xref: /openbmc/linux/fs/btrfs/disk-io.c (revision 1c71222e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "bio.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41 #include "block-group.h"
42 #include "discard.h"
43 #include "space-info.h"
44 #include "zoned.h"
45 #include "subpage.h"
46 #include "fs.h"
47 #include "accessors.h"
48 #include "extent-tree.h"
49 #include "root-tree.h"
50 #include "defrag.h"
51 #include "uuid-tree.h"
52 #include "relocation.h"
53 #include "scrub.h"
54 #include "super.h"
55 
56 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
57 				 BTRFS_HEADER_FLAG_RELOC |\
58 				 BTRFS_SUPER_FLAG_ERROR |\
59 				 BTRFS_SUPER_FLAG_SEEDING |\
60 				 BTRFS_SUPER_FLAG_METADUMP |\
61 				 BTRFS_SUPER_FLAG_METADUMP_V2)
62 
63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
65 				      struct btrfs_fs_info *fs_info);
66 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
67 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
68 					struct extent_io_tree *dirty_pages,
69 					int mark);
70 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
71 				       struct extent_io_tree *pinned_extents);
72 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
73 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
74 
75 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
76 {
77 	if (fs_info->csum_shash)
78 		crypto_free_shash(fs_info->csum_shash);
79 }
80 
81 /*
82  * async submit bios are used to offload expensive checksumming
83  * onto the worker threads.  They checksum file and metadata bios
84  * just before they are sent down the IO stack.
85  */
86 struct async_submit_bio {
87 	struct btrfs_inode *inode;
88 	struct bio *bio;
89 	enum btrfs_wq_submit_cmd submit_cmd;
90 	int mirror_num;
91 
92 	/* Optional parameter for used by direct io */
93 	u64 dio_file_offset;
94 	struct btrfs_work work;
95 	blk_status_t status;
96 };
97 
98 /*
99  * Compute the csum of a btree block and store the result to provided buffer.
100  */
101 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
102 {
103 	struct btrfs_fs_info *fs_info = buf->fs_info;
104 	const int num_pages = num_extent_pages(buf);
105 	const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
106 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
107 	char *kaddr;
108 	int i;
109 
110 	shash->tfm = fs_info->csum_shash;
111 	crypto_shash_init(shash);
112 	kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
113 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
114 			    first_page_part - BTRFS_CSUM_SIZE);
115 
116 	for (i = 1; i < num_pages; i++) {
117 		kaddr = page_address(buf->pages[i]);
118 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
119 	}
120 	memset(result, 0, BTRFS_CSUM_SIZE);
121 	crypto_shash_final(shash, result);
122 }
123 
124 /*
125  * we can't consider a given block up to date unless the transid of the
126  * block matches the transid in the parent node's pointer.  This is how we
127  * detect blocks that either didn't get written at all or got written
128  * in the wrong place.
129  */
130 static int verify_parent_transid(struct extent_io_tree *io_tree,
131 				 struct extent_buffer *eb, u64 parent_transid,
132 				 int atomic)
133 {
134 	struct extent_state *cached_state = NULL;
135 	int ret;
136 
137 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
138 		return 0;
139 
140 	if (atomic)
141 		return -EAGAIN;
142 
143 	lock_extent(io_tree, eb->start, eb->start + eb->len - 1, &cached_state);
144 	if (extent_buffer_uptodate(eb) &&
145 	    btrfs_header_generation(eb) == parent_transid) {
146 		ret = 0;
147 		goto out;
148 	}
149 	btrfs_err_rl(eb->fs_info,
150 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
151 			eb->start, eb->read_mirror,
152 			parent_transid, btrfs_header_generation(eb));
153 	ret = 1;
154 	clear_extent_buffer_uptodate(eb);
155 out:
156 	unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
157 		      &cached_state);
158 	return ret;
159 }
160 
161 static bool btrfs_supported_super_csum(u16 csum_type)
162 {
163 	switch (csum_type) {
164 	case BTRFS_CSUM_TYPE_CRC32:
165 	case BTRFS_CSUM_TYPE_XXHASH:
166 	case BTRFS_CSUM_TYPE_SHA256:
167 	case BTRFS_CSUM_TYPE_BLAKE2:
168 		return true;
169 	default:
170 		return false;
171 	}
172 }
173 
174 /*
175  * Return 0 if the superblock checksum type matches the checksum value of that
176  * algorithm. Pass the raw disk superblock data.
177  */
178 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
179 			   const struct btrfs_super_block *disk_sb)
180 {
181 	char result[BTRFS_CSUM_SIZE];
182 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
183 
184 	shash->tfm = fs_info->csum_shash;
185 
186 	/*
187 	 * The super_block structure does not span the whole
188 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
189 	 * filled with zeros and is included in the checksum.
190 	 */
191 	crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
192 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
193 
194 	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
195 		return 1;
196 
197 	return 0;
198 }
199 
200 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
201 			   struct btrfs_key *first_key, u64 parent_transid)
202 {
203 	struct btrfs_fs_info *fs_info = eb->fs_info;
204 	int found_level;
205 	struct btrfs_key found_key;
206 	int ret;
207 
208 	found_level = btrfs_header_level(eb);
209 	if (found_level != level) {
210 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
211 		     KERN_ERR "BTRFS: tree level check failed\n");
212 		btrfs_err(fs_info,
213 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
214 			  eb->start, level, found_level);
215 		return -EIO;
216 	}
217 
218 	if (!first_key)
219 		return 0;
220 
221 	/*
222 	 * For live tree block (new tree blocks in current transaction),
223 	 * we need proper lock context to avoid race, which is impossible here.
224 	 * So we only checks tree blocks which is read from disk, whose
225 	 * generation <= fs_info->last_trans_committed.
226 	 */
227 	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
228 		return 0;
229 
230 	/* We have @first_key, so this @eb must have at least one item */
231 	if (btrfs_header_nritems(eb) == 0) {
232 		btrfs_err(fs_info,
233 		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
234 			  eb->start);
235 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
236 		return -EUCLEAN;
237 	}
238 
239 	if (found_level)
240 		btrfs_node_key_to_cpu(eb, &found_key, 0);
241 	else
242 		btrfs_item_key_to_cpu(eb, &found_key, 0);
243 	ret = btrfs_comp_cpu_keys(first_key, &found_key);
244 
245 	if (ret) {
246 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
247 		     KERN_ERR "BTRFS: tree first key check failed\n");
248 		btrfs_err(fs_info,
249 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
250 			  eb->start, parent_transid, first_key->objectid,
251 			  first_key->type, first_key->offset,
252 			  found_key.objectid, found_key.type,
253 			  found_key.offset);
254 	}
255 	return ret;
256 }
257 
258 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
259 				      int mirror_num)
260 {
261 	struct btrfs_fs_info *fs_info = eb->fs_info;
262 	u64 start = eb->start;
263 	int i, num_pages = num_extent_pages(eb);
264 	int ret = 0;
265 
266 	if (sb_rdonly(fs_info->sb))
267 		return -EROFS;
268 
269 	for (i = 0; i < num_pages; i++) {
270 		struct page *p = eb->pages[i];
271 
272 		ret = btrfs_repair_io_failure(fs_info, 0, start, PAGE_SIZE,
273 				start, p, start - page_offset(p), mirror_num);
274 		if (ret)
275 			break;
276 		start += PAGE_SIZE;
277 	}
278 
279 	return ret;
280 }
281 
282 /*
283  * helper to read a given tree block, doing retries as required when
284  * the checksums don't match and we have alternate mirrors to try.
285  *
286  * @check:		expected tree parentness check, see the comments of the
287  *			structure for details.
288  */
289 int btrfs_read_extent_buffer(struct extent_buffer *eb,
290 			     struct btrfs_tree_parent_check *check)
291 {
292 	struct btrfs_fs_info *fs_info = eb->fs_info;
293 	int failed = 0;
294 	int ret;
295 	int num_copies = 0;
296 	int mirror_num = 0;
297 	int failed_mirror = 0;
298 
299 	ASSERT(check);
300 
301 	while (1) {
302 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
303 		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
304 		if (!ret)
305 			break;
306 
307 		num_copies = btrfs_num_copies(fs_info,
308 					      eb->start, eb->len);
309 		if (num_copies == 1)
310 			break;
311 
312 		if (!failed_mirror) {
313 			failed = 1;
314 			failed_mirror = eb->read_mirror;
315 		}
316 
317 		mirror_num++;
318 		if (mirror_num == failed_mirror)
319 			mirror_num++;
320 
321 		if (mirror_num > num_copies)
322 			break;
323 	}
324 
325 	if (failed && !ret && failed_mirror)
326 		btrfs_repair_eb_io_failure(eb, failed_mirror);
327 
328 	return ret;
329 }
330 
331 static int csum_one_extent_buffer(struct extent_buffer *eb)
332 {
333 	struct btrfs_fs_info *fs_info = eb->fs_info;
334 	u8 result[BTRFS_CSUM_SIZE];
335 	int ret;
336 
337 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
338 				    offsetof(struct btrfs_header, fsid),
339 				    BTRFS_FSID_SIZE) == 0);
340 	csum_tree_block(eb, result);
341 
342 	if (btrfs_header_level(eb))
343 		ret = btrfs_check_node(eb);
344 	else
345 		ret = btrfs_check_leaf_full(eb);
346 
347 	if (ret < 0)
348 		goto error;
349 
350 	/*
351 	 * Also check the generation, the eb reached here must be newer than
352 	 * last committed. Or something seriously wrong happened.
353 	 */
354 	if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
355 		ret = -EUCLEAN;
356 		btrfs_err(fs_info,
357 			"block=%llu bad generation, have %llu expect > %llu",
358 			  eb->start, btrfs_header_generation(eb),
359 			  fs_info->last_trans_committed);
360 		goto error;
361 	}
362 	write_extent_buffer(eb, result, 0, fs_info->csum_size);
363 
364 	return 0;
365 
366 error:
367 	btrfs_print_tree(eb, 0);
368 	btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
369 		  eb->start);
370 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
371 	return ret;
372 }
373 
374 /* Checksum all dirty extent buffers in one bio_vec */
375 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
376 				      struct bio_vec *bvec)
377 {
378 	struct page *page = bvec->bv_page;
379 	u64 bvec_start = page_offset(page) + bvec->bv_offset;
380 	u64 cur;
381 	int ret = 0;
382 
383 	for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
384 	     cur += fs_info->nodesize) {
385 		struct extent_buffer *eb;
386 		bool uptodate;
387 
388 		eb = find_extent_buffer(fs_info, cur);
389 		uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
390 						       fs_info->nodesize);
391 
392 		/* A dirty eb shouldn't disappear from buffer_radix */
393 		if (WARN_ON(!eb))
394 			return -EUCLEAN;
395 
396 		if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
397 			free_extent_buffer(eb);
398 			return -EUCLEAN;
399 		}
400 		if (WARN_ON(!uptodate)) {
401 			free_extent_buffer(eb);
402 			return -EUCLEAN;
403 		}
404 
405 		ret = csum_one_extent_buffer(eb);
406 		free_extent_buffer(eb);
407 		if (ret < 0)
408 			return ret;
409 	}
410 	return ret;
411 }
412 
413 /*
414  * Checksum a dirty tree block before IO.  This has extra checks to make sure
415  * we only fill in the checksum field in the first page of a multi-page block.
416  * For subpage extent buffers we need bvec to also read the offset in the page.
417  */
418 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
419 {
420 	struct page *page = bvec->bv_page;
421 	u64 start = page_offset(page);
422 	u64 found_start;
423 	struct extent_buffer *eb;
424 
425 	if (fs_info->nodesize < PAGE_SIZE)
426 		return csum_dirty_subpage_buffers(fs_info, bvec);
427 
428 	eb = (struct extent_buffer *)page->private;
429 	if (page != eb->pages[0])
430 		return 0;
431 
432 	found_start = btrfs_header_bytenr(eb);
433 
434 	if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
435 		WARN_ON(found_start != 0);
436 		return 0;
437 	}
438 
439 	/*
440 	 * Please do not consolidate these warnings into a single if.
441 	 * It is useful to know what went wrong.
442 	 */
443 	if (WARN_ON(found_start != start))
444 		return -EUCLEAN;
445 	if (WARN_ON(!PageUptodate(page)))
446 		return -EUCLEAN;
447 
448 	return csum_one_extent_buffer(eb);
449 }
450 
451 static int check_tree_block_fsid(struct extent_buffer *eb)
452 {
453 	struct btrfs_fs_info *fs_info = eb->fs_info;
454 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
455 	u8 fsid[BTRFS_FSID_SIZE];
456 	u8 *metadata_uuid;
457 
458 	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
459 			   BTRFS_FSID_SIZE);
460 	/*
461 	 * Checking the incompat flag is only valid for the current fs. For
462 	 * seed devices it's forbidden to have their uuid changed so reading
463 	 * ->fsid in this case is fine
464 	 */
465 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
466 		metadata_uuid = fs_devices->metadata_uuid;
467 	else
468 		metadata_uuid = fs_devices->fsid;
469 
470 	if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
471 		return 0;
472 
473 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
474 		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
475 			return 0;
476 
477 	return 1;
478 }
479 
480 /* Do basic extent buffer checks at read time */
481 static int validate_extent_buffer(struct extent_buffer *eb,
482 				  struct btrfs_tree_parent_check *check)
483 {
484 	struct btrfs_fs_info *fs_info = eb->fs_info;
485 	u64 found_start;
486 	const u32 csum_size = fs_info->csum_size;
487 	u8 found_level;
488 	u8 result[BTRFS_CSUM_SIZE];
489 	const u8 *header_csum;
490 	int ret = 0;
491 
492 	ASSERT(check);
493 
494 	found_start = btrfs_header_bytenr(eb);
495 	if (found_start != eb->start) {
496 		btrfs_err_rl(fs_info,
497 			"bad tree block start, mirror %u want %llu have %llu",
498 			     eb->read_mirror, eb->start, found_start);
499 		ret = -EIO;
500 		goto out;
501 	}
502 	if (check_tree_block_fsid(eb)) {
503 		btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
504 			     eb->start, eb->read_mirror);
505 		ret = -EIO;
506 		goto out;
507 	}
508 	found_level = btrfs_header_level(eb);
509 	if (found_level >= BTRFS_MAX_LEVEL) {
510 		btrfs_err(fs_info,
511 			"bad tree block level, mirror %u level %d on logical %llu",
512 			eb->read_mirror, btrfs_header_level(eb), eb->start);
513 		ret = -EIO;
514 		goto out;
515 	}
516 
517 	csum_tree_block(eb, result);
518 	header_csum = page_address(eb->pages[0]) +
519 		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
520 
521 	if (memcmp(result, header_csum, csum_size) != 0) {
522 		btrfs_warn_rl(fs_info,
523 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
524 			      eb->start, eb->read_mirror,
525 			      CSUM_FMT_VALUE(csum_size, header_csum),
526 			      CSUM_FMT_VALUE(csum_size, result),
527 			      btrfs_header_level(eb));
528 		ret = -EUCLEAN;
529 		goto out;
530 	}
531 
532 	if (found_level != check->level) {
533 		btrfs_err(fs_info,
534 		"level verify failed on logical %llu mirror %u wanted %u found %u",
535 			  eb->start, eb->read_mirror, check->level, found_level);
536 		ret = -EIO;
537 		goto out;
538 	}
539 	if (unlikely(check->transid &&
540 		     btrfs_header_generation(eb) != check->transid)) {
541 		btrfs_err_rl(eb->fs_info,
542 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
543 				eb->start, eb->read_mirror, check->transid,
544 				btrfs_header_generation(eb));
545 		ret = -EIO;
546 		goto out;
547 	}
548 	if (check->has_first_key) {
549 		struct btrfs_key *expect_key = &check->first_key;
550 		struct btrfs_key found_key;
551 
552 		if (found_level)
553 			btrfs_node_key_to_cpu(eb, &found_key, 0);
554 		else
555 			btrfs_item_key_to_cpu(eb, &found_key, 0);
556 		if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
557 			btrfs_err(fs_info,
558 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
559 				  eb->start, check->transid,
560 				  expect_key->objectid,
561 				  expect_key->type, expect_key->offset,
562 				  found_key.objectid, found_key.type,
563 				  found_key.offset);
564 			ret = -EUCLEAN;
565 			goto out;
566 		}
567 	}
568 	if (check->owner_root) {
569 		ret = btrfs_check_eb_owner(eb, check->owner_root);
570 		if (ret < 0)
571 			goto out;
572 	}
573 
574 	/*
575 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
576 	 * that we don't try and read the other copies of this block, just
577 	 * return -EIO.
578 	 */
579 	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
580 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
581 		ret = -EIO;
582 	}
583 
584 	if (found_level > 0 && btrfs_check_node(eb))
585 		ret = -EIO;
586 
587 	if (!ret)
588 		set_extent_buffer_uptodate(eb);
589 	else
590 		btrfs_err(fs_info,
591 		"read time tree block corruption detected on logical %llu mirror %u",
592 			  eb->start, eb->read_mirror);
593 out:
594 	return ret;
595 }
596 
597 static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
598 				   int mirror, struct btrfs_tree_parent_check *check)
599 {
600 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
601 	struct extent_buffer *eb;
602 	bool reads_done;
603 	int ret = 0;
604 
605 	ASSERT(check);
606 
607 	/*
608 	 * We don't allow bio merge for subpage metadata read, so we should
609 	 * only get one eb for each endio hook.
610 	 */
611 	ASSERT(end == start + fs_info->nodesize - 1);
612 	ASSERT(PagePrivate(page));
613 
614 	eb = find_extent_buffer(fs_info, start);
615 	/*
616 	 * When we are reading one tree block, eb must have been inserted into
617 	 * the radix tree. If not, something is wrong.
618 	 */
619 	ASSERT(eb);
620 
621 	reads_done = atomic_dec_and_test(&eb->io_pages);
622 	/* Subpage read must finish in page read */
623 	ASSERT(reads_done);
624 
625 	eb->read_mirror = mirror;
626 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
627 		ret = -EIO;
628 		goto err;
629 	}
630 	ret = validate_extent_buffer(eb, check);
631 	if (ret < 0)
632 		goto err;
633 
634 	set_extent_buffer_uptodate(eb);
635 
636 	free_extent_buffer(eb);
637 	return ret;
638 err:
639 	/*
640 	 * end_bio_extent_readpage decrements io_pages in case of error,
641 	 * make sure it has something to decrement.
642 	 */
643 	atomic_inc(&eb->io_pages);
644 	clear_extent_buffer_uptodate(eb);
645 	free_extent_buffer(eb);
646 	return ret;
647 }
648 
649 int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
650 				   struct page *page, u64 start, u64 end,
651 				   int mirror)
652 {
653 	struct extent_buffer *eb;
654 	int ret = 0;
655 	int reads_done;
656 
657 	ASSERT(page->private);
658 
659 	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
660 		return validate_subpage_buffer(page, start, end, mirror,
661 					       &bbio->parent_check);
662 
663 	eb = (struct extent_buffer *)page->private;
664 
665 	/*
666 	 * The pending IO might have been the only thing that kept this buffer
667 	 * in memory.  Make sure we have a ref for all this other checks
668 	 */
669 	atomic_inc(&eb->refs);
670 
671 	reads_done = atomic_dec_and_test(&eb->io_pages);
672 	if (!reads_done)
673 		goto err;
674 
675 	eb->read_mirror = mirror;
676 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
677 		ret = -EIO;
678 		goto err;
679 	}
680 	ret = validate_extent_buffer(eb, &bbio->parent_check);
681 err:
682 	if (ret) {
683 		/*
684 		 * our io error hook is going to dec the io pages
685 		 * again, we have to make sure it has something
686 		 * to decrement
687 		 */
688 		atomic_inc(&eb->io_pages);
689 		clear_extent_buffer_uptodate(eb);
690 	}
691 	free_extent_buffer(eb);
692 
693 	return ret;
694 }
695 
696 static void run_one_async_start(struct btrfs_work *work)
697 {
698 	struct async_submit_bio *async;
699 	blk_status_t ret;
700 
701 	async = container_of(work, struct  async_submit_bio, work);
702 	switch (async->submit_cmd) {
703 	case WQ_SUBMIT_METADATA:
704 		ret = btree_submit_bio_start(async->bio);
705 		break;
706 	case WQ_SUBMIT_DATA:
707 		ret = btrfs_submit_bio_start(async->inode, async->bio);
708 		break;
709 	case WQ_SUBMIT_DATA_DIO:
710 		ret = btrfs_submit_bio_start_direct_io(async->inode,
711 				async->bio, async->dio_file_offset);
712 		break;
713 	}
714 	if (ret)
715 		async->status = ret;
716 }
717 
718 /*
719  * In order to insert checksums into the metadata in large chunks, we wait
720  * until bio submission time.   All the pages in the bio are checksummed and
721  * sums are attached onto the ordered extent record.
722  *
723  * At IO completion time the csums attached on the ordered extent record are
724  * inserted into the tree.
725  */
726 static void run_one_async_done(struct btrfs_work *work)
727 {
728 	struct async_submit_bio *async =
729 		container_of(work, struct  async_submit_bio, work);
730 	struct btrfs_inode *inode = async->inode;
731 	struct btrfs_bio *bbio = btrfs_bio(async->bio);
732 
733 	/* If an error occurred we just want to clean up the bio and move on */
734 	if (async->status) {
735 		btrfs_bio_end_io(bbio, async->status);
736 		return;
737 	}
738 
739 	/*
740 	 * All of the bios that pass through here are from async helpers.
741 	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
742 	 * This changes nothing when cgroups aren't in use.
