1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/crc32c.h> 30 #include <linux/slab.h> 31 #include <linux/migrate.h> 32 #include <linux/ratelimit.h> 33 #include <linux/uuid.h> 34 #include <linux/semaphore.h> 35 #include <asm/unaligned.h> 36 #include "compat.h" 37 #include "ctree.h" 38 #include "disk-io.h" 39 #include "transaction.h" 40 #include "btrfs_inode.h" 41 #include "volumes.h" 42 #include "print-tree.h" 43 #include "async-thread.h" 44 #include "locking.h" 45 #include "tree-log.h" 46 #include "free-space-cache.h" 47 #include "inode-map.h" 48 #include "check-integrity.h" 49 #include "rcu-string.h" 50 #include "dev-replace.h" 51 #include "raid56.h" 52 53 #ifdef CONFIG_X86 54 #include <asm/cpufeature.h> 55 #endif 56 57 static struct extent_io_ops btree_extent_io_ops; 58 static void end_workqueue_fn(struct btrfs_work *work); 59 static void free_fs_root(struct btrfs_root *root); 60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 61 int read_only); 62 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t, 63 struct btrfs_root *root); 64 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 65 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 66 struct btrfs_root *root); 67 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t); 68 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 69 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 70 struct extent_io_tree *dirty_pages, 71 int mark); 72 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 73 struct extent_io_tree *pinned_extents); 74 static int btrfs_cleanup_transaction(struct btrfs_root *root); 75 static void btrfs_error_commit_super(struct btrfs_root *root); 76 77 /* 78 * end_io_wq structs are used to do processing in task context when an IO is 79 * complete. This is used during reads to verify checksums, and it is used 80 * by writes to insert metadata for new file extents after IO is complete. 81 */ 82 struct end_io_wq { 83 struct bio *bio; 84 bio_end_io_t *end_io; 85 void *private; 86 struct btrfs_fs_info *info; 87 int error; 88 int metadata; 89 struct list_head list; 90 struct btrfs_work work; 91 }; 92 93 /* 94 * async submit bios are used to offload expensive checksumming 95 * onto the worker threads. They checksum file and metadata bios 96 * just before they are sent down the IO stack. 97 */ 98 struct async_submit_bio { 99 struct inode *inode; 100 struct bio *bio; 101 struct list_head list; 102 extent_submit_bio_hook_t *submit_bio_start; 103 extent_submit_bio_hook_t *submit_bio_done; 104 int rw; 105 int mirror_num; 106 unsigned long bio_flags; 107 /* 108 * bio_offset is optional, can be used if the pages in the bio 109 * can't tell us where in the file the bio should go 110 */ 111 u64 bio_offset; 112 struct btrfs_work work; 113 int error; 114 }; 115 116 /* 117 * Lockdep class keys for extent_buffer->lock's in this root. For a given 118 * eb, the lockdep key is determined by the btrfs_root it belongs to and 119 * the level the eb occupies in the tree. 120 * 121 * Different roots are used for different purposes and may nest inside each 122 * other and they require separate keysets. As lockdep keys should be 123 * static, assign keysets according to the purpose of the root as indicated 124 * by btrfs_root->objectid. This ensures that all special purpose roots 125 * have separate keysets. 126 * 127 * Lock-nesting across peer nodes is always done with the immediate parent 128 * node locked thus preventing deadlock. As lockdep doesn't know this, use 129 * subclass to avoid triggering lockdep warning in such cases. 130 * 131 * The key is set by the readpage_end_io_hook after the buffer has passed 132 * csum validation but before the pages are unlocked. It is also set by 133 * btrfs_init_new_buffer on freshly allocated blocks. 134 * 135 * We also add a check to make sure the highest level of the tree is the 136 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 137 * needs update as well. 138 */ 139 #ifdef CONFIG_DEBUG_LOCK_ALLOC 140 # if BTRFS_MAX_LEVEL != 8 141 # error 142 # endif 143 144 static struct btrfs_lockdep_keyset { 145 u64 id; /* root objectid */ 146 const char *name_stem; /* lock name stem */ 147 char names[BTRFS_MAX_LEVEL + 1][20]; 148 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 149 } btrfs_lockdep_keysets[] = { 150 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 151 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 152 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 153 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 154 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 155 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 156 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 157 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 158 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 159 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 160 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 161 { .id = 0, .name_stem = "tree" }, 162 }; 163 164 void __init btrfs_init_lockdep(void) 165 { 166 int i, j; 167 168 /* initialize lockdep class names */ 169 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 170 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 171 172 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 173 snprintf(ks->names[j], sizeof(ks->names[j]), 174 "btrfs-%s-%02d", ks->name_stem, j); 175 } 176 } 177 178 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 179 int level) 180 { 181 struct btrfs_lockdep_keyset *ks; 182 183 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 184 185 /* find the matching keyset, id 0 is the default entry */ 186 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 187 if (ks->id == objectid) 188 break; 189 190 lockdep_set_class_and_name(&eb->lock, 191 &ks->keys[level], ks->names[level]); 192 } 193 194 #endif 195 196 /* 197 * extents on the btree inode are pretty simple, there's one extent 198 * that covers the entire device 199 */ 200 static struct extent_map *btree_get_extent(struct inode *inode, 201 struct page *page, size_t pg_offset, u64 start, u64 len, 202 int create) 203 { 204 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 205 struct extent_map *em; 206 int ret; 207 208 read_lock(&em_tree->lock); 209 em = lookup_extent_mapping(em_tree, start, len); 210 if (em) { 211 em->bdev = 212 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 213 read_unlock(&em_tree->lock); 214 goto out; 215 } 216 read_unlock(&em_tree->lock); 217 218 em = alloc_extent_map(); 219 if (!em) { 220 em = ERR_PTR(-ENOMEM); 221 goto out; 222 } 223 em->start = 0; 224 em->len = (u64)-1; 225 em->block_len = (u64)-1; 226 em->block_start = 0; 227 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 228 229 write_lock(&em_tree->lock); 230 ret = add_extent_mapping(em_tree, em, 0); 231 if (ret == -EEXIST) { 232 free_extent_map(em); 233 em = lookup_extent_mapping(em_tree, start, len); 234 if (!em) 235 em = ERR_PTR(-EIO); 236 } else if (ret) { 237 free_extent_map(em); 238 em = ERR_PTR(ret); 239 } 240 write_unlock(&em_tree->lock); 241 242 out: 243 return em; 244 } 245 246 u32 btrfs_csum_data(char *data, u32 seed, size_t len) 247 { 248 return crc32c(seed, data, len); 249 } 250 251 void btrfs_csum_final(u32 crc, char *result) 252 { 253 put_unaligned_le32(~crc, result); 254 } 255 256 /* 257 * compute the csum for a btree block, and either verify it or write it 258 * into the csum field of the block. 259 */ 260 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 261 int verify) 262 { 263 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 264 char *result = NULL; 265 unsigned long len; 266 unsigned long cur_len; 267 unsigned long offset = BTRFS_CSUM_SIZE; 268 char *kaddr; 269 unsigned long map_start; 270 unsigned long map_len; 271 int err; 272 u32 crc = ~(u32)0; 273 unsigned long inline_result; 274 275 len = buf->len - offset; 276 while (len > 0) { 277 err = map_private_extent_buffer(buf, offset, 32, 278 &kaddr, &map_start, &map_len); 279 if (err) 280 return 1; 281 cur_len = min(len, map_len - (offset - map_start)); 282 crc = btrfs_csum_data(kaddr + offset - map_start, 283 crc, cur_len); 284 len -= cur_len; 285 offset += cur_len; 286 } 287 if (csum_size > sizeof(inline_result)) { 288 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 289 if (!result) 290 return 1; 291 } else { 292 result = (char *)&inline_result; 293 } 294 295 btrfs_csum_final(crc, result); 296 297 if (verify) { 298 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 299 u32 val; 300 u32 found = 0; 301 memcpy(&found, result, csum_size); 302 303 read_extent_buffer(buf, &val, 0, csum_size); 304 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify " 305 "failed on %llu wanted %X found %X " 306 "level %d\n", 307 root->fs_info->sb->s_id, buf->start, 308 val, found, btrfs_header_level(buf)); 309 if (result != (char *)&inline_result) 310 kfree(result); 311 return 1; 312 } 313 } else { 314 write_extent_buffer(buf, result, 0, csum_size); 315 } 316 if (result != (char *)&inline_result) 317 kfree(result); 318 return 0; 319 } 320 321 /* 322 * we can't consider a given block up to date unless the transid of the 323 * block matches the transid in the parent node's pointer. This is how we 324 * detect blocks that either didn't get written at all or got written 325 * in the wrong place. 326 */ 327 static int verify_parent_transid(struct extent_io_tree *io_tree, 328 struct extent_buffer *eb, u64 parent_transid, 329 int atomic) 330 { 331 struct extent_state *cached_state = NULL; 332 int ret; 333 334 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 335 return 0; 336 337 if (atomic) 338 return -EAGAIN; 339 340 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 341 0, &cached_state); 342 if (extent_buffer_uptodate(eb) && 343 btrfs_header_generation(eb) == parent_transid) { 344 ret = 0; 345 goto out; 346 } 347 printk_ratelimited("parent transid verify failed on %llu wanted %llu " 348 "found %llu\n", 349 eb->start, parent_transid, btrfs_header_generation(eb)); 350 ret = 1; 351 clear_extent_buffer_uptodate(eb); 352 out: 353 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 354 &cached_state, GFP_NOFS); 355 return ret; 356 } 357 358 /* 359 * Return 0 if the superblock checksum type matches the checksum value of that 360 * algorithm. Pass the raw disk superblock data. 361 */ 362 static int btrfs_check_super_csum(char *raw_disk_sb) 363 { 364 struct btrfs_super_block *disk_sb = 365 (struct btrfs_super_block *)raw_disk_sb; 366 u16 csum_type = btrfs_super_csum_type(disk_sb); 367 int ret = 0; 368 369 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 370 u32 crc = ~(u32)0; 371 const int csum_size = sizeof(crc); 372 char result[csum_size]; 373 374 /* 375 * The super_block structure does not span the whole 376 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 377 * is filled with zeros and is included in the checkum. 378 */ 379 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 380 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 381 btrfs_csum_final(crc, result); 382 383 if (memcmp(raw_disk_sb, result, csum_size)) 384 ret = 1; 385 386 if (ret && btrfs_super_generation(disk_sb) < 10) { 387 printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n"); 388 ret = 0; 389 } 390 } 391 392 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 393 printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n", 394 csum_type); 395 ret = 1; 396 } 397 398 return ret; 399 } 400 401 /* 402 * helper to read a given tree block, doing retries as required when 403 * the checksums don't match and we have alternate mirrors to try. 404 */ 405 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 406 struct extent_buffer *eb, 407 u64 start, u64 parent_transid) 408 { 409 struct extent_io_tree *io_tree; 410 int failed = 0; 411 int ret; 412 int num_copies = 0; 413 int mirror_num = 0; 414 int failed_mirror = 0; 415 416 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 417 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 418 while (1) { 419 ret = read_extent_buffer_pages(io_tree, eb, start, 420 WAIT_COMPLETE, 421 btree_get_extent, mirror_num); 422 if (!ret) { 423 if (!verify_parent_transid(io_tree, eb, 424 parent_transid, 0)) 425 break; 426 else 427 ret = -EIO; 428 } 429 430 /* 431 * This buffer's crc is fine, but its contents are corrupted, so 432 * there is no reason to read the other copies, they won't be 433 * any less wrong. 434 */ 435 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 436 break; 437 438 num_copies = btrfs_num_copies(root->fs_info, 439 eb->start, eb->len); 440 if (num_copies == 1) 441 break; 442 443 if (!failed_mirror) { 444 failed = 1; 445 failed_mirror = eb->read_mirror; 446 } 447 448 mirror_num++; 449 if (mirror_num == failed_mirror) 450 mirror_num++; 451 452 if (mirror_num > num_copies) 453 break; 454 } 455 456 if (failed && !ret && failed_mirror) 457 repair_eb_io_failure(root, eb, failed_mirror); 458 459 return ret; 460 } 461 462 /* 463 * checksum a dirty tree block before IO. This has extra checks to make sure 464 * we only fill in the checksum field in the first page of a multi-page block 465 */ 466 467 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 468 { 469 struct extent_io_tree *tree; 470 u64 start = page_offset(page); 471 u64 found_start; 472 struct extent_buffer *eb; 473 474 tree = &BTRFS_I(page->mapping->host)->io_tree; 475 476 eb = (struct extent_buffer *)page->private; 477 if (page != eb->pages[0]) 478 return 0; 479 found_start = btrfs_header_bytenr(eb); 480 if (found_start != start) { 481 WARN_ON(1); 482 return 0; 483 } 484 if (!PageUptodate(page)) { 485 WARN_ON(1); 486 return 0; 487 } 488 csum_tree_block(root, eb, 0); 489 return 0; 490 } 491 492 static int check_tree_block_fsid(struct btrfs_root *root, 493 struct extent_buffer *eb) 494 { 495 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 496 u8 fsid[BTRFS_UUID_SIZE]; 497 int ret = 1; 498 499 read_extent_buffer(eb, fsid, btrfs_header_fsid(eb), BTRFS_FSID_SIZE); 500 while (fs_devices) { 501 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 502 ret = 0; 503 break; 504 } 505 fs_devices = fs_devices->seed; 506 } 507 return ret; 508 } 509 510 #define CORRUPT(reason, eb, root, slot) \ 511 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \ 512 "root=%llu, slot=%d\n", reason, \ 513 btrfs_header_bytenr(eb), root->objectid, slot) 514 515 static noinline int check_leaf(struct btrfs_root *root, 516 struct extent_buffer *leaf) 517 { 518 struct btrfs_key key; 519 struct btrfs_key leaf_key; 520 u32 nritems = btrfs_header_nritems(leaf); 521 int slot; 522 523 if (nritems == 0) 524 return 0; 525 526 /* Check the 0 item */ 527 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 528 BTRFS_LEAF_DATA_SIZE(root)) { 529 CORRUPT("invalid item offset size pair", leaf, root, 0); 530 return -EIO; 531 } 532 533 /* 534 * Check to make sure each items keys are in the correct order and their 535 * offsets make sense. We only have to loop through nritems-1 because 536 * we check the current slot against the next slot, which verifies the 537 * next slot's offset+size makes sense and that the current's slot 538 * offset is correct. 539 */ 540 for (slot = 0; slot < nritems - 1; slot++) { 541 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 542 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 543 544 /* Make sure the keys are in the right order */ 545 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 546 CORRUPT("bad key order", leaf, root, slot); 547 return -EIO; 548 } 549 550 /* 551 * Make sure the offset and ends are right, remember that the 552 * item data starts at the end of the leaf and grows towards the 553 * front. 