xref: /openbmc/linux/fs/btrfs/disk-io.c (revision 110e6f26)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "hash.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "compression.h"
53 
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57 
58 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
59 				 BTRFS_HEADER_FLAG_RELOC |\
60 				 BTRFS_SUPER_FLAG_ERROR |\
61 				 BTRFS_SUPER_FLAG_SEEDING |\
62 				 BTRFS_SUPER_FLAG_METADUMP)
63 
64 static const struct extent_io_ops btree_extent_io_ops;
65 static void end_workqueue_fn(struct btrfs_work *work);
66 static void free_fs_root(struct btrfs_root *root);
67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
68 				    int read_only);
69 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71 				      struct btrfs_root *root);
72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
73 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
74 					struct extent_io_tree *dirty_pages,
75 					int mark);
76 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
77 				       struct extent_io_tree *pinned_extents);
78 static int btrfs_cleanup_transaction(struct btrfs_root *root);
79 static void btrfs_error_commit_super(struct btrfs_root *root);
80 
81 /*
82  * btrfs_end_io_wq structs are used to do processing in task context when an IO
83  * is complete.  This is used during reads to verify checksums, and it is used
84  * by writes to insert metadata for new file extents after IO is complete.
85  */
86 struct btrfs_end_io_wq {
87 	struct bio *bio;
88 	bio_end_io_t *end_io;
89 	void *private;
90 	struct btrfs_fs_info *info;
91 	int error;
92 	enum btrfs_wq_endio_type metadata;
93 	struct list_head list;
94 	struct btrfs_work work;
95 };
96 
97 static struct kmem_cache *btrfs_end_io_wq_cache;
98 
99 int __init btrfs_end_io_wq_init(void)
100 {
101 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102 					sizeof(struct btrfs_end_io_wq),
103 					0,
104 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
105 					NULL);
106 	if (!btrfs_end_io_wq_cache)
107 		return -ENOMEM;
108 	return 0;
109 }
110 
111 void btrfs_end_io_wq_exit(void)
112 {
113 	kmem_cache_destroy(btrfs_end_io_wq_cache);
114 }
115 
116 /*
117  * async submit bios are used to offload expensive checksumming
118  * onto the worker threads.  They checksum file and metadata bios
119  * just before they are sent down the IO stack.
120  */
121 struct async_submit_bio {
122 	struct inode *inode;
123 	struct bio *bio;
124 	struct list_head list;
125 	extent_submit_bio_hook_t *submit_bio_start;
126 	extent_submit_bio_hook_t *submit_bio_done;
127 	int rw;
128 	int mirror_num;
129 	unsigned long bio_flags;
130 	/*
131 	 * bio_offset is optional, can be used if the pages in the bio
132 	 * can't tell us where in the file the bio should go
133 	 */
134 	u64 bio_offset;
135 	struct btrfs_work work;
136 	int error;
137 };
138 
139 /*
140  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
141  * eb, the lockdep key is determined by the btrfs_root it belongs to and
142  * the level the eb occupies in the tree.
143  *
144  * Different roots are used for different purposes and may nest inside each
145  * other and they require separate keysets.  As lockdep keys should be
146  * static, assign keysets according to the purpose of the root as indicated
147  * by btrfs_root->objectid.  This ensures that all special purpose roots
148  * have separate keysets.
149  *
150  * Lock-nesting across peer nodes is always done with the immediate parent
151  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
152  * subclass to avoid triggering lockdep warning in such cases.
153  *
154  * The key is set by the readpage_end_io_hook after the buffer has passed
155  * csum validation but before the pages are unlocked.  It is also set by
156  * btrfs_init_new_buffer on freshly allocated blocks.
157  *
158  * We also add a check to make sure the highest level of the tree is the
159  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
160  * needs update as well.
161  */
162 #ifdef CONFIG_DEBUG_LOCK_ALLOC
163 # if BTRFS_MAX_LEVEL != 8
164 #  error
165 # endif
166 
167 static struct btrfs_lockdep_keyset {
168 	u64			id;		/* root objectid */
169 	const char		*name_stem;	/* lock name stem */
170 	char			names[BTRFS_MAX_LEVEL + 1][20];
171 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
172 } btrfs_lockdep_keysets[] = {
173 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
174 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
175 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
176 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
177 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
178 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
179 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
180 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
181 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
182 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
183 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
184 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
185 	{ .id = 0,				.name_stem = "tree"	},
186 };
187 
188 void __init btrfs_init_lockdep(void)
189 {
190 	int i, j;
191 
192 	/* initialize lockdep class names */
193 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
194 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
195 
196 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
197 			snprintf(ks->names[j], sizeof(ks->names[j]),
198 				 "btrfs-%s-%02d", ks->name_stem, j);
199 	}
200 }
201 
202 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
203 				    int level)
204 {
205 	struct btrfs_lockdep_keyset *ks;
206 
207 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
208 
209 	/* find the matching keyset, id 0 is the default entry */
210 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
211 		if (ks->id == objectid)
212 			break;
213 
214 	lockdep_set_class_and_name(&eb->lock,
215 				   &ks->keys[level], ks->names[level]);
216 }
217 
218 #endif
219 
220 /*
221  * extents on the btree inode are pretty simple, there's one extent
222  * that covers the entire device
223  */
224 static struct extent_map *btree_get_extent(struct inode *inode,
225 		struct page *page, size_t pg_offset, u64 start, u64 len,
226 		int create)
227 {
228 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
229 	struct extent_map *em;
230 	int ret;
231 
232 	read_lock(&em_tree->lock);
233 	em = lookup_extent_mapping(em_tree, start, len);
234 	if (em) {
235 		em->bdev =
236 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
237 		read_unlock(&em_tree->lock);
238 		goto out;
239 	}
240 	read_unlock(&em_tree->lock);
241 
242 	em = alloc_extent_map();
243 	if (!em) {
244 		em = ERR_PTR(-ENOMEM);
245 		goto out;
246 	}
247 	em->start = 0;
248 	em->len = (u64)-1;
249 	em->block_len = (u64)-1;
250 	em->block_start = 0;
251 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
252 
253 	write_lock(&em_tree->lock);
254 	ret = add_extent_mapping(em_tree, em, 0);
255 	if (ret == -EEXIST) {
256 		free_extent_map(em);
257 		em = lookup_extent_mapping(em_tree, start, len);
258 		if (!em)
259 			em = ERR_PTR(-EIO);
260 	} else if (ret) {
261 		free_extent_map(em);
262 		em = ERR_PTR(ret);
263 	}
264 	write_unlock(&em_tree->lock);
265 
266 out:
267 	return em;
268 }
269 
270 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
271 {
272 	return btrfs_crc32c(seed, data, len);
273 }
274 
275 void btrfs_csum_final(u32 crc, char *result)
276 {
277 	put_unaligned_le32(~crc, result);
278 }
279 
280 /*
281  * compute the csum for a btree block, and either verify it or write it
282  * into the csum field of the block.
283  */
284 static int csum_tree_block(struct btrfs_fs_info *fs_info,
285 			   struct extent_buffer *buf,
286 			   int verify)
287 {
288 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
289 	char *result = NULL;
290 	unsigned long len;
291 	unsigned long cur_len;
292 	unsigned long offset = BTRFS_CSUM_SIZE;
293 	char *kaddr;
294 	unsigned long map_start;
295 	unsigned long map_len;
296 	int err;
297 	u32 crc = ~(u32)0;
298 	unsigned long inline_result;
299 
300 	len = buf->len - offset;
301 	while (len > 0) {
302 		err = map_private_extent_buffer(buf, offset, 32,
303 					&kaddr, &map_start, &map_len);
304 		if (err)
305 			return err;
306 		cur_len = min(len, map_len - (offset - map_start));
307 		crc = btrfs_csum_data(kaddr + offset - map_start,
308 				      crc, cur_len);
309 		len -= cur_len;
310 		offset += cur_len;
311 	}
312 	if (csum_size > sizeof(inline_result)) {
313 		result = kzalloc(csum_size, GFP_NOFS);
314 		if (!result)
315 			return -ENOMEM;
316 	} else {
317 		result = (char *)&inline_result;
318 	}
319 
320 	btrfs_csum_final(crc, result);
321 
322 	if (verify) {
323 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
324 			u32 val;
325 			u32 found = 0;
326 			memcpy(&found, result, csum_size);
327 
328 			read_extent_buffer(buf, &val, 0, csum_size);
329 			btrfs_warn_rl(fs_info,
330 				"%s checksum verify failed on %llu wanted %X found %X "
331 				"level %d",
332 				fs_info->sb->s_id, buf->start,
333 				val, found, btrfs_header_level(buf));
334 			if (result != (char *)&inline_result)
335 				kfree(result);
336 			return -EUCLEAN;
337 		}
338 	} else {
339 		write_extent_buffer(buf, result, 0, csum_size);
340 	}
341 	if (result != (char *)&inline_result)
342 		kfree(result);
343 	return 0;
344 }
345 
346 /*
347  * we can't consider a given block up to date unless the transid of the
348  * block matches the transid in the parent node's pointer.  This is how we
349  * detect blocks that either didn't get written at all or got written
350  * in the wrong place.
351  */
352 static int verify_parent_transid(struct extent_io_tree *io_tree,
353 				 struct extent_buffer *eb, u64 parent_transid,
354 				 int atomic)
355 {
356 	struct extent_state *cached_state = NULL;
357 	int ret;
358 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
359 
360 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
361 		return 0;
362 
363 	if (atomic)
364 		return -EAGAIN;
365 
366 	if (need_lock) {
367 		btrfs_tree_read_lock(eb);
368 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
369 	}
370 
371 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
372 			 &cached_state);
373 	if (extent_buffer_uptodate(eb) &&
374 	    btrfs_header_generation(eb) == parent_transid) {
375 		ret = 0;
376 		goto out;
377 	}
378 	btrfs_err_rl(eb->fs_info,
379 		"parent transid verify failed on %llu wanted %llu found %llu",
380 			eb->start,
381 			parent_transid, btrfs_header_generation(eb));
382 	ret = 1;
383 
384 	/*
385 	 * Things reading via commit roots that don't have normal protection,
386 	 * like send, can have a really old block in cache that may point at a
387 	 * block that has been free'd and re-allocated.  So don't clear uptodate
388 	 * if we find an eb that is under IO (dirty/writeback) because we could
389 	 * end up reading in the stale data and then writing it back out and
390 	 * making everybody very sad.
391 	 */
392 	if (!extent_buffer_under_io(eb))
393 		clear_extent_buffer_uptodate(eb);
394 out:
395 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
396 			     &cached_state, GFP_NOFS);
397 	if (need_lock)
398 		btrfs_tree_read_unlock_blocking(eb);
399 	return ret;
400 }
401 
402 /*
403  * Return 0 if the superblock checksum type matches the checksum value of that
404  * algorithm. Pass the raw disk superblock data.
405  */
406 static int btrfs_check_super_csum(char *raw_disk_sb)
407 {
408 	struct btrfs_super_block *disk_sb =
409 		(struct btrfs_super_block *)raw_disk_sb;
410 	u16 csum_type = btrfs_super_csum_type(disk_sb);
411 	int ret = 0;
412 
413 	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
414 		u32 crc = ~(u32)0;
415 		const int csum_size = sizeof(crc);
416 		char result[csum_size];
417 
418 		/*
419 		 * The super_block structure does not span the whole
420 		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
421 		 * is filled with zeros and is included in the checkum.
422 		 */
423 		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
424 				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
425 		btrfs_csum_final(crc, result);
426 
427 		if (memcmp(raw_disk_sb, result, csum_size))
428 			ret = 1;
429 	}
430 
431 	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
432 		printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
433 				csum_type);
434 		ret = 1;
435 	}
436 
437 	return ret;
438 }
439 
440 /*
441  * helper to read a given tree block, doing retries as required when
442  * the checksums don't match and we have alternate mirrors to try.
443  */
444 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
445 					  struct extent_buffer *eb,
446 					  u64 start, u64 parent_transid)
447 {
448 	struct extent_io_tree *io_tree;
449 	int failed = 0;
450 	int ret;
451 	int num_copies = 0;
452 	int mirror_num = 0;
453 	int failed_mirror = 0;
454 
455 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
456 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
457 	while (1) {
458 		ret = read_extent_buffer_pages(io_tree, eb, start,
459 					       WAIT_COMPLETE,
460 					       btree_get_extent, mirror_num);
461 		if (!ret) {
462 			if (!verify_parent_transid(io_tree, eb,
463 						   parent_transid, 0))
464 				break;
465 			else
466 				ret = -EIO;
467 		}
468 
469 		/*
470 		 * This buffer's crc is fine, but its contents are corrupted, so
471 		 * there is no reason to read the other copies, they won't be
472 		 * any less wrong.
473 		 */
474 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
475 			break;
476 
477 		num_copies = btrfs_num_copies(root->fs_info,
478 					      eb->start, eb->len);
479 		if (num_copies == 1)
480 			break;
481 
482 		if (!failed_mirror) {
483 			failed = 1;
484 			failed_mirror = eb->read_mirror;
485 		}
486 
487 		mirror_num++;
488 		if (mirror_num == failed_mirror)
489 			mirror_num++;
490 
491 		if (mirror_num > num_copies)
492 			break;
493 	}
494 
495 	if (failed && !ret && failed_mirror)
496 		repair_eb_io_failure(root, eb, failed_mirror);
497 
498 	return ret;
499 }
500 
501 /*
502  * checksum a dirty tree block before IO.  This has extra checks to make sure
503  * we only fill in the checksum field in the first page of a multi-page block
504  */
505 
506 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
507 {
508 	u64 start = page_offset(page);
509 	u64 found_start;
510 	struct extent_buffer *eb;
511 
512 	eb = (struct extent_buffer *)page->private;
513 	if (page != eb->pages[0])
514 		return 0;
515 
516 	found_start = btrfs_header_bytenr(eb);
517 	/*
518 	 * Please do not consolidate these warnings into a single if.
519 	 * It is useful to know what went wrong.
