1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <asm/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "bio.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "check-integrity.h" 33 #include "rcu-string.h" 34 #include "dev-replace.h" 35 #include "raid56.h" 36 #include "sysfs.h" 37 #include "qgroup.h" 38 #include "compression.h" 39 #include "tree-checker.h" 40 #include "ref-verify.h" 41 #include "block-group.h" 42 #include "discard.h" 43 #include "space-info.h" 44 #include "zoned.h" 45 #include "subpage.h" 46 #include "fs.h" 47 #include "accessors.h" 48 #include "extent-tree.h" 49 #include "root-tree.h" 50 #include "defrag.h" 51 #include "uuid-tree.h" 52 #include "relocation.h" 53 #include "scrub.h" 54 #include "super.h" 55 56 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 57 BTRFS_HEADER_FLAG_RELOC |\ 58 BTRFS_SUPER_FLAG_ERROR |\ 59 BTRFS_SUPER_FLAG_SEEDING |\ 60 BTRFS_SUPER_FLAG_METADUMP |\ 61 BTRFS_SUPER_FLAG_METADUMP_V2) 62 63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 65 struct btrfs_fs_info *fs_info); 66 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 67 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 68 struct extent_io_tree *dirty_pages, 69 int mark); 70 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 71 struct extent_io_tree *pinned_extents); 72 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 73 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 74 75 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 76 { 77 if (fs_info->csum_shash) 78 crypto_free_shash(fs_info->csum_shash); 79 } 80 81 /* 82 * Compute the csum of a btree block and store the result to provided buffer. 83 */ 84 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 85 { 86 struct btrfs_fs_info *fs_info = buf->fs_info; 87 const int num_pages = num_extent_pages(buf); 88 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 89 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 90 char *kaddr; 91 int i; 92 93 shash->tfm = fs_info->csum_shash; 94 crypto_shash_init(shash); 95 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start); 96 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 97 first_page_part - BTRFS_CSUM_SIZE); 98 99 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) { 100 kaddr = page_address(buf->pages[i]); 101 crypto_shash_update(shash, kaddr, PAGE_SIZE); 102 } 103 memset(result, 0, BTRFS_CSUM_SIZE); 104 crypto_shash_final(shash, result); 105 } 106 107 /* 108 * we can't consider a given block up to date unless the transid of the 109 * block matches the transid in the parent node's pointer. This is how we 110 * detect blocks that either didn't get written at all or got written 111 * in the wrong place. 112 */ 113 static int verify_parent_transid(struct extent_io_tree *io_tree, 114 struct extent_buffer *eb, u64 parent_transid, 115 int atomic) 116 { 117 struct extent_state *cached_state = NULL; 118 int ret; 119 120 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 121 return 0; 122 123 if (atomic) 124 return -EAGAIN; 125 126 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, &cached_state); 127 if (extent_buffer_uptodate(eb) && 128 btrfs_header_generation(eb) == parent_transid) { 129 ret = 0; 130 goto out; 131 } 132 btrfs_err_rl(eb->fs_info, 133 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 134 eb->start, eb->read_mirror, 135 parent_transid, btrfs_header_generation(eb)); 136 ret = 1; 137 clear_extent_buffer_uptodate(eb); 138 out: 139 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, 140 &cached_state); 141 return ret; 142 } 143 144 static bool btrfs_supported_super_csum(u16 csum_type) 145 { 146 switch (csum_type) { 147 case BTRFS_CSUM_TYPE_CRC32: 148 case BTRFS_CSUM_TYPE_XXHASH: 149 case BTRFS_CSUM_TYPE_SHA256: 150 case BTRFS_CSUM_TYPE_BLAKE2: 151 return true; 152 default: 153 return false; 154 } 155 } 156 157 /* 158 * Return 0 if the superblock checksum type matches the checksum value of that 159 * algorithm. Pass the raw disk superblock data. 160 */ 161 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 162 const struct btrfs_super_block *disk_sb) 163 { 164 char result[BTRFS_CSUM_SIZE]; 165 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 166 167 shash->tfm = fs_info->csum_shash; 168 169 /* 170 * The super_block structure does not span the whole 171 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 172 * filled with zeros and is included in the checksum. 173 */ 174 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE, 175 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 176 177 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 178 return 1; 179 180 return 0; 181 } 182 183 int btrfs_verify_level_key(struct extent_buffer *eb, int level, 184 struct btrfs_key *first_key, u64 parent_transid) 185 { 186 struct btrfs_fs_info *fs_info = eb->fs_info; 187 int found_level; 188 struct btrfs_key found_key; 189 int ret; 190 191 found_level = btrfs_header_level(eb); 192 if (found_level != level) { 193 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 194 KERN_ERR "BTRFS: tree level check failed\n"); 195 btrfs_err(fs_info, 196 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 197 eb->start, level, found_level); 198 return -EIO; 199 } 200 201 if (!first_key) 202 return 0; 203 204 /* 205 * For live tree block (new tree blocks in current transaction), 206 * we need proper lock context to avoid race, which is impossible here. 207 * So we only checks tree blocks which is read from disk, whose 208 * generation <= fs_info->last_trans_committed. 209 */ 210 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 211 return 0; 212 213 /* We have @first_key, so this @eb must have at least one item */ 214 if (btrfs_header_nritems(eb) == 0) { 215 btrfs_err(fs_info, 216 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 217 eb->start); 218 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 219 return -EUCLEAN; 220 } 221 222 if (found_level) 223 btrfs_node_key_to_cpu(eb, &found_key, 0); 224 else 225 btrfs_item_key_to_cpu(eb, &found_key, 0); 226 ret = btrfs_comp_cpu_keys(first_key, &found_key); 227 228 if (ret) { 229 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 230 KERN_ERR "BTRFS: tree first key check failed\n"); 231 btrfs_err(fs_info, 232 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 233 eb->start, parent_transid, first_key->objectid, 234 first_key->type, first_key->offset, 235 found_key.objectid, found_key.type, 236 found_key.offset); 237 } 238 return ret; 239 } 240 241 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, 242 int mirror_num) 243 { 244 struct btrfs_fs_info *fs_info = eb->fs_info; 245 int i, num_pages = num_extent_pages(eb); 246 int ret = 0; 247 248 if (sb_rdonly(fs_info->sb)) 249 return -EROFS; 250 251 for (i = 0; i < num_pages; i++) { 252 struct page *p = eb->pages[i]; 253 u64 start = max_t(u64, eb->start, page_offset(p)); 254 u64 end = min_t(u64, eb->start + eb->len, page_offset(p) + PAGE_SIZE); 255 u32 len = end - start; 256 257 ret = btrfs_repair_io_failure(fs_info, 0, start, len, 258 start, p, offset_in_page(start), mirror_num); 259 if (ret) 260 break; 261 } 262 263 return ret; 264 } 265 266 /* 267 * helper to read a given tree block, doing retries as required when 268 * the checksums don't match and we have alternate mirrors to try. 269 * 270 * @check: expected tree parentness check, see the comments of the 271 * structure for details. 272 */ 273 int btrfs_read_extent_buffer(struct extent_buffer *eb, 274 struct btrfs_tree_parent_check *check) 275 { 276 struct btrfs_fs_info *fs_info = eb->fs_info; 277 int failed = 0; 278 int ret; 279 int num_copies = 0; 280 int mirror_num = 0; 281 int failed_mirror = 0; 282 283 ASSERT(check); 284 285 while (1) { 286 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 287 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check); 288 if (!ret) 289 break; 290 291 num_copies = btrfs_num_copies(fs_info, 292 eb->start, eb->len); 293 if (num_copies == 1) 294 break; 295 296 if (!failed_mirror) { 297 failed = 1; 298 failed_mirror = eb->read_mirror; 299 } 300 301 mirror_num++; 302 if (mirror_num == failed_mirror) 303 mirror_num++; 304 305 if (mirror_num > num_copies) 306 break; 307 } 308 309 if (failed && !ret && failed_mirror) 310 btrfs_repair_eb_io_failure(eb, failed_mirror); 311 312 return ret; 313 } 314 315 static int csum_one_extent_buffer(struct extent_buffer *eb) 316 { 317 struct btrfs_fs_info *fs_info = eb->fs_info; 318 u8 result[BTRFS_CSUM_SIZE]; 319 int ret; 320 321 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 322 offsetof(struct btrfs_header, fsid), 323 BTRFS_FSID_SIZE) == 0); 324 csum_tree_block(eb, result); 325 326 if (btrfs_header_level(eb)) 327 ret = btrfs_check_node(eb); 328 else 329 ret = btrfs_check_leaf_full(eb); 330 331 if (ret < 0) 332 goto error; 333 334 /* 335 * Also check the generation, the eb reached here must be newer than 336 * last committed. Or something seriously wrong happened. 337 */ 338 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) { 339 ret = -EUCLEAN; 340 btrfs_err(fs_info, 341 "block=%llu bad generation, have %llu expect > %llu", 342 eb->start, btrfs_header_generation(eb), 343 fs_info->last_trans_committed); 344 goto error; 345 } 346 write_extent_buffer(eb, result, 0, fs_info->csum_size); 347 348 return 0; 349 350 error: 351 btrfs_print_tree(eb, 0); 352 btrfs_err(fs_info, "block=%llu write time tree block corruption detected", 353 eb->start); 354 /* 355 * Be noisy if this is an extent buffer from a log tree. We don't abort 356 * a transaction in case there's a bad log tree extent buffer, we just 357 * fallback to a transaction commit. Still we want to know when there is 358 * a bad log tree extent buffer, as that may signal a bug somewhere. 359 */ 360 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) || 361 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID); 362 return ret; 363 } 364 365 /* Checksum all dirty extent buffers in one bio_vec */ 366 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info, 367 struct bio_vec *bvec) 368 { 369 struct page *page = bvec->bv_page; 370 u64 bvec_start = page_offset(page) + bvec->bv_offset; 371 u64 cur; 372 int ret = 0; 373 374 for (cur = bvec_start; cur < bvec_start + bvec->bv_len; 375 cur += fs_info->nodesize) { 376 struct extent_buffer *eb; 377 bool uptodate; 378 379 eb = find_extent_buffer(fs_info, cur); 380 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur, 381 fs_info->nodesize); 382 383 /* A dirty eb shouldn't disappear from buffer_radix */ 384 if (WARN_ON(!eb)) 385 return -EUCLEAN; 386 387 if (WARN_ON(cur != btrfs_header_bytenr(eb))) { 388 free_extent_buffer(eb); 389 return -EUCLEAN; 390 } 391 if (WARN_ON(!uptodate)) { 392 free_extent_buffer(eb); 393 return -EUCLEAN; 394 } 395 396 ret = csum_one_extent_buffer(eb); 397 free_extent_buffer(eb); 398 if (ret < 0) 399 return ret; 400 } 401 return ret; 402 } 403 404 /* 405 * Checksum a dirty tree block before IO. This has extra checks to make sure 406 * we only fill in the checksum field in the first page of a multi-page block. 407 * For subpage extent buffers we need bvec to also read the offset in the page. 408 */ 409 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec) 410 { 411 struct page *page = bvec->bv_page; 412 u64 start = page_offset(page); 413 u64 found_start; 414 struct extent_buffer *eb; 415 416 if (fs_info->nodesize < PAGE_SIZE) 417 return csum_dirty_subpage_buffers(fs_info, bvec); 418 419 eb = (struct extent_buffer *)page->private; 420 if (page != eb->pages[0]) 421 return 0; 422 423 found_start = btrfs_header_bytenr(eb); 424 425 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) { 426 WARN_ON(found_start != 0); 427 return 0; 428 } 429 430 /* 431 * Please do not consolidate these warnings into a single if. 432 * It is useful to know what went wrong. 433 */ 434 if (WARN_ON(found_start != start)) 435 return -EUCLEAN; 436 if (WARN_ON(!PageUptodate(page))) 437 return -EUCLEAN; 438 439 return csum_one_extent_buffer(eb); 440 } 441 442 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio) 443 { 444 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info; 445 struct bvec_iter iter; 446 struct bio_vec bv; 447 int ret = 0; 448 449 bio_for_each_segment(bv, &bbio->bio, iter) { 450 ret = csum_dirty_buffer(fs_info, &bv); 451 if (ret) 452 break; 453 } 454 455 return errno_to_blk_status(ret); 456 } 457 458 static int check_tree_block_fsid(struct extent_buffer *eb) 459 { 460 struct btrfs_fs_info *fs_info = eb->fs_info; 461 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 462 u8 fsid[BTRFS_FSID_SIZE]; 463 u8 *metadata_uuid; 464 465 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 466 BTRFS_FSID_SIZE); 467 /* 468 * Checking the incompat flag is only valid for the current fs. For 469 * seed devices it's forbidden to have their uuid changed so reading 470 * ->fsid in this case is fine 471 */ 472 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 473 metadata_uuid = fs_devices->metadata_uuid; 474 else 475 metadata_uuid = fs_devices->fsid; 476 477 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) 478 return 0; 479 480 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 481 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 482 return 0; 483 484 return 1; 485 } 486 487 /* Do basic extent buffer checks at read time */ 488 static int validate_extent_buffer(struct extent_buffer *eb, 489 struct btrfs_tree_parent_check *check) 490 { 491 struct btrfs_fs_info *fs_info = eb->fs_info; 492 u64 found_start; 493 const u32 csum_size = fs_info->csum_size; 494 u8 found_level; 495 u8 result[BTRFS_CSUM_SIZE]; 496 const u8 *header_csum; 497 int ret = 0; 498 499 ASSERT(check); 500 501 found_start = btrfs_header_bytenr(eb); 502 if (found_start != eb->start) { 503 btrfs_err_rl(fs_info, 504 "bad tree block start, mirror %u want %llu have %llu", 505 eb->read_mirror, eb->start, found_start); 506 ret = -EIO; 507 goto out; 508 } 509 if (check_tree_block_fsid(eb)) { 510 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u", 511 eb->start, eb->read_mirror); 512 ret = -EIO; 513 goto out; 514 } 515 found_level = btrfs_header_level(eb); 516 if (found_level >= BTRFS_MAX_LEVEL) { 517 btrfs_err(fs_info, 518 "bad tree block level, mirror %u level %d on logical %llu", 519 eb->read_mirror, btrfs_header_level(eb), eb->start); 520 ret = -EIO; 521 goto out; 522 } 523 524 csum_tree_block(eb, result); 525 header_csum = page_address(eb->pages[0]) + 526 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum)); 527 528 if (memcmp(result, header_csum, csum_size) != 0) { 529 btrfs_warn_rl(fs_info, 530 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d", 531 eb->start, eb->read_mirror, 532 CSUM_FMT_VALUE(csum_size, header_csum), 533 CSUM_FMT_VALUE(csum_size, result), 534 btrfs_header_level(eb)); 535 ret = -EUCLEAN; 536 goto out; 537 } 538 539 if (found_level != check->level) { 540 btrfs_err(fs_info, 541 "level verify failed on logical %llu mirror %u wanted %u found %u", 542 eb->start, eb->read_mirror, check->level, found_level); 543 ret = -EIO; 544 goto out; 545 } 546 if (unlikely(check->transid && 547 btrfs_header_generation(eb) != check->transid)) { 548 btrfs_err_rl(eb->fs_info, 549 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 550 eb->start, eb->read_mirror, check->transid, 551 btrfs_header_generation(eb)); 552 ret = -EIO; 553 goto out; 554 } 555 if (check->has_first_key) { 556 struct btrfs_key *expect_key = &check->first_key; 557 struct btrfs_key found_key; 558 559 if (found_level) 560 btrfs_node_key_to_cpu(eb, &found_key, 0); 561 else 562 btrfs_item_key_to_cpu(eb, &found_key, 0); 563 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) { 564 btrfs_err(fs_info, 565 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 566 eb->start, check->transid, 567 expect_key->objectid, 568 expect_key->type, expect_key->offset, 569 found_key.objectid, found_key.type, 570 found_key.offset); 571 ret = -EUCLEAN; 572 goto out; 573 } 574 } 575 if (check->owner_root) { 576 ret = btrfs_check_eb_owner(eb, check->owner_root); 577 if (ret < 0) 578 goto out; 579 } 580 581 /* 582 * If this is a leaf block and it is corrupt, set the corrupt bit so 583 * that we don't try and read the other copies of this block, just 584 * return -EIO. 585 */ 586 if (found_level == 0 && btrfs_check_leaf_full(eb)) { 587 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 588 ret = -EIO; 589 } 590 591 if (found_level > 0 && btrfs_check_node(eb)) 592 ret = -EIO; 593 594 if (!ret) 595 set_extent_buffer_uptodate(eb); 596 else 597 btrfs_err(fs_info, 598 "read time tree block corruption detected on logical %llu mirror %u", 599 eb->start, eb->read_mirror); 600 out: 601 return ret; 602 } 603 604 static int validate_subpage_buffer(struct page *page, u64 start, u64 end, 605 int mirror, struct btrfs_tree_parent_check *check) 606 { 607 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 608 struct extent_buffer *eb; 609 bool reads_done; 610 int ret = 0; 611 612 ASSERT(check); 613 614 /* 615 * We don't allow bio merge for subpage metadata read, so we should 616 * only get one eb for each endio hook. 617 */ 618 ASSERT(end == start + fs_info->nodesize - 1); 619 ASSERT(PagePrivate(page)); 620 621 eb = find_extent_buffer(fs_info, start); 622 /* 623 * When we are reading one tree block, eb must have been inserted into 624 * the radix tree. If not, something is wrong. 625 */ 626 ASSERT(eb); 627 628 reads_done = atomic_dec_and_test(&eb->io_pages); 629 /* Subpage read must finish in page read */ 630 ASSERT(reads_done); 631 632 eb->read_mirror = mirror; 633 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 634 ret = -EIO; 635 goto err; 636 } 637 ret = validate_extent_buffer(eb, check); 638 if (ret < 0) 639 goto err; 640 641 set_extent_buffer_uptodate(eb); 642 643 free_extent_buffer(eb); 644 return ret; 645 err: 646 /* 647 * end_bio_extent_readpage decrements io_pages in case of error, 648 * make sure it has something to decrement. 649 */ 650 atomic_inc(&eb->io_pages); 651 clear_extent_buffer_uptodate(eb); 652 free_extent_buffer(eb); 653 return ret; 654 } 655 656 int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio, 657 struct page *page, u64 start, u64 end, 658 int mirror) 659 { 660 struct extent_buffer *eb; 661 int ret = 0; 662 int reads_done; 663 664 ASSERT(page->private); 665 666 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 667 return validate_subpage_buffer(page, start, end, mirror, 668 &bbio->parent_check); 669 670 eb = (struct extent_buffer *)page->private; 671 672 /* 673 * The pending IO might have been the only thing that kept this buffer 674 * in memory. Make sure we have a ref for all this other checks 675 */ 676 atomic_inc(&eb->refs); 677 678 reads_done = atomic_dec_and_test(&eb->io_pages); 679 if (!reads_done) 680 goto err; 681 682 eb->read_mirror = mirror; 683 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 684 ret = -EIO; 685 goto err; 686 } 687 ret = validate_extent_buffer(eb, &bbio->parent_check); 688 err: 689 if (ret) { 690 /* 691 * our io error hook is going to dec the io pages 692 * again, we have to make sure it has something 693 * to decrement 694 */ 695 atomic_inc(&eb->io_pages); 696 clear_extent_buffer_uptodate(eb); 697 } 698 free_extent_buffer(eb); 699 700 return ret; 701 } 702 703 #ifdef CONFIG_MIGRATION 704 static int btree_migrate_folio(struct address_space *mapping, 705 struct folio *dst, struct folio *src, enum migrate_mode mode) 706 { 707 /* 708 * we can't safely write a btree page from here, 709 * we haven't done the locking hook 710 */ 711 if (folio_test_dirty(src)) 712 return -EAGAIN; 713 /* 714 * Buffers may be managed in a filesystem specific way. 715 * We must have no buffers or drop them. 716 */ 717 if (folio_get_private(src) && 718 !filemap_release_folio(src, GFP_KERNEL)) 719 return -EAGAIN; 720 return migrate_folio(mapping, dst, src, mode); 721 } 722 #else 723 #define btree_migrate_folio NULL 724 #endif 725 726 static int btree_writepages(struct address_space *mapping, 727 struct writeback_control *wbc) 728 { 729 struct btrfs_fs_info *fs_info; 730 int ret; 731 732 if (wbc->sync_mode == WB_SYNC_NONE) { 733 734 if (wbc->for_kupdate) 735 return 0; 736 737 fs_info = BTRFS_I(mapping->host)->root->fs_info; 738 /* this is a bit racy, but that's ok */ 739 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 740 BTRFS_DIRTY_METADATA_THRESH, 741 fs_info->dirty_metadata_batch); 742 if (ret < 0) 743 return 0; 744 } 745 return btree_write_cache_pages(mapping, wbc); 746 } 747 748 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) 749 { 750 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 751 return false; 752 753 return try_release_extent_buffer(&folio->page); 754 } 755 756 static void btree_invalidate_folio(struct folio *folio, size_t offset, 757 size_t length) 758 { 759 struct extent_io_tree *tree; 760 tree = &BTRFS_I(folio->mapping->host)->io_tree; 761 extent_invalidate_folio(tree, folio, offset); 762 btree_release_folio(folio, GFP_NOFS); 763 if (folio_get_private(folio)) { 764 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info, 765 "folio private not zero on folio %llu", 766 (unsigned long long)folio_pos(folio)); 767 folio_detach_private(folio); 768 } 769 } 770 771 #ifdef DEBUG 772 static bool btree_dirty_folio(struct address_space *mapping, 773 struct folio *folio) 774 { 775 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 776 struct btrfs_subpage *subpage; 777 struct extent_buffer *eb; 778 int cur_bit = 0; 779 u64 page_start = folio_pos(folio); 780 781 if (fs_info->sectorsize == PAGE_SIZE) { 782 eb = folio_get_private(folio); 783 BUG_ON(!eb); 784 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 785 BUG_ON(!atomic_read(&eb->refs)); 786 btrfs_assert_tree_write_locked(eb); 787 return filemap_dirty_folio(mapping, folio); 788 } 789 subpage = folio_get_private(folio); 790 791 ASSERT(subpage->dirty_bitmap); 792 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) { 793 unsigned long flags; 794 u64 cur; 795 u16 tmp = (1 << cur_bit); 796 797 spin_lock_irqsave(&subpage->lock, flags); 798 if (!