554 */ 555 if (btrfs_item_offset_nr(leaf, slot) != 556 btrfs_item_end_nr(leaf, slot + 1)) { 557 CORRUPT("slot offset bad", leaf, root, slot); 558 return -EIO; 559 } 560 561 /* 562 * Check to make sure that we don't point outside of the leaf, 563 * just incase all the items are consistent to eachother, but 564 * all point outside of the leaf. 565 */ 566 if (btrfs_item_end_nr(leaf, slot) > 567 BTRFS_LEAF_DATA_SIZE(root)) { 568 CORRUPT("slot end outside of leaf", leaf, root, slot); 569 return -EIO; 570 } 571 } 572 573 return 0; 574 } 575 576 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 577 u64 phy_offset, struct page *page, 578 u64 start, u64 end, int mirror) 579 { 580 struct extent_io_tree *tree; 581 u64 found_start; 582 int found_level; 583 struct extent_buffer *eb; 584 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 585 int ret = 0; 586 int reads_done; 587 588 if (!page->private) 589 goto out; 590 591 tree = &BTRFS_I(page->mapping->host)->io_tree; 592 eb = (struct extent_buffer *)page->private; 593 594 /* the pending IO might have been the only thing that kept this buffer 595 * in memory. Make sure we have a ref for all this other checks 596 */ 597 extent_buffer_get(eb); 598 599 reads_done = atomic_dec_and_test(&eb->io_pages); 600 if (!reads_done) 601 goto err; 602 603 eb->read_mirror = mirror; 604 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) { 605 ret = -EIO; 606 goto err; 607 } 608 609 found_start = btrfs_header_bytenr(eb); 610 if (found_start != eb->start) { 611 printk_ratelimited(KERN_INFO "btrfs bad tree block start " 612 "%llu %llu\n", 613 found_start, eb->start); 614 ret = -EIO; 615 goto err; 616 } 617 if (check_tree_block_fsid(root, eb)) { 618 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n", 619 eb->start); 620 ret = -EIO; 621 goto err; 622 } 623 found_level = btrfs_header_level(eb); 624 if (found_level >= BTRFS_MAX_LEVEL) { 625 btrfs_info(root->fs_info, "bad tree block level %d\n", 626 (int)btrfs_header_level(eb)); 627 ret = -EIO; 628 goto err; 629 } 630 631 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 632 eb, found_level); 633 634 ret = csum_tree_block(root, eb, 1); 635 if (ret) { 636 ret = -EIO; 637 goto err; 638 } 639 640 /* 641 * If this is a leaf block and it is corrupt, set the corrupt bit so 642 * that we don't try and read the other copies of this block, just 643 * return -EIO. 644 */ 645 if (found_level == 0 && check_leaf(root, eb)) { 646 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 647 ret = -EIO; 648 } 649 650 if (!ret) 651 set_extent_buffer_uptodate(eb); 652 err: 653 if (reads_done && 654 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 655 btree_readahead_hook(root, eb, eb->start, ret); 656 657 if (ret) { 658 /* 659 * our io error hook is going to dec the io pages 660 * again, we have to make sure it has something 661 * to decrement 662 */ 663 atomic_inc(&eb->io_pages); 664 clear_extent_buffer_uptodate(eb); 665 } 666 free_extent_buffer(eb); 667 out: 668 return ret; 669 } 670 671 static int btree_io_failed_hook(struct page *page, int failed_mirror) 672 { 673 struct extent_buffer *eb; 674 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 675 676 eb = (struct extent_buffer *)page->private; 677 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 678 eb->read_mirror = failed_mirror; 679 atomic_dec(&eb->io_pages); 680 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 681 btree_readahead_hook(root, eb, eb->start, -EIO); 682 return -EIO; /* we fixed nothing */ 683 } 684 685 static void end_workqueue_bio(struct bio *bio, int err) 686 { 687 struct end_io_wq *end_io_wq = bio->bi_private; 688 struct btrfs_fs_info *fs_info; 689 690 fs_info = end_io_wq->info; 691 end_io_wq->error = err; 692 end_io_wq->work.func = end_workqueue_fn; 693 end_io_wq->work.flags = 0; 694 695 if (bio->bi_rw & REQ_WRITE) { 696 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) 697 btrfs_queue_worker(&fs_info->endio_meta_write_workers, 698 &end_io_wq->work); 699 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) 700 btrfs_queue_worker(&fs_info->endio_freespace_worker, 701 &end_io_wq->work); 702 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 703 btrfs_queue_worker(&fs_info->endio_raid56_workers, 704 &end_io_wq->work); 705 else 706 btrfs_queue_worker(&fs_info->endio_write_workers, 707 &end_io_wq->work); 708 } else { 709 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 710 btrfs_queue_worker(&fs_info->endio_raid56_workers, 711 &end_io_wq->work); 712 else if (end_io_wq->metadata) 713 btrfs_queue_worker(&fs_info->endio_meta_workers, 714 &end_io_wq->work); 715 else 716 btrfs_queue_worker(&fs_info->endio_workers, 717 &end_io_wq->work); 718 } 719 } 720 721 /* 722 * For the metadata arg you want 723 * 724 * 0 - if data 725 * 1 - if normal metadta 726 * 2 - if writing to the free space cache area 727 * 3 - raid parity work 728 */ 729 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 730 int metadata) 731 { 732 struct end_io_wq *end_io_wq; 733 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 734 if (!end_io_wq) 735 return -ENOMEM; 736 737 end_io_wq->private = bio->bi_private; 738 end_io_wq->end_io = bio->bi_end_io; 739 end_io_wq->info = info; 740 end_io_wq->error = 0; 741 end_io_wq->bio = bio; 742 end_io_wq->metadata = metadata; 743 744 bio->bi_private = end_io_wq; 745 bio->bi_end_io = end_workqueue_bio; 746 return 0; 747 } 748 749 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 750 { 751 unsigned long limit = min_t(unsigned long, 752 info->workers.max_workers, 753 info->fs_devices->open_devices); 754 return 256 * limit; 755 } 756 757 static void run_one_async_start(struct btrfs_work *work) 758 { 759 struct async_submit_bio *async; 760 int ret; 761 762 async = container_of(work, struct async_submit_bio, work); 763 ret = async->submit_bio_start(async->inode, async->rw, async->bio, 764 async->mirror_num, async->bio_flags, 765 async->bio_offset); 766 if (ret) 767 async->error = ret; 768 } 769 770 static void run_one_async_done(struct btrfs_work *work) 771 { 772 struct btrfs_fs_info *fs_info; 773 struct async_submit_bio *async; 774 int limit; 775 776 async = container_of(work, struct async_submit_bio, work); 777 fs_info = BTRFS_I(async->inode)->root->fs_info; 778 779 limit = btrfs_async_submit_limit(fs_info); 780 limit = limit * 2 / 3; 781 782 if (atomic_dec_return(&fs_info->nr_async_submits) < limit && 783 waitqueue_active(&fs_info->async_submit_wait)) 784 wake_up(&fs_info->async_submit_wait); 785 786 /* If an error occured we just want to clean up the bio and move on */ 787 if (async->error) { 788 bio_endio(async->bio, async->error); 789 return; 790 } 791 792 async->submit_bio_done(async->inode, async->rw, async->bio, 793 async->mirror_num, async->bio_flags, 794 async->bio_offset); 795 } 796 797 static void run_one_async_free(struct btrfs_work *work) 798 { 799 struct async_submit_bio *async; 800 801 async = container_of(work, struct async_submit_bio, work); 802 kfree(async); 803 } 804 805 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 806 int rw, struct bio *bio, int mirror_num, 807 unsigned long bio_flags, 808 u64 bio_offset, 809 extent_submit_bio_hook_t *submit_bio_start, 810 extent_submit_bio_hook_t *submit_bio_done) 811 { 812 struct async_submit_bio *async; 813 814 async = kmalloc(sizeof(*async), GFP_NOFS); 815 if (!async) 816 return -ENOMEM; 817 818 async->inode = inode; 819 async->rw = rw; 820 async->bio = bio; 821 async->mirror_num = mirror_num; 822 async->submit_bio_start = submit_bio_start; 823 async->submit_bio_done = submit_bio_done; 824 825 async->work.func = run_one_async_start; 826 async->work.ordered_func = run_one_async_done; 827 async->work.ordered_free = run_one_async_free; 828 829 async->work.flags = 0; 830 async->bio_flags = bio_flags; 831 async->bio_offset = bio_offset; 832 833 async->error = 0; 834 835 atomic_inc(&fs_info->nr_async_submits); 836 837 if (rw & REQ_SYNC) 838 btrfs_set_work_high_prio(&async->work); 839 840 btrfs_queue_worker(&fs_info->workers, &async->work); 841 842 while (atomic_read(&fs_info->async_submit_draining) && 843 atomic_read(&fs_info->nr_async_submits)) { 844 wait_event(fs_info->async_submit_wait, 845 (atomic_read(&fs_info->nr_async_submits) == 0)); 846 } 847 848 return 0; 849 } 850 851 static int btree_csum_one_bio(struct bio *bio) 852 { 853 struct bio_vec *bvec = bio->bi_io_vec; 854 int bio_index = 0; 855 struct btrfs_root *root; 856 int ret = 0; 857 858 WARN_ON(bio->bi_vcnt <= 0); 859 while (bio_index < bio->bi_vcnt) { 860 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 861 ret = csum_dirty_buffer(root, bvec->bv_page); 862 if (ret) 863 break; 864 bio_index++; 865 bvec++; 866 } 867 return ret; 868 } 869 870 static int __btree_submit_bio_start(struct inode *inode, int rw, 871 struct bio *bio, int mirror_num, 872 unsigned long bio_flags, 873 u64 bio_offset) 874 { 875 /* 876 * when we're called for a write, we're already in the async 877 * submission context. Just jump into btrfs_map_bio 878 */ 879 return btree_csum_one_bio(bio); 880 } 881 882 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 883 int mirror_num, unsigned long bio_flags, 884 u64 bio_offset) 885 { 886 int ret; 887 888 /* 889 * when we're called for a write, we're already in the async 890 * submission context. Just jump into btrfs_map_bio 891 */ 892 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 893 if (ret) 894 bio_endio(bio, ret); 895 return ret; 896 } 897 898 static int check_async_write(struct inode *inode, unsigned long bio_flags) 899 { 900 if (bio_flags & EXTENT_BIO_TREE_LOG) 901 return 0; 902 #ifdef CONFIG_X86 903 if (cpu_has_xmm4_2) 904 return 0; 905 #endif 906 return 1; 907 } 908 909 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 910 int mirror_num, unsigned long bio_flags, 911 u64 bio_offset) 912 { 913 int async = check_async_write(inode, bio_flags); 914 int ret; 915 916 if (!(rw & REQ_WRITE)) { 917 /* 918 * called for a read, do the setup so that checksum validation 919 * can happen in the async kernel threads 920 */ 921 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 922 bio, 1); 923 if (ret) 924 goto out_w_error; 925 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 926 mirror_num, 0); 927 } else if (!async) { 928 ret = btree_csum_one_bio(bio); 929 if (ret) 930 goto out_w_error; 931 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 932 mirror_num, 0); 933 } else { 934 /* 935 * kthread helpers are used to submit writes so that 936 * checksumming can happen in parallel across all CPUs 937 */ 938 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 939 inode, rw, bio, mirror_num, 0, 940 bio_offset, 941 __btree_submit_bio_start, 942 __btree_submit_bio_done); 943 } 944 945 if (ret) { 946 out_w_error: 947 bio_endio(bio, ret); 948 } 949 return ret; 950 } 951 952 #ifdef CONFIG_MIGRATION 953 static int btree_migratepage(struct address_space *mapping, 954 struct page *newpage, struct page *page, 955 enum migrate_mode mode) 956 { 957 /* 958 * we can't safely write a btree page from here, 959 * we haven't done the locking hook 960 */ 961 if (PageDirty(page)) 962 return -EAGAIN; 963 /* 964 * Buffers may be managed in a filesystem specific way. 965 * We must have no buffers or drop them. 966 */ 967 if (page_has_private(page) && 968 !try_to_release_page(page, GFP_KERNEL)) 969 return -EAGAIN; 970 return migrate_page(mapping, newpage, page, mode); 971 } 972 #endif 973 974 975 static int btree_writepages(struct address_space *mapping, 976 struct writeback_control *wbc) 977 { 978 struct extent_io_tree *tree; 979 struct btrfs_fs_info *fs_info; 980 int ret; 981 982 tree = &BTRFS_I(mapping->host)->io_tree; 983 if (wbc->sync_mode == WB_SYNC_NONE) { 984 985 if (wbc->for_kupdate) 986 return 0; 987 988 fs_info = BTRFS_I(mapping->host)->root->fs_info; 989 /* this is a bit racy, but that's ok */ 990 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 991 BTRFS_DIRTY_METADATA_THRESH); 992 if (ret < 0) 993 return 0; 994 } 995 return btree_write_cache_pages(mapping, wbc); 996 } 997 998 static int btree_readpage(struct file *file, struct page *page) 999 { 1000 struct extent_io_tree *tree; 1001 tree = &BTRFS_I(page->mapping->host)->io_tree; 1002 return extent_read_full_page(tree, page, btree_get_extent, 0); 1003 } 1004 1005 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 1006 { 1007 if (PageWriteback(page) || PageDirty(page)) 1008 return 0; 1009 1010 return try_release_extent_buffer(page); 1011 } 1012 1013 static void btree_invalidatepage(struct page *page, unsigned int offset, 1014 unsigned int length) 1015 { 1016 struct extent_io_tree *tree; 1017 tree = &BTRFS_I(page->mapping->host)->io_tree; 1018 extent_invalidatepage(tree, page, offset); 1019 btree_releasepage(page, GFP_NOFS); 1020 if (PagePrivate(page)) { 1021 printk(KERN_WARNING "btrfs warning page private not zero " 1022 "on page %llu\n", (unsigned long long)page_offset(page)); 1023 ClearPagePrivate(page); 1024 set_page_private(page, 0); 1025 page_cache_release(page); 1026 } 1027 } 1028 1029 static int btree_set_page_dirty(struct page *page) 1030 { 1031 #ifdef DEBUG 1032 struct extent_buffer *eb; 1033 1034 BUG_ON(!PagePrivate(page)); 1035 eb = (struct extent_buffer *)page->private; 1036 BUG_ON(!eb); 1037 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1038 BUG_ON(!atomic_read(&eb->refs)); 1039 btrfs_assert_tree_locked(eb); 1040 #endif 1041 return __set_page_dirty_nobuffers(page); 1042 } 1043 1044 static const struct address_space_operations btree_aops = { 1045 .readpage = btree_readpage, 1046 .writepages = btree_writepages, 1047 .releasepage = btree_releasepage, 1048 .invalidatepage = btree_invalidatepage, 1049 #ifdef CONFIG_MIGRATION 1050 .migratepage = btree_migratepage, 1051 #endif 1052 .set_page_dirty = btree_set_page_dirty, 1053 }; 1054 1055 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1056 u64 parent_transid) 1057 { 1058 struct extent_buffer *buf = NULL; 1059 struct inode *btree_inode = root->fs_info->btree_inode; 1060 int ret = 0; 1061 1062 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1063 if (!buf) 1064 return 0; 1065 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1066 buf, 0, WAIT_NONE, btree_get_extent, 0); 1067 free_extent_buffer(buf); 1068 return ret; 1069 } 1070 1071 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1072 int mirror_num, struct extent_buffer **eb) 1073 { 1074 struct extent_buffer *buf = NULL; 1075 struct inode *btree_inode = root->fs_info->btree_inode; 1076 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1077 int ret; 1078 1079 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1080 if (!buf) 1081 return 0; 1082 1083 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1084 1085 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1086 btree_get_extent, mirror_num); 1087 if (ret) { 1088 free_extent_buffer(buf); 1089 return ret; 1090 } 1091 1092 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1093 free_extent_buffer(buf); 1094 return -EIO; 1095 } else if (extent_buffer_uptodate(buf)) { 1096 *eb = buf; 1097 } else { 1098 free_extent_buffer(buf); 1099 } 1100 return 0; 1101 } 1102 1103 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 