520 	 */
521 	if (WARN_ON(found_start != start))
522 		return -EUCLEAN;
523 	if (WARN_ON(!PageUptodate(page)))
524 		return -EUCLEAN;
525 
526 	ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
527 			btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
528 
529 	return csum_tree_block(fs_info, eb, 0);
530 }
531 
532 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
533 				 struct extent_buffer *eb)
534 {
535 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
536 	u8 fsid[BTRFS_UUID_SIZE];
537 	int ret = 1;
538 
539 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
540 	while (fs_devices) {
541 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
542 			ret = 0;
543 			break;
544 		}
545 		fs_devices = fs_devices->seed;
546 	}
547 	return ret;
548 }
549 
550 #define CORRUPT(reason, eb, root, slot)				\
551 	btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"	\
552 		   "root=%llu, slot=%d", reason,			\
553 	       btrfs_header_bytenr(eb),	root->objectid, slot)
554 
555 static noinline int check_leaf(struct btrfs_root *root,
556 			       struct extent_buffer *leaf)
557 {
558 	struct btrfs_key key;
559 	struct btrfs_key leaf_key;
560 	u32 nritems = btrfs_header_nritems(leaf);
561 	int slot;
562 
563 	if (nritems == 0)
564 		return 0;
565 
566 	/* Check the 0 item */
567 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
568 	    BTRFS_LEAF_DATA_SIZE(root)) {
569 		CORRUPT("invalid item offset size pair", leaf, root, 0);
570 		return -EIO;
571 	}
572 
573 	/*
574 	 * Check to make sure each items keys are in the correct order and their
575 	 * offsets make sense.  We only have to loop through nritems-1 because
576 	 * we check the current slot against the next slot, which verifies the
577 	 * next slot's offset+size makes sense and that the current's slot
578 	 * offset is correct.
579 	 */
580 	for (slot = 0; slot < nritems - 1; slot++) {
581 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
582 		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
583 
584 		/* Make sure the keys are in the right order */
585 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
586 			CORRUPT("bad key order", leaf, root, slot);
587 			return -EIO;
588 		}
589 
590 		/*
591 		 * Make sure the offset and ends are right, remember that the
592 		 * item data starts at the end of the leaf and grows towards the
593 		 * front.
594 		 */
595 		if (btrfs_item_offset_nr(leaf, slot) !=
596 			btrfs_item_end_nr(leaf, slot + 1)) {
597 			CORRUPT("slot offset bad", leaf, root, slot);
598 			return -EIO;
599 		}
600 
601 		/*
602 		 * Check to make sure that we don't point outside of the leaf,
603 		 * just incase all the items are consistent to eachother, but
604 		 * all point outside of the leaf.
605 		 */
606 		if (btrfs_item_end_nr(leaf, slot) >
607 		    BTRFS_LEAF_DATA_SIZE(root)) {
608 			CORRUPT("slot end outside of leaf", leaf, root, slot);
609 			return -EIO;
610 		}
611 	}
612 
613 	return 0;
614 }
615 
616 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
617 				      u64 phy_offset, struct page *page,
618 				      u64 start, u64 end, int mirror)
619 {
620 	u64 found_start;
621 	int found_level;
622 	struct extent_buffer *eb;
623 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
624 	struct btrfs_fs_info *fs_info = root->fs_info;
625 	int ret = 0;
626 	int reads_done;
627 
628 	if (!page->private)
629 		goto out;
630 
631 	eb = (struct extent_buffer *)page->private;
632 
633 	/* the pending IO might have been the only thing that kept this buffer
634 	 * in memory.  Make sure we have a ref for all this other checks
635 	 */
636 	extent_buffer_get(eb);
637 
638 	reads_done = atomic_dec_and_test(&eb->io_pages);
639 	if (!reads_done)
640 		goto err;
641 
642 	eb->read_mirror = mirror;
643 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
644 		ret = -EIO;
645 		goto err;
646 	}
647 
648 	found_start = btrfs_header_bytenr(eb);
649 	if (found_start != eb->start) {
650 		btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
651 			     found_start, eb->start);
652 		ret = -EIO;
653 		goto err;
654 	}
655 	if (check_tree_block_fsid(fs_info, eb)) {
656 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
657 			     eb->start);
658 		ret = -EIO;
659 		goto err;
660 	}
661 	found_level = btrfs_header_level(eb);
662 	if (found_level >= BTRFS_MAX_LEVEL) {
663 		btrfs_err(fs_info, "bad tree block level %d",
664 			  (int)btrfs_header_level(eb));
665 		ret = -EIO;
666 		goto err;
667 	}
668 
669 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
670 				       eb, found_level);
671 
672 	ret = csum_tree_block(fs_info, eb, 1);
673 	if (ret)
674 		goto err;
675 
676 	/*
677 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
678 	 * that we don't try and read the other copies of this block, just
679 	 * return -EIO.
680 	 */
681 	if (found_level == 0 && check_leaf(root, eb)) {
682 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
683 		ret = -EIO;
684 	}
685 
686 	if (!ret)
687 		set_extent_buffer_uptodate(eb);
688 err:
689 	if (reads_done &&
690 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
691 		btree_readahead_hook(fs_info, eb, eb->start, ret);
692 
693 	if (ret) {
694 		/*
695 		 * our io error hook is going to dec the io pages
696 		 * again, we have to make sure it has something
697 		 * to decrement
698 		 */
699 		atomic_inc(&eb->io_pages);
700 		clear_extent_buffer_uptodate(eb);
701 	}
702 	free_extent_buffer(eb);
703 out:
704 	return ret;
705 }
706 
707 static int btree_io_failed_hook(struct page *page, int failed_mirror)
708 {
709 	struct extent_buffer *eb;
710 
711 	eb = (struct extent_buffer *)page->private;
712 	set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
713 	eb->read_mirror = failed_mirror;
714 	atomic_dec(&eb->io_pages);
715 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
716 		btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
717 	return -EIO;	/* we fixed nothing */
718 }
719 
720 static void end_workqueue_bio(struct bio *bio)
721 {
722 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
723 	struct btrfs_fs_info *fs_info;
724 	struct btrfs_workqueue *wq;
725 	btrfs_work_func_t func;
726 
727 	fs_info = end_io_wq->info;
728 	end_io_wq->error = bio->bi_error;
729 
730 	if (bio->bi_rw & REQ_WRITE) {
731 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
732 			wq = fs_info->endio_meta_write_workers;
733 			func = btrfs_endio_meta_write_helper;
734 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
735 			wq = fs_info->endio_freespace_worker;
736 			func = btrfs_freespace_write_helper;
737 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
738 			wq = fs_info->endio_raid56_workers;
739 			func = btrfs_endio_raid56_helper;
740 		} else {
741 			wq = fs_info->endio_write_workers;
742 			func = btrfs_endio_write_helper;
743 		}
744 	} else {
745 		if (unlikely(end_io_wq->metadata ==
746 			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
747 			wq = fs_info->endio_repair_workers;
748 			func = btrfs_endio_repair_helper;
749 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
750 			wq = fs_info->endio_raid56_workers;
751 			func = btrfs_endio_raid56_helper;
752 		} else if (end_io_wq->metadata) {
753 			wq = fs_info->endio_meta_workers;
754 			func = btrfs_endio_meta_helper;
755 		} else {
756 			wq = fs_info->endio_workers;
757 			func = btrfs_endio_helper;
758 		}
759 	}
760 
761 	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
762 	btrfs_queue_work(wq, &end_io_wq->work);
763 }
764 
765 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
766 			enum btrfs_wq_endio_type metadata)
767 {
768 	struct btrfs_end_io_wq *end_io_wq;
769 
770 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
771 	if (!end_io_wq)
772 		return -ENOMEM;
773 
774 	end_io_wq->private = bio->bi_private;
775 	end_io_wq->end_io = bio->bi_end_io;
776 	end_io_wq->info = info;
777 	end_io_wq->error = 0;
778 	end_io_wq->bio = bio;
779 	end_io_wq->metadata = metadata;
780 
781 	bio->bi_private = end_io_wq;
782 	bio->bi_end_io = end_workqueue_bio;
783 	return 0;
784 }
785 
786 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
787 {
788 	unsigned long limit = min_t(unsigned long,
789 				    info->thread_pool_size,
790 				    info->fs_devices->open_devices);
791 	return 256 * limit;
792 }
793 
794 static void run_one_async_start(struct btrfs_work *work)
795 {
796 	struct async_submit_bio *async;
797 	int ret;
798 
799 	async = container_of(work, struct  async_submit_bio, work);
800 	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
801 				      async->mirror_num, async->bio_flags,
802 				      async->bio_offset);
803 	if (ret)
804 		async->error = ret;
805 }
806 
807 static void run_one_async_done(struct btrfs_work *work)
808 {
809 	struct btrfs_fs_info *fs_info;
810 	struct async_submit_bio *async;
811 	int limit;
812 
813 	async = container_of(work, struct  async_submit_bio, work);
814 	fs_info = BTRFS_I(async->inode)->root->fs_info;
815 
816 	limit = btrfs_async_submit_limit(fs_info);
817 	limit = limit * 2 / 3;
818 
819 	/*
820 	 * atomic_dec_return implies a barrier for waitqueue_active
821 	 */
822 	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
823 	    waitqueue_active(&fs_info->async_submit_wait))
824 		wake_up(&fs_info->async_submit_wait);
825 
826 	/* If an error occurred we just want to clean up the bio and move on */
827 	if (async->error) {
828 		async->bio->bi_error = async->error;
829 		bio_endio(async->bio);
830 		return;
831 	}
832 
833 	async->submit_bio_done(async->inode, async->rw, async->bio,
834 			       async->mirror_num, async->bio_flags,
835 			       async->bio_offset);
836 }
837 
838 static void run_one_async_free(struct btrfs_work *work)
839 {
840 	struct async_submit_bio *async;
841 
842 	async = container_of(work, struct  async_submit_bio, work);
843 	kfree(async);
844 }
845 
846 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
847 			int rw, struct bio *bio, int mirror_num,
848 			unsigned long bio_flags,
849 			u64 bio_offset,
850 			extent_submit_bio_hook_t *submit_bio_start,
851 			extent_submit_bio_hook_t *submit_bio_done)
852 {
853 	struct async_submit_bio *async;
854 
855 	async = kmalloc(sizeof(*async), GFP_NOFS);
856 	if (!async)
857 		return -ENOMEM;
858 
859 	async->inode = inode;
860 	async->rw = rw;
861 	async->bio = bio;
862 	async->mirror_num = mirror_num;
863 	async->submit_bio_start = submit_bio_start;
864 	async->submit_bio_done = submit_bio_done;
865 
866 	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
867 			run_one_async_done, run_one_async_free);
868 
869 	async->bio_flags = bio_flags;
870 	async->bio_offset = bio_offset;
871 
872 	async->error = 0;
873 
874 	atomic_inc(&fs_info->nr_async_submits);
875 
876 	if (rw & REQ_SYNC)
877 		btrfs_set_work_high_priority(&async->work);
878 
879 	btrfs_queue_work(fs_info->workers, &async->work);
880 
881 	while (atomic_read(&fs_info->async_submit_draining) &&
882 	      atomic_read(&fs_info->nr_async_submits)) {
883 		wait_event(fs_info->async_submit_wait,
884 			   (atomic_read(&fs_info->nr_async_submits) == 0));
885 	}
886 
887 	return 0;
888 }
889 
890 static int btree_csum_one_bio(struct bio *bio)
891 {
892 	struct bio_vec *bvec;
893 	struct btrfs_root *root;
894 	int i, ret = 0;
895 
896 	bio_for_each_segment_all(bvec, bio, i) {
897 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
898 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
899 		if (ret)
900 			break;
901 	}
902 
903 	return ret;
904 }
905 
906 static int __btree_submit_bio_start(struct inode *inode, int rw,
907 				    struct bio *bio, int mirror_num,
908 				    unsigned long bio_flags,
909 				    u64 bio_offset)
910 {
911 	/*
912 	 * when we're called for a write, we're already in the async
913 	 * submission context.  Just jump into btrfs_map_bio
914 	 */
915 	return btree_csum_one_bio(bio);
916 }
917 
918 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
919 				 int mirror_num, unsigned long bio_flags,
920 				 u64 bio_offset)
921 {
922 	int ret;
923 
924 	/*
925 	 * when we're called for a write, we're already in the async
926 	 * submission context.  Just jump into btrfs_map_bio
927 	 */
928 	ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
929 	if (ret) {
930 		bio->bi_error = ret;
931 		bio_endio(bio);
932 	}
933 	return ret;
934 }
935 
936 static int check_async_write(struct inode *inode, unsigned long bio_flags)
937 {
938 	if (bio_flags & EXTENT_BIO_TREE_LOG)
939 		return 0;
940 #ifdef CONFIG_X86
941 	if (static_cpu_has(X86_FEATURE_XMM4_2))
942 		return 0;
943 #endif
944 	return 1;
945 }
946 
947 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
948 				 int mirror_num, unsigned long bio_flags,
949 				 u64 bio_offset)
950 {
951 	int async = check_async_write(inode, bio_flags);
952 	int ret;
953 
954 	if (!(rw & REQ_WRITE)) {
955 		/*
956 		 * called for a read, do the setup so that checksum validation
957 		 * can happen in the async kernel threads
958 		 */
959 		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
960 					  bio, BTRFS_WQ_ENDIO_METADATA);
961 		if (ret)
962 			goto out_w_error;
963 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
964 				    mirror_num, 0);
965 	} else if (!async) {
966 		ret = btree_csum_one_bio(bio);
967 		if (ret)
968 			goto out_w_error;
969 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
970 				    mirror_num, 0);
971 	} else {
972 		/*
973 		 * kthread helpers are used to submit writes so that
974 		 * checksumming can happen in parallel across all CPUs
975 		 */
976 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
977 					  inode, rw, bio, mirror_num, 0,
978 					  bio_offset,
979 					  __btree_submit_bio_start,
980 					  __btree_submit_bio_done);
981 	}
982 
983 	if (ret)
984 		goto out_w_error;
985 	return 0;
986 
987 out_w_error:
988 	bio->bi_error = ret;
989 	bio_endio(bio);
990 	return ret;
991 }
992 
993 #ifdef CONFIG_MIGRATION
994 static int btree_migratepage(struct address_space *mapping,
995 			struct page *newpage, struct page *page,
996 			enum migrate_mode mode)
997 {
998 	/*
999 	 * we can't safely write a btree page from here,
1000 	 * we haven't done the locking hook
1001 	 */
1002 	if (PageDirty(page))
1003 		return -EAGAIN;
1004 	/*
1005 	 * Buffers may be managed in a filesystem specific way.
1006 	 * We must have no buffers or drop them.
