree; 363 int ret; 364 int num_copies = 0; 365 int mirror_num = 0; 366 367 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 368 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 369 while (1) { 370 ret = read_extent_buffer_pages(io_tree, eb, start, 371 WAIT_COMPLETE, 372 btree_get_extent, mirror_num); 373 if (!ret && 374 !verify_parent_transid(io_tree, eb, parent_transid)) 375 return ret; 376 377 /* 378 * This buffer's crc is fine, but its contents are corrupted, so 379 * there is no reason to read the other copies, they won't be 380 * any less wrong. 381 */ 382 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 383 return ret; 384 385 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, 386 eb->start, eb->len); 387 if (num_copies == 1) 388 return ret; 389 390 mirror_num++; 391 if (mirror_num > num_copies) 392 return ret; 393 } 394 return -EIO; 395 } 396 397 /* 398 * checksum a dirty tree block before IO. This has extra checks to make sure 399 * we only fill in the checksum field in the first page of a multi-page block 400 */ 401 402 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 403 { 404 struct extent_io_tree *tree; 405 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 406 u64 found_start; 407 unsigned long len; 408 struct extent_buffer *eb; 409 int ret; 410 411 tree = &BTRFS_I(page->mapping->host)->io_tree; 412 413 if (page->private == EXTENT_PAGE_PRIVATE) { 414 WARN_ON(1); 415 goto out; 416 } 417 if (!page->private) { 418 WARN_ON(1); 419 goto out; 420 } 421 len = page->private >> 2; 422 WARN_ON(len == 0); 423 424 eb = alloc_extent_buffer(tree, start, len, page); 425 if (eb == NULL) { 426 WARN_ON(1); 427 goto out; 428 } 429 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE, 430 btrfs_header_generation(eb)); 431 BUG_ON(ret); 432 WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN)); 433 434 found_start = btrfs_header_bytenr(eb); 435 if (found_start != start) { 436 WARN_ON(1); 437 goto err; 438 } 439 if (eb->first_page != page) { 440 WARN_ON(1); 441 goto err; 442 } 443 if (!PageUptodate(page)) { 444 WARN_ON(1); 445 goto err; 446 } 447 csum_tree_block(root, eb, 0); 448 err: 449 free_extent_buffer(eb); 450 out: 451 return 0; 452 } 453 454 static int check_tree_block_fsid(struct btrfs_root *root, 455 struct extent_buffer *eb) 456 { 457 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 458 u8 fsid[BTRFS_UUID_SIZE]; 459 int ret = 1; 460 461 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb), 462 BTRFS_FSID_SIZE); 463 while (fs_devices) { 464 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 465 ret = 0; 466 break; 467 } 468 fs_devices = fs_devices->seed; 469 } 470 return ret; 471 } 472 473 #define CORRUPT(reason, eb, root, slot) \ 474 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \ 475 "root=%llu, slot=%d\n", reason, \ 476 (unsigned long long)btrfs_header_bytenr(eb), \ 477 (unsigned long long)root->objectid, slot) 478 479 static noinline int check_leaf(struct btrfs_root *root, 480 struct extent_buffer *leaf) 481 { 482 struct btrfs_key key; 483 struct btrfs_key leaf_key; 484 u32 nritems = btrfs_header_nritems(leaf); 485 int slot; 486 487 if (nritems == 0) 488 return 0; 489 490 /* Check the 0 item */ 491 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 492 BTRFS_LEAF_DATA_SIZE(root)) { 493 CORRUPT("invalid item offset size pair", leaf, root, 0); 494 return -EIO; 495 } 496 497 /* 498 * Check to make sure each items keys are in the correct order and their 499 * offsets make sense. We only have to loop through nritems-1 because 500 * we check the current slot against the next slot, which verifies the 501 * next slot's offset+size makes sense and that the current's slot 502 * offset is correct. 503 */ 504 for (slot = 0; slot < nritems - 1; slot++) { 505 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 506 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 507 508 /* Make sure the keys are in the right order */ 509 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 510 CORRUPT("bad key order", leaf, root, slot); 511 return -EIO; 512 } 513 514 /* 515 * Make sure the offset and ends are right, remember that the 516 * item data starts at the end of the leaf and grows towards the 517 * front. 518 */ 519 if (btrfs_item_offset_nr(leaf, slot) != 520 btrfs_item_end_nr(leaf, slot + 1)) { 521 CORRUPT("slot offset bad", leaf, root, slot); 522 return -EIO; 523 } 524 525 /* 526 * Check to make sure that we don't point outside of the leaf, 527 * just incase all the items are consistent to eachother, but 528 * all point outside of the leaf. 529 */ 530 if (btrfs_item_end_nr(leaf, slot) > 531 BTRFS_LEAF_DATA_SIZE(root)) { 532 CORRUPT("slot end outside of leaf", leaf, root, slot); 533 return -EIO; 534 } 535 } 536 537 return 0; 538 } 539 540 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, 541 struct extent_state *state) 542 { 543 struct extent_io_tree *tree; 544 u64 found_start; 545 int found_level; 546 unsigned long len; 547 struct extent_buffer *eb; 548 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 549 int ret = 0; 550 551 tree = &BTRFS_I(page->mapping->host)->io_tree; 552 if (page->private == EXTENT_PAGE_PRIVATE) 553 goto out; 554 if (!page->private) 555 goto out; 556 557 len = page->private >> 2; 558 WARN_ON(len == 0); 559 560 eb = alloc_extent_buffer(tree, start, len, page); 561 if (eb == NULL) { 562 ret = -EIO; 563 goto out; 564 } 565 566 found_start = btrfs_header_bytenr(eb); 567 if (found_start != start) { 568 printk_ratelimited(KERN_INFO "btrfs bad tree block start " 569 "%llu %llu\n", 570 (unsigned long long)found_start, 571 (unsigned long long)eb->start); 572 ret = -EIO; 573 goto err; 574 } 575 if (eb->first_page != page) { 576 printk(KERN_INFO "btrfs bad first page %lu %lu\n", 577 eb->first_page->index, page->index); 578 WARN_ON(1); 579 ret = -EIO; 580 goto err; 581 } 582 if (check_tree_block_fsid(root, eb)) { 583 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n", 584 (unsigned long long)eb->start); 585 ret = -EIO; 586 goto err; 587 } 588 found_level = btrfs_header_level(eb); 589 590 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 591 eb, found_level); 592 593 ret = csum_tree_block(root, eb, 1); 594 if (ret) { 595 ret = -EIO; 596 goto err; 597 } 598 599 /* 600 * If this is a leaf block and it is corrupt, set the corrupt bit so 601 * that we don't try and read the other copies of this block, just 602 * return -EIO. 603 */ 604 if (found_level == 0 && check_leaf(root, eb)) { 605 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 606 ret = -EIO; 607 } 608 609 end = min_t(u64, eb->len, PAGE_CACHE_SIZE); 610 end = eb->start + end - 1; 611 err: 612 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) { 613 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags); 614 btree_readahead_hook(root, eb, eb->start, ret); 615 } 616 617 free_extent_buffer(eb); 618 out: 619 return ret; 620 } 621 622 static int btree_io_failed_hook(struct bio *failed_bio, 623 struct page *page, u64 start, u64 end, 624 int mirror_num, struct extent_state *state) 625 { 626 struct extent_io_tree *tree; 627 unsigned long len; 628 struct extent_buffer *eb; 629 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 630 631 tree = &BTRFS_I(page->mapping->host)->io_tree; 632 if (page->private == EXTENT_PAGE_PRIVATE) 633 goto out; 634 if (!page->private) 635 goto out; 636 637 len = page->private >> 2; 638 WARN_ON(len == 0); 639 640 eb = alloc_extent_buffer(tree, start, len, page); 641 if (eb == NULL) 642 goto out; 643 644 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) { 645 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags); 646 btree_readahead_hook(root, eb, eb->start, -EIO); 647 } 648 free_extent_buffer(eb); 649 650 out: 651 return -EIO; /* we fixed nothing */ 652 } 653 654 static void end_workqueue_bio(struct bio *bio, int err) 655 { 656 struct end_io_wq *end_io_wq = bio->bi_private; 657 struct btrfs_fs_info *fs_info; 658 659 fs_info = end_io_wq->info; 660 end_io_wq->error = err; 661 end_io_wq->work.func = end_workqueue_fn; 662 end_io_wq->work.flags = 0; 663 664 if (bio->bi_rw & REQ_WRITE) { 665 if (end_io_wq->metadata == 1) 666 btrfs_queue_worker(&fs_info->endio_meta_write_workers, 667 &end_io_wq->work); 668 else if (end_io_wq->metadata == 2) 669 btrfs_queue_worker(&fs_info->endio_freespace_worker, 670 &end_io_wq->work); 671 else 672 btrfs_queue_worker(&fs_info->endio_write_workers, 673 &end_io_wq->work); 674 } else { 675 if (end_io_wq->metadata) 676 btrfs_queue_worker(&fs_info->endio_meta_workers, 677 &end_io_wq->work); 678 else 679 btrfs_queue_worker(&fs_info->endio_workers, 680 &end_io_wq->work); 681 } 682 } 683 684 /* 685 * For the metadata arg you want 686 * 687 * 0 - if data 688 * 1 - if normal metadta 689 * 2 - if writing to the free space cache area 690 */ 691 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 692 int metadata) 693 { 694 struct end_io_wq *end_io_wq; 695 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 696 if (!end_io_wq) 697 return -ENOMEM; 698 699 end_io_wq->private = bio->bi_private; 700 end_io_wq->end_io = bio->bi_end_io; 701 end_io_wq->info = info; 702 end_io_wq->error = 0; 703 end_io_wq->bio = bio; 704 end_io_wq->metadata = metadata; 705 706 bio->bi_private = end_io_wq; 707 bio->bi_end_io = end_workqueue_bio; 708 return 0; 709 } 710 711 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 712 { 713 unsigned long limit = min_t(unsigned long, 714 info->workers.max_workers, 715 info->fs_devices->open_devices); 716 return 256 * limit; 717 } 718 719 static void run_one_async_start(struct btrfs_work *work) 720 { 721 struct async_submit_bio *async; 722 723 async = container_of(work, struct async_submit_bio, work); 724 async->submit_bio_start(async->inode, async->rw, async->bio, 725 async->mirror_num, async->bio_flags, 726 async->bio_offset); 727 } 728 729 static void run_one_async_done(struct btrfs_work *work) 730 { 731 struct btrfs_fs_info *fs_info; 732 struct async_submit_bio *async; 733 int limit; 734 735 async = container_of(work, struct async_submit_bio, work); 736 fs_info = BTRFS_I(async->inode)->root->fs_info; 737 738 limit = btrfs_async_submit_limit(fs_info); 739 limit = limit * 2 / 3; 740 741 atomic_dec(&fs_info->nr_async_submits); 742 743 if (atomic_read(&fs_info->nr_async_submits) < limit && 744 waitqueue_active(&fs_info->async_submit_wait)) 745 wake_up(&fs_info->async_submit_wait); 746 747 async->submit_bio_done(async->inode, async->rw, async->bio, 748 async->mirror_num, async->bio_flags, 749 async->bio_offset); 750 } 751 752 static void run_one_async_free(struct btrfs_work *work) 753 { 754 struct async_submit_bio *async; 755 756 async = container_of(work, struct async_submit_bio, work); 757 kfree(async); 758 } 759 760 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 761 int rw, struct bio *bio, int mirror_num, 762 unsigned long bio_flags, 763 u64 bio_offset, 764 extent_submit_bio_hook_t *submit_bio_start, 765 extent_submit_bio_hook_t *submit_bio_done) 766 { 767 struct async_submit_bio *async; 768 769 async = kmalloc(sizeof(*async), GFP_NOFS); 770 if (!async) 771 return -ENOMEM; 772 773 async->inode = inode; 774 async->rw = rw; 775 async->bio = bio; 776 async->mirror_num = mirror_num; 777 async->submit_bio_start = submit_bio_start; 778 async->submit_bio_done = submit_bio_done; 779 780 async->work.func = run_one_async_start; 781 async->work.ordered_func = run_one_async_done; 782 async->work.ordered_free = run_one_async_free; 783 784 async->work.flags = 0; 785 async->bio_flags = bio_flags; 786 async->bio_offset = bio_offset; 787 788 atomic_inc(&fs_info->nr_async_submits); 789 790 if (rw & REQ_SYNC) 791 btrfs_set_work_high_prio(&async->work); 792 793 btrfs_queue_worker(&fs_info->workers, &async->work); 794 795 while (atomic_read(&fs_info->async_submit_draining) && 796 atomic_read(&fs_info->nr_async_submits)) { 797 wait_event(fs_info->async_submit_wait, 798 (atomic_read(&fs_info->nr_async_submits) == 0)); 799 } 800 801 return 0; 802 } 803 804 static int btree_csum_one_bio(struct bio *bio) 805 { 806 struct bio_vec *bvec = bio->bi_io_vec; 807 int bio_index = 0; 808 struct btrfs_root *root; 809 810 WARN_ON(bio->bi_vcnt <= 0); 811 while (bio_index < bio->bi_vcnt) { 812 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 813 csum_dirty_buffer(root, bvec->bv_page); 814 bio_index++; 815 bvec++; 816 } 817 return 0; 818 } 819 820 static int __btree_submit_bio_start(struct inode *inode, int rw, 821 struct bio *bio, int mirror_num, 822 unsigned long bio_flags, 823 u64 bio_offset) 824 { 825 /* 826 * when we're called for a write, we're already in the async 827 * submission context. Just jump into btrfs_map_bio 828 */ 829 btree_csum_one_bio(bio); 830 return 0; 831 } 832 833 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 834 int mirror_num, unsigned long bio_flags, 835 u64 bio_offset) 836 { 837 /* 838 * when we're called for a write, we're already in the async 839 * submission context. Just jump into btrfs_map_bio 840 */ 841 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 842 } 843 844 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 845 int mirror_num, unsigned long bio_flags, 846 u64 bio_offset) 847 { 848 int ret; 849 850 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 851 bio, 1); 852 BUG_ON(ret); 853 854 if (!