1104 u64 bytenr, u32 blocksize) 1105 { 1106 struct inode *btree_inode = root->fs_info->btree_inode; 1107 struct extent_buffer *eb; 1108 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 1109 bytenr, blocksize); 1110 return eb; 1111 } 1112 1113 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1114 u64 bytenr, u32 blocksize) 1115 { 1116 struct inode *btree_inode = root->fs_info->btree_inode; 1117 struct extent_buffer *eb; 1118 1119 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 1120 bytenr, blocksize); 1121 return eb; 1122 } 1123 1124 1125 int btrfs_write_tree_block(struct extent_buffer *buf) 1126 { 1127 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1128 buf->start + buf->len - 1); 1129 } 1130 1131 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1132 { 1133 return filemap_fdatawait_range(buf->pages[0]->mapping, 1134 buf->start, buf->start + buf->len - 1); 1135 } 1136 1137 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1138 u32 blocksize, u64 parent_transid) 1139 { 1140 struct extent_buffer *buf = NULL; 1141 int ret; 1142 1143 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1144 if (!buf) 1145 return NULL; 1146 1147 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1148 if (ret) { 1149 free_extent_buffer(buf); 1150 return NULL; 1151 } 1152 return buf; 1153 1154 } 1155 1156 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1157 struct extent_buffer *buf) 1158 { 1159 struct btrfs_fs_info *fs_info = root->fs_info; 1160 1161 if (btrfs_header_generation(buf) == 1162 fs_info->running_transaction->transid) { 1163 btrfs_assert_tree_locked(buf); 1164 1165 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1166 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 1167 -buf->len, 1168 fs_info->dirty_metadata_batch); 1169 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1170 btrfs_set_lock_blocking(buf); 1171 clear_extent_buffer_dirty(buf); 1172 } 1173 } 1174 } 1175 1176 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 1177 u32 stripesize, struct btrfs_root *root, 1178 struct btrfs_fs_info *fs_info, 1179 u64 objectid) 1180 { 1181 root->node = NULL; 1182 root->commit_root = NULL; 1183 root->sectorsize = sectorsize; 1184 root->nodesize = nodesize; 1185 root->leafsize = leafsize; 1186 root->stripesize = stripesize; 1187 root->ref_cows = 0; 1188 root->track_dirty = 0; 1189 root->in_radix = 0; 1190 root->orphan_item_inserted = 0; 1191 root->orphan_cleanup_state = 0; 1192 1193 root->objectid = objectid; 1194 root->last_trans = 0; 1195 root->highest_objectid = 0; 1196 root->nr_delalloc_inodes = 0; 1197 root->nr_ordered_extents = 0; 1198 root->name = NULL; 1199 root->inode_tree = RB_ROOT; 1200 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1201 root->block_rsv = NULL; 1202 root->orphan_block_rsv = NULL; 1203 1204 INIT_LIST_HEAD(&root->dirty_list); 1205 INIT_LIST_HEAD(&root->root_list); 1206 INIT_LIST_HEAD(&root->delalloc_inodes); 1207 INIT_LIST_HEAD(&root->delalloc_root); 1208 INIT_LIST_HEAD(&root->ordered_extents); 1209 INIT_LIST_HEAD(&root->ordered_root); 1210 INIT_LIST_HEAD(&root->logged_list[0]); 1211 INIT_LIST_HEAD(&root->logged_list[1]); 1212 spin_lock_init(&root->orphan_lock); 1213 spin_lock_init(&root->inode_lock); 1214 spin_lock_init(&root->delalloc_lock); 1215 spin_lock_init(&root->ordered_extent_lock); 1216 spin_lock_init(&root->accounting_lock); 1217 spin_lock_init(&root->log_extents_lock[0]); 1218 spin_lock_init(&root->log_extents_lock[1]); 1219 mutex_init(&root->objectid_mutex); 1220 mutex_init(&root->log_mutex); 1221 init_waitqueue_head(&root->log_writer_wait); 1222 init_waitqueue_head(&root->log_commit_wait[0]); 1223 init_waitqueue_head(&root->log_commit_wait[1]); 1224 atomic_set(&root->log_commit[0], 0); 1225 atomic_set(&root->log_commit[1], 0); 1226 atomic_set(&root->log_writers, 0); 1227 atomic_set(&root->log_batch, 0); 1228 atomic_set(&root->orphan_inodes, 0); 1229 atomic_set(&root->refs, 1); 1230 root->log_transid = 0; 1231 root->last_log_commit = 0; 1232 extent_io_tree_init(&root->dirty_log_pages, 1233 fs_info->btree_inode->i_mapping); 1234 1235 memset(&root->root_key, 0, sizeof(root->root_key)); 1236 memset(&root->root_item, 0, sizeof(root->root_item)); 1237 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1238 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 1239 root->defrag_trans_start = fs_info->generation; 1240 init_completion(&root->kobj_unregister); 1241 root->defrag_running = 0; 1242 root->root_key.objectid = objectid; 1243 root->anon_dev = 0; 1244 1245 spin_lock_init(&root->root_item_lock); 1246 } 1247 1248 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info) 1249 { 1250 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS); 1251 if (root) 1252 root->fs_info = fs_info; 1253 return root; 1254 } 1255 1256 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1257 struct btrfs_fs_info *fs_info, 1258 u64 objectid) 1259 { 1260 struct extent_buffer *leaf; 1261 struct btrfs_root *tree_root = fs_info->tree_root; 1262 struct btrfs_root *root; 1263 struct btrfs_key key; 1264 int ret = 0; 1265 u64 bytenr; 1266 uuid_le uuid; 1267 1268 root = btrfs_alloc_root(fs_info); 1269 if (!root) 1270 return ERR_PTR(-ENOMEM); 1271 1272 __setup_root(tree_root->nodesize, tree_root->leafsize, 1273 tree_root->sectorsize, tree_root->stripesize, 1274 root, fs_info, objectid); 1275 root->root_key.objectid = objectid; 1276 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1277 root->root_key.offset = 0; 1278 1279 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 1280 0, objectid, NULL, 0, 0, 0); 1281 if (IS_ERR(leaf)) { 1282 ret = PTR_ERR(leaf); 1283 leaf = NULL; 1284 goto fail; 1285 } 1286 1287 bytenr = leaf->start; 1288 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1289 btrfs_set_header_bytenr(leaf, leaf->start); 1290 btrfs_set_header_generation(leaf, trans->transid); 1291 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1292 btrfs_set_header_owner(leaf, objectid); 1293 root->node = leaf; 1294 1295 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(leaf), 1296 BTRFS_FSID_SIZE); 1297 write_extent_buffer(leaf, fs_info->chunk_tree_uuid, 1298 btrfs_header_chunk_tree_uuid(leaf), 1299 BTRFS_UUID_SIZE); 1300 btrfs_mark_buffer_dirty(leaf); 1301 1302 root->commit_root = btrfs_root_node(root); 1303 root->track_dirty = 1; 1304 1305 1306 root->root_item.flags = 0; 1307 root->root_item.byte_limit = 0; 1308 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1309 btrfs_set_root_generation(&root->root_item, trans->transid); 1310 btrfs_set_root_level(&root->root_item, 0); 1311 btrfs_set_root_refs(&root->root_item, 1); 1312 btrfs_set_root_used(&root->root_item, leaf->len); 1313 btrfs_set_root_last_snapshot(&root->root_item, 0); 1314 btrfs_set_root_dirid(&root->root_item, 0); 1315 uuid_le_gen(&uuid); 1316 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1317 root->root_item.drop_level = 0; 1318 1319 key.objectid = objectid; 1320 key.type = BTRFS_ROOT_ITEM_KEY; 1321 key.offset = 0; 1322 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1323 if (ret) 1324 goto fail; 1325 1326 btrfs_tree_unlock(leaf); 1327 1328 return root; 1329 1330 fail: 1331 if (leaf) { 1332 btrfs_tree_unlock(leaf); 1333 free_extent_buffer(leaf); 1334 } 1335 kfree(root); 1336 1337 return ERR_PTR(ret); 1338 } 1339 1340 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1341 struct btrfs_fs_info *fs_info) 1342 { 1343 struct btrfs_root *root; 1344 struct btrfs_root *tree_root = fs_info->tree_root; 1345 struct extent_buffer *leaf; 1346 1347 root = btrfs_alloc_root(fs_info); 1348 if (!root) 1349 return ERR_PTR(-ENOMEM); 1350 1351 __setup_root(tree_root->nodesize, tree_root->leafsize, 1352 tree_root->sectorsize, tree_root->stripesize, 1353 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1354 1355 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1356 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1357 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1358 /* 1359 * log trees do not get reference counted because they go away 1360 * before a real commit is actually done. They do store pointers 1361 * to file data extents, and those reference counts still get 1362 * updated (along with back refs to the log tree). 1363 */ 1364 root->ref_cows = 0; 1365 1366 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 1367 BTRFS_TREE_LOG_OBJECTID, NULL, 1368 0, 0, 0); 1369 if (IS_ERR(leaf)) { 1370 kfree(root); 1371 return ERR_CAST(leaf); 1372 } 1373 1374 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1375 btrfs_set_header_bytenr(leaf, leaf->start); 1376 btrfs_set_header_generation(leaf, trans->transid); 1377 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1378 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1379 root->node = leaf; 1380 1381 write_extent_buffer(root->node, root->fs_info->fsid, 1382 btrfs_header_fsid(root->node), BTRFS_FSID_SIZE); 1383 btrfs_mark_buffer_dirty(root->node); 1384 btrfs_tree_unlock(root->node); 1385 return root; 1386 } 1387 1388 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1389 struct btrfs_fs_info *fs_info) 1390 { 1391 struct btrfs_root *log_root; 1392 1393 log_root = alloc_log_tree(trans, fs_info); 1394 if (IS_ERR(log_root)) 1395 return PTR_ERR(log_root); 1396 WARN_ON(fs_info->log_root_tree); 1397 fs_info->log_root_tree = log_root; 1398 return 0; 1399 } 1400 1401 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1402 struct btrfs_root *root) 1403 { 1404 struct btrfs_root *log_root; 1405 struct btrfs_inode_item *inode_item; 1406 1407 log_root = alloc_log_tree(trans, root->fs_info); 1408 if (IS_ERR(log_root)) 1409 return PTR_ERR(log_root); 1410 1411 log_root->last_trans = trans->transid; 1412 log_root->root_key.offset = root->root_key.objectid; 1413 1414 inode_item = &log_root->root_item.inode; 1415 btrfs_set_stack_inode_generation(inode_item, 1); 1416 btrfs_set_stack_inode_size(inode_item, 3); 1417 btrfs_set_stack_inode_nlink(inode_item, 1); 1418 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize); 1419 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1420 1421 btrfs_set_root_node(&log_root->root_item, log_root->node); 1422 1423 WARN_ON(root->log_root); 1424 root->log_root = log_root; 1425 root->log_transid = 0; 1426 root->last_log_commit = 0; 1427 return 0; 1428 } 1429 1430 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1431 struct btrfs_key *key) 1432 { 1433 struct btrfs_root *root; 1434 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1435 struct btrfs_path *path; 1436 u64 generation; 1437 u32 blocksize; 1438 int ret; 1439 1440 path = btrfs_alloc_path(); 1441 if (!path) 1442 return ERR_PTR(-ENOMEM); 1443 1444 root = btrfs_alloc_root(fs_info); 1445 if (!root) { 1446 ret = -ENOMEM; 1447 goto alloc_fail; 1448 } 1449 1450 __setup_root(tree_root->nodesize, tree_root->leafsize, 1451 tree_root->sectorsize, tree_root->stripesize, 1452 root, fs_info, key->objectid); 1453 1454 ret = btrfs_find_root(tree_root, key, path, 1455 &root->root_item, &root->root_key); 1456 if (ret) { 1457 if (ret > 0) 1458 ret = -ENOENT; 1459 goto find_fail; 1460 } 1461 1462 generation = btrfs_root_generation(&root->root_item); 1463 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1464 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1465 blocksize, generation); 1466 if (!root->node) { 1467 ret = -ENOMEM; 1468 goto find_fail; 1469 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1470 ret = -EIO; 1471 goto read_fail; 1472 } 1473 root->commit_root = btrfs_root_node(root); 1474 out: 1475 btrfs_free_path(path); 1476 return root; 1477 1478 read_fail: 1479 free_extent_buffer(root->node); 1480 find_fail: 1481 kfree(root); 1482 alloc_fail: 1483 root = ERR_PTR(ret); 1484 goto out; 1485 } 1486 1487 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1488 struct btrfs_key *location) 1489 { 1490 struct btrfs_root *root; 1491 1492 root = btrfs_read_tree_root(tree_root, location); 1493 if (IS_ERR(root)) 1494 return root; 1495 1496 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1497 root->ref_cows = 1; 1498 btrfs_check_and_init_root_item(&root->root_item); 1499 } 1500 1501 return root; 1502 } 1503 1504 int btrfs_init_fs_root(struct btrfs_root *root) 1505 { 1506 int ret; 1507 1508 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1509 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1510 GFP_NOFS); 1511 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1512 ret = -ENOMEM; 1513 goto fail; 1514 } 1515 1516 btrfs_init_free_ino_ctl(root); 1517 mutex_init(&root->fs_commit_mutex); 1518 spin_lock_init(&root->cache_lock); 1519 init_waitqueue_head(&root->cache_wait); 1520 1521 ret = get_anon_bdev(&root->anon_dev); 1522 if (ret) 1523 goto fail; 1524 return 0; 1525 fail: 1526 kfree(root->free_ino_ctl); 1527 kfree(root->free_ino_pinned); 1528 return ret; 1529 } 1530 1531 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1532 u64 root_id) 1533 { 1534 struct btrfs_root *root; 1535 1536 spin_lock(&fs_info->fs_roots_radix_lock); 1537 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1538 (unsigned long)root_id); 1539 spin_unlock(&fs_info->fs_roots_radix_lock); 1540 return root; 1541 } 1542 1543 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1544 struct btrfs_root *root) 1545 { 1546 int ret; 1547 1548 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1549 if (ret) 1550 return ret; 1551 1552 spin_lock(&fs_info->fs_roots_radix_lock); 1553 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1554 (unsigned long)root->root_key.objectid, 1555 root); 1556 if (ret == 0) 1557 root->in_radix = 1; 1558 spin_unlock(&fs_info->fs_roots_radix_lock); 1559 radix_tree_preload_end(); 1560 1561 return ret; 1562 } 1563 1564 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1565 struct btrfs_key *location, 1566 bool check_ref) 1567 { 1568 struct btrfs_root *root; 1569 int ret; 1570 1571 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1572 return fs_info->tree_root; 1573 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1574 return fs_info->extent_root; 1575 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1576 return fs_info->chunk_root; 1577 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1578 return fs_info->dev_root; 1579 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1580 return fs_info->csum_root; 1581 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1582 return fs_info->quota_root ? fs_info->quota_root : 1583 ERR_PTR(-ENOENT); 1584 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1585 return fs_info->uuid_root ? fs_info->uuid_root : 1586 ERR_PTR(-ENOENT); 1587 again: 1588 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1589 if (root) { 1590 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1591 return ERR_PTR(-ENOENT); 1592 return root; 1593 } 1594 1595 root = btrfs_read_fs_root(fs_info->tree_root, location); 1596 if (IS_ERR(root)) 1597 return root; 1598 1599 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1600 ret = -ENOENT; 1601 goto fail; 1602 } 1603 1604 ret = btrfs_init_fs_root(root); 1605 if (ret) 1606 goto fail; 1607 1608 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid); 1609 if (ret < 0) 1610 goto fail; 1611 if (ret == 0) 1612 root->orphan_item_inserted = 1; 1613 1614 ret = btrfs_insert_fs_root(fs_info, root); 1615 if (ret) { 1616 if (ret == -EEXIST) { 1617 free_fs_root(root); 1618 goto again; 1619 } 1620 goto fail; 1621 } 1622 return root; 1623 fail: 1624 free_fs_root(root); 1625 return ERR_PTR(ret); 1626 } 1627 1628 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1629 { 1630 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1631 int ret = 0; 1632 struct btrfs_device *device; 1633 struct backing_dev_info *bdi; 1634 1635 rcu_read_lock(); 1636 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1637 if (!device->bdev) 1638 continue; 1639 bdi = blk_get_backing_dev_info(device->bdev); 1640 if (bdi && bdi_congested(bdi, bdi_bits)) { 1641 ret = 1; 1642 break; 1643 } 1644 } 1645 rcu_read_unlock(); 1646 return ret; 1647 } 1648 1649 /* 1650 * If this fails, caller must call bdi_destroy() to get rid of the 1651 * bdi again. 