743 	 */
744 	async->bio->bi_opf |= REQ_CGROUP_PUNT;
745 	btrfs_submit_bio(inode->root->fs_info, async->bio, async->mirror_num);
746 }
747 
748 static void run_one_async_free(struct btrfs_work *work)
749 {
750 	struct async_submit_bio *async;
751 
752 	async = container_of(work, struct  async_submit_bio, work);
753 	kfree(async);
754 }
755 
756 /*
757  * Submit bio to an async queue.
758  *
759  * Retrun:
760  * - true if the work has been succesfuly submitted
761  * - false in case of error
762  */
763 bool btrfs_wq_submit_bio(struct btrfs_inode *inode, struct bio *bio, int mirror_num,
764 			 u64 dio_file_offset, enum btrfs_wq_submit_cmd cmd)
765 {
766 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
767 	struct async_submit_bio *async;
768 
769 	async = kmalloc(sizeof(*async), GFP_NOFS);
770 	if (!async)
771 		return false;
772 
773 	async->inode = inode;
774 	async->bio = bio;
775 	async->mirror_num = mirror_num;
776 	async->submit_cmd = cmd;
777 
778 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
779 			run_one_async_free);
780 
781 	async->dio_file_offset = dio_file_offset;
782 
783 	async->status = 0;
784 
785 	if (op_is_sync(bio->bi_opf))
786 		btrfs_queue_work(fs_info->hipri_workers, &async->work);
787 	else
788 		btrfs_queue_work(fs_info->workers, &async->work);
789 	return true;
790 }
791 
792 static blk_status_t btree_csum_one_bio(struct bio *bio)
793 {
794 	struct bio_vec *bvec;
795 	struct btrfs_root *root;
796 	int ret = 0;
797 	struct bvec_iter_all iter_all;
798 
799 	ASSERT(!bio_flagged(bio, BIO_CLONED));
800 	bio_for_each_segment_all(bvec, bio, iter_all) {
801 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
802 		ret = csum_dirty_buffer(root->fs_info, bvec);
803 		if (ret)
804 			break;
805 	}
806 
807 	return errno_to_blk_status(ret);
808 }
809 
810 blk_status_t btree_submit_bio_start(struct bio *bio)
811 {
812 	/*
813 	 * when we're called for a write, we're already in the async
814 	 * submission context.  Just jump into btrfs_submit_bio.
815 	 */
816 	return btree_csum_one_bio(bio);
817 }
818 
819 static bool should_async_write(struct btrfs_fs_info *fs_info,
820 			     struct btrfs_inode *bi)
821 {
822 	if (btrfs_is_zoned(fs_info))
823 		return false;
824 	if (atomic_read(&bi->sync_writers))
825 		return false;
826 	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
827 		return false;
828 	return true;
829 }
830 
831 void btrfs_submit_metadata_bio(struct btrfs_inode *inode, struct bio *bio, int mirror_num)
832 {
833 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
834 	struct btrfs_bio *bbio = btrfs_bio(bio);
835 	blk_status_t ret;
836 
837 	bio->bi_opf |= REQ_META;
838 	bbio->is_metadata = 1;
839 
840 	if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
841 		btrfs_submit_bio(fs_info, bio, mirror_num);
842 		return;
843 	}
844 
845 	/*
846 	 * Kthread helpers are used to submit writes so that checksumming can
847 	 * happen in parallel across all CPUs.
848 	 */
849 	if (should_async_write(fs_info, inode) &&
850 	    btrfs_wq_submit_bio(inode, bio, mirror_num, 0, WQ_SUBMIT_METADATA))
851 		return;
852 
853 	ret = btree_csum_one_bio(bio);
854 	if (ret) {
855 		btrfs_bio_end_io(bbio, ret);
856 		return;
857 	}
858 
859 	btrfs_submit_bio(fs_info, bio, mirror_num);
860 }
861 
862 #ifdef CONFIG_MIGRATION
863 static int btree_migrate_folio(struct address_space *mapping,
864 		struct folio *dst, struct folio *src, enum migrate_mode mode)
865 {
866 	/*
867 	 * we can't safely write a btree page from here,
868 	 * we haven't done the locking hook
869 	 */
870 	if (folio_test_dirty(src))
871 		return -EAGAIN;
872 	/*
873 	 * Buffers may be managed in a filesystem specific way.
874 	 * We must have no buffers or drop them.
875 	 */
876 	if (folio_get_private(src) &&
877 	    !filemap_release_folio(src, GFP_KERNEL))
878 		return -EAGAIN;
879 	return migrate_folio(mapping, dst, src, mode);
880 }
881 #else
882 #define btree_migrate_folio NULL
883 #endif
884 
885 static int btree_writepages(struct address_space *mapping,
886 			    struct writeback_control *wbc)
887 {
888 	struct btrfs_fs_info *fs_info;
889 	int ret;
890 
891 	if (wbc->sync_mode == WB_SYNC_NONE) {
892 
893 		if (wbc->for_kupdate)
894 			return 0;
895 
896 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
897 		/* this is a bit racy, but that's ok */
898 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
899 					     BTRFS_DIRTY_METADATA_THRESH,
900 					     fs_info->dirty_metadata_batch);
901 		if (ret < 0)
902 			return 0;
903 	}
904 	return btree_write_cache_pages(mapping, wbc);
905 }
906 
907 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
908 {
909 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
910 		return false;
911 
912 	return try_release_extent_buffer(&folio->page);
913 }
914 
915 static void btree_invalidate_folio(struct folio *folio, size_t offset,
916 				 size_t length)
917 {
918 	struct extent_io_tree *tree;
919 	tree = &BTRFS_I(folio->mapping->host)->io_tree;
920 	extent_invalidate_folio(tree, folio, offset);
921 	btree_release_folio(folio, GFP_NOFS);
922 	if (folio_get_private(folio)) {
923 		btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
924 			   "folio private not zero on folio %llu",
925 			   (unsigned long long)folio_pos(folio));
926 		folio_detach_private(folio);
927 	}
928 }
929 
930 #ifdef DEBUG
931 static bool btree_dirty_folio(struct address_space *mapping,
932 		struct folio *folio)
933 {
934 	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
935 	struct btrfs_subpage *subpage;
936 	struct extent_buffer *eb;
937 	int cur_bit = 0;
938 	u64 page_start = folio_pos(folio);
939 
940 	if (fs_info->sectorsize == PAGE_SIZE) {
941 		eb = folio_get_private(folio);
942 		BUG_ON(!eb);
943 		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
944 		BUG_ON(!atomic_read(&eb->refs));
945 		btrfs_assert_tree_write_locked(eb);
946 		return filemap_dirty_folio(mapping, folio);
947 	}
948 	subpage = folio_get_private(folio);
949 
950 	ASSERT(subpage->dirty_bitmap);
951 	while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
952 		unsigned long flags;
953 		u64 cur;
954 		u16 tmp = (1 << cur_bit);
955 
956 		spin_lock_irqsave(&subpage->lock, flags);
957 		if (!(tmp & subpage->dirty_bitmap)) {
958 			spin_unlock_irqrestore(&subpage->lock, flags);
959 			cur_bit++;
960 			continue;
961 		}
962 		spin_unlock_irqrestore(&subpage->lock, flags);
963 		cur = page_start + cur_bit * fs_info->sectorsize;
964 
965 		eb = find_extent_buffer(fs_info, cur);
966 		ASSERT(eb);
967 		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
968 		ASSERT(atomic_read(&eb->refs));
969 		btrfs_assert_tree_write_locked(eb);
970 		free_extent_buffer(eb);
971 
972 		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
973 	}
974 	return filemap_dirty_folio(mapping, folio);
975 }
976 #else
977 #define btree_dirty_folio filemap_dirty_folio
978 #endif
979 
980 static const struct address_space_operations btree_aops = {
981 	.writepages	= btree_writepages,
982 	.release_folio	= btree_release_folio,
983 	.invalidate_folio = btree_invalidate_folio,
984 	.migrate_folio	= btree_migrate_folio,
985 	.dirty_folio	= btree_dirty_folio,
986 };
987 
988 struct extent_buffer *btrfs_find_create_tree_block(
989 						struct btrfs_fs_info *fs_info,
990 						u64 bytenr, u64 owner_root,
991 						int level)
992 {
993 	if (btrfs_is_testing(fs_info))
994 		return alloc_test_extent_buffer(fs_info, bytenr);
995 	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
996 }
997 
998 /*
999  * Read tree block at logical address @bytenr and do variant basic but critical
1000  * verification.
1001  *
1002  * @check:		expected tree parentness check, see comments of the
1003  *			structure for details.
1004  */
1005 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1006 				      struct btrfs_tree_parent_check *check)
1007 {
1008 	struct extent_buffer *buf = NULL;
1009 	int ret;
1010 
1011 	ASSERT(check);
1012 
1013 	buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
1014 					   check->level);
1015 	if (IS_ERR(buf))
1016 		return buf;
1017 
1018 	ret = btrfs_read_extent_buffer(buf, check);
1019 	if (ret) {
1020 		free_extent_buffer_stale(buf);
1021 		return ERR_PTR(ret);
1022 	}
1023 	if (btrfs_check_eb_owner(buf, check->owner_root)) {
1024 		free_extent_buffer_stale(buf);
1025 		return ERR_PTR(-EUCLEAN);
1026 	}
1027 	return buf;
1028 
1029 }
1030 
1031 void btrfs_clean_tree_block(struct extent_buffer *buf)
1032 {
1033 	struct btrfs_fs_info *fs_info = buf->fs_info;
1034 	if (btrfs_header_generation(buf) ==
1035 	    fs_info->running_transaction->transid) {
1036 		btrfs_assert_tree_write_locked(buf);
1037 
1038 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1039 			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1040 						 -buf->len,
1041 						 fs_info->dirty_metadata_batch);
1042 			clear_extent_buffer_dirty(buf);
1043 		}
1044 	}
1045 }
1046 
1047 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1048 			 u64 objectid)
1049 {
1050 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1051 
1052 	memset(&root->root_key, 0, sizeof(root->root_key));
1053 	memset(&root->root_item, 0, sizeof(root->root_item));
1054 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1055 	root->fs_info = fs_info;
1056 	root->root_key.objectid = objectid;
1057 	root->node = NULL;
1058 	root->commit_root = NULL;
1059 	root->state = 0;
1060 	RB_CLEAR_NODE(&root->rb_node);
1061 
1062 	root->last_trans = 0;
1063 	root->free_objectid = 0;
1064 	root->nr_delalloc_inodes = 0;
1065 	root->nr_ordered_extents = 0;
1066 	root->inode_tree = RB_ROOT;
1067 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1068 
1069 	btrfs_init_root_block_rsv(root);
1070 
1071 	INIT_LIST_HEAD(&root->dirty_list);
1072 	INIT_LIST_HEAD(&root->root_list);
1073 	INIT_LIST_HEAD(&root->delalloc_inodes);
1074 	INIT_LIST_HEAD(&root->delalloc_root);
1075 	INIT_LIST_HEAD(&root->ordered_extents);
1076 	INIT_LIST_HEAD(&root->ordered_root);
1077 	INIT_LIST_HEAD(&root->reloc_dirty_list);
1078 	INIT_LIST_HEAD(&root->logged_list[0]);
1079 	INIT_LIST_HEAD(&root->logged_list[1]);
1080 	spin_lock_init(&root->inode_lock);
1081 	spin_lock_init(&root->delalloc_lock);
1082 	spin_lock_init(&root->ordered_extent_lock);
1083 	spin_lock_init(&root->accounting_lock);
1084 	spin_lock_init(&root->log_extents_lock[0]);
1085 	spin_lock_init(&root->log_extents_lock[1]);
1086 	spin_lock_init(&root->qgroup_meta_rsv_lock);
1087 	mutex_init(&root->objectid_mutex);
1088 	mutex_init(&root->log_mutex);
1089 	mutex_init(&root->ordered_extent_mutex);
1090 	mutex_init(&root->delalloc_mutex);
1091 	init_waitqueue_head(&root->qgroup_flush_wait);
1092 	init_waitqueue_head(&root->log_writer_wait);
1093 	init_waitqueue_head(&root->log_commit_wait[0]);
1094 	init_waitqueue_head(&root->log_commit_wait[1]);
1095 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1096 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1097 	atomic_set(&root->log_commit[0], 0);
1098 	atomic_set(&root->log_commit[1], 0);
1099 	atomic_set(&root->log_writers, 0);
1100 	atomic_set(&root->log_batch, 0);
1101 	refcount_set(&root->refs, 1);
1102 	atomic_set(&root->snapshot_force_cow, 0);
1103 	atomic_set(&root->nr_swapfiles, 0);
1104 	root->log_transid = 0;
1105 	root->log_transid_committed = -1;
1106 	root->last_log_commit = 0;
1107 	root->anon_dev = 0;
1108 	if (!dummy) {
1109 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1110 				    IO_TREE_ROOT_DIRTY_LOG_PAGES);
1111 		extent_io_tree_init(fs_info, &root->log_csum_range,
1112 				    IO_TREE_LOG_CSUM_RANGE);
1113 	}
1114 
1115 	spin_lock_init(&root->root_item_lock);
1116 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1117 #ifdef CONFIG_BTRFS_DEBUG
1118 	INIT_LIST_HEAD(&root->leak_list);
1119 	spin_lock(&fs_info->fs_roots_radix_lock);
1120 	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1121 	spin_unlock(&fs_info->fs_roots_radix_lock);
1122 #endif
1123 }
1124 
1125 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1126 					   u64 objectid, gfp_t flags)
1127 {
1128 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1129 	if (root)
1130 		__setup_root(root, fs_info, objectid);
1131 	return root;
1132 }
1133 
1134 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1135 /* Should only be used by the testing infrastructure */
1136 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1137 {
1138 	struct btrfs_root *root;
1139 
1140 	if (!fs_info)
1141 		return ERR_PTR(-EINVAL);
1142 
1143 	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1144 	if (!root)
1145 		return ERR_PTR(-ENOMEM);
1146 
1147 	/* We don't use the stripesize in selftest, set it as sectorsize */
1148 	root->alloc_bytenr = 0;
1149 
1150 	return root;
1151 }
1152 #endif
1153 
1154 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
1155 {
1156 	const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
1157 	const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
1158 
1159 	return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
1160 }
1161 
1162 static int global_root_key_cmp(const void *k, const struct rb_node *node)
1163 {
1164 	const struct btrfs_key *key = k;
1165 	const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
1166 
1167 	return btrfs_comp_cpu_keys(key, &root->root_key);
1168 }
1169 
1170 int btrfs_global_root_insert(struct btrfs_root *root)
1171 {
1172 	struct btrfs_fs_info *fs_info = root->fs_info;
1173 	struct rb_node *tmp;
1174 
1175 	write_lock(&fs_info->global_root_lock);
1176 	tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
1177 	write_unlock(&fs_info->global_root_lock);
1178 	ASSERT(!tmp);
1179 
1180 	return tmp ? -EEXIST : 0;
1181 }
1182 
1183 void btrfs_global_root_delete(struct btrfs_root *root)
1184 {
1185 	struct btrfs_fs_info *fs_info = root->fs_info;
1186 
1187 	write_lock(&fs_info->global_root_lock);
1188 	rb_erase(&root->rb_node, &fs_info->global_root_tree);
1189 	write_unlock(&fs_info->global_root_lock);
1190 }
1191 
1192 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
1193 				     struct btrfs_key *key)
1194 {
1195 	struct rb_node *node;
1196 	struct btrfs_root *root = NULL;
1197 
1198 	read_lock(&fs_info->global_root_lock);
1199 	node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
1200 	if (node)
1201 		root = container_of(node, struct btrfs_root, rb_node);
1202 	read_unlock(&fs_info->global_root_lock);
1203 
1204 	return root;
1205 }
1206 
1207 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
1208 {
1209 	struct btrfs_block_group *block_group;
1210 	u64 ret;
1211 
1212 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1213 		return 0;
1214 
1215 	if (bytenr)
1216 		block_group = btrfs_lookup_block_group(fs_info, bytenr);
1217 	else
1218 		block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
1219 	ASSERT(block_group);
1220 	if (!block_group)
1221 		return 0;
1222 	ret = block_group->global_root_id;
1223 	btrfs_put_block_group(block_group);
1224 
1225 	return ret;
1226 }
1227 
1228 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1229 {
1230 	struct btrfs_key key = {
1231 		.objectid = BTRFS_CSUM_TREE_OBJECTID,
1232 		.type = BTRFS_ROOT_ITEM_KEY,
1233 		.offset = btrfs_global_root_id(fs_info, bytenr),
1234 	};
1235 
1236 	return btrfs_global_root(fs_info, &key);
1237 }
1238 
1239 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1240 {
1241 	struct btrfs_key key = {
1242 		.objectid = BTRFS_EXTENT_TREE_OBJECTID,
1243 		.type = BTRFS_ROOT_ITEM_KEY,
1244 		.offset = btrfs_global_root_id(fs_info, bytenr),
1245 	};
1246 
1247 	return btrfs_global_root(fs_info, &key);
1248 }
1249 
1250 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
1251 {
1252 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
1253 		return fs_info->block_group_root;
1254 	return btrfs_extent_root(fs_info, 0);
1255 }
1256 
1257 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1258 				     u64 objectid)
1259 {
1260 	struct btrfs_fs_info *fs_info = trans->fs_info;
1261 	struct extent_buffer *leaf;
1262 	struct btrfs_root *tree_root = fs_info->tree_root;
1263 	struct btrfs_root *root;
1264 	struct btrfs_key key;
1265 	unsigned int nofs_flag;
1266 	int ret = 0;
1267 
1268 	/*
1269 	 * We're holding a transaction handle, so use a NOFS memory allocation
1270 	 * context to avoid deadlock if reclaim happens.
1271 	 */
1272 	nofs_flag = memalloc_nofs_save();
1273 	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1274 	memalloc_nofs_restore(nofs_flag);
1275 	if (!root)
1276 		return ERR_PTR(-ENOMEM);
1277 
1278 	root->root_key.objectid = objectid;
1279 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1280 	root->root_key.offset = 0;
1281 
1282 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1283 				      BTRFS_NESTING_NORMAL);
1284 	if (IS_ERR(leaf)) {
1285 		ret = PTR_ERR(leaf);
1286 		leaf = NULL;
1287 		goto fail;
1288 	}
1289 
1290 	root->node = leaf;
1291 	btrfs_mark_buffer_dirty(leaf);
1292 
1293 	root->commit_root = btrfs_root_node(root);
1294 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1295 
1296 	btrfs_set_root_flags(&root->root_item, 0);
1297 	btrfs_set_root_limit(&root->root_item, 0);
1298 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1299 	btrfs_set_root_generation(&root->root_item, trans->transid);
1300 	btrfs_set_root_level(&root->root_item, 0);
1301 	btrfs_set_root_refs(&root->root_item, 1);
1302 	btrfs_set_root_used(&root->root_item, leaf->len);
1303 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1304 	btrfs_set_root_dirid(&root->root_item, 0);
1305 	if (is_fstree(objectid))
1306 		generate_random_guid(root->root_item.uuid);
1307 	else
1308 		export_guid(root->root_item.uuid, &guid_null);
1309 	btrfs_set_root_drop_level(&root->root_item, 0);
1310 
1311 	btrfs_tree_unlock(leaf);
1312 
1313 	key.objectid = objectid;
1314 	key.type = BTRFS_ROOT_ITEM_KEY;
1315 	key.offset = 0;
1316 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1317 	if (ret)
1318 		goto fail;
1319 
1320 	return root;
1321 
1322 fail:
1323 	btrfs_put_root(root);
1324 
1325 	return ERR_PTR(ret);
1326 }
1327 
1328 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1329 					 struct btrfs_fs_info *fs_info)
1330 {
1331 	struct btrfs_root *root;
1332 
1333 	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1334 	if (!root)
1335 		return ERR_PTR(-ENOMEM);
1336 
1337 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1338 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1339 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1340 
1341 	return root;
1342 }
1343 
1344 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1345 			      struct btrfs_root *root)
1346 {
1347 	struct extent_buffer *leaf;
1348 
1349 	/*
1350 	 * DON'T set SHAREABLE bit for log trees.
1351 	 *
1352 	 * Log trees are not exposed to user space thus can't be snapshotted,
1353 	 * and they go away before a real commit is actually done.
1354 	 *
1355 	 * They do store pointers to file data extents, and those reference
1356 	 * counts still get updated (along with back refs to the log tree).