(rw & REQ_WRITE)) { 855 /* 856 * called for a read, do the setup so that checksum validation 857 * can happen in the async kernel threads 858 */ 859 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 860 mirror_num, 0); 861 } 862 863 /* 864 * kthread helpers are used to submit writes so that checksumming 865 * can happen in parallel across all CPUs 866 */ 867 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 868 inode, rw, bio, mirror_num, 0, 869 bio_offset, 870 __btree_submit_bio_start, 871 __btree_submit_bio_done); 872 } 873 874 #ifdef CONFIG_MIGRATION 875 static int btree_migratepage(struct address_space *mapping, 876 struct page *newpage, struct page *page, 877 enum migrate_mode mode) 878 { 879 /* 880 * we can't safely write a btree page from here, 881 * we haven't done the locking hook 882 */ 883 if (PageDirty(page)) 884 return -EAGAIN; 885 /* 886 * Buffers may be managed in a filesystem specific way. 887 * We must have no buffers or drop them. 888 */ 889 if (page_has_private(page) && 890 !try_to_release_page(page, GFP_KERNEL)) 891 return -EAGAIN; 892 return migrate_page(mapping, newpage, page, mode); 893 } 894 #endif 895 896 static int btree_writepage(struct page *page, struct writeback_control *wbc) 897 { 898 struct extent_io_tree *tree; 899 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 900 struct extent_buffer *eb; 901 int was_dirty; 902 903 tree = &BTRFS_I(page->mapping->host)->io_tree; 904 if (!(current->flags & PF_MEMALLOC)) { 905 return extent_write_full_page(tree, page, 906 btree_get_extent, wbc); 907 } 908 909 redirty_page_for_writepage(wbc, page); 910 eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE); 911 WARN_ON(!eb); 912 913 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 914 if (!was_dirty) { 915 spin_lock(&root->fs_info->delalloc_lock); 916 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE; 917 spin_unlock(&root->fs_info->delalloc_lock); 918 } 919 free_extent_buffer(eb); 920 921 unlock_page(page); 922 return 0; 923 } 924 925 static int btree_writepages(struct address_space *mapping, 926 struct writeback_control *wbc) 927 { 928 struct extent_io_tree *tree; 929 tree = &BTRFS_I(mapping->host)->io_tree; 930 if (wbc->sync_mode == WB_SYNC_NONE) { 931 struct btrfs_root *root = BTRFS_I(mapping->host)->root; 932 u64 num_dirty; 933 unsigned long thresh = 32 * 1024 * 1024; 934 935 if (wbc->for_kupdate) 936 return 0; 937 938 /* this is a bit racy, but that's ok */ 939 num_dirty = root->fs_info->dirty_metadata_bytes; 940 if (num_dirty < thresh) 941 return 0; 942 } 943 return extent_writepages(tree, mapping, btree_get_extent, wbc); 944 } 945 946 static int btree_readpage(struct file *file, struct page *page) 947 { 948 struct extent_io_tree *tree; 949 tree = &BTRFS_I(page->mapping->host)->io_tree; 950 return extent_read_full_page(tree, page, btree_get_extent, 0); 951 } 952 953 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 954 { 955 struct extent_io_tree *tree; 956 struct extent_map_tree *map; 957 int ret; 958 959 if (PageWriteback(page) || PageDirty(page)) 960 return 0; 961 962 tree = &BTRFS_I(page->mapping->host)->io_tree; 963 map = &BTRFS_I(page->mapping->host)->extent_tree; 964 965 /* 966 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing 967 * slab allocation from alloc_extent_state down the callchain where 968 * it'd hit a BUG_ON as those flags are not allowed. 969 */ 970 gfp_flags &= ~GFP_SLAB_BUG_MASK; 971 972 ret = try_release_extent_state(map, tree, page, gfp_flags); 973 if (!ret) 974 return 0; 975 976 ret = try_release_extent_buffer(tree, page); 977 if (ret == 1) { 978 ClearPagePrivate(page); 979 set_page_private(page, 0); 980 page_cache_release(page); 981 } 982 983 return ret; 984 } 985 986 static void btree_invalidatepage(struct page *page, unsigned long offset) 987 { 988 struct extent_io_tree *tree; 989 tree = &BTRFS_I(page->mapping->host)->io_tree; 990 extent_invalidatepage(tree, page, offset); 991 btree_releasepage(page, GFP_NOFS); 992 if (PagePrivate(page)) { 993 printk(KERN_WARNING "btrfs warning page private not zero " 994 "on page %llu\n", (unsigned long long)page_offset(page)); 995 ClearPagePrivate(page); 996 set_page_private(page, 0); 997 page_cache_release(page); 998 } 999 } 1000 1001 static const struct address_space_operations btree_aops = { 1002 .readpage = btree_readpage, 1003 .writepage = btree_writepage, 1004 .writepages = btree_writepages, 1005 .releasepage = btree_releasepage, 1006 .invalidatepage = btree_invalidatepage, 1007 #ifdef CONFIG_MIGRATION 1008 .migratepage = btree_migratepage, 1009 #endif 1010 }; 1011 1012 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1013 u64 parent_transid) 1014 { 1015 struct extent_buffer *buf = NULL; 1016 struct inode *btree_inode = root->fs_info->btree_inode; 1017 int ret = 0; 1018 1019 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1020 if (!buf) 1021 return 0; 1022 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1023 buf, 0, WAIT_NONE, btree_get_extent, 0); 1024 free_extent_buffer(buf); 1025 return ret; 1026 } 1027 1028 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1029 int mirror_num, struct extent_buffer **eb) 1030 { 1031 struct extent_buffer *buf = NULL; 1032 struct inode *btree_inode = root->fs_info->btree_inode; 1033 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1034 int ret; 1035 1036 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1037 if (!buf) 1038 return 0; 1039 1040 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1041 1042 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1043 btree_get_extent, mirror_num); 1044 if (ret) { 1045 free_extent_buffer(buf); 1046 return ret; 1047 } 1048 1049 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1050 free_extent_buffer(buf); 1051 return -EIO; 1052 } else if (extent_buffer_uptodate(io_tree, buf, NULL)) { 1053 *eb = buf; 1054 } else { 1055 free_extent_buffer(buf); 1056 } 1057 return 0; 1058 } 1059 1060 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 1061 u64 bytenr, u32 blocksize) 1062 { 1063 struct inode *btree_inode = root->fs_info->btree_inode; 1064 struct extent_buffer *eb; 1065 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 1066 bytenr, blocksize); 1067 return eb; 1068 } 1069 1070 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1071 u64 bytenr, u32 blocksize) 1072 { 1073 struct inode *btree_inode = root->fs_info->btree_inode; 1074 struct extent_buffer *eb; 1075 1076 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 1077 bytenr, blocksize, NULL); 1078 return eb; 1079 } 1080 1081 1082 int btrfs_write_tree_block(struct extent_buffer *buf) 1083 { 1084 return filemap_fdatawrite_range(buf->first_page->mapping, buf->start, 1085 buf->start + buf->len - 1); 1086 } 1087 1088 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1089 { 1090 return filemap_fdatawait_range(buf->first_page->mapping, 1091 buf->start, buf->start + buf->len - 1); 1092 } 1093 1094 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1095 u32 blocksize, u64 parent_transid) 1096 { 1097 struct extent_buffer *buf = NULL; 1098 int ret; 1099 1100 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1101 if (!buf) 1102 return NULL; 1103 1104 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1105 1106 if (ret == 0) 1107 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 1108 return buf; 1109 1110 } 1111 1112 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1113 struct extent_buffer *buf) 1114 { 1115 struct inode *btree_inode = root->fs_info->btree_inode; 1116 if (btrfs_header_generation(buf) == 1117 root->fs_info->running_transaction->transid) { 1118 btrfs_assert_tree_locked(buf); 1119 1120 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1121 spin_lock(&root->fs_info->delalloc_lock); 1122 if (root->fs_info->dirty_metadata_bytes >= buf->len) 1123 root->fs_info->dirty_metadata_bytes -= buf->len; 1124 else 1125 WARN_ON(1); 1126 spin_unlock(&root->fs_info->delalloc_lock); 1127 } 1128 1129 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1130 btrfs_set_lock_blocking(buf); 1131 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 1132 buf); 1133 } 1134 return 0; 1135 } 1136 1137 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 1138 u32 stripesize, struct btrfs_root *root, 1139 struct btrfs_fs_info *fs_info, 1140 u64 objectid) 1141 { 1142 root->node = NULL; 1143 root->commit_root = NULL; 1144 root->sectorsize = sectorsize; 1145 root->nodesize = nodesize; 1146 root->leafsize = leafsize; 1147 root->stripesize = stripesize; 1148 root->ref_cows = 0; 1149 root->track_dirty = 0; 1150 root->in_radix = 0; 1151 root->orphan_item_inserted = 0; 1152 root->orphan_cleanup_state = 0; 1153 1154 root->objectid = objectid; 1155 root->last_trans = 0; 1156 root->highest_objectid = 0; 1157 root->name = NULL; 1158 root->inode_tree = RB_ROOT; 1159 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1160 root->block_rsv = NULL; 1161 root->orphan_block_rsv = NULL; 1162 1163 INIT_LIST_HEAD(&root->dirty_list); 1164 INIT_LIST_HEAD(&root->orphan_list); 1165 INIT_LIST_HEAD(&root->root_list); 1166 spin_lock_init(&root->orphan_lock); 1167 spin_lock_init(&root->inode_lock); 1168 spin_lock_init(&root->accounting_lock); 1169 mutex_init(&root->objectid_mutex); 1170 mutex_init(&root->log_mutex); 1171 init_waitqueue_head(&root->log_writer_wait); 1172 init_waitqueue_head(&root->log_commit_wait[0]); 1173 init_waitqueue_head(&root->log_commit_wait[1]); 1174 atomic_set(&root->log_commit[0], 0); 1175 atomic_set(&root->log_commit[1], 0); 1176 atomic_set(&root->log_writers, 0); 1177 root->log_batch = 0; 1178 root->log_transid = 0; 1179 root->last_log_commit = 0; 1180 extent_io_tree_init(&root->dirty_log_pages, 1181 fs_info->btree_inode->i_mapping); 1182 1183 memset(&root->root_key, 0, sizeof(root->root_key)); 1184 memset(&root->root_item, 0, sizeof(root->root_item)); 1185 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1186 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 1187 root->defrag_trans_start = fs_info->generation; 1188 init_completion(&root->kobj_unregister); 1189 root->defrag_running = 0; 1190 root->root_key.objectid = objectid; 1191 root->anon_dev = 0; 1192 return 0; 1193 } 1194 1195 static int find_and_setup_root(struct btrfs_root *tree_root, 1196 struct btrfs_fs_info *fs_info, 1197 u64 objectid, 1198 struct btrfs_root *root) 1199 { 1200 int ret; 1201 u32 blocksize; 1202 u64 generation; 1203 1204 __setup_root(tree_root->nodesize, tree_root->leafsize, 1205 tree_root->sectorsize, tree_root->stripesize, 1206 root, fs_info, objectid); 1207 ret = btrfs_find_last_root(tree_root, objectid, 1208 &root->root_item, &root->root_key); 1209 if (ret > 0) 1210 return -ENOENT; 1211 BUG_ON(ret); 1212 1213 generation = btrfs_root_generation(&root->root_item); 1214 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1215 root->commit_root = NULL; 1216 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1217 blocksize, generation); 1218 if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) { 1219 free_extent_buffer(root->node); 1220 root->node = NULL; 1221 return -EIO; 1222 } 1223 root->commit_root = btrfs_root_node(root); 1224 return 0; 1225 } 1226 1227 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info) 1228 { 1229 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS); 1230 if (root) 1231 root->fs_info = fs_info; 1232 return root; 1233 } 1234 1235 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1236 struct btrfs_fs_info *fs_info) 1237 { 1238 struct btrfs_root *root; 1239 struct btrfs_root *tree_root = fs_info->tree_root; 1240 struct extent_buffer *leaf; 1241 1242 root = btrfs_alloc_root(fs_info); 1243 if (!root) 1244 return ERR_PTR(-ENOMEM); 1245 1246 __setup_root(tree_root->nodesize, tree_root->leafsize, 1247 tree_root->sectorsize, tree_root->stripesize, 1248 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1249 1250 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1251 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1252 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1253 /* 1254 * log trees do not get reference counted because they go away 1255 * before a real commit is actually done. They do store pointers 1256 * to file data extents, and those reference counts still get 1257 * updated (along with back refs to the log tree). 