1652 */ 1653 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1654 { 1655 int err; 1656 1657 bdi->capabilities = BDI_CAP_MAP_COPY; 1658 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY); 1659 if (err) 1660 return err; 1661 1662 bdi->ra_pages = default_backing_dev_info.ra_pages; 1663 bdi->congested_fn = btrfs_congested_fn; 1664 bdi->congested_data = info; 1665 return 0; 1666 } 1667 1668 /* 1669 * called by the kthread helper functions to finally call the bio end_io 1670 * functions. This is where read checksum verification actually happens 1671 */ 1672 static void end_workqueue_fn(struct btrfs_work *work) 1673 { 1674 struct bio *bio; 1675 struct end_io_wq *end_io_wq; 1676 struct btrfs_fs_info *fs_info; 1677 int error; 1678 1679 end_io_wq = container_of(work, struct end_io_wq, work); 1680 bio = end_io_wq->bio; 1681 fs_info = end_io_wq->info; 1682 1683 error = end_io_wq->error; 1684 bio->bi_private = end_io_wq->private; 1685 bio->bi_end_io = end_io_wq->end_io; 1686 kfree(end_io_wq); 1687 bio_endio(bio, error); 1688 } 1689 1690 static int cleaner_kthread(void *arg) 1691 { 1692 struct btrfs_root *root = arg; 1693 int again; 1694 1695 do { 1696 again = 0; 1697 1698 /* Make the cleaner go to sleep early. */ 1699 if (btrfs_need_cleaner_sleep(root)) 1700 goto sleep; 1701 1702 if (!mutex_trylock(&root->fs_info->cleaner_mutex)) 1703 goto sleep; 1704 1705 /* 1706 * Avoid the problem that we change the status of the fs 1707 * during the above check and trylock. 1708 */ 1709 if (btrfs_need_cleaner_sleep(root)) { 1710 mutex_unlock(&root->fs_info->cleaner_mutex); 1711 goto sleep; 1712 } 1713 1714 btrfs_run_delayed_iputs(root); 1715 again = btrfs_clean_one_deleted_snapshot(root); 1716 mutex_unlock(&root->fs_info->cleaner_mutex); 1717 1718 /* 1719 * The defragger has dealt with the R/O remount and umount, 1720 * needn't do anything special here. 1721 */ 1722 btrfs_run_defrag_inodes(root->fs_info); 1723 sleep: 1724 if (!try_to_freeze() && !again) { 1725 set_current_state(TASK_INTERRUPTIBLE); 1726 if (!kthread_should_stop()) 1727 schedule(); 1728 __set_current_state(TASK_RUNNING); 1729 } 1730 } while (!kthread_should_stop()); 1731 return 0; 1732 } 1733 1734 static int transaction_kthread(void *arg) 1735 { 1736 struct btrfs_root *root = arg; 1737 struct btrfs_trans_handle *trans; 1738 struct btrfs_transaction *cur; 1739 u64 transid; 1740 unsigned long now; 1741 unsigned long delay; 1742 bool cannot_commit; 1743 1744 do { 1745 cannot_commit = false; 1746 delay = HZ * root->fs_info->commit_interval; 1747 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1748 1749 spin_lock(&root->fs_info->trans_lock); 1750 cur = root->fs_info->running_transaction; 1751 if (!cur) { 1752 spin_unlock(&root->fs_info->trans_lock); 1753 goto sleep; 1754 } 1755 1756 now = get_seconds(); 1757 if (cur->state < TRANS_STATE_BLOCKED && 1758 (now < cur->start_time || 1759 now - cur->start_time < root->fs_info->commit_interval)) { 1760 spin_unlock(&root->fs_info->trans_lock); 1761 delay = HZ * 5; 1762 goto sleep; 1763 } 1764 transid = cur->transid; 1765 spin_unlock(&root->fs_info->trans_lock); 1766 1767 /* If the file system is aborted, this will always fail. */ 1768 trans = btrfs_attach_transaction(root); 1769 if (IS_ERR(trans)) { 1770 if (PTR_ERR(trans) != -ENOENT) 1771 cannot_commit = true; 1772 goto sleep; 1773 } 1774 if (transid == trans->transid) { 1775 btrfs_commit_transaction(trans, root); 1776 } else { 1777 btrfs_end_transaction(trans, root); 1778 } 1779 sleep: 1780 wake_up_process(root->fs_info->cleaner_kthread); 1781 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1782 1783 if (!try_to_freeze()) { 1784 set_current_state(TASK_INTERRUPTIBLE); 1785 if (!kthread_should_stop() && 1786 (!btrfs_transaction_blocked(root->fs_info) || 1787 cannot_commit)) 1788 schedule_timeout(delay); 1789 __set_current_state(TASK_RUNNING); 1790 } 1791 } while (!kthread_should_stop()); 1792 return 0; 1793 } 1794 1795 /* 1796 * this will find the highest generation in the array of 1797 * root backups. The index of the highest array is returned, 1798 * or -1 if we can't find anything. 1799 * 1800 * We check to make sure the array is valid by comparing the 1801 * generation of the latest root in the array with the generation 1802 * in the super block. If they don't match we pitch it. 1803 */ 1804 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1805 { 1806 u64 cur; 1807 int newest_index = -1; 1808 struct btrfs_root_backup *root_backup; 1809 int i; 1810 1811 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1812 root_backup = info->super_copy->super_roots + i; 1813 cur = btrfs_backup_tree_root_gen(root_backup); 1814 if (cur == newest_gen) 1815 newest_index = i; 1816 } 1817 1818 /* check to see if we actually wrapped around */ 1819 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1820 root_backup = info->super_copy->super_roots; 1821 cur = btrfs_backup_tree_root_gen(root_backup); 1822 if (cur == newest_gen) 1823 newest_index = 0; 1824 } 1825 return newest_index; 1826 } 1827 1828 1829 /* 1830 * find the oldest backup so we know where to store new entries 1831 * in the backup array. This will set the backup_root_index 1832 * field in the fs_info struct 1833 */ 1834 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1835 u64 newest_gen) 1836 { 1837 int newest_index = -1; 1838 1839 newest_index = find_newest_super_backup(info, newest_gen); 1840 /* if there was garbage in there, just move along */ 1841 if (newest_index == -1) { 1842 info->backup_root_index = 0; 1843 } else { 1844 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1845 } 1846 } 1847 1848 /* 1849 * copy all the root pointers into the super backup array. 1850 * this will bump the backup pointer by one when it is 1851 * done 1852 */ 1853 static void backup_super_roots(struct btrfs_fs_info *info) 1854 { 1855 int next_backup; 1856 struct btrfs_root_backup *root_backup; 1857 int last_backup; 1858 1859 next_backup = info->backup_root_index; 1860 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1861 BTRFS_NUM_BACKUP_ROOTS; 1862 1863 /* 1864 * just overwrite the last backup if we're at the same generation 1865 * this happens only at umount 1866 */ 1867 root_backup = info->super_for_commit->super_roots + last_backup; 1868 if (btrfs_backup_tree_root_gen(root_backup) == 1869 btrfs_header_generation(info->tree_root->node)) 1870 next_backup = last_backup; 1871 1872 root_backup = info->super_for_commit->super_roots + next_backup; 1873 1874 /* 1875 * make sure all of our padding and empty slots get zero filled 1876 * regardless of which ones we use today 1877 */ 1878 memset(root_backup, 0, sizeof(*root_backup)); 1879 1880 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1881 1882 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1883 btrfs_set_backup_tree_root_gen(root_backup, 1884 btrfs_header_generation(info->tree_root->node)); 1885 1886 btrfs_set_backup_tree_root_level(root_backup, 1887 btrfs_header_level(info->tree_root->node)); 1888 1889 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1890 btrfs_set_backup_chunk_root_gen(root_backup, 1891 btrfs_header_generation(info->chunk_root->node)); 1892 btrfs_set_backup_chunk_root_level(root_backup, 1893 btrfs_header_level(info->chunk_root->node)); 1894 1895 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1896 btrfs_set_backup_extent_root_gen(root_backup, 1897 btrfs_header_generation(info->extent_root->node)); 1898 btrfs_set_backup_extent_root_level(root_backup, 1899 btrfs_header_level(info->extent_root->node)); 1900 1901 /* 1902 * we might commit during log recovery, which happens before we set 1903 * the fs_root. Make sure it is valid before we fill it in. 1904 */ 1905 if (info->fs_root && info->fs_root->node) { 1906 btrfs_set_backup_fs_root(root_backup, 1907 info->fs_root->node->start); 1908 btrfs_set_backup_fs_root_gen(root_backup, 1909 btrfs_header_generation(info->fs_root->node)); 1910 btrfs_set_backup_fs_root_level(root_backup, 1911 btrfs_header_level(info->fs_root->node)); 1912 } 1913 1914 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1915 btrfs_set_backup_dev_root_gen(root_backup, 1916 btrfs_header_generation(info->dev_root->node)); 1917 btrfs_set_backup_dev_root_level(root_backup, 1918 btrfs_header_level(info->dev_root->node)); 1919 1920 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1921 btrfs_set_backup_csum_root_gen(root_backup, 1922 btrfs_header_generation(info->csum_root->node)); 1923 btrfs_set_backup_csum_root_level(root_backup, 1924 btrfs_header_level(info->csum_root->node)); 1925 1926 btrfs_set_backup_total_bytes(root_backup, 1927 btrfs_super_total_bytes(info->super_copy)); 1928 btrfs_set_backup_bytes_used(root_backup, 1929 btrfs_super_bytes_used(info->super_copy)); 1930 btrfs_set_backup_num_devices(root_backup, 1931 btrfs_super_num_devices(info->super_copy)); 1932 1933 /* 1934 * if we don't copy this out to the super_copy, it won't get remembered 1935 * for the next commit 1936 */ 1937 memcpy(&info->super_copy->super_roots, 1938 &info->super_for_commit->super_roots, 1939 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1940 } 1941 1942 /* 1943 * this copies info out of the root backup array and back into 1944 * the in-memory super block. It is meant to help iterate through 1945 * the array, so you send it the number of backups you've already 1946 * tried and the last backup index you used. 1947 * 1948 * this returns -1 when it has tried all the backups 1949 */ 1950 static noinline int next_root_backup(struct btrfs_fs_info *info, 1951 struct btrfs_super_block *super, 1952 int *num_backups_tried, int *backup_index) 1953 { 1954 struct btrfs_root_backup *root_backup; 1955 int newest = *backup_index; 1956 1957 if (*num_backups_tried == 0) { 1958 u64 gen = btrfs_super_generation(super); 1959 1960 newest = find_newest_super_backup(info, gen); 1961 if (newest == -1) 1962 return -1; 1963 1964 *backup_index = newest; 1965 *num_backups_tried = 1; 1966 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 1967 /* we've tried all the backups, all done */ 1968 return -1; 1969 } else { 1970 /* jump to the next oldest backup */ 1971 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 1972 BTRFS_NUM_BACKUP_ROOTS; 1973 *backup_index = newest; 1974 *num_backups_tried += 1; 1975 } 1976 root_backup = super->super_roots + newest; 1977 1978 btrfs_set_super_generation(super, 1979 btrfs_backup_tree_root_gen(root_backup)); 1980 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1981 btrfs_set_super_root_level(super, 1982 btrfs_backup_tree_root_level(root_backup)); 1983 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1984 1985 /* 1986 * fixme: the total bytes and num_devices need to match or we should 1987 * need a fsck 1988 */ 1989 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1990 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1991 return 0; 1992 } 1993 1994 /* helper to cleanup workers */ 1995 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1996 { 1997 btrfs_stop_workers(&fs_info->generic_worker); 1998 btrfs_stop_workers(&fs_info->fixup_workers); 1999 btrfs_stop_workers(&fs_info->delalloc_workers); 2000 btrfs_stop_workers(&fs_info->workers); 2001 btrfs_stop_workers(&fs_info->endio_workers); 2002 btrfs_stop_workers(&fs_info->endio_meta_workers); 2003 btrfs_stop_workers(&fs_info->endio_raid56_workers); 2004 btrfs_stop_workers(&fs_info->rmw_workers); 2005 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2006 btrfs_stop_workers(&fs_info->endio_write_workers); 2007 btrfs_stop_workers(&fs_info->endio_freespace_worker); 2008 btrfs_stop_workers(&fs_info->submit_workers); 2009 btrfs_stop_workers(&fs_info->delayed_workers); 2010 btrfs_stop_workers(&fs_info->caching_workers); 2011 btrfs_stop_workers(&fs_info->readahead_workers); 2012 btrfs_stop_workers(&fs_info->flush_workers); 2013 btrfs_stop_workers(&fs_info->qgroup_rescan_workers); 2014 } 2015 2016 /* helper to cleanup tree roots */ 2017 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2018 { 2019 free_extent_buffer(info->tree_root->node); 2020 free_extent_buffer(info->tree_root->commit_root); 2021 info->tree_root->node = NULL; 2022 info->tree_root->commit_root = NULL; 2023 2024 if (info->dev_root) { 2025 free_extent_buffer(info->dev_root->node); 2026 free_extent_buffer(info->dev_root->commit_root); 2027 info->dev_root->node = NULL; 2028 info->dev_root->commit_root = NULL; 2029 } 2030 if (info->extent_root) { 2031 free_extent_buffer(info->extent_root->node); 2032 free_extent_buffer(info->extent_root->commit_root); 2033 info->extent_root->node = NULL; 2034 info->extent_root->commit_root = NULL; 2035 } 2036 if (info->csum_root) { 2037 free_extent_buffer(info->csum_root->node); 2038 free_extent_buffer(info->csum_root->commit_root); 2039 info->csum_root->node = NULL; 2040 info->csum_root->commit_root = NULL; 2041 } 2042 if (info->quota_root) { 2043 free_extent_buffer(info->quota_root->node); 2044 free_extent_buffer(info->quota_root->commit_root); 2045 info->quota_root->node = NULL; 2046 info->quota_root->commit_root = NULL; 2047 } 2048 if (info->uuid_root) { 2049 free_extent_buffer(info->uuid_root->node); 2050 free_extent_buffer(info->uuid_root->commit_root); 2051 info->uuid_root->node = NULL; 2052 info->uuid_root->commit_root = NULL; 2053 } 2054 if (chunk_root) { 2055 free_extent_buffer(info->chunk_root->node); 2056 free_extent_buffer(info->chunk_root->commit_root); 2057 info->chunk_root->node = NULL; 2058 info->chunk_root->commit_root = NULL; 2059 } 2060 } 2061 2062 static void del_fs_roots(struct btrfs_fs_info *fs_info) 2063 { 2064 int ret; 2065 struct btrfs_root *gang[8]; 2066 int i; 2067 2068 while (!list_empty(&fs_info->dead_roots)) { 2069 gang[0] = list_entry(fs_info->dead_roots.next, 2070 struct btrfs_root, root_list); 2071 list_del(&gang[0]->root_list); 2072 2073 if (gang[0]->in_radix) { 2074 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2075 } else { 2076 free_extent_buffer(gang[0]->node); 2077 free_extent_buffer(gang[0]->commit_root); 2078 btrfs_put_fs_root(gang[0]); 2079 } 2080 } 2081 2082 while (1) { 2083 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2084 (void **)gang, 0, 2085 ARRAY_SIZE(gang)); 2086 if (!ret) 2087 break; 2088 for (i = 0; i < ret; i++) 2089 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2090 } 2091 } 2092 2093 int open_ctree(struct super_block *sb, 2094 struct btrfs_fs_devices *fs_devices, 2095 char *options) 2096 { 2097 u32 sectorsize; 2098 u32 nodesize; 2099 u32 leafsize; 2100 u32 blocksize; 2101 u32 stripesize; 2102 u64 generation; 2103 u64 features; 2104 struct btrfs_key location; 2105 struct buffer_head *bh; 2106 struct btrfs_super_block *disk_super; 2107 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2108 struct btrfs_root *tree_root; 2109 