1357 	 */
1358 
1359 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1360 			NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1361 	if (IS_ERR(leaf))
1362 		return PTR_ERR(leaf);
1363 
1364 	root->node = leaf;
1365 
1366 	btrfs_mark_buffer_dirty(root->node);
1367 	btrfs_tree_unlock(root->node);
1368 
1369 	return 0;
1370 }
1371 
1372 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1373 			     struct btrfs_fs_info *fs_info)
1374 {
1375 	struct btrfs_root *log_root;
1376 
1377 	log_root = alloc_log_tree(trans, fs_info);
1378 	if (IS_ERR(log_root))
1379 		return PTR_ERR(log_root);
1380 
1381 	if (!btrfs_is_zoned(fs_info)) {
1382 		int ret = btrfs_alloc_log_tree_node(trans, log_root);
1383 
1384 		if (ret) {
1385 			btrfs_put_root(log_root);
1386 			return ret;
1387 		}
1388 	}
1389 
1390 	WARN_ON(fs_info->log_root_tree);
1391 	fs_info->log_root_tree = log_root;
1392 	return 0;
1393 }
1394 
1395 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1396 		       struct btrfs_root *root)
1397 {
1398 	struct btrfs_fs_info *fs_info = root->fs_info;
1399 	struct btrfs_root *log_root;
1400 	struct btrfs_inode_item *inode_item;
1401 	int ret;
1402 
1403 	log_root = alloc_log_tree(trans, fs_info);
1404 	if (IS_ERR(log_root))
1405 		return PTR_ERR(log_root);
1406 
1407 	ret = btrfs_alloc_log_tree_node(trans, log_root);
1408 	if (ret) {
1409 		btrfs_put_root(log_root);
1410 		return ret;
1411 	}
1412 
1413 	log_root->last_trans = trans->transid;
1414 	log_root->root_key.offset = root->root_key.objectid;
1415 
1416 	inode_item = &log_root->root_item.inode;
1417 	btrfs_set_stack_inode_generation(inode_item, 1);
1418 	btrfs_set_stack_inode_size(inode_item, 3);
1419 	btrfs_set_stack_inode_nlink(inode_item, 1);
1420 	btrfs_set_stack_inode_nbytes(inode_item,
1421 				     fs_info->nodesize);
1422 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1423 
1424 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1425 
1426 	WARN_ON(root->log_root);
1427 	root->log_root = log_root;
1428 	root->log_transid = 0;
1429 	root->log_transid_committed = -1;
1430 	root->last_log_commit = 0;
1431 	return 0;
1432 }
1433 
1434 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1435 					      struct btrfs_path *path,
1436 					      struct btrfs_key *key)
1437 {
1438 	struct btrfs_root *root;
1439 	struct btrfs_tree_parent_check check = { 0 };
1440 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1441 	u64 generation;
1442 	int ret;
1443 	int level;
1444 
1445 	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1446 	if (!root)
1447 		return ERR_PTR(-ENOMEM);
1448 
1449 	ret = btrfs_find_root(tree_root, key, path,
1450 			      &root->root_item, &root->root_key);
1451 	if (ret) {
1452 		if (ret > 0)
1453 			ret = -ENOENT;
1454 		goto fail;
1455 	}
1456 
1457 	generation = btrfs_root_generation(&root->root_item);
1458 	level = btrfs_root_level(&root->root_item);
1459 	check.level = level;
1460 	check.transid = generation;
1461 	check.owner_root = key->objectid;
1462 	root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1463 				     &check);
1464 	if (IS_ERR(root->node)) {
1465 		ret = PTR_ERR(root->node);
1466 		root->node = NULL;
1467 		goto fail;
1468 	}
1469 	if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1470 		ret = -EIO;
1471 		goto fail;
1472 	}
1473 
1474 	/*
1475 	 * For real fs, and not log/reloc trees, root owner must
1476 	 * match its root node owner
1477 	 */
1478 	if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1479 	    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1480 	    root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1481 	    root->root_key.objectid != btrfs_header_owner(root->node)) {
1482 		btrfs_crit(fs_info,
1483 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1484 			   root->root_key.objectid, root->node->start,
1485 			   btrfs_header_owner(root->node),
1486 			   root->root_key.objectid);
1487 		ret = -EUCLEAN;
1488 		goto fail;
1489 	}
1490 	root->commit_root = btrfs_root_node(root);
1491 	return root;
1492 fail:
1493 	btrfs_put_root(root);
1494 	return ERR_PTR(ret);
1495 }
1496 
1497 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1498 					struct btrfs_key *key)
1499 {
1500 	struct btrfs_root *root;
1501 	struct btrfs_path *path;
1502 
1503 	path = btrfs_alloc_path();
1504 	if (!path)
1505 		return ERR_PTR(-ENOMEM);
1506 	root = read_tree_root_path(tree_root, path, key);
1507 	btrfs_free_path(path);
1508 
1509 	return root;
1510 }
1511 
1512 /*
1513  * Initialize subvolume root in-memory structure
1514  *
1515  * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1516  */
1517 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1518 {
1519 	int ret;
1520 	unsigned int nofs_flag;
1521 
1522 	/*
1523 	 * We might be called under a transaction (e.g. indirect backref
1524 	 * resolution) which could deadlock if it triggers memory reclaim
1525 	 */
1526 	nofs_flag = memalloc_nofs_save();
1527 	ret = btrfs_drew_lock_init(&root->snapshot_lock);
1528 	memalloc_nofs_restore(nofs_flag);
1529 	if (ret)
1530 		goto fail;
1531 
1532 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1533 	    !btrfs_is_data_reloc_root(root)) {
1534 		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1535 		btrfs_check_and_init_root_item(&root->root_item);
1536 	}
1537 
1538 	/*
1539 	 * Don't assign anonymous block device to roots that are not exposed to
1540 	 * userspace, the id pool is limited to 1M
1541 	 */
1542 	if (is_fstree(root->root_key.objectid) &&
1543 	    btrfs_root_refs(&root->root_item) > 0) {
1544 		if (!anon_dev) {
1545 			ret = get_anon_bdev(&root->anon_dev);
1546 			if (ret)
1547 				goto fail;
1548 		} else {
1549 			root->anon_dev = anon_dev;
1550 		}
1551 	}
1552 
1553 	mutex_lock(&root->objectid_mutex);
1554 	ret = btrfs_init_root_free_objectid(root);
1555 	if (ret) {
1556 		mutex_unlock(&root->objectid_mutex);
1557 		goto fail;
1558 	}
1559 
1560 	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1561 
1562 	mutex_unlock(&root->objectid_mutex);
1563 
1564 	return 0;
1565 fail:
1566 	/* The caller is responsible to call btrfs_free_fs_root */
1567 	return ret;
1568 }
1569 
1570 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1571 					       u64 root_id)
1572 {
1573 	struct btrfs_root *root;
1574 
1575 	spin_lock(&fs_info->fs_roots_radix_lock);
1576 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1577 				 (unsigned long)root_id);
1578 	if (root)
1579 		root = btrfs_grab_root(root);
1580 	spin_unlock(&fs_info->fs_roots_radix_lock);
1581 	return root;
1582 }
1583 
1584 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1585 						u64 objectid)
1586 {
1587 	struct btrfs_key key = {
1588 		.objectid = objectid,
1589 		.type = BTRFS_ROOT_ITEM_KEY,
1590 		.offset = 0,
1591 	};
1592 
1593 	if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1594 		return btrfs_grab_root(fs_info->tree_root);
1595 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1596 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1597 	if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1598 		return btrfs_grab_root(fs_info->chunk_root);
1599 	if (objectid == BTRFS_DEV_TREE_OBJECTID)
1600 		return btrfs_grab_root(fs_info->dev_root);
1601 	if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1602 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1603 	if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1604 		return btrfs_grab_root(fs_info->quota_root) ?
1605 			fs_info->quota_root : ERR_PTR(-ENOENT);
1606 	if (objectid == BTRFS_UUID_TREE_OBJECTID)
1607 		return btrfs_grab_root(fs_info->uuid_root) ?
1608 			fs_info->uuid_root : ERR_PTR(-ENOENT);
1609 	if (objectid == BTRFS_BLOCK_GROUP_TREE_OBJECTID)
1610 		return btrfs_grab_root(fs_info->block_group_root) ?
1611 			fs_info->block_group_root : ERR_PTR(-ENOENT);
1612 	if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
1613 		struct btrfs_root *root = btrfs_global_root(fs_info, &key);
1614 
1615 		return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
1616 	}
1617 	return NULL;
1618 }
1619 
1620 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1621 			 struct btrfs_root *root)
1622 {
1623 	int ret;
1624 
1625 	ret = radix_tree_preload(GFP_NOFS);
1626 	if (ret)
1627 		return ret;
1628 
1629 	spin_lock(&fs_info->fs_roots_radix_lock);
1630 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1631 				(unsigned long)root->root_key.objectid,
1632 				root);
1633 	if (ret == 0) {
1634 		btrfs_grab_root(root);
1635 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1636 	}
1637 	spin_unlock(&fs_info->fs_roots_radix_lock);
1638 	radix_tree_preload_end();
1639 
1640 	return ret;
1641 }
1642 
1643 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1644 {
1645 #ifdef CONFIG_BTRFS_DEBUG
1646 	struct btrfs_root *root;
1647 
1648 	while (!list_empty(&fs_info->allocated_roots)) {
1649 		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1650 
1651 		root = list_first_entry(&fs_info->allocated_roots,
1652 					struct btrfs_root, leak_list);
1653 		btrfs_err(fs_info, "leaked root %s refcount %d",
1654 			  btrfs_root_name(&root->root_key, buf),
1655 			  refcount_read(&root->refs));
1656 		while (refcount_read(&root->refs) > 1)
1657 			btrfs_put_root(root);
1658 		btrfs_put_root(root);
1659 	}
1660 #endif
1661 }
1662 
1663 static void free_global_roots(struct btrfs_fs_info *fs_info)
1664 {
1665 	struct btrfs_root *root;
1666 	struct rb_node *node;
1667 
1668 	while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1669 		root = rb_entry(node, struct btrfs_root, rb_node);
1670 		rb_erase(&root->rb_node, &fs_info->global_root_tree);
1671 		btrfs_put_root(root);
1672 	}
1673 }
1674 
1675 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1676 {
1677 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1678 	percpu_counter_destroy(&fs_info->delalloc_bytes);
1679 	percpu_counter_destroy(&fs_info->ordered_bytes);
1680 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1681 	btrfs_free_csum_hash(fs_info);
1682 	btrfs_free_stripe_hash_table(fs_info);
1683 	btrfs_free_ref_cache(fs_info);
1684 	kfree(fs_info->balance_ctl);
1685 	kfree(fs_info->delayed_root);
1686 	free_global_roots(fs_info);
1687 	btrfs_put_root(fs_info->tree_root);
1688 	btrfs_put_root(fs_info->chunk_root);
1689 	btrfs_put_root(fs_info->dev_root);
1690 	btrfs_put_root(fs_info->quota_root);
1691 	btrfs_put_root(fs_info->uuid_root);
1692 	btrfs_put_root(fs_info->fs_root);
1693 	btrfs_put_root(fs_info->data_reloc_root);
1694 	btrfs_put_root(fs_info->block_group_root);
1695 	btrfs_check_leaked_roots(fs_info);
1696 	btrfs_extent_buffer_leak_debug_check(fs_info);
1697 	kfree(fs_info->super_copy);
1698 	kfree(fs_info->super_for_commit);
1699 	kfree(fs_info->subpage_info);
1700 	kvfree(fs_info);
1701 }
1702 
1703 
1704 /*
1705  * Get an in-memory reference of a root structure.
1706  *
1707  * For essential trees like root/extent tree, we grab it from fs_info directly.
1708  * For subvolume trees, we check the cached filesystem roots first. If not
1709  * found, then read it from disk and add it to cached fs roots.
1710  *
1711  * Caller should release the root by calling btrfs_put_root() after the usage.
1712  *
1713  * NOTE: Reloc and log trees can't be read by this function as they share the
1714  *	 same root objectid.
1715  *
1716  * @objectid:	root id
1717  * @anon_dev:	preallocated anonymous block device number for new roots,
1718  * 		pass 0 for new allocation.
1719  * @check_ref:	whether to check root item references, If true, return -ENOENT
1720  *		for orphan roots
1721  */
1722 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1723 					     u64 objectid, dev_t anon_dev,
1724 					     bool check_ref)
1725 {
1726 	struct btrfs_root *root;
1727 	struct btrfs_path *path;
1728 	struct btrfs_key key;
1729 	int ret;
1730 
1731 	root = btrfs_get_global_root(fs_info, objectid);
1732 	if (root)
1733 		return root;
1734 again:
1735 	root = btrfs_lookup_fs_root(fs_info, objectid);
1736 	if (root) {
1737 		/* Shouldn't get preallocated anon_dev for cached roots */
1738 		ASSERT(!anon_dev);
1739 		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1740 			btrfs_put_root(root);
1741 			return ERR_PTR(-ENOENT);
1742 		}
1743 		return root;
1744 	}
1745 
1746 	key.objectid = objectid;
1747 	key.type = BTRFS_ROOT_ITEM_KEY;
1748 	key.offset = (u64)-1;
1749 	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1750 	if (IS_ERR(root))
1751 		return root;
1752 
1753 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1754 		ret = -ENOENT;
1755 		goto fail;
1756 	}
1757 
1758 	ret = btrfs_init_fs_root(root, anon_dev);
1759 	if (ret)
1760 		goto fail;
1761 
1762 	path = btrfs_alloc_path();
1763 	if (!path) {
1764 		ret = -ENOMEM;
1765 		goto fail;
1766 	}
1767 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1768 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1769 	key.offset = objectid;
1770 
1771 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1772 	btrfs_free_path(path);
1773 	if (ret < 0)
1774 		goto fail;
1775 	if (ret == 0)
1776 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1777 
1778 	ret = btrfs_insert_fs_root(fs_info, root);
1779 	if (ret) {
1780 		if (ret == -EEXIST) {
1781 			btrfs_put_root(root);
1782 			goto again;
1783 		}
1784 		goto fail;
1785 	}
1786 	return root;
1787 fail:
1788 	/*
1789 	 * If our caller provided us an anonymous device, then it's his
1790 	 * responsibility to free it in case we fail. So we have to set our
1791 	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1792 	 * and once again by our caller.
1793 	 */
1794 	if (anon_dev)
1795 		root->anon_dev = 0;
1796 	btrfs_put_root(root);
1797 	return ERR_PTR(ret);
1798 }
1799 
1800 /*
1801  * Get in-memory reference of a root structure
1802  *
1803  * @objectid:	tree objectid
1804  * @check_ref:	if set, verify that the tree exists and the item has at least
1805  *		one reference
1806  */
1807 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1808 				     u64 objectid, bool check_ref)
1809 {
1810 	return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1811 }
1812 
1813 /*
1814  * Get in-memory reference of a root structure, created as new, optionally pass
1815  * the anonymous block device id
1816  *
1817  * @objectid:	tree objectid
1818  * @anon_dev:	if zero, allocate a new anonymous block device or use the
1819  *		parameter value
1820  */
1821 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1822 					 u64 objectid, dev_t anon_dev)
1823 {
1824 	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1825 }
1826 
1827 /*
1828  * btrfs_get_fs_root_commit_root - return a root for the given objectid
1829  * @fs_info:	the fs_info
1830  * @objectid:	the objectid we need to lookup
1831  *
1832  * This is exclusively used for backref walking, and exists specifically because
1833  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1834  * creation time, which means we may have to read the tree_root in order to look
1835  * up a fs root that is not in memory.  If the root is not in memory we will
1836  * read the tree root commit root and look up the fs root from there.  This is a
1837  * temporary root, it will not be inserted into the radix tree as it doesn't
1838  * have the most uptodate information, it'll simply be discarded once the
1839  * backref code is finished using the root.
1840  */
1841 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1842 						 struct btrfs_path *path,
1843 						 u64 objectid)
1844 {
1845 	struct btrfs_root *root;
1846 	struct btrfs_key key;
1847 
1848 	ASSERT(path->search_commit_root && path->skip_locking);
1849 
1850 	/*
1851 	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1852 	 * since this is called via the backref walking code we won't be looking
1853 	 * up a root that doesn't exist, unless there's corruption.  So if root
1854 	 * != NULL just return it.
1855 	 */
1856 	root = btrfs_get_global_root(fs_info, objectid);
1857 	if (root)
1858 		return root;
1859 
1860 	root = btrfs_lookup_fs_root(fs_info, objectid);
1861 	if (root)
1862 		return root;
1863 
1864 	key.objectid = objectid;
1865 	key.type = BTRFS_ROOT_ITEM_KEY;
1866 	key.offset = (u64)-1;
1867 	root = read_tree_root_path(fs_info->tree_root, path, &key);
1868 	btrfs_release_path(path);
1869 
1870 	return root;
1871 }
1872 
1873 static int cleaner_kthread(void *arg)
1874 {
1875 	struct btrfs_fs_info *fs_info = arg;
1876 	int again;
1877 
1878 	while (1) {
1879 		again = 0;
1880 
1881 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1882 
1883 		/* Make the cleaner go to sleep early. */
1884 		if (btrfs_need_cleaner_sleep(fs_info))
1885 			goto sleep;
1886 
1887 		/*
1888 		 * Do not do anything if we might cause open_ctree() to block
1889 		 * before we have finished mounting the filesystem.
1890 		 */
1891 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1892 			goto sleep;
1893 
1894 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1895 			goto sleep;
1896 
1897 		/*
1898 		 * Avoid the problem that we change the status of the fs
1899 		 * during the above check and trylock.
1900 		 */
1901 		if (btrfs_need_cleaner_sleep(fs_info)) {
1902 			mutex_unlock(&fs_info->cleaner_mutex);
1903 			goto sleep;
1904 		}
1905 
1906 		btrfs_run_delayed_iputs(fs_info);
1907 
1908 		again = btrfs_clean_one_deleted_snapshot(fs_info);
1909 		mutex_unlock(&fs_info->cleaner_mutex);
1910 
1911 		/*
1912 		 * The defragger has dealt with the R/O remount and umount,
1913 		 * needn't do anything special here.
1914 		 */
1915 		btrfs_run_defrag_inodes(fs_info);
1916 
1917 		/*
1918 		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1919 		 * with relocation (btrfs_relocate_chunk) and relocation
1920 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1921 		 * after acquiring fs_info->reclaim_bgs_lock. So we
1922 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1923 		 * unused block groups.
1924 		 */
1925 		btrfs_delete_unused_bgs(fs_info);
1926 
1927 		/*
1928 		 * Reclaim block groups in the reclaim_bgs list after we deleted
1929 		 * all unused block_groups. This possibly gives us some more free
1930 		 * space.
1931 		 */
1932 		btrfs_reclaim_bgs(fs_info);
1933 sleep:
1934 		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1935 		if (kthread_should_park())
1936 			kthread_parkme();
1937 		if (kthread_should_stop())
1938 			return 0;
1939 		if (!again) {
1940 			set_current_state(TASK_INTERRUPTIBLE);
1941 			schedule();
1942 			__set_current_state(TASK_RUNNING);
1943 		}
1944 	}
1945 }
1946 
1947 static int transaction_kthread(void *arg)
1948 {
1949 	struct btrfs_root *root = arg;
1950 	struct btrfs_fs_info *fs_info = root->fs_info;
1951 	struct btrfs_trans_handle *trans;
1952 	struct btrfs_transaction *cur;
1953 	u64 transid;
1954 	time64_t delta;
1955 	unsigned long delay;
1956 	bool cannot_commit;
1957 
1958 	do {
1959 		cannot_commit = false;
1960 		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1961 		mutex_lock(&fs_info->transaction_kthread_mutex);
1962 
1963 		spin_lock(&fs_info->trans_lock);
1964 		cur = fs_info->running_transaction;
1965 		if (!cur) {
1966 			spin_unlock(&fs_info->trans_lock);
1967 			goto sleep;
1968 		}
1969 
1970 		delta = ktime_get_seconds() - cur->start_time;
1971 		if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1972 		    cur->state < TRANS_STATE_COMMIT_START &&
1973 		    delta < fs_info->commit_interval) {
1974 			spin_unlock(&fs_info->trans_lock);
1975 			delay -= msecs_to_jiffies((delta - 1) * 1000);
1976 			delay = min(delay,
1977 				    msecs_to_jiffies(fs_info->commit_interval * 1000));
1978 			goto sleep;
1979 		}
1980 		transid = cur->transid;
1981 		spin_unlock(&fs_info->trans_lock);
1982 
1983 		/* If the file system is aborted, this will always fail. */
1984 		trans = btrfs_attach_transaction(root);
1985 		if (IS_ERR(trans)) {
1986 			if (PTR_ERR(trans) != -ENOENT)
1987 				cannot_commit = true;
1988 			goto sleep;
1989 		}
1990 		if (transid == trans->transid) {
1991 			btrfs_commit_transaction(trans);
1992 		} else {
1993 			btrfs_end_transaction(trans);
1994 		}
1995 sleep:
1996 		wake_up_process(fs_info->cleaner_kthread);
1997 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1998 
1999 		if (BTRFS_FS_ERROR(fs_info))
2000 			btrfs_cleanup_transaction(fs_info);
2001 		if (!kthread_should_stop() &&
2002 				(!btrfs_transaction_blocked(fs_info) ||
2003 				 cannot_commit))
2004 			schedule_timeout_interruptible(delay);
2005 	} while (!kthread_should_stop());
2006 	return 0;
2007 }
2008 
2009 /*
2010  * This will find the highest generation in the array of root backups.  The
2011  * index of the highest array is returned, or -EINVAL if we can't find
2012  * anything.
2013  *
2014  * We check to make sure the array is valid by comparing the
2015  * generation of the latest  root in the array with the generation
2016  * in the super block.  If they don't match we pitch it.
2017  */
2018 static int find_newest_super_backup(struct btrfs_fs_info *info)
2019 {
2020 	const u64 newest_gen = btrfs_super_generation(info->super_copy);
2021 	u64 cur;
2022 	struct btrfs_root_backup *root_backup;
2023 	int i;
2024 
2025 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2026 		root_backup = info->super_copy->super_roots + i;
2027 		cur = btrfs_backup_tree_root_gen(root_backup);
2028 		if (cur == newest_gen)
2029 			return i;
2030 	}
2031 
2032 	return -EINVAL;
2033 }
2034 
2035 /*
2036  * copy all the root pointers into the super backup array.