(tmp & subpage->dirty_bitmap)) { 799 spin_unlock_irqrestore(&subpage->lock, flags); 800 cur_bit++; 801 continue; 802 } 803 spin_unlock_irqrestore(&subpage->lock, flags); 804 cur = page_start + cur_bit * fs_info->sectorsize; 805 806 eb = find_extent_buffer(fs_info, cur); 807 ASSERT(eb); 808 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 809 ASSERT(atomic_read(&eb->refs)); 810 btrfs_assert_tree_write_locked(eb); 811 free_extent_buffer(eb); 812 813 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits); 814 } 815 return filemap_dirty_folio(mapping, folio); 816 } 817 #else 818 #define btree_dirty_folio filemap_dirty_folio 819 #endif 820 821 static const struct address_space_operations btree_aops = { 822 .writepages = btree_writepages, 823 .release_folio = btree_release_folio, 824 .invalidate_folio = btree_invalidate_folio, 825 .migrate_folio = btree_migrate_folio, 826 .dirty_folio = btree_dirty_folio, 827 }; 828 829 struct extent_buffer *btrfs_find_create_tree_block( 830 struct btrfs_fs_info *fs_info, 831 u64 bytenr, u64 owner_root, 832 int level) 833 { 834 if (btrfs_is_testing(fs_info)) 835 return alloc_test_extent_buffer(fs_info, bytenr); 836 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 837 } 838 839 /* 840 * Read tree block at logical address @bytenr and do variant basic but critical 841 * verification. 842 * 843 * @check: expected tree parentness check, see comments of the 844 * structure for details. 845 */ 846 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 847 struct btrfs_tree_parent_check *check) 848 { 849 struct extent_buffer *buf = NULL; 850 int ret; 851 852 ASSERT(check); 853 854 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root, 855 check->level); 856 if (IS_ERR(buf)) 857 return buf; 858 859 ret = btrfs_read_extent_buffer(buf, check); 860 if (ret) { 861 free_extent_buffer_stale(buf); 862 return ERR_PTR(ret); 863 } 864 if (btrfs_check_eb_owner(buf, check->owner_root)) { 865 free_extent_buffer_stale(buf); 866 return ERR_PTR(-EUCLEAN); 867 } 868 return buf; 869 870 } 871 872 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 873 u64 objectid) 874 { 875 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 876 877 memset(&root->root_key, 0, sizeof(root->root_key)); 878 memset(&root->root_item, 0, sizeof(root->root_item)); 879 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 880 root->fs_info = fs_info; 881 root->root_key.objectid = objectid; 882 root->node = NULL; 883 root->commit_root = NULL; 884 root->state = 0; 885 RB_CLEAR_NODE(&root->rb_node); 886 887 root->last_trans = 0; 888 root->free_objectid = 0; 889 root->nr_delalloc_inodes = 0; 890 root->nr_ordered_extents = 0; 891 root->inode_tree = RB_ROOT; 892 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 893 894 btrfs_init_root_block_rsv(root); 895 896 INIT_LIST_HEAD(&root->dirty_list); 897 INIT_LIST_HEAD(&root->root_list); 898 INIT_LIST_HEAD(&root->delalloc_inodes); 899 INIT_LIST_HEAD(&root->delalloc_root); 900 INIT_LIST_HEAD(&root->ordered_extents); 901 INIT_LIST_HEAD(&root->ordered_root); 902 INIT_LIST_HEAD(&root->reloc_dirty_list); 903 INIT_LIST_HEAD(&root->logged_list[0]); 904 INIT_LIST_HEAD(&root->logged_list[1]); 905 spin_lock_init(&root->inode_lock); 906 spin_lock_init(&root->delalloc_lock); 907 spin_lock_init(&root->ordered_extent_lock); 908 spin_lock_init(&root->accounting_lock); 909 spin_lock_init(&root->log_extents_lock[0]); 910 spin_lock_init(&root->log_extents_lock[1]); 911 spin_lock_init(&root->qgroup_meta_rsv_lock); 912 mutex_init(&root->objectid_mutex); 913 mutex_init(&root->log_mutex); 914 mutex_init(&root->ordered_extent_mutex); 915 mutex_init(&root->delalloc_mutex); 916 init_waitqueue_head(&root->qgroup_flush_wait); 917 init_waitqueue_head(&root->log_writer_wait); 918 init_waitqueue_head(&root->log_commit_wait[0]); 919 init_waitqueue_head(&root->log_commit_wait[1]); 920 INIT_LIST_HEAD(&root->log_ctxs[0]); 921 INIT_LIST_HEAD(&root->log_ctxs[1]); 922 atomic_set(&root->log_commit[0], 0); 923 atomic_set(&root->log_commit[1], 0); 924 atomic_set(&root->log_writers, 0); 925 atomic_set(&root->log_batch, 0); 926 refcount_set(&root->refs, 1); 927 atomic_set(&root->snapshot_force_cow, 0); 928 atomic_set(&root->nr_swapfiles, 0); 929 root->log_transid = 0; 930 root->log_transid_committed = -1; 931 root->last_log_commit = 0; 932 root->anon_dev = 0; 933 if (!dummy) { 934 extent_io_tree_init(fs_info, &root->dirty_log_pages, 935 IO_TREE_ROOT_DIRTY_LOG_PAGES); 936 extent_io_tree_init(fs_info, &root->log_csum_range, 937 IO_TREE_LOG_CSUM_RANGE); 938 } 939 940 spin_lock_init(&root->root_item_lock); 941 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 942 #ifdef CONFIG_BTRFS_DEBUG 943 INIT_LIST_HEAD(&root->leak_list); 944 spin_lock(&fs_info->fs_roots_radix_lock); 945 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 946 spin_unlock(&fs_info->fs_roots_radix_lock); 947 #endif 948 } 949 950 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 951 u64 objectid, gfp_t flags) 952 { 953 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 954 if (root) 955 __setup_root(root, fs_info, objectid); 956 return root; 957 } 958 959 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 960 /* Should only be used by the testing infrastructure */ 961 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 962 { 963 struct btrfs_root *root; 964 965 if (!fs_info) 966 return ERR_PTR(-EINVAL); 967 968 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 969 if (!root) 970 return ERR_PTR(-ENOMEM); 971 972 /* We don't use the stripesize in selftest, set it as sectorsize */ 973 root->alloc_bytenr = 0; 974 975 return root; 976 } 977 #endif 978 979 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) 980 { 981 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); 982 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); 983 984 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); 985 } 986 987 static int global_root_key_cmp(const void *k, const struct rb_node *node) 988 { 989 const struct btrfs_key *key = k; 990 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); 991 992 return btrfs_comp_cpu_keys(key, &root->root_key); 993 } 994 995 int btrfs_global_root_insert(struct btrfs_root *root) 996 { 997 struct btrfs_fs_info *fs_info = root->fs_info; 998 struct rb_node *tmp; 999 1000 write_lock(&fs_info->global_root_lock); 1001 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); 1002 write_unlock(&fs_info->global_root_lock); 1003 ASSERT(!tmp); 1004 1005 return tmp ? -EEXIST : 0; 1006 } 1007 1008 void btrfs_global_root_delete(struct btrfs_root *root) 1009 { 1010 struct btrfs_fs_info *fs_info = root->fs_info; 1011 1012 write_lock(&fs_info->global_root_lock); 1013 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1014 write_unlock(&fs_info->global_root_lock); 1015 } 1016 1017 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, 1018 struct btrfs_key *key) 1019 { 1020 struct rb_node *node; 1021 struct btrfs_root *root = NULL; 1022 1023 read_lock(&fs_info->global_root_lock); 1024 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); 1025 if (node) 1026 root = container_of(node, struct btrfs_root, rb_node); 1027 read_unlock(&fs_info->global_root_lock); 1028 1029 return root; 1030 } 1031 1032 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) 1033 { 1034 struct btrfs_block_group *block_group; 1035 u64 ret; 1036 1037 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 1038 return 0; 1039 1040 if (bytenr) 1041 block_group = btrfs_lookup_block_group(fs_info, bytenr); 1042 else 1043 block_group = btrfs_lookup_first_block_group(fs_info, bytenr); 1044 ASSERT(block_group); 1045 if (!block_group) 1046 return 0; 1047 ret = block_group->global_root_id; 1048 btrfs_put_block_group(block_group); 1049 1050 return ret; 1051 } 1052 1053 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) 1054 { 1055 struct btrfs_key key = { 1056 .objectid = BTRFS_CSUM_TREE_OBJECTID, 1057 .type = BTRFS_ROOT_ITEM_KEY, 1058 .offset = btrfs_global_root_id(fs_info, bytenr), 1059 }; 1060 1061 return btrfs_global_root(fs_info, &key); 1062 } 1063 1064 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) 1065 { 1066 struct btrfs_key key = { 1067 .objectid = BTRFS_EXTENT_TREE_OBJECTID, 1068 .type = BTRFS_ROOT_ITEM_KEY, 1069 .offset = btrfs_global_root_id(fs_info, bytenr), 1070 }; 1071 1072 return btrfs_global_root(fs_info, &key); 1073 } 1074 1075 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info) 1076 { 1077 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) 1078 return fs_info->block_group_root; 1079 return btrfs_extent_root(fs_info, 0); 1080 } 1081 1082 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1083 u64 objectid) 1084 { 1085 struct btrfs_fs_info *fs_info = trans->fs_info; 1086 struct extent_buffer *leaf; 1087 struct btrfs_root *tree_root = fs_info->tree_root; 1088 struct btrfs_root *root; 1089 struct btrfs_key key; 1090 unsigned int nofs_flag; 1091 int ret = 0; 1092 1093 /* 1094 * We're holding a transaction handle, so use a NOFS memory allocation 1095 * context to avoid deadlock if reclaim happens. 1096 */ 1097 nofs_flag = memalloc_nofs_save(); 1098 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 1099 memalloc_nofs_restore(nofs_flag); 1100 if (!root) 1101 return ERR_PTR(-ENOMEM); 1102 1103 root->root_key.objectid = objectid; 1104 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1105 root->root_key.offset = 0; 1106 1107 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 1108 BTRFS_NESTING_NORMAL); 1109 if (IS_ERR(leaf)) { 1110 ret = PTR_ERR(leaf); 1111 leaf = NULL; 1112 goto fail; 1113 } 1114 1115 root->node = leaf; 1116 btrfs_mark_buffer_dirty(leaf); 1117 1118 root->commit_root = btrfs_root_node(root); 1119 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1120 1121 btrfs_set_root_flags(&root->root_item, 0); 1122 btrfs_set_root_limit(&root->root_item, 0); 1123 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1124 btrfs_set_root_generation(&root->root_item, trans->transid); 1125 btrfs_set_root_level(&root->root_item, 0); 1126 btrfs_set_root_refs(&root->root_item, 1); 1127 btrfs_set_root_used(&root->root_item, leaf->len); 1128 btrfs_set_root_last_snapshot(&root->root_item, 0); 1129 btrfs_set_root_dirid(&root->root_item, 0); 1130 if (is_fstree(objectid)) 1131 generate_random_guid(root->root_item.uuid); 1132 else 1133 export_guid(root->root_item.uuid, &guid_null); 1134 btrfs_set_root_drop_level(&root->root_item, 0); 1135 1136 btrfs_tree_unlock(leaf); 1137 1138 key.objectid = objectid; 1139 key.type = BTRFS_ROOT_ITEM_KEY; 1140 key.offset = 0; 1141 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1142 if (ret) 1143 goto fail; 1144 1145 return root; 1146 1147 fail: 1148 btrfs_put_root(root); 1149 1150 return ERR_PTR(ret); 1151 } 1152 1153 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1154 struct btrfs_fs_info *fs_info) 1155 { 1156 struct btrfs_root *root; 1157 1158 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 1159 if (!root) 1160 return ERR_PTR(-ENOMEM); 1161 1162 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1163 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1164 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1165 1166 return root; 1167 } 1168 1169 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 1170 struct btrfs_root *root) 1171 { 1172 struct extent_buffer *leaf; 1173 1174 /* 1175 * DON'T set SHAREABLE bit for log trees. 1176 * 1177 * Log trees are not exposed to user space thus can't be snapshotted, 1178 * and they go away before a real commit is actually done. 1179 * 1180 * They do store pointers to file data extents, and those reference 1181 * counts still get updated (along with back refs to the log tree). 1182 */ 1183 1184 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1185 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL); 1186 if (IS_ERR(leaf)) 1187 return PTR_ERR(leaf); 1188 1189 root->node = leaf; 1190 1191 btrfs_mark_buffer_dirty(root->node); 1192 btrfs_tree_unlock(root->node); 1193 1194 return 0; 1195 } 1196 1197 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1198 struct btrfs_fs_info *fs_info) 1199 { 1200 struct btrfs_root *log_root; 1201 1202 log_root = alloc_log_tree(trans, fs_info); 1203 if (IS_ERR(log_root)) 1204 return PTR_ERR(log_root); 1205 1206 if (!btrfs_is_zoned(fs_info)) { 1207 int ret = btrfs_alloc_log_tree_node(trans, log_root); 1208 1209 if (ret) { 1210 btrfs_put_root(log_root); 1211 return ret; 1212 } 1213 } 1214 1215 WARN_ON(fs_info->log_root_tree); 1216 fs_info->log_root_tree = log_root; 1217 return 0; 1218 } 1219 1220 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1221 struct btrfs_root *root) 1222 { 1223 struct btrfs_fs_info *fs_info = root->fs_info; 1224 struct btrfs_root *log_root; 1225 struct btrfs_inode_item *inode_item; 1226 int ret; 1227 1228 log_root = alloc_log_tree(trans, fs_info); 1229 if (IS_ERR(log_root)) 1230 return PTR_ERR(log_root); 1231 1232 ret = btrfs_alloc_log_tree_node(trans, log_root); 1233 if (ret) { 1234 btrfs_put_root(log_root); 1235 return ret; 1236 } 1237 1238 log_root->last_trans = trans->transid; 1239 log_root->root_key.offset = root->root_key.objectid; 1240 1241 inode_item = &log_root->root_item.inode; 1242 btrfs_set_stack_inode_generation(inode_item, 1); 1243 btrfs_set_stack_inode_size(inode_item, 3); 1244 btrfs_set_stack_inode_nlink(inode_item, 1); 1245 btrfs_set_stack_inode_nbytes(inode_item, 1246 fs_info->nodesize); 1247 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1248 1249 btrfs_set_root_node(&log_root->root_item, log_root->node); 1250 1251 WARN_ON(root->log_root); 1252 root->log_root = log_root; 1253 root->log_transid = 0; 1254 root->log_transid_committed = -1; 1255 root->last_log_commit = 0; 1256 return 0; 1257 } 1258 1259 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1260 struct btrfs_path *path, 1261 struct btrfs_key *key) 1262 { 1263 struct btrfs_root *root; 1264 struct btrfs_tree_parent_check check = { 0 }; 1265 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1266 u64 generation; 1267 int ret; 1268 int level; 1269 1270 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1271 if (!root) 1272 return ERR_PTR(-ENOMEM); 1273 1274 ret = btrfs_find_root(tree_root, key, path, 1275 &root->root_item, &root->root_key); 1276 if (ret) { 1277 if (ret > 0) 1278 ret = -ENOENT; 1279 goto fail; 1280 } 1281 1282 generation = btrfs_root_generation(&root->root_item); 1283 level = btrfs_root_level(&root->root_item); 1284 check.level = level; 1285 check.transid = generation; 1286 check.owner_root = key->objectid; 1287 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item), 1288 &check); 1289 if (IS_ERR(root->node)) { 1290 ret = PTR_ERR(root->node); 1291 root->node = NULL; 1292 goto fail; 1293 } 1294 if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1295 ret = -EIO; 1296 goto fail; 1297 } 1298 1299 /* 1300 * For real fs, and not log/reloc trees, root owner must 1301 * match its root node owner 1302 */ 1303 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) && 1304 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1305 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1306 root->root_key.objectid != btrfs_header_owner(root->node)) { 1307 btrfs_crit(fs_info, 1308 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu", 1309 root->root_key.objectid, root->node->start, 1310 btrfs_header_owner(root->node), 1311 root->root_key.objectid); 1312 ret = -EUCLEAN; 1313 goto fail; 1314 } 1315 root->commit_root = btrfs_root_node(root); 1316 return root; 1317 fail: 1318 btrfs_put_root(root); 1319 return ERR_PTR(ret); 1320 } 1321 1322 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1323 struct btrfs_key *key) 1324 { 1325 struct btrfs_root *root; 1326 struct btrfs_path *path; 1327 1328 path = btrfs_alloc_path(); 1329 if (!path) 1330 return ERR_PTR(-ENOMEM); 1331 root = read_tree_root_path(tree_root, path, key); 1332 btrfs_free_path(path); 1333 1334 return root; 1335 } 1336 1337 /* 1338 * Initialize subvolume root in-memory structure 1339 * 1340 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1341 */ 1342 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1343 { 1344 int ret; 1345 1346 btrfs_drew_lock_init(&root->snapshot_lock); 1347 1348 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1349 !btrfs_is_data_reloc_root(root)) { 1350 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1351 btrfs_check_and_init_root_item(&root->root_item); 1352 } 1353 1354 /* 1355 * Don't assign anonymous block device to roots that are not exposed to 1356 * userspace, the id pool is limited to 1M 1357 */ 1358 if (is_fstree(root->root_key.objectid) && 1359 btrfs_root_refs(&root->root_item) > 0) { 1360 if (!anon_dev) { 1361 ret = get_anon_bdev(&root->anon_dev); 1362 if (ret) 1363 goto fail; 1364 } else { 1365 root->anon_dev = anon_dev; 1366 } 1367 } 1368 1369 mutex_lock(&root->objectid_mutex); 1370 ret = btrfs_init_root_free_objectid(root); 1371 if (ret) { 1372 mutex_unlock(&root->objectid_mutex); 1373 goto fail; 1374 } 1375 1376 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1377 1378 mutex_unlock(&root->objectid_mutex); 1379 1380 return 0; 1381 fail: 1382 /* The caller is responsible to call btrfs_free_fs_root */ 1383 return ret; 1384 } 1385 1386 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1387 u64 root_id) 1388 { 1389 struct btrfs_root *root; 1390 1391 spin_lock(&fs_info->fs_roots_radix_lock); 1392 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1393 (unsigned long)root_id); 1394 if (root) 1395 root = btrfs_grab_root(root); 1396 spin_unlock(&fs_info->fs_roots_radix_lock); 1397 return root; 1398 } 1399 1400 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1401 u64 objectid) 1402 { 1403 struct btrfs_key key = { 1404 .objectid = objectid, 1405 .type = BTRFS_ROOT_ITEM_KEY, 1406 .offset = 0, 1407 }; 1408 1409 if (objectid == BTRFS_ROOT_TREE_OBJECTID) 1410 return btrfs_grab_root(fs_info->tree_root); 1411 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 1412 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1413 if (objectid == BTRFS_CHUNK_TREE_OBJECTID) 1414 return btrfs_grab_root(fs_info->chunk_root); 1415 if (objectid == BTRFS_DEV_TREE_OBJECTID) 1416 return btrfs_grab_root(fs_info->dev_root); 1417 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 1418 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1419 if (objectid == BTRFS_QUOTA_TREE_OBJECTID) 1420 return btrfs_grab_root(fs_info->quota_root) ? 