1007 	 */
1008 	if (page_has_private(page) &&
1009 	    !try_to_release_page(page, GFP_KERNEL))
1010 		return -EAGAIN;
1011 	return migrate_page(mapping, newpage, page, mode);
1012 }
1013 #endif
1014 
1015 
1016 static int btree_writepages(struct address_space *mapping,
1017 			    struct writeback_control *wbc)
1018 {
1019 	struct btrfs_fs_info *fs_info;
1020 	int ret;
1021 
1022 	if (wbc->sync_mode == WB_SYNC_NONE) {
1023 
1024 		if (wbc->for_kupdate)
1025 			return 0;
1026 
1027 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
1028 		/* this is a bit racy, but that's ok */
1029 		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1030 					     BTRFS_DIRTY_METADATA_THRESH);
1031 		if (ret < 0)
1032 			return 0;
1033 	}
1034 	return btree_write_cache_pages(mapping, wbc);
1035 }
1036 
1037 static int btree_readpage(struct file *file, struct page *page)
1038 {
1039 	struct extent_io_tree *tree;
1040 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1041 	return extent_read_full_page(tree, page, btree_get_extent, 0);
1042 }
1043 
1044 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1045 {
1046 	if (PageWriteback(page) || PageDirty(page))
1047 		return 0;
1048 
1049 	return try_release_extent_buffer(page);
1050 }
1051 
1052 static void btree_invalidatepage(struct page *page, unsigned int offset,
1053 				 unsigned int length)
1054 {
1055 	struct extent_io_tree *tree;
1056 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1057 	extent_invalidatepage(tree, page, offset);
1058 	btree_releasepage(page, GFP_NOFS);
1059 	if (PagePrivate(page)) {
1060 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1061 			   "page private not zero on page %llu",
1062 			   (unsigned long long)page_offset(page));
1063 		ClearPagePrivate(page);
1064 		set_page_private(page, 0);
1065 		put_page(page);
1066 	}
1067 }
1068 
1069 static int btree_set_page_dirty(struct page *page)
1070 {
1071 #ifdef DEBUG
1072 	struct extent_buffer *eb;
1073 
1074 	BUG_ON(!PagePrivate(page));
1075 	eb = (struct extent_buffer *)page->private;
1076 	BUG_ON(!eb);
1077 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1078 	BUG_ON(!atomic_read(&eb->refs));
1079 	btrfs_assert_tree_locked(eb);
1080 #endif
1081 	return __set_page_dirty_nobuffers(page);
1082 }
1083 
1084 static const struct address_space_operations btree_aops = {
1085 	.readpage	= btree_readpage,
1086 	.writepages	= btree_writepages,
1087 	.releasepage	= btree_releasepage,
1088 	.invalidatepage = btree_invalidatepage,
1089 #ifdef CONFIG_MIGRATION
1090 	.migratepage	= btree_migratepage,
1091 #endif
1092 	.set_page_dirty = btree_set_page_dirty,
1093 };
1094 
1095 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1096 {
1097 	struct extent_buffer *buf = NULL;
1098 	struct inode *btree_inode = root->fs_info->btree_inode;
1099 
1100 	buf = btrfs_find_create_tree_block(root, bytenr);
1101 	if (!buf)
1102 		return;
1103 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1104 				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1105 	free_extent_buffer(buf);
1106 }
1107 
1108 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1109 			 int mirror_num, struct extent_buffer **eb)
1110 {
1111 	struct extent_buffer *buf = NULL;
1112 	struct inode *btree_inode = root->fs_info->btree_inode;
1113 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1114 	int ret;
1115 
1116 	buf = btrfs_find_create_tree_block(root, bytenr);
1117 	if (!buf)
1118 		return 0;
1119 
1120 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1121 
1122 	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1123 				       btree_get_extent, mirror_num);
1124 	if (ret) {
1125 		free_extent_buffer(buf);
1126 		return ret;
1127 	}
1128 
1129 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1130 		free_extent_buffer(buf);
1131 		return -EIO;
1132 	} else if (extent_buffer_uptodate(buf)) {
1133 		*eb = buf;
1134 	} else {
1135 		free_extent_buffer(buf);
1136 	}
1137 	return 0;
1138 }
1139 
1140 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1141 					    u64 bytenr)
1142 {
1143 	return find_extent_buffer(fs_info, bytenr);
1144 }
1145 
1146 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1147 						 u64 bytenr)
1148 {
1149 	if (btrfs_test_is_dummy_root(root))
1150 		return alloc_test_extent_buffer(root->fs_info, bytenr);
1151 	return alloc_extent_buffer(root->fs_info, bytenr);
1152 }
1153 
1154 
1155 int btrfs_write_tree_block(struct extent_buffer *buf)
1156 {
1157 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1158 					buf->start + buf->len - 1);
1159 }
1160 
1161 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1162 {
1163 	return filemap_fdatawait_range(buf->pages[0]->mapping,
1164 				       buf->start, buf->start + buf->len - 1);
1165 }
1166 
1167 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1168 				      u64 parent_transid)
1169 {
1170 	struct extent_buffer *buf = NULL;
1171 	int ret;
1172 
1173 	buf = btrfs_find_create_tree_block(root, bytenr);
1174 	if (!buf)
1175 		return ERR_PTR(-ENOMEM);
1176 
1177 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1178 	if (ret) {
1179 		free_extent_buffer(buf);
1180 		return ERR_PTR(ret);
1181 	}
1182 	return buf;
1183 
1184 }
1185 
1186 void clean_tree_block(struct btrfs_trans_handle *trans,
1187 		      struct btrfs_fs_info *fs_info,
1188 		      struct extent_buffer *buf)
1189 {
1190 	if (btrfs_header_generation(buf) ==
1191 	    fs_info->running_transaction->transid) {
1192 		btrfs_assert_tree_locked(buf);
1193 
1194 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1195 			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
1196 					     -buf->len,
1197 					     fs_info->dirty_metadata_batch);
1198 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1199 			btrfs_set_lock_blocking(buf);
1200 			clear_extent_buffer_dirty(buf);
1201 		}
1202 	}
1203 }
1204 
1205 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1206 {
1207 	struct btrfs_subvolume_writers *writers;
1208 	int ret;
1209 
1210 	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1211 	if (!writers)
1212 		return ERR_PTR(-ENOMEM);
1213 
1214 	ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1215 	if (ret < 0) {
1216 		kfree(writers);
1217 		return ERR_PTR(ret);
1218 	}
1219 
1220 	init_waitqueue_head(&writers->wait);
1221 	return writers;
1222 }
1223 
1224 static void
1225 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1226 {
1227 	percpu_counter_destroy(&writers->counter);
1228 	kfree(writers);
1229 }
1230 
1231 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1232 			 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1233 			 u64 objectid)
1234 {
1235 	root->node = NULL;
1236 	root->commit_root = NULL;
1237 	root->sectorsize = sectorsize;
1238 	root->nodesize = nodesize;
1239 	root->stripesize = stripesize;
1240 	root->state = 0;
1241 	root->orphan_cleanup_state = 0;
1242 
1243 	root->objectid = objectid;
1244 	root->last_trans = 0;
1245 	root->highest_objectid = 0;
1246 	root->nr_delalloc_inodes = 0;
1247 	root->nr_ordered_extents = 0;
1248 	root->name = NULL;
1249 	root->inode_tree = RB_ROOT;
1250 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1251 	root->block_rsv = NULL;
1252 	root->orphan_block_rsv = NULL;
1253 
1254 	INIT_LIST_HEAD(&root->dirty_list);
1255 	INIT_LIST_HEAD(&root->root_list);
1256 	INIT_LIST_HEAD(&root->delalloc_inodes);
1257 	INIT_LIST_HEAD(&root->delalloc_root);
1258 	INIT_LIST_HEAD(&root->ordered_extents);
1259 	INIT_LIST_HEAD(&root->ordered_root);
1260 	INIT_LIST_HEAD(&root->logged_list[0]);
1261 	INIT_LIST_HEAD(&root->logged_list[1]);
1262 	spin_lock_init(&root->orphan_lock);
1263 	spin_lock_init(&root->inode_lock);
1264 	spin_lock_init(&root->delalloc_lock);
1265 	spin_lock_init(&root->ordered_extent_lock);
1266 	spin_lock_init(&root->accounting_lock);
1267 	spin_lock_init(&root->log_extents_lock[0]);
1268 	spin_lock_init(&root->log_extents_lock[1]);
1269 	mutex_init(&root->objectid_mutex);
1270 	mutex_init(&root->log_mutex);
1271 	mutex_init(&root->ordered_extent_mutex);
1272 	mutex_init(&root->delalloc_mutex);
1273 	init_waitqueue_head(&root->log_writer_wait);
1274 	init_waitqueue_head(&root->log_commit_wait[0]);
1275 	init_waitqueue_head(&root->log_commit_wait[1]);
1276 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1277 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1278 	atomic_set(&root->log_commit[0], 0);
1279 	atomic_set(&root->log_commit[1], 0);
1280 	atomic_set(&root->log_writers, 0);
1281 	atomic_set(&root->log_batch, 0);
1282 	atomic_set(&root->orphan_inodes, 0);
1283 	atomic_set(&root->refs, 1);
1284 	atomic_set(&root->will_be_snapshoted, 0);
1285 	atomic_set(&root->qgroup_meta_rsv, 0);
1286 	root->log_transid = 0;
1287 	root->log_transid_committed = -1;
1288 	root->last_log_commit = 0;
1289 	if (fs_info)
1290 		extent_io_tree_init(&root->dirty_log_pages,
1291 				     fs_info->btree_inode->i_mapping);
1292 
1293 	memset(&root->root_key, 0, sizeof(root->root_key));
1294 	memset(&root->root_item, 0, sizeof(root->root_item));
1295 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1296 	if (fs_info)
1297 		root->defrag_trans_start = fs_info->generation;
1298 	else
1299 		root->defrag_trans_start = 0;
1300 	root->root_key.objectid = objectid;
1301 	root->anon_dev = 0;
1302 
1303 	spin_lock_init(&root->root_item_lock);
1304 }
1305 
1306 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1307 		gfp_t flags)
1308 {
1309 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1310 	if (root)
1311 		root->fs_info = fs_info;
1312 	return root;
1313 }
1314 
1315 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1316 /* Should only be used by the testing infrastructure */
1317 struct btrfs_root *btrfs_alloc_dummy_root(void)
1318 {
1319 	struct btrfs_root *root;
1320 
1321 	root = btrfs_alloc_root(NULL, GFP_KERNEL);
1322 	if (!root)
1323 		return ERR_PTR(-ENOMEM);
1324 	__setup_root(4096, 4096, 4096, root, NULL, 1);
1325 	set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1326 	root->alloc_bytenr = 0;
1327 
1328 	return root;
1329 }
1330 #endif
1331 
1332 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1333 				     struct btrfs_fs_info *fs_info,
1334 				     u64 objectid)
1335 {
1336 	struct extent_buffer *leaf;
1337 	struct btrfs_root *tree_root = fs_info->tree_root;
1338 	struct btrfs_root *root;
1339 	struct btrfs_key key;
1340 	int ret = 0;
1341 	uuid_le uuid;
1342 
1343 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1344 	if (!root)
1345 		return ERR_PTR(-ENOMEM);
1346 
1347 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1348 		tree_root->stripesize, root, fs_info, objectid);
1349 	root->root_key.objectid = objectid;
1350 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1351 	root->root_key.offset = 0;
1352 
1353 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1354 	if (IS_ERR(leaf)) {
1355 		ret = PTR_ERR(leaf);
1356 		leaf = NULL;
1357 		goto fail;
1358 	}
1359 
1360 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1361 	btrfs_set_header_bytenr(leaf, leaf->start);
1362 	btrfs_set_header_generation(leaf, trans->transid);
1363 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1364 	btrfs_set_header_owner(leaf, objectid);
1365 	root->node = leaf;
1366 
1367 	write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1368 			    BTRFS_FSID_SIZE);
1369 	write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1370 			    btrfs_header_chunk_tree_uuid(leaf),
1371 			    BTRFS_UUID_SIZE);
1372 	btrfs_mark_buffer_dirty(leaf);
1373 
1374 	root->commit_root = btrfs_root_node(root);
1375 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1376 
1377 	root->root_item.flags = 0;
1378 	root->root_item.byte_limit = 0;
1379 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1380 	btrfs_set_root_generation(&root->root_item, trans->transid);
1381 	btrfs_set_root_level(&root->root_item, 0);
1382 	btrfs_set_root_refs(&root->root_item, 1);
1383 	btrfs_set_root_used(&root->root_item, leaf->len);
1384 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1385 	btrfs_set_root_dirid(&root->root_item, 0);
1386 	uuid_le_gen(&uuid);
1387 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1388 	root->root_item.drop_level = 0;
1389 
1390 	key.objectid = objectid;
1391 	key.type = BTRFS_ROOT_ITEM_KEY;
1392 	key.offset = 0;
1393 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1394 	if (ret)
1395 		goto fail;
1396 
1397 	btrfs_tree_unlock(leaf);
1398 
1399 	return root;
1400 
1401 fail:
1402 	if (leaf) {
1403 		btrfs_tree_unlock(leaf);
1404 		free_extent_buffer(root->commit_root);
1405 		free_extent_buffer(leaf);
1406 	}
1407 	kfree(root);
1408 
1409 	return ERR_PTR(ret);
1410 }
1411 
1412 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1413 					 struct btrfs_fs_info *fs_info)
1414 {
1415 	struct btrfs_root *root;
1416 	struct btrfs_root *tree_root = fs_info->tree_root;
1417 	struct extent_buffer *leaf;
1418 
1419 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1420 	if (!root)
1421 		return ERR_PTR(-ENOMEM);
1422 
1423 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1424 		     tree_root->stripesize, root, fs_info,
1425 		     BTRFS_TREE_LOG_OBJECTID);
1426 
1427 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1428 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1429 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1430 
1431 	/*
1432 	 * DON'T set REF_COWS for log trees
1433 	 *
1434 	 * log trees do not get reference counted because they go away
1435 	 * before a real commit is actually done.  They do store pointers
1436 	 * to file data extents, and those reference counts still get
1437 	 * updated (along with back refs to the log tree).