2037  * this will bump the backup pointer by one when it is
2038  * done
2039  */
2040 static void backup_super_roots(struct btrfs_fs_info *info)
2041 {
2042 	const int next_backup = info->backup_root_index;
2043 	struct btrfs_root_backup *root_backup;
2044 
2045 	root_backup = info->super_for_commit->super_roots + next_backup;
2046 
2047 	/*
2048 	 * make sure all of our padding and empty slots get zero filled
2049 	 * regardless of which ones we use today
2050 	 */
2051 	memset(root_backup, 0, sizeof(*root_backup));
2052 
2053 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2054 
2055 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2056 	btrfs_set_backup_tree_root_gen(root_backup,
2057 			       btrfs_header_generation(info->tree_root->node));
2058 
2059 	btrfs_set_backup_tree_root_level(root_backup,
2060 			       btrfs_header_level(info->tree_root->node));
2061 
2062 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2063 	btrfs_set_backup_chunk_root_gen(root_backup,
2064 			       btrfs_header_generation(info->chunk_root->node));
2065 	btrfs_set_backup_chunk_root_level(root_backup,
2066 			       btrfs_header_level(info->chunk_root->node));
2067 
2068 	if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
2069 		struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
2070 		struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
2071 
2072 		btrfs_set_backup_extent_root(root_backup,
2073 					     extent_root->node->start);
2074 		btrfs_set_backup_extent_root_gen(root_backup,
2075 				btrfs_header_generation(extent_root->node));
2076 		btrfs_set_backup_extent_root_level(root_backup,
2077 					btrfs_header_level(extent_root->node));
2078 
2079 		btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
2080 		btrfs_set_backup_csum_root_gen(root_backup,
2081 					       btrfs_header_generation(csum_root->node));
2082 		btrfs_set_backup_csum_root_level(root_backup,
2083 						 btrfs_header_level(csum_root->node));
2084 	}
2085 
2086 	/*
2087 	 * we might commit during log recovery, which happens before we set
2088 	 * the fs_root.  Make sure it is valid before we fill it in.
2089 	 */
2090 	if (info->fs_root && info->fs_root->node) {
2091 		btrfs_set_backup_fs_root(root_backup,
2092 					 info->fs_root->node->start);
2093 		btrfs_set_backup_fs_root_gen(root_backup,
2094 			       btrfs_header_generation(info->fs_root->node));
2095 		btrfs_set_backup_fs_root_level(root_backup,
2096 			       btrfs_header_level(info->fs_root->node));
2097 	}
2098 
2099 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2100 	btrfs_set_backup_dev_root_gen(root_backup,
2101 			       btrfs_header_generation(info->dev_root->node));
2102 	btrfs_set_backup_dev_root_level(root_backup,
2103 				       btrfs_header_level(info->dev_root->node));
2104 
2105 	btrfs_set_backup_total_bytes(root_backup,
2106 			     btrfs_super_total_bytes(info->super_copy));
2107 	btrfs_set_backup_bytes_used(root_backup,
2108 			     btrfs_super_bytes_used(info->super_copy));
2109 	btrfs_set_backup_num_devices(root_backup,
2110 			     btrfs_super_num_devices(info->super_copy));
2111 
2112 	/*
2113 	 * if we don't copy this out to the super_copy, it won't get remembered
2114 	 * for the next commit
2115 	 */
2116 	memcpy(&info->super_copy->super_roots,
2117 	       &info->super_for_commit->super_roots,
2118 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2119 }
2120 
2121 /*
2122  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2123  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2124  *
2125  * fs_info - filesystem whose backup roots need to be read
2126  * priority - priority of backup root required
2127  *
2128  * Returns backup root index on success and -EINVAL otherwise.
2129  */
2130 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2131 {
2132 	int backup_index = find_newest_super_backup(fs_info);
2133 	struct btrfs_super_block *super = fs_info->super_copy;
2134 	struct btrfs_root_backup *root_backup;
2135 
2136 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2137 		if (priority == 0)
2138 			return backup_index;
2139 
2140 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2141 		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2142 	} else {
2143 		return -EINVAL;
2144 	}
2145 
2146 	root_backup = super->super_roots + backup_index;
2147 
2148 	btrfs_set_super_generation(super,
2149 				   btrfs_backup_tree_root_gen(root_backup));
2150 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2151 	btrfs_set_super_root_level(super,
2152 				   btrfs_backup_tree_root_level(root_backup));
2153 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2154 
2155 	/*
2156 	 * Fixme: the total bytes and num_devices need to match or we should
2157 	 * need a fsck
2158 	 */
2159 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2160 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2161 
2162 	return backup_index;
2163 }
2164 
2165 /* helper to cleanup workers */
2166 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2167 {
2168 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2169 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2170 	btrfs_destroy_workqueue(fs_info->hipri_workers);
2171 	btrfs_destroy_workqueue(fs_info->workers);
2172 	if (fs_info->endio_workers)
2173 		destroy_workqueue(fs_info->endio_workers);
2174 	if (fs_info->rmw_workers)
2175 		destroy_workqueue(fs_info->rmw_workers);
2176 	if (fs_info->compressed_write_workers)
2177 		destroy_workqueue(fs_info->compressed_write_workers);
2178 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2179 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2180 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2181 	btrfs_destroy_workqueue(fs_info->caching_workers);
2182 	btrfs_destroy_workqueue(fs_info->flush_workers);
2183 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2184 	if (fs_info->discard_ctl.discard_workers)
2185 		destroy_workqueue(fs_info->discard_ctl.discard_workers);
2186 	/*
2187 	 * Now that all other work queues are destroyed, we can safely destroy
2188 	 * the queues used for metadata I/O, since tasks from those other work
2189 	 * queues can do metadata I/O operations.
2190 	 */
2191 	if (fs_info->endio_meta_workers)
2192 		destroy_workqueue(fs_info->endio_meta_workers);
2193 }
2194 
2195 static void free_root_extent_buffers(struct btrfs_root *root)
2196 {
2197 	if (root) {
2198 		free_extent_buffer(root->node);
2199 		free_extent_buffer(root->commit_root);
2200 		root->node = NULL;
2201 		root->commit_root = NULL;
2202 	}
2203 }
2204 
2205 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
2206 {
2207 	struct btrfs_root *root, *tmp;
2208 
2209 	rbtree_postorder_for_each_entry_safe(root, tmp,
2210 					     &fs_info->global_root_tree,
2211 					     rb_node)
2212 		free_root_extent_buffers(root);
2213 }
2214 
2215 /* helper to cleanup tree roots */
2216 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2217 {
2218 	free_root_extent_buffers(info->tree_root);
2219 
2220 	free_global_root_pointers(info);
2221 	free_root_extent_buffers(info->dev_root);
2222 	free_root_extent_buffers(info->quota_root);
2223 	free_root_extent_buffers(info->uuid_root);
2224 	free_root_extent_buffers(info->fs_root);
2225 	free_root_extent_buffers(info->data_reloc_root);
2226 	free_root_extent_buffers(info->block_group_root);
2227 	if (free_chunk_root)
2228 		free_root_extent_buffers(info->chunk_root);
2229 }
2230 
2231 void btrfs_put_root(struct btrfs_root *root)
2232 {
2233 	if (!root)
2234 		return;
2235 
2236 	if (refcount_dec_and_test(&root->refs)) {
2237 		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2238 		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2239 		if (root->anon_dev)
2240 			free_anon_bdev(root->anon_dev);
2241 		btrfs_drew_lock_destroy(&root->snapshot_lock);
2242 		free_root_extent_buffers(root);
2243 #ifdef CONFIG_BTRFS_DEBUG
2244 		spin_lock(&root->fs_info->fs_roots_radix_lock);
2245 		list_del_init(&root->leak_list);
2246 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
2247 #endif
2248 		kfree(root);
2249 	}
2250 }
2251 
2252 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2253 {
2254 	int ret;
2255 	struct btrfs_root *gang[8];
2256 	int i;
2257 
2258 	while (!list_empty(&fs_info->dead_roots)) {
2259 		gang[0] = list_entry(fs_info->dead_roots.next,
2260 				     struct btrfs_root, root_list);
2261 		list_del(&gang[0]->root_list);
2262 
2263 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2264 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2265 		btrfs_put_root(gang[0]);
2266 	}
2267 
2268 	while (1) {
2269 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2270 					     (void **)gang, 0,
2271 					     ARRAY_SIZE(gang));
2272 		if (!ret)
2273 			break;
2274 		for (i = 0; i < ret; i++)
2275 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2276 	}
2277 }
2278 
2279 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2280 {
2281 	mutex_init(&fs_info->scrub_lock);
2282 	atomic_set(&fs_info->scrubs_running, 0);
2283 	atomic_set(&fs_info->scrub_pause_req, 0);
2284 	atomic_set(&fs_info->scrubs_paused, 0);
2285 	atomic_set(&fs_info->scrub_cancel_req, 0);
2286 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2287 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2288 }
2289 
2290 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2291 {
2292 	spin_lock_init(&fs_info->balance_lock);
2293 	mutex_init(&fs_info->balance_mutex);
2294 	atomic_set(&fs_info->balance_pause_req, 0);
2295 	atomic_set(&fs_info->balance_cancel_req, 0);
2296 	fs_info->balance_ctl = NULL;
2297 	init_waitqueue_head(&fs_info->balance_wait_q);
2298 	atomic_set(&fs_info->reloc_cancel_req, 0);
2299 }
2300 
2301 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2302 {
2303 	struct inode *inode = fs_info->btree_inode;
2304 	unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
2305 					      fs_info->tree_root);
2306 
2307 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2308 	set_nlink(inode, 1);
2309 	/*
2310 	 * we set the i_size on the btree inode to the max possible int.
2311 	 * the real end of the address space is determined by all of
2312 	 * the devices in the system
2313 	 */
2314 	inode->i_size = OFFSET_MAX;
2315 	inode->i_mapping->a_ops = &btree_aops;
2316 
2317 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2318 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2319 			    IO_TREE_BTREE_INODE_IO);
2320 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2321 
2322 	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2323 	BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
2324 	BTRFS_I(inode)->location.type = 0;
2325 	BTRFS_I(inode)->location.offset = 0;
2326 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2327 	__insert_inode_hash(inode, hash);
2328 }
2329 
2330 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2331 {
2332 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2333 	init_rwsem(&fs_info->dev_replace.rwsem);
2334 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2335 }
2336 
2337 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2338 {
2339 	spin_lock_init(&fs_info->qgroup_lock);
2340 	mutex_init(&fs_info->qgroup_ioctl_lock);
2341 	fs_info->qgroup_tree = RB_ROOT;
2342 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2343 	fs_info->qgroup_seq = 1;
2344 	fs_info->qgroup_ulist = NULL;
2345 	fs_info->qgroup_rescan_running = false;
2346 	fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
2347 	mutex_init(&fs_info->qgroup_rescan_lock);
2348 }
2349 
2350 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2351 {
2352 	u32 max_active = fs_info->thread_pool_size;
2353 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2354 
2355 	fs_info->workers =
2356 		btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2357 	fs_info->hipri_workers =
2358 		btrfs_alloc_workqueue(fs_info, "worker-high",
2359 				      flags | WQ_HIGHPRI, max_active, 16);
2360 
2361 	fs_info->delalloc_workers =
2362 		btrfs_alloc_workqueue(fs_info, "delalloc",
2363 				      flags, max_active, 2);
2364 
2365 	fs_info->flush_workers =
2366 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2367 				      flags, max_active, 0);
2368 
2369 	fs_info->caching_workers =
2370 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2371 
2372 	fs_info->fixup_workers =
2373 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2374 
2375 	fs_info->endio_workers =
2376 		alloc_workqueue("btrfs-endio", flags, max_active);
2377 	fs_info->endio_meta_workers =
2378 		alloc_workqueue("btrfs-endio-meta", flags, max_active);
2379 	fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2380 	fs_info->endio_write_workers =
2381 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2382 				      max_active, 2);
2383 	fs_info->compressed_write_workers =
2384 		alloc_workqueue("btrfs-compressed-write", flags, max_active);
2385 	fs_info->endio_freespace_worker =
2386 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2387 				      max_active, 0);
2388 	fs_info->delayed_workers =
2389 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2390 				      max_active, 0);
2391 	fs_info->qgroup_rescan_workers =
2392 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2393 	fs_info->discard_ctl.discard_workers =
2394 		alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2395 
2396 	if (!(fs_info->workers && fs_info->hipri_workers &&
2397 	      fs_info->delalloc_workers && fs_info->flush_workers &&
2398 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2399 	      fs_info->compressed_write_workers &&
2400 	      fs_info->endio_write_workers &&
2401 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2402 	      fs_info->caching_workers && fs_info->fixup_workers &&
2403 	      fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2404 	      fs_info->discard_ctl.discard_workers)) {
2405 		return -ENOMEM;
2406 	}
2407 
2408 	return 0;
2409 }
2410 
2411 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2412 {
2413 	struct crypto_shash *csum_shash;
2414 	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2415 
2416 	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2417 
2418 	if (IS_ERR(csum_shash)) {
2419 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2420 			  csum_driver);
2421 		return PTR_ERR(csum_shash);
2422 	}
2423 
2424 	fs_info->csum_shash = csum_shash;
2425 
2426 	btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2427 			btrfs_super_csum_name(csum_type),
2428 			crypto_shash_driver_name(csum_shash));
2429 	return 0;
2430 }
2431 
2432 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2433 			    struct btrfs_fs_devices *fs_devices)
2434 {
2435 	int ret;
2436 	struct btrfs_tree_parent_check check = { 0 };
2437 	struct btrfs_root *log_tree_root;
2438 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2439 	u64 bytenr = btrfs_super_log_root(disk_super);
2440 	int level = btrfs_super_log_root_level(disk_super);
2441 
2442 	if (fs_devices->rw_devices == 0) {
2443 		btrfs_warn(fs_info, "log replay required on RO media");
2444 		return -EIO;
2445 	}
2446 
2447 	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2448 					 GFP_KERNEL);
2449 	if (!log_tree_root)
2450 		return -ENOMEM;
2451 
2452 	check.level = level;
2453 	check.transid = fs_info->generation + 1;
2454 	check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2455 	log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2456 	if (IS_ERR(log_tree_root->node)) {
2457 		btrfs_warn(fs_info, "failed to read log tree");
2458 		ret = PTR_ERR(log_tree_root->node);
2459 		log_tree_root->node = NULL;
2460 		btrfs_put_root(log_tree_root);
2461 		return ret;
2462 	}
2463 	if (!extent_buffer_uptodate(log_tree_root->node)) {
2464 		btrfs_err(fs_info, "failed to read log tree");
2465 		btrfs_put_root(log_tree_root);
2466 		return -EIO;
2467 	}
2468 
2469 	/* returns with log_tree_root freed on success */
2470 	ret = btrfs_recover_log_trees(log_tree_root);
2471 	if (ret) {
2472 		btrfs_handle_fs_error(fs_info, ret,
2473 				      "Failed to recover log tree");
2474 		btrfs_put_root(log_tree_root);
2475 		return ret;
2476 	}
2477 
2478 	if (sb_rdonly(fs_info->sb)) {
2479 		ret = btrfs_commit_super(fs_info);
2480 		if (ret)
2481 			return ret;
2482 	}
2483 
2484 	return 0;
2485 }
2486 
2487 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2488 				      struct btrfs_path *path, u64 objectid,
2489 				      const char *name)
2490 {
2491 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
2492 	struct btrfs_root *root;
2493 	u64 max_global_id = 0;
2494 	int ret;
2495 	struct btrfs_key key = {
2496 		.objectid = objectid,
2497 		.type = BTRFS_ROOT_ITEM_KEY,
2498 		.offset = 0,
2499 	};
2500 	bool found = false;
2501 
2502 	/* If we have IGNOREDATACSUMS skip loading these roots. */
2503 	if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2504 	    btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2505 		set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2506 		return 0;
2507 	}
2508 
2509 	while (1) {
2510 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2511 		if (ret < 0)
2512 			break;
2513 
2514 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2515 			ret = btrfs_next_leaf(tree_root, path);
2516 			if (ret) {
2517 				if (ret > 0)
2518 					ret = 0;
2519 				break;
2520 			}
2521 		}
2522 		ret = 0;
2523 
2524 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2525 		if (key.objectid != objectid)
2526 			break;
2527 		btrfs_release_path(path);
2528 
2529 		/*
2530 		 * Just worry about this for extent tree, it'll be the same for
2531 		 * everybody.
2532 		 */
2533 		if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2534 			max_global_id = max(max_global_id, key.offset);
2535 
2536 		found = true;
2537 		root = read_tree_root_path(tree_root, path, &key);
2538 		if (IS_ERR(root)) {
2539 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2540 				ret = PTR_ERR(root);
2541 			break;
2542 		}
2543 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2544 		ret = btrfs_global_root_insert(root);
2545 		if (ret) {
2546 			btrfs_put_root(root);
2547 			break;
2548 		}
2549 		key.offset++;
2550 	}
2551 	btrfs_release_path(path);
2552 
2553 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2554 		fs_info->nr_global_roots = max_global_id + 1;
2555 
2556 	if (!found || ret) {
2557 		if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2558 			set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2559 
2560 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2561 			ret = ret ? ret : -ENOENT;
2562 		else
2563 			ret = 0;
2564 		btrfs_err(fs_info, "failed to load root %s", name);
2565 	}
2566 	return ret;
2567 }
2568 
2569 static int load_global_roots(struct btrfs_root *tree_root)
2570 {
2571 	struct btrfs_path *path;
2572 	int ret = 0;
2573 
2574 	path = btrfs_alloc_path();
2575 	if (!path)
2576 		return -ENOMEM;
2577 
2578 	ret = load_global_roots_objectid(tree_root, path,
2579 					 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2580 	if (ret)
2581 		goto out;
2582 	ret = load_global_roots_objectid(tree_root, path,
2583 					 BTRFS_CSUM_TREE_OBJECTID, "csum");
2584 	if (ret)
2585 		goto out;
2586 	if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2587 		goto out;
2588 	ret = load_global_roots_objectid(tree_root, path,
2589 					 BTRFS_FREE_SPACE_TREE_OBJECTID,
2590 					 "free space");
2591 out:
2592 	btrfs_free_path(path);
2593 	return ret;
2594 }
2595 
2596 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2597 {
2598 	struct btrfs_root *tree_root = fs_info->tree_root;
2599 	struct btrfs_root *root;
2600 	struct btrfs_key location;
2601 	int ret;
2602 
2603 	BUG_ON(!fs_info->tree_root);
2604 
2605 	ret = load_global_roots(tree_root);
2606 	if (ret)
2607 		return ret;
2608 
2609 	location.type = BTRFS_ROOT_ITEM_KEY;
2610 	location.offset = 0;
2611 
2612 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2613 		location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2614 		root = btrfs_read_tree_root(tree_root, &location);
2615 		if (IS_ERR(root)) {
2616 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2617 				ret = PTR_ERR(root);
2618 				goto out;
2619 			}
2620 		} else {
2621 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2622 			fs_info->block_group_root = root;
2623 		}
2624 	}
2625 
2626 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2627 	root = btrfs_read_tree_root(tree_root, &location);
2628 	if (IS_ERR(root)) {
2629 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2630 			ret = PTR_ERR(root);
2631 			goto out;
2632 		}
2633 	} else {
2634 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2635 		fs_info->dev_root = root;
2636 	}
2637 	/* Initialize fs_info for all devices in any case */
2638 	ret = btrfs_init_devices_late(fs_info);
2639 	if (ret)
2640 		goto out;
2641 
2642 	/*
2643 	 * This tree can share blocks with some other fs tree during relocation
2644 	 * and we need a proper setup by btrfs_get_fs_root
2645 	 */
2646 	root = btrfs_get_fs_root(tree_root->fs_info,
2647 				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2648 	if (IS_ERR(root)) {
2649 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2650 			ret = PTR_ERR(root);
2651 			goto out;
2652 		}
2653 	} else {
2654 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2655 		fs_info->data_reloc_root = root;
2656 	}
2657 
2658 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2659 	root = btrfs_read_tree_root(tree_root, &location);
2660 	if (!IS_ERR(root)) {
2661 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2662 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2663 		fs_info->quota_root = root;
2664 	}
2665 
2666 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2667 	root = btrfs_read_tree_root(tree_root, &location);
2668 	if (IS_ERR(root)) {
2669 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2670 			ret = PTR_ERR(root);
2671 			if (ret != -ENOENT)
2672 				goto out;
2673 		}
2674 	} else {
2675 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2676 		fs_info->uuid_root = root;
2677 	}
2678 
2679 	return 0;
2680 out:
2681 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2682 		   location.objectid, ret);
2683 	return ret;
2684 }
2685 
2686 /*
2687  * Real super block validation
2688  * NOTE: super csum type and incompat features will not be checked here.
2689  *
2690  * @sb:		super block to check
2691  * @mirror_num:	the super block number to check its bytenr:
2692  * 		0	the primary (1st) sb
2693  * 		1, 2	2nd and 3rd backup copy
2694  * 	       -1	skip bytenr check
2695  */
2696 int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2697 			 struct btrfs_super_block *sb, int mirror_num)
2698 {
2699 	u64 nodesize = btrfs_super_nodesize(sb);
2700 	u64 sectorsize = btrfs_super_sectorsize(sb);
2701 	int ret = 0;
2702 
2703 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2704 		btrfs_err(fs_info, "no valid FS found");
2705 		ret = -EINVAL;
2706 	}
2707 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2708 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2709 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2710 		ret = -EINVAL;
2711 	}
2712 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2713 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2714 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2715 		ret = -EINVAL;
2716 	}
2717 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2718 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2719 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2720 		ret = -EINVAL;
2721 	}
2722 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2723 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2724 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2725 		ret = -EINVAL;
2726 	}
2727 
2728 	/*
2729 	 * Check sectorsize and nodesize first, other check will need it.
2730 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2731 	 */
2732 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2733 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2734 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2735 		ret = -EINVAL;
2736 	}
2737 
2738 	/*
2739 	 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2740 	 *
2741 	 * We can support 16K sectorsize with 64K page size without problem,
2742 	 * but such sectorsize/pagesize combination doesn't make much sense.
2743 	 * 4K will be our future standard, PAGE_SIZE is supported from the very
2744 	 * beginning.