1421 fs_info->quota_root : ERR_PTR(-ENOENT); 1422 if (objectid == BTRFS_UUID_TREE_OBJECTID) 1423 return btrfs_grab_root(fs_info->uuid_root) ? 1424 fs_info->uuid_root : ERR_PTR(-ENOENT); 1425 if (objectid == BTRFS_BLOCK_GROUP_TREE_OBJECTID) 1426 return btrfs_grab_root(fs_info->block_group_root) ? 1427 fs_info->block_group_root : ERR_PTR(-ENOENT); 1428 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) { 1429 struct btrfs_root *root = btrfs_global_root(fs_info, &key); 1430 1431 return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT); 1432 } 1433 return NULL; 1434 } 1435 1436 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1437 struct btrfs_root *root) 1438 { 1439 int ret; 1440 1441 ret = radix_tree_preload(GFP_NOFS); 1442 if (ret) 1443 return ret; 1444 1445 spin_lock(&fs_info->fs_roots_radix_lock); 1446 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1447 (unsigned long)root->root_key.objectid, 1448 root); 1449 if (ret == 0) { 1450 btrfs_grab_root(root); 1451 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1452 } 1453 spin_unlock(&fs_info->fs_roots_radix_lock); 1454 radix_tree_preload_end(); 1455 1456 return ret; 1457 } 1458 1459 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) 1460 { 1461 #ifdef CONFIG_BTRFS_DEBUG 1462 struct btrfs_root *root; 1463 1464 while (!list_empty(&fs_info->allocated_roots)) { 1465 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1466 1467 root = list_first_entry(&fs_info->allocated_roots, 1468 struct btrfs_root, leak_list); 1469 btrfs_err(fs_info, "leaked root %s refcount %d", 1470 btrfs_root_name(&root->root_key, buf), 1471 refcount_read(&root->refs)); 1472 while (refcount_read(&root->refs) > 1) 1473 btrfs_put_root(root); 1474 btrfs_put_root(root); 1475 } 1476 #endif 1477 } 1478 1479 static void free_global_roots(struct btrfs_fs_info *fs_info) 1480 { 1481 struct btrfs_root *root; 1482 struct rb_node *node; 1483 1484 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { 1485 root = rb_entry(node, struct btrfs_root, rb_node); 1486 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1487 btrfs_put_root(root); 1488 } 1489 } 1490 1491 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1492 { 1493 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1494 percpu_counter_destroy(&fs_info->delalloc_bytes); 1495 percpu_counter_destroy(&fs_info->ordered_bytes); 1496 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1497 btrfs_free_csum_hash(fs_info); 1498 btrfs_free_stripe_hash_table(fs_info); 1499 btrfs_free_ref_cache(fs_info); 1500 kfree(fs_info->balance_ctl); 1501 kfree(fs_info->delayed_root); 1502 free_global_roots(fs_info); 1503 btrfs_put_root(fs_info->tree_root); 1504 btrfs_put_root(fs_info->chunk_root); 1505 btrfs_put_root(fs_info->dev_root); 1506 btrfs_put_root(fs_info->quota_root); 1507 btrfs_put_root(fs_info->uuid_root); 1508 btrfs_put_root(fs_info->fs_root); 1509 btrfs_put_root(fs_info->data_reloc_root); 1510 btrfs_put_root(fs_info->block_group_root); 1511 btrfs_check_leaked_roots(fs_info); 1512 btrfs_extent_buffer_leak_debug_check(fs_info); 1513 kfree(fs_info->super_copy); 1514 kfree(fs_info->super_for_commit); 1515 kfree(fs_info->subpage_info); 1516 kvfree(fs_info); 1517 } 1518 1519 1520 /* 1521 * Get an in-memory reference of a root structure. 1522 * 1523 * For essential trees like root/extent tree, we grab it from fs_info directly. 1524 * For subvolume trees, we check the cached filesystem roots first. If not 1525 * found, then read it from disk and add it to cached fs roots. 1526 * 1527 * Caller should release the root by calling btrfs_put_root() after the usage. 1528 * 1529 * NOTE: Reloc and log trees can't be read by this function as they share the 1530 * same root objectid. 1531 * 1532 * @objectid: root id 1533 * @anon_dev: preallocated anonymous block device number for new roots, 1534 * pass 0 for new allocation. 1535 * @check_ref: whether to check root item references, If true, return -ENOENT 1536 * for orphan roots 1537 */ 1538 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1539 u64 objectid, dev_t anon_dev, 1540 bool check_ref) 1541 { 1542 struct btrfs_root *root; 1543 struct btrfs_path *path; 1544 struct btrfs_key key; 1545 int ret; 1546 1547 root = btrfs_get_global_root(fs_info, objectid); 1548 if (root) 1549 return root; 1550 again: 1551 root = btrfs_lookup_fs_root(fs_info, objectid); 1552 if (root) { 1553 /* Shouldn't get preallocated anon_dev for cached roots */ 1554 ASSERT(!anon_dev); 1555 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1556 btrfs_put_root(root); 1557 return ERR_PTR(-ENOENT); 1558 } 1559 return root; 1560 } 1561 1562 key.objectid = objectid; 1563 key.type = BTRFS_ROOT_ITEM_KEY; 1564 key.offset = (u64)-1; 1565 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1566 if (IS_ERR(root)) 1567 return root; 1568 1569 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1570 ret = -ENOENT; 1571 goto fail; 1572 } 1573 1574 ret = btrfs_init_fs_root(root, anon_dev); 1575 if (ret) 1576 goto fail; 1577 1578 path = btrfs_alloc_path(); 1579 if (!path) { 1580 ret = -ENOMEM; 1581 goto fail; 1582 } 1583 key.objectid = BTRFS_ORPHAN_OBJECTID; 1584 key.type = BTRFS_ORPHAN_ITEM_KEY; 1585 key.offset = objectid; 1586 1587 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1588 btrfs_free_path(path); 1589 if (ret < 0) 1590 goto fail; 1591 if (ret == 0) 1592 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1593 1594 ret = btrfs_insert_fs_root(fs_info, root); 1595 if (ret) { 1596 if (ret == -EEXIST) { 1597 btrfs_put_root(root); 1598 goto again; 1599 } 1600 goto fail; 1601 } 1602 return root; 1603 fail: 1604 /* 1605 * If our caller provided us an anonymous device, then it's his 1606 * responsibility to free it in case we fail. So we have to set our 1607 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() 1608 * and once again by our caller. 1609 */ 1610 if (anon_dev) 1611 root->anon_dev = 0; 1612 btrfs_put_root(root); 1613 return ERR_PTR(ret); 1614 } 1615 1616 /* 1617 * Get in-memory reference of a root structure 1618 * 1619 * @objectid: tree objectid 1620 * @check_ref: if set, verify that the tree exists and the item has at least 1621 * one reference 1622 */ 1623 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1624 u64 objectid, bool check_ref) 1625 { 1626 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref); 1627 } 1628 1629 /* 1630 * Get in-memory reference of a root structure, created as new, optionally pass 1631 * the anonymous block device id 1632 * 1633 * @objectid: tree objectid 1634 * @anon_dev: if zero, allocate a new anonymous block device or use the 1635 * parameter value 1636 */ 1637 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1638 u64 objectid, dev_t anon_dev) 1639 { 1640 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1641 } 1642 1643 /* 1644 * btrfs_get_fs_root_commit_root - return a root for the given objectid 1645 * @fs_info: the fs_info 1646 * @objectid: the objectid we need to lookup 1647 * 1648 * This is exclusively used for backref walking, and exists specifically because 1649 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1650 * creation time, which means we may have to read the tree_root in order to look 1651 * up a fs root that is not in memory. If the root is not in memory we will 1652 * read the tree root commit root and look up the fs root from there. This is a 1653 * temporary root, it will not be inserted into the radix tree as it doesn't 1654 * have the most uptodate information, it'll simply be discarded once the 1655 * backref code is finished using the root. 1656 */ 1657 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1658 struct btrfs_path *path, 1659 u64 objectid) 1660 { 1661 struct btrfs_root *root; 1662 struct btrfs_key key; 1663 1664 ASSERT(path->search_commit_root && path->skip_locking); 1665 1666 /* 1667 * This can return -ENOENT if we ask for a root that doesn't exist, but 1668 * since this is called via the backref walking code we won't be looking 1669 * up a root that doesn't exist, unless there's corruption. So if root 1670 * != NULL just return it. 1671 */ 1672 root = btrfs_get_global_root(fs_info, objectid); 1673 if (root) 1674 return root; 1675 1676 root = btrfs_lookup_fs_root(fs_info, objectid); 1677 if (root) 1678 return root; 1679 1680 key.objectid = objectid; 1681 key.type = BTRFS_ROOT_ITEM_KEY; 1682 key.offset = (u64)-1; 1683 root = read_tree_root_path(fs_info->tree_root, path, &key); 1684 btrfs_release_path(path); 1685 1686 return root; 1687 } 1688 1689 static int cleaner_kthread(void *arg) 1690 { 1691 struct btrfs_fs_info *fs_info = arg; 1692 int again; 1693 1694 while (1) { 1695 again = 0; 1696 1697 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1698 1699 /* Make the cleaner go to sleep early. */ 1700 if (btrfs_need_cleaner_sleep(fs_info)) 1701 goto sleep; 1702 1703 /* 1704 * Do not do anything if we might cause open_ctree() to block 1705 * before we have finished mounting the filesystem. 1706 */ 1707 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1708 goto sleep; 1709 1710 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1711 goto sleep; 1712 1713 /* 1714 * Avoid the problem that we change the status of the fs 1715 * during the above check and trylock. 1716 */ 1717 if (btrfs_need_cleaner_sleep(fs_info)) { 1718 mutex_unlock(&fs_info->cleaner_mutex); 1719 goto sleep; 1720 } 1721 1722 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags)) 1723 btrfs_sysfs_feature_update(fs_info); 1724 1725 btrfs_run_delayed_iputs(fs_info); 1726 1727 again = btrfs_clean_one_deleted_snapshot(fs_info); 1728 mutex_unlock(&fs_info->cleaner_mutex); 1729 1730 /* 1731 * The defragger has dealt with the R/O remount and umount, 1732 * needn't do anything special here. 1733 */ 1734 btrfs_run_defrag_inodes(fs_info); 1735 1736 /* 1737 * Acquires fs_info->reclaim_bgs_lock to avoid racing 1738 * with relocation (btrfs_relocate_chunk) and relocation 1739 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1740 * after acquiring fs_info->reclaim_bgs_lock. So we 1741 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1742 * unused block groups. 1743 */ 1744 btrfs_delete_unused_bgs(fs_info); 1745 1746 /* 1747 * Reclaim block groups in the reclaim_bgs list after we deleted 1748 * all unused block_groups. This possibly gives us some more free 1749 * space. 1750 */ 1751 btrfs_reclaim_bgs(fs_info); 1752 sleep: 1753 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1754 if (kthread_should_park()) 1755 kthread_parkme(); 1756 if (kthread_should_stop()) 1757 return 0; 1758 if (!again) { 1759 set_current_state(TASK_INTERRUPTIBLE); 1760 schedule(); 1761 __set_current_state(TASK_RUNNING); 1762 } 1763 } 1764 } 1765 1766 static int transaction_kthread(void *arg) 1767 { 1768 struct btrfs_root *root = arg; 1769 struct btrfs_fs_info *fs_info = root->fs_info; 1770 struct btrfs_trans_handle *trans; 1771 struct btrfs_transaction *cur; 1772 u64 transid; 1773 time64_t delta; 1774 unsigned long delay; 1775 bool cannot_commit; 1776 1777 do { 1778 cannot_commit = false; 1779 delay = msecs_to_jiffies(fs_info->commit_interval * 1000); 1780 mutex_lock(&fs_info->transaction_kthread_mutex); 1781 1782 spin_lock(&fs_info->trans_lock); 1783 cur = fs_info->running_transaction; 1784 if (!cur) { 1785 spin_unlock(&fs_info->trans_lock); 1786 goto sleep; 1787 } 1788 1789 delta = ktime_get_seconds() - cur->start_time; 1790 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && 1791 cur->state < TRANS_STATE_COMMIT_START && 1792 delta < fs_info->commit_interval) { 1793 spin_unlock(&fs_info->trans_lock); 1794 delay -= msecs_to_jiffies((delta - 1) * 1000); 1795 delay = min(delay, 1796 msecs_to_jiffies(fs_info->commit_interval * 1000)); 1797 goto sleep; 1798 } 1799 transid = cur->transid; 1800 spin_unlock(&fs_info->trans_lock); 1801 1802 /* If the file system is aborted, this will always fail. */ 1803 trans = btrfs_attach_transaction(root); 1804 if (IS_ERR(trans)) { 1805 if (PTR_ERR(trans) != -ENOENT) 1806 cannot_commit = true; 1807 goto sleep; 1808 } 1809 if (transid == trans->transid) { 1810 btrfs_commit_transaction(trans); 1811 } else { 1812 btrfs_end_transaction(trans); 1813 } 1814 sleep: 1815 wake_up_process(fs_info->cleaner_kthread); 1816 mutex_unlock(&fs_info->transaction_kthread_mutex); 1817 1818 if (BTRFS_FS_ERROR(fs_info)) 1819 btrfs_cleanup_transaction(fs_info); 1820 if (!kthread_should_stop() && 1821 (!btrfs_transaction_blocked(fs_info) || 1822 cannot_commit)) 1823 schedule_timeout_interruptible(delay); 1824 } while (!kthread_should_stop()); 1825 return 0; 1826 } 1827 1828 /* 1829 * This will find the highest generation in the array of root backups. The 1830 * index of the highest array is returned, or -EINVAL if we can't find 1831 * anything. 1832 * 1833 * We check to make sure the array is valid by comparing the 1834 * generation of the latest root in the array with the generation 1835 * in the super block. If they don't match we pitch it. 1836 */ 1837 static int find_newest_super_backup(struct btrfs_fs_info *info) 1838 { 1839 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1840 u64 cur; 1841 struct btrfs_root_backup *root_backup; 1842 int i; 1843 1844 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1845 root_backup = info->super_copy->super_roots + i; 1846 cur = btrfs_backup_tree_root_gen(root_backup); 1847 if (cur == newest_gen) 1848 return i; 1849 } 1850 1851 return -EINVAL; 1852 } 1853 1854 /* 1855 * copy all the root pointers into the super backup array. 1856 * this will bump the backup pointer by one when it is 1857 * done 1858 */ 1859 static void backup_super_roots(struct btrfs_fs_info *info) 1860 { 1861 const int next_backup = info->backup_root_index; 1862 struct btrfs_root_backup *root_backup; 1863 1864 root_backup = info->super_for_commit->super_roots + next_backup; 1865 1866 /* 1867 * make sure all of our padding and empty slots get zero filled 1868 * regardless of which ones we use today 1869 */ 1870 memset(root_backup, 0, sizeof(*root_backup)); 1871 1872 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1873 1874 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1875 btrfs_set_backup_tree_root_gen(root_backup, 1876 btrfs_header_generation(info->tree_root->node)); 1877 1878 btrfs_set_backup_tree_root_level(root_backup, 1879 btrfs_header_level(info->tree_root->node)); 1880 1881 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1882 btrfs_set_backup_chunk_root_gen(root_backup, 1883 btrfs_header_generation(info->chunk_root->node)); 1884 btrfs_set_backup_chunk_root_level(root_backup, 1885 btrfs_header_level(info->chunk_root->node)); 1886 1887 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) { 1888 struct btrfs_root *extent_root = btrfs_extent_root(info, 0); 1889 struct btrfs_root *csum_root = btrfs_csum_root(info, 0); 1890 1891 btrfs_set_backup_extent_root(root_backup, 1892 extent_root->node->start); 1893 btrfs_set_backup_extent_root_gen(root_backup, 1894 btrfs_header_generation(extent_root->node)); 1895 btrfs_set_backup_extent_root_level(root_backup, 1896 btrfs_header_level(extent_root->node)); 1897 1898 btrfs_set_backup_csum_root(root_backup, csum_root->node->start); 1899 btrfs_set_backup_csum_root_gen(root_backup, 1900 btrfs_header_generation(csum_root->node)); 1901 btrfs_set_backup_csum_root_level(root_backup, 1902 btrfs_header_level(csum_root->node)); 1903 } 1904 1905 /* 1906 * we might commit during log recovery, which happens before we set 1907 * the fs_root. Make sure it is valid before we fill it in. 1908 */ 1909 if (info->fs_root && info->fs_root->node) { 1910 btrfs_set_backup_fs_root(root_backup, 1911 info->fs_root->node->start); 1912 btrfs_set_backup_fs_root_gen(root_backup, 1913 btrfs_header_generation(info->fs_root->node)); 1914 btrfs_set_backup_fs_root_level(root_backup, 1915 btrfs_header_level(info->fs_root->node)); 1916 } 1917 1918 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1919 btrfs_set_backup_dev_root_gen(root_backup, 1920 btrfs_header_generation(info->dev_root->node)); 1921 btrfs_set_backup_dev_root_level(root_backup, 1922 btrfs_header_level(info->dev_root->node)); 1923 1924 btrfs_set_backup_total_bytes(root_backup, 1925 btrfs_super_total_bytes(info->super_copy)); 1926 btrfs_set_backup_bytes_used(root_backup, 1927 btrfs_super_bytes_used(info->super_copy)); 1928 btrfs_set_backup_num_devices(root_backup, 1929 btrfs_super_num_devices(info->super_copy)); 1930 1931 /* 1932 * if we don't copy this out to the super_copy, it won't get remembered 1933 * for the next commit 1934 */ 1935 memcpy(&info->super_copy->super_roots, 1936 &info->super_for_commit->super_roots, 1937 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1938 } 1939 1940 /* 1941 * read_backup_root - Reads a backup root based on the passed priority. Prio 0 1942 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1943 * 1944 * fs_info - filesystem whose backup roots need to be read 1945 * priority - priority of backup root required 1946 * 1947 * Returns backup root index on success and -EINVAL otherwise. 1948 */ 1949 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1950 { 1951 int backup_index = find_newest_super_backup(fs_info); 1952 struct btrfs_super_block *super = fs_info->super_copy; 1953 struct btrfs_root_backup *root_backup; 1954 1955 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1956 if (priority == 0) 1957 return backup_index; 1958 1959 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1960 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1961 } else { 1962 return -EINVAL; 1963 } 1964 1965 root_backup = super->super_roots + backup_index; 1966 1967 btrfs_set_super_generation(super, 1968 btrfs_backup_tree_root_gen(root_backup)); 1969 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1970 btrfs_set_super_root_level(super, 1971 btrfs_backup_tree_root_level(root_backup)); 1972 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1973 1974 /* 1975 * Fixme: the total bytes and num_devices need to match or we should 1976 * need a fsck 1977 */ 1978 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1979 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1980 1981 return backup_index; 1982 } 1983 1984 /* helper to cleanup workers */ 1985 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1986 { 1987 btrfs_destroy_workqueue(fs_info->fixup_workers); 1988 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1989 btrfs_destroy_workqueue(fs_info->hipri_workers); 1990 btrfs_destroy_workqueue(fs_info->workers); 1991 if (fs_info->endio_workers) 1992 destroy_workqueue(fs_info->endio_workers); 1993 if (fs_info->rmw_workers) 1994 destroy_workqueue(fs_info->rmw_workers); 1995 if (fs_info->compressed_write_workers) 1996 destroy_workqueue(fs_info->compressed_write_workers); 1997 btrfs_destroy_workqueue(fs_info->endio_write_workers); 1998 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 1999 btrfs_destroy_workqueue(fs_info->delayed_workers); 2000 btrfs_destroy_workqueue(fs_info->caching_workers); 2001 btrfs_destroy_workqueue(fs_info->flush_workers); 2002 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2003 if (fs_info->discard_ctl.discard_workers) 2004 destroy_workqueue(fs_info->discard_ctl.discard_workers); 2005 /* 2006 * Now that all other work queues are destroyed, we can safely destroy 2007 * the queues used for metadata I/O, since tasks from those other work 2008 * queues can do metadata I/O operations. 