struct btrfs_root *extent_root; 2110 struct btrfs_root *csum_root; 2111 struct btrfs_root *chunk_root; 2112 struct btrfs_root *dev_root; 2113 struct btrfs_root *quota_root; 2114 struct btrfs_root *uuid_root; 2115 struct btrfs_root *log_tree_root; 2116 int ret; 2117 int err = -EINVAL; 2118 int num_backups_tried = 0; 2119 int backup_index = 0; 2120 bool create_uuid_tree; 2121 bool check_uuid_tree; 2122 2123 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info); 2124 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info); 2125 if (!tree_root || !chunk_root) { 2126 err = -ENOMEM; 2127 goto fail; 2128 } 2129 2130 ret = init_srcu_struct(&fs_info->subvol_srcu); 2131 if (ret) { 2132 err = ret; 2133 goto fail; 2134 } 2135 2136 ret = setup_bdi(fs_info, &fs_info->bdi); 2137 if (ret) { 2138 err = ret; 2139 goto fail_srcu; 2140 } 2141 2142 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0); 2143 if (ret) { 2144 err = ret; 2145 goto fail_bdi; 2146 } 2147 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE * 2148 (1 + ilog2(nr_cpu_ids)); 2149 2150 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0); 2151 if (ret) { 2152 err = ret; 2153 goto fail_dirty_metadata_bytes; 2154 } 2155 2156 fs_info->btree_inode = new_inode(sb); 2157 if (!fs_info->btree_inode) { 2158 err = -ENOMEM; 2159 goto fail_delalloc_bytes; 2160 } 2161 2162 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2163 2164 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2165 INIT_LIST_HEAD(&fs_info->trans_list); 2166 INIT_LIST_HEAD(&fs_info->dead_roots); 2167 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2168 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2169 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2170 spin_lock_init(&fs_info->delalloc_root_lock); 2171 spin_lock_init(&fs_info->trans_lock); 2172 spin_lock_init(&fs_info->fs_roots_radix_lock); 2173 spin_lock_init(&fs_info->delayed_iput_lock); 2174 spin_lock_init(&fs_info->defrag_inodes_lock); 2175 spin_lock_init(&fs_info->free_chunk_lock); 2176 spin_lock_init(&fs_info->tree_mod_seq_lock); 2177 spin_lock_init(&fs_info->super_lock); 2178 rwlock_init(&fs_info->tree_mod_log_lock); 2179 mutex_init(&fs_info->reloc_mutex); 2180 seqlock_init(&fs_info->profiles_lock); 2181 2182 init_completion(&fs_info->kobj_unregister); 2183 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2184 INIT_LIST_HEAD(&fs_info->space_info); 2185 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2186 btrfs_mapping_init(&fs_info->mapping_tree); 2187 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2188 BTRFS_BLOCK_RSV_GLOBAL); 2189 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, 2190 BTRFS_BLOCK_RSV_DELALLOC); 2191 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2192 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2193 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2194 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2195 BTRFS_BLOCK_RSV_DELOPS); 2196 atomic_set(&fs_info->nr_async_submits, 0); 2197 atomic_set(&fs_info->async_delalloc_pages, 0); 2198 atomic_set(&fs_info->async_submit_draining, 0); 2199 atomic_set(&fs_info->nr_async_bios, 0); 2200 atomic_set(&fs_info->defrag_running, 0); 2201 atomic64_set(&fs_info->tree_mod_seq, 0); 2202 fs_info->sb = sb; 2203 fs_info->max_inline = 8192 * 1024; 2204 fs_info->metadata_ratio = 0; 2205 fs_info->defrag_inodes = RB_ROOT; 2206 fs_info->free_chunk_space = 0; 2207 fs_info->tree_mod_log = RB_ROOT; 2208 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2209 2210 /* readahead state */ 2211 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT); 2212 spin_lock_init(&fs_info->reada_lock); 2213 2214 fs_info->thread_pool_size = min_t(unsigned long, 2215 num_online_cpus() + 2, 8); 2216 2217 INIT_LIST_HEAD(&fs_info->ordered_roots); 2218 spin_lock_init(&fs_info->ordered_root_lock); 2219 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2220 GFP_NOFS); 2221 if (!fs_info->delayed_root) { 2222 err = -ENOMEM; 2223 goto fail_iput; 2224 } 2225 btrfs_init_delayed_root(fs_info->delayed_root); 2226 2227 mutex_init(&fs_info->scrub_lock); 2228 atomic_set(&fs_info->scrubs_running, 0); 2229 atomic_set(&fs_info->scrub_pause_req, 0); 2230 atomic_set(&fs_info->scrubs_paused, 0); 2231 atomic_set(&fs_info->scrub_cancel_req, 0); 2232 init_waitqueue_head(&fs_info->scrub_pause_wait); 2233 init_rwsem(&fs_info->scrub_super_lock); 2234 fs_info->scrub_workers_refcnt = 0; 2235 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2236 fs_info->check_integrity_print_mask = 0; 2237 #endif 2238 2239 spin_lock_init(&fs_info->balance_lock); 2240 mutex_init(&fs_info->balance_mutex); 2241 atomic_set(&fs_info->balance_running, 0); 2242 atomic_set(&fs_info->balance_pause_req, 0); 2243 atomic_set(&fs_info->balance_cancel_req, 0); 2244 fs_info->balance_ctl = NULL; 2245 init_waitqueue_head(&fs_info->balance_wait_q); 2246 2247 sb->s_blocksize = 4096; 2248 sb->s_blocksize_bits = blksize_bits(4096); 2249 sb->s_bdi = &fs_info->bdi; 2250 2251 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2252 set_nlink(fs_info->btree_inode, 1); 2253 /* 2254 * we set the i_size on the btree inode to the max possible int. 2255 * the real end of the address space is determined by all of 2256 * the devices in the system 2257 */ 2258 fs_info->btree_inode->i_size = OFFSET_MAX; 2259 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 2260 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 2261 2262 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2263 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2264 fs_info->btree_inode->i_mapping); 2265 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0; 2266 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2267 2268 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2269 2270 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2271 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2272 sizeof(struct btrfs_key)); 2273 set_bit(BTRFS_INODE_DUMMY, 2274 &BTRFS_I(fs_info->btree_inode)->runtime_flags); 2275 insert_inode_hash(fs_info->btree_inode); 2276 2277 spin_lock_init(&fs_info->block_group_cache_lock); 2278 fs_info->block_group_cache_tree = RB_ROOT; 2279 fs_info->first_logical_byte = (u64)-1; 2280 2281 extent_io_tree_init(&fs_info->freed_extents[0], 2282 fs_info->btree_inode->i_mapping); 2283 extent_io_tree_init(&fs_info->freed_extents[1], 2284 fs_info->btree_inode->i_mapping); 2285 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2286 fs_info->do_barriers = 1; 2287 2288 2289 mutex_init(&fs_info->ordered_operations_mutex); 2290 mutex_init(&fs_info->ordered_extent_flush_mutex); 2291 mutex_init(&fs_info->tree_log_mutex); 2292 mutex_init(&fs_info->chunk_mutex); 2293 mutex_init(&fs_info->transaction_kthread_mutex); 2294 mutex_init(&fs_info->cleaner_mutex); 2295 mutex_init(&fs_info->volume_mutex); 2296 init_rwsem(&fs_info->extent_commit_sem); 2297 init_rwsem(&fs_info->cleanup_work_sem); 2298 init_rwsem(&fs_info->subvol_sem); 2299 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2300 fs_info->dev_replace.lock_owner = 0; 2301 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2302 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2303 mutex_init(&fs_info->dev_replace.lock_management_lock); 2304 mutex_init(&fs_info->dev_replace.lock); 2305 2306 spin_lock_init(&fs_info->qgroup_lock); 2307 mutex_init(&fs_info->qgroup_ioctl_lock); 2308 fs_info->qgroup_tree = RB_ROOT; 2309 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2310 fs_info->qgroup_seq = 1; 2311 fs_info->quota_enabled = 0; 2312 fs_info->pending_quota_state = 0; 2313 fs_info->qgroup_ulist = NULL; 2314 mutex_init(&fs_info->qgroup_rescan_lock); 2315 2316 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2317 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2318 2319 init_waitqueue_head(&fs_info->transaction_throttle); 2320 init_waitqueue_head(&fs_info->transaction_wait); 2321 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2322 init_waitqueue_head(&fs_info->async_submit_wait); 2323 2324 ret = btrfs_alloc_stripe_hash_table(fs_info); 2325 if (ret) { 2326 err = ret; 2327 goto fail_alloc; 2328 } 2329 2330 __setup_root(4096, 4096, 4096, 4096, tree_root, 2331 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2332 2333 invalidate_bdev(fs_devices->latest_bdev); 2334 2335 /* 2336 * Read super block and check the signature bytes only 2337 */ 2338 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2339 if (!bh) { 2340 err = -EINVAL; 2341 goto fail_alloc; 2342 } 2343 2344 /* 2345 * We want to check superblock checksum, the type is stored inside. 2346 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2347 */ 2348 if (btrfs_check_super_csum(bh->b_data)) { 2349 printk(KERN_ERR "btrfs: superblock checksum mismatch\n"); 2350 err = -EINVAL; 2351 goto fail_alloc; 2352 } 2353 2354 /* 2355 * super_copy is zeroed at allocation time and we never touch the 2356 * following bytes up to INFO_SIZE, the checksum is calculated from 2357 * the whole block of INFO_SIZE 2358 */ 2359 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2360 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2361 sizeof(*fs_info->super_for_commit)); 2362 brelse(bh); 2363 2364 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2365 2366 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2367 if (ret) { 2368 printk(KERN_ERR "btrfs: superblock contains fatal errors\n"); 2369 err = -EINVAL; 2370 goto fail_alloc; 2371 } 2372 2373 disk_super = fs_info->super_copy; 2374 if (!btrfs_super_root(disk_super)) 2375 goto fail_alloc; 2376 2377 /* check FS state, whether FS is broken. */ 2378 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2379 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2380 2381 /* 2382 * run through our array of backup supers and setup 2383 * our ring pointer to the oldest one 2384 */ 2385 generation = btrfs_super_generation(disk_super); 2386 find_oldest_super_backup(fs_info, generation); 2387 2388 /* 2389 * In the long term, we'll store the compression type in the super 2390 * block, and it'll be used for per file compression control. 2391 */ 2392 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2393 2394 ret = btrfs_parse_options(tree_root, options); 2395 if (ret) { 2396 err = ret; 2397 goto fail_alloc; 2398 } 2399 2400 features = btrfs_super_incompat_flags(disk_super) & 2401 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2402 if (features) { 2403 printk(KERN_ERR "BTRFS: couldn't mount because of " 2404 "unsupported optional features (%Lx).\n", 2405 features); 2406 err = -EINVAL; 2407 goto fail_alloc; 2408 } 2409 2410 if (btrfs_super_leafsize(disk_super) != 2411 btrfs_super_nodesize(disk_super)) { 2412 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2413 "blocksizes don't match. node %d leaf %d\n", 2414 btrfs_super_nodesize(disk_super), 2415 btrfs_super_leafsize(disk_super)); 2416 err = -EINVAL; 2417 goto fail_alloc; 2418 } 2419 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) { 2420 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2421 "blocksize (%d) was too large\n", 2422 btrfs_super_leafsize(disk_super)); 2423 err = -EINVAL; 2424 goto fail_alloc; 2425 } 2426 2427 features = btrfs_super_incompat_flags(disk_super); 2428 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2429 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 2430 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2431 2432 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2433 printk(KERN_ERR "btrfs: has skinny extents\n"); 2434 2435 /* 2436 * flag our filesystem as having big metadata blocks if 2437 * they are bigger than the page size 2438 */ 2439 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) { 2440 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2441 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n"); 2442 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2443 } 2444 2445 nodesize = btrfs_super_nodesize(disk_super); 2446 leafsize = btrfs_super_leafsize(disk_super); 2447 sectorsize = btrfs_super_sectorsize(disk_super); 2448 stripesize = btrfs_super_stripesize(disk_super); 2449 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids)); 2450 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2451 2452 /* 2453 * mixed block groups end up with duplicate but slightly offset 2454 * extent buffers for the same range. It leads to corruptions 2455 */ 2456 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2457 (sectorsize != leafsize)) { 2458 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes " 2459 "are not allowed for mixed block groups on %s\n", 2460 sb->s_id); 2461 goto fail_alloc; 2462 } 2463 2464 /* 2465 * Needn't use the lock because there is no other task which will 2466 * update the flag. 2467 */ 2468 btrfs_set_super_incompat_flags(disk_super, features); 2469 2470 features = btrfs_super_compat_ro_flags(disk_super) & 2471 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2472 if (!(sb->s_flags & MS_RDONLY) && features) { 2473 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 2474 "unsupported option features (%Lx).\n", 2475 features); 2476 err = -EINVAL; 2477 goto fail_alloc; 2478 } 2479 2480 btrfs_init_workers(&fs_info->generic_worker, 2481 "genwork", 1, NULL); 2482 2483 btrfs_init_workers(&fs_info->workers, "worker", 2484 fs_info->thread_pool_size, 2485 &fs_info->generic_worker); 2486 2487 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", 2488 fs_info->thread_pool_size, NULL); 2489 2490 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc", 2491 fs_info->thread_pool_size, NULL); 2492 2493 btrfs_init_workers(&fs_info->submit_workers, "submit", 2494 min_t(u64, fs_devices->num_devices, 2495 fs_info->thread_pool_size), NULL); 2496 2497 btrfs_init_workers(&fs_info->caching_workers, "cache", 2498 fs_info->thread_pool_size, NULL); 2499 2500 /* a higher idle thresh on the submit workers makes it much more 2501 * likely that bios will be send down in a sane order to the 2502 * devices 2503 */ 2504 fs_info->submit_workers.idle_thresh = 64; 2505 2506 fs_info->workers.idle_thresh = 16; 2507 fs_info->workers.ordered = 1; 2508 2509 fs_info->delalloc_workers.idle_thresh = 2; 2510 fs_info->delalloc_workers.ordered = 1; 2511 2512 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1, 2513 &fs_info->generic_worker); 2514 btrfs_init_workers(&fs_info->endio_workers, "endio", 2515 fs_info->thread_pool_size, 2516 &fs_info->generic_worker); 2517 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", 2518 fs_info->thread_pool_size, 2519 &fs_info->generic_worker); 2520 btrfs_init_workers(&fs_info->endio_meta_write_workers, 2521 "endio-meta-write", fs_info->thread_pool_size, 2522 &fs_info->generic_worker); 2523 btrfs_init_workers(&fs_info->endio_raid56_workers, 2524 "endio-raid56", fs_info->thread_pool_size, 2525 &fs_info->generic_worker); 2526 btrfs_init_workers(&fs_info->rmw_workers, 2527 "rmw", fs_info->thread_pool_size, 2528 &fs_info->generic_worker); 2529 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", 2530 fs_info->thread_pool_size, 2531 &fs_info->generic_worker); 2532 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write", 2533 1, &fs_info->generic_worker); 2534 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta", 2535 fs_info->thread_pool_size, 2536 &fs_info->generic_worker); 2537 btrfs_init_workers(&fs_info->readahead_workers, "readahead", 2538 fs_info->thread_pool_size, 2539 &fs_info->generic_worker); 