1258 */ 1259 root->ref_cows = 0; 1260 1261 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 1262 BTRFS_TREE_LOG_OBJECTID, NULL, 1263 0, 0, 0, 0); 1264 if (IS_ERR(leaf)) { 1265 kfree(root); 1266 return ERR_CAST(leaf); 1267 } 1268 1269 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1270 btrfs_set_header_bytenr(leaf, leaf->start); 1271 btrfs_set_header_generation(leaf, trans->transid); 1272 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1273 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1274 root->node = leaf; 1275 1276 write_extent_buffer(root->node, root->fs_info->fsid, 1277 (unsigned long)btrfs_header_fsid(root->node), 1278 BTRFS_FSID_SIZE); 1279 btrfs_mark_buffer_dirty(root->node); 1280 btrfs_tree_unlock(root->node); 1281 return root; 1282 } 1283 1284 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1285 struct btrfs_fs_info *fs_info) 1286 { 1287 struct btrfs_root *log_root; 1288 1289 log_root = alloc_log_tree(trans, fs_info); 1290 if (IS_ERR(log_root)) 1291 return PTR_ERR(log_root); 1292 WARN_ON(fs_info->log_root_tree); 1293 fs_info->log_root_tree = log_root; 1294 return 0; 1295 } 1296 1297 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1298 struct btrfs_root *root) 1299 { 1300 struct btrfs_root *log_root; 1301 struct btrfs_inode_item *inode_item; 1302 1303 log_root = alloc_log_tree(trans, root->fs_info); 1304 if (IS_ERR(log_root)) 1305 return PTR_ERR(log_root); 1306 1307 log_root->last_trans = trans->transid; 1308 log_root->root_key.offset = root->root_key.objectid; 1309 1310 inode_item = &log_root->root_item.inode; 1311 inode_item->generation = cpu_to_le64(1); 1312 inode_item->size = cpu_to_le64(3); 1313 inode_item->nlink = cpu_to_le32(1); 1314 inode_item->nbytes = cpu_to_le64(root->leafsize); 1315 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 1316 1317 btrfs_set_root_node(&log_root->root_item, log_root->node); 1318 1319 WARN_ON(root->log_root); 1320 root->log_root = log_root; 1321 root->log_transid = 0; 1322 root->last_log_commit = 0; 1323 return 0; 1324 } 1325 1326 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root, 1327 struct btrfs_key *location) 1328 { 1329 struct btrfs_root *root; 1330 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1331 struct btrfs_path *path; 1332 struct extent_buffer *l; 1333 u64 generation; 1334 u32 blocksize; 1335 int ret = 0; 1336 1337 root = btrfs_alloc_root(fs_info); 1338 if (!root) 1339 return ERR_PTR(-ENOMEM); 1340 if (location->offset == (u64)-1) { 1341 ret = find_and_setup_root(tree_root, fs_info, 1342 location->objectid, root); 1343 if (ret) { 1344 kfree(root); 1345 return ERR_PTR(ret); 1346 } 1347 goto out; 1348 } 1349 1350 __setup_root(tree_root->nodesize, tree_root->leafsize, 1351 tree_root->sectorsize, tree_root->stripesize, 1352 root, fs_info, location->objectid); 1353 1354 path = btrfs_alloc_path(); 1355 if (!path) { 1356 kfree(root); 1357 return ERR_PTR(-ENOMEM); 1358 } 1359 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); 1360 if (ret == 0) { 1361 l = path->nodes[0]; 1362 read_extent_buffer(l, &root->root_item, 1363 btrfs_item_ptr_offset(l, path->slots[0]), 1364 sizeof(root->root_item)); 1365 memcpy(&root->root_key, location, sizeof(*location)); 1366 } 1367 btrfs_free_path(path); 1368 if (ret) { 1369 kfree(root); 1370 if (ret > 0) 1371 ret = -ENOENT; 1372 return ERR_PTR(ret); 1373 } 1374 1375 generation = btrfs_root_generation(&root->root_item); 1376 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1377 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1378 blocksize, generation); 1379 root->commit_root = btrfs_root_node(root); 1380 BUG_ON(!root->node); 1381 out: 1382 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) { 1383 root->ref_cows = 1; 1384 btrfs_check_and_init_root_item(&root->root_item); 1385 } 1386 1387 return root; 1388 } 1389 1390 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, 1391 struct btrfs_key *location) 1392 { 1393 struct btrfs_root *root; 1394 int ret; 1395 1396 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1397 return fs_info->tree_root; 1398 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1399 return fs_info->extent_root; 1400 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1401 return fs_info->chunk_root; 1402 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1403 return fs_info->dev_root; 1404 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1405 return fs_info->csum_root; 1406 again: 1407 spin_lock(&fs_info->fs_roots_radix_lock); 1408 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1409 (unsigned long)location->objectid); 1410 spin_unlock(&fs_info->fs_roots_radix_lock); 1411 if (root) 1412 return root; 1413 1414 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location); 1415 if (IS_ERR(root)) 1416 return root; 1417 1418 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1419 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1420 GFP_NOFS); 1421 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1422 ret = -ENOMEM; 1423 goto fail; 1424 } 1425 1426 btrfs_init_free_ino_ctl(root); 1427 mutex_init(&root->fs_commit_mutex); 1428 spin_lock_init(&root->cache_lock); 1429 init_waitqueue_head(&root->cache_wait); 1430 1431 ret = get_anon_bdev(&root->anon_dev); 1432 if (ret) 1433 goto fail; 1434 1435 if (btrfs_root_refs(&root->root_item) == 0) { 1436 ret = -ENOENT; 1437 goto fail; 1438 } 1439 1440 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid); 1441 if (ret < 0) 1442 goto fail; 1443 if (ret == 0) 1444 root->orphan_item_inserted = 1; 1445 1446 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1447 if (ret) 1448 goto fail; 1449 1450 spin_lock(&fs_info->fs_roots_radix_lock); 1451 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1452 (unsigned long)root->root_key.objectid, 1453 root); 1454 if (ret == 0) 1455 root->in_radix = 1; 1456 1457 spin_unlock(&fs_info->fs_roots_radix_lock); 1458 radix_tree_preload_end(); 1459 if (ret) { 1460 if (ret == -EEXIST) { 1461 free_fs_root(root); 1462 goto again; 1463 } 1464 goto fail; 1465 } 1466 1467 ret = btrfs_find_dead_roots(fs_info->tree_root, 1468 root->root_key.objectid); 1469 WARN_ON(ret); 1470 return root; 1471 fail: 1472 free_fs_root(root); 1473 return ERR_PTR(ret); 1474 } 1475 1476 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1477 { 1478 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1479 int ret = 0; 1480 struct btrfs_device *device; 1481 struct backing_dev_info *bdi; 1482 1483 rcu_read_lock(); 1484 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1485 if (!device->bdev) 1486 continue; 1487 bdi = blk_get_backing_dev_info(device->bdev); 1488 if (bdi && bdi_congested(bdi, bdi_bits)) { 1489 ret = 1; 1490 break; 1491 } 1492 } 1493 rcu_read_unlock(); 1494 return ret; 1495 } 1496 1497 /* 1498 * If this fails, caller must call bdi_destroy() to get rid of the 1499 * bdi again. 1500 */ 1501 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1502 { 1503 int err; 1504 1505 bdi->capabilities = BDI_CAP_MAP_COPY; 1506 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY); 1507 if (err) 1508 return err; 1509 1510 bdi->ra_pages = default_backing_dev_info.ra_pages; 1511 bdi->congested_fn = btrfs_congested_fn; 1512 bdi->congested_data = info; 1513 return 0; 1514 } 1515 1516 static int bio_ready_for_csum(struct bio *bio) 1517 { 1518 u64 length = 0; 1519 u64 buf_len = 0; 1520 u64 start = 0; 1521 struct page *page; 1522 struct extent_io_tree *io_tree = NULL; 1523 struct bio_vec *bvec; 1524 int i; 1525 int ret; 1526 1527 bio_for_each_segment(bvec, bio, i) { 1528 page = bvec->bv_page; 1529 if (page->private == EXTENT_PAGE_PRIVATE) { 1530 length += bvec->bv_len; 1531 continue; 1532 } 1533 if (!page->private) { 1534 length += bvec->bv_len; 1535 continue; 1536 } 1537 length = bvec->bv_len; 1538 buf_len = page->private >> 2; 1539 start = page_offset(page) + bvec->bv_offset; 1540 io_tree = &BTRFS_I(page->mapping->host)->io_tree; 1541 } 1542 /* are we fully contained in this bio? */ 1543 if (buf_len <= length) 1544 return 1; 1545 1546 ret = extent_range_uptodate(io_tree, start + length, 1547 start + buf_len - 1); 1548 return ret; 1549 } 1550 1551 /* 1552 * called by the kthread helper functions to finally call the bio end_io 1553 * functions. This is where read checksum verification actually happens 1554 */ 1555 static void end_workqueue_fn(struct btrfs_work *work) 1556 { 1557 struct bio *bio; 1558 struct end_io_wq *end_io_wq; 1559 struct btrfs_fs_info *fs_info; 1560 int error; 1561 1562 end_io_wq = container_of(work, struct end_io_wq, work); 1563 bio = end_io_wq->bio; 1564 fs_info = end_io_wq->info; 1565 1566 /* metadata bio reads are special because the whole tree block must 1567 * be checksummed at once. This makes sure the entire block is in 1568 * ram and up to date before trying to verify things. For 1569 * blocksize <= pagesize, it is basically a noop 1570 */ 1571 if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata && 1572 !bio_ready_for_csum(bio)) { 1573 btrfs_queue_worker(&fs_info->endio_meta_workers, 1574 &end_io_wq->work); 1575 return; 1576 } 1577 error = end_io_wq->error; 1578 bio->bi_private = end_io_wq->private; 1579 bio->bi_end_io = end_io_wq->end_io; 1580 kfree(end_io_wq); 1581 bio_endio(bio, error); 1582 } 1583 1584 static int cleaner_kthread(void *arg) 1585 { 1586 struct btrfs_root *root = arg; 1587 1588 do { 1589 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1590 1591 if (!(root->fs_info->sb->s_flags & MS_RDONLY) && 1592 mutex_trylock(&root->fs_info->cleaner_mutex)) { 1593 btrfs_run_delayed_iputs(root); 1594 btrfs_clean_old_snapshots(root); 1595 mutex_unlock(&root->fs_info->cleaner_mutex); 1596 btrfs_run_defrag_inodes(root->fs_info); 1597 } 1598 1599 if (!try_to_freeze()) { 1600 set_current_state(TASK_INTERRUPTIBLE); 1601 if (!kthread_should_stop()) 1602 schedule(); 1603 __set_current_state(TASK_RUNNING); 1604 } 1605 } while (!kthread_should_stop()); 1606 return 0; 1607 } 1608 1609 static int transaction_kthread(void *arg) 1610 { 1611 struct btrfs_root *root = arg; 1612 struct btrfs_trans_handle *trans; 1613 struct btrfs_transaction *cur; 1614 u64 transid; 1615 unsigned long now; 1616 unsigned long delay; 1617 int ret; 1618 1619 do { 1620 delay = HZ * 30; 1621 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1622 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1623 1624 spin_lock(&root->fs_info->trans_lock); 1625 cur = root->fs_info->running_transaction; 1626 if (!cur) { 1627 spin_unlock(&root->fs_info->trans_lock); 1628 goto sleep; 1629 } 1630 1631 now = get_seconds(); 1632 if (!cur->blocked && 1633 (now < cur->start_time || now - cur->start_time < 30)) { 1634 spin_unlock(&root->fs_info->trans_lock); 1635 delay = HZ * 5; 1636 goto sleep; 1637 } 1638 transid = cur->transid; 1639 spin_unlock(&root->fs_info->trans_lock); 1640 1641 trans = btrfs_join_transaction(root); 1642 BUG_ON(IS_ERR(trans)); 1643 if (transid == trans->transid) { 1644 ret = btrfs_commit_transaction(trans, root); 1645 BUG_ON(ret); 1646 } else { 1647 btrfs_end_transaction(trans, root); 1648 } 1649 sleep: 1650 wake_up_process(root->fs_info->cleaner_kthread); 1651 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1652 1653 if (!try_to_freeze()) { 1654 set_current_state(TASK_INTERRUPTIBLE); 1655 if (!kthread_should_stop() && 1656 !btrfs_transaction_blocked(root->fs_info)) 1657 schedule_timeout(delay); 1658 __set_current_state(TASK_RUNNING); 1659 } 1660 } while (!kthread_should_stop()); 1661 return 0; 1662 } 1663 1664 /* 1665 * this will find the highest generation in the array of 1666 * root backups. The index of the highest array is returned, 1667 * or -1 if we can't find anything. 