1438 	 */
1439 
1440 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1441 			NULL, 0, 0, 0);
1442 	if (IS_ERR(leaf)) {
1443 		kfree(root);
1444 		return ERR_CAST(leaf);
1445 	}
1446 
1447 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1448 	btrfs_set_header_bytenr(leaf, leaf->start);
1449 	btrfs_set_header_generation(leaf, trans->transid);
1450 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1451 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1452 	root->node = leaf;
1453 
1454 	write_extent_buffer(root->node, root->fs_info->fsid,
1455 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
1456 	btrfs_mark_buffer_dirty(root->node);
1457 	btrfs_tree_unlock(root->node);
1458 	return root;
1459 }
1460 
1461 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1462 			     struct btrfs_fs_info *fs_info)
1463 {
1464 	struct btrfs_root *log_root;
1465 
1466 	log_root = alloc_log_tree(trans, fs_info);
1467 	if (IS_ERR(log_root))
1468 		return PTR_ERR(log_root);
1469 	WARN_ON(fs_info->log_root_tree);
1470 	fs_info->log_root_tree = log_root;
1471 	return 0;
1472 }
1473 
1474 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1475 		       struct btrfs_root *root)
1476 {
1477 	struct btrfs_root *log_root;
1478 	struct btrfs_inode_item *inode_item;
1479 
1480 	log_root = alloc_log_tree(trans, root->fs_info);
1481 	if (IS_ERR(log_root))
1482 		return PTR_ERR(log_root);
1483 
1484 	log_root->last_trans = trans->transid;
1485 	log_root->root_key.offset = root->root_key.objectid;
1486 
1487 	inode_item = &log_root->root_item.inode;
1488 	btrfs_set_stack_inode_generation(inode_item, 1);
1489 	btrfs_set_stack_inode_size(inode_item, 3);
1490 	btrfs_set_stack_inode_nlink(inode_item, 1);
1491 	btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1492 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1493 
1494 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1495 
1496 	WARN_ON(root->log_root);
1497 	root->log_root = log_root;
1498 	root->log_transid = 0;
1499 	root->log_transid_committed = -1;
1500 	root->last_log_commit = 0;
1501 	return 0;
1502 }
1503 
1504 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1505 					       struct btrfs_key *key)
1506 {
1507 	struct btrfs_root *root;
1508 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1509 	struct btrfs_path *path;
1510 	u64 generation;
1511 	int ret;
1512 
1513 	path = btrfs_alloc_path();
1514 	if (!path)
1515 		return ERR_PTR(-ENOMEM);
1516 
1517 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1518 	if (!root) {
1519 		ret = -ENOMEM;
1520 		goto alloc_fail;
1521 	}
1522 
1523 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1524 		tree_root->stripesize, root, fs_info, key->objectid);
1525 
1526 	ret = btrfs_find_root(tree_root, key, path,
1527 			      &root->root_item, &root->root_key);
1528 	if (ret) {
1529 		if (ret > 0)
1530 			ret = -ENOENT;
1531 		goto find_fail;
1532 	}
1533 
1534 	generation = btrfs_root_generation(&root->root_item);
1535 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1536 				     generation);
1537 	if (IS_ERR(root->node)) {
1538 		ret = PTR_ERR(root->node);
1539 		goto find_fail;
1540 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1541 		ret = -EIO;
1542 		free_extent_buffer(root->node);
1543 		goto find_fail;
1544 	}
1545 	root->commit_root = btrfs_root_node(root);
1546 out:
1547 	btrfs_free_path(path);
1548 	return root;
1549 
1550 find_fail:
1551 	kfree(root);
1552 alloc_fail:
1553 	root = ERR_PTR(ret);
1554 	goto out;
1555 }
1556 
1557 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1558 				      struct btrfs_key *location)
1559 {
1560 	struct btrfs_root *root;
1561 
1562 	root = btrfs_read_tree_root(tree_root, location);
1563 	if (IS_ERR(root))
1564 		return root;
1565 
1566 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1567 		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1568 		btrfs_check_and_init_root_item(&root->root_item);
1569 	}
1570 
1571 	return root;
1572 }
1573 
1574 int btrfs_init_fs_root(struct btrfs_root *root)
1575 {
1576 	int ret;
1577 	struct btrfs_subvolume_writers *writers;
1578 
1579 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1580 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1581 					GFP_NOFS);
1582 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1583 		ret = -ENOMEM;
1584 		goto fail;
1585 	}
1586 
1587 	writers = btrfs_alloc_subvolume_writers();
1588 	if (IS_ERR(writers)) {
1589 		ret = PTR_ERR(writers);
1590 		goto fail;
1591 	}
1592 	root->subv_writers = writers;
1593 
1594 	btrfs_init_free_ino_ctl(root);
1595 	spin_lock_init(&root->ino_cache_lock);
1596 	init_waitqueue_head(&root->ino_cache_wait);
1597 
1598 	ret = get_anon_bdev(&root->anon_dev);
1599 	if (ret)
1600 		goto free_writers;
1601 
1602 	mutex_lock(&root->objectid_mutex);
1603 	ret = btrfs_find_highest_objectid(root,
1604 					&root->highest_objectid);
1605 	if (ret) {
1606 		mutex_unlock(&root->objectid_mutex);
1607 		goto free_root_dev;
1608 	}
1609 
1610 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1611 
1612 	mutex_unlock(&root->objectid_mutex);
1613 
1614 	return 0;
1615 
1616 free_root_dev:
1617 	free_anon_bdev(root->anon_dev);
1618 free_writers:
1619 	btrfs_free_subvolume_writers(root->subv_writers);
1620 fail:
1621 	kfree(root->free_ino_ctl);
1622 	kfree(root->free_ino_pinned);
1623 	return ret;
1624 }
1625 
1626 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1627 					       u64 root_id)
1628 {
1629 	struct btrfs_root *root;
1630 
1631 	spin_lock(&fs_info->fs_roots_radix_lock);
1632 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1633 				 (unsigned long)root_id);
1634 	spin_unlock(&fs_info->fs_roots_radix_lock);
1635 	return root;
1636 }
1637 
1638 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1639 			 struct btrfs_root *root)
1640 {
1641 	int ret;
1642 
1643 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1644 	if (ret)
1645 		return ret;
1646 
1647 	spin_lock(&fs_info->fs_roots_radix_lock);
1648 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1649 				(unsigned long)root->root_key.objectid,
1650 				root);
1651 	if (ret == 0)
1652 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1653 	spin_unlock(&fs_info->fs_roots_radix_lock);
1654 	radix_tree_preload_end();
1655 
1656 	return ret;
1657 }
1658 
1659 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1660 				     struct btrfs_key *location,
1661 				     bool check_ref)
1662 {
1663 	struct btrfs_root *root;
1664 	struct btrfs_path *path;
1665 	struct btrfs_key key;
1666 	int ret;
1667 
1668 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1669 		return fs_info->tree_root;
1670 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1671 		return fs_info->extent_root;
1672 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1673 		return fs_info->chunk_root;
1674 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1675 		return fs_info->dev_root;
1676 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1677 		return fs_info->csum_root;
1678 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1679 		return fs_info->quota_root ? fs_info->quota_root :
1680 					     ERR_PTR(-ENOENT);
1681 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1682 		return fs_info->uuid_root ? fs_info->uuid_root :
1683 					    ERR_PTR(-ENOENT);
1684 	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1685 		return fs_info->free_space_root ? fs_info->free_space_root :
1686 						  ERR_PTR(-ENOENT);
1687 again:
1688 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1689 	if (root) {
1690 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1691 			return ERR_PTR(-ENOENT);
1692 		return root;
1693 	}
1694 
1695 	root = btrfs_read_fs_root(fs_info->tree_root, location);
1696 	if (IS_ERR(root))
1697 		return root;
1698 
1699 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1700 		ret = -ENOENT;
1701 		goto fail;
1702 	}
1703 
1704 	ret = btrfs_init_fs_root(root);
1705 	if (ret)
1706 		goto fail;
1707 
1708 	path = btrfs_alloc_path();
1709 	if (!path) {
1710 		ret = -ENOMEM;
1711 		goto fail;
1712 	}
1713 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1714 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1715 	key.offset = location->objectid;
1716 
1717 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1718 	btrfs_free_path(path);
1719 	if (ret < 0)
1720 		goto fail;
1721 	if (ret == 0)
1722 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1723 
1724 	ret = btrfs_insert_fs_root(fs_info, root);
1725 	if (ret) {
1726 		if (ret == -EEXIST) {
1727 			free_fs_root(root);
1728 			goto again;
1729 		}
1730 		goto fail;
1731 	}
1732 	return root;
1733 fail:
1734 	free_fs_root(root);
1735 	return ERR_PTR(ret);
1736 }
1737 
1738 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1739 {
1740 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1741 	int ret = 0;
1742 	struct btrfs_device *device;
1743 	struct backing_dev_info *bdi;
1744 
1745 	rcu_read_lock();
1746 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1747 		if (!device->bdev)
1748 			continue;
1749 		bdi = blk_get_backing_dev_info(device->bdev);
1750 		if (bdi_congested(bdi, bdi_bits)) {
1751 			ret = 1;
1752 			break;
1753 		}
1754 	}
1755 	rcu_read_unlock();
1756 	return ret;
1757 }
1758 
1759 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1760 {
1761 	int err;
1762 
1763 	err = bdi_setup_and_register(bdi, "btrfs");
1764 	if (err)
1765 		return err;
1766 
1767 	bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1768 	bdi->congested_fn	= btrfs_congested_fn;
1769 	bdi->congested_data	= info;
1770 	bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1771 	return 0;
1772 }
1773 
1774 /*
1775  * called by the kthread helper functions to finally call the bio end_io
1776  * functions.  This is where read checksum verification actually happens
1777  */
1778 static void end_workqueue_fn(struct btrfs_work *work)
1779 {
1780 	struct bio *bio;
1781 	struct btrfs_end_io_wq *end_io_wq;
1782 
1783 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1784 	bio = end_io_wq->bio;
1785 
1786 	bio->bi_error = end_io_wq->error;
1787 	bio->bi_private = end_io_wq->private;
1788 	bio->bi_end_io = end_io_wq->end_io;
1789 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1790 	bio_endio(bio);
1791 }
1792 
1793 static int cleaner_kthread(void *arg)
1794 {
1795 	struct btrfs_root *root = arg;
1796 	int again;
1797 	struct btrfs_trans_handle *trans;
1798 
1799 	do {
1800 		again = 0;
1801 
1802 		/* Make the cleaner go to sleep early. */
1803 		if (btrfs_need_cleaner_sleep(root))
1804 			goto sleep;
1805 
1806 		if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1807 			goto sleep;
1808 
1809 		/*
1810 		 * Avoid the problem that we change the status of the fs
1811 		 * during the above check and trylock.
1812 		 */
1813 		if (btrfs_need_cleaner_sleep(root)) {
1814 			mutex_unlock(&root->fs_info->cleaner_mutex);
1815 			goto sleep;
1816 		}
1817 
1818 		mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1819 		btrfs_run_delayed_iputs(root);
1820 		mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1821 
1822 		again = btrfs_clean_one_deleted_snapshot(root);
1823 		mutex_unlock(&root->fs_info->cleaner_mutex);
1824 
1825 		/*
1826 		 * The defragger has dealt with the R/O remount and umount,
1827 		 * needn't do anything special here.
1828 		 */
1829 		btrfs_run_defrag_inodes(root->fs_info);
1830 
1831 		/*
1832 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1833 		 * with relocation (btrfs_relocate_chunk) and relocation
1834 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1835 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1836 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1837 		 * unused block groups.
1838 		 */
1839 		btrfs_delete_unused_bgs(root->fs_info);
1840 sleep:
1841 		if (!again) {
1842 			set_current_state(TASK_INTERRUPTIBLE);
1843 			if (!kthread_should_stop())
1844 				schedule();
1845 			__set_current_state(TASK_RUNNING);
1846 		}
1847 	} while (!kthread_should_stop());
1848 
1849 	/*
1850 	 * Transaction kthread is stopped before us and wakes us up.
1851 	 * However we might have started a new transaction and COWed some
1852 	 * tree blocks when deleting unused block groups for example. So
1853 	 * make sure we commit the transaction we started to have a clean
1854 	 * shutdown when evicting the btree inode - if it has dirty pages
1855 	 * when we do the final iput() on it, eviction will trigger a
1856 	 * writeback for it which will fail with null pointer dereferences
1857 	 * since work queues and other resources were already released and
1858 	 * destroyed by the time the iput/eviction/writeback is made.
1859 	 */
1860 	trans = btrfs_attach_transaction(root);
1861 	if (IS_ERR(trans)) {
1862 		if (PTR_ERR(trans) != -ENOENT)
1863 			btrfs_err(root->fs_info,
1864 				  "cleaner transaction attach returned %ld",
1865 				  PTR_ERR(trans));
1866 	} else {
1867 		int ret;
1868 
1869 		ret = btrfs_commit_transaction(trans, root);
1870 		if (ret)
1871 			btrfs_err(root->fs_info,
1872 				  "cleaner open transaction commit returned %d",
1873 				  ret);
1874 	}
1875 
1876 	return 0;
1877 }
1878 
1879 static int transaction_kthread(void *arg)
1880 {
1881 	struct btrfs_root *root = arg;
1882 	struct btrfs_trans_handle *trans;
1883 	struct btrfs_transaction *cur;
1884 	u64 transid;
1885 	unsigned long now;
1886 	unsigned long delay;
1887 	bool cannot_commit;
1888 
1889 	do {
1890 		cannot_commit = false;
1891 		delay = HZ * root->fs_info->commit_interval;
1892 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1893 
1894 		spin_lock(&root->fs_info->trans_lock);
1895 		cur = root->fs_info->running_transaction;
1896 		if (!cur) {
1897 			spin_unlock(&root->fs_info->trans_lock);
1898 			goto sleep;
1899 		}
1900 
1901 		now = get_seconds();
1902 		if (cur->state < TRANS_STATE_BLOCKED &&
1903 		    (now < cur->start_time ||
1904 		     now - cur->start_time < root->fs_info->commit_interval)) {
1905 			spin_unlock(&root->fs_info->trans_lock);
1906 			delay = HZ * 5;
1907 			goto sleep;
1908 		}
1909 		transid = cur->transid;
1910 		spin_unlock(&root->fs_info->trans_lock);
1911 
1912 		/* If the file system is aborted, this will always fail. */
1913 		trans = btrfs_attach_transaction(root);
1914 		if (IS_ERR(trans)) {
1915 			if (PTR_ERR(trans) != -ENOENT)
1916 				cannot_commit = true;
1917 			goto sleep;
1918 		}
1919 		if (transid == trans->transid) {
1920 			btrfs_commit_transaction(trans, root);
1921 		} else {
1922 			btrfs_end_transaction(trans, root);
1923 		}
1924 sleep:
1925 		wake_up_process(root->fs_info->cleaner_kthread);
1926 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1927 
1928 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1929 				      &root->fs_info->fs_state)))
1930 			btrfs_cleanup_transaction(root);
1931 		set_current_state(TASK_INTERRUPTIBLE);
1932 		if (!kthread_should_stop() &&
1933 				(!btrfs_transaction_blocked(root->fs_info) ||
1934 				 cannot_commit))
1935 			schedule_timeout(delay);
1936 		__set_current_state(TASK_RUNNING);
1937 	} while (!kthread_should_stop());
1938 	return 0;
1939 }
1940 
1941 /*
1942  * this will find the highest generation in the array of
1943  * root backups.  The index of the highest array is returned,
1944  * or -1 if we can't find anything.