2009 */ 2010 if (fs_info->endio_meta_workers) 2011 destroy_workqueue(fs_info->endio_meta_workers); 2012 } 2013 2014 static void free_root_extent_buffers(struct btrfs_root *root) 2015 { 2016 if (root) { 2017 free_extent_buffer(root->node); 2018 free_extent_buffer(root->commit_root); 2019 root->node = NULL; 2020 root->commit_root = NULL; 2021 } 2022 } 2023 2024 static void free_global_root_pointers(struct btrfs_fs_info *fs_info) 2025 { 2026 struct btrfs_root *root, *tmp; 2027 2028 rbtree_postorder_for_each_entry_safe(root, tmp, 2029 &fs_info->global_root_tree, 2030 rb_node) 2031 free_root_extent_buffers(root); 2032 } 2033 2034 /* helper to cleanup tree roots */ 2035 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 2036 { 2037 free_root_extent_buffers(info->tree_root); 2038 2039 free_global_root_pointers(info); 2040 free_root_extent_buffers(info->dev_root); 2041 free_root_extent_buffers(info->quota_root); 2042 free_root_extent_buffers(info->uuid_root); 2043 free_root_extent_buffers(info->fs_root); 2044 free_root_extent_buffers(info->data_reloc_root); 2045 free_root_extent_buffers(info->block_group_root); 2046 if (free_chunk_root) 2047 free_root_extent_buffers(info->chunk_root); 2048 } 2049 2050 void btrfs_put_root(struct btrfs_root *root) 2051 { 2052 if (!root) 2053 return; 2054 2055 if (refcount_dec_and_test(&root->refs)) { 2056 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2057 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 2058 if (root->anon_dev) 2059 free_anon_bdev(root->anon_dev); 2060 free_root_extent_buffers(root); 2061 #ifdef CONFIG_BTRFS_DEBUG 2062 spin_lock(&root->fs_info->fs_roots_radix_lock); 2063 list_del_init(&root->leak_list); 2064 spin_unlock(&root->fs_info->fs_roots_radix_lock); 2065 #endif 2066 kfree(root); 2067 } 2068 } 2069 2070 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2071 { 2072 int ret; 2073 struct btrfs_root *gang[8]; 2074 int i; 2075 2076 while (!list_empty(&fs_info->dead_roots)) { 2077 gang[0] = list_entry(fs_info->dead_roots.next, 2078 struct btrfs_root, root_list); 2079 list_del(&gang[0]->root_list); 2080 2081 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 2082 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2083 btrfs_put_root(gang[0]); 2084 } 2085 2086 while (1) { 2087 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2088 (void **)gang, 0, 2089 ARRAY_SIZE(gang)); 2090 if (!ret) 2091 break; 2092 for (i = 0; i < ret; i++) 2093 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2094 } 2095 } 2096 2097 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2098 { 2099 mutex_init(&fs_info->scrub_lock); 2100 atomic_set(&fs_info->scrubs_running, 0); 2101 atomic_set(&fs_info->scrub_pause_req, 0); 2102 atomic_set(&fs_info->scrubs_paused, 0); 2103 atomic_set(&fs_info->scrub_cancel_req, 0); 2104 init_waitqueue_head(&fs_info->scrub_pause_wait); 2105 refcount_set(&fs_info->scrub_workers_refcnt, 0); 2106 } 2107 2108 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2109 { 2110 spin_lock_init(&fs_info->balance_lock); 2111 mutex_init(&fs_info->balance_mutex); 2112 atomic_set(&fs_info->balance_pause_req, 0); 2113 atomic_set(&fs_info->balance_cancel_req, 0); 2114 fs_info->balance_ctl = NULL; 2115 init_waitqueue_head(&fs_info->balance_wait_q); 2116 atomic_set(&fs_info->reloc_cancel_req, 0); 2117 } 2118 2119 static int btrfs_init_btree_inode(struct super_block *sb) 2120 { 2121 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2122 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, 2123 fs_info->tree_root); 2124 struct inode *inode; 2125 2126 inode = new_inode(sb); 2127 if (!inode) 2128 return -ENOMEM; 2129 2130 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2131 set_nlink(inode, 1); 2132 /* 2133 * we set the i_size on the btree inode to the max possible int. 2134 * the real end of the address space is determined by all of 2135 * the devices in the system 2136 */ 2137 inode->i_size = OFFSET_MAX; 2138 inode->i_mapping->a_ops = &btree_aops; 2139 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS); 2140 2141 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2142 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 2143 IO_TREE_BTREE_INODE_IO); 2144 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2145 2146 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 2147 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID; 2148 BTRFS_I(inode)->location.type = 0; 2149 BTRFS_I(inode)->location.offset = 0; 2150 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2151 __insert_inode_hash(inode, hash); 2152 fs_info->btree_inode = inode; 2153 2154 return 0; 2155 } 2156 2157 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2158 { 2159 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2160 init_rwsem(&fs_info->dev_replace.rwsem); 2161 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2162 } 2163 2164 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2165 { 2166 spin_lock_init(&fs_info->qgroup_lock); 2167 mutex_init(&fs_info->qgroup_ioctl_lock); 2168 fs_info->qgroup_tree = RB_ROOT; 2169 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2170 fs_info->qgroup_seq = 1; 2171 fs_info->qgroup_ulist = NULL; 2172 fs_info->qgroup_rescan_running = false; 2173 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL; 2174 mutex_init(&fs_info->qgroup_rescan_lock); 2175 } 2176 2177 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) 2178 { 2179 u32 max_active = fs_info->thread_pool_size; 2180 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2181 2182 fs_info->workers = 2183 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16); 2184 fs_info->hipri_workers = 2185 btrfs_alloc_workqueue(fs_info, "worker-high", 2186 flags | WQ_HIGHPRI, max_active, 16); 2187 2188 fs_info->delalloc_workers = 2189 btrfs_alloc_workqueue(fs_info, "delalloc", 2190 flags, max_active, 2); 2191 2192 fs_info->flush_workers = 2193 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2194 flags, max_active, 0); 2195 2196 fs_info->caching_workers = 2197 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2198 2199 fs_info->fixup_workers = 2200 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2201 2202 fs_info->endio_workers = 2203 alloc_workqueue("btrfs-endio", flags, max_active); 2204 fs_info->endio_meta_workers = 2205 alloc_workqueue("btrfs-endio-meta", flags, max_active); 2206 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active); 2207 fs_info->endio_write_workers = 2208 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2209 max_active, 2); 2210 fs_info->compressed_write_workers = 2211 alloc_workqueue("btrfs-compressed-write", flags, max_active); 2212 fs_info->endio_freespace_worker = 2213 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2214 max_active, 0); 2215 fs_info->delayed_workers = 2216 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2217 max_active, 0); 2218 fs_info->qgroup_rescan_workers = 2219 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2220 fs_info->discard_ctl.discard_workers = 2221 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1); 2222 2223 if (!(fs_info->workers && fs_info->hipri_workers && 2224 fs_info->delalloc_workers && fs_info->flush_workers && 2225 fs_info->endio_workers && fs_info->endio_meta_workers && 2226 fs_info->compressed_write_workers && 2227 fs_info->endio_write_workers && 2228 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2229 fs_info->caching_workers && fs_info->fixup_workers && 2230 fs_info->delayed_workers && fs_info->qgroup_rescan_workers && 2231 fs_info->discard_ctl.discard_workers)) { 2232 return -ENOMEM; 2233 } 2234 2235 return 0; 2236 } 2237 2238 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2239 { 2240 struct crypto_shash *csum_shash; 2241 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2242 2243 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2244 2245 if (IS_ERR(csum_shash)) { 2246 btrfs_err(fs_info, "error allocating %s hash for checksum", 2247 csum_driver); 2248 return PTR_ERR(csum_shash); 2249 } 2250 2251 fs_info->csum_shash = csum_shash; 2252 2253 /* 2254 * Check if the checksum implementation is a fast accelerated one. 2255 * As-is this is a bit of a hack and should be replaced once the csum 2256 * implementations provide that information themselves. 2257 */ 2258 switch (csum_type) { 2259 case BTRFS_CSUM_TYPE_CRC32: 2260 if (!strstr(crypto_shash_driver_name(csum_shash), "generic")) 2261 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2262 break; 2263 default: 2264 break; 2265 } 2266 2267 btrfs_info(fs_info, "using %s (%s) checksum algorithm", 2268 btrfs_super_csum_name(csum_type), 2269 crypto_shash_driver_name(csum_shash)); 2270 return 0; 2271 } 2272 2273 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2274 struct btrfs_fs_devices *fs_devices) 2275 { 2276 int ret; 2277 struct btrfs_tree_parent_check check = { 0 }; 2278 struct btrfs_root *log_tree_root; 2279 struct btrfs_super_block *disk_super = fs_info->super_copy; 2280 u64 bytenr = btrfs_super_log_root(disk_super); 2281 int level = btrfs_super_log_root_level(disk_super); 2282 2283 if (fs_devices->rw_devices == 0) { 2284 btrfs_warn(fs_info, "log replay required on RO media"); 2285 return -EIO; 2286 } 2287 2288 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2289 GFP_KERNEL); 2290 if (!log_tree_root) 2291 return -ENOMEM; 2292 2293 check.level = level; 2294 check.transid = fs_info->generation + 1; 2295 check.owner_root = BTRFS_TREE_LOG_OBJECTID; 2296 log_tree_root->node = read_tree_block(fs_info, bytenr, &check); 2297 if (IS_ERR(log_tree_root->node)) { 2298 btrfs_warn(fs_info, "failed to read log tree"); 2299 ret = PTR_ERR(log_tree_root->node); 2300 log_tree_root->node = NULL; 2301 btrfs_put_root(log_tree_root); 2302 return ret; 2303 } 2304 if (!extent_buffer_uptodate(log_tree_root->node)) { 2305 btrfs_err(fs_info, "failed to read log tree"); 2306 btrfs_put_root(log_tree_root); 2307 return -EIO; 2308 } 2309 2310 /* returns with log_tree_root freed on success */ 2311 ret = btrfs_recover_log_trees(log_tree_root); 2312 if (ret) { 2313 btrfs_handle_fs_error(fs_info, ret, 2314 "Failed to recover log tree"); 2315 btrfs_put_root(log_tree_root); 2316 return ret; 2317 } 2318 2319 if (sb_rdonly(fs_info->sb)) { 2320 ret = btrfs_commit_super(fs_info); 2321 if (ret) 2322 return ret; 2323 } 2324 2325 return 0; 2326 } 2327 2328 static int load_global_roots_objectid(struct btrfs_root *tree_root, 2329 struct btrfs_path *path, u64 objectid, 2330 const char *name) 2331 { 2332 struct btrfs_fs_info *fs_info = tree_root->fs_info; 2333 struct btrfs_root *root; 2334 u64 max_global_id = 0; 2335 int ret; 2336 struct btrfs_key key = { 2337 .objectid = objectid, 2338 .type = BTRFS_ROOT_ITEM_KEY, 2339 .offset = 0, 2340 }; 2341 bool found = false; 2342 2343 /* If we have IGNOREDATACSUMS skip loading these roots. */ 2344 if (objectid == BTRFS_CSUM_TREE_OBJECTID && 2345 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2346 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2347 return 0; 2348 } 2349 2350 while (1) { 2351 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 2352 if (ret < 0) 2353 break; 2354 2355 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2356 ret = btrfs_next_leaf(tree_root, path); 2357 if (ret) { 2358 if (ret > 0) 2359 ret = 0; 2360 break; 2361 } 2362 } 2363 ret = 0; 2364 2365 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2366 if (key.objectid != objectid) 2367 break; 2368 btrfs_release_path(path); 2369 2370 /* 2371 * Just worry about this for extent tree, it'll be the same for 2372 * everybody. 2373 */ 2374 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2375 max_global_id = max(max_global_id, key.offset); 2376 2377 found = true; 2378 root = read_tree_root_path(tree_root, path, &key); 2379 if (IS_ERR(root)) { 2380 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2381 ret = PTR_ERR(root); 2382 break; 2383 } 2384 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2385 ret = btrfs_global_root_insert(root); 2386 if (ret) { 2387 btrfs_put_root(root); 2388 break; 2389 } 2390 key.offset++; 2391 } 2392 btrfs_release_path(path); 2393 2394 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2395 fs_info->nr_global_roots = max_global_id + 1; 2396 2397 if (!found || ret) { 2398 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 2399 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2400 2401 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2402 ret = ret ? ret : -ENOENT; 2403 else 2404 ret = 0; 2405 btrfs_err(fs_info, "failed to load root %s", name); 2406 } 2407 return ret; 2408 } 2409 2410 static int load_global_roots(struct btrfs_root *tree_root) 2411 { 2412 struct btrfs_path *path; 2413 int ret = 0; 2414 2415 path = btrfs_alloc_path(); 2416 if (!path) 2417 return -ENOMEM; 2418 2419 ret = load_global_roots_objectid(tree_root, path, 2420 BTRFS_EXTENT_TREE_OBJECTID, "extent"); 2421 if (ret) 2422 goto out; 2423 ret = load_global_roots_objectid(tree_root, path, 2424 BTRFS_CSUM_TREE_OBJECTID, "csum"); 2425 if (ret) 2426 goto out; 2427 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) 2428 goto out; 2429 ret = load_global_roots_objectid(tree_root, path, 2430 BTRFS_FREE_SPACE_TREE_OBJECTID, 2431 "free space"); 2432 out: 2433 btrfs_free_path(path); 2434 return ret; 2435 } 2436 2437 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2438 { 2439 struct btrfs_root *tree_root = fs_info->tree_root; 2440 struct btrfs_root *root; 2441 struct btrfs_key location; 2442 int ret; 2443 2444 BUG_ON(!fs_info->tree_root); 2445 2446 ret = load_global_roots(tree_root); 2447 if (ret) 2448 return ret; 2449 2450 location.type = BTRFS_ROOT_ITEM_KEY; 2451 location.offset = 0; 2452 2453 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 2454 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; 2455 root = btrfs_read_tree_root(tree_root, &location); 2456 if (IS_ERR(root)) { 2457 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2458 ret = PTR_ERR(root); 2459 goto out; 2460 } 2461 } else { 2462 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2463 fs_info->block_group_root = root; 2464 } 2465 } 2466 2467 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2468 root = btrfs_read_tree_root(tree_root, &location); 2469 if (IS_ERR(root)) { 2470 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2471 ret = PTR_ERR(root); 2472 goto out; 2473 } 2474 } else { 2475 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2476 fs_info->dev_root = root; 2477 } 2478 /* Initialize fs_info for all devices in any case */ 2479 ret = btrfs_init_devices_late(fs_info); 2480 if (ret) 2481 goto out; 2482 2483 /* 2484 * This tree can share blocks with some other fs tree during relocation 2485 * and we need a proper setup by btrfs_get_fs_root 2486 */ 2487 root = btrfs_get_fs_root(tree_root->fs_info, 2488 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2489 if (IS_ERR(root)) { 2490 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2491 ret = PTR_ERR(root); 2492 goto out; 2493 } 2494 } else { 2495 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2496 fs_info->data_reloc_root = root; 2497 } 2498 2499 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2500 root = btrfs_read_tree_root(tree_root, &location); 2501 if (!IS_ERR(root)) { 2502 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2503 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2504 fs_info->quota_root = root; 2505 } 2506 2507 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2508 root = btrfs_read_tree_root(tree_root, &location); 2509 if (IS_ERR(root)) { 2510 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2511 ret = PTR_ERR(root); 2512 if (ret != -ENOENT) 2513 goto out; 2514 } 2515 } else { 2516 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2517 fs_info->uuid_root = root; 2518 } 2519 2520 return 0; 2521 out: 2522 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2523 location.objectid, ret); 2524 return ret; 2525 } 2526 2527 /* 2528 * Real super block validation 2529 * NOTE: super csum type and incompat features will not be checked here. 2530 * 2531 * @sb: super block to check 2532 * @mirror_num: the super block number to check its bytenr: 2533 * 0 the primary (1st) sb 2534 * 1, 2 2nd and 3rd backup copy 2535 * -1 skip bytenr check 2536 */ 2537 int btrfs_validate_super(struct btrfs_fs_info *fs_info, 2538 struct btrfs_super_block *sb, int mirror_num) 2539 { 2540 u64 nodesize = btrfs_super_nodesize(sb); 2541 u64 sectorsize = btrfs_super_sectorsize(sb); 2542 int ret = 0; 2543 2544 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2545 btrfs_err(fs_info, "no valid FS found"); 2546 ret = -EINVAL; 2547 } 2548 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2549 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2550 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2551 ret = -EINVAL; 2552 } 2553 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2554 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2555 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2556 ret = -EINVAL; 2557 } 2558 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2559 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2560 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2561 ret = -EINVAL; 2562 } 2563 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2564 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2565 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2566 ret = -EINVAL; 2567 } 2568 2569 /* 2570 * Check sectorsize and nodesize first, other check will need it. 2571 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2572 */ 2573 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2574 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2575 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2576 ret = -EINVAL; 2577 } 2578 2579 /* 2580 * We only support at most two sectorsizes: 4K and PAGE_SIZE. 2581 * 2582 * We can support 16K sectorsize with 64K page size without problem, 2583 * but such sectorsize/pagesize combination doesn't make much sense. 2584 * 4K will be our future standard, PAGE_SIZE is supported from the very 2585 * beginning. 2586 */ 2587 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) { 2588 btrfs_err(fs_info, 2589 "sectorsize %llu not yet supported for page size %lu", 2590 sectorsize, PAGE_SIZE); 2591 ret = -EINVAL; 2592 } 2593 2594 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2595 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2596 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2597 ret = -EINVAL; 2598 } 2599 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2600 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2601 le32_to_cpu(sb->__unused_leafsize), nodesize); 2602 ret = -EINVAL; 2603 } 2604 2605 /* Root alignment check */ 2606 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2607 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2608 btrfs_super_root(sb)); 2609 ret = -EINVAL; 2610 } 2611 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2612 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2613 btrfs_super_chunk_root(sb)); 2614 ret = -EINVAL; 2615 } 2616 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2617 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2618 btrfs_super_log_root(sb)); 2619 ret = -EINVAL; 2620 } 2621 2622 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, 2623 BTRFS_FSID_SIZE)) { 2624 btrfs_err(fs_info, 2625 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2626 fs_info->super_copy->fsid, fs_info->fs_devices->fsid); 2627 ret = -EINVAL; 2628 } 2629 2630 if (btrfs_fs_incompat(fs_info, METADATA_UUID) && 2631 memcmp(fs_info->fs_devices->metadata_uuid, 2632 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) { 2633 btrfs_err(fs_info, 2634 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2635 fs_info->super_copy->metadata_uuid, 2636 fs_info->fs_devices->metadata_uuid); 2637 ret = -EINVAL; 2638 } 2639 2640 /* 2641 * Artificial requirement for block-group-tree to force newer features 2642 * (free-space-tree, no-holes) so the test matrix is smaller. 