1668 * 1669 * We check to make sure the array is valid by comparing the 1670 * generation of the latest root in the array with the generation 1671 * in the super block. If they don't match we pitch it. 1672 */ 1673 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1674 { 1675 u64 cur; 1676 int newest_index = -1; 1677 struct btrfs_root_backup *root_backup; 1678 int i; 1679 1680 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1681 root_backup = info->super_copy->super_roots + i; 1682 cur = btrfs_backup_tree_root_gen(root_backup); 1683 if (cur == newest_gen) 1684 newest_index = i; 1685 } 1686 1687 /* check to see if we actually wrapped around */ 1688 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1689 root_backup = info->super_copy->super_roots; 1690 cur = btrfs_backup_tree_root_gen(root_backup); 1691 if (cur == newest_gen) 1692 newest_index = 0; 1693 } 1694 return newest_index; 1695 } 1696 1697 1698 /* 1699 * find the oldest backup so we know where to store new entries 1700 * in the backup array. This will set the backup_root_index 1701 * field in the fs_info struct 1702 */ 1703 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1704 u64 newest_gen) 1705 { 1706 int newest_index = -1; 1707 1708 newest_index = find_newest_super_backup(info, newest_gen); 1709 /* if there was garbage in there, just move along */ 1710 if (newest_index == -1) { 1711 info->backup_root_index = 0; 1712 } else { 1713 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1714 } 1715 } 1716 1717 /* 1718 * copy all the root pointers into the super backup array. 1719 * this will bump the backup pointer by one when it is 1720 * done 1721 */ 1722 static void backup_super_roots(struct btrfs_fs_info *info) 1723 { 1724 int next_backup; 1725 struct btrfs_root_backup *root_backup; 1726 int last_backup; 1727 1728 next_backup = info->backup_root_index; 1729 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1730 BTRFS_NUM_BACKUP_ROOTS; 1731 1732 /* 1733 * just overwrite the last backup if we're at the same generation 1734 * this happens only at umount 1735 */ 1736 root_backup = info->super_for_commit->super_roots + last_backup; 1737 if (btrfs_backup_tree_root_gen(root_backup) == 1738 btrfs_header_generation(info->tree_root->node)) 1739 next_backup = last_backup; 1740 1741 root_backup = info->super_for_commit->super_roots + next_backup; 1742 1743 /* 1744 * make sure all of our padding and empty slots get zero filled 1745 * regardless of which ones we use today 1746 */ 1747 memset(root_backup, 0, sizeof(*root_backup)); 1748 1749 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1750 1751 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1752 btrfs_set_backup_tree_root_gen(root_backup, 1753 btrfs_header_generation(info->tree_root->node)); 1754 1755 btrfs_set_backup_tree_root_level(root_backup, 1756 btrfs_header_level(info->tree_root->node)); 1757 1758 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1759 btrfs_set_backup_chunk_root_gen(root_backup, 1760 btrfs_header_generation(info->chunk_root->node)); 1761 btrfs_set_backup_chunk_root_level(root_backup, 1762 btrfs_header_level(info->chunk_root->node)); 1763 1764 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1765 btrfs_set_backup_extent_root_gen(root_backup, 1766 btrfs_header_generation(info->extent_root->node)); 1767 btrfs_set_backup_extent_root_level(root_backup, 1768 btrfs_header_level(info->extent_root->node)); 1769 1770 /* 1771 * we might commit during log recovery, which happens before we set 1772 * the fs_root. Make sure it is valid before we fill it in. 1773 */ 1774 if (info->fs_root && info->fs_root->node) { 1775 btrfs_set_backup_fs_root(root_backup, 1776 info->fs_root->node->start); 1777 btrfs_set_backup_fs_root_gen(root_backup, 1778 btrfs_header_generation(info->fs_root->node)); 1779 btrfs_set_backup_fs_root_level(root_backup, 1780 btrfs_header_level(info->fs_root->node)); 1781 } 1782 1783 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1784 btrfs_set_backup_dev_root_gen(root_backup, 1785 btrfs_header_generation(info->dev_root->node)); 1786 btrfs_set_backup_dev_root_level(root_backup, 1787 btrfs_header_level(info->dev_root->node)); 1788 1789 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1790 btrfs_set_backup_csum_root_gen(root_backup, 1791 btrfs_header_generation(info->csum_root->node)); 1792 btrfs_set_backup_csum_root_level(root_backup, 1793 btrfs_header_level(info->csum_root->node)); 1794 1795 btrfs_set_backup_total_bytes(root_backup, 1796 btrfs_super_total_bytes(info->super_copy)); 1797 btrfs_set_backup_bytes_used(root_backup, 1798 btrfs_super_bytes_used(info->super_copy)); 1799 btrfs_set_backup_num_devices(root_backup, 1800 btrfs_super_num_devices(info->super_copy)); 1801 1802 /* 1803 * if we don't copy this out to the super_copy, it won't get remembered 1804 * for the next commit 1805 */ 1806 memcpy(&info->super_copy->super_roots, 1807 &info->super_for_commit->super_roots, 1808 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1809 } 1810 1811 /* 1812 * this copies info out of the root backup array and back into 1813 * the in-memory super block. It is meant to help iterate through 1814 * the array, so you send it the number of backups you've already 1815 * tried and the last backup index you used. 1816 * 1817 * this returns -1 when it has tried all the backups 1818 */ 1819 static noinline int next_root_backup(struct btrfs_fs_info *info, 1820 struct btrfs_super_block *super, 1821 int *num_backups_tried, int *backup_index) 1822 { 1823 struct btrfs_root_backup *root_backup; 1824 int newest = *backup_index; 1825 1826 if (*num_backups_tried == 0) { 1827 u64 gen = btrfs_super_generation(super); 1828 1829 newest = find_newest_super_backup(info, gen); 1830 if (newest == -1) 1831 return -1; 1832 1833 *backup_index = newest; 1834 *num_backups_tried = 1; 1835 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 1836 /* we've tried all the backups, all done */ 1837 return -1; 1838 } else { 1839 /* jump to the next oldest backup */ 1840 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 1841 BTRFS_NUM_BACKUP_ROOTS; 1842 *backup_index = newest; 1843 *num_backups_tried += 1; 1844 } 1845 root_backup = super->super_roots + newest; 1846 1847 btrfs_set_super_generation(super, 1848 btrfs_backup_tree_root_gen(root_backup)); 1849 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1850 btrfs_set_super_root_level(super, 1851 btrfs_backup_tree_root_level(root_backup)); 1852 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1853 1854 /* 1855 * fixme: the total bytes and num_devices need to match or we should 1856 * need a fsck 1857 */ 1858 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1859 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1860 return 0; 1861 } 1862 1863 /* helper to cleanup tree roots */ 1864 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 1865 { 1866 free_extent_buffer(info->tree_root->node); 1867 free_extent_buffer(info->tree_root->commit_root); 1868 free_extent_buffer(info->dev_root->node); 1869 free_extent_buffer(info->dev_root->commit_root); 1870 free_extent_buffer(info->extent_root->node); 1871 free_extent_buffer(info->extent_root->commit_root); 1872 free_extent_buffer(info->csum_root->node); 1873 free_extent_buffer(info->csum_root->commit_root); 1874 1875 info->tree_root->node = NULL; 1876 info->tree_root->commit_root = NULL; 1877 info->dev_root->node = NULL; 1878 info->dev_root->commit_root = NULL; 1879 info->extent_root->node = NULL; 1880 info->extent_root->commit_root = NULL; 1881 info->csum_root->node = NULL; 1882 info->csum_root->commit_root = NULL; 1883 1884 if (chunk_root) { 1885 free_extent_buffer(info->chunk_root->node); 1886 free_extent_buffer(info->chunk_root->commit_root); 1887 info->chunk_root->node = NULL; 1888 info->chunk_root->commit_root = NULL; 1889 } 1890 } 1891 1892 1893 int open_ctree(struct super_block *sb, 1894 struct btrfs_fs_devices *fs_devices, 1895 char *options) 1896 { 1897 u32 sectorsize; 1898 u32 nodesize; 1899 u32 leafsize; 1900 u32 blocksize; 1901 u32 stripesize; 1902 u64 generation; 1903 u64 features; 1904 struct btrfs_key location; 1905 struct buffer_head *bh; 1906 struct btrfs_super_block *disk_super; 1907 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1908 struct btrfs_root *tree_root; 1909 struct btrfs_root *extent_root; 1910 struct btrfs_root *csum_root; 1911 struct btrfs_root *chunk_root; 1912 struct btrfs_root *dev_root; 1913 struct btrfs_root *log_tree_root; 1914 int ret; 1915 int err = -EINVAL; 1916 int num_backups_tried = 0; 1917 int backup_index = 0; 1918 1919 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info); 1920 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info); 1921 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info); 1922 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info); 1923 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info); 1924 1925 if (!tree_root || !extent_root || !csum_root || 1926 !chunk_root || !dev_root) { 1927 err = -ENOMEM; 1928 goto fail; 1929 } 1930 1931 ret = init_srcu_struct(&fs_info->subvol_srcu); 1932 if (ret) { 1933 err = ret; 1934 goto fail; 1935 } 1936 1937 ret = setup_bdi(fs_info, &fs_info->bdi); 1938 if (ret) { 1939 err = ret; 1940 goto fail_srcu; 1941 } 1942 1943 fs_info->btree_inode = new_inode(sb); 1944 if (!fs_info->btree_inode) { 1945 err = -ENOMEM; 1946 goto fail_bdi; 1947 } 1948 1949 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 1950 1951 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 1952 INIT_LIST_HEAD(&fs_info->trans_list); 1953 INIT_LIST_HEAD(&fs_info->dead_roots); 1954 INIT_LIST_HEAD(&fs_info->delayed_iputs); 1955 INIT_LIST_HEAD(&fs_info->hashers); 1956 INIT_LIST_HEAD(&fs_info->delalloc_inodes); 1957 INIT_LIST_HEAD(&fs_info->ordered_operations); 1958 INIT_LIST_HEAD(&fs_info->caching_block_groups); 1959 spin_lock_init(&fs_info->delalloc_lock); 1960 spin_lock_init(&fs_info->trans_lock); 1961 spin_lock_init(&fs_info->ref_cache_lock); 1962 spin_lock_init(&fs_info->fs_roots_radix_lock); 1963 spin_lock_init(&fs_info->delayed_iput_lock); 1964 spin_lock_init(&fs_info->defrag_inodes_lock); 1965 spin_lock_init(&fs_info->free_chunk_lock); 1966 mutex_init(&fs_info->reloc_mutex); 1967 1968 init_completion(&fs_info->kobj_unregister); 1969 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 1970 INIT_LIST_HEAD(&fs_info->space_info); 1971 btrfs_mapping_init(&fs_info->mapping_tree); 1972 btrfs_init_block_rsv(&fs_info->global_block_rsv); 1973 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv); 1974 btrfs_init_block_rsv(&fs_info->trans_block_rsv); 1975 btrfs_init_block_rsv(&fs_info->chunk_block_rsv); 1976 btrfs_init_block_rsv(&fs_info->empty_block_rsv); 1977 btrfs_init_block_rsv(&fs_info->delayed_block_rsv); 1978 atomic_set(&fs_info->nr_async_submits, 0); 1979 atomic_set(&fs_info->async_delalloc_pages, 0); 1980 atomic_set(&fs_info->async_submit_draining, 0); 1981 atomic_set(&fs_info->nr_async_bios, 0); 1982 atomic_set(&fs_info->defrag_running, 0); 1983 fs_info->sb = sb; 1984 fs_info->max_inline = 8192 * 1024; 1985 fs_info->metadata_ratio = 0; 1986 fs_info->defrag_inodes = RB_ROOT; 1987 fs_info->trans_no_join = 0; 1988 fs_info->free_chunk_space = 0; 1989 1990 /* readahead state */ 1991 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT); 1992 spin_lock_init(&fs_info->reada_lock); 1993 1994 fs_info->thread_pool_size = min_t(unsigned