1945  *
1946  * We check to make sure the array is valid by comparing the
1947  * generation of the latest  root in the array with the generation
1948  * in the super block.  If they don't match we pitch it.
1949  */
1950 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1951 {
1952 	u64 cur;
1953 	int newest_index = -1;
1954 	struct btrfs_root_backup *root_backup;
1955 	int i;
1956 
1957 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1958 		root_backup = info->super_copy->super_roots + i;
1959 		cur = btrfs_backup_tree_root_gen(root_backup);
1960 		if (cur == newest_gen)
1961 			newest_index = i;
1962 	}
1963 
1964 	/* check to see if we actually wrapped around */
1965 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1966 		root_backup = info->super_copy->super_roots;
1967 		cur = btrfs_backup_tree_root_gen(root_backup);
1968 		if (cur == newest_gen)
1969 			newest_index = 0;
1970 	}
1971 	return newest_index;
1972 }
1973 
1974 
1975 /*
1976  * find the oldest backup so we know where to store new entries
1977  * in the backup array.  This will set the backup_root_index
1978  * field in the fs_info struct
1979  */
1980 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1981 				     u64 newest_gen)
1982 {
1983 	int newest_index = -1;
1984 
1985 	newest_index = find_newest_super_backup(info, newest_gen);
1986 	/* if there was garbage in there, just move along */
1987 	if (newest_index == -1) {
1988 		info->backup_root_index = 0;
1989 	} else {
1990 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1991 	}
1992 }
1993 
1994 /*
1995  * copy all the root pointers into the super backup array.
1996  * this will bump the backup pointer by one when it is
1997  * done
1998  */
1999 static void backup_super_roots(struct btrfs_fs_info *info)
2000 {
2001 	int next_backup;
2002 	struct btrfs_root_backup *root_backup;
2003 	int last_backup;
2004 
2005 	next_backup = info->backup_root_index;
2006 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2007 		BTRFS_NUM_BACKUP_ROOTS;
2008 
2009 	/*
2010 	 * just overwrite the last backup if we're at the same generation
2011 	 * this happens only at umount
2012 	 */
2013 	root_backup = info->super_for_commit->super_roots + last_backup;
2014 	if (btrfs_backup_tree_root_gen(root_backup) ==
2015 	    btrfs_header_generation(info->tree_root->node))
2016 		next_backup = last_backup;
2017 
2018 	root_backup = info->super_for_commit->super_roots + next_backup;
2019 
2020 	/*
2021 	 * make sure all of our padding and empty slots get zero filled
2022 	 * regardless of which ones we use today
2023 	 */
2024 	memset(root_backup, 0, sizeof(*root_backup));
2025 
2026 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2027 
2028 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2029 	btrfs_set_backup_tree_root_gen(root_backup,
2030 			       btrfs_header_generation(info->tree_root->node));
2031 
2032 	btrfs_set_backup_tree_root_level(root_backup,
2033 			       btrfs_header_level(info->tree_root->node));
2034 
2035 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2036 	btrfs_set_backup_chunk_root_gen(root_backup,
2037 			       btrfs_header_generation(info->chunk_root->node));
2038 	btrfs_set_backup_chunk_root_level(root_backup,
2039 			       btrfs_header_level(info->chunk_root->node));
2040 
2041 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2042 	btrfs_set_backup_extent_root_gen(root_backup,
2043 			       btrfs_header_generation(info->extent_root->node));
2044 	btrfs_set_backup_extent_root_level(root_backup,
2045 			       btrfs_header_level(info->extent_root->node));
2046 
2047 	/*
2048 	 * we might commit during log recovery, which happens before we set
2049 	 * the fs_root.  Make sure it is valid before we fill it in.
2050 	 */
2051 	if (info->fs_root && info->fs_root->node) {
2052 		btrfs_set_backup_fs_root(root_backup,
2053 					 info->fs_root->node->start);
2054 		btrfs_set_backup_fs_root_gen(root_backup,
2055 			       btrfs_header_generation(info->fs_root->node));
2056 		btrfs_set_backup_fs_root_level(root_backup,
2057 			       btrfs_header_level(info->fs_root->node));
2058 	}
2059 
2060 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2061 	btrfs_set_backup_dev_root_gen(root_backup,
2062 			       btrfs_header_generation(info->dev_root->node));
2063 	btrfs_set_backup_dev_root_level(root_backup,
2064 				       btrfs_header_level(info->dev_root->node));
2065 
2066 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2067 	btrfs_set_backup_csum_root_gen(root_backup,
2068 			       btrfs_header_generation(info->csum_root->node));
2069 	btrfs_set_backup_csum_root_level(root_backup,
2070 			       btrfs_header_level(info->csum_root->node));
2071 
2072 	btrfs_set_backup_total_bytes(root_backup,
2073 			     btrfs_super_total_bytes(info->super_copy));
2074 	btrfs_set_backup_bytes_used(root_backup,
2075 			     btrfs_super_bytes_used(info->super_copy));
2076 	btrfs_set_backup_num_devices(root_backup,
2077 			     btrfs_super_num_devices(info->super_copy));
2078 
2079 	/*
2080 	 * if we don't copy this out to the super_copy, it won't get remembered
2081 	 * for the next commit
2082 	 */
2083 	memcpy(&info->super_copy->super_roots,
2084 	       &info->super_for_commit->super_roots,
2085 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2086 }
2087 
2088 /*
2089  * this copies info out of the root backup array and back into
2090  * the in-memory super block.  It is meant to help iterate through
2091  * the array, so you send it the number of backups you've already
2092  * tried and the last backup index you used.
2093  *
2094  * this returns -1 when it has tried all the backups
2095  */
2096 static noinline int next_root_backup(struct btrfs_fs_info *info,
2097 				     struct btrfs_super_block *super,
2098 				     int *num_backups_tried, int *backup_index)
2099 {
2100 	struct btrfs_root_backup *root_backup;
2101 	int newest = *backup_index;
2102 
2103 	if (*num_backups_tried == 0) {
2104 		u64 gen = btrfs_super_generation(super);
2105 
2106 		newest = find_newest_super_backup(info, gen);
2107 		if (newest == -1)
2108 			return -1;
2109 
2110 		*backup_index = newest;
2111 		*num_backups_tried = 1;
2112 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2113 		/* we've tried all the backups, all done */
2114 		return -1;
2115 	} else {
2116 		/* jump to the next oldest backup */
2117 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2118 			BTRFS_NUM_BACKUP_ROOTS;
2119 		*backup_index = newest;
2120 		*num_backups_tried += 1;
2121 	}
2122 	root_backup = super->super_roots + newest;
2123 
2124 	btrfs_set_super_generation(super,
2125 				   btrfs_backup_tree_root_gen(root_backup));
2126 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2127 	btrfs_set_super_root_level(super,
2128 				   btrfs_backup_tree_root_level(root_backup));
2129 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2130 
2131 	/*
2132 	 * fixme: the total bytes and num_devices need to match or we should
2133 	 * need a fsck
2134 	 */
2135 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2136 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2137 	return 0;
2138 }
2139 
2140 /* helper to cleanup workers */
2141 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2142 {
2143 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2144 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2145 	btrfs_destroy_workqueue(fs_info->workers);
2146 	btrfs_destroy_workqueue(fs_info->endio_workers);
2147 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2148 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2149 	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2150 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2151 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2152 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2153 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2154 	btrfs_destroy_workqueue(fs_info->submit_workers);
2155 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2156 	btrfs_destroy_workqueue(fs_info->caching_workers);
2157 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2158 	btrfs_destroy_workqueue(fs_info->flush_workers);
2159 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2160 	btrfs_destroy_workqueue(fs_info->extent_workers);
2161 }
2162 
2163 static void free_root_extent_buffers(struct btrfs_root *root)
2164 {
2165 	if (root) {
2166 		free_extent_buffer(root->node);
2167 		free_extent_buffer(root->commit_root);
2168 		root->node = NULL;
2169 		root->commit_root = NULL;
2170 	}
2171 }
2172 
2173 /* helper to cleanup tree roots */
2174 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2175 {
2176 	free_root_extent_buffers(info->tree_root);
2177 
2178 	free_root_extent_buffers(info->dev_root);
2179 	free_root_extent_buffers(info->extent_root);
2180 	free_root_extent_buffers(info->csum_root);
2181 	free_root_extent_buffers(info->quota_root);
2182 	free_root_extent_buffers(info->uuid_root);
2183 	if (chunk_root)
2184 		free_root_extent_buffers(info->chunk_root);
2185 	free_root_extent_buffers(info->free_space_root);
2186 }
2187 
2188 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2189 {
2190 	int ret;
2191 	struct btrfs_root *gang[8];
2192 	int i;
2193 
2194 	while (!list_empty(&fs_info->dead_roots)) {
2195 		gang[0] = list_entry(fs_info->dead_roots.next,
2196 				     struct btrfs_root, root_list);
2197 		list_del(&gang[0]->root_list);
2198 
2199 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2200 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2201 		} else {
2202 			free_extent_buffer(gang[0]->node);
2203 			free_extent_buffer(gang[0]->commit_root);
2204 			btrfs_put_fs_root(gang[0]);
2205 		}
2206 	}
2207 
2208 	while (1) {
2209 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2210 					     (void **)gang, 0,
2211 					     ARRAY_SIZE(gang));
2212 		if (!ret)
2213 			break;
2214 		for (i = 0; i < ret; i++)
2215 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2216 	}
2217 
2218 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2219 		btrfs_free_log_root_tree(NULL, fs_info);
2220 		btrfs_destroy_pinned_extent(fs_info->tree_root,
2221 					    fs_info->pinned_extents);
2222 	}
2223 }
2224 
2225 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2226 {
2227 	mutex_init(&fs_info->scrub_lock);
2228 	atomic_set(&fs_info->scrubs_running, 0);
2229 	atomic_set(&fs_info->scrub_pause_req, 0);
2230 	atomic_set(&fs_info->scrubs_paused, 0);
2231 	atomic_set(&fs_info->scrub_cancel_req, 0);
2232 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2233 	fs_info->scrub_workers_refcnt = 0;
2234 }
2235 
2236 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2237 {
2238 	spin_lock_init(&fs_info->balance_lock);
2239 	mutex_init(&fs_info->balance_mutex);
2240 	atomic_set(&fs_info->balance_running, 0);
2241 	atomic_set(&fs_info->balance_pause_req, 0);
2242 	atomic_set(&fs_info->balance_cancel_req, 0);
2243 	fs_info->balance_ctl = NULL;
2244 	init_waitqueue_head(&fs_info->balance_wait_q);
2245 }
2246 
2247 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2248 				   struct btrfs_root *tree_root)
2249 {
2250 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2251 	set_nlink(fs_info->btree_inode, 1);
2252 	/*
2253 	 * we set the i_size on the btree inode to the max possible int.