2745 	 */
2746 	if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2747 		btrfs_err(fs_info,
2748 			"sectorsize %llu not yet supported for page size %lu",
2749 			sectorsize, PAGE_SIZE);
2750 		ret = -EINVAL;
2751 	}
2752 
2753 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2754 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2755 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2756 		ret = -EINVAL;
2757 	}
2758 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2759 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2760 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2761 		ret = -EINVAL;
2762 	}
2763 
2764 	/* Root alignment check */
2765 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2766 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2767 			   btrfs_super_root(sb));
2768 		ret = -EINVAL;
2769 	}
2770 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2771 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2772 			   btrfs_super_chunk_root(sb));
2773 		ret = -EINVAL;
2774 	}
2775 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2776 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2777 			   btrfs_super_log_root(sb));
2778 		ret = -EINVAL;
2779 	}
2780 
2781 	if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2782 		   BTRFS_FSID_SIZE)) {
2783 		btrfs_err(fs_info,
2784 		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2785 			fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2786 		ret = -EINVAL;
2787 	}
2788 
2789 	if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2790 	    memcmp(fs_info->fs_devices->metadata_uuid,
2791 		   fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2792 		btrfs_err(fs_info,
2793 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2794 			fs_info->super_copy->metadata_uuid,
2795 			fs_info->fs_devices->metadata_uuid);
2796 		ret = -EINVAL;
2797 	}
2798 
2799 	/*
2800 	 * Artificial requirement for block-group-tree to force newer features
2801 	 * (free-space-tree, no-holes) so the test matrix is smaller.
2802 	 */
2803 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2804 	    (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2805 	     !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2806 		btrfs_err(fs_info,
2807 		"block-group-tree feature requires fres-space-tree and no-holes");
2808 		ret = -EINVAL;
2809 	}
2810 
2811 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2812 		   BTRFS_FSID_SIZE) != 0) {
2813 		btrfs_err(fs_info,
2814 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2815 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2816 		ret = -EINVAL;
2817 	}
2818 
2819 	/*
2820 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2821 	 * done later
2822 	 */
2823 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2824 		btrfs_err(fs_info, "bytes_used is too small %llu",
2825 			  btrfs_super_bytes_used(sb));
2826 		ret = -EINVAL;
2827 	}
2828 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2829 		btrfs_err(fs_info, "invalid stripesize %u",
2830 			  btrfs_super_stripesize(sb));
2831 		ret = -EINVAL;
2832 	}
2833 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2834 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2835 			   btrfs_super_num_devices(sb));
2836 	if (btrfs_super_num_devices(sb) == 0) {
2837 		btrfs_err(fs_info, "number of devices is 0");
2838 		ret = -EINVAL;
2839 	}
2840 
2841 	if (mirror_num >= 0 &&
2842 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2843 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2844 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2845 		ret = -EINVAL;
2846 	}
2847 
2848 	/*
2849 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2850 	 * and one chunk
2851 	 */
2852 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2853 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2854 			  btrfs_super_sys_array_size(sb),
2855 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2856 		ret = -EINVAL;
2857 	}
2858 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2859 			+ sizeof(struct btrfs_chunk)) {
2860 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2861 			  btrfs_super_sys_array_size(sb),
2862 			  sizeof(struct btrfs_disk_key)
2863 			  + sizeof(struct btrfs_chunk));
2864 		ret = -EINVAL;
2865 	}
2866 
2867 	/*
2868 	 * The generation is a global counter, we'll trust it more than the others
2869 	 * but it's still possible that it's the one that's wrong.
2870 	 */
2871 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2872 		btrfs_warn(fs_info,
2873 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2874 			btrfs_super_generation(sb),
2875 			btrfs_super_chunk_root_generation(sb));
2876 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2877 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2878 		btrfs_warn(fs_info,
2879 			"suspicious: generation < cache_generation: %llu < %llu",
2880 			btrfs_super_generation(sb),
2881 			btrfs_super_cache_generation(sb));
2882 
2883 	return ret;
2884 }
2885 
2886 /*
2887  * Validation of super block at mount time.
2888  * Some checks already done early at mount time, like csum type and incompat
2889  * flags will be skipped.
2890  */
2891 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2892 {
2893 	return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2894 }
2895 
2896 /*
2897  * Validation of super block at write time.
2898  * Some checks like bytenr check will be skipped as their values will be
2899  * overwritten soon.
2900  * Extra checks like csum type and incompat flags will be done here.
2901  */
2902 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2903 				      struct btrfs_super_block *sb)
2904 {
2905 	int ret;
2906 
2907 	ret = btrfs_validate_super(fs_info, sb, -1);
2908 	if (ret < 0)
2909 		goto out;
2910 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2911 		ret = -EUCLEAN;
2912 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2913 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2914 		goto out;
2915 	}
2916 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2917 		ret = -EUCLEAN;
2918 		btrfs_err(fs_info,
2919 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2920 			  btrfs_super_incompat_flags(sb),
2921 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2922 		goto out;
2923 	}
2924 out:
2925 	if (ret < 0)
2926 		btrfs_err(fs_info,
2927 		"super block corruption detected before writing it to disk");
2928 	return ret;
2929 }
2930 
2931 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2932 {
2933 	struct btrfs_tree_parent_check check = {
2934 		.level = level,
2935 		.transid = gen,
2936 		.owner_root = root->root_key.objectid
2937 	};
2938 	int ret = 0;
2939 
2940 	root->node = read_tree_block(root->fs_info, bytenr, &check);
2941 	if (IS_ERR(root->node)) {
2942 		ret = PTR_ERR(root->node);
2943 		root->node = NULL;
2944 		return ret;
2945 	}
2946 	if (!extent_buffer_uptodate(root->node)) {
2947 		free_extent_buffer(root->node);
2948 		root->node = NULL;
2949 		return -EIO;
2950 	}
2951 
2952 	btrfs_set_root_node(&root->root_item, root->node);
2953 	root->commit_root = btrfs_root_node(root);
2954 	btrfs_set_root_refs(&root->root_item, 1);
2955 	return ret;
2956 }
2957 
2958 static int load_important_roots(struct btrfs_fs_info *fs_info)
2959 {
2960 	struct btrfs_super_block *sb = fs_info->super_copy;
2961 	u64 gen, bytenr;
2962 	int level, ret;
2963 
2964 	bytenr = btrfs_super_root(sb);
2965 	gen = btrfs_super_generation(sb);
2966 	level = btrfs_super_root_level(sb);
2967 	ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2968 	if (ret) {
2969 		btrfs_warn(fs_info, "couldn't read tree root");
2970 		return ret;
2971 	}
2972 	return 0;
2973 }
2974 
2975 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2976 {
2977 	int backup_index = find_newest_super_backup(fs_info);
2978 	struct btrfs_super_block *sb = fs_info->super_copy;
2979 	struct btrfs_root *tree_root = fs_info->tree_root;
2980 	bool handle_error = false;
2981 	int ret = 0;
2982 	int i;
2983 
2984 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2985 		if (handle_error) {
2986 			if (!IS_ERR(tree_root->node))
2987 				free_extent_buffer(tree_root->node);
2988 			tree_root->node = NULL;
2989 
2990 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2991 				break;
2992 
2993 			free_root_pointers(fs_info, 0);
2994 
2995 			/*
2996 			 * Don't use the log in recovery mode, it won't be
2997 			 * valid
2998 			 */
2999 			btrfs_set_super_log_root(sb, 0);
3000 
3001 			/* We can't trust the free space cache either */
3002 			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3003 
3004 			ret = read_backup_root(fs_info, i);
3005 			backup_index = ret;
3006 			if (ret < 0)
3007 				return ret;
3008 		}
3009 
3010 		ret = load_important_roots(fs_info);
3011 		if (ret) {
3012 			handle_error = true;
3013 			continue;
3014 		}
3015 
3016 		/*
3017 		 * No need to hold btrfs_root::objectid_mutex since the fs
3018 		 * hasn't been fully initialised and we are the only user
3019 		 */
3020 		ret = btrfs_init_root_free_objectid(tree_root);
3021 		if (ret < 0) {
3022 			handle_error = true;
3023 			continue;
3024 		}
3025 
3026 		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
3027 
3028 		ret = btrfs_read_roots(fs_info);
3029 		if (ret < 0) {
3030 			handle_error = true;
3031 			continue;
3032 		}
3033 
3034 		/* All successful */
3035 		fs_info->generation = btrfs_header_generation(tree_root->node);
3036 		fs_info->last_trans_committed = fs_info->generation;
3037 		fs_info->last_reloc_trans = 0;
3038 
3039 		/* Always begin writing backup roots after the one being used */
3040 		if (backup_index < 0) {
3041 			fs_info->backup_root_index = 0;
3042 		} else {
3043 			fs_info->backup_root_index = backup_index + 1;
3044 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
3045 		}
3046 		break;
3047 	}
3048 
3049 	return ret;
3050 }
3051 
3052 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
3053 {
3054 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
3055 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
3056 	INIT_LIST_HEAD(&fs_info->trans_list);
3057 	INIT_LIST_HEAD(&fs_info->dead_roots);
3058 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
3059 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
3060 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
3061 	spin_lock_init(&fs_info->delalloc_root_lock);
3062 	spin_lock_init(&fs_info->trans_lock);
3063 	spin_lock_init(&fs_info->fs_roots_radix_lock);
3064 	spin_lock_init(&fs_info->delayed_iput_lock);
3065 	spin_lock_init(&fs_info->defrag_inodes_lock);
3066 	spin_lock_init(&fs_info->super_lock);
3067 	spin_lock_init(&fs_info->buffer_lock);
3068 	spin_lock_init(&fs_info->unused_bgs_lock);
3069 	spin_lock_init(&fs_info->treelog_bg_lock);
3070 	spin_lock_init(&fs_info->zone_active_bgs_lock);
3071 	spin_lock_init(&fs_info->relocation_bg_lock);
3072 	rwlock_init(&fs_info->tree_mod_log_lock);
3073 	rwlock_init(&fs_info->global_root_lock);
3074 	mutex_init(&fs_info->unused_bg_unpin_mutex);
3075 	mutex_init(&fs_info->reclaim_bgs_lock);
3076 	mutex_init(&fs_info->reloc_mutex);
3077 	mutex_init(&fs_info->delalloc_root_mutex);
3078 	mutex_init(&fs_info->zoned_meta_io_lock);
3079 	mutex_init(&fs_info->zoned_data_reloc_io_lock);
3080 	seqlock_init(&fs_info->profiles_lock);
3081 
3082 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
3083 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
3084 	btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
3085 	btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
3086 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start,
3087 				     BTRFS_LOCKDEP_TRANS_COMMIT_START);
3088 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
3089 				     BTRFS_LOCKDEP_TRANS_UNBLOCKED);
3090 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
3091 				     BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
3092 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
3093 				     BTRFS_LOCKDEP_TRANS_COMPLETED);
3094 
3095 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
3096 	INIT_LIST_HEAD(&fs_info->space_info);
3097 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
3098 	INIT_LIST_HEAD(&fs_info->unused_bgs);
3099 	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
3100 	INIT_LIST_HEAD(&fs_info->zone_active_bgs);
3101 #ifdef CONFIG_BTRFS_DEBUG
3102 	INIT_LIST_HEAD(&fs_info->allocated_roots);
3103 	INIT_LIST_HEAD(&fs_info->allocated_ebs);
3104 	spin_lock_init(&fs_info->eb_leak_lock);
3105 #endif
3106 	extent_map_tree_init(&fs_info->mapping_tree);
3107 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
3108 			     BTRFS_BLOCK_RSV_GLOBAL);
3109 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
3110 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
3111 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
3112 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
3113 			     BTRFS_BLOCK_RSV_DELOPS);
3114 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
3115 			     BTRFS_BLOCK_RSV_DELREFS);
3116 
3117 	atomic_set(&fs_info->async_delalloc_pages, 0);
3118 	atomic_set(&fs_info->defrag_running, 0);
3119 	atomic_set(&fs_info->nr_delayed_iputs, 0);
3120 	atomic64_set(&fs_info->tree_mod_seq, 0);
3121 	fs_info->global_root_tree = RB_ROOT;
3122 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
3123 	fs_info->metadata_ratio = 0;
3124 	fs_info->defrag_inodes = RB_ROOT;
3125 	atomic64_set(&fs_info->free_chunk_space, 0);
3126 	fs_info->tree_mod_log = RB_ROOT;
3127 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
3128 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
3129 	btrfs_init_ref_verify(fs_info);
3130 
3131 	fs_info->thread_pool_size = min_t(unsigned long,
3132 					  num_online_cpus() + 2, 8);
3133 
3134 	INIT_LIST_HEAD(&fs_info->ordered_roots);
3135 	spin_lock_init(&fs_info->ordered_root_lock);
3136 
3137 	btrfs_init_scrub(fs_info);
3138 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3139 	fs_info->check_integrity_print_mask = 0;
3140 #endif
3141 	btrfs_init_balance(fs_info);
3142 	btrfs_init_async_reclaim_work(fs_info);
3143 
3144 	rwlock_init(&fs_info->block_group_cache_lock);
3145 	fs_info->block_group_cache_tree = RB_ROOT_CACHED;
3146 
3147 	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
3148 			    IO_TREE_FS_EXCLUDED_EXTENTS);
3149 
3150 	mutex_init(&fs_info->ordered_operations_mutex);
3151 	mutex_init(&fs_info->tree_log_mutex);
3152 	mutex_init(&fs_info->chunk_mutex);
3153 	mutex_init(&fs_info->transaction_kthread_mutex);
3154 	mutex_init(&fs_info->cleaner_mutex);
3155 	mutex_init(&fs_info->ro_block_group_mutex);
3156 	init_rwsem(&fs_info->commit_root_sem);
3157 	init_rwsem(&fs_info->cleanup_work_sem);
3158 	init_rwsem(&fs_info->subvol_sem);
3159 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
3160 
3161 	btrfs_init_dev_replace_locks(fs_info);
3162 	btrfs_init_qgroup(fs_info);
3163 	btrfs_discard_init(fs_info);
3164 
3165 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
3166 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
3167 
3168 	init_waitqueue_head(&fs_info->transaction_throttle);
3169 	init_waitqueue_head(&fs_info->transaction_wait);
3170 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
3171 	init_waitqueue_head(&fs_info->async_submit_wait);
3172 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
3173 
3174 	/* Usable values until the real ones are cached from the superblock */
3175 	fs_info->nodesize = 4096;
3176 	fs_info->sectorsize = 4096;
3177 	fs_info->sectorsize_bits = ilog2(4096);
3178 	fs_info->stripesize = 4096;
3179 
3180 	fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
3181 
3182 	spin_lock_init(&fs_info->swapfile_pins_lock);
3183 	fs_info->swapfile_pins = RB_ROOT;
3184 
3185 	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3186 	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
3187 }
3188 
3189 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3190 {
3191 	int ret;
3192 
3193 	fs_info->sb = sb;
3194 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3195 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
3196 
3197 	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
3198 	if (ret)
3199 		return ret;
3200 
3201 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3202 	if (ret)
3203 		return ret;
3204 
3205 	fs_info->dirty_metadata_batch = PAGE_SIZE *
3206 					(1 + ilog2(nr_cpu_ids));
3207 
3208 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3209 	if (ret)
3210 		return ret;
3211 
3212 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3213 			GFP_KERNEL);
3214 	if (ret)
3215 		return ret;
3216 
3217 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3218 					GFP_KERNEL);
3219 	if (!fs_info->delayed_root)
3220 		return -ENOMEM;
3221 	btrfs_init_delayed_root(fs_info->delayed_root);
3222 
3223 	if (sb_rdonly(sb))
3224 		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3225 
3226 	return btrfs_alloc_stripe_hash_table(fs_info);
3227 }
3228 
3229 static int btrfs_uuid_rescan_kthread(void *data)
3230 {
3231 	struct btrfs_fs_info *fs_info = data;
3232 	int ret;
3233 
3234 	/*
3235 	 * 1st step is to iterate through the existing UUID tree and
3236 	 * to delete all entries that contain outdated data.
3237 	 * 2nd step is to add all missing entries to the UUID tree.
3238 	 */
3239 	ret = btrfs_uuid_tree_iterate(fs_info);
3240 	if (ret < 0) {
3241 		if (ret != -EINTR)
3242 			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3243 				   ret);
3244 		up(&fs_info->uuid_tree_rescan_sem);
3245 		return ret;
3246 	}
3247 	return btrfs_uuid_scan_kthread(data);
3248 }
3249 
3250 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3251 {
3252 	struct task_struct *task;
3253 
3254 	down(&fs_info->uuid_tree_rescan_sem);
3255 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3256 	if (IS_ERR(task)) {
3257 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
3258 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
3259 		up(&fs_info->uuid_tree_rescan_sem);
3260 		return PTR_ERR(task);
3261 	}
3262 
3263 	return 0;
3264 }
3265 
3266 /*
3267  * Some options only have meaning at mount time and shouldn't persist across
3268  * remounts, or be displayed. Clear these at the end of mount and remount
3269  * code paths.
3270  */
3271 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3272 {
3273 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3274 	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
3275 }
3276 
3277 /*
3278  * Mounting logic specific to read-write file systems. Shared by open_ctree
3279  * and btrfs_remount when remounting from read-only to read-write.
3280  */
3281 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3282 {
3283 	int ret;
3284 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3285 	bool clear_free_space_tree = false;
3286 
3287 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3288 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3289 		clear_free_space_tree = true;
3290 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3291 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3292 		btrfs_warn(fs_info, "free space tree is invalid");
3293 		clear_free_space_tree = true;
3294 	}
3295 
3296 	if (clear_free_space_tree) {
3297 		btrfs_info(fs_info, "clearing free space tree");
3298 		ret = btrfs_clear_free_space_tree(fs_info);
3299 		if (ret) {
3300 			btrfs_warn(fs_info,
3301 				   "failed to clear free space tree: %d", ret);
3302 			goto out;
3303 		}
3304 	}
3305 
3306 	/*
3307 	 * btrfs_find_orphan_roots() is responsible for finding all the dead
3308 	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3309 	 * them into the fs_info->fs_roots_radix tree. This must be done before
3310 	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3311 	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3312 	 * item before the root's tree is deleted - this means that if we unmount
3313 	 * or crash before the deletion completes, on the next mount we will not
3314 	 * delete what remains of the tree because the orphan item does not
3315 	 * exists anymore, which is what tells us we have a pending deletion.
3316 	 */
3317 	ret = btrfs_find_orphan_roots(fs_info);
3318 	if (ret)
3319 		goto out;
3320 
3321 	ret = btrfs_cleanup_fs_roots(fs_info);
3322 	if (ret)
3323 		goto out;
3324 
3325 	down_read(&fs_info->cleanup_work_sem);
3326 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3327 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3328 		up_read(&fs_info->cleanup_work_sem);
3329 		goto out;
3330 	}
3331 	up_read(&fs_info->cleanup_work_sem);
3332 
3333 	mutex_lock(&fs_info->cleaner_mutex);
3334 	ret = btrfs_recover_relocation(fs_info);
3335 	mutex_unlock(&fs_info->cleaner_mutex);
3336 	if (ret < 0) {
3337 		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3338 		goto out;
3339 	}
3340 
3341 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3342 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3343 		btrfs_info(fs_info, "creating free space tree");
3344 		ret = btrfs_create_free_space_tree(fs_info);
3345 		if (ret) {
3346 			btrfs_warn(fs_info,
3347 				"failed to create free space tree: %d", ret);
3348 			goto out;
3349 		}
3350 	}
3351 
3352 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3353 		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3354 		if (ret)
3355 			goto out;
3356 	}
3357 
3358 	ret = btrfs_resume_balance_async(fs_info);
3359 	if (ret)
3360 		goto out;
3361 
3362 	ret = btrfs_resume_dev_replace_async(fs_info);
3363 	if (ret) {
3364 		btrfs_warn(fs_info, "failed to resume dev_replace");
3365 		goto out;
3366 	}
3367 
3368 	btrfs_qgroup_rescan_resume(fs_info);
3369 
3370 	if (!fs_info->uuid_root) {
3371 		btrfs_info(fs_info, "creating UUID tree");
3372 		ret = btrfs_create_uuid_tree(fs_info);
3373 		if (ret) {
3374 			btrfs_warn(fs_info,
3375 				   "failed to create the UUID tree %d", ret);
3376 			goto out;
3377 		}
3378 	}
3379 
3380 out:
3381 	return ret;
3382 }
3383 
3384 /*
3385  * Do various sanity and dependency checks of different features.
3386  *
3387  * @is_rw_mount:	If the mount is read-write.
3388  *
3389  * This is the place for less strict checks (like for subpage or artificial
3390  * feature dependencies).
3391  *
3392  * For strict checks or possible corruption detection, see
3393  * btrfs_validate_super().
3394  *
3395  * This should be called after btrfs_parse_options(), as some mount options
3396  * (space cache related) can modify on-disk format like free space tree and
3397  * screw up certain feature dependencies.
3398  */
3399 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3400 {
3401 	struct btrfs_super_block *disk_super = fs_info->super_copy;
3402 	u64 incompat = btrfs_super_incompat_flags(disk_super);
3403 	const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3404 	const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3405 
3406 	if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3407 		btrfs_err(fs_info,
3408 		"cannot mount because of unknown incompat features (0x%llx)",
3409 		    incompat);
3410 		return -EINVAL;
3411 	}
3412 
3413 	/* Runtime limitation for mixed block groups. */
3414 	if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3415 	    (fs_info->sectorsize != fs_info->nodesize)) {
3416 		btrfs_err(fs_info,
3417 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3418 			fs_info->nodesize, fs_info->sectorsize);
3419 		return -EINVAL;
3420 	}
3421 
3422 	/* Mixed backref is an always-enabled feature. */
3423 	incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3424 
3425 	/* Set compression related flags just in case. */
3426 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3427 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3428 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3429 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3430 
3431 	/*
3432 	 * An ancient flag, which should really be marked deprecated.