2540 btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1, 2541 &fs_info->generic_worker); 2542 2543 /* 2544 * endios are largely parallel and should have a very 2545 * low idle thresh 2546 */ 2547 fs_info->endio_workers.idle_thresh = 4; 2548 fs_info->endio_meta_workers.idle_thresh = 4; 2549 fs_info->endio_raid56_workers.idle_thresh = 4; 2550 fs_info->rmw_workers.idle_thresh = 2; 2551 2552 fs_info->endio_write_workers.idle_thresh = 2; 2553 fs_info->endio_meta_write_workers.idle_thresh = 2; 2554 fs_info->readahead_workers.idle_thresh = 2; 2555 2556 /* 2557 * btrfs_start_workers can really only fail because of ENOMEM so just 2558 * return -ENOMEM if any of these fail. 2559 */ 2560 ret = btrfs_start_workers(&fs_info->workers); 2561 ret |= btrfs_start_workers(&fs_info->generic_worker); 2562 ret |= btrfs_start_workers(&fs_info->submit_workers); 2563 ret |= btrfs_start_workers(&fs_info->delalloc_workers); 2564 ret |= btrfs_start_workers(&fs_info->fixup_workers); 2565 ret |= btrfs_start_workers(&fs_info->endio_workers); 2566 ret |= btrfs_start_workers(&fs_info->endio_meta_workers); 2567 ret |= btrfs_start_workers(&fs_info->rmw_workers); 2568 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers); 2569 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers); 2570 ret |= btrfs_start_workers(&fs_info->endio_write_workers); 2571 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker); 2572 ret |= btrfs_start_workers(&fs_info->delayed_workers); 2573 ret |= btrfs_start_workers(&fs_info->caching_workers); 2574 ret |= btrfs_start_workers(&fs_info->readahead_workers); 2575 ret |= btrfs_start_workers(&fs_info->flush_workers); 2576 ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers); 2577 if (ret) { 2578 err = -ENOMEM; 2579 goto fail_sb_buffer; 2580 } 2581 2582 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2583 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2584 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 2585 2586 tree_root->nodesize = nodesize; 2587 tree_root->leafsize = leafsize; 2588 tree_root->sectorsize = sectorsize; 2589 tree_root->stripesize = stripesize; 2590 2591 sb->s_blocksize = sectorsize; 2592 sb->s_blocksize_bits = blksize_bits(sectorsize); 2593 2594 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 2595 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); 2596 goto fail_sb_buffer; 2597 } 2598 2599 if (sectorsize != PAGE_SIZE) { 2600 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) " 2601 "found on %s\n", (unsigned long)sectorsize, sb->s_id); 2602 goto fail_sb_buffer; 2603 } 2604 2605 mutex_lock(&fs_info->chunk_mutex); 2606 ret = btrfs_read_sys_array(tree_root); 2607 mutex_unlock(&fs_info->chunk_mutex); 2608 if (ret) { 2609 printk(KERN_WARNING "btrfs: failed to read the system " 2610 "array on %s\n", sb->s_id); 2611 goto fail_sb_buffer; 2612 } 2613 2614 blocksize = btrfs_level_size(tree_root, 2615 btrfs_super_chunk_root_level(disk_super)); 2616 generation = btrfs_super_chunk_root_generation(disk_super); 2617 2618 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2619 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2620 2621 chunk_root->node = read_tree_block(chunk_root, 2622 btrfs_super_chunk_root(disk_super), 2623 blocksize, generation); 2624 if (!chunk_root->node || 2625 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { 2626 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n", 2627 sb->s_id); 2628 goto fail_tree_roots; 2629 } 2630 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2631 chunk_root->commit_root = btrfs_root_node(chunk_root); 2632 2633 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2634 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2635 2636 ret = btrfs_read_chunk_tree(chunk_root); 2637 if (ret) { 2638 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", 2639 sb->s_id); 2640 goto fail_tree_roots; 2641 } 2642 2643 /* 2644 * keep the device that is marked to be the target device for the 2645 * dev_replace procedure 2646 */ 2647 btrfs_close_extra_devices(fs_info, fs_devices, 0); 2648 2649 if (!fs_devices->latest_bdev) { 2650 printk(KERN_CRIT "btrfs: failed to read devices on %s\n", 2651 sb->s_id); 2652 goto fail_tree_roots; 2653 } 2654 2655 retry_root_backup: 2656 blocksize = btrfs_level_size(tree_root, 2657 btrfs_super_root_level(disk_super)); 2658 generation = btrfs_super_generation(disk_super); 2659 2660 tree_root->node = read_tree_block(tree_root, 2661 btrfs_super_root(disk_super), 2662 blocksize, generation); 2663 if (!tree_root->node || 2664 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { 2665 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n", 2666 sb->s_id); 2667 2668 goto recovery_tree_root; 2669 } 2670 2671 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2672 tree_root->commit_root = btrfs_root_node(tree_root); 2673 2674 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2675 location.type = BTRFS_ROOT_ITEM_KEY; 2676 location.offset = 0; 2677 2678 extent_root = btrfs_read_tree_root(tree_root, &location); 2679 if (IS_ERR(extent_root)) { 2680 ret = PTR_ERR(extent_root); 2681 goto recovery_tree_root; 2682 } 2683 extent_root->track_dirty = 1; 2684 fs_info->extent_root = extent_root; 2685 2686 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2687 dev_root = btrfs_read_tree_root(tree_root, &location); 2688 if (IS_ERR(dev_root)) { 2689 ret = PTR_ERR(dev_root); 2690 goto recovery_tree_root; 2691 } 2692 dev_root->track_dirty = 1; 2693 fs_info->dev_root = dev_root; 2694 btrfs_init_devices_late(fs_info); 2695 2696 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2697 csum_root = btrfs_read_tree_root(tree_root, &location); 2698 if (IS_ERR(csum_root)) { 2699 ret = PTR_ERR(csum_root); 2700 goto recovery_tree_root; 2701 } 2702 csum_root->track_dirty = 1; 2703 fs_info->csum_root = csum_root; 2704 2705 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2706 quota_root = btrfs_read_tree_root(tree_root, &location); 2707 if (!IS_ERR(quota_root)) { 2708 quota_root->track_dirty = 1; 2709 fs_info->quota_enabled = 1; 2710 fs_info->pending_quota_state = 1; 2711 fs_info->quota_root = quota_root; 2712 } 2713 2714 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2715 uuid_root = btrfs_read_tree_root(tree_root, &location); 2716 if (IS_ERR(uuid_root)) { 2717 ret = PTR_ERR(uuid_root); 2718 if (ret != -ENOENT) 2719 goto recovery_tree_root; 2720 create_uuid_tree = true; 2721 check_uuid_tree = false; 2722 } else { 2723 uuid_root->track_dirty = 1; 2724 fs_info->uuid_root = uuid_root; 2725 create_uuid_tree = false; 2726 check_uuid_tree = 2727 generation != btrfs_super_uuid_tree_generation(disk_super); 2728 } 2729 2730 fs_info->generation = generation; 2731 fs_info->last_trans_committed = generation; 2732 2733 ret = btrfs_recover_balance(fs_info); 2734 if (ret) { 2735 printk(KERN_WARNING "btrfs: failed to recover balance\n"); 2736 goto fail_block_groups; 2737 } 2738 2739 ret = btrfs_init_dev_stats(fs_info); 2740 if (ret) { 2741 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n", 2742 ret); 2743 goto fail_block_groups; 2744 } 2745 2746 ret = btrfs_init_dev_replace(fs_info); 2747 if (ret) { 2748 pr_err("btrfs: failed to init dev_replace: %d\n", ret); 2749 goto fail_block_groups; 2750 } 2751 2752 btrfs_close_extra_devices(fs_info, fs_devices, 1); 2753 2754 ret = btrfs_init_space_info(fs_info); 2755 if (ret) { 2756 printk(KERN_ERR "Failed to initial space info: %d\n", ret); 2757 goto fail_block_groups; 2758 } 2759 2760 ret = btrfs_read_block_groups(extent_root); 2761 if (ret) { 2762 printk(KERN_ERR "Failed to read block groups: %d\n", ret); 2763 goto fail_block_groups; 2764 } 2765 fs_info->num_tolerated_disk_barrier_failures = 2766 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 2767 if (fs_info->fs_devices->missing_devices > 2768 fs_info->num_tolerated_disk_barrier_failures && 2769 !(sb->s_flags & MS_RDONLY)) { 2770 printk(KERN_WARNING 2771 "Btrfs: too many missing devices, writeable mount is not allowed\n"); 2772 goto fail_block_groups; 2773 } 2774 2775 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2776 "btrfs-cleaner"); 2777 if (IS_ERR(fs_info->cleaner_kthread)) 2778 goto fail_block_groups; 2779 2780 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2781 tree_root, 2782 "btrfs-transaction"); 2783 if (IS_ERR(fs_info->transaction_kthread)) 2784 goto fail_cleaner; 2785 2786 if (!btrfs_test_opt(tree_root, SSD) && 2787 !btrfs_test_opt(tree_root, NOSSD) && 2788 !fs_info->fs_devices->rotating) { 2789 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD " 2790 "mode\n"); 2791 btrfs_set_opt(fs_info->mount_opt, SSD); 2792 } 2793 2794 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2795 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) { 2796 ret = btrfsic_mount(tree_root, fs_devices, 2797 btrfs_test_opt(tree_root, 2798 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 2799 1 : 0, 2800 fs_info->check_integrity_print_mask); 2801 if (ret) 2802 printk(KERN_WARNING "btrfs: failed to initialize" 2803 " integrity check module %s\n", sb->s_id); 2804 } 2805 #endif 2806 ret = btrfs_read_qgroup_config(fs_info); 2807 if (ret) 2808 goto fail_trans_kthread; 2809 2810 /* do not make disk changes in broken FS */ 2811 if (btrfs_super_log_root(disk_super) != 0) { 2812 u64 bytenr = btrfs_super_log_root(disk_super); 2813 2814 if (fs_devices->rw_devices == 0) { 2815 printk(KERN_WARNING "Btrfs log replay required " 2816 "on RO media\n"); 2817 err = -EIO; 2818 goto fail_qgroup; 2819 } 2820 blocksize = 2821 btrfs_level_size(tree_root, 2822 btrfs_super_log_root_level(disk_super)); 2823 2824 log_tree_root = btrfs_alloc_root(fs_info); 2825 if (!log_tree_root) { 2826 err = -ENOMEM; 2827 goto fail_qgroup; 2828 } 2829 2830 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2831 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2832 2833 log_tree_root->node = read_tree_block(tree_root, bytenr, 2834 blocksize, 2835 generation + 1); 2836 if (!log_tree_root->node || 2837 !extent_buffer_uptodate(log_tree_root->node)) { 2838 printk(KERN_ERR "btrfs: failed to read log tree\n"); 2839 free_extent_buffer(log_tree_root->node); 2840 kfree(log_tree_root); 2841 goto fail_trans_kthread; 2842 } 2843 /* returns with log_tree_root freed on success */ 2844 ret = btrfs_recover_log_trees(log_tree_root); 2845 if (ret) { 2846 btrfs_error(tree_root->fs_info, ret, 2847 "Failed to recover log tree"); 2848 free_extent_buffer(log_tree_root->node); 2849 kfree(log_tree_root); 2850 goto fail_trans_kthread; 2851 } 2852 2853 if (sb->s_flags & MS_RDONLY) { 2854 ret = btrfs_commit_super(tree_root); 2855 if (ret) 2856 goto fail_trans_kthread; 2857 } 2858 } 2859 2860 ret = btrfs_find_orphan_roots(tree_root); 2861 if (ret) 2862 goto fail_trans_kthread; 2863 2864 if (!(sb->s_flags & MS_RDONLY)) { 2865 ret = btrfs_cleanup_fs_roots(fs_info); 2866 if (ret) 2867 goto fail_trans_kthread; 2868 2869 ret = btrfs_recover_relocation(tree_root); 2870 if (ret < 0) { 2871 printk(KERN_WARNING 2872 "btrfs: failed to recover relocation\n"); 2873 err = -EINVAL; 2874 goto fail_qgroup; 2875 } 2876 } 2877 2878 location.objectid = BTRFS_FS_TREE_OBJECTID; 2879 location.type = BTRFS_ROOT_ITEM_KEY; 2880 location.offset = 0; 2881 2882 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 2883 if (IS_ERR(fs_info->fs_root)) { 2884 err = PTR_ERR(fs_info->fs_root); 2885 goto fail_qgroup; 2886 } 2887 2888 if (sb->s_flags & MS_RDONLY) 2889 return 0; 2890 2891 down_read(&fs_info->cleanup_work_sem); 2892 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 2893 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 2894 up_read(&fs_info->cleanup_work_sem); 2895 close_ctree(tree_root); 2896 return ret; 2897 } 2898 up_read(&fs_info->cleanup_work_sem); 2899 2900 ret = btrfs_resume_balance_async(fs_info); 2901 if (ret) { 2902 printk(KERN_WARNING "btrfs: failed to resume balance\n"); 2903 close_ctree(tree_root); 2904 return ret; 2905 } 2906 2907 ret = btrfs_resume_dev_replace_async(fs_info); 2908 if (ret) { 2909 pr_warn("btrfs: failed to resume dev_replace\n"); 2910 close_ctree(tree_root); 2911 return ret; 2912 } 2913 2914 btrfs_qgroup_rescan_resume(fs_info); 2915 2916 if (create_uuid_tree) { 2917 pr_info("btrfs: creating UUID tree\n"); 2918 ret = btrfs_create_uuid_tree(fs_info); 2919 if (ret) { 2920 pr_warn("btrfs: failed to create the UUID tree %d\n", 2921 ret); 2922 close_ctree(tree_root); 2923 return ret; 2924 } 2925 } else if (check_uuid_tree || 2926 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) { 2927 pr_info("btrfs: checking UUID tree\n"); 2928 ret = btrfs_check_uuid_tree(fs_info); 2929 if (ret) { 2930 pr_warn("btrfs: failed to check the UUID tree %d\n", 2931 ret); 2932 close_ctree(tree_root); 2933 return ret; 2934 } 2935 } else { 2936 fs_info->update_uuid_tree_gen = 1; 2937 } 2938 2939 return 0; 2940 2941 fail_qgroup: 2942 btrfs_free_qgroup_config(fs_info); 2943 fail_trans_kthread: 2944 kthread_stop(fs_info->transaction_kthread); 2945 btrfs_cleanup_transaction(fs_info->tree_root); 2946 del_fs_roots(fs_info); 2947 fail_cleaner: 2948 kthread_stop(fs_info->cleaner_kthread); 2949 2950 /* 2951 * make sure we're done with the btree inode before we stop our 2952 * kthreads 2953 */ 2954 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 2955 2956 fail_block_groups: 2957 btrfs_put_block_group_cache(fs_info); 2958 btrfs_free_block_groups(fs_info); 2959 2960 fail_tree_roots: 2961 free_root_pointers(fs_info, 1); 2962 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2963 2964 fail_sb_buffer: 2965 btrfs_stop_all_workers(fs_info); 2966 fail_alloc: 2967 fail_iput: 2968 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2969 2970 iput(fs_info->btree_inode); 2971 fail_delalloc_bytes: 2972 percpu_counter_destroy(&fs_info->delalloc_bytes); 2973 fail_dirty_metadata_bytes: 2974 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 2975 fail_bdi: 2976 bdi_destroy(&fs_info->bdi); 2977 fail_srcu: 2978 cleanup_srcu_struct(&fs_info->subvol_srcu); 2979 fail: 2980 btrfs_free_stripe_hash_table(fs_info); 2981 btrfs_close_devices(fs_info->fs_devices); 2982 return err; 2983 2984 recovery_tree_root: 2985 if (!btrfs_test_opt(tree_root, RECOVERY)) 2986 goto fail_tree_roots; 2987 2988 free_root_pointers(fs_info, 0); 2989 2990 /* don't use the log in recovery mode, it won't be valid */ 2991 btrfs_set_super_log_root(disk_super, 0); 2992 2993 /* we can't trust the free space cache either */ 2994 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2995 2996 ret = next_root_backup(fs_info, fs_info->super_copy, 2997 &num_backups_tried, &backup_index); 2998 if (ret == -1) 2999 goto fail_block_groups; 3000 goto retry_root_backup; 3001 } 3002 3003 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3004 { 3005 if (uptodate) { 3006 set_buffer_uptodate(bh); 3007 } else { 3008 struct btrfs_device *device = (struct btrfs_device *) 3009 bh->b_private; 3010 3011 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to " 3012 "I/O error on %s\n", 3013 rcu_str_deref(device->name)); 3014 /* note, we dont' set_buffer_write_io_error because we have 3015 * our own ways of dealing with the IO errors 3016 */ 3017 clear_buffer_uptodate(bh); 3018 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3019 } 3020 unlock_buffer(bh); 3021 put_bh(bh); 3022 } 3023 3024 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3025 { 3026 struct buffer_head *bh; 3027 struct buffer_head *latest = NULL; 3028 struct btrfs_super_block *super; 3029 int i; 3030 u64 transid = 0; 3031 u64 bytenr; 3032 3033 /* we would like to check all the supers, but that would make 3034 * a btrfs mount succeed after a mkfs from a different FS. 3035 * So, we need to add a special mount option to scan for 3036 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3037 */ 3038 for (i = 0; i < 1; i++) { 3039 bytenr = btrfs_sb_offset(i); 3040 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3041 i_size_read(bdev->bd_inode)) 3042 break; 3043 bh = __bread(bdev, bytenr / 4096, 3044 BTRFS_SUPER_INFO_SIZE); 3045 if (!bh) 3046 continue; 3047 3048 super = (struct btrfs_super_block *)bh->b_data; 3049 if (btrfs_super_bytenr(super) != bytenr || 3050 btrfs_super_magic(super) != BTRFS_MAGIC) { 3051 brelse(bh); 3052 continue; 3053 } 3054 3055 if (!latest || btrfs_super_generation(super) > transid) { 3056 brelse(latest); 3057 latest = bh; 3058 transid = btrfs_super_generation(super); 3059 } else { 3060 brelse(bh); 3061 } 3062 } 3063 return latest; 3064 } 3065 3066 /* 3067 * this should be called twice, once with wait == 0 and 3068 * once with wait == 1. When wait == 0 is done, all the buffer heads 3069 * we write are pinned. 