2254 	 * the real end of the address space is determined by all of
2255 	 * the devices in the system
2256 	 */
2257 	fs_info->btree_inode->i_size = OFFSET_MAX;
2258 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2259 
2260 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2261 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2262 			     fs_info->btree_inode->i_mapping);
2263 	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2264 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2265 
2266 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2267 
2268 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2269 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2270 	       sizeof(struct btrfs_key));
2271 	set_bit(BTRFS_INODE_DUMMY,
2272 		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2273 	btrfs_insert_inode_hash(fs_info->btree_inode);
2274 }
2275 
2276 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2277 {
2278 	fs_info->dev_replace.lock_owner = 0;
2279 	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2280 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2281 	rwlock_init(&fs_info->dev_replace.lock);
2282 	atomic_set(&fs_info->dev_replace.read_locks, 0);
2283 	atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2284 	init_waitqueue_head(&fs_info->replace_wait);
2285 	init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2286 }
2287 
2288 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2289 {
2290 	spin_lock_init(&fs_info->qgroup_lock);
2291 	mutex_init(&fs_info->qgroup_ioctl_lock);
2292 	fs_info->qgroup_tree = RB_ROOT;
2293 	fs_info->qgroup_op_tree = RB_ROOT;
2294 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2295 	fs_info->qgroup_seq = 1;
2296 	fs_info->quota_enabled = 0;
2297 	fs_info->pending_quota_state = 0;
2298 	fs_info->qgroup_ulist = NULL;
2299 	mutex_init(&fs_info->qgroup_rescan_lock);
2300 }
2301 
2302 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2303 		struct btrfs_fs_devices *fs_devices)
2304 {
2305 	int max_active = fs_info->thread_pool_size;
2306 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2307 
2308 	fs_info->workers =
2309 		btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2310 				      max_active, 16);
2311 
2312 	fs_info->delalloc_workers =
2313 		btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2314 
2315 	fs_info->flush_workers =
2316 		btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2317 
2318 	fs_info->caching_workers =
2319 		btrfs_alloc_workqueue("cache", flags, max_active, 0);
2320 
2321 	/*
2322 	 * a higher idle thresh on the submit workers makes it much more
2323 	 * likely that bios will be send down in a sane order to the
2324 	 * devices
2325 	 */
2326 	fs_info->submit_workers =
2327 		btrfs_alloc_workqueue("submit", flags,
2328 				      min_t(u64, fs_devices->num_devices,
2329 					    max_active), 64);
2330 
2331 	fs_info->fixup_workers =
2332 		btrfs_alloc_workqueue("fixup", flags, 1, 0);
2333 
2334 	/*
2335 	 * endios are largely parallel and should have a very
2336 	 * low idle thresh
2337 	 */
2338 	fs_info->endio_workers =
2339 		btrfs_alloc_workqueue("endio", flags, max_active, 4);
2340 	fs_info->endio_meta_workers =
2341 		btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2342 	fs_info->endio_meta_write_workers =
2343 		btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2344 	fs_info->endio_raid56_workers =
2345 		btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2346 	fs_info->endio_repair_workers =
2347 		btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2348 	fs_info->rmw_workers =
2349 		btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2350 	fs_info->endio_write_workers =
2351 		btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2352 	fs_info->endio_freespace_worker =
2353 		btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2354 	fs_info->delayed_workers =
2355 		btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2356 	fs_info->readahead_workers =
2357 		btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2358 	fs_info->qgroup_rescan_workers =
2359 		btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2360 	fs_info->extent_workers =
2361 		btrfs_alloc_workqueue("extent-refs", flags,
2362 				      min_t(u64, fs_devices->num_devices,
2363 					    max_active), 8);
2364 
2365 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2366 	      fs_info->submit_workers && fs_info->flush_workers &&
2367 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2368 	      fs_info->endio_meta_write_workers &&
2369 	      fs_info->endio_repair_workers &&
2370 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2371 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2372 	      fs_info->caching_workers && fs_info->readahead_workers &&
2373 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2374 	      fs_info->extent_workers &&
2375 	      fs_info->qgroup_rescan_workers)) {
2376 		return -ENOMEM;
2377 	}
2378 
2379 	return 0;
2380 }
2381 
2382 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2383 			    struct btrfs_fs_devices *fs_devices)
2384 {
2385 	int ret;
2386 	struct btrfs_root *tree_root = fs_info->tree_root;
2387 	struct btrfs_root *log_tree_root;
2388 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2389 	u64 bytenr = btrfs_super_log_root(disk_super);
2390 
2391 	if (fs_devices->rw_devices == 0) {
2392 		btrfs_warn(fs_info, "log replay required on RO media");
2393 		return -EIO;
2394 	}
2395 
2396 	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2397 	if (!log_tree_root)
2398 		return -ENOMEM;
2399 
2400 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
2401 			tree_root->stripesize, log_tree_root, fs_info,
2402 			BTRFS_TREE_LOG_OBJECTID);
2403 
2404 	log_tree_root->node = read_tree_block(tree_root, bytenr,
2405 			fs_info->generation + 1);
2406 	if (IS_ERR(log_tree_root->node)) {
2407 		btrfs_warn(fs_info, "failed to read log tree");
2408 		ret = PTR_ERR(log_tree_root->node);
2409 		kfree(log_tree_root);
2410 		return ret;
2411 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2412 		btrfs_err(fs_info, "failed to read log tree");
2413 		free_extent_buffer(log_tree_root->node);
2414 		kfree(log_tree_root);
2415 		return -EIO;
2416 	}
2417 	/* returns with log_tree_root freed on success */
2418 	ret = btrfs_recover_log_trees(log_tree_root);
2419 	if (ret) {
2420 		btrfs_std_error(tree_root->fs_info, ret,
2421 			    "Failed to recover log tree");
2422 		free_extent_buffer(log_tree_root->node);
2423 		kfree(log_tree_root);
2424 		return ret;
2425 	}
2426 
2427 	if (fs_info->sb->s_flags & MS_RDONLY) {
2428 		ret = btrfs_commit_super(tree_root);
2429 		if (ret)
2430 			return ret;
2431 	}
2432 
2433 	return 0;
2434 }
2435 
2436 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2437 			    struct btrfs_root *tree_root)
2438 {
2439 	struct btrfs_root *root;
2440 	struct btrfs_key location;
2441 	int ret;
2442 
2443 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2444 	location.type = BTRFS_ROOT_ITEM_KEY;
2445 	location.offset = 0;
2446 
2447 	root = btrfs_read_tree_root(tree_root, &location);
2448 	if (IS_ERR(root))
2449 		return PTR_ERR(root);
2450 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2451 	fs_info->extent_root = root;
2452 
2453 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2454 	root = btrfs_read_tree_root(tree_root, &location);
2455 	if (IS_ERR(root))
2456 		return PTR_ERR(root);
2457 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2458 	fs_info->dev_root = root;
2459 	btrfs_init_devices_late(fs_info);
2460 
2461 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2462 	root = btrfs_read_tree_root(tree_root, &location);
2463 	if (IS_ERR(root))
2464 		return PTR_ERR(root);
2465 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2466 	fs_info->csum_root = root;
2467 
2468 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2469 	root = btrfs_read_tree_root(tree_root, &location);
2470 	if (!IS_ERR(root)) {
2471 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2472 		fs_info->quota_enabled = 1;
2473 		fs_info->pending_quota_state = 1;
2474 		fs_info->quota_root = root;
2475 	}
2476 
2477 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2478 	root = btrfs_read_tree_root(tree_root, &location);
2479 	if (IS_ERR(root)) {
2480 		ret = PTR_ERR(root);
2481 		if (ret != -ENOENT)
2482 			return ret;
2483 	} else {
2484 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2485 		fs_info->uuid_root = root;
2486 	}
2487 
2488 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2489 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2490 		root = btrfs_read_tree_root(tree_root, &location);
2491 		if (IS_ERR(root))
2492 			return PTR_ERR(root);
2493 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2494 		fs_info->free_space_root = root;
2495 	}
2496 
2497 	return 0;
2498 }
2499 
2500 int open_ctree(struct super_block *sb,
2501 	       struct btrfs_fs_devices *fs_devices,
2502 	       char *options)
2503 {
2504 	u32 sectorsize;
2505 	u32 nodesize;
2506 	u32 stripesize;
2507 	u64 generation;
2508 	u64 features;
2509 	struct btrfs_key location;
2510 	struct buffer_head *bh;
2511 	struct btrfs_super_block *disk_super;
2512 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2513 	struct btrfs_root *tree_root;
2514 	struct btrfs_root *chunk_root;
2515 	int ret;
2516 	int err = -EINVAL;
2517 	int num_backups_tried = 0;
2518 	int backup_index = 0;
2519 	int max_active;
2520 
2521 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2522 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2523 	if (!tree_root || !chunk_root) {
2524 		err = -ENOMEM;
2525 		goto fail;
2526 	}
2527 
2528 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2529 	if (ret) {
2530 		err = ret;
2531 		goto fail;
2532 	}
2533 
2534 	ret = setup_bdi(fs_info, &fs_info->bdi);
2535 	if (ret) {
2536 		err = ret;
2537 		goto fail_srcu;
2538 	}
2539 
2540 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2541 	if (ret) {
2542 		err = ret;
2543 		goto fail_bdi;
2544 	}
2545 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2546 					(1 + ilog2(nr_cpu_ids));
2547 
2548 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2549 	if (ret) {
2550 		err = ret;
2551 		goto fail_dirty_metadata_bytes;
2552 	}
2553 
2554 	ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2555 	if (ret) {
2556 		err = ret;
2557 		goto fail_delalloc_bytes;
2558 	}
2559 
2560 	fs_info->btree_inode = new_inode(sb);
2561 	if (!fs_info->btree_inode) {
2562 		err = -ENOMEM;
2563 		goto fail_bio_counter;
2564 	}
2565 
2566 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2567 
2568 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2569 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2570 	INIT_LIST_HEAD(&fs_info->trans_list);
2571 	INIT_LIST_HEAD(&fs_info->dead_roots);
2572 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2573 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2574 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2575 	spin_lock_init(&fs_info->delalloc_root_lock);
2576 	spin_lock_init(&fs_info->trans_lock);
2577 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2578 	spin_lock_init(&fs_info->delayed_iput_lock);
2579 	spin_lock_init(&fs_info->defrag_inodes_lock);
2580 	spin_lock_init(&fs_info->free_chunk_lock);
2581 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2582 	spin_lock_init(&fs_info->super_lock);
2583 	spin_lock_init(&fs_info->qgroup_op_lock);
2584 	spin_lock_init(&fs_info->buffer_lock);
2585 	spin_lock_init(&fs_info->unused_bgs_lock);
2586 	rwlock_init(&fs_info->tree_mod_log_lock);
2587 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2588 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2589 	mutex_init(&fs_info->reloc_mutex);
2590 	mutex_init(&fs_info->delalloc_root_mutex);
2591 	mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2592 	seqlock_init(&fs_info->profiles_lock);
2593 
2594 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2595 	INIT_LIST_HEAD(&fs_info->space_info);
2596 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2597 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2598 	btrfs_mapping_init(&fs_info->mapping_tree);
2599 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2600 			     BTRFS_BLOCK_RSV_GLOBAL);
2601 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2602 			     BTRFS_BLOCK_RSV_DELALLOC);
2603 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2604 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2605 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2606 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2607 			     BTRFS_BLOCK_RSV_DELOPS);
2608 	atomic_set(&fs_info->nr_async_submits, 0);
2609 	atomic_set(&fs_info->async_delalloc_pages, 0);
2610 	atomic_set(&fs_info->async_submit_draining, 0);
2611 	atomic_set(&fs_info->nr_async_bios, 0);
2612 	atomic_set(&fs_info->defrag_running, 0);
2613 	atomic_set(&fs_info->qgroup_op_seq, 0);
2614 	atomic_set(&fs_info->reada_works_cnt, 0);
2615 	atomic64_set(&fs_info->tree_mod_seq, 0);
2616 	fs_info->sb = sb;
2617 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2618 	fs_info->metadata_ratio = 0;
2619 	fs_info->defrag_inodes = RB_ROOT;
2620 	fs_info->free_chunk_space = 0;
2621 	fs_info->tree_mod_log = RB_ROOT;
2622 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2623 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2624 	/* readahead state */
2625 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2626 	spin_lock_init(&fs_info->reada_lock);
2627 
2628 	fs_info->thread_pool_size = min_t(unsigned long,
2629 					  num_online_cpus() + 2, 8);
2630 
2631 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2632 	spin_lock_init(&fs_info->ordered_root_lock);
2633 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2634 					GFP_KERNEL);
2635 	if (!fs_info->delayed_root) {
2636 		err = -ENOMEM;
2637 		goto fail_iput;
2638 	}
2639 	btrfs_init_delayed_root(fs_info->delayed_root);
2640 
2641 	btrfs_init_scrub(fs_info);
2642 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2643 	fs_info->check_integrity_print_mask = 0;
2644 #endif
2645 	btrfs_init_balance(fs_info);
2646 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2647 
2648 	sb->s_blocksize = 4096;
2649 	sb->s_blocksize_bits = blksize_bits(4096);
2650 	sb->s_bdi = &fs_info->bdi;
2651 
2652 	btrfs_init_btree_inode(fs_info, tree_root);
2653 
2654 	spin_lock_init(&fs_info->block_group_cache_lock);
2655 	fs_info->block_group_cache_tree = RB_ROOT;
2656 	fs_info->first_logical_byte = (u64)-1;
2657 
2658 	extent_io_tree_init(&fs_info->freed_extents[0],
2659 			     fs_info->btree_inode->i_mapping);
2660 	extent_io_tree_init(&fs_info->freed_extents[1],
2661 			     fs_info->btree_inode->i_mapping);
2662 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2663 	fs_info->do_barriers = 1;
2664 
2665 
2666 	mutex_init(&fs_info->ordered_operations_mutex);
2667 	mutex_init(&fs_info->tree_log_mutex);
2668 	mutex_init(&fs_info->chunk_mutex);
2669 	mutex_init(&fs_info->transaction_kthread_mutex);
2670 	mutex_init(&fs_info->cleaner_mutex);
2671 	mutex_init(&fs_info->volume_mutex);
2672 	mutex_init(&fs_info->ro_block_group_mutex);
2673 	init_rwsem(&fs_info->commit_root_sem);
2674 	init_rwsem(&fs_info->cleanup_work_sem);
2675 	init_rwsem(&fs_info->subvol_sem);
2676 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2677 
2678 	btrfs_init_dev_replace_locks(fs_info);
2679 	btrfs_init_qgroup(fs_info);
2680 
2681 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2682 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2683 
2684 	init_waitqueue_head(&fs_info->transaction_throttle);
2685 	init_waitqueue_head(&fs_info->transaction_wait);
2686 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2687 	init_waitqueue_head(&fs_info->async_submit_wait);
2688 
2689 	INIT_LIST_HEAD(&fs_info->pinned_chunks);
2690 
2691 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2692 	if (ret) {
2693 		err = ret;
2694 		goto fail_alloc;
2695 	}
2696 
2697 	__setup_root(4096, 4096, 4096, tree_root,
2698 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2699 
2700 	invalidate_bdev(fs_devices->latest_bdev);
2701 
2702 	/*
2703 	 * Read super block and check the signature bytes only
2704 	 */
2705 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2706 	if (IS_ERR(bh)) {
2707 		err = PTR_ERR(bh);
2708 		goto fail_alloc;
2709 	}
2710 
2711 	/*
2712 	 * We want to check superblock checksum, the type is stored inside.
2713 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2714 	 */
2715 	if (btrfs_check_super_csum(bh->b_data)) {
2716 		printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2717 		err = -EINVAL;
2718 		brelse(bh);
2719 		goto fail_alloc;
2720 	}
2721 
2722 	/*
2723 	 * super_copy is zeroed at allocation time and we never touch the
2724 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2725 	 * the whole block of INFO_SIZE
2726 	 */
2727 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2728 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2729 	       sizeof(*fs_info->super_for_commit));
2730 	brelse(bh);
2731 
2732 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2733 
2734 	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2735 	if (ret) {
2736 		printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2737 		err = -EINVAL;
2738 		goto fail_alloc;
2739 	}
2740 
2741 	disk_super = fs_info->super_copy;
2742 	if (!btrfs_super_root(disk_super))
2743 		goto fail_alloc;
2744 
2745 	/* check FS state, whether FS is broken. */
2746 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2747 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2748 
2749 	/*
2750 	 * run through our array of backup supers and setup
2751 	 * our ring pointer to the oldest one
2752 	 */
2753 	generation = btrfs_super_generation(disk_super);
2754 	find_oldest_super_backup(fs_info, generation);
2755 
2756 	/*
2757 	 * In the long term, we'll store the compression type in the super
2758 	 * block, and it'll be used for per file compression control.
2759 	 */
2760 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2761 
2762 	ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2763 	if (ret) {
2764 		err = ret;
2765 		goto fail_alloc;
2766 	}
2767 
2768 	features = btrfs_super_incompat_flags(disk_super) &
2769 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2770 	if (features) {
2771 		printk(KERN_ERR "BTRFS: couldn't mount because of "
2772 		       "unsupported optional features (%Lx).\n",
2773 		       features);
2774 		err = -EINVAL;
2775 		goto fail_alloc;
2776 	}
2777 
2778 	features = btrfs_super_incompat_flags(disk_super);
2779 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2780 	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2781 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2782 
2783 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2784 		printk(KERN_INFO "BTRFS: has skinny extents\n");
2785 
2786 	/*
2787 	 * flag our filesystem as having big metadata blocks if
2788 	 * they are bigger than the page size
2789 	 */
2790 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2791 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2792 			printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2793 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2794 	}
2795 
2796 	nodesize = btrfs_super_nodesize(disk_super);
2797 	sectorsize = btrfs_super_sectorsize(disk_super);
2798 	stripesize = btrfs_super_stripesize(disk_super);
2799 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2800 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2801 
2802 	/*
2803 	 * mixed block groups end up with duplicate but slightly offset
2804 	 * extent buffers for the same range.  It leads to corruptions
2805 	 */
2806 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2807 	    (sectorsize != nodesize)) {
2808 		printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2809 				"are not allowed for mixed block groups on %s\n",
2810 				sb->s_id);
2811 		goto fail_alloc;
2812 	}
2813 
2814 	/*
2815 	 * Needn't use the lock because there is no other task which will
2816 	 * update the flag.