2643 */ 2644 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 2645 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || 2646 !btrfs_fs_incompat(fs_info, NO_HOLES))) { 2647 btrfs_err(fs_info, 2648 "block-group-tree feature requires fres-space-tree and no-holes"); 2649 ret = -EINVAL; 2650 } 2651 2652 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2653 BTRFS_FSID_SIZE) != 0) { 2654 btrfs_err(fs_info, 2655 "dev_item UUID does not match metadata fsid: %pU != %pU", 2656 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2657 ret = -EINVAL; 2658 } 2659 2660 /* 2661 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2662 * done later 2663 */ 2664 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2665 btrfs_err(fs_info, "bytes_used is too small %llu", 2666 btrfs_super_bytes_used(sb)); 2667 ret = -EINVAL; 2668 } 2669 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2670 btrfs_err(fs_info, "invalid stripesize %u", 2671 btrfs_super_stripesize(sb)); 2672 ret = -EINVAL; 2673 } 2674 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2675 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2676 btrfs_super_num_devices(sb)); 2677 if (btrfs_super_num_devices(sb) == 0) { 2678 btrfs_err(fs_info, "number of devices is 0"); 2679 ret = -EINVAL; 2680 } 2681 2682 if (mirror_num >= 0 && 2683 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2684 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2685 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2686 ret = -EINVAL; 2687 } 2688 2689 /* 2690 * Obvious sys_chunk_array corruptions, it must hold at least one key 2691 * and one chunk 2692 */ 2693 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2694 btrfs_err(fs_info, "system chunk array too big %u > %u", 2695 btrfs_super_sys_array_size(sb), 2696 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2697 ret = -EINVAL; 2698 } 2699 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2700 + sizeof(struct btrfs_chunk)) { 2701 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2702 btrfs_super_sys_array_size(sb), 2703 sizeof(struct btrfs_disk_key) 2704 + sizeof(struct btrfs_chunk)); 2705 ret = -EINVAL; 2706 } 2707 2708 /* 2709 * The generation is a global counter, we'll trust it more than the others 2710 * but it's still possible that it's the one that's wrong. 2711 */ 2712 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2713 btrfs_warn(fs_info, 2714 "suspicious: generation < chunk_root_generation: %llu < %llu", 2715 btrfs_super_generation(sb), 2716 btrfs_super_chunk_root_generation(sb)); 2717 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2718 && btrfs_super_cache_generation(sb) != (u64)-1) 2719 btrfs_warn(fs_info, 2720 "suspicious: generation < cache_generation: %llu < %llu", 2721 btrfs_super_generation(sb), 2722 btrfs_super_cache_generation(sb)); 2723 2724 return ret; 2725 } 2726 2727 /* 2728 * Validation of super block at mount time. 2729 * Some checks already done early at mount time, like csum type and incompat 2730 * flags will be skipped. 2731 */ 2732 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2733 { 2734 return btrfs_validate_super(fs_info, fs_info->super_copy, 0); 2735 } 2736 2737 /* 2738 * Validation of super block at write time. 2739 * Some checks like bytenr check will be skipped as their values will be 2740 * overwritten soon. 2741 * Extra checks like csum type and incompat flags will be done here. 2742 */ 2743 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2744 struct btrfs_super_block *sb) 2745 { 2746 int ret; 2747 2748 ret = btrfs_validate_super(fs_info, sb, -1); 2749 if (ret < 0) 2750 goto out; 2751 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2752 ret = -EUCLEAN; 2753 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2754 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2755 goto out; 2756 } 2757 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2758 ret = -EUCLEAN; 2759 btrfs_err(fs_info, 2760 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2761 btrfs_super_incompat_flags(sb), 2762 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2763 goto out; 2764 } 2765 out: 2766 if (ret < 0) 2767 btrfs_err(fs_info, 2768 "super block corruption detected before writing it to disk"); 2769 return ret; 2770 } 2771 2772 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) 2773 { 2774 struct btrfs_tree_parent_check check = { 2775 .level = level, 2776 .transid = gen, 2777 .owner_root = root->root_key.objectid 2778 }; 2779 int ret = 0; 2780 2781 root->node = read_tree_block(root->fs_info, bytenr, &check); 2782 if (IS_ERR(root->node)) { 2783 ret = PTR_ERR(root->node); 2784 root->node = NULL; 2785 return ret; 2786 } 2787 if (!extent_buffer_uptodate(root->node)) { 2788 free_extent_buffer(root->node); 2789 root->node = NULL; 2790 return -EIO; 2791 } 2792 2793 btrfs_set_root_node(&root->root_item, root->node); 2794 root->commit_root = btrfs_root_node(root); 2795 btrfs_set_root_refs(&root->root_item, 1); 2796 return ret; 2797 } 2798 2799 static int load_important_roots(struct btrfs_fs_info *fs_info) 2800 { 2801 struct btrfs_super_block *sb = fs_info->super_copy; 2802 u64 gen, bytenr; 2803 int level, ret; 2804 2805 bytenr = btrfs_super_root(sb); 2806 gen = btrfs_super_generation(sb); 2807 level = btrfs_super_root_level(sb); 2808 ret = load_super_root(fs_info->tree_root, bytenr, gen, level); 2809 if (ret) { 2810 btrfs_warn(fs_info, "couldn't read tree root"); 2811 return ret; 2812 } 2813 return 0; 2814 } 2815 2816 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2817 { 2818 int backup_index = find_newest_super_backup(fs_info); 2819 struct btrfs_super_block *sb = fs_info->super_copy; 2820 struct btrfs_root *tree_root = fs_info->tree_root; 2821 bool handle_error = false; 2822 int ret = 0; 2823 int i; 2824 2825 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2826 if (handle_error) { 2827 if (!IS_ERR(tree_root->node)) 2828 free_extent_buffer(tree_root->node); 2829 tree_root->node = NULL; 2830 2831 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2832 break; 2833 2834 free_root_pointers(fs_info, 0); 2835 2836 /* 2837 * Don't use the log in recovery mode, it won't be 2838 * valid 2839 */ 2840 btrfs_set_super_log_root(sb, 0); 2841 2842 /* We can't trust the free space cache either */ 2843 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2844 2845 ret = read_backup_root(fs_info, i); 2846 backup_index = ret; 2847 if (ret < 0) 2848 return ret; 2849 } 2850 2851 ret = load_important_roots(fs_info); 2852 if (ret) { 2853 handle_error = true; 2854 continue; 2855 } 2856 2857 /* 2858 * No need to hold btrfs_root::objectid_mutex since the fs 2859 * hasn't been fully initialised and we are the only user 2860 */ 2861 ret = btrfs_init_root_free_objectid(tree_root); 2862 if (ret < 0) { 2863 handle_error = true; 2864 continue; 2865 } 2866 2867 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 2868 2869 ret = btrfs_read_roots(fs_info); 2870 if (ret < 0) { 2871 handle_error = true; 2872 continue; 2873 } 2874 2875 /* All successful */ 2876 fs_info->generation = btrfs_header_generation(tree_root->node); 2877 fs_info->last_trans_committed = fs_info->generation; 2878 fs_info->last_reloc_trans = 0; 2879 2880 /* Always begin writing backup roots after the one being used */ 2881 if (backup_index < 0) { 2882 fs_info->backup_root_index = 0; 2883 } else { 2884 fs_info->backup_root_index = backup_index + 1; 2885 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2886 } 2887 break; 2888 } 2889 2890 return ret; 2891 } 2892 2893 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2894 { 2895 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2896 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2897 INIT_LIST_HEAD(&fs_info->trans_list); 2898 INIT_LIST_HEAD(&fs_info->dead_roots); 2899 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2900 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2901 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2902 spin_lock_init(&fs_info->delalloc_root_lock); 2903 spin_lock_init(&fs_info->trans_lock); 2904 spin_lock_init(&fs_info->fs_roots_radix_lock); 2905 spin_lock_init(&fs_info->delayed_iput_lock); 2906 spin_lock_init(&fs_info->defrag_inodes_lock); 2907 spin_lock_init(&fs_info->super_lock); 2908 spin_lock_init(&fs_info->buffer_lock); 2909 spin_lock_init(&fs_info->unused_bgs_lock); 2910 spin_lock_init(&fs_info->treelog_bg_lock); 2911 spin_lock_init(&fs_info->zone_active_bgs_lock); 2912 spin_lock_init(&fs_info->relocation_bg_lock); 2913 rwlock_init(&fs_info->tree_mod_log_lock); 2914 rwlock_init(&fs_info->global_root_lock); 2915 mutex_init(&fs_info->unused_bg_unpin_mutex); 2916 mutex_init(&fs_info->reclaim_bgs_lock); 2917 mutex_init(&fs_info->reloc_mutex); 2918 mutex_init(&fs_info->delalloc_root_mutex); 2919 mutex_init(&fs_info->zoned_meta_io_lock); 2920 mutex_init(&fs_info->zoned_data_reloc_io_lock); 2921 seqlock_init(&fs_info->profiles_lock); 2922 2923 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); 2924 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); 2925 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); 2926 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); 2927 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start, 2928 BTRFS_LOCKDEP_TRANS_COMMIT_START); 2929 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, 2930 BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2931 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, 2932 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2933 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, 2934 BTRFS_LOCKDEP_TRANS_COMPLETED); 2935 2936 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2937 INIT_LIST_HEAD(&fs_info->space_info); 2938 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2939 INIT_LIST_HEAD(&fs_info->unused_bgs); 2940 INIT_LIST_HEAD(&fs_info->reclaim_bgs); 2941 INIT_LIST_HEAD(&fs_info->zone_active_bgs); 2942 #ifdef CONFIG_BTRFS_DEBUG 2943 INIT_LIST_HEAD(&fs_info->allocated_roots); 2944 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2945 spin_lock_init(&fs_info->eb_leak_lock); 2946 #endif 2947 extent_map_tree_init(&fs_info->mapping_tree); 2948 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2949 BTRFS_BLOCK_RSV_GLOBAL); 2950 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2951 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2952 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2953 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2954 BTRFS_BLOCK_RSV_DELOPS); 2955 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2956 BTRFS_BLOCK_RSV_DELREFS); 2957 2958 atomic_set(&fs_info->async_delalloc_pages, 0); 2959 atomic_set(&fs_info->defrag_running, 0); 2960 atomic_set(&fs_info->nr_delayed_iputs, 0); 2961 atomic64_set(&fs_info->tree_mod_seq, 0); 2962 fs_info->global_root_tree = RB_ROOT; 2963 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2964 fs_info->metadata_ratio = 0; 2965 fs_info->defrag_inodes = RB_ROOT; 2966 atomic64_set(&fs_info->free_chunk_space, 0); 2967 fs_info->tree_mod_log = RB_ROOT; 2968 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2969 btrfs_init_ref_verify(fs_info); 2970 2971 fs_info->thread_pool_size = min_t(unsigned long, 2972 num_online_cpus() + 2, 8); 2973 2974 INIT_LIST_HEAD(&fs_info->ordered_roots); 2975 spin_lock_init(&fs_info->ordered_root_lock); 2976 2977 btrfs_init_scrub(fs_info); 2978 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2979 fs_info->check_integrity_print_mask = 0; 2980 #endif 2981 btrfs_init_balance(fs_info); 2982 btrfs_init_async_reclaim_work(fs_info); 2983 2984 rwlock_init(&fs_info->block_group_cache_lock); 2985 fs_info->block_group_cache_tree = RB_ROOT_CACHED; 2986 2987 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2988 IO_TREE_FS_EXCLUDED_EXTENTS); 2989 2990 mutex_init(&fs_info->ordered_operations_mutex); 2991 mutex_init(&fs_info->tree_log_mutex); 2992 mutex_init(&fs_info->chunk_mutex); 2993 mutex_init(&fs_info->transaction_kthread_mutex); 2994 mutex_init(&fs_info->cleaner_mutex); 2995 mutex_init(&fs_info->ro_block_group_mutex); 2996 init_rwsem(&fs_info->commit_root_sem); 2997 init_rwsem(&fs_info->cleanup_work_sem); 2998 init_rwsem(&fs_info->subvol_sem); 2999 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 3000 3001 btrfs_init_dev_replace_locks(fs_info); 3002 btrfs_init_qgroup(fs_info); 3003 btrfs_discard_init(fs_info); 3004 3005 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 3006 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 3007 3008 init_waitqueue_head(&fs_info->transaction_throttle); 3009 init_waitqueue_head(&fs_info->transaction_wait); 3010 init_waitqueue_head(&fs_info->transaction_blocked_wait); 3011 init_waitqueue_head(&fs_info->async_submit_wait); 3012 init_waitqueue_head(&fs_info->delayed_iputs_wait); 3013 3014 /* Usable values until the real ones are cached from the superblock */ 3015 fs_info->nodesize = 4096; 3016 fs_info->sectorsize = 4096; 3017 fs_info->sectorsize_bits = ilog2(4096); 3018 fs_info->stripesize = 4096; 3019 3020 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; 3021 3022 spin_lock_init(&fs_info->swapfile_pins_lock); 3023 fs_info->swapfile_pins = RB_ROOT; 3024 3025 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; 3026 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); 3027 } 3028 3029 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 3030 { 3031 int ret; 3032 3033 fs_info->sb = sb; 3034 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 3035 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 3036 3037 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 3038 if (ret) 3039 return ret; 3040 3041 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 3042 if (ret) 3043 return ret; 3044 3045 fs_info->dirty_metadata_batch = PAGE_SIZE * 3046 (1 + ilog2(nr_cpu_ids)); 3047 3048 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 3049 if (ret) 3050 return ret; 3051 3052 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 3053 GFP_KERNEL); 3054 if (ret) 3055 return ret; 3056 3057 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 3058 GFP_KERNEL); 3059 if (!fs_info->delayed_root) 3060 return -ENOMEM; 3061 btrfs_init_delayed_root(fs_info->delayed_root); 3062 3063 if (sb_rdonly(sb)) 3064 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 3065 3066 return btrfs_alloc_stripe_hash_table(fs_info); 3067 } 3068 3069 static int btrfs_uuid_rescan_kthread(void *data) 3070 { 3071 struct btrfs_fs_info *fs_info = data; 3072 int ret; 3073 3074 /* 3075 * 1st step is to iterate through the existing UUID tree and 3076 * to delete all entries that contain outdated data. 3077 * 2nd step is to add all missing entries to the UUID tree. 3078 */ 3079 ret = btrfs_uuid_tree_iterate(fs_info); 3080 if (ret < 0) { 3081 if (ret != -EINTR) 3082 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 3083 ret); 3084 up(&fs_info->uuid_tree_rescan_sem); 3085 return ret; 3086 } 3087 return btrfs_uuid_scan_kthread(data); 3088 } 3089 3090 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 3091 { 3092 struct task_struct *task; 3093 3094 down(&fs_info->uuid_tree_rescan_sem); 3095 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 3096 if (IS_ERR(task)) { 3097 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 3098 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 3099 up(&fs_info->uuid_tree_rescan_sem); 3100 return PTR_ERR(task); 3101 } 3102 3103 return 0; 3104 } 3105 3106 /* 3107 * Some options only have meaning at mount time and shouldn't persist across 3108 * remounts, or be displayed. Clear these at the end of mount and remount 3109 * code paths. 3110 */ 3111 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info) 3112 { 3113 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3114 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE); 3115 } 3116 3117 /* 3118 * Mounting logic specific to read-write file systems. Shared by open_ctree 3119 * and btrfs_remount when remounting from read-only to read-write. 3120 */ 3121 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 3122 { 3123 int ret; 3124 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 3125 bool rebuild_free_space_tree = false; 3126 3127 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3128 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3129 rebuild_free_space_tree = true; 3130 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3131 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3132 btrfs_warn(fs_info, "free space tree is invalid"); 3133 rebuild_free_space_tree = true; 3134 } 3135 3136 if (rebuild_free_space_tree) { 3137 btrfs_info(fs_info, "rebuilding free space tree"); 3138 ret = btrfs_rebuild_free_space_tree(fs_info); 3139 if (ret) { 3140 btrfs_warn(fs_info, 3141 "failed to rebuild free space tree: %d", ret); 3142 goto out; 3143 } 3144 } 3145 3146 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3147 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) { 3148 btrfs_info(fs_info, "disabling free space tree"); 3149 ret = btrfs_delete_free_space_tree(fs_info); 3150 if (ret) { 3151 btrfs_warn(fs_info, 3152 "failed to disable free space tree: %d", ret); 3153 goto out; 3154 } 3155 } 3156 3157 /* 3158 * btrfs_find_orphan_roots() is responsible for finding all the dead 3159 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load 3160 * them into the fs_info->fs_roots_radix tree. This must be done before 3161 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it 3162 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan 3163 * item before the root's tree is deleted - this means that if we unmount 3164 * or crash before the deletion completes, on the next mount we will not 3165 * delete what remains of the tree because the orphan item does not 3166 * exists anymore, which is what tells us we have a pending deletion. 3167 */ 3168 ret = btrfs_find_orphan_roots(fs_info); 3169 if (ret) 3170 goto out; 3171 3172 ret = btrfs_cleanup_fs_roots(fs_info); 3173 if (ret) 3174 goto out; 3175 3176 down_read(&fs_info->cleanup_work_sem); 3177 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3178 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3179 up_read(&fs_info->cleanup_work_sem); 3180 goto out; 3181 } 3182 up_read(&fs_info->cleanup_work_sem); 3183 3184 mutex_lock(&fs_info->cleaner_mutex); 3185 ret = btrfs_recover_relocation(fs_info); 3186 mutex_unlock(&fs_info->cleaner_mutex); 3187 if (ret < 0) { 3188 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 3189 goto out; 3190 } 3191 3192 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3193 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3194 btrfs_info(fs_info, "creating free space tree"); 3195 ret = btrfs_create_free_space_tree(fs_info); 3196 if (ret) { 3197 btrfs_warn(fs_info, 3198 "failed to create free space tree: %d", ret); 3199 goto out; 3200 } 3201 } 3202 3203 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 3204 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 3205 if (ret) 3206 goto out; 3207 } 3208 3209 ret = btrfs_resume_balance_async(fs_info); 3210 if (ret) 3211 goto out; 3212 3213 ret = btrfs_resume_dev_replace_async(fs_info); 3214 if (ret) { 3215 btrfs_warn(fs_info, "failed to resume dev_replace"); 3216 goto out; 3217 } 3218 3219 btrfs_qgroup_rescan_resume(fs_info); 3220 3221 if (!fs_info->uuid_root) { 3222 btrfs_info(fs_info, "creating UUID tree"); 3223 ret = btrfs_create_uuid_tree(fs_info); 3224 if (ret) { 3225 btrfs_warn(fs_info, 3226 "failed to create the UUID tree %d", ret); 3227 goto out; 3228 } 3229 } 3230 3231 out: 3232 return ret; 3233 } 3234 3235 /* 3236 * Do various sanity and dependency checks of different features. 3237 * 3238 * @is_rw_mount: If the mount is read-write. 3239 * 3240 * This is the place for less strict checks (like for subpage or artificial 3241 * feature dependencies). 3242 * 3243 * For strict checks or possible corruption detection, see 3244 * btrfs_validate_super(). 3245 * 3246 * This should be called after btrfs_parse_options(), as some mount options 3247 * (space cache related) can modify on-disk format like free space tree and 3248 * screw up certain feature dependencies. 3249 */ 3250 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount) 3251 { 3252 struct btrfs_super_block *disk_super = fs_info->super_copy; 3253 u64 incompat = btrfs_super_incompat_flags(disk_super); 3254 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super); 3255 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); 3256 3257 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 3258 btrfs_err(fs_info, 3259 "cannot mount because of unknown incompat features (0x%llx)", 3260 incompat); 3261 return -EINVAL; 3262 } 3263 3264 /* Runtime limitation for mixed block groups. */ 3265 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3266 (fs_info->sectorsize != fs_info->nodesize)) { 3267 btrfs_err(fs_info, 3268 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3269 fs_info->nodesize, fs_info->sectorsize); 3270 return -EINVAL; 3271 } 3272 3273 /* Mixed backref is an always-enabled feature. */ 3274 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3275 3276 /* Set compression related flags just in case. */ 3277 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3278 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3279 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3280 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3281 3282 /* 3283 * An ancient flag, which should really be marked deprecated. 