3433 	 * Such runtime limitation doesn't really need a incompat flag.
3434 	 */
3435 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3436 		incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3437 
3438 	if (compat_ro_unsupp && is_rw_mount) {
3439 		btrfs_err(fs_info,
3440 	"cannot mount read-write because of unknown compat_ro features (0x%llx)",
3441 		       compat_ro);
3442 		return -EINVAL;
3443 	}
3444 
3445 	/*
3446 	 * We have unsupported RO compat features, although RO mounted, we
3447 	 * should not cause any metadata writes, including log replay.
3448 	 * Or we could screw up whatever the new feature requires.
3449 	 */
3450 	if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3451 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3452 		btrfs_err(fs_info,
3453 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3454 			  compat_ro);
3455 		return -EINVAL;
3456 	}
3457 
3458 	/*
3459 	 * Artificial limitations for block group tree, to force
3460 	 * block-group-tree to rely on no-holes and free-space-tree.
3461 	 */
3462 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3463 	    (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3464 	     !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3465 		btrfs_err(fs_info,
3466 "block-group-tree feature requires no-holes and free-space-tree features");
3467 		return -EINVAL;
3468 	}
3469 
3470 	/*
3471 	 * Subpage runtime limitation on v1 cache.
3472 	 *
3473 	 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3474 	 * we're already defaulting to v2 cache, no need to bother v1 as it's
3475 	 * going to be deprecated anyway.
3476 	 */
3477 	if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3478 		btrfs_warn(fs_info,
3479 	"v1 space cache is not supported for page size %lu with sectorsize %u",
3480 			   PAGE_SIZE, fs_info->sectorsize);
3481 		return -EINVAL;
3482 	}
3483 
3484 	/* This can be called by remount, we need to protect the super block. */
3485 	spin_lock(&fs_info->super_lock);
3486 	btrfs_set_super_incompat_flags(disk_super, incompat);
3487 	spin_unlock(&fs_info->super_lock);
3488 
3489 	return 0;
3490 }
3491 
3492 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3493 		      char *options)
3494 {
3495 	u32 sectorsize;
3496 	u32 nodesize;
3497 	u32 stripesize;
3498 	u64 generation;
3499 	u64 features;
3500 	u16 csum_type;
3501 	struct btrfs_super_block *disk_super;
3502 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3503 	struct btrfs_root *tree_root;
3504 	struct btrfs_root *chunk_root;
3505 	int ret;
3506 	int err = -EINVAL;
3507 	int level;
3508 
3509 	ret = init_mount_fs_info(fs_info, sb);
3510 	if (ret) {
3511 		err = ret;
3512 		goto fail;
3513 	}
3514 
3515 	/* These need to be init'ed before we start creating inodes and such. */
3516 	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3517 				     GFP_KERNEL);
3518 	fs_info->tree_root = tree_root;
3519 	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3520 				      GFP_KERNEL);
3521 	fs_info->chunk_root = chunk_root;
3522 	if (!tree_root || !chunk_root) {
3523 		err = -ENOMEM;
3524 		goto fail;
3525 	}
3526 
3527 	fs_info->btree_inode = new_inode(sb);
3528 	if (!fs_info->btree_inode) {
3529 		err = -ENOMEM;
3530 		goto fail;
3531 	}
3532 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3533 	btrfs_init_btree_inode(fs_info);
3534 
3535 	invalidate_bdev(fs_devices->latest_dev->bdev);
3536 
3537 	/*
3538 	 * Read super block and check the signature bytes only
3539 	 */
3540 	disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3541 	if (IS_ERR(disk_super)) {
3542 		err = PTR_ERR(disk_super);
3543 		goto fail_alloc;
3544 	}
3545 
3546 	/*
3547 	 * Verify the type first, if that or the checksum value are
3548 	 * corrupted, we'll find out
3549 	 */
3550 	csum_type = btrfs_super_csum_type(disk_super);
3551 	if (!btrfs_supported_super_csum(csum_type)) {
3552 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3553 			  csum_type);
3554 		err = -EINVAL;
3555 		btrfs_release_disk_super(disk_super);
3556 		goto fail_alloc;
3557 	}
3558 
3559 	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3560 
3561 	ret = btrfs_init_csum_hash(fs_info, csum_type);
3562 	if (ret) {
3563 		err = ret;
3564 		btrfs_release_disk_super(disk_super);
3565 		goto fail_alloc;
3566 	}
3567 
3568 	/*
3569 	 * We want to check superblock checksum, the type is stored inside.
3570 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3571 	 */
3572 	if (btrfs_check_super_csum(fs_info, disk_super)) {
3573 		btrfs_err(fs_info, "superblock checksum mismatch");
3574 		err = -EINVAL;
3575 		btrfs_release_disk_super(disk_super);
3576 		goto fail_alloc;
3577 	}
3578 
3579 	/*
3580 	 * super_copy is zeroed at allocation time and we never touch the
3581 	 * following bytes up to INFO_SIZE, the checksum is calculated from
3582 	 * the whole block of INFO_SIZE
3583 	 */
3584 	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3585 	btrfs_release_disk_super(disk_super);
3586 
3587 	disk_super = fs_info->super_copy;
3588 
3589 
3590 	features = btrfs_super_flags(disk_super);
3591 	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3592 		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3593 		btrfs_set_super_flags(disk_super, features);
3594 		btrfs_info(fs_info,
3595 			"found metadata UUID change in progress flag, clearing");
3596 	}
3597 
3598 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3599 	       sizeof(*fs_info->super_for_commit));
3600 
3601 	ret = btrfs_validate_mount_super(fs_info);
3602 	if (ret) {
3603 		btrfs_err(fs_info, "superblock contains fatal errors");
3604 		err = -EINVAL;
3605 		goto fail_alloc;
3606 	}
3607 
3608 	if (!btrfs_super_root(disk_super))
3609 		goto fail_alloc;
3610 
3611 	/* check FS state, whether FS is broken. */
3612 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3613 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3614 
3615 	/*
3616 	 * In the long term, we'll store the compression type in the super
3617 	 * block, and it'll be used for per file compression control.
3618 	 */
3619 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3620 
3621 
3622 	/* Set up fs_info before parsing mount options */
3623 	nodesize = btrfs_super_nodesize(disk_super);
3624 	sectorsize = btrfs_super_sectorsize(disk_super);
3625 	stripesize = sectorsize;
3626 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3627 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3628 
3629 	fs_info->nodesize = nodesize;
3630 	fs_info->sectorsize = sectorsize;
3631 	fs_info->sectorsize_bits = ilog2(sectorsize);
3632 	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3633 	fs_info->stripesize = stripesize;
3634 
3635 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3636 	if (ret) {
3637 		err = ret;
3638 		goto fail_alloc;
3639 	}
3640 
3641 	ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3642 	if (ret < 0) {
3643 		err = ret;
3644 		goto fail_alloc;
3645 	}
3646 
3647 	if (sectorsize < PAGE_SIZE) {
3648 		struct btrfs_subpage_info *subpage_info;
3649 
3650 		/*
3651 		 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3652 		 * going to be deprecated.
3653 		 *
3654 		 * Force to use v2 cache for subpage case.
3655 		 */
3656 		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3657 		btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3658 			"forcing free space tree for sector size %u with page size %lu",
3659 			sectorsize, PAGE_SIZE);
3660 
3661 		btrfs_warn(fs_info,
3662 		"read-write for sector size %u with page size %lu is experimental",
3663 			   sectorsize, PAGE_SIZE);
3664 		subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3665 		if (!subpage_info)
3666 			goto fail_alloc;
3667 		btrfs_init_subpage_info(subpage_info, sectorsize);
3668 		fs_info->subpage_info = subpage_info;
3669 	}
3670 
3671 	ret = btrfs_init_workqueues(fs_info);
3672 	if (ret) {
3673 		err = ret;
3674 		goto fail_sb_buffer;
3675 	}
3676 
3677 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3678 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3679 
3680 	sb->s_blocksize = sectorsize;
3681 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3682 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3683 
3684 	mutex_lock(&fs_info->chunk_mutex);
3685 	ret = btrfs_read_sys_array(fs_info);
3686 	mutex_unlock(&fs_info->chunk_mutex);
3687 	if (ret) {
3688 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3689 		goto fail_sb_buffer;
3690 	}
3691 
3692 	generation = btrfs_super_chunk_root_generation(disk_super);
3693 	level = btrfs_super_chunk_root_level(disk_super);
3694 	ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3695 			      generation, level);
3696 	if (ret) {
3697 		btrfs_err(fs_info, "failed to read chunk root");
3698 		goto fail_tree_roots;
3699 	}
3700 
3701 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3702 			   offsetof(struct btrfs_header, chunk_tree_uuid),
3703 			   BTRFS_UUID_SIZE);
3704 
3705 	ret = btrfs_read_chunk_tree(fs_info);
3706 	if (ret) {
3707 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3708 		goto fail_tree_roots;
3709 	}
3710 
3711 	/*
3712 	 * At this point we know all the devices that make this filesystem,
3713 	 * including the seed devices but we don't know yet if the replace
3714 	 * target is required. So free devices that are not part of this
3715 	 * filesystem but skip the replace target device which is checked
3716 	 * below in btrfs_init_dev_replace().
3717 	 */
3718 	btrfs_free_extra_devids(fs_devices);
3719 	if (!fs_devices->latest_dev->bdev) {
3720 		btrfs_err(fs_info, "failed to read devices");
3721 		goto fail_tree_roots;
3722 	}
3723 
3724 	ret = init_tree_roots(fs_info);
3725 	if (ret)
3726 		goto fail_tree_roots;
3727 
3728 	/*
3729 	 * Get zone type information of zoned block devices. This will also
3730 	 * handle emulation of a zoned filesystem if a regular device has the
3731 	 * zoned incompat feature flag set.
3732 	 */
3733 	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3734 	if (ret) {
3735 		btrfs_err(fs_info,
3736 			  "zoned: failed to read device zone info: %d",
3737 			  ret);
3738 		goto fail_block_groups;
3739 	}
3740 
3741 	/*
3742 	 * If we have a uuid root and we're not being told to rescan we need to
3743 	 * check the generation here so we can set the
3744 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3745 	 * transaction during a balance or the log replay without updating the
3746 	 * uuid generation, and then if we crash we would rescan the uuid tree,
3747 	 * even though it was perfectly fine.
3748 	 */
3749 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3750 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3751 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3752 
3753 	ret = btrfs_verify_dev_extents(fs_info);
3754 	if (ret) {
3755 		btrfs_err(fs_info,
3756 			  "failed to verify dev extents against chunks: %d",
3757 			  ret);
3758 		goto fail_block_groups;
3759 	}
3760 	ret = btrfs_recover_balance(fs_info);
3761 	if (ret) {
3762 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3763 		goto fail_block_groups;
3764 	}
3765 
3766 	ret = btrfs_init_dev_stats(fs_info);
3767 	if (ret) {
3768 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3769 		goto fail_block_groups;
3770 	}
3771 
3772 	ret = btrfs_init_dev_replace(fs_info);
3773 	if (ret) {
3774 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3775 		goto fail_block_groups;
3776 	}
3777 
3778 	ret = btrfs_check_zoned_mode(fs_info);
3779 	if (ret) {
3780 		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3781 			  ret);
3782 		goto fail_block_groups;
3783 	}
3784 
3785 	ret = btrfs_sysfs_add_fsid(fs_devices);
3786 	if (ret) {
3787 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3788 				ret);
3789 		goto fail_block_groups;
3790 	}
3791 
3792 	ret = btrfs_sysfs_add_mounted(fs_info);
3793 	if (ret) {
3794 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3795 		goto fail_fsdev_sysfs;
3796 	}
3797 
3798 	ret = btrfs_init_space_info(fs_info);
3799 	if (ret) {
3800 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3801 		goto fail_sysfs;
3802 	}
3803 
3804 	ret = btrfs_read_block_groups(fs_info);
3805 	if (ret) {
3806 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3807 		goto fail_sysfs;
3808 	}
3809 
3810 	btrfs_free_zone_cache(fs_info);
3811 
3812 	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3813 	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3814 		btrfs_warn(fs_info,
3815 		"writable mount is not allowed due to too many missing devices");
3816 		goto fail_sysfs;
3817 	}
3818 
3819 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3820 					       "btrfs-cleaner");
3821 	if (IS_ERR(fs_info->cleaner_kthread))
3822 		goto fail_sysfs;
3823 
3824 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3825 						   tree_root,
3826 						   "btrfs-transaction");
3827 	if (IS_ERR(fs_info->transaction_kthread))
3828 		goto fail_cleaner;
3829 
3830 	if (!btrfs_test_opt(fs_info, NOSSD) &&
3831 	    !fs_info->fs_devices->rotating) {
3832 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3833 	}
3834 
3835 	/*
3836 	 * For devices supporting discard turn on discard=async automatically,
3837 	 * unless it's already set or disabled. This could be turned off by
3838 	 * nodiscard for the same mount.
3839 	 */
3840 	if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
3841 	      btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
3842 	      btrfs_test_opt(fs_info, NODISCARD)) &&
3843 	    fs_info->fs_devices->discardable) {
3844 		btrfs_set_and_info(fs_info, DISCARD_ASYNC,
3845 				   "auto enabling async discard");
3846 		btrfs_clear_opt(fs_info->mount_opt, NODISCARD);
3847 	}
3848 
3849 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3850 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3851 		ret = btrfsic_mount(fs_info, fs_devices,
3852 				    btrfs_test_opt(fs_info,
3853 					CHECK_INTEGRITY_DATA) ? 1 : 0,
3854 				    fs_info->check_integrity_print_mask);
3855 		if (ret)
3856 			btrfs_warn(fs_info,
3857 				"failed to initialize integrity check module: %d",
3858 				ret);
3859 	}
3860 #endif
3861 	ret = btrfs_read_qgroup_config(fs_info);
3862 	if (ret)
3863 		goto fail_trans_kthread;
3864 
3865 	if (btrfs_build_ref_tree(fs_info))
3866 		btrfs_err(fs_info, "couldn't build ref tree");
3867 
3868 	/* do not make disk changes in broken FS or nologreplay is given */
3869 	if (btrfs_super_log_root(disk_super) != 0 &&
3870 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3871 		btrfs_info(fs_info, "start tree-log replay");
3872 		ret = btrfs_replay_log(fs_info, fs_devices);
3873 		if (ret) {
3874 			err = ret;
3875 			goto fail_qgroup;
3876 		}
3877 	}
3878 
3879 	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3880 	if (IS_ERR(fs_info->fs_root)) {
3881 		err = PTR_ERR(fs_info->fs_root);
3882 		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3883 		fs_info->fs_root = NULL;
3884 		goto fail_qgroup;
3885 	}
3886 
3887 	if (sb_rdonly(sb))
3888 		goto clear_oneshot;
3889 
3890 	ret = btrfs_start_pre_rw_mount(fs_info);
3891 	if (ret) {
3892 		close_ctree(fs_info);
3893 		return ret;
3894 	}
3895 	btrfs_discard_resume(fs_info);
3896 
3897 	if (fs_info->uuid_root &&
3898 	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3899 	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3900 		btrfs_info(fs_info, "checking UUID tree");
3901 		ret = btrfs_check_uuid_tree(fs_info);
3902 		if (ret) {
3903 			btrfs_warn(fs_info,
3904 				"failed to check the UUID tree: %d", ret);
3905 			close_ctree(fs_info);
3906 			return ret;
3907 		}
3908 	}
3909 
3910 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3911 
3912 	/* Kick the cleaner thread so it'll start deleting snapshots. */
3913 	if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3914 		wake_up_process(fs_info->cleaner_kthread);
3915 
3916 clear_oneshot:
3917 	btrfs_clear_oneshot_options(fs_info);
3918 	return 0;
3919 
3920 fail_qgroup:
3921 	btrfs_free_qgroup_config(fs_info);
3922 fail_trans_kthread:
3923 	kthread_stop(fs_info->transaction_kthread);
3924 	btrfs_cleanup_transaction(fs_info);
3925 	btrfs_free_fs_roots(fs_info);
3926 fail_cleaner:
3927 	kthread_stop(fs_info->cleaner_kthread);
3928 
3929 	/*
3930 	 * make sure we're done with the btree inode before we stop our
3931 	 * kthreads
3932 	 */
3933 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3934 
3935 fail_sysfs:
3936 	btrfs_sysfs_remove_mounted(fs_info);
3937 
3938 fail_fsdev_sysfs:
3939 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3940 
3941 fail_block_groups:
3942 	btrfs_put_block_group_cache(fs_info);
3943 
3944 fail_tree_roots:
3945 	if (fs_info->data_reloc_root)
3946 		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3947 	free_root_pointers(fs_info, true);
3948 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3949 
3950 fail_sb_buffer:
3951 	btrfs_stop_all_workers(fs_info);
3952 	btrfs_free_block_groups(fs_info);
3953 fail_alloc:
3954 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3955 
3956 	iput(fs_info->btree_inode);
3957 fail:
3958 	btrfs_close_devices(fs_info->fs_devices);
3959 	return err;
3960 }
3961 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3962 
3963 static void btrfs_end_super_write(struct bio *bio)
3964 {
3965 	struct btrfs_device *device = bio->bi_private;
3966 	struct bio_vec *bvec;
3967 	struct bvec_iter_all iter_all;
3968 	struct page *page;
3969 
3970 	bio_for_each_segment_all(bvec, bio, iter_all) {
3971 		page = bvec->bv_page;
3972 
3973 		if (bio->bi_status) {
3974 			btrfs_warn_rl_in_rcu(device->fs_info,
3975 				"lost page write due to IO error on %s (%d)",
3976 				btrfs_dev_name(device),
3977 				blk_status_to_errno(bio->bi_status));
3978 			ClearPageUptodate(page);
3979 			SetPageError(page);
3980 			btrfs_dev_stat_inc_and_print(device,
3981 						     BTRFS_DEV_STAT_WRITE_ERRS);
3982 		} else {
3983 			SetPageUptodate(page);
3984 		}
3985 
3986 		put_page(page);
3987 		unlock_page(page);
3988 	}
3989 
3990 	bio_put(bio);
3991 }
3992 
3993 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3994 						   int copy_num, bool drop_cache)
3995 {
3996 	struct btrfs_super_block *super;
3997 	struct page *page;
3998 	u64 bytenr, bytenr_orig;
3999 	struct address_space *mapping = bdev->bd_inode->i_mapping;
4000 	int ret;
4001 
4002 	bytenr_orig = btrfs_sb_offset(copy_num);
4003 	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
4004 	if (ret == -ENOENT)
4005 		return ERR_PTR(-EINVAL);
4006 	else if (ret)
4007 		return ERR_PTR(ret);
4008 
4009 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
4010 		return ERR_PTR(-EINVAL);
4011 
4012 	if (drop_cache) {
4013 		/* This should only be called with the primary sb. */
4014 		ASSERT(copy_num == 0);
4015 
4016 		/*
4017 		 * Drop the page of the primary superblock, so later read will
4018 		 * always read from the device.
4019 		 */
4020 		invalidate_inode_pages2_range(mapping,
4021 				bytenr >> PAGE_SHIFT,
4022 				(bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
4023 	}
4024 
4025 	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
4026 	if (IS_ERR(page))
4027 		return ERR_CAST(page);
4028 
4029 	super = page_address(page);
4030 	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
4031 		btrfs_release_disk_super(super);
4032 		return ERR_PTR(-ENODATA);
4033 	}
4034 
4035 	if (btrfs_super_bytenr(super) != bytenr_orig) {
4036 		btrfs_release_disk_super(super);
4037 		return ERR_PTR(-EINVAL);
4038 	}
4039 
4040 	return super;
4041 }
4042 
4043 
4044 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
4045 {
4046 	struct btrfs_super_block *super, *latest = NULL;
4047 	int i;
4048 	u64 transid = 0;
4049 
4050 	/* we would like to check all the supers, but that would make
4051 	 * a btrfs mount succeed after a mkfs from a different FS.
4052 	 * So, we need to add a special mount option to scan for
4053 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
4054 	 */
4055 	for (i = 0; i < 1; i++) {
4056 		super = btrfs_read_dev_one_super(bdev, i, false);
4057 		if (IS_ERR(super))
4058 			continue;
4059 
4060 		if (!latest || btrfs_super_generation(super) > transid) {
4061 			if (latest)
4062 				btrfs_release_disk_super(super);
4063 
4064 			latest = super;
4065 			transid = btrfs_super_generation(super);
4066 		}
4067 	}
4068 
4069 	return super;
4070 }
4071 
4072 /*
4073  * Write superblock @sb to the @device. Do not wait for completion, all the
4074  * pages we use for writing are locked.
4075  *
4076  * Write @max_mirrors copies of the superblock, where 0 means default that fit
4077  * the expected device size at commit time. Note that max_mirrors must be
4078  * same for write and wait phases.
4079  *
4080  * Return number of errors when page is not found or submission fails.