long, 1995 num_online_cpus() + 2, 8); 1996 1997 INIT_LIST_HEAD(&fs_info->ordered_extents); 1998 spin_lock_init(&fs_info->ordered_extent_lock); 1999 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2000 GFP_NOFS); 2001 if (!fs_info->delayed_root) { 2002 err = -ENOMEM; 2003 goto fail_iput; 2004 } 2005 btrfs_init_delayed_root(fs_info->delayed_root); 2006 2007 mutex_init(&fs_info->scrub_lock); 2008 atomic_set(&fs_info->scrubs_running, 0); 2009 atomic_set(&fs_info->scrub_pause_req, 0); 2010 atomic_set(&fs_info->scrubs_paused, 0); 2011 atomic_set(&fs_info->scrub_cancel_req, 0); 2012 init_waitqueue_head(&fs_info->scrub_pause_wait); 2013 init_rwsem(&fs_info->scrub_super_lock); 2014 fs_info->scrub_workers_refcnt = 0; 2015 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2016 fs_info->check_integrity_print_mask = 0; 2017 #endif 2018 2019 spin_lock_init(&fs_info->balance_lock); 2020 mutex_init(&fs_info->balance_mutex); 2021 atomic_set(&fs_info->balance_running, 0); 2022 atomic_set(&fs_info->balance_pause_req, 0); 2023 atomic_set(&fs_info->balance_cancel_req, 0); 2024 fs_info->balance_ctl = NULL; 2025 init_waitqueue_head(&fs_info->balance_wait_q); 2026 2027 sb->s_blocksize = 4096; 2028 sb->s_blocksize_bits = blksize_bits(4096); 2029 sb->s_bdi = &fs_info->bdi; 2030 2031 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2032 set_nlink(fs_info->btree_inode, 1); 2033 /* 2034 * we set the i_size on the btree inode to the max possible int. 2035 * the real end of the address space is determined by all of 2036 * the devices in the system 2037 */ 2038 fs_info->btree_inode->i_size = OFFSET_MAX; 2039 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 2040 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 2041 2042 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2043 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2044 fs_info->btree_inode->i_mapping); 2045 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2046 2047 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2048 2049 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2050 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2051 sizeof(struct btrfs_key)); 2052 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1; 2053 insert_inode_hash(fs_info->btree_inode); 2054 2055 spin_lock_init(&fs_info->block_group_cache_lock); 2056 fs_info->block_group_cache_tree = RB_ROOT; 2057 2058 extent_io_tree_init(&fs_info->freed_extents[0], 2059 fs_info->btree_inode->i_mapping); 2060 extent_io_tree_init(&fs_info->freed_extents[1], 2061 fs_info->btree_inode->i_mapping); 2062 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2063 fs_info->do_barriers = 1; 2064 2065 2066 mutex_init(&fs_info->ordered_operations_mutex); 2067 mutex_init(&fs_info->tree_log_mutex); 2068 mutex_init(&fs_info->chunk_mutex); 2069 mutex_init(&fs_info->transaction_kthread_mutex); 2070 mutex_init(&fs_info->cleaner_mutex); 2071 mutex_init(&fs_info->volume_mutex); 2072 init_rwsem(&fs_info->extent_commit_sem); 2073 init_rwsem(&fs_info->cleanup_work_sem); 2074 init_rwsem(&fs_info->subvol_sem); 2075 2076 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2077 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2078 2079 init_waitqueue_head(&fs_info->transaction_throttle); 2080 init_waitqueue_head(&fs_info->transaction_wait); 2081 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2082 init_waitqueue_head(&fs_info->async_submit_wait); 2083 2084 __setup_root(4096, 4096, 4096, 4096, tree_root, 2085 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2086 2087 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2088 if (!bh) { 2089 err = -EINVAL; 2090 goto fail_alloc; 2091 } 2092 2093 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2094 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2095 sizeof(*fs_info->super_for_commit)); 2096 brelse(bh); 2097 2098 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2099 2100 disk_super = fs_info->super_copy; 2101 if (!btrfs_super_root(disk_super)) 2102 goto fail_alloc; 2103 2104 /* check FS state, whether FS is broken. */ 2105 fs_info->fs_state |= btrfs_super_flags(disk_super); 2106 2107 btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2108 2109 /* 2110 * run through our array of backup supers and setup 2111 * our ring pointer to the oldest one 2112 */ 2113 generation = btrfs_super_generation(disk_super); 2114 find_oldest_super_backup(fs_info, generation); 2115 2116 /* 2117 * In the long term, we'll store the compression type in the super 2118 * block, and it'll be used for per file compression control. 2119 */ 2120 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2121 2122 ret = btrfs_parse_options(tree_root, options); 2123 if (ret) { 2124 err = ret; 2125 goto fail_alloc; 2126 } 2127 2128 features = btrfs_super_incompat_flags(disk_super) & 2129 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2130 if (features) { 2131 printk(KERN_ERR "BTRFS: couldn't mount because of " 2132 "unsupported optional features (%Lx).\n", 2133 (unsigned long long)features); 2134 err = -EINVAL; 2135 goto fail_alloc; 2136 } 2137 2138 features = btrfs_super_incompat_flags(disk_super); 2139 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2140 if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO) 2141 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2142 btrfs_set_super_incompat_flags(disk_super, features); 2143 2144 features = btrfs_super_compat_ro_flags(disk_super) & 2145 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2146 if (!(sb->s_flags & MS_RDONLY) && features) { 2147 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 2148 "unsupported option features (%Lx).\n", 2149 (unsigned long long)features); 2150 err = -EINVAL; 2151 goto fail_alloc; 2152 } 2153 2154 btrfs_init_workers(&fs_info->generic_worker, 2155 "genwork", 1, NULL); 2156 2157 btrfs_init_workers(&fs_info->workers, "worker", 2158 fs_info->thread_pool_size, 2159 &fs_info->generic_worker); 2160 2161 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", 2162 fs_info->thread_pool_size, 2163 &fs_info->generic_worker); 2164 2165 btrfs_init_workers(&fs_info->submit_workers, "submit", 2166 min_t(u64, fs_devices->num_devices, 2167 fs_info->thread_pool_size), 2168 &fs_info->generic_worker); 2169 2170 btrfs_init_workers(&fs_info->caching_workers, "cache", 2171 2, &fs_info->generic_worker); 2172 2173 /* a higher idle thresh on the submit workers makes it much more 2174 * likely that bios will be send down in a sane order to the 2175 * devices 2176 */ 2177 fs_info->submit_workers.idle_thresh = 64; 2178 2179 fs_info->workers.idle_thresh = 16; 2180 fs_info->workers.ordered = 1; 2181 2182 fs_info->delalloc_workers.idle_thresh = 2; 2183 fs_info->delalloc_workers.ordered = 1; 2184 2185 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1, 2186 &fs_info->generic_worker); 2187 btrfs_init_workers(&fs_info->endio_workers, "endio", 2188 fs_info->thread_pool_size, 2189 &fs_info->generic_worker); 2190 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", 2191 fs_info->thread_pool_size, 2192 &fs_info->generic_worker); 2193 btrfs_init_workers(&fs_info->endio_meta_write_workers, 2194 "endio-meta-write", fs_info->thread_pool_size, 2195 &fs_info->generic_worker); 2196 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", 2197 fs_info->thread_pool_size, 2198 &fs_info->generic_worker); 2199 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write", 2200 1, &fs_info->generic_worker); 2201 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta", 2202 fs_info->thread_pool_size, 2203 &fs_info->generic_worker); 2204 btrfs_init_workers(&fs_info->readahead_workers, "readahead", 2205 fs_info->thread_pool_size, 2206 &fs_info->generic_worker); 2207 2208 /* 2209 * endios are largely parallel and should have a very 2210 * low idle thresh 2211 */ 2212 fs_info->endio_workers.idle_thresh = 4; 2213 fs_info->endio_meta_workers.idle_thresh = 4; 2214 2215 fs_info->endio_write_workers.idle_thresh = 2; 2216 fs_info->endio_meta_write_workers.idle_thresh = 2; 2217 fs_info->readahead_workers.idle_thresh = 2; 2218 2219 /* 2220 * btrfs_start_workers can really only fail because of ENOMEM so just 2221 * return -ENOMEM if any of these fail. 2222 */ 2223 ret = btrfs_start_workers(&fs_info->workers); 2224 ret |= btrfs_start_workers(&fs_info->generic_worker); 2225 ret |= btrfs_start_workers(&fs_info->submit_workers); 2226 ret |= btrfs_start_workers(&fs_info->delalloc_workers); 2227 ret |= btrfs_start_workers(&fs_info->fixup_workers); 2228 ret |= btrfs_start_workers(&fs_info->endio_workers); 2229 ret |= btrfs_start_workers(&fs_info->endio_meta_workers); 2230 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers); 2231 ret |= btrfs_start_workers(&fs_info->endio_write_workers); 2232 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker); 2233 ret |= btrfs_start_workers(&fs_info->delayed_workers); 2234 ret |= btrfs_start_workers(&fs_info->caching_workers); 2235 ret |= btrfs_start_workers(&fs_info->readahead_workers); 2236 if (ret) { 2237 ret = -ENOMEM; 2238 goto fail_sb_buffer; 2239 } 2240 2241 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2242 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2243 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 2244 2245 nodesize = btrfs_super_nodesize(disk_super); 2246 leafsize = btrfs_super_leafsize(disk_super); 2247 sectorsize = btrfs_super_sectorsize(disk_super); 2248 stripesize = btrfs_super_stripesize(disk_super); 2249 tree_root->nodesize = nodesize; 2250 tree_root->leafsize = leafsize; 2251 tree_root->sectorsize = sectorsize; 2252 tree_root->stripesize = stripesize; 2253 2254 sb->s_blocksize = sectorsize; 2255 sb->s_blocksize_bits = blksize_bits(sectorsize); 2256 2257 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, 2258 sizeof(disk_super->magic))) { 2259 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); 2260 goto fail_sb_buffer; 2261 } 2262 2263 if (sectorsize < PAGE_SIZE) { 2264 printk(KERN_WARNING "btrfs: Incompatible sector size " 2265 "found on %s\n", sb->s_id); 2266 goto fail_sb_buffer; 2267 } 2268 2269 mutex_lock(&fs_info->chunk_mutex); 2270 ret = btrfs_read_sys_array(tree_root); 2271 mutex_unlock(&fs_info->chunk_mutex); 2272 if (ret) { 2273 printk(KERN_WARNING "btrfs: failed to read the system " 2274 "array on %s\n", sb->s_id); 2275 goto fail_sb_buffer; 2276 } 2277 2278 blocksize = btrfs_level_size(tree_root, 2279 btrfs_super_chunk_root_level(disk_super)); 2280 generation = btrfs_super_chunk_root_generation(disk_super); 2281 2282 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2283 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2284 2285 chunk_root->node = read_tree_block(chunk_root, 2286 btrfs_super_chunk_root(disk_super), 2287 blocksize, generation); 2288 BUG_ON(!chunk_root->node); 2289 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { 2290 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n", 2291 sb->s_id); 2292 goto fail_tree_roots; 2293 } 2294 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2295 chunk_root->commit_root = btrfs_root_node(chunk_root); 2296 2297 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2298 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), 2299 BTRFS_UUID_SIZE); 2300 2301 ret = btrfs_read_chunk_tree(chunk_root); 2302 if (ret) { 2303 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", 2304 sb->s_id); 2305 goto fail_tree_roots; 2306 } 2307 2308 btrfs_close_extra_devices(fs_devices); 2309 2310 if (!fs_devices->latest_bdev) { 2311 printk(KERN_CRIT "btrfs: failed to read devices on %s\n", 2312 sb->s_id); 2313 goto fail_tree_roots; 2314 } 2315 2316 retry_root_backup: 2317 blocksize = btrfs_level_size(tree_root, 2318 btrfs_super_root_level(disk_super)); 2319 generation = btrfs_super_generation(disk_super); 2320 2321 tree_root->node = read_tree_block(tree_root, 2322 btrfs_super_root(disk_super), 2323 blocksize, generation); 2324 if (!tree_root->node || 2325 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { 2326 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n", 2327 sb->s_id); 2328 2329 goto recovery_tree_root; 2330 } 2331 2332 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2333 