3070 * 3071 * They are released when wait == 1 is done. 3072 * max_mirrors must be the same for both runs, and it indicates how 3073 * many supers on this one device should be written. 3074 * 3075 * max_mirrors == 0 means to write them all. 3076 */ 3077 static int write_dev_supers(struct btrfs_device *device, 3078 struct btrfs_super_block *sb, 3079 int do_barriers, int wait, int max_mirrors) 3080 { 3081 struct buffer_head *bh; 3082 int i; 3083 int ret; 3084 int errors = 0; 3085 u32 crc; 3086 u64 bytenr; 3087 3088 if (max_mirrors == 0) 3089 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3090 3091 for (i = 0; i < max_mirrors; i++) { 3092 bytenr = btrfs_sb_offset(i); 3093 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 3094 break; 3095 3096 if (wait) { 3097 bh = __find_get_block(device->bdev, bytenr / 4096, 3098 BTRFS_SUPER_INFO_SIZE); 3099 if (!bh) { 3100 errors++; 3101 continue; 3102 } 3103 wait_on_buffer(bh); 3104 if (!buffer_uptodate(bh)) 3105 errors++; 3106 3107 /* drop our reference */ 3108 brelse(bh); 3109 3110 /* drop the reference from the wait == 0 run */ 3111 brelse(bh); 3112 continue; 3113 } else { 3114 btrfs_set_super_bytenr(sb, bytenr); 3115 3116 crc = ~(u32)0; 3117 crc = btrfs_csum_data((char *)sb + 3118 BTRFS_CSUM_SIZE, crc, 3119 BTRFS_SUPER_INFO_SIZE - 3120 BTRFS_CSUM_SIZE); 3121 btrfs_csum_final(crc, sb->csum); 3122 3123 /* 3124 * one reference for us, and we leave it for the 3125 * caller 3126 */ 3127 bh = __getblk(device->bdev, bytenr / 4096, 3128 BTRFS_SUPER_INFO_SIZE); 3129 if (!bh) { 3130 printk(KERN_ERR "btrfs: couldn't get super " 3131 "buffer head for bytenr %Lu\n", bytenr); 3132 errors++; 3133 continue; 3134 } 3135 3136 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3137 3138 /* one reference for submit_bh */ 3139 get_bh(bh); 3140 3141 set_buffer_uptodate(bh); 3142 lock_buffer(bh); 3143 bh->b_end_io = btrfs_end_buffer_write_sync; 3144 bh->b_private = device; 3145 } 3146 3147 /* 3148 * we fua the first super. The others we allow 3149 * to go down lazy. 3150 */ 3151 ret = btrfsic_submit_bh(WRITE_FUA, bh); 3152 if (ret) 3153 errors++; 3154 } 3155 return errors < i ? 0 : -1; 3156 } 3157 3158 /* 3159 * endio for the write_dev_flush, this will wake anyone waiting 3160 * for the barrier when it is done 3161 */ 3162 static void btrfs_end_empty_barrier(struct bio *bio, int err) 3163 { 3164 if (err) { 3165 if (err == -EOPNOTSUPP) 3166 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 3167 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3168 } 3169 if (bio->bi_private) 3170 complete(bio->bi_private); 3171 bio_put(bio); 3172 } 3173 3174 /* 3175 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 3176 * sent down. With wait == 1, it waits for the previous flush. 3177 * 3178 * any device where the flush fails with eopnotsupp are flagged as not-barrier 3179 * capable 3180 */ 3181 static int write_dev_flush(struct btrfs_device *device, int wait) 3182 { 3183 struct bio *bio; 3184 int ret = 0; 3185 3186 if (device->nobarriers) 3187 return 0; 3188 3189 if (wait) { 3190 bio = device->flush_bio; 3191 if (!bio) 3192 return 0; 3193 3194 wait_for_completion(&device->flush_wait); 3195 3196 if (bio_flagged(bio, BIO_EOPNOTSUPP)) { 3197 printk_in_rcu("btrfs: disabling barriers on dev %s\n", 3198 rcu_str_deref(device->name)); 3199 device->nobarriers = 1; 3200 } else if (!bio_flagged(bio, BIO_UPTODATE)) { 3201 ret = -EIO; 3202 btrfs_dev_stat_inc_and_print(device, 3203 BTRFS_DEV_STAT_FLUSH_ERRS); 3204 } 3205 3206 /* drop the reference from the wait == 0 run */ 3207 bio_put(bio); 3208 device->flush_bio = NULL; 3209 3210 return ret; 3211 } 3212 3213 /* 3214 * one reference for us, and we leave it for the 3215 * caller 3216 */ 3217 device->flush_bio = NULL; 3218 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 3219 if (!bio) 3220 return -ENOMEM; 3221 3222 bio->bi_end_io = btrfs_end_empty_barrier; 3223 bio->bi_bdev = device->bdev; 3224 init_completion(&device->flush_wait); 3225 bio->bi_private = &device->flush_wait; 3226 device->flush_bio = bio; 3227 3228 bio_get(bio); 3229 btrfsic_submit_bio(WRITE_FLUSH, bio); 3230 3231 return 0; 3232 } 3233 3234 /* 3235 * send an empty flush down to each device in parallel, 3236 * then wait for them 3237 */ 3238 static int barrier_all_devices(struct btrfs_fs_info *info) 3239 { 3240 struct list_head *head; 3241 struct btrfs_device *dev; 3242 int errors_send = 0; 3243 int errors_wait = 0; 3244 int ret; 3245 3246 /* send down all the barriers */ 3247 head = &info->fs_devices->devices; 3248 list_for_each_entry_rcu(dev, head, dev_list) { 3249 if (!dev->bdev) { 3250 errors_send++; 3251 continue; 3252 } 3253 if (!dev->in_fs_metadata || !dev->writeable) 3254 continue; 3255 3256 ret = write_dev_flush(dev, 0); 3257 if (ret) 3258 errors_send++; 3259 } 3260 3261 /* wait for all the barriers */ 3262 list_for_each_entry_rcu(dev, head, dev_list) { 3263 if (!dev->bdev) { 3264 errors_wait++; 3265 continue; 3266 } 3267 if (!dev->in_fs_metadata || !dev->writeable) 3268 continue; 3269 3270 ret = write_dev_flush(dev, 1); 3271 if (ret) 3272 errors_wait++; 3273 } 3274 if (errors_send > info->num_tolerated_disk_barrier_failures || 3275 errors_wait > info->num_tolerated_disk_barrier_failures) 3276 return -EIO; 3277 return 0; 3278 } 3279 3280 int btrfs_calc_num_tolerated_disk_barrier_failures( 3281 struct btrfs_fs_info *fs_info) 3282 { 3283 struct btrfs_ioctl_space_info space; 3284 struct btrfs_space_info *sinfo; 3285 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3286 BTRFS_BLOCK_GROUP_SYSTEM, 3287 BTRFS_BLOCK_GROUP_METADATA, 3288 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3289 int num_types = 4; 3290 int i; 3291 int c; 3292 int num_tolerated_disk_barrier_failures = 3293 (int)fs_info->fs_devices->num_devices; 3294 3295 for (i = 0; i < num_types; i++) { 3296 struct btrfs_space_info *tmp; 3297 3298 sinfo = NULL; 3299 rcu_read_lock(); 3300 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) { 3301 if (tmp->flags == types[i]) { 3302 sinfo = tmp; 3303 break; 3304 } 3305 } 3306 rcu_read_unlock(); 3307 3308 if (!sinfo) 3309 continue; 3310 3311 down_read(&sinfo->groups_sem); 3312 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3313 if (!list_empty(&sinfo->block_groups[c])) { 3314 u64 flags; 3315 3316 btrfs_get_block_group_info( 3317 &sinfo->block_groups[c], &space); 3318 if (space.total_bytes == 0 || 3319 space.used_bytes == 0) 3320 continue; 3321 flags = space.flags; 3322 /* 3323 * return 3324 * 0: if dup, single or RAID0 is configured for 3325 * any of metadata, system or data, else 3326 * 1: if RAID5 is configured, or if RAID1 or 3327 * RAID10 is configured and only two mirrors 3328 * are used, else 3329 * 2: if RAID6 is configured, else 3330 * num_mirrors - 1: if RAID1 or RAID10 is 3331 * configured and more than 3332 * 2 mirrors are used. 3333 */ 3334 if (num_tolerated_disk_barrier_failures > 0 && 3335 ((flags & (BTRFS_BLOCK_GROUP_DUP | 3336 BTRFS_BLOCK_GROUP_RAID0)) || 3337 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) 3338 == 0))) 3339 num_tolerated_disk_barrier_failures = 0; 3340 else if (num_tolerated_disk_barrier_failures > 1) { 3341 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 3342 BTRFS_BLOCK_GROUP_RAID5 | 3343 BTRFS_BLOCK_GROUP_RAID10)) { 3344 num_tolerated_disk_barrier_failures = 1; 3345 } else if (flags & 3346 BTRFS_BLOCK_GROUP_RAID6) { 3347 num_tolerated_disk_barrier_failures = 2; 3348 } 3349 } 3350 } 3351 } 3352 up_read(&sinfo->groups_sem); 3353 } 3354 3355 return num_tolerated_disk_barrier_failures; 3356 } 3357 3358 static int write_all_supers(struct btrfs_root *root, int max_mirrors) 3359 { 3360 struct list_head *head; 3361 struct btrfs_device *dev; 3362 struct btrfs_super_block *sb; 3363 struct btrfs_dev_item *dev_item; 3364 int ret; 3365 int do_barriers; 3366 int max_errors; 3367 int total_errors = 0; 3368 u64 flags; 3369 3370 do_barriers = !btrfs_test_opt(root, NOBARRIER); 3371 backup_super_roots(root->fs_info); 3372 3373 sb = root->fs_info->super_for_commit; 3374 dev_item = &sb->dev_item; 3375 3376 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 3377 head = &root->fs_info->fs_devices->devices; 3378 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 3379 3380 if (do_barriers) { 3381 ret = barrier_all_devices(root->fs_info); 3382 if (ret) { 3383 mutex_unlock( 3384 &root->fs_info->fs_devices->device_list_mutex); 3385 btrfs_error(root->fs_info, ret, 3386 "errors while submitting device barriers."); 3387 return ret; 3388 } 3389 } 3390 3391 list_for_each_entry_rcu(dev, head, dev_list) { 3392 if (!dev->bdev) { 3393 total_errors++; 3394 continue; 3395 } 3396 if (!dev->in_fs_metadata || !dev->writeable) 3397 continue; 3398 3399 btrfs_set_stack_device_generation(dev_item, 0); 3400 btrfs_set_stack_device_type(dev_item, dev->type); 3401 btrfs_set_stack_device_id(dev_item, dev->devid); 3402 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 3403 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 3404 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3405 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3406 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3407 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3408 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 3409 3410 flags = btrfs_super_flags(sb); 3411 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3412 3413 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 3414 if (ret) 3415 total_errors++; 3416 } 3417 if (total_errors > max_errors) { 3418 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 3419 total_errors); 3420 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3421 3422 /* FUA is masked off if unsupported and can't be the reason */ 3423 btrfs_error(root->fs_info, -EIO, 3424 "%d errors while writing supers", total_errors); 3425 return -EIO; 3426 } 3427 3428 total_errors = 0; 3429 list_for_each_entry_rcu(dev, head, dev_list) { 3430 if (!dev->bdev) 3431 continue; 3432 if (!dev->in_fs_metadata || !dev->writeable) 3433 continue; 3434 3435 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 3436 if (ret) 3437 total_errors++; 3438 } 3439 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3440 if (total_errors > max_errors) { 3441 btrfs_error(root->fs_info, -EIO, 3442 "%d errors while writing supers", total_errors); 3443 return -EIO; 3444 } 3445 return 0; 3446 } 3447 3448 int write_ctree_super(struct btrfs_trans_handle *trans, 3449 struct btrfs_root *root, int max_mirrors) 3450 { 3451 int ret; 3452 3453 ret = write_all_supers(root, max_mirrors); 3454 return ret; 3455 } 3456 3457 /* Drop a fs root from the radix tree and free it. */ 3458 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3459 struct btrfs_root *root) 3460 { 3461 spin_lock(&fs_info->fs_roots_radix_lock); 3462 radix_tree_delete(&fs_info->fs_roots_radix, 3463 (unsigned long)root->root_key.objectid); 3464 spin_unlock(&fs_info->fs_roots_radix_lock); 3465 3466 if (btrfs_root_refs(&root->root_item) == 0) 3467 synchronize_srcu(&fs_info->subvol_srcu); 3468 3469 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3470 btrfs_free_log(NULL, root); 3471 btrfs_free_log_root_tree(NULL, fs_info); 3472 } 3473 3474 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3475 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3476 free_fs_root(root); 3477 } 3478 3479 static void free_fs_root(struct btrfs_root *root) 3480 { 3481 iput(root->cache_inode); 3482 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3483 btrfs_free_block_rsv(root, root->orphan_block_rsv); 3484 root->orphan_block_rsv = NULL; 3485 if (root->anon_dev) 3486 free_anon_bdev(root->anon_dev); 3487 free_extent_buffer(root->node); 3488 free_extent_buffer(root->commit_root); 3489 kfree(root->free_ino_ctl); 3490 kfree(root->free_ino_pinned); 3491 kfree(root->name); 3492 btrfs_put_fs_root(root); 3493 } 3494 3495 void btrfs_free_fs_root(struct btrfs_root *root) 3496 { 3497 free_fs_root(root); 3498 } 3499 3500 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3501 { 3502 u64 root_objectid = 0; 3503 struct btrfs_root *gang[8]; 3504 int i; 3505 int ret; 3506 3507 while (1) { 3508 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3509 (void **)gang, root_objectid, 3510 ARRAY_SIZE(gang)); 3511 if (!ret) 3512 break; 3513 3514 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3515 for (i = 0; i < ret; i++) { 3516 int err; 3517 3518 root_objectid = gang[i]->root_key.objectid; 3519 err = btrfs_orphan_cleanup(gang[i]); 3520 if (err) 3521 return err; 3522 } 3523 root_objectid++; 3524 } 3525 return 0; 3526 } 3527 3528 int btrfs_commit_super(struct btrfs_root *root) 3529 { 3530 struct btrfs_trans_handle *trans; 3531 int ret; 3532 3533 mutex_lock(&root->fs_info->cleaner_mutex); 3534 btrfs_run_delayed_iputs(root); 3535 mutex_unlock(&root->fs_info->cleaner_mutex); 3536 wake_up_process(root->fs_info->cleaner_kthread); 3537 3538 /* wait until ongoing cleanup work done */ 3539 down_write(&root->fs_info->cleanup_work_sem); 3540 up_write(&root->fs_info->cleanup_work_sem); 3541 3542 trans = btrfs_join_transaction(root); 3543 if (IS_ERR(trans)) 3544 return PTR_ERR(trans); 3545 ret = btrfs_commit_transaction(trans, root); 3546 if (ret) 3547 return ret; 3548 /* run commit again to drop the original snapshot */ 3549 trans = btrfs_join_transaction(root); 3550 if (IS_ERR(trans)) 3551 return PTR_ERR(trans); 3552 ret = btrfs_commit_transaction(trans, root); 3553 if (ret) 3554 return ret; 3555 ret = btrfs_write_and_wait_transaction(NULL, root); 3556 if (ret) { 3557 btrfs_error(root->fs_info, ret, 3558 "Failed to sync btree inode to disk."); 3559 return ret; 3560 } 3561 3562 ret = write_ctree_super(NULL, root, 0); 3563 return ret; 3564 } 3565 3566 int close_ctree(struct btrfs_root *root) 3567 { 3568 struct btrfs_fs_info *fs_info = root->fs_info; 3569 int ret; 3570 3571 fs_info->closing = 1; 3572 smp_mb(); 3573 3574 /* wait for the uuid_scan task to finish */ 3575 down(&fs_info->uuid_tree_rescan_sem); 3576 /* avoid complains from lockdep et al., set sem back to initial state */ 3577 up(&fs_info->uuid_tree_rescan_sem); 3578 3579 /* pause restriper - we want to resume on mount */ 3580 btrfs_pause_balance(fs_info); 3581 3582 btrfs_dev_replace_suspend_for_unmount(fs_info); 3583 