4081  */
4082 static int write_dev_supers(struct btrfs_device *device,
4083 			    struct btrfs_super_block *sb, int max_mirrors)
4084 {
4085 	struct btrfs_fs_info *fs_info = device->fs_info;
4086 	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
4087 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
4088 	int i;
4089 	int errors = 0;
4090 	int ret;
4091 	u64 bytenr, bytenr_orig;
4092 
4093 	if (max_mirrors == 0)
4094 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4095 
4096 	shash->tfm = fs_info->csum_shash;
4097 
4098 	for (i = 0; i < max_mirrors; i++) {
4099 		struct page *page;
4100 		struct bio *bio;
4101 		struct btrfs_super_block *disk_super;
4102 
4103 		bytenr_orig = btrfs_sb_offset(i);
4104 		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
4105 		if (ret == -ENOENT) {
4106 			continue;
4107 		} else if (ret < 0) {
4108 			btrfs_err(device->fs_info,
4109 				"couldn't get super block location for mirror %d",
4110 				i);
4111 			errors++;
4112 			continue;
4113 		}
4114 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4115 		    device->commit_total_bytes)
4116 			break;
4117 
4118 		btrfs_set_super_bytenr(sb, bytenr_orig);
4119 
4120 		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
4121 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
4122 				    sb->csum);
4123 
4124 		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
4125 					   GFP_NOFS);
4126 		if (!page) {
4127 			btrfs_err(device->fs_info,
4128 			    "couldn't get super block page for bytenr %llu",
4129 			    bytenr);
4130 			errors++;
4131 			continue;
4132 		}
4133 
4134 		/* Bump the refcount for wait_dev_supers() */
4135 		get_page(page);
4136 
4137 		disk_super = page_address(page);
4138 		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4139 
4140 		/*
4141 		 * Directly use bios here instead of relying on the page cache
4142 		 * to do I/O, so we don't lose the ability to do integrity
4143 		 * checking.
4144 		 */
4145 		bio = bio_alloc(device->bdev, 1,
4146 				REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
4147 				GFP_NOFS);
4148 		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
4149 		bio->bi_private = device;
4150 		bio->bi_end_io = btrfs_end_super_write;
4151 		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
4152 			       offset_in_page(bytenr));
4153 
4154 		/*
4155 		 * We FUA only the first super block.  The others we allow to
4156 		 * go down lazy and there's a short window where the on-disk
4157 		 * copies might still contain the older version.
4158 		 */
4159 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
4160 			bio->bi_opf |= REQ_FUA;
4161 
4162 		btrfsic_check_bio(bio);
4163 		submit_bio(bio);
4164 
4165 		if (btrfs_advance_sb_log(device, i))
4166 			errors++;
4167 	}
4168 	return errors < i ? 0 : -1;
4169 }
4170 
4171 /*
4172  * Wait for write completion of superblocks done by write_dev_supers,
4173  * @max_mirrors same for write and wait phases.
4174  *
4175  * Return number of errors when page is not found or not marked up to
4176  * date.
4177  */
4178 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
4179 {
4180 	int i;
4181 	int errors = 0;
4182 	bool primary_failed = false;
4183 	int ret;
4184 	u64 bytenr;
4185 
4186 	if (max_mirrors == 0)
4187 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4188 
4189 	for (i = 0; i < max_mirrors; i++) {
4190 		struct page *page;
4191 
4192 		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
4193 		if (ret == -ENOENT) {
4194 			break;
4195 		} else if (ret < 0) {
4196 			errors++;
4197 			if (i == 0)
4198 				primary_failed = true;
4199 			continue;
4200 		}
4201 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4202 		    device->commit_total_bytes)
4203 			break;
4204 
4205 		page = find_get_page(device->bdev->bd_inode->i_mapping,
4206 				     bytenr >> PAGE_SHIFT);
4207 		if (!page) {
4208 			errors++;
4209 			if (i == 0)
4210 				primary_failed = true;
4211 			continue;
4212 		}
4213 		/* Page is submitted locked and unlocked once the IO completes */
4214 		wait_on_page_locked(page);
4215 		if (PageError(page)) {
4216 			errors++;
4217 			if (i == 0)
4218 				primary_failed = true;
4219 		}
4220 
4221 		/* Drop our reference */
4222 		put_page(page);
4223 
4224 		/* Drop the reference from the writing run */
4225 		put_page(page);
4226 	}
4227 
4228 	/* log error, force error return */
4229 	if (primary_failed) {
4230 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
4231 			  device->devid);
4232 		return -1;
4233 	}
4234 
4235 	return errors < i ? 0 : -1;
4236 }
4237 
4238 /*
4239  * endio for the write_dev_flush, this will wake anyone waiting
4240  * for the barrier when it is done
4241  */
4242 static void btrfs_end_empty_barrier(struct bio *bio)
4243 {
4244 	bio_uninit(bio);
4245 	complete(bio->bi_private);
4246 }
4247 
4248 /*
4249  * Submit a flush request to the device if it supports it. Error handling is
4250  * done in the waiting counterpart.
4251  */
4252 static void write_dev_flush(struct btrfs_device *device)
4253 {
4254 	struct bio *bio = &device->flush_bio;
4255 
4256 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4257 	/*
4258 	 * When a disk has write caching disabled, we skip submission of a bio
4259 	 * with flush and sync requests before writing the superblock, since
4260 	 * it's not needed. However when the integrity checker is enabled, this
4261 	 * results in reports that there are metadata blocks referred by a
4262 	 * superblock that were not properly flushed. So don't skip the bio
4263 	 * submission only when the integrity checker is enabled for the sake
4264 	 * of simplicity, since this is a debug tool and not meant for use in
4265 	 * non-debug builds.
4266 	 */
4267 	if (!bdev_write_cache(device->bdev))
4268 		return;
4269 #endif
4270 
4271 	bio_init(bio, device->bdev, NULL, 0,
4272 		 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
4273 	bio->bi_end_io = btrfs_end_empty_barrier;
4274 	init_completion(&device->flush_wait);
4275 	bio->bi_private = &device->flush_wait;
4276 
4277 	btrfsic_check_bio(bio);
4278 	submit_bio(bio);
4279 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4280 }
4281 
4282 /*
4283  * If the flush bio has been submitted by write_dev_flush, wait for it.
4284  */
4285 static blk_status_t wait_dev_flush(struct btrfs_device *device)
4286 {
4287 	struct bio *bio = &device->flush_bio;
4288 
4289 	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
4290 		return BLK_STS_OK;
4291 
4292 	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4293 	wait_for_completion_io(&device->flush_wait);
4294 
4295 	return bio->bi_status;
4296 }
4297 
4298 static int check_barrier_error(struct btrfs_fs_info *fs_info)
4299 {
4300 	if (!btrfs_check_rw_degradable(fs_info, NULL))
4301 		return -EIO;
4302 	return 0;
4303 }
4304 
4305 /*
4306  * send an empty flush down to each device in parallel,
4307  * then wait for them
4308  */
4309 static int barrier_all_devices(struct btrfs_fs_info *info)
4310 {
4311 	struct list_head *head;
4312 	struct btrfs_device *dev;
4313 	int errors_wait = 0;
4314 	blk_status_t ret;
4315 
4316 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
4317 	/* send down all the barriers */
4318 	head = &info->fs_devices->devices;
4319 	list_for_each_entry(dev, head, dev_list) {
4320 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4321 			continue;
4322 		if (!dev->bdev)
4323 			continue;
4324 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4325 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4326 			continue;
4327 
4328 		write_dev_flush(dev);
4329 		dev->last_flush_error = BLK_STS_OK;
4330 	}
4331 
4332 	/* wait for all the barriers */
4333 	list_for_each_entry(dev, head, dev_list) {
4334 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4335 			continue;
4336 		if (!dev->bdev) {
4337 			errors_wait++;
4338 			continue;
4339 		}
4340 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4341 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4342 			continue;
4343 
4344 		ret = wait_dev_flush(dev);
4345 		if (ret) {
4346 			dev->last_flush_error = ret;
4347 			btrfs_dev_stat_inc_and_print(dev,
4348 					BTRFS_DEV_STAT_FLUSH_ERRS);
4349 			errors_wait++;
4350 		}
4351 	}
4352 
4353 	if (errors_wait) {
4354 		/*
4355 		 * At some point we need the status of all disks
4356 		 * to arrive at the volume status. So error checking
4357 		 * is being pushed to a separate loop.
4358 		 */
4359 		return check_barrier_error(info);
4360 	}
4361 	return 0;
4362 }
4363 
4364 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4365 {
4366 	int raid_type;
4367 	int min_tolerated = INT_MAX;
4368 
4369 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4370 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4371 		min_tolerated = min_t(int, min_tolerated,
4372 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
4373 				    tolerated_failures);
4374 
4375 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4376 		if (raid_type == BTRFS_RAID_SINGLE)
4377 			continue;
4378 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4379 			continue;
4380 		min_tolerated = min_t(int, min_tolerated,
4381 				    btrfs_raid_array[raid_type].
4382 				    tolerated_failures);
4383 	}
4384 
4385 	if (min_tolerated == INT_MAX) {
4386 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4387 		min_tolerated = 0;
4388 	}
4389 
4390 	return min_tolerated;
4391 }
4392 
4393 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4394 {
4395 	struct list_head *head;
4396 	struct btrfs_device *dev;
4397 	struct btrfs_super_block *sb;
4398 	struct btrfs_dev_item *dev_item;
4399 	int ret;
4400 	int do_barriers;
4401 	int max_errors;
4402 	int total_errors = 0;
4403 	u64 flags;
4404 
4405 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4406 
4407 	/*
4408 	 * max_mirrors == 0 indicates we're from commit_transaction,
4409 	 * not from fsync where the tree roots in fs_info have not
4410 	 * been consistent on disk.
4411 	 */
4412 	if (max_mirrors == 0)
4413 		backup_super_roots(fs_info);
4414 
4415 	sb = fs_info->super_for_commit;
4416 	dev_item = &sb->dev_item;
4417 
4418 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4419 	head = &fs_info->fs_devices->devices;
4420 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4421 
4422 	if (do_barriers) {
4423 		ret = barrier_all_devices(fs_info);
4424 		if (ret) {
4425 			mutex_unlock(
4426 				&fs_info->fs_devices->device_list_mutex);
4427 			btrfs_handle_fs_error(fs_info, ret,
4428 					      "errors while submitting device barriers.");
4429 			return ret;
4430 		}
4431 	}
4432 
4433 	list_for_each_entry(dev, head, dev_list) {
4434 		if (!dev->bdev) {
4435 			total_errors++;
4436 			continue;
4437 		}
4438 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4439 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4440 			continue;
4441 
4442 		btrfs_set_stack_device_generation(dev_item, 0);
4443 		btrfs_set_stack_device_type(dev_item, dev->type);
4444 		btrfs_set_stack_device_id(dev_item, dev->devid);
4445 		btrfs_set_stack_device_total_bytes(dev_item,
4446 						   dev->commit_total_bytes);
4447 		btrfs_set_stack_device_bytes_used(dev_item,
4448 						  dev->commit_bytes_used);
4449 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4450 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4451 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4452 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4453 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4454 		       BTRFS_FSID_SIZE);
4455 
4456 		flags = btrfs_super_flags(sb);
4457 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4458 
4459 		ret = btrfs_validate_write_super(fs_info, sb);
4460 		if (ret < 0) {
4461 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4462 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4463 				"unexpected superblock corruption detected");
4464 			return -EUCLEAN;
4465 		}
4466 
4467 		ret = write_dev_supers(dev, sb, max_mirrors);
4468 		if (ret)
4469 			total_errors++;
4470 	}
4471 	if (total_errors > max_errors) {
4472 		btrfs_err(fs_info, "%d errors while writing supers",
4473 			  total_errors);
4474 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4475 
4476 		/* FUA is masked off if unsupported and can't be the reason */
4477 		btrfs_handle_fs_error(fs_info, -EIO,
4478 				      "%d errors while writing supers",
4479 				      total_errors);
4480 		return -EIO;
4481 	}
4482 
4483 	total_errors = 0;
4484 	list_for_each_entry(dev, head, dev_list) {
4485 		if (!dev->bdev)
4486 			continue;
4487 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4488 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4489 			continue;
4490 
4491 		ret = wait_dev_supers(dev, max_mirrors);
4492 		if (ret)
4493 			total_errors++;
4494 	}
4495 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4496 	if (total_errors > max_errors) {
4497 		btrfs_handle_fs_error(fs_info, -EIO,
4498 				      "%d errors while writing supers",
4499 				      total_errors);
4500 		return -EIO;
4501 	}
4502 	return 0;
4503 }
4504 
4505 /* Drop a fs root from the radix tree and free it. */
4506 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4507 				  struct btrfs_root *root)
4508 {
4509 	bool drop_ref = false;
4510 
4511 	spin_lock(&fs_info->fs_roots_radix_lock);
4512 	radix_tree_delete(&fs_info->fs_roots_radix,
4513 			  (unsigned long)root->root_key.objectid);
4514 	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4515 		drop_ref = true;
4516 	spin_unlock(&fs_info->fs_roots_radix_lock);
4517 
4518 	if (BTRFS_FS_ERROR(fs_info)) {
4519 		ASSERT(root->log_root == NULL);
4520 		if (root->reloc_root) {
4521 			btrfs_put_root(root->reloc_root);
4522 			root->reloc_root = NULL;
4523 		}
4524 	}
4525 
4526 	if (drop_ref)
4527 		btrfs_put_root(root);
4528 }
4529 
4530 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4531 {
4532 	u64 root_objectid = 0;
4533 	struct btrfs_root *gang[8];
4534 	int i = 0;
4535 	int err = 0;
4536 	unsigned int ret = 0;
4537 
4538 	while (1) {
4539 		spin_lock(&fs_info->fs_roots_radix_lock);
4540 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4541 					     (void **)gang, root_objectid,
4542 					     ARRAY_SIZE(gang));
4543 		if (!ret) {
4544 			spin_unlock(&fs_info->fs_roots_radix_lock);
4545 			break;
4546 		}
4547 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
4548 
4549 		for (i = 0; i < ret; i++) {
4550 			/* Avoid to grab roots in dead_roots */
4551 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4552 				gang[i] = NULL;
4553 				continue;
4554 			}
4555 			/* grab all the search result for later use */
4556 			gang[i] = btrfs_grab_root(gang[i]);
4557 		}
4558 		spin_unlock(&fs_info->fs_roots_radix_lock);
4559 
4560 		for (i = 0; i < ret; i++) {
4561 			if (!gang[i])
4562 				continue;
4563 			root_objectid = gang[i]->root_key.objectid;
4564 			err = btrfs_orphan_cleanup(gang[i]);
4565 			if (err)
4566 				break;
4567 			btrfs_put_root(gang[i]);
4568 		}
4569 		root_objectid++;
4570 	}
4571 
4572 	/* release the uncleaned roots due to error */
4573 	for (; i < ret; i++) {
4574 		if (gang[i])
4575 			btrfs_put_root(gang[i]);
4576 	}
4577 	return err;
4578 }
4579 
4580 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4581 {
4582 	struct btrfs_root *root = fs_info->tree_root;
4583 	struct btrfs_trans_handle *trans;
4584 
4585 	mutex_lock(&fs_info->cleaner_mutex);
4586 	btrfs_run_delayed_iputs(fs_info);
4587 	mutex_unlock(&fs_info->cleaner_mutex);
4588 	wake_up_process(fs_info->cleaner_kthread);
4589 
4590 	/* wait until ongoing cleanup work done */
4591 	down_write(&fs_info->cleanup_work_sem);
4592 	up_write(&fs_info->cleanup_work_sem);
4593 
4594 	trans = btrfs_join_transaction(root);
4595 	if (IS_ERR(trans))
4596 		return PTR_ERR(trans);
4597 	return btrfs_commit_transaction(trans);
4598 }
4599 
4600 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4601 {
4602 	struct btrfs_transaction *trans;
4603 	struct btrfs_transaction *tmp;
4604 	bool found = false;
4605 
4606 	if (list_empty(&fs_info->trans_list))
4607 		return;
4608 
4609 	/*
4610 	 * This function is only called at the very end of close_ctree(),
4611 	 * thus no other running transaction, no need to take trans_lock.
4612 	 */
4613 	ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4614 	list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4615 		struct extent_state *cached = NULL;
4616 		u64 dirty_bytes = 0;
4617 		u64 cur = 0;
4618 		u64 found_start;
4619 		u64 found_end;
4620 
4621 		found = true;
4622 		while (!find_first_extent_bit(&trans->dirty_pages, cur,
4623 			&found_start, &found_end, EXTENT_DIRTY, &cached)) {
4624 			dirty_bytes += found_end + 1 - found_start;
4625 			cur = found_end + 1;
4626 		}
4627 		btrfs_warn(fs_info,
4628 	"transaction %llu (with %llu dirty metadata bytes) is not committed",
4629 			   trans->transid, dirty_bytes);
4630 		btrfs_cleanup_one_transaction(trans, fs_info);
4631 
4632 		if (trans == fs_info->running_transaction)
4633 			fs_info->running_transaction = NULL;
4634 		list_del_init(&trans->list);
4635 
4636 		btrfs_put_transaction(trans);
4637 		trace_btrfs_transaction_commit(fs_info);
4638 	}
4639 	ASSERT(!found);
4640 }
4641 
4642 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4643 {
4644 	int ret;
4645 
4646 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4647 
4648 	/*
4649 	 * If we had UNFINISHED_DROPS we could still be processing them, so
4650 	 * clear that bit and wake up relocation so it can stop.
4651 	 * We must do this before stopping the block group reclaim task, because
4652 	 * at btrfs_relocate_block_group() we wait for this bit, and after the
4653 	 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4654 	 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4655 	 * return 1.
4656 	 */
4657 	btrfs_wake_unfinished_drop(fs_info);
4658 
4659 	/*
4660 	 * We may have the reclaim task running and relocating a data block group,
4661 	 * in which case it may create delayed iputs. So stop it before we park
4662 	 * the cleaner kthread otherwise we can get new delayed iputs after
4663 	 * parking the cleaner, and that can make the async reclaim task to hang
4664 	 * if it's waiting for delayed iputs to complete, since the cleaner is
4665 	 * parked and can not run delayed iputs - this will make us hang when
4666 	 * trying to stop the async reclaim task.
4667 	 */
4668 	cancel_work_sync(&fs_info->reclaim_bgs_work);
4669 	/*
4670 	 * We don't want the cleaner to start new transactions, add more delayed
4671 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4672 	 * because that frees the task_struct, and the transaction kthread might
4673 	 * still try to wake up the cleaner.
4674 	 */
4675 	kthread_park(fs_info->cleaner_kthread);
4676 
4677 	/* wait for the qgroup rescan worker to stop */
4678 	btrfs_qgroup_wait_for_completion(fs_info, false);
4679 
4680 	/* wait for the uuid_scan task to finish */
4681 	down(&fs_info->uuid_tree_rescan_sem);
4682 	/* avoid complains from lockdep et al., set sem back to initial state */
4683 	up(&fs_info->uuid_tree_rescan_sem);
4684 
4685 	/* pause restriper - we want to resume on mount */
4686 	btrfs_pause_balance(fs_info);
4687 
4688 	btrfs_dev_replace_suspend_for_unmount(fs_info);
4689 
4690 	btrfs_scrub_cancel(fs_info);
4691 
4692 	/* wait for any defraggers to finish */
4693 	wait_event(fs_info->transaction_wait,
4694 		   (atomic_read(&fs_info->defrag_running) == 0));
4695 
4696 	/* clear out the rbtree of defraggable inodes */
4697 	btrfs_cleanup_defrag_inodes(fs_info);
4698 
4699 	/*
4700 	 * After we parked the cleaner kthread, ordered extents may have
4701 	 * completed and created new delayed iputs. If one of the async reclaim
4702 	 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4703 	 * can hang forever trying to stop it, because if a delayed iput is
4704 	 * added after it ran btrfs_run_delayed_iputs() and before it called
4705 	 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4706 	 * no one else to run iputs.
4707 	 *
4708 	 * So wait for all ongoing ordered extents to complete and then run
4709 	 * delayed iputs. This works because once we reach this point no one
4710 	 * can either create new ordered extents nor create delayed iputs
4711 	 * through some other means.
4712 	 *
4713 	 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4714 	 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4715 	 * but the delayed iput for the respective inode is made only when doing
4716 	 * the final btrfs_put_ordered_extent() (which must happen at
4717 	 * btrfs_finish_ordered_io() when we are unmounting).
4718 	 */
4719 	btrfs_flush_workqueue(fs_info->endio_write_workers);
4720 	/* Ordered extents for free space inodes. */
4721 	btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4722 	btrfs_run_delayed_iputs(fs_info);
4723 
4724 	cancel_work_sync(&fs_info->async_reclaim_work);
4725 	cancel_work_sync(&fs_info->async_data_reclaim_work);
4726 	cancel_work_sync(&fs_info->preempt_reclaim_work);
4727 
4728 	/* Cancel or finish ongoing discard work */
4729 	btrfs_discard_cleanup(fs_info);
4730 
4731 	if (!sb_rdonly(fs_info->sb)) {
4732 		/*
4733 		 * The cleaner kthread is stopped, so do one final pass over
4734 		 * unused block groups.
4735 		 */
4736 		btrfs_delete_unused_bgs(fs_info);
4737 
4738 		/*
4739 		 * There might be existing delayed inode workers still running
4740 		 * and holding an empty delayed inode item. We must wait for
4741 		 * them to complete first because they can create a transaction.
4742 		 * This happens when someone calls btrfs_balance_delayed_items()
4743 		 * and then a transaction commit runs the same delayed nodes
4744 		 * before any delayed worker has done something with the nodes.
4745 		 * We must wait for any worker here and not at transaction
4746 		 * commit time since that could cause a deadlock.
4747 		 * This is a very rare case.
4748 		 */
4749 		btrfs_flush_workqueue(fs_info->delayed_workers);
4750 
4751 		ret = btrfs_commit_super(fs_info);
4752 		if (ret)
4753 			btrfs_err(fs_info, "commit super ret %d", ret);
4754 	}
4755 
4756 	if (BTRFS_FS_ERROR(fs_info))
4757 		btrfs_error_commit_super(fs_info);
4758 
4759 	kthread_stop(fs_info->transaction_kthread);
4760 	kthread_stop(fs_info->cleaner_kthread);
4761 
4762 	ASSERT(list_empty(&fs_info->delayed_iputs));
4763 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4764 
4765 	if (btrfs_check_quota_leak(fs_info)) {
4766 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4767 		btrfs_err(fs_info, "qgroup reserved space leaked");
4768 	}
4769 
4770 	btrfs_free_qgroup_config(fs_info);
4771 	ASSERT(list_empty(&fs_info->delalloc_roots));
4772 
4773 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4774 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4775 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4776 	}
4777 
4778 	if (percpu_counter_sum(&fs_info->ordered_bytes))
4779 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4780 			   percpu_counter_sum(&fs_info->ordered_bytes));
4781 
4782 	btrfs_sysfs_remove_mounted(fs_info);
4783 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4784 
4785 	btrfs_put_block_group_cache(fs_info);
4786 
4787 	/*
4788 	 * we must make sure there is not any read request to
4789 	 * submit after we stopping all workers.