tree_root->commit_root = btrfs_root_node(tree_root); 2334 2335 ret = find_and_setup_root(tree_root, fs_info, 2336 BTRFS_EXTENT_TREE_OBJECTID, extent_root); 2337 if (ret) 2338 goto recovery_tree_root; 2339 extent_root->track_dirty = 1; 2340 2341 ret = find_and_setup_root(tree_root, fs_info, 2342 BTRFS_DEV_TREE_OBJECTID, dev_root); 2343 if (ret) 2344 goto recovery_tree_root; 2345 dev_root->track_dirty = 1; 2346 2347 ret = find_and_setup_root(tree_root, fs_info, 2348 BTRFS_CSUM_TREE_OBJECTID, csum_root); 2349 if (ret) 2350 goto recovery_tree_root; 2351 2352 csum_root->track_dirty = 1; 2353 2354 fs_info->generation = generation; 2355 fs_info->last_trans_committed = generation; 2356 2357 ret = btrfs_init_space_info(fs_info); 2358 if (ret) { 2359 printk(KERN_ERR "Failed to initial space info: %d\n", ret); 2360 goto fail_block_groups; 2361 } 2362 2363 ret = btrfs_read_block_groups(extent_root); 2364 if (ret) { 2365 printk(KERN_ERR "Failed to read block groups: %d\n", ret); 2366 goto fail_block_groups; 2367 } 2368 2369 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2370 "btrfs-cleaner"); 2371 if (IS_ERR(fs_info->cleaner_kthread)) 2372 goto fail_block_groups; 2373 2374 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2375 tree_root, 2376 "btrfs-transaction"); 2377 if (IS_ERR(fs_info->transaction_kthread)) 2378 goto fail_cleaner; 2379 2380 if (!btrfs_test_opt(tree_root, SSD) && 2381 !btrfs_test_opt(tree_root, NOSSD) && 2382 !fs_info->fs_devices->rotating) { 2383 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD " 2384 "mode\n"); 2385 btrfs_set_opt(fs_info->mount_opt, SSD); 2386 } 2387 2388 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2389 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) { 2390 ret = btrfsic_mount(tree_root, fs_devices, 2391 btrfs_test_opt(tree_root, 2392 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 2393 1 : 0, 2394 fs_info->check_integrity_print_mask); 2395 if (ret) 2396 printk(KERN_WARNING "btrfs: failed to initialize" 2397 " integrity check module %s\n", sb->s_id); 2398 } 2399 #endif 2400 2401 /* do not make disk changes in broken FS */ 2402 if (btrfs_super_log_root(disk_super) != 0 && 2403 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) { 2404 u64 bytenr = btrfs_super_log_root(disk_super); 2405 2406 if (fs_devices->rw_devices == 0) { 2407 printk(KERN_WARNING "Btrfs log replay required " 2408 "on RO media\n"); 2409 err = -EIO; 2410 goto fail_trans_kthread; 2411 } 2412 blocksize = 2413 btrfs_level_size(tree_root, 2414 btrfs_super_log_root_level(disk_super)); 2415 2416 log_tree_root = btrfs_alloc_root(fs_info); 2417 if (!log_tree_root) { 2418 err = -ENOMEM; 2419 goto fail_trans_kthread; 2420 } 2421 2422 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2423 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2424 2425 log_tree_root->node = read_tree_block(tree_root, bytenr, 2426 blocksize, 2427 generation + 1); 2428 ret = btrfs_recover_log_trees(log_tree_root); 2429 BUG_ON(ret); 2430 2431 if (sb->s_flags & MS_RDONLY) { 2432 ret = btrfs_commit_super(tree_root); 2433 BUG_ON(ret); 2434 } 2435 } 2436 2437 ret = btrfs_find_orphan_roots(tree_root); 2438 BUG_ON(ret); 2439 2440 if (!(sb->s_flags & MS_RDONLY)) { 2441 ret = btrfs_cleanup_fs_roots(fs_info); 2442 BUG_ON(ret); 2443 2444 ret = btrfs_recover_relocation(tree_root); 2445 if (ret < 0) { 2446 printk(KERN_WARNING 2447 "btrfs: failed to recover relocation\n"); 2448 err = -EINVAL; 2449 goto fail_trans_kthread; 2450 } 2451 } 2452 2453 location.objectid = BTRFS_FS_TREE_OBJECTID; 2454 location.type = BTRFS_ROOT_ITEM_KEY; 2455 location.offset = (u64)-1; 2456 2457 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 2458 if (!fs_info->fs_root) 2459 goto fail_trans_kthread; 2460 if (IS_ERR(fs_info->fs_root)) { 2461 err = PTR_ERR(fs_info->fs_root); 2462 goto fail_trans_kthread; 2463 } 2464 2465 if (!(sb->s_flags & MS_RDONLY)) { 2466 down_read(&fs_info->cleanup_work_sem); 2467 err = btrfs_orphan_cleanup(fs_info->fs_root); 2468 if (!err) 2469 err = btrfs_orphan_cleanup(fs_info->tree_root); 2470 up_read(&fs_info->cleanup_work_sem); 2471 2472 if (!err) 2473 err = btrfs_recover_balance(fs_info->tree_root); 2474 2475 if (err) { 2476 close_ctree(tree_root); 2477 return err; 2478 } 2479 } 2480 2481 return 0; 2482 2483 fail_trans_kthread: 2484 kthread_stop(fs_info->transaction_kthread); 2485 fail_cleaner: 2486 kthread_stop(fs_info->cleaner_kthread); 2487 2488 /* 2489 * make sure we're done with the btree inode before we stop our 2490 * kthreads 2491 */ 2492 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 2493 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2494 2495 fail_block_groups: 2496 btrfs_free_block_groups(fs_info); 2497 2498 fail_tree_roots: 2499 free_root_pointers(fs_info, 1); 2500 2501 fail_sb_buffer: 2502 btrfs_stop_workers(&fs_info->generic_worker); 2503 btrfs_stop_workers(&fs_info->readahead_workers); 2504 btrfs_stop_workers(&fs_info->fixup_workers); 2505 btrfs_stop_workers(&fs_info->delalloc_workers); 2506 btrfs_stop_workers(&fs_info->workers); 2507 btrfs_stop_workers(&fs_info->endio_workers); 2508 btrfs_stop_workers(&fs_info->endio_meta_workers); 2509 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2510 btrfs_stop_workers(&fs_info->endio_write_workers); 2511 btrfs_stop_workers(&fs_info->endio_freespace_worker); 2512 btrfs_stop_workers(&fs_info->submit_workers); 2513 btrfs_stop_workers(&fs_info->delayed_workers); 2514 btrfs_stop_workers(&fs_info->caching_workers); 2515 fail_alloc: 2516 fail_iput: 2517 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2518 2519 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2520 iput(fs_info->btree_inode); 2521 fail_bdi: 2522 bdi_destroy(&fs_info->bdi); 2523 fail_srcu: 2524 cleanup_srcu_struct(&fs_info->subvol_srcu); 2525 fail: 2526 btrfs_close_devices(fs_info->fs_devices); 2527 return err; 2528 2529 recovery_tree_root: 2530 if (!btrfs_test_opt(tree_root, RECOVERY)) 2531 goto fail_tree_roots; 2532 2533 free_root_pointers(fs_info, 0); 2534 2535 /* don't use the log in recovery mode, it won't be valid */ 2536 btrfs_set_super_log_root(disk_super, 0); 2537 2538 /* we can't trust the free space cache either */ 2539 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2540 2541 ret = next_root_backup(fs_info, fs_info->super_copy, 2542 &num_backups_tried, &backup_index); 2543 if (ret == -1) 2544 goto fail_block_groups; 2545 goto retry_root_backup; 2546 } 2547 2548 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 2549 { 2550 char b[BDEVNAME_SIZE]; 2551 2552 if (uptodate) { 2553 set_buffer_uptodate(bh); 2554 } else { 2555 printk_ratelimited(KERN_WARNING "lost page write due to " 2556 "I/O error on %s\n", 2557 bdevname(bh->b_bdev, b)); 2558 /* note, we dont' set_buffer_write_io_error because we have 2559 * our own ways of dealing with the IO errors 2560 */ 2561 clear_buffer_uptodate(bh); 2562 } 2563 unlock_buffer(bh); 2564 put_bh(bh); 2565 } 2566 2567 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 2568 { 2569 struct buffer_head *bh; 2570 struct buffer_head *latest = NULL; 2571 struct btrfs_super_block *super; 2572 int i; 2573 u64 transid = 0; 2574 u64 bytenr; 2575 2576 /* we would like to check all the supers, but that would make 2577 * a btrfs mount succeed after a mkfs from a different FS. 2578 * So, we need to add a special mount option to scan for 2579 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 2580 */ 2581 for (i = 0; i < 1; i++) { 2582 bytenr = btrfs_sb_offset(i); 2583 if (bytenr + 4096 >= i_size_read(bdev->bd_inode)) 2584 break; 2585 bh = __bread(bdev, bytenr / 4096, 4096); 2586 if (!bh) 2587 continue; 2588 2589 super = (struct btrfs_super_block *)bh->b_data; 2590 if (btrfs_super_bytenr(super) != bytenr || 2591 strncmp((char *)(&super->magic), BTRFS_MAGIC, 2592 sizeof(super->magic))) { 2593 brelse(bh); 2594 continue; 2595 } 2596 2597 if (!latest || btrfs_super_generation(super) > transid) { 2598 brelse(latest); 2599 latest = bh; 2600 transid = btrfs_super_generation(super); 2601 } else { 2602 brelse(bh); 2603 } 2604 } 2605 return latest; 2606 } 2607 2608 /* 2609 * this should be called twice, once with wait == 0 and 2610 * once with wait == 1. When wait == 0 is done, all the buffer heads 2611 * we write are pinned. 2612 * 2613 * They are released when wait == 1 is done. 2614 * max_mirrors must be the same for both runs, and it indicates how 2615 * many supers on this one device should be written. 2616 * 2617 * max_mirrors == 0 means to write them all. 2618 */ 2619 static int write_dev_supers(struct btrfs_device *device, 2620 struct btrfs_super_block *sb, 2621 int do_barriers, int wait, int max_mirrors) 2622 { 2623 struct buffer_head *bh; 2624 int i; 2625 int ret; 2626 int errors = 0; 2627 u32 crc; 2628 u64 bytenr; 2629 2630 if (max_mirrors == 0) 2631 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 2632 2633 for (i = 0; i < max_mirrors; i++) { 2634 bytenr = btrfs_sb_offset(i); 2635 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 2636 break; 2637 2638 if (wait) { 2639 bh = __find_get_block(device->bdev, bytenr / 4096, 2640 BTRFS_SUPER_INFO_SIZE); 2641 BUG_ON(!bh); 2642 wait_on_buffer(bh); 2643 if (!buffer_uptodate(bh)) 2644 errors++; 2645 2646 /* drop our reference */ 2647 brelse(bh); 2648 2649 /* drop the reference from the wait == 0 run */ 2650 brelse(bh); 2651 continue; 2652 } else { 2653 btrfs_set_super_bytenr(sb, bytenr); 2654 2655 crc = ~(u32)0; 2656 crc = btrfs_csum_data(NULL, (char *)sb + 2657 BTRFS_CSUM_SIZE, crc, 2658 BTRFS_SUPER_INFO_SIZE - 2659 BTRFS_CSUM_SIZE); 2660 btrfs_csum_final(crc, sb->csum); 2661 2662 /* 2663 * one reference for us, and we leave it for the 2664 * caller 2665 */ 2666 bh = __getblk(device->bdev, bytenr / 4096, 2667 BTRFS_SUPER_INFO_SIZE); 2668 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 2669 2670 /* one reference for submit_bh */ 2671 get_bh(bh); 2672 2673 set_buffer_uptodate(bh); 2674 lock_buffer(bh); 2675 bh->b_end_io = btrfs_end_buffer_write_sync; 2676 } 2677 2678 /* 2679 * we fua the first super. The others we allow 2680 * to go down lazy. 2681 */ 2682 ret = btrfsic_submit_bh(WRITE_FUA, bh); 2683 if (ret) 2684 errors++; 2685 } 2686 return errors < i ? 0 : -1; 2687 } 2688 2689 /* 2690 * endio for the write_dev_flush, this will wake anyone waiting 2691 * for the barrier when it is done 2692 */ 2693 static void btrfs_end_empty_barrier(struct bio *bio, int err) 2694 { 2695 if (err) { 2696 if (err == -EOPNOTSUPP) 2697 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2698 clear_bit(BIO_UPTODATE, &bio->bi_flags); 2699 } 2700 if (bio->bi_private) 2701 complete(bio->bi_private); 2702 bio_put(bio); 2703 } 2704 2705 /* 2706 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 2707 * sent down. With wait == 1, it waits for the previous flush. 