3284 * Such runtime limitation doesn't really need a incompat flag. 3285 */ 3286 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) 3287 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3288 3289 if (compat_ro_unsupp && is_rw_mount) { 3290 btrfs_err(fs_info, 3291 "cannot mount read-write because of unknown compat_ro features (0x%llx)", 3292 compat_ro); 3293 return -EINVAL; 3294 } 3295 3296 /* 3297 * We have unsupported RO compat features, although RO mounted, we 3298 * should not cause any metadata writes, including log replay. 3299 * Or we could screw up whatever the new feature requires. 3300 */ 3301 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) && 3302 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3303 btrfs_err(fs_info, 3304 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", 3305 compat_ro); 3306 return -EINVAL; 3307 } 3308 3309 /* 3310 * Artificial limitations for block group tree, to force 3311 * block-group-tree to rely on no-holes and free-space-tree. 3312 */ 3313 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 3314 (!btrfs_fs_incompat(fs_info, NO_HOLES) || 3315 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { 3316 btrfs_err(fs_info, 3317 "block-group-tree feature requires no-holes and free-space-tree features"); 3318 return -EINVAL; 3319 } 3320 3321 /* 3322 * Subpage runtime limitation on v1 cache. 3323 * 3324 * V1 space cache still has some hard codeed PAGE_SIZE usage, while 3325 * we're already defaulting to v2 cache, no need to bother v1 as it's 3326 * going to be deprecated anyway. 3327 */ 3328 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { 3329 btrfs_warn(fs_info, 3330 "v1 space cache is not supported for page size %lu with sectorsize %u", 3331 PAGE_SIZE, fs_info->sectorsize); 3332 return -EINVAL; 3333 } 3334 3335 /* This can be called by remount, we need to protect the super block. */ 3336 spin_lock(&fs_info->super_lock); 3337 btrfs_set_super_incompat_flags(disk_super, incompat); 3338 spin_unlock(&fs_info->super_lock); 3339 3340 return 0; 3341 } 3342 3343 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 3344 char *options) 3345 { 3346 u32 sectorsize; 3347 u32 nodesize; 3348 u32 stripesize; 3349 u64 generation; 3350 u64 features; 3351 u16 csum_type; 3352 struct btrfs_super_block *disk_super; 3353 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3354 struct btrfs_root *tree_root; 3355 struct btrfs_root *chunk_root; 3356 int ret; 3357 int level; 3358 3359 ret = init_mount_fs_info(fs_info, sb); 3360 if (ret) 3361 goto fail; 3362 3363 /* These need to be init'ed before we start creating inodes and such. */ 3364 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3365 GFP_KERNEL); 3366 fs_info->tree_root = tree_root; 3367 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3368 GFP_KERNEL); 3369 fs_info->chunk_root = chunk_root; 3370 if (!tree_root || !chunk_root) { 3371 ret = -ENOMEM; 3372 goto fail; 3373 } 3374 3375 ret = btrfs_init_btree_inode(sb); 3376 if (ret) 3377 goto fail; 3378 3379 invalidate_bdev(fs_devices->latest_dev->bdev); 3380 3381 /* 3382 * Read super block and check the signature bytes only 3383 */ 3384 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev); 3385 if (IS_ERR(disk_super)) { 3386 ret = PTR_ERR(disk_super); 3387 goto fail_alloc; 3388 } 3389 3390 /* 3391 * Verify the type first, if that or the checksum value are 3392 * corrupted, we'll find out 3393 */ 3394 csum_type = btrfs_super_csum_type(disk_super); 3395 if (!btrfs_supported_super_csum(csum_type)) { 3396 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3397 csum_type); 3398 ret = -EINVAL; 3399 btrfs_release_disk_super(disk_super); 3400 goto fail_alloc; 3401 } 3402 3403 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3404 3405 ret = btrfs_init_csum_hash(fs_info, csum_type); 3406 if (ret) { 3407 btrfs_release_disk_super(disk_super); 3408 goto fail_alloc; 3409 } 3410 3411 /* 3412 * We want to check superblock checksum, the type is stored inside. 3413 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3414 */ 3415 if (btrfs_check_super_csum(fs_info, disk_super)) { 3416 btrfs_err(fs_info, "superblock checksum mismatch"); 3417 ret = -EINVAL; 3418 btrfs_release_disk_super(disk_super); 3419 goto fail_alloc; 3420 } 3421 3422 /* 3423 * super_copy is zeroed at allocation time and we never touch the 3424 * following bytes up to INFO_SIZE, the checksum is calculated from 3425 * the whole block of INFO_SIZE 3426 */ 3427 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3428 btrfs_release_disk_super(disk_super); 3429 3430 disk_super = fs_info->super_copy; 3431 3432 3433 features = btrfs_super_flags(disk_super); 3434 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 3435 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 3436 btrfs_set_super_flags(disk_super, features); 3437 btrfs_info(fs_info, 3438 "found metadata UUID change in progress flag, clearing"); 3439 } 3440 3441 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3442 sizeof(*fs_info->super_for_commit)); 3443 3444 ret = btrfs_validate_mount_super(fs_info); 3445 if (ret) { 3446 btrfs_err(fs_info, "superblock contains fatal errors"); 3447 ret = -EINVAL; 3448 goto fail_alloc; 3449 } 3450 3451 if (!btrfs_super_root(disk_super)) { 3452 btrfs_err(fs_info, "invalid superblock tree root bytenr"); 3453 ret = -EINVAL; 3454 goto fail_alloc; 3455 } 3456 3457 /* check FS state, whether FS is broken. */ 3458 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3459 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 3460 3461 /* 3462 * In the long term, we'll store the compression type in the super 3463 * block, and it'll be used for per file compression control. 3464 */ 3465 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 3466 3467 3468 /* Set up fs_info before parsing mount options */ 3469 nodesize = btrfs_super_nodesize(disk_super); 3470 sectorsize = btrfs_super_sectorsize(disk_super); 3471 stripesize = sectorsize; 3472 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3473 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3474 3475 fs_info->nodesize = nodesize; 3476 fs_info->sectorsize = sectorsize; 3477 fs_info->sectorsize_bits = ilog2(sectorsize); 3478 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3479 fs_info->stripesize = stripesize; 3480 3481 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 3482 if (ret) 3483 goto fail_alloc; 3484 3485 ret = btrfs_check_features(fs_info, !sb_rdonly(sb)); 3486 if (ret < 0) 3487 goto fail_alloc; 3488 3489 if (sectorsize < PAGE_SIZE) { 3490 struct btrfs_subpage_info *subpage_info; 3491 3492 /* 3493 * V1 space cache has some hardcoded PAGE_SIZE usage, and is 3494 * going to be deprecated. 3495 * 3496 * Force to use v2 cache for subpage case. 3497 */ 3498 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 3499 btrfs_set_and_info(fs_info, FREE_SPACE_TREE, 3500 "forcing free space tree for sector size %u with page size %lu", 3501 sectorsize, PAGE_SIZE); 3502 3503 btrfs_warn(fs_info, 3504 "read-write for sector size %u with page size %lu is experimental", 3505 sectorsize, PAGE_SIZE); 3506 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL); 3507 if (!subpage_info) { 3508 ret = -ENOMEM; 3509 goto fail_alloc; 3510 } 3511 btrfs_init_subpage_info(subpage_info, sectorsize); 3512 fs_info->subpage_info = subpage_info; 3513 } 3514 3515 ret = btrfs_init_workqueues(fs_info); 3516 if (ret) 3517 goto fail_sb_buffer; 3518 3519 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3520 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3521 3522 sb->s_blocksize = sectorsize; 3523 sb->s_blocksize_bits = blksize_bits(sectorsize); 3524 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3525 3526 mutex_lock(&fs_info->chunk_mutex); 3527 ret = btrfs_read_sys_array(fs_info); 3528 mutex_unlock(&fs_info->chunk_mutex); 3529 if (ret) { 3530 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3531 goto fail_sb_buffer; 3532 } 3533 3534 generation = btrfs_super_chunk_root_generation(disk_super); 3535 level = btrfs_super_chunk_root_level(disk_super); 3536 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super), 3537 generation, level); 3538 if (ret) { 3539 btrfs_err(fs_info, "failed to read chunk root"); 3540 goto fail_tree_roots; 3541 } 3542 3543 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3544 offsetof(struct btrfs_header, chunk_tree_uuid), 3545 BTRFS_UUID_SIZE); 3546 3547 ret = btrfs_read_chunk_tree(fs_info); 3548 if (ret) { 3549 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3550 goto fail_tree_roots; 3551 } 3552 3553 /* 3554 * At this point we know all the devices that make this filesystem, 3555 * including the seed devices but we don't know yet if the replace 3556 * target is required. So free devices that are not part of this 3557 * filesystem but skip the replace target device which is checked 3558 * below in btrfs_init_dev_replace(). 3559 */ 3560 btrfs_free_extra_devids(fs_devices); 3561 if (!fs_devices->latest_dev->bdev) { 3562 btrfs_err(fs_info, "failed to read devices"); 3563 ret = -EIO; 3564 goto fail_tree_roots; 3565 } 3566 3567 ret = init_tree_roots(fs_info); 3568 if (ret) 3569 goto fail_tree_roots; 3570 3571 /* 3572 * Get zone type information of zoned block devices. This will also 3573 * handle emulation of a zoned filesystem if a regular device has the 3574 * zoned incompat feature flag set. 3575 */ 3576 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3577 if (ret) { 3578 btrfs_err(fs_info, 3579 "zoned: failed to read device zone info: %d", ret); 3580 goto fail_block_groups; 3581 } 3582 3583 /* 3584 * If we have a uuid root and we're not being told to rescan we need to 3585 * check the generation here so we can set the 3586 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3587 * transaction during a balance or the log replay without updating the 3588 * uuid generation, and then if we crash we would rescan the uuid tree, 3589 * even though it was perfectly fine. 3590 */ 3591 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3592 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3593 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3594 3595 ret = btrfs_verify_dev_extents(fs_info); 3596 if (ret) { 3597 btrfs_err(fs_info, 3598 "failed to verify dev extents against chunks: %d", 3599 ret); 3600 goto fail_block_groups; 3601 } 3602 ret = btrfs_recover_balance(fs_info); 3603 if (ret) { 3604 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3605 goto fail_block_groups; 3606 } 3607 3608 ret = btrfs_init_dev_stats(fs_info); 3609 if (ret) { 3610 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3611 goto fail_block_groups; 3612 } 3613 3614 ret = btrfs_init_dev_replace(fs_info); 3615 if (ret) { 3616 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3617 goto fail_block_groups; 3618 } 3619 3620 ret = btrfs_check_zoned_mode(fs_info); 3621 if (ret) { 3622 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3623 ret); 3624 goto fail_block_groups; 3625 } 3626 3627 ret = btrfs_sysfs_add_fsid(fs_devices); 3628 if (ret) { 3629 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3630 ret); 3631 goto fail_block_groups; 3632 } 3633 3634 ret = btrfs_sysfs_add_mounted(fs_info); 3635 if (ret) { 3636 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3637 goto fail_fsdev_sysfs; 3638 } 3639 3640 ret = btrfs_init_space_info(fs_info); 3641 if (ret) { 3642 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3643 goto fail_sysfs; 3644 } 3645 3646 ret = btrfs_read_block_groups(fs_info); 3647 if (ret) { 3648 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3649 goto fail_sysfs; 3650 } 3651 3652 btrfs_free_zone_cache(fs_info); 3653 3654 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && 3655 !btrfs_check_rw_degradable(fs_info, NULL)) { 3656 btrfs_warn(fs_info, 3657 "writable mount is not allowed due to too many missing devices"); 3658 ret = -EINVAL; 3659 goto fail_sysfs; 3660 } 3661 3662 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, 3663 "btrfs-cleaner"); 3664 if (IS_ERR(fs_info->cleaner_kthread)) { 3665 ret = PTR_ERR(fs_info->cleaner_kthread); 3666 goto fail_sysfs; 3667 } 3668 3669 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3670 tree_root, 3671 "btrfs-transaction"); 3672 if (IS_ERR(fs_info->transaction_kthread)) { 3673 ret = PTR_ERR(fs_info->transaction_kthread); 3674 goto fail_cleaner; 3675 } 3676 3677 if (!btrfs_test_opt(fs_info, NOSSD) && 3678 !fs_info->fs_devices->rotating) { 3679 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3680 } 3681 3682 /* 3683 * For devices supporting discard turn on discard=async automatically, 3684 * unless it's already set or disabled. This could be turned off by 3685 * nodiscard for the same mount. 3686 */ 3687 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) || 3688 btrfs_test_opt(fs_info, DISCARD_ASYNC) || 3689 btrfs_test_opt(fs_info, NODISCARD)) && 3690 fs_info->fs_devices->discardable) { 3691 btrfs_set_and_info(fs_info, DISCARD_ASYNC, 3692 "auto enabling async discard"); 3693 } 3694 3695 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3696 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3697 ret = btrfsic_mount(fs_info, fs_devices, 3698 btrfs_test_opt(fs_info, 3699 CHECK_INTEGRITY_DATA) ? 1 : 0, 3700 fs_info->check_integrity_print_mask); 3701 if (ret) 3702 btrfs_warn(fs_info, 3703 "failed to initialize integrity check module: %d", 3704 ret); 3705 } 3706 #endif 3707 ret = btrfs_read_qgroup_config(fs_info); 3708 if (ret) 3709 goto fail_trans_kthread; 3710 3711 if (btrfs_build_ref_tree(fs_info)) 3712 btrfs_err(fs_info, "couldn't build ref tree"); 3713 3714 /* do not make disk changes in broken FS or nologreplay is given */ 3715 if (btrfs_super_log_root(disk_super) != 0 && 3716 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3717 btrfs_info(fs_info, "start tree-log replay"); 3718 ret = btrfs_replay_log(fs_info, fs_devices); 3719 if (ret) 3720 goto fail_qgroup; 3721 } 3722 3723 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3724 if (IS_ERR(fs_info->fs_root)) { 3725 ret = PTR_ERR(fs_info->fs_root); 3726 btrfs_warn(fs_info, "failed to read fs tree: %d", ret); 3727 fs_info->fs_root = NULL; 3728 goto fail_qgroup; 3729 } 3730 3731 if (sb_rdonly(sb)) 3732 goto clear_oneshot; 3733 3734 ret = btrfs_start_pre_rw_mount(fs_info); 3735 if (ret) { 3736 close_ctree(fs_info); 3737 return ret; 3738 } 3739 btrfs_discard_resume(fs_info); 3740 3741 if (fs_info->uuid_root && 3742 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3743 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3744 btrfs_info(fs_info, "checking UUID tree"); 3745 ret = btrfs_check_uuid_tree(fs_info); 3746 if (ret) { 3747 btrfs_warn(fs_info, 3748 "failed to check the UUID tree: %d", ret); 3749 close_ctree(fs_info); 3750 return ret; 3751 } 3752 } 3753 3754 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3755 3756 /* Kick the cleaner thread so it'll start deleting snapshots. */ 3757 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) 3758 wake_up_process(fs_info->cleaner_kthread); 3759 3760 clear_oneshot: 3761 btrfs_clear_oneshot_options(fs_info); 3762 return 0; 3763 3764 fail_qgroup: 3765 btrfs_free_qgroup_config(fs_info); 3766 fail_trans_kthread: 3767 kthread_stop(fs_info->transaction_kthread); 3768 btrfs_cleanup_transaction(fs_info); 3769 btrfs_free_fs_roots(fs_info); 3770 fail_cleaner: 3771 kthread_stop(fs_info->cleaner_kthread); 3772 3773 /* 3774 * make sure we're done with the btree inode before we stop our 3775 * kthreads 3776 */ 3777 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3778 3779 fail_sysfs: 3780 btrfs_sysfs_remove_mounted(fs_info); 3781 3782 fail_fsdev_sysfs: 3783 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3784 3785 fail_block_groups: 3786 btrfs_put_block_group_cache(fs_info); 3787 3788 fail_tree_roots: 3789 if (fs_info->data_reloc_root) 3790 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3791 free_root_pointers(fs_info, true); 3792 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3793 3794 fail_sb_buffer: 3795 btrfs_stop_all_workers(fs_info); 3796 btrfs_free_block_groups(fs_info); 3797 fail_alloc: 3798 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3799 3800 iput(fs_info->btree_inode); 3801 fail: 3802 btrfs_close_devices(fs_info->fs_devices); 3803 ASSERT(ret < 0); 3804 return ret; 3805 } 3806 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3807 3808 static void btrfs_end_super_write(struct bio *bio) 3809 { 3810 struct btrfs_device *device = bio->bi_private; 3811 struct bio_vec *bvec; 3812 struct bvec_iter_all iter_all; 3813 struct page *page; 3814 3815 bio_for_each_segment_all(bvec, bio, iter_all) { 3816 page = bvec->bv_page; 3817 3818 if (bio->bi_status) { 3819 btrfs_warn_rl_in_rcu(device->fs_info, 3820 "lost page write due to IO error on %s (%d)", 3821 btrfs_dev_name(device), 3822 blk_status_to_errno(bio->bi_status)); 3823 ClearPageUptodate(page); 3824 SetPageError(page); 3825 btrfs_dev_stat_inc_and_print(device, 3826 BTRFS_DEV_STAT_WRITE_ERRS); 3827 } else { 3828 SetPageUptodate(page); 3829 } 3830 3831 put_page(page); 3832 unlock_page(page); 3833 } 3834 3835 bio_put(bio); 3836 } 3837 3838 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3839 int copy_num, bool drop_cache) 3840 { 3841 struct btrfs_super_block *super; 3842 struct page *page; 3843 u64 bytenr, bytenr_orig; 3844 struct address_space *mapping = bdev->bd_inode->i_mapping; 3845 int ret; 3846 3847 bytenr_orig = btrfs_sb_offset(copy_num); 3848 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 3849 if (ret == -ENOENT) 3850 return ERR_PTR(-EINVAL); 3851 else if (ret) 3852 return ERR_PTR(ret); 3853 3854 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) 3855 return ERR_PTR(-EINVAL); 3856 3857 if (drop_cache) { 3858 /* This should only be called with the primary sb. */ 3859 ASSERT(copy_num == 0); 3860 3861 /* 3862 * Drop the page of the primary superblock, so later read will 3863 * always read from the device. 3864 */ 3865 invalidate_inode_pages2_range(mapping, 3866 bytenr >> PAGE_SHIFT, 3867 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT); 3868 } 3869 3870 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 3871 if (IS_ERR(page)) 3872 return ERR_CAST(page); 3873 3874 super = page_address(page); 3875 if (btrfs_super_magic(super) != BTRFS_MAGIC) { 3876 btrfs_release_disk_super(super); 3877 return ERR_PTR(-ENODATA); 3878 } 3879 3880 if (btrfs_super_bytenr(super) != bytenr_orig) { 3881 btrfs_release_disk_super(super); 3882 return ERR_PTR(-EINVAL); 3883 } 3884 3885 return super; 3886 } 3887 3888 3889 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 3890 { 3891 struct btrfs_super_block *super, *latest = NULL; 3892 int i; 3893 u64 transid = 0; 3894 3895 /* we would like to check all the supers, but that would make 3896 * a btrfs mount succeed after a mkfs from a different FS. 3897 * So, we need to add a special mount option to scan for 3898 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3899 */ 3900 for (i = 0; i < 1; i++) { 3901 super = btrfs_read_dev_one_super(bdev, i, false); 3902 if (IS_ERR(super)) 3903 continue; 3904 3905 if (!latest || btrfs_super_generation(super) > transid) { 3906 if (latest) 3907 btrfs_release_disk_super(super); 3908 3909 latest = super; 3910 transid = btrfs_super_generation(super); 3911 } 3912 } 3913 3914 return super; 3915 } 3916 3917 /* 3918 * Write superblock @sb to the @device. Do not wait for completion, all the 3919 * pages we use for writing are locked. 3920 * 3921 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3922 * the expected device size at commit time. Note that max_mirrors must be 3923 * same for write and wait phases. 3924 * 3925 * Return number of errors when page is not found or submission fails. 