2817 	 */
2818 	btrfs_set_super_incompat_flags(disk_super, features);
2819 
2820 	features = btrfs_super_compat_ro_flags(disk_super) &
2821 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2822 	if (!(sb->s_flags & MS_RDONLY) && features) {
2823 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2824 		       "unsupported option features (%Lx).\n",
2825 		       features);
2826 		err = -EINVAL;
2827 		goto fail_alloc;
2828 	}
2829 
2830 	max_active = fs_info->thread_pool_size;
2831 
2832 	ret = btrfs_init_workqueues(fs_info, fs_devices);
2833 	if (ret) {
2834 		err = ret;
2835 		goto fail_sb_buffer;
2836 	}
2837 
2838 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2839 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2840 				    SZ_4M / PAGE_SIZE);
2841 
2842 	tree_root->nodesize = nodesize;
2843 	tree_root->sectorsize = sectorsize;
2844 	tree_root->stripesize = stripesize;
2845 
2846 	sb->s_blocksize = sectorsize;
2847 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2848 
2849 	mutex_lock(&fs_info->chunk_mutex);
2850 	ret = btrfs_read_sys_array(tree_root);
2851 	mutex_unlock(&fs_info->chunk_mutex);
2852 	if (ret) {
2853 		printk(KERN_ERR "BTRFS: failed to read the system "
2854 		       "array on %s\n", sb->s_id);
2855 		goto fail_sb_buffer;
2856 	}
2857 
2858 	generation = btrfs_super_chunk_root_generation(disk_super);
2859 
2860 	__setup_root(nodesize, sectorsize, stripesize, chunk_root,
2861 		     fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2862 
2863 	chunk_root->node = read_tree_block(chunk_root,
2864 					   btrfs_super_chunk_root(disk_super),
2865 					   generation);
2866 	if (IS_ERR(chunk_root->node) ||
2867 	    !extent_buffer_uptodate(chunk_root->node)) {
2868 		printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2869 		       sb->s_id);
2870 		if (!IS_ERR(chunk_root->node))
2871 			free_extent_buffer(chunk_root->node);
2872 		chunk_root->node = NULL;
2873 		goto fail_tree_roots;
2874 	}
2875 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2876 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2877 
2878 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2879 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2880 
2881 	ret = btrfs_read_chunk_tree(chunk_root);
2882 	if (ret) {
2883 		printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2884 		       sb->s_id);
2885 		goto fail_tree_roots;
2886 	}
2887 
2888 	/*
2889 	 * keep the device that is marked to be the target device for the
2890 	 * dev_replace procedure
2891 	 */
2892 	btrfs_close_extra_devices(fs_devices, 0);
2893 
2894 	if (!fs_devices->latest_bdev) {
2895 		printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2896 		       sb->s_id);
2897 		goto fail_tree_roots;
2898 	}
2899 
2900 retry_root_backup:
2901 	generation = btrfs_super_generation(disk_super);
2902 
2903 	tree_root->node = read_tree_block(tree_root,
2904 					  btrfs_super_root(disk_super),
2905 					  generation);
2906 	if (IS_ERR(tree_root->node) ||
2907 	    !extent_buffer_uptodate(tree_root->node)) {
2908 		printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2909 		       sb->s_id);
2910 		if (!IS_ERR(tree_root->node))
2911 			free_extent_buffer(tree_root->node);
2912 		tree_root->node = NULL;
2913 		goto recovery_tree_root;
2914 	}
2915 
2916 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2917 	tree_root->commit_root = btrfs_root_node(tree_root);
2918 	btrfs_set_root_refs(&tree_root->root_item, 1);
2919 
2920 	mutex_lock(&tree_root->objectid_mutex);
2921 	ret = btrfs_find_highest_objectid(tree_root,
2922 					&tree_root->highest_objectid);
2923 	if (ret) {
2924 		mutex_unlock(&tree_root->objectid_mutex);
2925 		goto recovery_tree_root;
2926 	}
2927 
2928 	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2929 
2930 	mutex_unlock(&tree_root->objectid_mutex);
2931 
2932 	ret = btrfs_read_roots(fs_info, tree_root);
2933 	if (ret)
2934 		goto recovery_tree_root;
2935 
2936 	fs_info->generation = generation;
2937 	fs_info->last_trans_committed = generation;
2938 
2939 	ret = btrfs_recover_balance(fs_info);
2940 	if (ret) {
2941 		printk(KERN_ERR "BTRFS: failed to recover balance\n");
2942 		goto fail_block_groups;
2943 	}
2944 
2945 	ret = btrfs_init_dev_stats(fs_info);
2946 	if (ret) {
2947 		printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2948 		       ret);
2949 		goto fail_block_groups;
2950 	}
2951 
2952 	ret = btrfs_init_dev_replace(fs_info);
2953 	if (ret) {
2954 		pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2955 		goto fail_block_groups;
2956 	}
2957 
2958 	btrfs_close_extra_devices(fs_devices, 1);
2959 
2960 	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2961 	if (ret) {
2962 		pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2963 		goto fail_block_groups;
2964 	}
2965 
2966 	ret = btrfs_sysfs_add_device(fs_devices);
2967 	if (ret) {
2968 		pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2969 		goto fail_fsdev_sysfs;
2970 	}
2971 
2972 	ret = btrfs_sysfs_add_mounted(fs_info);
2973 	if (ret) {
2974 		pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2975 		goto fail_fsdev_sysfs;
2976 	}
2977 
2978 	ret = btrfs_init_space_info(fs_info);
2979 	if (ret) {
2980 		printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2981 		goto fail_sysfs;
2982 	}
2983 
2984 	ret = btrfs_read_block_groups(fs_info->extent_root);
2985 	if (ret) {
2986 		printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2987 		goto fail_sysfs;
2988 	}
2989 	fs_info->num_tolerated_disk_barrier_failures =
2990 		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2991 	if (fs_info->fs_devices->missing_devices >
2992 	     fs_info->num_tolerated_disk_barrier_failures &&
2993 	    !(sb->s_flags & MS_RDONLY)) {
2994 		pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
2995 			fs_info->fs_devices->missing_devices,
2996 			fs_info->num_tolerated_disk_barrier_failures);
2997 		goto fail_sysfs;
2998 	}
2999 
3000 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3001 					       "btrfs-cleaner");
3002 	if (IS_ERR(fs_info->cleaner_kthread))
3003 		goto fail_sysfs;
3004 
3005 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3006 						   tree_root,
3007 						   "btrfs-transaction");
3008 	if (IS_ERR(fs_info->transaction_kthread))
3009 		goto fail_cleaner;
3010 
3011 	if (!btrfs_test_opt(tree_root, SSD) &&
3012 	    !btrfs_test_opt(tree_root, NOSSD) &&
3013 	    !fs_info->fs_devices->rotating) {
3014 		printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
3015 		       "mode\n");
3016 		btrfs_set_opt(fs_info->mount_opt, SSD);
3017 	}
3018 
3019 	/*
3020 	 * Mount does not set all options immediatelly, we can do it now and do
3021 	 * not have to wait for transaction commit
3022 	 */
3023 	btrfs_apply_pending_changes(fs_info);
3024 
3025 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3026 	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
3027 		ret = btrfsic_mount(tree_root, fs_devices,
3028 				    btrfs_test_opt(tree_root,
3029 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3030 				    1 : 0,
3031 				    fs_info->check_integrity_print_mask);
3032 		if (ret)
3033 			printk(KERN_WARNING "BTRFS: failed to initialize"
3034 			       " integrity check module %s\n", sb->s_id);
3035 	}
3036 #endif
3037 	ret = btrfs_read_qgroup_config(fs_info);
3038 	if (ret)
3039 		goto fail_trans_kthread;
3040 
3041 	/* do not make disk changes in broken FS or nologreplay is given */
3042 	if (btrfs_super_log_root(disk_super) != 0 &&
3043 	    !btrfs_test_opt(tree_root, NOLOGREPLAY)) {
3044 		ret = btrfs_replay_log(fs_info, fs_devices);
3045 		if (ret) {
3046 			err = ret;
3047 			goto fail_qgroup;
3048 		}
3049 	}
3050 
3051 	ret = btrfs_find_orphan_roots(tree_root);
3052 	if (ret)
3053 		goto fail_qgroup;
3054 
3055 	if (!(sb->s_flags & MS_RDONLY)) {
3056 		ret = btrfs_cleanup_fs_roots(fs_info);
3057 		if (ret)
3058 			goto fail_qgroup;
3059 
3060 		mutex_lock(&fs_info->cleaner_mutex);
3061 		ret = btrfs_recover_relocation(tree_root);
3062 		mutex_unlock(&fs_info->cleaner_mutex);
3063 		if (ret < 0) {
3064 			printk(KERN_WARNING
3065 			       "BTRFS: failed to recover relocation\n");
3066 			err = -EINVAL;
3067 			goto fail_qgroup;
3068 		}
3069 	}
3070 
3071 	location.objectid = BTRFS_FS_TREE_OBJECTID;
3072 	location.type = BTRFS_ROOT_ITEM_KEY;
3073 	location.offset = 0;
3074 
3075 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3076 	if (IS_ERR(fs_info->fs_root)) {
3077 		err = PTR_ERR(fs_info->fs_root);
3078 		goto fail_qgroup;
3079 	}
3080 
3081 	if (sb->s_flags & MS_RDONLY)
3082 		return 0;
3083 
3084 	if (btrfs_test_opt(tree_root, FREE_SPACE_TREE) &&
3085 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3086 		pr_info("BTRFS: creating free space tree\n");
3087 		ret = btrfs_create_free_space_tree(fs_info);
3088 		if (ret) {
3089 			pr_warn("BTRFS: failed to create free space tree %d\n",
3090 				ret);
3091 			close_ctree(tree_root);
3092 			return ret;
3093 		}
3094 	}
3095 
3096 	down_read(&fs_info->cleanup_work_sem);
3097 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3098 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3099 		up_read(&fs_info->cleanup_work_sem);
3100 		close_ctree(tree_root);
3101 		return ret;
3102 	}
3103 	up_read(&fs_info->cleanup_work_sem);
3104 
3105 	ret = btrfs_resume_balance_async(fs_info);
3106 	if (ret) {
3107 		printk(KERN_WARNING "BTRFS: failed to resume balance\n");
3108 		close_ctree(tree_root);
3109 		return ret;
3110 	}
3111 
3112 	ret = btrfs_resume_dev_replace_async(fs_info);
3113 	if (ret) {
3114 		pr_warn("BTRFS: failed to resume dev_replace\n");
3115 		close_ctree(tree_root);
3116 		return ret;
3117 	}
3118 
3119 	btrfs_qgroup_rescan_resume(fs_info);
3120 
3121 	if (btrfs_test_opt(tree_root, CLEAR_CACHE) &&
3122 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3123 		pr_info("BTRFS: clearing free space tree\n");
3124 		ret = btrfs_clear_free_space_tree(fs_info);
3125 		if (ret) {
3126 			pr_warn("BTRFS: failed to clear free space tree %d\n",
3127 				ret);
3128 			close_ctree(tree_root);
3129 			return ret;
3130 		}
3131 	}
3132 
3133 	if (!fs_info->uuid_root) {
3134 		pr_info("BTRFS: creating UUID tree\n");
3135 		ret = btrfs_create_uuid_tree(fs_info);
3136 		if (ret) {
3137 			pr_warn("BTRFS: failed to create the UUID tree %d\n",
3138 				ret);
3139 			close_ctree(tree_root);
3140 			return ret;
3141 		}
3142 	} else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3143 		   fs_info->generation !=
3144 				btrfs_super_uuid_tree_generation(disk_super)) {
3145 		pr_info("BTRFS: checking UUID tree\n");
3146 		ret = btrfs_check_uuid_tree(fs_info);
3147 		if (ret) {
3148 			pr_warn("BTRFS: failed to check the UUID tree %d\n",
3149 				ret);
3150 			close_ctree(tree_root);
3151 			return ret;
3152 		}
3153 	} else {
3154 		fs_info->update_uuid_tree_gen = 1;
3155 	}
3156 
3157 	fs_info->open = 1;
3158 
3159 	/*
3160 	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3161 	 * no need to keep the flag
3162 	 */
3163 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3164 
3165 	return 0;
3166 
3167 fail_qgroup:
3168 	btrfs_free_qgroup_config(fs_info);
3169 fail_trans_kthread:
3170 	kthread_stop(fs_info->transaction_kthread);
3171 	btrfs_cleanup_transaction(fs_info->tree_root);
3172 	btrfs_free_fs_roots(fs_info);
3173 fail_cleaner:
3174 	kthread_stop(fs_info->cleaner_kthread);
3175 
3176 	/*
3177 	 * make sure we're done with the btree inode before we stop our
3178 	 * kthreads
3179 	 */
3180 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3181 
3182 fail_sysfs:
3183 	btrfs_sysfs_remove_mounted(fs_info);
3184 
3185 fail_fsdev_sysfs:
3186 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3187 
3188 fail_block_groups:
3189 	btrfs_put_block_group_cache(fs_info);
3190 	btrfs_free_block_groups(fs_info);
3191 
3192 fail_tree_roots:
3193 	free_root_pointers(fs_info, 1);
3194 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3195 
3196 fail_sb_buffer:
3197 	btrfs_stop_all_workers(fs_info);
3198 fail_alloc:
3199 fail_iput:
3200 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3201 
3202 	iput(fs_info->btree_inode);
3203 fail_bio_counter:
3204 	percpu_counter_destroy(&fs_info->bio_counter);
3205 fail_delalloc_bytes:
3206 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3207 fail_dirty_metadata_bytes:
3208 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3209 fail_bdi:
3210 	bdi_destroy(&fs_info->bdi);
3211 fail_srcu:
3212 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3213 fail:
3214 	btrfs_free_stripe_hash_table(fs_info);
3215 	btrfs_close_devices(fs_info->fs_devices);
3216 	return err;
3217 
3218 recovery_tree_root:
3219 	if (!btrfs_test_opt(tree_root, USEBACKUPROOT))
3220 		goto fail_tree_roots;
3221 
3222 	free_root_pointers(fs_info, 0);
3223 
3224 	/* don't use the log in recovery mode, it won't be valid */
3225 	btrfs_set_super_log_root(disk_super, 0);
3226 
3227 	/* we can't trust the free space cache either */
3228 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3229 
3230 	ret = next_root_backup(fs_info, fs_info->super_copy,
3231 			       &num_backups_tried, &backup_index);
3232 	if (ret == -1)
3233 		goto fail_block_groups;
3234 	goto retry_root_backup;
3235 }
3236 
3237 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3238 {
3239 	if (uptodate) {
3240 		set_buffer_uptodate(bh);
3241 	} else {
3242 		struct btrfs_device *device = (struct btrfs_device *)
3243 			bh->b_private;
3244 
3245 		btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3246 				"lost page write due to IO error on %s",
3247 					  rcu_str_deref(device->name));
3248 		/* note, we dont' set_buffer_write_io_error because we have
3249 		 * our own ways of dealing with the IO errors
3250 		 */
3251 		clear_buffer_uptodate(bh);
3252 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3253 	}
3254 	unlock_buffer(bh);
3255 	put_bh(bh);
3256 }
3257 
3258 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3259 			struct buffer_head **bh_ret)
3260 {
3261 	struct buffer_head *bh;
3262 	struct btrfs_super_block *super;
3263 	u64 bytenr;
3264 
3265 	bytenr = btrfs_sb_offset(copy_num);
3266 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3267 		return -EINVAL;
3268 
3269 	bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3270 	/*
3271 	 * If we fail to read from the underlying devices, as of now
3272 	 * the best option we have is to mark it EIO.