2708 * 2709 * any device where the flush fails with eopnotsupp are flagged as not-barrier 2710 * capable 2711 */ 2712 static int write_dev_flush(struct btrfs_device *device, int wait) 2713 { 2714 struct bio *bio; 2715 int ret = 0; 2716 2717 if (device->nobarriers) 2718 return 0; 2719 2720 if (wait) { 2721 bio = device->flush_bio; 2722 if (!bio) 2723 return 0; 2724 2725 wait_for_completion(&device->flush_wait); 2726 2727 if (bio_flagged(bio, BIO_EOPNOTSUPP)) { 2728 printk("btrfs: disabling barriers on dev %s\n", 2729 device->name); 2730 device->nobarriers = 1; 2731 } 2732 if (!bio_flagged(bio, BIO_UPTODATE)) { 2733 ret = -EIO; 2734 } 2735 2736 /* drop the reference from the wait == 0 run */ 2737 bio_put(bio); 2738 device->flush_bio = NULL; 2739 2740 return ret; 2741 } 2742 2743 /* 2744 * one reference for us, and we leave it for the 2745 * caller 2746 */ 2747 device->flush_bio = NULL;; 2748 bio = bio_alloc(GFP_NOFS, 0); 2749 if (!bio) 2750 return -ENOMEM; 2751 2752 bio->bi_end_io = btrfs_end_empty_barrier; 2753 bio->bi_bdev = device->bdev; 2754 init_completion(&device->flush_wait); 2755 bio->bi_private = &device->flush_wait; 2756 device->flush_bio = bio; 2757 2758 bio_get(bio); 2759 btrfsic_submit_bio(WRITE_FLUSH, bio); 2760 2761 return 0; 2762 } 2763 2764 /* 2765 * send an empty flush down to each device in parallel, 2766 * then wait for them 2767 */ 2768 static int barrier_all_devices(struct btrfs_fs_info *info) 2769 { 2770 struct list_head *head; 2771 struct btrfs_device *dev; 2772 int errors = 0; 2773 int ret; 2774 2775 /* send down all the barriers */ 2776 head = &info->fs_devices->devices; 2777 list_for_each_entry_rcu(dev, head, dev_list) { 2778 if (!dev->bdev) { 2779 errors++; 2780 continue; 2781 } 2782 if (!dev->in_fs_metadata || !dev->writeable) 2783 continue; 2784 2785 ret = write_dev_flush(dev, 0); 2786 if (ret) 2787 errors++; 2788 } 2789 2790 /* wait for all the barriers */ 2791 list_for_each_entry_rcu(dev, head, dev_list) { 2792 if (!dev->bdev) { 2793 errors++; 2794 continue; 2795 } 2796 if (!dev->in_fs_metadata || !dev->writeable) 2797 continue; 2798 2799 ret = write_dev_flush(dev, 1); 2800 if (ret) 2801 errors++; 2802 } 2803 if (errors) 2804 return -EIO; 2805 return 0; 2806 } 2807 2808 int write_all_supers(struct btrfs_root *root, int max_mirrors) 2809 { 2810 struct list_head *head; 2811 struct btrfs_device *dev; 2812 struct btrfs_super_block *sb; 2813 struct btrfs_dev_item *dev_item; 2814 int ret; 2815 int do_barriers; 2816 int max_errors; 2817 int total_errors = 0; 2818 u64 flags; 2819 2820 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 2821 do_barriers = !btrfs_test_opt(root, NOBARRIER); 2822 backup_super_roots(root->fs_info); 2823 2824 sb = root->fs_info->super_for_commit; 2825 dev_item = &sb->dev_item; 2826 2827 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2828 head = &root->fs_info->fs_devices->devices; 2829 2830 if (do_barriers) 2831 barrier_all_devices(root->fs_info); 2832 2833 list_for_each_entry_rcu(dev, head, dev_list) { 2834 if (!dev->bdev) { 2835 total_errors++; 2836 continue; 2837 } 2838 if (!dev->in_fs_metadata || !dev->writeable) 2839 continue; 2840 2841 btrfs_set_stack_device_generation(dev_item, 0); 2842 btrfs_set_stack_device_type(dev_item, dev->type); 2843 btrfs_set_stack_device_id(dev_item, dev->devid); 2844 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 2845 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 2846 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 2847 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 2848 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 2849 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 2850 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2851 2852 flags = btrfs_super_flags(sb); 2853 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 2854 2855 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 2856 if (ret) 2857 total_errors++; 2858 } 2859 if (total_errors > max_errors) { 2860 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2861 total_errors); 2862 BUG(); 2863 } 2864 2865 total_errors = 0; 2866 list_for_each_entry_rcu(dev, head, dev_list) { 2867 if (!dev->bdev) 2868 continue; 2869 if (!dev->in_fs_metadata || !dev->writeable) 2870 continue; 2871 2872 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 2873 if (ret) 2874 total_errors++; 2875 } 2876 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2877 if (total_errors > max_errors) { 2878 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2879 total_errors); 2880 BUG(); 2881 } 2882 return 0; 2883 } 2884 2885 int write_ctree_super(struct btrfs_trans_handle *trans, 2886 struct btrfs_root *root, int max_mirrors) 2887 { 2888 int ret; 2889 2890 ret = write_all_supers(root, max_mirrors); 2891 return ret; 2892 } 2893 2894 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 2895 { 2896 spin_lock(&fs_info->fs_roots_radix_lock); 2897 radix_tree_delete(&fs_info->fs_roots_radix, 2898 (unsigned long)root->root_key.objectid); 2899 spin_unlock(&fs_info->fs_roots_radix_lock); 2900 2901 if (btrfs_root_refs(&root->root_item) == 0) 2902 synchronize_srcu(&fs_info->subvol_srcu); 2903 2904 __btrfs_remove_free_space_cache(root->free_ino_pinned); 2905 __btrfs_remove_free_space_cache(root->free_ino_ctl); 2906 free_fs_root(root); 2907 return 0; 2908 } 2909 2910 static void free_fs_root(struct btrfs_root *root) 2911 { 2912 iput(root->cache_inode); 2913 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2914 if (root->anon_dev) 2915 free_anon_bdev(root->anon_dev); 2916 free_extent_buffer(root->node); 2917 free_extent_buffer(root->commit_root); 2918 kfree(root->free_ino_ctl); 2919 kfree(root->free_ino_pinned); 2920 kfree(root->name); 2921 kfree(root); 2922 } 2923 2924 static int del_fs_roots(struct btrfs_fs_info *fs_info) 2925 { 2926 int ret; 2927 struct btrfs_root *gang[8]; 2928 int i; 2929 2930 while (!list_empty(&fs_info->dead_roots)) { 2931 gang[0] = list_entry(fs_info->dead_roots.next, 2932 struct btrfs_root, root_list); 2933 list_del(&gang[0]->root_list); 2934 2935 if (gang[0]->in_radix) { 2936 btrfs_free_fs_root(fs_info, gang[0]); 2937 } else { 2938 free_extent_buffer(gang[0]->node); 2939 free_extent_buffer(gang[0]->commit_root); 2940 kfree(gang[0]); 2941 } 2942 } 2943 2944 while (1) { 2945 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2946 (void **)gang, 0, 2947 ARRAY_SIZE(gang)); 2948 if (!ret) 2949 break; 2950 for (i = 0; i < ret; i++) 2951 btrfs_free_fs_root(fs_info, gang[i]); 2952 } 2953 return 0; 2954 } 2955 2956 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2957 { 2958 u64 root_objectid = 0; 2959 struct btrfs_root *gang[8]; 2960 int i; 2961 int ret; 2962 2963 while (1) { 2964 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2965 (void **)gang, root_objectid, 2966 ARRAY_SIZE(gang)); 2967 if (!ret) 2968 break; 2969 2970 root_objectid = gang[ret - 1]->root_key.objectid + 1; 2971 for (i = 0; i < ret; i++) { 2972 int err; 2973 2974 root_objectid = gang[i]->root_key.objectid; 2975 err = btrfs_orphan_cleanup(gang[i]); 2976 if (err) 2977 return err; 2978 } 2979 root_objectid++; 2980 } 2981 return 0; 2982 } 2983 2984 int btrfs_commit_super(struct btrfs_root *root) 2985 { 2986 struct btrfs_trans_handle *trans; 2987 int ret; 2988 2989 mutex_lock(&root->fs_info->cleaner_mutex); 2990 btrfs_run_delayed_iputs(root); 2991 btrfs_clean_old_snapshots(root); 2992 mutex_unlock(&root->fs_info->cleaner_mutex); 2993 2994 /* wait until ongoing cleanup work done */ 2995 down_write(&root->fs_info->cleanup_work_sem); 2996 up_write(&root->fs_info->cleanup_work_sem); 2997 2998 trans = btrfs_join_transaction(root); 2999 if (IS_ERR(trans)) 3000 return PTR_ERR(trans); 3001 ret = btrfs_commit_transaction(trans, root); 3002 BUG_ON(ret); 3003 /* run commit again to drop the original snapshot */ 3004 trans = btrfs_join_transaction(root); 3005 if (IS_ERR(trans)) 3006 return PTR_ERR(trans); 3007 btrfs_commit_transaction(trans, root); 3008 ret = btrfs_write_and_wait_transaction(NULL, root); 3009 BUG_ON(ret); 3010 3011 ret = write_ctree_super(NULL, root, 0); 3012 return ret; 3013 } 3014 3015 int close_ctree(struct btrfs_root *root) 3016 { 3017 struct btrfs_fs_info *fs_info = root->fs_info; 3018 int ret; 3019 3020 fs_info->closing = 1; 3021 smp_mb(); 3022 3023 /* pause restriper - we want to resume on mount */ 3024 btrfs_pause_balance(root->fs_info); 3025 3026 btrfs_scrub_cancel(root); 3027 3028 /* wait for any defraggers to finish */ 3029 wait_event(fs_info->transaction_wait, 3030 (atomic_read(&fs_info->defrag_running) == 0)); 3031 3032 /* clear out the rbtree of defraggable inodes */ 3033 btrfs_run_defrag_inodes(fs_info); 3034 3035 /* 3036 * Here come 2 situations when btrfs is broken to flip readonly: 3037 * 3038 * 1. when btrfs flips readonly somewhere else before 3039 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag, 3040 * and btrfs will skip to write sb directly to keep 3041 * ERROR state on disk. 3042 * 3043 * 2. when btrfs flips readonly just in btrfs_commit_super, 3044 * and in such case, btrfs cannot write sb via btrfs_commit_super, 3045 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag, 3046 * btrfs will cleanup all FS resources first and write sb then. 3047 */ 3048 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3049 ret = btrfs_commit_super(root); 3050 if (ret) 3051 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 3052 } 3053 3054 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 3055 ret = btrfs_error_commit_super(root); 3056 if (ret) 3057 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 3058 } 3059 3060 btrfs_put_block_group_cache(fs_info); 3061 3062 kthread_stop(fs_info->transaction_kthread); 3063 kthread_stop(fs_info->cleaner_kthread); 3064 3065 fs_info->closing = 2; 3066 smp_mb(); 3067 3068 if (fs_info->delalloc_bytes) { 3069 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n", 3070 (unsigned long long)fs_info->delalloc_bytes); 3071 } 3072 if (fs_info->total_ref_cache_size) { 3073 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n", 3074 (unsigned long long)fs_info->total_ref_cache_size); 3075 } 3076 3077 free_extent_buffer(fs_info->extent_root->node); 3078 free_extent_buffer(fs_info->extent_root->commit_root); 3079 free_extent_buffer(fs_info->tree_root->node); 3080 free_extent_buffer(fs_info->tree_root->commit_root); 3081 free_extent_buffer(fs_info->chunk_root->node); 3082 free_extent_buffer(fs_info->chunk_root->commit_root); 3083 free_extent_buffer(fs_info->dev_root->node); 3084 free_extent_buffer(fs_info->dev_root->commit_root); 3085 free_extent_buffer(fs_info->csum_root->node); 3086 free_extent_buffer(fs_info->csum_root->commit_root); 3087 3088 btrfs_free_block_groups(fs_info); 3089 3090 del_fs_roots(fs_info); 3091 3092 iput(fs_info->btree_inode); 3093 3094 btrfs_stop_workers(&fs_info->generic_worker); 3095 btrfs_stop_workers(&fs_info->fixup_workers); 3096 btrfs_stop_workers(&fs_info->delalloc_workers); 3097 btrfs_stop_workers(&fs_info->workers); 3098 btrfs_stop_workers(&fs_info->endio_workers); 3099 btrfs_stop_workers(&fs_info->endio_meta_workers); 3100 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 3101 btrfs_stop_workers(&fs_info->endio_write_workers); 3102 btrfs_stop_workers(&fs_info->endio_freespace_worker); 3103 btrfs_stop_workers(&fs_info->submit_workers); 3104 btrfs_stop_workers(&fs_info->delayed_workers); 3105 btrfs_stop_workers(&fs_info->caching_workers); 3106 btrfs_stop_workers(&fs_info->readahead_workers); 3107 3108 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3109 if (btrfs_test_opt(root, CHECK_INTEGRITY)) 3110 btrfsic_unmount(root, fs_info->fs_devices); 3111 #endif 3112 3113 btrfs_close_devices(fs_info->fs_devices); 3114 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3115 3116 bdi_destroy(&fs_info->bdi); 3117 cleanup_srcu_struct(&fs_info->subvol_srcu); 3118 3119 return 0; 3120 } 3121 3122 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid) 3123 { 3124 int ret; 3125 struct inode *btree_inode = buf->first_page->mapping->host; 3126 3127 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf, 3128 NULL); 3129 if (!ret) 3130 return ret; 3131 3132 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3133 parent_transid); 3134 return !ret; 3135 } 3136 3137 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 3138 { 3139 struct inode *btree_inode = buf->first_page->mapping->host; 3140 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, 3141 buf); 3142 } 3143 3144 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3145 { 3146 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 3147 u64 transid = btrfs_header_generation(buf); 3148 struct inode *btree_inode = root->fs_info->btree_inode; 3149 int was_dirty; 3150 3151 btrfs_assert_tree_locked(buf); 3152 if (transid != root->fs_info->generation) { 3153 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, " 3154 "found %llu running %llu\n", 3155 (unsigned long long)buf->start, 3156 (unsigned long long)transid, 3157 (unsigned long long)root->fs_info->generation); 3158 WARN_ON(1); 3159 } 3160 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 3161 buf); 3162 if (!was_dirty) { 3163 spin_lock(&root->fs_info->delalloc_lock); 3164 root->fs_info->dirty_metadata_bytes += buf->len; 3165 spin_unlock(&root->fs_info->delalloc_lock); 3166 } 3167 } 3168 3169 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 3170 { 3171 /* 3172 * looks as though older kernels can get into trouble with 3173 * this code, they end up stuck in balance_dirty_pages forever 