3926 */ 3927 static int write_dev_supers(struct btrfs_device *device, 3928 struct btrfs_super_block *sb, int max_mirrors) 3929 { 3930 struct btrfs_fs_info *fs_info = device->fs_info; 3931 struct address_space *mapping = device->bdev->bd_inode->i_mapping; 3932 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3933 int i; 3934 int errors = 0; 3935 int ret; 3936 u64 bytenr, bytenr_orig; 3937 3938 if (max_mirrors == 0) 3939 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3940 3941 shash->tfm = fs_info->csum_shash; 3942 3943 for (i = 0; i < max_mirrors; i++) { 3944 struct page *page; 3945 struct bio *bio; 3946 struct btrfs_super_block *disk_super; 3947 3948 bytenr_orig = btrfs_sb_offset(i); 3949 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 3950 if (ret == -ENOENT) { 3951 continue; 3952 } else if (ret < 0) { 3953 btrfs_err(device->fs_info, 3954 "couldn't get super block location for mirror %d", 3955 i); 3956 errors++; 3957 continue; 3958 } 3959 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3960 device->commit_total_bytes) 3961 break; 3962 3963 btrfs_set_super_bytenr(sb, bytenr_orig); 3964 3965 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3966 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 3967 sb->csum); 3968 3969 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT, 3970 GFP_NOFS); 3971 if (!page) { 3972 btrfs_err(device->fs_info, 3973 "couldn't get super block page for bytenr %llu", 3974 bytenr); 3975 errors++; 3976 continue; 3977 } 3978 3979 /* Bump the refcount for wait_dev_supers() */ 3980 get_page(page); 3981 3982 disk_super = page_address(page); 3983 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3984 3985 /* 3986 * Directly use bios here instead of relying on the page cache 3987 * to do I/O, so we don't lose the ability to do integrity 3988 * checking. 3989 */ 3990 bio = bio_alloc(device->bdev, 1, 3991 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, 3992 GFP_NOFS); 3993 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3994 bio->bi_private = device; 3995 bio->bi_end_io = btrfs_end_super_write; 3996 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE, 3997 offset_in_page(bytenr)); 3998 3999 /* 4000 * We FUA only the first super block. The others we allow to 4001 * go down lazy and there's a short window where the on-disk 4002 * copies might still contain the older version. 4003 */ 4004 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 4005 bio->bi_opf |= REQ_FUA; 4006 4007 btrfsic_check_bio(bio); 4008 submit_bio(bio); 4009 4010 if (btrfs_advance_sb_log(device, i)) 4011 errors++; 4012 } 4013 return errors < i ? 0 : -1; 4014 } 4015 4016 /* 4017 * Wait for write completion of superblocks done by write_dev_supers, 4018 * @max_mirrors same for write and wait phases. 4019 * 4020 * Return number of errors when page is not found or not marked up to 4021 * date. 4022 */ 4023 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 4024 { 4025 int i; 4026 int errors = 0; 4027 bool primary_failed = false; 4028 int ret; 4029 u64 bytenr; 4030 4031 if (max_mirrors == 0) 4032 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 4033 4034 for (i = 0; i < max_mirrors; i++) { 4035 struct page *page; 4036 4037 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 4038 if (ret == -ENOENT) { 4039 break; 4040 } else if (ret < 0) { 4041 errors++; 4042 if (i == 0) 4043 primary_failed = true; 4044 continue; 4045 } 4046 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 4047 device->commit_total_bytes) 4048 break; 4049 4050 page = find_get_page(device->bdev->bd_inode->i_mapping, 4051 bytenr >> PAGE_SHIFT); 4052 if (!page) { 4053 errors++; 4054 if (i == 0) 4055 primary_failed = true; 4056 continue; 4057 } 4058 /* Page is submitted locked and unlocked once the IO completes */ 4059 wait_on_page_locked(page); 4060 if (PageError(page)) { 4061 errors++; 4062 if (i == 0) 4063 primary_failed = true; 4064 } 4065 4066 /* Drop our reference */ 4067 put_page(page); 4068 4069 /* Drop the reference from the writing run */ 4070 put_page(page); 4071 } 4072 4073 /* log error, force error return */ 4074 if (primary_failed) { 4075 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 4076 device->devid); 4077 return -1; 4078 } 4079 4080 return errors < i ? 0 : -1; 4081 } 4082 4083 /* 4084 * endio for the write_dev_flush, this will wake anyone waiting 4085 * for the barrier when it is done 4086 */ 4087 static void btrfs_end_empty_barrier(struct bio *bio) 4088 { 4089 bio_uninit(bio); 4090 complete(bio->bi_private); 4091 } 4092 4093 /* 4094 * Submit a flush request to the device if it supports it. Error handling is 4095 * done in the waiting counterpart. 4096 */ 4097 static void write_dev_flush(struct btrfs_device *device) 4098 { 4099 struct bio *bio = &device->flush_bio; 4100 4101 device->last_flush_error = BLK_STS_OK; 4102 4103 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4104 /* 4105 * When a disk has write caching disabled, we skip submission of a bio 4106 * with flush and sync requests before writing the superblock, since 4107 * it's not needed. However when the integrity checker is enabled, this 4108 * results in reports that there are metadata blocks referred by a 4109 * superblock that were not properly flushed. So don't skip the bio 4110 * submission only when the integrity checker is enabled for the sake 4111 * of simplicity, since this is a debug tool and not meant for use in 4112 * non-debug builds. 4113 */ 4114 if (!bdev_write_cache(device->bdev)) 4115 return; 4116 #endif 4117 4118 bio_init(bio, device->bdev, NULL, 0, 4119 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); 4120 bio->bi_end_io = btrfs_end_empty_barrier; 4121 init_completion(&device->flush_wait); 4122 bio->bi_private = &device->flush_wait; 4123 4124 btrfsic_check_bio(bio); 4125 submit_bio(bio); 4126 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 4127 } 4128 4129 /* 4130 * If the flush bio has been submitted by write_dev_flush, wait for it. 4131 * Return true for any error, and false otherwise. 4132 */ 4133 static bool wait_dev_flush(struct btrfs_device *device) 4134 { 4135 struct bio *bio = &device->flush_bio; 4136 4137 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 4138 return false; 4139 4140 wait_for_completion_io(&device->flush_wait); 4141 4142 if (bio->bi_status) { 4143 device->last_flush_error = bio->bi_status; 4144 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS); 4145 return true; 4146 } 4147 4148 return false; 4149 } 4150 4151 /* 4152 * send an empty flush down to each device in parallel, 4153 * then wait for them 4154 */ 4155 static int barrier_all_devices(struct btrfs_fs_info *info) 4156 { 4157 struct list_head *head; 4158 struct btrfs_device *dev; 4159 int errors_wait = 0; 4160 4161 lockdep_assert_held(&info->fs_devices->device_list_mutex); 4162 /* send down all the barriers */ 4163 head = &info->fs_devices->devices; 4164 list_for_each_entry(dev, head, dev_list) { 4165 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 4166 continue; 4167 if (!dev->bdev) 4168 continue; 4169 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4170 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4171 continue; 4172 4173 write_dev_flush(dev); 4174 } 4175 4176 /* wait for all the barriers */ 4177 list_for_each_entry(dev, head, dev_list) { 4178 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 4179 continue; 4180 if (!dev->bdev) { 4181 errors_wait++; 4182 continue; 4183 } 4184 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4185 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4186 continue; 4187 4188 if (wait_dev_flush(dev)) 4189 errors_wait++; 4190 } 4191 4192 /* 4193 * Checks last_flush_error of disks in order to determine the device 4194 * state. 4195 */ 4196 if (errors_wait && !btrfs_check_rw_degradable(info, NULL)) 4197 return -EIO; 4198 4199 return 0; 4200 } 4201 4202 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 4203 { 4204 int raid_type; 4205 int min_tolerated = INT_MAX; 4206 4207 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 4208 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 4209 min_tolerated = min_t(int, min_tolerated, 4210 btrfs_raid_array[BTRFS_RAID_SINGLE]. 4211 tolerated_failures); 4212 4213 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4214 if (raid_type == BTRFS_RAID_SINGLE) 4215 continue; 4216 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 4217 continue; 4218 min_tolerated = min_t(int, min_tolerated, 4219 btrfs_raid_array[raid_type]. 4220 tolerated_failures); 4221 } 4222 4223 if (min_tolerated == INT_MAX) { 4224 pr_warn("BTRFS: unknown raid flag: %llu", flags); 4225 min_tolerated = 0; 4226 } 4227 4228 return min_tolerated; 4229 } 4230 4231 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 4232 { 4233 struct list_head *head; 4234 struct btrfs_device *dev; 4235 struct btrfs_super_block *sb; 4236 struct btrfs_dev_item *dev_item; 4237 int ret; 4238 int do_barriers; 4239 int max_errors; 4240 int total_errors = 0; 4241 u64 flags; 4242 4243 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 4244 4245 /* 4246 * max_mirrors == 0 indicates we're from commit_transaction, 4247 * not from fsync where the tree roots in fs_info have not 4248 * been consistent on disk. 4249 */ 4250 if (max_mirrors == 0) 4251 backup_super_roots(fs_info); 4252 4253 sb = fs_info->super_for_commit; 4254 dev_item = &sb->dev_item; 4255 4256 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4257 head = &fs_info->fs_devices->devices; 4258 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4259 4260 if (do_barriers) { 4261 ret = barrier_all_devices(fs_info); 4262 if (ret) { 4263 mutex_unlock( 4264 &fs_info->fs_devices->device_list_mutex); 4265 btrfs_handle_fs_error(fs_info, ret, 4266 "errors while submitting device barriers."); 4267 return ret; 4268 } 4269 } 4270 4271 list_for_each_entry(dev, head, dev_list) { 4272 if (!dev->bdev) { 4273 total_errors++; 4274 continue; 4275 } 4276 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4277 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4278 continue; 4279 4280 btrfs_set_stack_device_generation(dev_item, 0); 4281 btrfs_set_stack_device_type(dev_item, dev->type); 4282 btrfs_set_stack_device_id(dev_item, dev->devid); 4283 btrfs_set_stack_device_total_bytes(dev_item, 4284 dev->commit_total_bytes); 4285 btrfs_set_stack_device_bytes_used(dev_item, 4286 dev->commit_bytes_used); 4287 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4288 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4289 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4290 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4291 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4292 BTRFS_FSID_SIZE); 4293 4294 flags = btrfs_super_flags(sb); 4295 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4296 4297 ret = btrfs_validate_write_super(fs_info, sb); 4298 if (ret < 0) { 4299 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4300 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4301 "unexpected superblock corruption detected"); 4302 return -EUCLEAN; 4303 } 4304 4305 ret = write_dev_supers(dev, sb, max_mirrors); 4306 if (ret) 4307 total_errors++; 4308 } 4309 if (total_errors > max_errors) { 4310 btrfs_err(fs_info, "%d errors while writing supers", 4311 total_errors); 4312 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4313 4314 /* FUA is masked off if unsupported and can't be the reason */ 4315 btrfs_handle_fs_error(fs_info, -EIO, 4316 "%d errors while writing supers", 4317 total_errors); 4318 return -EIO; 4319 } 4320 4321 total_errors = 0; 4322 list_for_each_entry(dev, head, dev_list) { 4323 if (!dev->bdev) 4324 continue; 4325 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4326 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4327 continue; 4328 4329 ret = wait_dev_supers(dev, max_mirrors); 4330 if (ret) 4331 total_errors++; 4332 } 4333 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4334 if (total_errors > max_errors) { 4335 btrfs_handle_fs_error(fs_info, -EIO, 4336 "%d errors while writing supers", 4337 total_errors); 4338 return -EIO; 4339 } 4340 return 0; 4341 } 4342 4343 /* Drop a fs root from the radix tree and free it. */ 4344 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4345 struct btrfs_root *root) 4346 { 4347 bool drop_ref = false; 4348 4349 spin_lock(&fs_info->fs_roots_radix_lock); 4350 radix_tree_delete(&fs_info->fs_roots_radix, 4351 (unsigned long)root->root_key.objectid); 4352 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4353 drop_ref = true; 4354 spin_unlock(&fs_info->fs_roots_radix_lock); 4355 4356 if (BTRFS_FS_ERROR(fs_info)) { 4357 ASSERT(root->log_root == NULL); 4358 if (root->reloc_root) { 4359 btrfs_put_root(root->reloc_root); 4360 root->reloc_root = NULL; 4361 } 4362 } 4363 4364 if (drop_ref) 4365 btrfs_put_root(root); 4366 } 4367 4368 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 4369 { 4370 u64 root_objectid = 0; 4371 struct btrfs_root *gang[8]; 4372 int i = 0; 4373 int err = 0; 4374 unsigned int ret = 0; 4375 4376 while (1) { 4377 spin_lock(&fs_info->fs_roots_radix_lock); 4378 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4379 (void **)gang, root_objectid, 4380 ARRAY_SIZE(gang)); 4381 if (!ret) { 4382 spin_unlock(&fs_info->fs_roots_radix_lock); 4383 break; 4384 } 4385 root_objectid = gang[ret - 1]->root_key.objectid + 1; 4386 4387 for (i = 0; i < ret; i++) { 4388 /* Avoid to grab roots in dead_roots */ 4389 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 4390 gang[i] = NULL; 4391 continue; 4392 } 4393 /* grab all the search result for later use */ 4394 gang[i] = btrfs_grab_root(gang[i]); 4395 } 4396 spin_unlock(&fs_info->fs_roots_radix_lock); 4397 4398 for (i = 0; i < ret; i++) { 4399 if (!gang[i]) 4400 continue; 4401 root_objectid = gang[i]->root_key.objectid; 4402 err = btrfs_orphan_cleanup(gang[i]); 4403 if (err) 4404 goto out; 4405 btrfs_put_root(gang[i]); 4406 } 4407 root_objectid++; 4408 } 4409 out: 4410 /* release the uncleaned roots due to error */ 4411 for (; i < ret; i++) { 4412 if (gang[i]) 4413 btrfs_put_root(gang[i]); 4414 } 4415 return err; 4416 } 4417 4418 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4419 { 4420 struct btrfs_root *root = fs_info->tree_root; 4421 struct btrfs_trans_handle *trans; 4422 4423 mutex_lock(&fs_info->cleaner_mutex); 4424 btrfs_run_delayed_iputs(fs_info); 4425 mutex_unlock(&fs_info->cleaner_mutex); 4426 wake_up_process(fs_info->cleaner_kthread); 4427 4428 /* wait until ongoing cleanup work done */ 4429 down_write(&fs_info->cleanup_work_sem); 4430 up_write(&fs_info->cleanup_work_sem); 4431 4432 trans = btrfs_join_transaction(root); 4433 if (IS_ERR(trans)) 4434 return PTR_ERR(trans); 4435 return btrfs_commit_transaction(trans); 4436 } 4437 4438 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) 4439 { 4440 struct btrfs_transaction *trans; 4441 struct btrfs_transaction *tmp; 4442 bool found = false; 4443 4444 if (list_empty(&fs_info->trans_list)) 4445 return; 4446 4447 /* 4448 * This function is only called at the very end of close_ctree(), 4449 * thus no other running transaction, no need to take trans_lock. 4450 */ 4451 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); 4452 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { 4453 struct extent_state *cached = NULL; 4454 u64 dirty_bytes = 0; 4455 u64 cur = 0; 4456 u64 found_start; 4457 u64 found_end; 4458 4459 found = true; 4460 while (!find_first_extent_bit(&trans->dirty_pages, cur, 4461 &found_start, &found_end, EXTENT_DIRTY, &cached)) { 4462 dirty_bytes += found_end + 1 - found_start; 4463 cur = found_end + 1; 4464 } 4465 btrfs_warn(fs_info, 4466 "transaction %llu (with %llu dirty metadata bytes) is not committed", 4467 trans->transid, dirty_bytes); 4468 btrfs_cleanup_one_transaction(trans, fs_info); 4469 4470 if (trans == fs_info->running_transaction) 4471 fs_info->running_transaction = NULL; 4472 list_del_init(&trans->list); 4473 4474 btrfs_put_transaction(trans); 4475 trace_btrfs_transaction_commit(fs_info); 4476 } 4477 ASSERT(!found); 4478 } 4479 4480 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4481 { 4482 int ret; 4483 4484 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4485 4486 /* 4487 * If we had UNFINISHED_DROPS we could still be processing them, so 4488 * clear that bit and wake up relocation so it can stop. 4489 * We must do this before stopping the block group reclaim task, because 4490 * at btrfs_relocate_block_group() we wait for this bit, and after the 4491 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we 4492 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will 4493 * return 1. 4494 */ 4495 btrfs_wake_unfinished_drop(fs_info); 4496 4497 /* 4498 * We may have the reclaim task running and relocating a data block group, 4499 * in which case it may create delayed iputs. So stop it before we park 4500 * the cleaner kthread otherwise we can get new delayed iputs after 4501 * parking the cleaner, and that can make the async reclaim task to hang 4502 * if it's waiting for delayed iputs to complete, since the cleaner is 4503 * parked and can not run delayed iputs - this will make us hang when 4504 * trying to stop the async reclaim task. 4505 */ 4506 cancel_work_sync(&fs_info->reclaim_bgs_work); 4507 /* 4508 * We don't want the cleaner to start new transactions, add more delayed 4509 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4510 * because that frees the task_struct, and the transaction kthread might 4511 * still try to wake up the cleaner. 4512 */ 4513 kthread_park(fs_info->cleaner_kthread); 4514 4515 /* wait for the qgroup rescan worker to stop */ 4516 btrfs_qgroup_wait_for_completion(fs_info, false); 4517 4518 /* wait for the uuid_scan task to finish */ 4519 down(&fs_info->uuid_tree_rescan_sem); 4520 /* avoid complains from lockdep et al., set sem back to initial state */ 4521 up(&fs_info->uuid_tree_rescan_sem); 4522 4523 /* pause restriper - we want to resume on mount */ 4524 btrfs_pause_balance(fs_info); 4525 4526 btrfs_dev_replace_suspend_for_unmount(fs_info); 4527 4528 btrfs_scrub_cancel(fs_info); 4529 4530 /* wait for any defraggers to finish */ 4531 wait_event(fs_info->transaction_wait, 4532 (atomic_read(&fs_info->defrag_running) == 0)); 4533 4534 /* clear out the rbtree of defraggable inodes */ 4535 btrfs_cleanup_defrag_inodes(fs_info); 4536 4537 /* 4538 * After we parked the cleaner kthread, ordered extents may have 4539 * completed and created new delayed iputs. If one of the async reclaim 4540 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we 4541 * can hang forever trying to stop it, because if a delayed iput is 4542 * added after it ran btrfs_run_delayed_iputs() and before it called 4543 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is 4544 * no one else to run iputs. 4545 * 4546 * So wait for all ongoing ordered extents to complete and then run 4547 * delayed iputs. This works because once we reach this point no one 4548 * can either create new ordered extents nor create delayed iputs 4549 * through some other means. 4550 * 4551 * Also note that btrfs_wait_ordered_roots() is not safe here, because 4552 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, 4553 * but the delayed iput for the respective inode is made only when doing 4554 * the final btrfs_put_ordered_extent() (which must happen at 4555 * btrfs_finish_ordered_io() when we are unmounting). 4556 */ 4557 btrfs_flush_workqueue(fs_info->endio_write_workers); 4558 /* Ordered extents for free space inodes. */ 4559 btrfs_flush_workqueue(fs_info->endio_freespace_worker); 4560 btrfs_run_delayed_iputs(fs_info); 4561 4562 cancel_work_sync(&fs_info->async_reclaim_work); 4563 cancel_work_sync(&fs_info->async_data_reclaim_work); 4564 cancel_work_sync(&fs_info->preempt_reclaim_work); 4565 4566 /* Cancel or finish ongoing discard work */ 4567 btrfs_discard_cleanup(fs_info); 4568 4569 if (!sb_rdonly(fs_info->sb)) { 4570 /* 4571 * The cleaner kthread is stopped, so do one final pass over 4572 * unused block groups. 4573 */ 4574 btrfs_delete_unused_bgs(fs_info); 4575 4576 /* 4577 * There might be existing delayed inode workers still running 4578 * and holding an empty delayed inode item. We must wait for 4579 * them to complete first because they can create a transaction. 