3584 btrfs_scrub_cancel(fs_info); 3585 3586 /* wait for any defraggers to finish */ 3587 wait_event(fs_info->transaction_wait, 3588 (atomic_read(&fs_info->defrag_running) == 0)); 3589 3590 /* clear out the rbtree of defraggable inodes */ 3591 btrfs_cleanup_defrag_inodes(fs_info); 3592 3593 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3594 ret = btrfs_commit_super(root); 3595 if (ret) 3596 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 3597 } 3598 3599 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3600 btrfs_error_commit_super(root); 3601 3602 btrfs_put_block_group_cache(fs_info); 3603 3604 kthread_stop(fs_info->transaction_kthread); 3605 kthread_stop(fs_info->cleaner_kthread); 3606 3607 fs_info->closing = 2; 3608 smp_mb(); 3609 3610 btrfs_free_qgroup_config(root->fs_info); 3611 3612 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3613 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n", 3614 percpu_counter_sum(&fs_info->delalloc_bytes)); 3615 } 3616 3617 btrfs_free_block_groups(fs_info); 3618 3619 btrfs_stop_all_workers(fs_info); 3620 3621 del_fs_roots(fs_info); 3622 3623 free_root_pointers(fs_info, 1); 3624 3625 iput(fs_info->btree_inode); 3626 3627 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3628 if (btrfs_test_opt(root, CHECK_INTEGRITY)) 3629 btrfsic_unmount(root, fs_info->fs_devices); 3630 #endif 3631 3632 btrfs_close_devices(fs_info->fs_devices); 3633 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3634 3635 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3636 percpu_counter_destroy(&fs_info->delalloc_bytes); 3637 bdi_destroy(&fs_info->bdi); 3638 cleanup_srcu_struct(&fs_info->subvol_srcu); 3639 3640 btrfs_free_stripe_hash_table(fs_info); 3641 3642 btrfs_free_block_rsv(root, root->orphan_block_rsv); 3643 root->orphan_block_rsv = NULL; 3644 3645 return 0; 3646 } 3647 3648 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 3649 int atomic) 3650 { 3651 int ret; 3652 struct inode *btree_inode = buf->pages[0]->mapping->host; 3653 3654 ret = extent_buffer_uptodate(buf); 3655 if (!ret) 3656 return ret; 3657 3658 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3659 parent_transid, atomic); 3660 if (ret == -EAGAIN) 3661 return ret; 3662 return !ret; 3663 } 3664 3665 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 3666 { 3667 return set_extent_buffer_uptodate(buf); 3668 } 3669 3670 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3671 { 3672 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3673 u64 transid = btrfs_header_generation(buf); 3674 int was_dirty; 3675 3676 btrfs_assert_tree_locked(buf); 3677 if (transid != root->fs_info->generation) 3678 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, " 3679 "found %llu running %llu\n", 3680 buf->start, transid, root->fs_info->generation); 3681 was_dirty = set_extent_buffer_dirty(buf); 3682 if (!was_dirty) 3683 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes, 3684 buf->len, 3685 root->fs_info->dirty_metadata_batch); 3686 } 3687 3688 static void __btrfs_btree_balance_dirty(struct btrfs_root *root, 3689 int flush_delayed) 3690 { 3691 /* 3692 * looks as though older kernels can get into trouble with 3693 * this code, they end up stuck in balance_dirty_pages forever 3694 */ 3695 int ret; 3696 3697 if (current->flags & PF_MEMALLOC) 3698 return; 3699 3700 if (flush_delayed) 3701 btrfs_balance_delayed_items(root); 3702 3703 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes, 3704 BTRFS_DIRTY_METADATA_THRESH); 3705 if (ret > 0) { 3706 balance_dirty_pages_ratelimited( 3707 root->fs_info->btree_inode->i_mapping); 3708 } 3709 return; 3710 } 3711 3712 void btrfs_btree_balance_dirty(struct btrfs_root *root) 3713 { 3714 __btrfs_btree_balance_dirty(root, 1); 3715 } 3716 3717 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root) 3718 { 3719 __btrfs_btree_balance_dirty(root, 0); 3720 } 3721 3722 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 3723 { 3724 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3725 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 3726 } 3727 3728 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 3729 int read_only) 3730 { 3731 /* 3732 * Placeholder for checks 3733 */ 3734 return 0; 3735 } 3736 3737 static void btrfs_error_commit_super(struct btrfs_root *root) 3738 { 3739 mutex_lock(&root->fs_info->cleaner_mutex); 3740 btrfs_run_delayed_iputs(root); 3741 mutex_unlock(&root->fs_info->cleaner_mutex); 3742 3743 down_write(&root->fs_info->cleanup_work_sem); 3744 up_write(&root->fs_info->cleanup_work_sem); 3745 3746 /* cleanup FS via transaction */ 3747 btrfs_cleanup_transaction(root); 3748 } 3749 3750 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t, 3751 struct btrfs_root *root) 3752 { 3753 struct btrfs_inode *btrfs_inode; 3754 struct list_head splice; 3755 3756 INIT_LIST_HEAD(&splice); 3757 3758 mutex_lock(&root->fs_info->ordered_operations_mutex); 3759 spin_lock(&root->fs_info->ordered_root_lock); 3760 3761 list_splice_init(&t->ordered_operations, &splice); 3762 while (!list_empty(&splice)) { 3763 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 3764 ordered_operations); 3765 3766 list_del_init(&btrfs_inode->ordered_operations); 3767 spin_unlock(&root->fs_info->ordered_root_lock); 3768 3769 btrfs_invalidate_inodes(btrfs_inode->root); 3770 3771 spin_lock(&root->fs_info->ordered_root_lock); 3772 } 3773 3774 spin_unlock(&root->fs_info->ordered_root_lock); 3775 mutex_unlock(&root->fs_info->ordered_operations_mutex); 3776 } 3777 3778 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 3779 { 3780 struct btrfs_ordered_extent *ordered; 3781 3782 spin_lock(&root->ordered_extent_lock); 3783 /* 3784 * This will just short circuit the ordered completion stuff which will 3785 * make sure the ordered extent gets properly cleaned up. 3786 */ 3787 list_for_each_entry(ordered, &root->ordered_extents, 3788 root_extent_list) 3789 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 3790 spin_unlock(&root->ordered_extent_lock); 3791 } 3792 3793 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 3794 { 3795 struct btrfs_root *root; 3796 struct list_head splice; 3797 3798 INIT_LIST_HEAD(&splice); 3799 3800 spin_lock(&fs_info->ordered_root_lock); 3801 list_splice_init(&fs_info->ordered_roots, &splice); 3802 while (!list_empty(&splice)) { 3803 root = list_first_entry(&splice, struct btrfs_root, 3804 ordered_root); 3805 list_del_init(&root->ordered_root); 3806 3807 btrfs_destroy_ordered_extents(root); 3808 3809 cond_resched_lock(&fs_info->ordered_root_lock); 3810 } 3811 spin_unlock(&fs_info->ordered_root_lock); 3812 } 3813 3814 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 3815 struct btrfs_root *root) 3816 { 3817 struct rb_node *node; 3818 struct btrfs_delayed_ref_root *delayed_refs; 3819 struct btrfs_delayed_ref_node *ref; 3820 int ret = 0; 3821 3822 delayed_refs = &trans->delayed_refs; 3823 3824 spin_lock(&delayed_refs->lock); 3825 if (delayed_refs->num_entries == 0) { 3826 spin_unlock(&delayed_refs->lock); 3827 printk(KERN_INFO "delayed_refs has NO entry\n"); 3828 return ret; 3829 } 3830 3831 while ((node = rb_first(&delayed_refs->root)) != NULL) { 3832 struct btrfs_delayed_ref_head *head = NULL; 3833 bool pin_bytes = false; 3834 3835 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 3836 atomic_set(&ref->refs, 1); 3837 if (btrfs_delayed_ref_is_head(ref)) { 3838 3839 head = btrfs_delayed_node_to_head(ref); 3840 if (!mutex_trylock(&head->mutex)) { 3841 atomic_inc(&ref->refs); 3842 spin_unlock(&delayed_refs->lock); 3843 3844 /* Need to wait for the delayed ref to run */ 3845 mutex_lock(&head->mutex); 3846 mutex_unlock(&head->mutex); 3847 btrfs_put_delayed_ref(ref); 3848 3849 spin_lock(&delayed_refs->lock); 3850 continue; 3851 } 3852 3853 if (head->must_insert_reserved) 3854 pin_bytes = true; 3855 btrfs_free_delayed_extent_op(head->extent_op); 3856 delayed_refs->num_heads--; 3857 if (list_empty(&head->cluster)) 3858 delayed_refs->num_heads_ready--; 3859 list_del_init(&head->cluster); 3860 } 3861 3862 ref->in_tree = 0; 3863 rb_erase(&ref->rb_node, &delayed_refs->root); 3864 delayed_refs->num_entries--; 3865 spin_unlock(&delayed_refs->lock); 3866 if (head) { 3867 if (pin_bytes) 3868 btrfs_pin_extent(root, ref->bytenr, 3869 ref->num_bytes, 1); 3870 mutex_unlock(&head->mutex); 3871 } 3872 btrfs_put_delayed_ref(ref); 3873 3874 cond_resched(); 3875 spin_lock(&delayed_refs->lock); 3876 } 3877 3878 spin_unlock(&delayed_refs->lock); 3879 3880 return ret; 3881 } 3882 3883 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t) 3884 { 3885 struct btrfs_pending_snapshot *snapshot; 3886 struct list_head splice; 3887 3888 INIT_LIST_HEAD(&splice); 3889 3890 list_splice_init(&t->pending_snapshots, &splice); 3891 3892 while (!list_empty(&splice)) { 3893 snapshot = list_entry(splice.next, 3894 struct btrfs_pending_snapshot, 3895 list); 3896 snapshot->error = -ECANCELED; 3897 list_del_init(&snapshot->list); 3898 } 3899 } 3900 3901 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 3902 { 3903 struct btrfs_inode *btrfs_inode; 3904 struct list_head splice; 3905 3906 INIT_LIST_HEAD(&splice); 3907 3908 spin_lock(&root->delalloc_lock); 3909 list_splice_init(&root->delalloc_inodes, &splice); 3910 3911 while (!list_empty(&splice)) { 3912 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 3913 delalloc_inodes); 3914 3915 list_del_init(&btrfs_inode->delalloc_inodes); 3916 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 3917 &btrfs_inode->runtime_flags); 3918 spin_unlock(&root->delalloc_lock); 3919 3920 btrfs_invalidate_inodes(btrfs_inode->root); 3921 3922 spin_lock(&root->delalloc_lock); 3923 } 3924 3925 spin_unlock(&root->delalloc_lock); 3926 } 3927 3928 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 3929 { 3930 struct btrfs_root *root; 3931 struct list_head splice; 3932 3933 INIT_LIST_HEAD(&splice); 3934 3935 spin_lock(&fs_info->delalloc_root_lock); 3936 list_splice_init(&fs_info->delalloc_roots, &splice); 3937 while (!list_empty(&splice)) { 3938 root = list_first_entry(&splice, struct btrfs_root, 3939 delalloc_root); 3940 list_del_init(&root->delalloc_root); 3941 root = btrfs_grab_fs_root(root); 3942 BUG_ON(!root); 3943 spin_unlock(&fs_info->delalloc_root_lock); 3944 3945 btrfs_destroy_delalloc_inodes(root); 3946 btrfs_put_fs_root(root); 3947 3948 spin_lock(&fs_info->delalloc_root_lock); 3949 } 3950 spin_unlock(&fs_info->delalloc_root_lock); 3951 } 3952 3953 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 3954 struct extent_io_tree *dirty_pages, 3955 int mark) 3956 { 3957 int ret; 3958 struct extent_buffer *eb; 3959 u64 start = 0; 3960 u64 end; 3961 3962 while (1) { 3963 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 3964 mark, NULL); 3965 if (ret) 3966 break; 3967 3968 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 3969 while (start <= end) { 3970 eb = btrfs_find_tree_block(root, start, 3971 root->leafsize); 3972 start += root->leafsize; 3973 if (!eb) 3974 continue; 3975 wait_on_extent_buffer_writeback(eb); 3976 3977 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 3978 &eb->bflags)) 3979 clear_extent_buffer_dirty(eb); 3980 free_extent_buffer_stale(eb); 3981 } 3982 } 3983 3984 return ret; 3985 } 3986 3987 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 3988 struct extent_io_tree *pinned_extents) 3989 { 3990 struct extent_io_tree *unpin; 3991 u64 start; 3992 u64 end; 3993 int ret; 3994 bool loop = true; 3995 3996 unpin = pinned_extents; 3997 again: 3998 while (1) { 3999 ret = find_first_extent_bit(unpin, 0, &start, &end, 4000 EXTENT_DIRTY, NULL); 4001 if (ret) 4002 break; 4003 4004 /* opt_discard */ 4005 if (btrfs_test_opt(root, DISCARD)) 4006 ret = btrfs_error_discard_extent(root, start, 4007 end + 1 - start, 4008 NULL); 4009 4010 clear_extent_dirty(unpin, start, end, GFP_NOFS); 4011 btrfs_error_unpin_extent_range(root, start, end); 4012 cond_resched(); 4013 } 4014 4015 if (loop) { 4016 if (unpin == &root->fs_info->freed_extents[0]) 4017 unpin = &root->fs_info->freed_extents[1]; 4018 else 4019 unpin = &root->fs_info->freed_extents[0]; 4020 loop = false; 4021 goto again; 4022 } 4023 4024 return 0; 4025 } 4026 4027 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4028 struct btrfs_root *root) 4029 { 4030 btrfs_destroy_delayed_refs(cur_trans, root); 4031 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, 4032 cur_trans->dirty_pages.dirty_bytes); 4033 4034 cur_trans->state = TRANS_STATE_COMMIT_START; 4035 wake_up(&root->fs_info->transaction_blocked_wait); 4036 4037 btrfs_evict_pending_snapshots(cur_trans); 4038 4039 cur_trans->state = TRANS_STATE_UNBLOCKED; 4040 wake_up(&root->fs_info->transaction_wait); 4041 4042 btrfs_destroy_delayed_inodes(root); 4043 btrfs_assert_delayed_root_empty(root); 4044 4045 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages, 4046 EXTENT_DIRTY); 4047 btrfs_destroy_pinned_extent(root, 4048 root->fs_info->pinned_extents); 4049 4050 cur_trans->state =TRANS_STATE_COMPLETED; 4051 wake_up(&cur_trans->commit_wait); 4052 4053 /* 4054 memset(cur_trans, 0, sizeof(*cur_trans)); 4055 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 4056 */ 4057 } 4058 4059 static int btrfs_cleanup_transaction(struct btrfs_root *root) 4060 { 4061 struct btrfs_transaction *t; 4062 LIST_HEAD(list); 4063 4064 mutex_lock(&root->fs_info->transaction_kthread_mutex); 4065 4066 spin_lock(&root->fs_info->trans_lock); 4067 list_splice_init(&root->fs_info->trans_list, &list); 4068 root->fs_info->running_transaction = NULL; 4069 spin_unlock(&root->fs_info->trans_lock); 4070 4071 while (!list_empty(&list)) { 4072 t = list_entry(list.next, struct btrfs_transaction, list); 4073 4074 btrfs_destroy_ordered_operations(t, root); 4075 4076 btrfs_destroy_all_ordered_extents(root->fs_info); 4077 4078 btrfs_destroy_delayed_refs(t, root); 4079 4080 /* 4081 * FIXME: cleanup wait for commit 4082 * We needn't acquire the lock here, because we are during 4083 * the umount, there is no other task which will change it. 4084 */ 4085 t->state = TRANS_STATE_COMMIT_START; 4086 smp_mb(); 4087 if (waitqueue_active(&root->fs_info->transaction_blocked_wait)) 4088 wake_up(&root->fs_info->transaction_blocked_wait); 4089 4090 btrfs_evict_pending_snapshots(t); 4091 4092 t->state = TRANS_STATE_UNBLOCKED; 4093 smp_mb(); 4094 if (waitqueue_active(&root->fs_info->transaction_wait)) 4095 wake_up(&root->fs_info->transaction_wait); 4096 4097 btrfs_destroy_delayed_inodes(root); 4098 btrfs_assert_delayed_root_empty(root); 4099 4100 btrfs_destroy_all_delalloc_inodes(root->fs_info); 4101 4102 btrfs_destroy_marked_extents(root, &t->dirty_pages, 4103 EXTENT_DIRTY); 4104 4105 btrfs_destroy_pinned_extent(root, 4106 root->fs_info->pinned_extents); 4107 4108 t->state = TRANS_STATE_COMPLETED; 4109 smp_mb(); 4110 if (waitqueue_active(&t->commit_wait)) 4111 wake_up(&t->commit_wait); 4112 4113 atomic_set(&t->use_count, 0); 4114 list_del_init(&t->list); 4115 memset(t, 0, sizeof(*t)); 4116 kmem_cache_free(btrfs_transaction_cachep, t); 4117 } 4118 4119 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 4120 4121 return 0; 4122 } 4123 4124 static struct extent_io_ops btree_extent_io_ops = { 4125 .readpage_end_io_hook = btree_readpage_end_io_hook, 4126 .readpage_io_failed_hook = btree_io_failed_hook, 4127 .submit_bio_hook = btree_submit_bio_hook, 4128 /* note we're sharing with inode.c for the merge bio hook */ 4129 .merge_bio_hook = btrfs_merge_bio_hook, 4130 }; 4131