3174 */ 3175 u64 num_dirty; 3176 unsigned long thresh = 32 * 1024 * 1024; 3177 3178 if (current->flags & PF_MEMALLOC) 3179 return; 3180 3181 btrfs_balance_delayed_items(root); 3182 3183 num_dirty = root->fs_info->dirty_metadata_bytes; 3184 3185 if (num_dirty > thresh) { 3186 balance_dirty_pages_ratelimited_nr( 3187 root->fs_info->btree_inode->i_mapping, 1); 3188 } 3189 return; 3190 } 3191 3192 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 3193 { 3194 /* 3195 * looks as though older kernels can get into trouble with 3196 * this code, they end up stuck in balance_dirty_pages forever 3197 */ 3198 u64 num_dirty; 3199 unsigned long thresh = 32 * 1024 * 1024; 3200 3201 if (current->flags & PF_MEMALLOC) 3202 return; 3203 3204 num_dirty = root->fs_info->dirty_metadata_bytes; 3205 3206 if (num_dirty > thresh) { 3207 balance_dirty_pages_ratelimited_nr( 3208 root->fs_info->btree_inode->i_mapping, 1); 3209 } 3210 return; 3211 } 3212 3213 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 3214 { 3215 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 3216 int ret; 3217 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 3218 if (ret == 0) 3219 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 3220 return ret; 3221 } 3222 3223 static int btree_lock_page_hook(struct page *page, void *data, 3224 void (*flush_fn)(void *)) 3225 { 3226 struct inode *inode = page->mapping->host; 3227 struct btrfs_root *root = BTRFS_I(inode)->root; 3228 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3229 struct extent_buffer *eb; 3230 unsigned long len; 3231 u64 bytenr = page_offset(page); 3232 3233 if (page->private == EXTENT_PAGE_PRIVATE) 3234 goto out; 3235 3236 len = page->private >> 2; 3237 eb = find_extent_buffer(io_tree, bytenr, len); 3238 if (!eb) 3239 goto out; 3240 3241 if (!btrfs_try_tree_write_lock(eb)) { 3242 flush_fn(data); 3243 btrfs_tree_lock(eb); 3244 } 3245 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3246 3247 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3248 spin_lock(&root->fs_info->delalloc_lock); 3249 if (root->fs_info->dirty_metadata_bytes >= eb->len) 3250 root->fs_info->dirty_metadata_bytes -= eb->len; 3251 else 3252 WARN_ON(1); 3253 spin_unlock(&root->fs_info->delalloc_lock); 3254 } 3255 3256 btrfs_tree_unlock(eb); 3257 free_extent_buffer(eb); 3258 out: 3259 if (!trylock_page(page)) { 3260 flush_fn(data); 3261 lock_page(page); 3262 } 3263 return 0; 3264 } 3265 3266 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 3267 int read_only) 3268 { 3269 if (read_only) 3270 return; 3271 3272 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) 3273 printk(KERN_WARNING "warning: mount fs with errors, " 3274 "running btrfsck is recommended\n"); 3275 } 3276 3277 int btrfs_error_commit_super(struct btrfs_root *root) 3278 { 3279 int ret; 3280 3281 mutex_lock(&root->fs_info->cleaner_mutex); 3282 btrfs_run_delayed_iputs(root); 3283 mutex_unlock(&root->fs_info->cleaner_mutex); 3284 3285 down_write(&root->fs_info->cleanup_work_sem); 3286 up_write(&root->fs_info->cleanup_work_sem); 3287 3288 /* cleanup FS via transaction */ 3289 btrfs_cleanup_transaction(root); 3290 3291 ret = write_ctree_super(NULL, root, 0); 3292 3293 return ret; 3294 } 3295 3296 static int btrfs_destroy_ordered_operations(struct btrfs_root *root) 3297 { 3298 struct btrfs_inode *btrfs_inode; 3299 struct list_head splice; 3300 3301 INIT_LIST_HEAD(&splice); 3302 3303 mutex_lock(&root->fs_info->ordered_operations_mutex); 3304 spin_lock(&root->fs_info->ordered_extent_lock); 3305 3306 list_splice_init(&root->fs_info->ordered_operations, &splice); 3307 while (!list_empty(&splice)) { 3308 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 3309 ordered_operations); 3310 3311 list_del_init(&btrfs_inode->ordered_operations); 3312 3313 btrfs_invalidate_inodes(btrfs_inode->root); 3314 } 3315 3316 spin_unlock(&root->fs_info->ordered_extent_lock); 3317 mutex_unlock(&root->fs_info->ordered_operations_mutex); 3318 3319 return 0; 3320 } 3321 3322 static int btrfs_destroy_ordered_extents(struct btrfs_root *root) 3323 { 3324 struct list_head splice; 3325 struct btrfs_ordered_extent *ordered; 3326 struct inode *inode; 3327 3328 INIT_LIST_HEAD(&splice); 3329 3330 spin_lock(&root->fs_info->ordered_extent_lock); 3331 3332 list_splice_init(&root->fs_info->ordered_extents, &splice); 3333 while (!list_empty(&splice)) { 3334 ordered = list_entry(splice.next, struct btrfs_ordered_extent, 3335 root_extent_list); 3336 3337 list_del_init(&ordered->root_extent_list); 3338 atomic_inc(&ordered->refs); 3339 3340 /* the inode may be getting freed (in sys_unlink path). */ 3341 inode = igrab(ordered->inode); 3342 3343 spin_unlock(&root->fs_info->ordered_extent_lock); 3344 if (inode) 3345 iput(inode); 3346 3347 atomic_set(&ordered->refs, 1); 3348 btrfs_put_ordered_extent(ordered); 3349 3350 spin_lock(&root->fs_info->ordered_extent_lock); 3351 } 3352 3353 spin_unlock(&root->fs_info->ordered_extent_lock); 3354 3355 return 0; 3356 } 3357 3358 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 3359 struct btrfs_root *root) 3360 { 3361 struct rb_node *node; 3362 struct btrfs_delayed_ref_root *delayed_refs; 3363 struct btrfs_delayed_ref_node *ref; 3364 int ret = 0; 3365 3366 delayed_refs = &trans->delayed_refs; 3367 3368 spin_lock(&delayed_refs->lock); 3369 if (delayed_refs->num_entries == 0) { 3370 spin_unlock(&delayed_refs->lock); 3371 printk(KERN_INFO "delayed_refs has NO entry\n"); 3372 return ret; 3373 } 3374 3375 node = rb_first(&delayed_refs->root); 3376 while (node) { 3377 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 3378 node = rb_next(node); 3379 3380 ref->in_tree = 0; 3381 rb_erase(&ref->rb_node, &delayed_refs->root); 3382 delayed_refs->num_entries--; 3383 3384 atomic_set(&ref->refs, 1); 3385 if (btrfs_delayed_ref_is_head(ref)) { 3386 struct btrfs_delayed_ref_head *head; 3387 3388 head = btrfs_delayed_node_to_head(ref); 3389 mutex_lock(&head->mutex); 3390 kfree(head->extent_op); 3391 delayed_refs->num_heads--; 3392 if (list_empty(&head->cluster)) 3393 delayed_refs->num_heads_ready--; 3394 list_del_init(&head->cluster); 3395 mutex_unlock(&head->mutex); 3396 } 3397 3398 spin_unlock(&delayed_refs->lock); 3399 btrfs_put_delayed_ref(ref); 3400 3401 cond_resched(); 3402 spin_lock(&delayed_refs->lock); 3403 } 3404 3405 spin_unlock(&delayed_refs->lock); 3406 3407 return ret; 3408 } 3409 3410 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t) 3411 { 3412 struct btrfs_pending_snapshot *snapshot; 3413 struct list_head splice; 3414 3415 INIT_LIST_HEAD(&splice); 3416 3417 list_splice_init(&t->pending_snapshots, &splice); 3418 3419 while (!list_empty(&splice)) { 3420 snapshot = list_entry(splice.next, 3421 struct btrfs_pending_snapshot, 3422 list); 3423 3424 list_del_init(&snapshot->list); 3425 3426 kfree(snapshot); 3427 } 3428 3429 return 0; 3430 } 3431 3432 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 3433 { 3434 struct btrfs_inode *btrfs_inode; 3435 struct list_head splice; 3436 3437 INIT_LIST_HEAD(&splice); 3438 3439 spin_lock(&root->fs_info->delalloc_lock); 3440 list_splice_init(&root->fs_info->delalloc_inodes, &splice); 3441 3442 while (!list_empty(&splice)) { 3443 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 3444 delalloc_inodes); 3445 3446 list_del_init(&btrfs_inode->delalloc_inodes); 3447 3448 btrfs_invalidate_inodes(btrfs_inode->root); 3449 } 3450 3451 spin_unlock(&root->fs_info->delalloc_lock); 3452 3453 return 0; 3454 } 3455 3456 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 3457 struct extent_io_tree *dirty_pages, 3458 int mark) 3459 { 3460 int ret; 3461 struct page *page; 3462 struct inode *btree_inode = root->fs_info->btree_inode; 3463 struct extent_buffer *eb; 3464 u64 start = 0; 3465 u64 end; 3466 u64 offset; 3467 unsigned long index; 3468 3469 while (1) { 3470 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 3471 mark); 3472 if (ret) 3473 break; 3474 3475 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 3476 while (start <= end) { 3477 index = start >> PAGE_CACHE_SHIFT; 3478 start = (u64)(index + 1) << PAGE_CACHE_SHIFT; 3479 page = find_get_page(btree_inode->i_mapping, index); 3480 if (!page) 3481 continue; 3482 offset = page_offset(page); 3483 3484 spin_lock(&dirty_pages->buffer_lock); 3485 eb = radix_tree_lookup( 3486 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer, 3487 offset >> PAGE_CACHE_SHIFT); 3488 spin_unlock(&dirty_pages->buffer_lock); 3489 if (eb) { 3490 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY, 3491 &eb->bflags); 3492 atomic_set(&eb->refs, 1); 3493 } 3494 if (PageWriteback(page)) 3495 end_page_writeback(page); 3496 3497 lock_page(page); 3498 if (PageDirty(page)) { 3499 clear_page_dirty_for_io(page); 3500 spin_lock_irq(&page->mapping->tree_lock); 3501 radix_tree_tag_clear(&page->mapping->page_tree, 3502 page_index(page), 3503 PAGECACHE_TAG_DIRTY); 3504 spin_unlock_irq(&page->mapping->tree_lock); 3505 } 3506 3507 page->mapping->a_ops->invalidatepage(page, 0); 3508 unlock_page(page); 3509 } 3510 } 3511 3512 return ret; 3513 } 3514 3515 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 3516 struct extent_io_tree *pinned_extents) 3517 { 3518 struct extent_io_tree *unpin; 3519 u64 start; 3520 u64 end; 3521 int ret; 3522 3523 unpin = pinned_extents; 3524 while (1) { 3525 ret = find_first_extent_bit(unpin, 0, &start, &end, 3526 EXTENT_DIRTY); 3527 if (ret) 3528 break; 3529 3530 /* opt_discard */ 3531 if (btrfs_test_opt(root, DISCARD)) 3532 ret = btrfs_error_discard_extent(root, start, 3533 end + 1 - start, 3534 NULL); 3535 3536 clear_extent_dirty(unpin, start, end, GFP_NOFS); 3537 btrfs_error_unpin_extent_range(root, start, end); 3538 cond_resched(); 3539 } 3540 3541 return 0; 3542 } 3543 3544 static int btrfs_cleanup_transaction(struct btrfs_root *root) 3545 { 3546 struct btrfs_transaction *t; 3547 LIST_HEAD(list); 3548 3549 WARN_ON(1); 3550 3551 mutex_lock(&root->fs_info->transaction_kthread_mutex); 3552 3553 spin_lock(&root->fs_info->trans_lock); 3554 list_splice_init(&root->fs_info->trans_list, &list); 3555 root->fs_info->trans_no_join = 1; 3556 spin_unlock(&root->fs_info->trans_lock); 3557 3558 while (!list_empty(&list)) { 3559 t = list_entry(list.next, struct btrfs_transaction, list); 3560 if (!t) 3561 break; 3562 3563 btrfs_destroy_ordered_operations(root); 3564 3565 btrfs_destroy_ordered_extents(root); 3566 3567 btrfs_destroy_delayed_refs(t, root); 3568 3569 btrfs_block_rsv_release(root, 3570 &root->fs_info->trans_block_rsv, 3571 t->dirty_pages.dirty_bytes); 3572 3573 /* FIXME: cleanup wait for commit */ 3574 t->in_commit = 1; 3575 t->blocked = 1; 3576 if (waitqueue_active(&root->fs_info->transaction_blocked_wait)) 3577 wake_up(&root->fs_info->transaction_blocked_wait); 3578 3579 t->blocked = 0; 3580 if (waitqueue_active(&root->fs_info->transaction_wait)) 3581 wake_up(&root->fs_info->transaction_wait); 3582 3583 t->commit_done = 1; 3584 if (waitqueue_active(&t->commit_wait)) 3585 wake_up(&t->commit_wait); 3586 3587 btrfs_destroy_pending_snapshots(t); 3588 3589 btrfs_destroy_delalloc_inodes(root); 3590 3591 spin_lock(&root->fs_info->trans_lock); 3592 root->fs_info->running_transaction = NULL; 3593 spin_unlock(&root->fs_info->trans_lock); 3594 3595 btrfs_destroy_marked_extents(root, &t->dirty_pages, 3596 EXTENT_DIRTY); 3597 3598 btrfs_destroy_pinned_extent(root, 3599 root->fs_info->pinned_extents); 3600 3601 atomic_set(&t->use_count, 0); 3602 list_del_init(&t->list); 3603 memset(t, 0, sizeof(*t)); 3604 kmem_cache_free(btrfs_transaction_cachep, t); 3605 } 3606 3607 spin_lock(&root->fs_info->trans_lock); 3608 root->fs_info->trans_no_join = 0; 3609 spin_unlock(&root->fs_info->trans_lock); 3610 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 3611 3612 return 0; 3613 } 3614 3615 static struct extent_io_ops btree_extent_io_ops = { 3616 .write_cache_pages_lock_hook = btree_lock_page_hook, 3617 .readpage_end_io_hook = btree_readpage_end_io_hook, 3618 .readpage_io_failed_hook = btree_io_failed_hook, 3619 .submit_bio_hook = btree_submit_bio_hook, 3620 /* note we're sharing with inode.c for the merge bio hook */ 3621 .merge_bio_hook = btrfs_merge_bio_hook, 3622 }; 3623