4580 * This happens when someone calls btrfs_balance_delayed_items() 4581 * and then a transaction commit runs the same delayed nodes 4582 * before any delayed worker has done something with the nodes. 4583 * We must wait for any worker here and not at transaction 4584 * commit time since that could cause a deadlock. 4585 * This is a very rare case. 4586 */ 4587 btrfs_flush_workqueue(fs_info->delayed_workers); 4588 4589 ret = btrfs_commit_super(fs_info); 4590 if (ret) 4591 btrfs_err(fs_info, "commit super ret %d", ret); 4592 } 4593 4594 if (BTRFS_FS_ERROR(fs_info)) 4595 btrfs_error_commit_super(fs_info); 4596 4597 kthread_stop(fs_info->transaction_kthread); 4598 kthread_stop(fs_info->cleaner_kthread); 4599 4600 ASSERT(list_empty(&fs_info->delayed_iputs)); 4601 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4602 4603 if (btrfs_check_quota_leak(fs_info)) { 4604 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4605 btrfs_err(fs_info, "qgroup reserved space leaked"); 4606 } 4607 4608 btrfs_free_qgroup_config(fs_info); 4609 ASSERT(list_empty(&fs_info->delalloc_roots)); 4610 4611 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4612 btrfs_info(fs_info, "at unmount delalloc count %lld", 4613 percpu_counter_sum(&fs_info->delalloc_bytes)); 4614 } 4615 4616 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4617 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4618 percpu_counter_sum(&fs_info->ordered_bytes)); 4619 4620 btrfs_sysfs_remove_mounted(fs_info); 4621 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4622 4623 btrfs_put_block_group_cache(fs_info); 4624 4625 /* 4626 * we must make sure there is not any read request to 4627 * submit after we stopping all workers. 4628 */ 4629 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4630 btrfs_stop_all_workers(fs_info); 4631 4632 /* We shouldn't have any transaction open at this point */ 4633 warn_about_uncommitted_trans(fs_info); 4634 4635 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4636 free_root_pointers(fs_info, true); 4637 btrfs_free_fs_roots(fs_info); 4638 4639 /* 4640 * We must free the block groups after dropping the fs_roots as we could 4641 * have had an IO error and have left over tree log blocks that aren't 4642 * cleaned up until the fs roots are freed. This makes the block group 4643 * accounting appear to be wrong because there's pending reserved bytes, 4644 * so make sure we do the block group cleanup afterwards. 4645 */ 4646 btrfs_free_block_groups(fs_info); 4647 4648 iput(fs_info->btree_inode); 4649 4650 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4651 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4652 btrfsic_unmount(fs_info->fs_devices); 4653 #endif 4654 4655 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4656 btrfs_close_devices(fs_info->fs_devices); 4657 } 4658 4659 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4660 int atomic) 4661 { 4662 int ret; 4663 struct inode *btree_inode = buf->pages[0]->mapping->host; 4664 4665 ret = extent_buffer_uptodate(buf); 4666 if (!ret) 4667 return ret; 4668 4669 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4670 parent_transid, atomic); 4671 if (ret == -EAGAIN) 4672 return ret; 4673 return !ret; 4674 } 4675 4676 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4677 { 4678 struct btrfs_fs_info *fs_info = buf->fs_info; 4679 u64 transid = btrfs_header_generation(buf); 4680 int was_dirty; 4681 4682 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4683 /* 4684 * This is a fast path so only do this check if we have sanity tests 4685 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4686 * outside of the sanity tests. 4687 */ 4688 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4689 return; 4690 #endif 4691 btrfs_assert_tree_write_locked(buf); 4692 if (transid != fs_info->generation) 4693 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4694 buf->start, transid, fs_info->generation); 4695 was_dirty = set_extent_buffer_dirty(buf); 4696 if (!was_dirty) 4697 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4698 buf->len, 4699 fs_info->dirty_metadata_batch); 4700 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4701 /* 4702 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4703 * but item data not updated. 4704 * So here we should only check item pointers, not item data. 4705 */ 4706 if (btrfs_header_level(buf) == 0 && 4707 btrfs_check_leaf_relaxed(buf)) { 4708 btrfs_print_leaf(buf); 4709 ASSERT(0); 4710 } 4711 #endif 4712 } 4713 4714 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4715 int flush_delayed) 4716 { 4717 /* 4718 * looks as though older kernels can get into trouble with 4719 * this code, they end up stuck in balance_dirty_pages forever 4720 */ 4721 int ret; 4722 4723 if (current->flags & PF_MEMALLOC) 4724 return; 4725 4726 if (flush_delayed) 4727 btrfs_balance_delayed_items(fs_info); 4728 4729 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4730 BTRFS_DIRTY_METADATA_THRESH, 4731 fs_info->dirty_metadata_batch); 4732 if (ret > 0) { 4733 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4734 } 4735 } 4736 4737 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4738 { 4739 __btrfs_btree_balance_dirty(fs_info, 1); 4740 } 4741 4742 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4743 { 4744 __btrfs_btree_balance_dirty(fs_info, 0); 4745 } 4746 4747 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4748 { 4749 /* cleanup FS via transaction */ 4750 btrfs_cleanup_transaction(fs_info); 4751 4752 mutex_lock(&fs_info->cleaner_mutex); 4753 btrfs_run_delayed_iputs(fs_info); 4754 mutex_unlock(&fs_info->cleaner_mutex); 4755 4756 down_write(&fs_info->cleanup_work_sem); 4757 up_write(&fs_info->cleanup_work_sem); 4758 } 4759 4760 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4761 { 4762 struct btrfs_root *gang[8]; 4763 u64 root_objectid = 0; 4764 int ret; 4765 4766 spin_lock(&fs_info->fs_roots_radix_lock); 4767 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4768 (void **)gang, root_objectid, 4769 ARRAY_SIZE(gang))) != 0) { 4770 int i; 4771 4772 for (i = 0; i < ret; i++) 4773 gang[i] = btrfs_grab_root(gang[i]); 4774 spin_unlock(&fs_info->fs_roots_radix_lock); 4775 4776 for (i = 0; i < ret; i++) { 4777 if (!gang[i]) 4778 continue; 4779 root_objectid = gang[i]->root_key.objectid; 4780 btrfs_free_log(NULL, gang[i]); 4781 btrfs_put_root(gang[i]); 4782 } 4783 root_objectid++; 4784 spin_lock(&fs_info->fs_roots_radix_lock); 4785 } 4786 spin_unlock(&fs_info->fs_roots_radix_lock); 4787 btrfs_free_log_root_tree(NULL, fs_info); 4788 } 4789 4790 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4791 { 4792 struct btrfs_ordered_extent *ordered; 4793 4794 spin_lock(&root->ordered_extent_lock); 4795 /* 4796 * This will just short circuit the ordered completion stuff which will 4797 * make sure the ordered extent gets properly cleaned up. 4798 */ 4799 list_for_each_entry(ordered, &root->ordered_extents, 4800 root_extent_list) 4801 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4802 spin_unlock(&root->ordered_extent_lock); 4803 } 4804 4805 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4806 { 4807 struct btrfs_root *root; 4808 struct list_head splice; 4809 4810 INIT_LIST_HEAD(&splice); 4811 4812 spin_lock(&fs_info->ordered_root_lock); 4813 list_splice_init(&fs_info->ordered_roots, &splice); 4814 while (!list_empty(&splice)) { 4815 root = list_first_entry(&splice, struct btrfs_root, 4816 ordered_root); 4817 list_move_tail(&root->ordered_root, 4818 &fs_info->ordered_roots); 4819 4820 spin_unlock(&fs_info->ordered_root_lock); 4821 btrfs_destroy_ordered_extents(root); 4822 4823 cond_resched(); 4824 spin_lock(&fs_info->ordered_root_lock); 4825 } 4826 spin_unlock(&fs_info->ordered_root_lock); 4827 4828 /* 4829 * We need this here because if we've been flipped read-only we won't 4830 * get sync() from the umount, so we need to make sure any ordered 4831 * extents that haven't had their dirty pages IO start writeout yet 4832 * actually get run and error out properly. 4833 */ 4834 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4835 } 4836 4837 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4838 struct btrfs_fs_info *fs_info) 4839 { 4840 struct rb_node *node; 4841 struct btrfs_delayed_ref_root *delayed_refs; 4842 struct btrfs_delayed_ref_node *ref; 4843 int ret = 0; 4844 4845 delayed_refs = &trans->delayed_refs; 4846 4847 spin_lock(&delayed_refs->lock); 4848 if (atomic_read(&delayed_refs->num_entries) == 0) { 4849 spin_unlock(&delayed_refs->lock); 4850 btrfs_debug(fs_info, "delayed_refs has NO entry"); 4851 return ret; 4852 } 4853 4854 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4855 struct btrfs_delayed_ref_head *head; 4856 struct rb_node *n; 4857 bool pin_bytes = false; 4858 4859 head = rb_entry(node, struct btrfs_delayed_ref_head, 4860 href_node); 4861 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4862 continue; 4863 4864 spin_lock(&head->lock); 4865 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4866 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4867 ref_node); 4868 ref->in_tree = 0; 4869 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4870 RB_CLEAR_NODE(&ref->ref_node); 4871 if (!list_empty(&ref->add_list)) 4872 list_del(&ref->add_list); 4873 atomic_dec(&delayed_refs->num_entries); 4874 btrfs_put_delayed_ref(ref); 4875 } 4876 if (head->must_insert_reserved) 4877 pin_bytes = true; 4878 btrfs_free_delayed_extent_op(head->extent_op); 4879 btrfs_delete_ref_head(delayed_refs, head); 4880 spin_unlock(&head->lock); 4881 spin_unlock(&delayed_refs->lock); 4882 mutex_unlock(&head->mutex); 4883 4884 if (pin_bytes) { 4885 struct btrfs_block_group *cache; 4886 4887 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 4888 BUG_ON(!cache); 4889 4890 spin_lock(&cache->space_info->lock); 4891 spin_lock(&cache->lock); 4892 cache->pinned += head->num_bytes; 4893 btrfs_space_info_update_bytes_pinned(fs_info, 4894 cache->space_info, head->num_bytes); 4895 cache->reserved -= head->num_bytes; 4896 cache->space_info->bytes_reserved -= head->num_bytes; 4897 spin_unlock(&cache->lock); 4898 spin_unlock(&cache->space_info->lock); 4899 4900 btrfs_put_block_group(cache); 4901 4902 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 4903 head->bytenr + head->num_bytes - 1); 4904 } 4905 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4906 btrfs_put_delayed_ref_head(head); 4907 cond_resched(); 4908 spin_lock(&delayed_refs->lock); 4909 } 4910 btrfs_qgroup_destroy_extent_records(trans); 4911 4912 spin_unlock(&delayed_refs->lock); 4913 4914 return ret; 4915 } 4916 4917 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4918 { 4919 struct btrfs_inode *btrfs_inode; 4920 struct list_head splice; 4921 4922 INIT_LIST_HEAD(&splice); 4923 4924 spin_lock(&root->delalloc_lock); 4925 list_splice_init(&root->delalloc_inodes, &splice); 4926 4927 while (!list_empty(&splice)) { 4928 struct inode *inode = NULL; 4929 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4930 delalloc_inodes); 4931 __btrfs_del_delalloc_inode(root, btrfs_inode); 4932 spin_unlock(&root->delalloc_lock); 4933 4934 /* 4935 * Make sure we get a live inode and that it'll not disappear 4936 * meanwhile. 4937 */ 4938 inode = igrab(&btrfs_inode->vfs_inode); 4939 if (inode) { 4940 unsigned int nofs_flag; 4941 4942 nofs_flag = memalloc_nofs_save(); 4943 invalidate_inode_pages2(inode->i_mapping); 4944 memalloc_nofs_restore(nofs_flag); 4945 iput(inode); 4946 } 4947 spin_lock(&root->delalloc_lock); 4948 } 4949 spin_unlock(&root->delalloc_lock); 4950 } 4951 4952 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4953 { 4954 struct btrfs_root *root; 4955 struct list_head splice; 4956 4957 INIT_LIST_HEAD(&splice); 4958 4959 spin_lock(&fs_info->delalloc_root_lock); 4960 list_splice_init(&fs_info->delalloc_roots, &splice); 4961 while (!list_empty(&splice)) { 4962 root = list_first_entry(&splice, struct btrfs_root, 4963 delalloc_root); 4964 root = btrfs_grab_root(root); 4965 BUG_ON(!root); 4966 spin_unlock(&fs_info->delalloc_root_lock); 4967 4968 btrfs_destroy_delalloc_inodes(root); 4969 btrfs_put_root(root); 4970 4971 spin_lock(&fs_info->delalloc_root_lock); 4972 } 4973 spin_unlock(&fs_info->delalloc_root_lock); 4974 } 4975 4976 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4977 struct extent_io_tree *dirty_pages, 4978 int mark) 4979 { 4980 int ret; 4981 struct extent_buffer *eb; 4982 u64 start = 0; 4983 u64 end; 4984 4985 while (1) { 4986 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4987 mark, NULL); 4988 if (ret) 4989 break; 4990 4991 clear_extent_bits(dirty_pages, start, end, mark); 4992 while (start <= end) { 4993 eb = find_extent_buffer(fs_info, start); 4994 start += fs_info->nodesize; 4995 if (!eb) 4996 continue; 4997 4998 btrfs_tree_lock(eb); 4999 wait_on_extent_buffer_writeback(eb); 5000 btrfs_clear_buffer_dirty(NULL, eb); 5001 btrfs_tree_unlock(eb); 5002 5003 free_extent_buffer_stale(eb); 5004 } 5005 } 5006 5007 return ret; 5008 } 5009 5010 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 5011 struct extent_io_tree *unpin) 5012 { 5013 u64 start; 5014 u64 end; 5015 int ret; 5016 5017 while (1) { 5018 struct extent_state *cached_state = NULL; 5019 5020 /* 5021 * The btrfs_finish_extent_commit() may get the same range as 5022 * ours between find_first_extent_bit and clear_extent_dirty. 5023 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 5024 * the same extent range. 5025 */ 5026 mutex_lock(&fs_info->unused_bg_unpin_mutex); 5027 ret = find_first_extent_bit(unpin, 0, &start, &end, 5028 EXTENT_DIRTY, &cached_state); 5029 if (ret) { 5030 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 5031 break; 5032 } 5033 5034 clear_extent_dirty(unpin, start, end, &cached_state); 5035 free_extent_state(cached_state); 5036 btrfs_error_unpin_extent_range(fs_info, start, end); 5037 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 5038 cond_resched(); 5039 } 5040 5041 return 0; 5042 } 5043 5044 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 5045 { 5046 struct inode *inode; 5047 5048 inode = cache->io_ctl.inode; 5049 if (inode) { 5050 unsigned int nofs_flag; 5051 5052 nofs_flag = memalloc_nofs_save(); 5053 invalidate_inode_pages2(inode->i_mapping); 5054 memalloc_nofs_restore(nofs_flag); 5055 5056 BTRFS_I(inode)->generation = 0; 5057 cache->io_ctl.inode = NULL; 5058 iput(inode); 5059 } 5060 ASSERT(cache->io_ctl.pages == NULL); 5061 btrfs_put_block_group(cache); 5062 } 5063 5064 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 5065 struct btrfs_fs_info *fs_info) 5066 { 5067 struct btrfs_block_group *cache; 5068 5069 spin_lock(&cur_trans->dirty_bgs_lock); 5070 while (!list_empty(&cur_trans->dirty_bgs)) { 5071 cache = list_first_entry(&cur_trans->dirty_bgs, 5072 struct btrfs_block_group, 5073 dirty_list); 5074 5075 if (!list_empty(&cache->io_list)) { 5076 spin_unlock(&cur_trans->dirty_bgs_lock); 5077 list_del_init(&cache->io_list); 5078 btrfs_cleanup_bg_io(cache); 5079 spin_lock(&cur_trans->dirty_bgs_lock); 5080 } 5081 5082 list_del_init(&cache->dirty_list); 5083 spin_lock(&cache->lock); 5084 cache->disk_cache_state = BTRFS_DC_ERROR; 5085 spin_unlock(&cache->lock); 5086 5087 spin_unlock(&cur_trans->dirty_bgs_lock); 5088 btrfs_put_block_group(cache); 5089 btrfs_delayed_refs_rsv_release(fs_info, 1); 5090 spin_lock(&cur_trans->dirty_bgs_lock); 5091 } 5092 spin_unlock(&cur_trans->dirty_bgs_lock); 5093 5094 /* 5095 * Refer to the definition of io_bgs member for details why it's safe 5096 * to use it without any locking 5097 */ 5098 while (!list_empty(&cur_trans->io_bgs)) { 5099 cache = list_first_entry(&cur_trans->io_bgs, 5100 struct btrfs_block_group, 5101 io_list); 5102 5103 list_del_init(&cache->io_list); 5104 spin_lock(&cache->lock); 5105 cache->disk_cache_state = BTRFS_DC_ERROR; 5106 spin_unlock(&cache->lock); 5107 btrfs_cleanup_bg_io(cache); 5108 } 5109 } 5110 5111 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 5112 struct btrfs_fs_info *fs_info) 5113 { 5114 struct btrfs_device *dev, *tmp; 5115 5116 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 5117 ASSERT(list_empty(&cur_trans->dirty_bgs)); 5118 ASSERT(list_empty(&cur_trans->io_bgs)); 5119 5120 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 5121 post_commit_list) { 5122 list_del_init(&dev->post_commit_list); 5123 } 5124 5125 btrfs_destroy_delayed_refs(cur_trans, fs_info); 5126 5127 cur_trans->state = TRANS_STATE_COMMIT_START; 5128 wake_up(&fs_info->transaction_blocked_wait); 5129 5130 cur_trans->state = TRANS_STATE_UNBLOCKED; 5131 wake_up(&fs_info->transaction_wait); 5132 5133 btrfs_destroy_delayed_inodes(fs_info); 5134 5135 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 5136 EXTENT_DIRTY); 5137 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 5138 5139 btrfs_free_redirty_list(cur_trans); 5140 5141 cur_trans->state =TRANS_STATE_COMPLETED; 5142 wake_up(&cur_trans->commit_wait); 5143 } 5144 5145 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 5146 { 5147 struct btrfs_transaction *t; 5148 5149 mutex_lock(&fs_info->transaction_kthread_mutex); 5150 5151 spin_lock(&fs_info->trans_lock); 5152 while (!list_empty(&fs_info->trans_list)) { 5153 t = list_first_entry(&fs_info->trans_list, 5154 struct btrfs_transaction, list); 5155 if (t->state >= TRANS_STATE_COMMIT_START) { 5156 refcount_inc(&t->use_count); 5157 spin_unlock(&fs_info->trans_lock); 5158 btrfs_wait_for_commit(fs_info, t->transid); 5159 btrfs_put_transaction(t); 5160 spin_lock(&fs_info->trans_lock); 5161 continue; 5162 } 5163 if (t == fs_info->running_transaction) { 5164 t->state = TRANS_STATE_COMMIT_DOING; 5165 spin_unlock(&fs_info->trans_lock); 5166 /* 5167 * We wait for 0 num_writers since we don't hold a trans 5168 * handle open currently for this transaction. 5169 */ 5170 wait_event(t->writer_wait, 5171 atomic_read(&t->num_writers) == 0); 5172 } else { 5173 spin_unlock(&fs_info->trans_lock); 5174 } 5175 btrfs_cleanup_one_transaction(t, fs_info); 5176 5177 spin_lock(&fs_info->trans_lock); 5178 if (t == fs_info->running_transaction) 5179 fs_info->running_transaction = NULL; 5180 list_del_init(&t->list); 5181 spin_unlock(&fs_info->trans_lock); 5182 5183 btrfs_put_transaction(t); 5184 trace_btrfs_transaction_commit(fs_info); 5185 spin_lock(&fs_info->trans_lock); 5186 } 5187 spin_unlock(&fs_info->trans_lock); 5188 btrfs_destroy_all_ordered_extents(fs_info); 5189 btrfs_destroy_delayed_inodes(fs_info); 5190 btrfs_assert_delayed_root_empty(fs_info); 5191 btrfs_destroy_all_delalloc_inodes(fs_info); 5192 btrfs_drop_all_logs(fs_info); 5193 mutex_unlock(&fs_info->transaction_kthread_mutex); 5194 5195 return 0; 5196 } 5197 5198 int btrfs_init_root_free_objectid(struct btrfs_root *root) 5199 { 5200 struct btrfs_path *path; 5201 int ret; 5202 struct extent_buffer *l; 5203 struct btrfs_key search_key; 5204 struct btrfs_key found_key; 5205 int slot; 5206 5207 path = btrfs_alloc_path(); 5208 if (!path) 5209 return -ENOMEM; 5210 5211 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 5212 search_key.type = -1; 5213 search_key.offset = (u64)-1; 5214 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 5215 if (ret < 0) 5216 goto error; 5217 BUG_ON(ret == 0); /* Corruption */ 5218 if (path->slots[0] > 0) { 5219 slot = path->slots[0] - 1; 5220 l = path->nodes[0]; 5221 btrfs_item_key_to_cpu(l, &found_key, slot); 5222 root->free_objectid = max_t(u64, found_key.objectid + 1, 5223 BTRFS_FIRST_FREE_OBJECTID); 5224 } else { 5225 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 5226 } 5227 ret = 0; 5228 error: 5229 btrfs_free_path(path); 5230 return ret; 5231 } 5232 5233 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 5234 { 5235 int ret; 5236 mutex_lock(&root->objectid_mutex); 5237 5238 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 5239 btrfs_warn(root->fs_info, 5240 "the objectid of root %llu reaches its highest value", 5241 root->root_key.objectid); 5242 ret = -ENOSPC; 5243 goto out; 5244 } 5245 5246 *objectid = root->free_objectid++; 5247 ret = 0; 5248 out: 5249 mutex_unlock(&root->objectid_mutex); 5250 return ret; 5251 } 5252