4790 	 */
4791 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4792 	btrfs_stop_all_workers(fs_info);
4793 
4794 	/* We shouldn't have any transaction open at this point */
4795 	warn_about_uncommitted_trans(fs_info);
4796 
4797 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4798 	free_root_pointers(fs_info, true);
4799 	btrfs_free_fs_roots(fs_info);
4800 
4801 	/*
4802 	 * We must free the block groups after dropping the fs_roots as we could
4803 	 * have had an IO error and have left over tree log blocks that aren't
4804 	 * cleaned up until the fs roots are freed.  This makes the block group
4805 	 * accounting appear to be wrong because there's pending reserved bytes,
4806 	 * so make sure we do the block group cleanup afterwards.
4807 	 */
4808 	btrfs_free_block_groups(fs_info);
4809 
4810 	iput(fs_info->btree_inode);
4811 
4812 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4813 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4814 		btrfsic_unmount(fs_info->fs_devices);
4815 #endif
4816 
4817 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4818 	btrfs_close_devices(fs_info->fs_devices);
4819 }
4820 
4821 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4822 			  int atomic)
4823 {
4824 	int ret;
4825 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4826 
4827 	ret = extent_buffer_uptodate(buf);
4828 	if (!ret)
4829 		return ret;
4830 
4831 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4832 				    parent_transid, atomic);
4833 	if (ret == -EAGAIN)
4834 		return ret;
4835 	return !ret;
4836 }
4837 
4838 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4839 {
4840 	struct btrfs_fs_info *fs_info = buf->fs_info;
4841 	u64 transid = btrfs_header_generation(buf);
4842 	int was_dirty;
4843 
4844 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4845 	/*
4846 	 * This is a fast path so only do this check if we have sanity tests
4847 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4848 	 * outside of the sanity tests.
4849 	 */
4850 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4851 		return;
4852 #endif
4853 	btrfs_assert_tree_write_locked(buf);
4854 	if (transid != fs_info->generation)
4855 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4856 			buf->start, transid, fs_info->generation);
4857 	was_dirty = set_extent_buffer_dirty(buf);
4858 	if (!was_dirty)
4859 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4860 					 buf->len,
4861 					 fs_info->dirty_metadata_batch);
4862 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4863 	/*
4864 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4865 	 * but item data not updated.
4866 	 * So here we should only check item pointers, not item data.
4867 	 */
4868 	if (btrfs_header_level(buf) == 0 &&
4869 	    btrfs_check_leaf_relaxed(buf)) {
4870 		btrfs_print_leaf(buf);
4871 		ASSERT(0);
4872 	}
4873 #endif
4874 }
4875 
4876 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4877 					int flush_delayed)
4878 {
4879 	/*
4880 	 * looks as though older kernels can get into trouble with
4881 	 * this code, they end up stuck in balance_dirty_pages forever
4882 	 */
4883 	int ret;
4884 
4885 	if (current->flags & PF_MEMALLOC)
4886 		return;
4887 
4888 	if (flush_delayed)
4889 		btrfs_balance_delayed_items(fs_info);
4890 
4891 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4892 				     BTRFS_DIRTY_METADATA_THRESH,
4893 				     fs_info->dirty_metadata_batch);
4894 	if (ret > 0) {
4895 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4896 	}
4897 }
4898 
4899 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4900 {
4901 	__btrfs_btree_balance_dirty(fs_info, 1);
4902 }
4903 
4904 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4905 {
4906 	__btrfs_btree_balance_dirty(fs_info, 0);
4907 }
4908 
4909 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4910 {
4911 	/* cleanup FS via transaction */
4912 	btrfs_cleanup_transaction(fs_info);
4913 
4914 	mutex_lock(&fs_info->cleaner_mutex);
4915 	btrfs_run_delayed_iputs(fs_info);
4916 	mutex_unlock(&fs_info->cleaner_mutex);
4917 
4918 	down_write(&fs_info->cleanup_work_sem);
4919 	up_write(&fs_info->cleanup_work_sem);
4920 }
4921 
4922 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4923 {
4924 	struct btrfs_root *gang[8];
4925 	u64 root_objectid = 0;
4926 	int ret;
4927 
4928 	spin_lock(&fs_info->fs_roots_radix_lock);
4929 	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4930 					     (void **)gang, root_objectid,
4931 					     ARRAY_SIZE(gang))) != 0) {
4932 		int i;
4933 
4934 		for (i = 0; i < ret; i++)
4935 			gang[i] = btrfs_grab_root(gang[i]);
4936 		spin_unlock(&fs_info->fs_roots_radix_lock);
4937 
4938 		for (i = 0; i < ret; i++) {
4939 			if (!gang[i])
4940 				continue;
4941 			root_objectid = gang[i]->root_key.objectid;
4942 			btrfs_free_log(NULL, gang[i]);
4943 			btrfs_put_root(gang[i]);
4944 		}
4945 		root_objectid++;
4946 		spin_lock(&fs_info->fs_roots_radix_lock);
4947 	}
4948 	spin_unlock(&fs_info->fs_roots_radix_lock);
4949 	btrfs_free_log_root_tree(NULL, fs_info);
4950 }
4951 
4952 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4953 {
4954 	struct btrfs_ordered_extent *ordered;
4955 
4956 	spin_lock(&root->ordered_extent_lock);
4957 	/*
4958 	 * This will just short circuit the ordered completion stuff which will
4959 	 * make sure the ordered extent gets properly cleaned up.
4960 	 */
4961 	list_for_each_entry(ordered, &root->ordered_extents,
4962 			    root_extent_list)
4963 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4964 	spin_unlock(&root->ordered_extent_lock);
4965 }
4966 
4967 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4968 {
4969 	struct btrfs_root *root;
4970 	struct list_head splice;
4971 
4972 	INIT_LIST_HEAD(&splice);
4973 
4974 	spin_lock(&fs_info->ordered_root_lock);
4975 	list_splice_init(&fs_info->ordered_roots, &splice);
4976 	while (!list_empty(&splice)) {
4977 		root = list_first_entry(&splice, struct btrfs_root,
4978 					ordered_root);
4979 		list_move_tail(&root->ordered_root,
4980 			       &fs_info->ordered_roots);
4981 
4982 		spin_unlock(&fs_info->ordered_root_lock);
4983 		btrfs_destroy_ordered_extents(root);
4984 
4985 		cond_resched();
4986 		spin_lock(&fs_info->ordered_root_lock);
4987 	}
4988 	spin_unlock(&fs_info->ordered_root_lock);
4989 
4990 	/*
4991 	 * We need this here because if we've been flipped read-only we won't
4992 	 * get sync() from the umount, so we need to make sure any ordered
4993 	 * extents that haven't had their dirty pages IO start writeout yet
4994 	 * actually get run and error out properly.
4995 	 */
4996 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4997 }
4998 
4999 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
5000 				      struct btrfs_fs_info *fs_info)
5001 {
5002 	struct rb_node *node;
5003 	struct btrfs_delayed_ref_root *delayed_refs;
5004 	struct btrfs_delayed_ref_node *ref;
5005 	int ret = 0;
5006 
5007 	delayed_refs = &trans->delayed_refs;
5008 
5009 	spin_lock(&delayed_refs->lock);
5010 	if (atomic_read(&delayed_refs->num_entries) == 0) {
5011 		spin_unlock(&delayed_refs->lock);
5012 		btrfs_debug(fs_info, "delayed_refs has NO entry");
5013 		return ret;
5014 	}
5015 
5016 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
5017 		struct btrfs_delayed_ref_head *head;
5018 		struct rb_node *n;
5019 		bool pin_bytes = false;
5020 
5021 		head = rb_entry(node, struct btrfs_delayed_ref_head,
5022 				href_node);
5023 		if (btrfs_delayed_ref_lock(delayed_refs, head))
5024 			continue;
5025 
5026 		spin_lock(&head->lock);
5027 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
5028 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
5029 				       ref_node);
5030 			ref->in_tree = 0;
5031 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
5032 			RB_CLEAR_NODE(&ref->ref_node);
5033 			if (!list_empty(&ref->add_list))
5034 				list_del(&ref->add_list);
5035 			atomic_dec(&delayed_refs->num_entries);
5036 			btrfs_put_delayed_ref(ref);
5037 		}
5038 		if (head->must_insert_reserved)
5039 			pin_bytes = true;
5040 		btrfs_free_delayed_extent_op(head->extent_op);
5041 		btrfs_delete_ref_head(delayed_refs, head);
5042 		spin_unlock(&head->lock);
5043 		spin_unlock(&delayed_refs->lock);
5044 		mutex_unlock(&head->mutex);
5045 
5046 		if (pin_bytes) {
5047 			struct btrfs_block_group *cache;
5048 
5049 			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
5050 			BUG_ON(!cache);
5051 
5052 			spin_lock(&cache->space_info->lock);
5053 			spin_lock(&cache->lock);
5054 			cache->pinned += head->num_bytes;
5055 			btrfs_space_info_update_bytes_pinned(fs_info,
5056 				cache->space_info, head->num_bytes);
5057 			cache->reserved -= head->num_bytes;
5058 			cache->space_info->bytes_reserved -= head->num_bytes;
5059 			spin_unlock(&cache->lock);
5060 			spin_unlock(&cache->space_info->lock);
5061 
5062 			btrfs_put_block_group(cache);
5063 
5064 			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
5065 				head->bytenr + head->num_bytes - 1);
5066 		}
5067 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
5068 		btrfs_put_delayed_ref_head(head);
5069 		cond_resched();
5070 		spin_lock(&delayed_refs->lock);
5071 	}
5072 	btrfs_qgroup_destroy_extent_records(trans);
5073 
5074 	spin_unlock(&delayed_refs->lock);
5075 
5076 	return ret;
5077 }
5078 
5079 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
5080 {
5081 	struct btrfs_inode *btrfs_inode;
5082 	struct list_head splice;
5083 
5084 	INIT_LIST_HEAD(&splice);
5085 
5086 	spin_lock(&root->delalloc_lock);
5087 	list_splice_init(&root->delalloc_inodes, &splice);
5088 
5089 	while (!list_empty(&splice)) {
5090 		struct inode *inode = NULL;
5091 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
5092 					       delalloc_inodes);
5093 		__btrfs_del_delalloc_inode(root, btrfs_inode);
5094 		spin_unlock(&root->delalloc_lock);
5095 
5096 		/*
5097 		 * Make sure we get a live inode and that it'll not disappear
5098 		 * meanwhile.
5099 		 */
5100 		inode = igrab(&btrfs_inode->vfs_inode);
5101 		if (inode) {
5102 			invalidate_inode_pages2(inode->i_mapping);
5103 			iput(inode);
5104 		}
5105 		spin_lock(&root->delalloc_lock);
5106 	}
5107 	spin_unlock(&root->delalloc_lock);
5108 }
5109 
5110 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
5111 {
5112 	struct btrfs_root *root;
5113 	struct list_head splice;
5114 
5115 	INIT_LIST_HEAD(&splice);
5116 
5117 	spin_lock(&fs_info->delalloc_root_lock);
5118 	list_splice_init(&fs_info->delalloc_roots, &splice);
5119 	while (!list_empty(&splice)) {
5120 		root = list_first_entry(&splice, struct btrfs_root,
5121 					 delalloc_root);
5122 		root = btrfs_grab_root(root);
5123 		BUG_ON(!root);
5124 		spin_unlock(&fs_info->delalloc_root_lock);
5125 
5126 		btrfs_destroy_delalloc_inodes(root);
5127 		btrfs_put_root(root);
5128 
5129 		spin_lock(&fs_info->delalloc_root_lock);
5130 	}
5131 	spin_unlock(&fs_info->delalloc_root_lock);
5132 }
5133 
5134 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
5135 					struct extent_io_tree *dirty_pages,
5136 					int mark)
5137 {
5138 	int ret;
5139 	struct extent_buffer *eb;
5140 	u64 start = 0;
5141 	u64 end;
5142 
5143 	while (1) {
5144 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
5145 					    mark, NULL);
5146 		if (ret)
5147 			break;
5148 
5149 		clear_extent_bits(dirty_pages, start, end, mark);
5150 		while (start <= end) {
5151 			eb = find_extent_buffer(fs_info, start);
5152 			start += fs_info->nodesize;
5153 			if (!eb)
5154 				continue;
5155 			wait_on_extent_buffer_writeback(eb);
5156 
5157 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
5158 					       &eb->bflags))
5159 				clear_extent_buffer_dirty(eb);
5160 			free_extent_buffer_stale(eb);
5161 		}
5162 	}
5163 
5164 	return ret;
5165 }
5166 
5167 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
5168 				       struct extent_io_tree *unpin)
5169 {
5170 	u64 start;
5171 	u64 end;
5172 	int ret;
5173 
5174 	while (1) {
5175 		struct extent_state *cached_state = NULL;
5176 
5177 		/*
5178 		 * The btrfs_finish_extent_commit() may get the same range as
5179 		 * ours between find_first_extent_bit and clear_extent_dirty.
5180 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
5181 		 * the same extent range.
5182 		 */
5183 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
5184 		ret = find_first_extent_bit(unpin, 0, &start, &end,
5185 					    EXTENT_DIRTY, &cached_state);
5186 		if (ret) {
5187 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5188 			break;
5189 		}
5190 
5191 		clear_extent_dirty(unpin, start, end, &cached_state);
5192 		free_extent_state(cached_state);
5193 		btrfs_error_unpin_extent_range(fs_info, start, end);
5194 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5195 		cond_resched();
5196 	}
5197 
5198 	return 0;
5199 }
5200 
5201 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
5202 {
5203 	struct inode *inode;
5204 
5205 	inode = cache->io_ctl.inode;
5206 	if (inode) {
5207 		invalidate_inode_pages2(inode->i_mapping);
5208 		BTRFS_I(inode)->generation = 0;
5209 		cache->io_ctl.inode = NULL;
5210 		iput(inode);
5211 	}
5212 	ASSERT(cache->io_ctl.pages == NULL);
5213 	btrfs_put_block_group(cache);
5214 }
5215 
5216 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
5217 			     struct btrfs_fs_info *fs_info)
5218 {
5219 	struct btrfs_block_group *cache;
5220 
5221 	spin_lock(&cur_trans->dirty_bgs_lock);
5222 	while (!list_empty(&cur_trans->dirty_bgs)) {
5223 		cache = list_first_entry(&cur_trans->dirty_bgs,
5224 					 struct btrfs_block_group,
5225 					 dirty_list);
5226 
5227 		if (!list_empty(&cache->io_list)) {
5228 			spin_unlock(&cur_trans->dirty_bgs_lock);
5229 			list_del_init(&cache->io_list);
5230 			btrfs_cleanup_bg_io(cache);
5231 			spin_lock(&cur_trans->dirty_bgs_lock);
5232 		}
5233 
5234 		list_del_init(&cache->dirty_list);
5235 		spin_lock(&cache->lock);
5236 		cache->disk_cache_state = BTRFS_DC_ERROR;
5237 		spin_unlock(&cache->lock);
5238 
5239 		spin_unlock(&cur_trans->dirty_bgs_lock);
5240 		btrfs_put_block_group(cache);
5241 		btrfs_delayed_refs_rsv_release(fs_info, 1);
5242 		spin_lock(&cur_trans->dirty_bgs_lock);
5243 	}
5244 	spin_unlock(&cur_trans->dirty_bgs_lock);
5245 
5246 	/*
5247 	 * Refer to the definition of io_bgs member for details why it's safe
5248 	 * to use it without any locking
5249 	 */
5250 	while (!list_empty(&cur_trans->io_bgs)) {
5251 		cache = list_first_entry(&cur_trans->io_bgs,
5252 					 struct btrfs_block_group,
5253 					 io_list);
5254 
5255 		list_del_init(&cache->io_list);
5256 		spin_lock(&cache->lock);
5257 		cache->disk_cache_state = BTRFS_DC_ERROR;
5258 		spin_unlock(&cache->lock);
5259 		btrfs_cleanup_bg_io(cache);
5260 	}
5261 }
5262 
5263 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
5264 				   struct btrfs_fs_info *fs_info)
5265 {
5266 	struct btrfs_device *dev, *tmp;
5267 
5268 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
5269 	ASSERT(list_empty(&cur_trans->dirty_bgs));
5270 	ASSERT(list_empty(&cur_trans->io_bgs));
5271 
5272 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
5273 				 post_commit_list) {
5274 		list_del_init(&dev->post_commit_list);
5275 	}
5276 
5277 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
5278 
5279 	cur_trans->state = TRANS_STATE_COMMIT_START;
5280 	wake_up(&fs_info->transaction_blocked_wait);
5281 
5282 	cur_trans->state = TRANS_STATE_UNBLOCKED;
5283 	wake_up(&fs_info->transaction_wait);
5284 
5285 	btrfs_destroy_delayed_inodes(fs_info);
5286 
5287 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
5288 				     EXTENT_DIRTY);
5289 	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
5290 
5291 	btrfs_free_redirty_list(cur_trans);
5292 
5293 	cur_trans->state =TRANS_STATE_COMPLETED;
5294 	wake_up(&cur_trans->commit_wait);
5295 }
5296 
5297 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
5298 {
5299 	struct btrfs_transaction *t;
5300 
5301 	mutex_lock(&fs_info->transaction_kthread_mutex);
5302 
5303 	spin_lock(&fs_info->trans_lock);
5304 	while (!list_empty(&fs_info->trans_list)) {
5305 		t = list_first_entry(&fs_info->trans_list,
5306 				     struct btrfs_transaction, list);
5307 		if (t->state >= TRANS_STATE_COMMIT_START) {
5308 			refcount_inc(&t->use_count);
5309 			spin_unlock(&fs_info->trans_lock);
5310 			btrfs_wait_for_commit(fs_info, t->transid);
5311 			btrfs_put_transaction(t);
5312 			spin_lock(&fs_info->trans_lock);
5313 			continue;
5314 		}
5315 		if (t == fs_info->running_transaction) {
5316 			t->state = TRANS_STATE_COMMIT_DOING;
5317 			spin_unlock(&fs_info->trans_lock);
5318 			/*
5319 			 * We wait for 0 num_writers since we don't hold a trans
5320 			 * handle open currently for this transaction.
5321 			 */
5322 			wait_event(t->writer_wait,
5323 				   atomic_read(&t->num_writers) == 0);
5324 		} else {
5325 			spin_unlock(&fs_info->trans_lock);
5326 		}
5327 		btrfs_cleanup_one_transaction(t, fs_info);
5328 
5329 		spin_lock(&fs_info->trans_lock);
5330 		if (t == fs_info->running_transaction)
5331 			fs_info->running_transaction = NULL;
5332 		list_del_init(&t->list);
5333 		spin_unlock(&fs_info->trans_lock);
5334 
5335 		btrfs_put_transaction(t);
5336 		trace_btrfs_transaction_commit(fs_info);
5337 		spin_lock(&fs_info->trans_lock);
5338 	}
5339 	spin_unlock(&fs_info->trans_lock);
5340 	btrfs_destroy_all_ordered_extents(fs_info);
5341 	btrfs_destroy_delayed_inodes(fs_info);
5342 	btrfs_assert_delayed_root_empty(fs_info);
5343 	btrfs_destroy_all_delalloc_inodes(fs_info);
5344 	btrfs_drop_all_logs(fs_info);
5345 	mutex_unlock(&fs_info->transaction_kthread_mutex);
5346 
5347 	return 0;
5348 }
5349 
5350 int btrfs_init_root_free_objectid(struct btrfs_root *root)
5351 {
5352 	struct btrfs_path *path;
5353 	int ret;
5354 	struct extent_buffer *l;
5355 	struct btrfs_key search_key;
5356 	struct btrfs_key found_key;
5357 	int slot;
5358 
5359 	path = btrfs_alloc_path();
5360 	if (!path)
5361 		return -ENOMEM;
5362 
5363 	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5364 	search_key.type = -1;
5365 	search_key.offset = (u64)-1;
5366 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5367 	if (ret < 0)
5368 		goto error;
5369 	BUG_ON(ret == 0); /* Corruption */
5370 	if (path->slots[0] > 0) {
5371 		slot = path->slots[0] - 1;
5372 		l = path->nodes[0];
5373 		btrfs_item_key_to_cpu(l, &found_key, slot);
5374 		root->free_objectid = max_t(u64, found_key.objectid + 1,
5375 					    BTRFS_FIRST_FREE_OBJECTID);
5376 	} else {
5377 		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
5378 	}
5379 	ret = 0;
5380 error:
5381 	btrfs_free_path(path);
5382 	return ret;
5383 }
5384 
5385 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
5386 {
5387 	int ret;
5388 	mutex_lock(&root->objectid_mutex);
5389 
5390 	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
5391 		btrfs_warn(root->fs_info,
5392 			   "the objectid of root %llu reaches its highest value",
5393 			   root->root_key.objectid);
5394 		ret = -ENOSPC;
5395 		goto out;
5396 	}
5397 
5398 	*objectid = root->free_objectid++;
5399 	ret = 0;
5400 out:
5401 	mutex_unlock(&root->objectid_mutex);
5402 	return ret;
5403 }
5404