3273 	 */
3274 	if (!bh)
3275 		return -EIO;
3276 
3277 	super = (struct btrfs_super_block *)bh->b_data;
3278 	if (btrfs_super_bytenr(super) != bytenr ||
3279 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3280 		brelse(bh);
3281 		return -EINVAL;
3282 	}
3283 
3284 	*bh_ret = bh;
3285 	return 0;
3286 }
3287 
3288 
3289 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3290 {
3291 	struct buffer_head *bh;
3292 	struct buffer_head *latest = NULL;
3293 	struct btrfs_super_block *super;
3294 	int i;
3295 	u64 transid = 0;
3296 	int ret = -EINVAL;
3297 
3298 	/* we would like to check all the supers, but that would make
3299 	 * a btrfs mount succeed after a mkfs from a different FS.
3300 	 * So, we need to add a special mount option to scan for
3301 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3302 	 */
3303 	for (i = 0; i < 1; i++) {
3304 		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3305 		if (ret)
3306 			continue;
3307 
3308 		super = (struct btrfs_super_block *)bh->b_data;
3309 
3310 		if (!latest || btrfs_super_generation(super) > transid) {
3311 			brelse(latest);
3312 			latest = bh;
3313 			transid = btrfs_super_generation(super);
3314 		} else {
3315 			brelse(bh);
3316 		}
3317 	}
3318 
3319 	if (!latest)
3320 		return ERR_PTR(ret);
3321 
3322 	return latest;
3323 }
3324 
3325 /*
3326  * this should be called twice, once with wait == 0 and
3327  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3328  * we write are pinned.
3329  *
3330  * They are released when wait == 1 is done.
3331  * max_mirrors must be the same for both runs, and it indicates how
3332  * many supers on this one device should be written.
3333  *
3334  * max_mirrors == 0 means to write them all.
3335  */
3336 static int write_dev_supers(struct btrfs_device *device,
3337 			    struct btrfs_super_block *sb,
3338 			    int do_barriers, int wait, int max_mirrors)
3339 {
3340 	struct buffer_head *bh;
3341 	int i;
3342 	int ret;
3343 	int errors = 0;
3344 	u32 crc;
3345 	u64 bytenr;
3346 
3347 	if (max_mirrors == 0)
3348 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3349 
3350 	for (i = 0; i < max_mirrors; i++) {
3351 		bytenr = btrfs_sb_offset(i);
3352 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3353 		    device->commit_total_bytes)
3354 			break;
3355 
3356 		if (wait) {
3357 			bh = __find_get_block(device->bdev, bytenr / 4096,
3358 					      BTRFS_SUPER_INFO_SIZE);
3359 			if (!bh) {
3360 				errors++;
3361 				continue;
3362 			}
3363 			wait_on_buffer(bh);
3364 			if (!buffer_uptodate(bh))
3365 				errors++;
3366 
3367 			/* drop our reference */
3368 			brelse(bh);
3369 
3370 			/* drop the reference from the wait == 0 run */
3371 			brelse(bh);
3372 			continue;
3373 		} else {
3374 			btrfs_set_super_bytenr(sb, bytenr);
3375 
3376 			crc = ~(u32)0;
3377 			crc = btrfs_csum_data((char *)sb +
3378 					      BTRFS_CSUM_SIZE, crc,
3379 					      BTRFS_SUPER_INFO_SIZE -
3380 					      BTRFS_CSUM_SIZE);
3381 			btrfs_csum_final(crc, sb->csum);
3382 
3383 			/*
3384 			 * one reference for us, and we leave it for the
3385 			 * caller
3386 			 */
3387 			bh = __getblk(device->bdev, bytenr / 4096,
3388 				      BTRFS_SUPER_INFO_SIZE);
3389 			if (!bh) {
3390 				btrfs_err(device->dev_root->fs_info,
3391 				    "couldn't get super buffer head for bytenr %llu",
3392 				    bytenr);
3393 				errors++;
3394 				continue;
3395 			}
3396 
3397 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3398 
3399 			/* one reference for submit_bh */
3400 			get_bh(bh);
3401 
3402 			set_buffer_uptodate(bh);
3403 			lock_buffer(bh);
3404 			bh->b_end_io = btrfs_end_buffer_write_sync;
3405 			bh->b_private = device;
3406 		}
3407 
3408 		/*
3409 		 * we fua the first super.  The others we allow
3410 		 * to go down lazy.
3411 		 */
3412 		if (i == 0)
3413 			ret = btrfsic_submit_bh(WRITE_FUA, bh);
3414 		else
3415 			ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3416 		if (ret)
3417 			errors++;
3418 	}
3419 	return errors < i ? 0 : -1;
3420 }
3421 
3422 /*
3423  * endio for the write_dev_flush, this will wake anyone waiting
3424  * for the barrier when it is done
3425  */
3426 static void btrfs_end_empty_barrier(struct bio *bio)
3427 {
3428 	if (bio->bi_private)
3429 		complete(bio->bi_private);
3430 	bio_put(bio);
3431 }
3432 
3433 /*
3434  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3435  * sent down.  With wait == 1, it waits for the previous flush.
3436  *
3437  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3438  * capable
3439  */
3440 static int write_dev_flush(struct btrfs_device *device, int wait)
3441 {
3442 	struct bio *bio;
3443 	int ret = 0;
3444 
3445 	if (device->nobarriers)
3446 		return 0;
3447 
3448 	if (wait) {
3449 		bio = device->flush_bio;
3450 		if (!bio)
3451 			return 0;
3452 
3453 		wait_for_completion(&device->flush_wait);
3454 
3455 		if (bio->bi_error) {
3456 			ret = bio->bi_error;
3457 			btrfs_dev_stat_inc_and_print(device,
3458 				BTRFS_DEV_STAT_FLUSH_ERRS);
3459 		}
3460 
3461 		/* drop the reference from the wait == 0 run */
3462 		bio_put(bio);
3463 		device->flush_bio = NULL;
3464 
3465 		return ret;
3466 	}
3467 
3468 	/*
3469 	 * one reference for us, and we leave it for the
3470 	 * caller
3471 	 */
3472 	device->flush_bio = NULL;
3473 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3474 	if (!bio)
3475 		return -ENOMEM;
3476 
3477 	bio->bi_end_io = btrfs_end_empty_barrier;
3478 	bio->bi_bdev = device->bdev;
3479 	init_completion(&device->flush_wait);
3480 	bio->bi_private = &device->flush_wait;
3481 	device->flush_bio = bio;
3482 
3483 	bio_get(bio);
3484 	btrfsic_submit_bio(WRITE_FLUSH, bio);
3485 
3486 	return 0;
3487 }
3488 
3489 /*
3490  * send an empty flush down to each device in parallel,
3491  * then wait for them
3492  */
3493 static int barrier_all_devices(struct btrfs_fs_info *info)
3494 {
3495 	struct list_head *head;
3496 	struct btrfs_device *dev;
3497 	int errors_send = 0;
3498 	int errors_wait = 0;
3499 	int ret;
3500 
3501 	/* send down all the barriers */
3502 	head = &info->fs_devices->devices;
3503 	list_for_each_entry_rcu(dev, head, dev_list) {
3504 		if (dev->missing)
3505 			continue;
3506 		if (!dev->bdev) {
3507 			errors_send++;
3508 			continue;
3509 		}
3510 		if (!dev->in_fs_metadata || !dev->writeable)
3511 			continue;
3512 
3513 		ret = write_dev_flush(dev, 0);
3514 		if (ret)
3515 			errors_send++;
3516 	}
3517 
3518 	/* wait for all the barriers */
3519 	list_for_each_entry_rcu(dev, head, dev_list) {
3520 		if (dev->missing)
3521 			continue;
3522 		if (!dev->bdev) {
3523 			errors_wait++;
3524 			continue;
3525 		}
3526 		if (!dev->in_fs_metadata || !dev->writeable)
3527 			continue;
3528 
3529 		ret = write_dev_flush(dev, 1);
3530 		if (ret)
3531 			errors_wait++;
3532 	}
3533 	if (errors_send > info->num_tolerated_disk_barrier_failures ||
3534 	    errors_wait > info->num_tolerated_disk_barrier_failures)
3535 		return -EIO;
3536 	return 0;
3537 }
3538 
3539 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3540 {
3541 	int raid_type;
3542 	int min_tolerated = INT_MAX;
3543 
3544 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3545 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3546 		min_tolerated = min(min_tolerated,
3547 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3548 				    tolerated_failures);
3549 
3550 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3551 		if (raid_type == BTRFS_RAID_SINGLE)
3552 			continue;
3553 		if (!(flags & btrfs_raid_group[raid_type]))
3554 			continue;
3555 		min_tolerated = min(min_tolerated,
3556 				    btrfs_raid_array[raid_type].
3557 				    tolerated_failures);
3558 	}
3559 
3560 	if (min_tolerated == INT_MAX) {
3561 		pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3562 		min_tolerated = 0;
3563 	}
3564 
3565 	return min_tolerated;
3566 }
3567 
3568 int btrfs_calc_num_tolerated_disk_barrier_failures(
3569 	struct btrfs_fs_info *fs_info)
3570 {
3571 	struct btrfs_ioctl_space_info space;
3572 	struct btrfs_space_info *sinfo;
3573 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3574 		       BTRFS_BLOCK_GROUP_SYSTEM,
3575 		       BTRFS_BLOCK_GROUP_METADATA,
3576 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3577 	int i;
3578 	int c;
3579 	int num_tolerated_disk_barrier_failures =
3580 		(int)fs_info->fs_devices->num_devices;
3581 
3582 	for (i = 0; i < ARRAY_SIZE(types); i++) {
3583 		struct btrfs_space_info *tmp;
3584 
3585 		sinfo = NULL;
3586 		rcu_read_lock();
3587 		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3588 			if (tmp->flags == types[i]) {
3589 				sinfo = tmp;
3590 				break;
3591 			}
3592 		}
3593 		rcu_read_unlock();
3594 
3595 		if (!sinfo)
3596 			continue;
3597 
3598 		down_read(&sinfo->groups_sem);
3599 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3600 			u64 flags;
3601 
3602 			if (list_empty(&sinfo->block_groups[c]))
3603 				continue;
3604 
3605 			btrfs_get_block_group_info(&sinfo->block_groups[c],
3606 						   &space);
3607 			if (space.total_bytes == 0 || space.used_bytes == 0)
3608 				continue;
3609 			flags = space.flags;
3610 
3611 			num_tolerated_disk_barrier_failures = min(
3612 				num_tolerated_disk_barrier_failures,
3613 				btrfs_get_num_tolerated_disk_barrier_failures(
3614 					flags));
3615 		}
3616 		up_read(&sinfo->groups_sem);
3617 	}
3618 
3619 	return num_tolerated_disk_barrier_failures;
3620 }
3621 
3622 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3623 {
3624 	struct list_head *head;
3625 	struct btrfs_device *dev;
3626 	struct btrfs_super_block *sb;
3627 	struct btrfs_dev_item *dev_item;
3628 	int ret;
3629 	int do_barriers;
3630 	int max_errors;
3631 	int total_errors = 0;
3632 	u64 flags;
3633 
3634 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
3635 	backup_super_roots(root->fs_info);
3636 
3637 	sb = root->fs_info->super_for_commit;
3638 	dev_item = &sb->dev_item;
3639 
3640 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3641 	head = &root->fs_info->fs_devices->devices;
3642 	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3643 
3644 	if (do_barriers) {
3645 		ret = barrier_all_devices(root->fs_info);
3646 		if (ret) {
3647 			mutex_unlock(
3648 				&root->fs_info->fs_devices->device_list_mutex);
3649 			btrfs_std_error(root->fs_info, ret,
3650 				    "errors while submitting device barriers.");
3651 			return ret;
3652 		}
3653 	}
3654 
3655 	list_for_each_entry_rcu(dev, head, dev_list) {
3656 		if (!dev->bdev) {
3657 			total_errors++;
3658 			continue;
3659 		}
3660 		if (!dev->in_fs_metadata || !dev->writeable)
3661 			continue;
3662 
3663 		btrfs_set_stack_device_generation(dev_item, 0);
3664 		btrfs_set_stack_device_type(dev_item, dev->type);
3665 		btrfs_set_stack_device_id(dev_item, dev->devid);
3666 		btrfs_set_stack_device_total_bytes(dev_item,
3667 						   dev->commit_total_bytes);
3668 		btrfs_set_stack_device_bytes_used(dev_item,
3669 						  dev->commit_bytes_used);
3670 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3671 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3672 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3673 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3674 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3675 
3676 		flags = btrfs_super_flags(sb);
3677 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3678 
3679 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3680 		if (ret)
3681 			total_errors++;
3682 	}
3683 	if (total_errors > max_errors) {
3684 		btrfs_err(root->fs_info, "%d errors while writing supers",
3685 		       total_errors);
3686 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3687 
3688 		/* FUA is masked off if unsupported and can't be the reason */
3689 		btrfs_std_error(root->fs_info, -EIO,
3690 			    "%d errors while writing supers", total_errors);
3691 		return -EIO;
3692 	}
3693 
3694 	total_errors = 0;
3695 	list_for_each_entry_rcu(dev, head, dev_list) {
3696 		if (!dev->bdev)
3697 			continue;
3698 		if (!dev->in_fs_metadata || !dev->writeable)
3699 			continue;
3700 
3701 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3702 		if (ret)
3703 			total_errors++;
3704 	}
3705 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3706 	if (total_errors > max_errors) {
3707 		btrfs_std_error(root->fs_info, -EIO,
3708 			    "%d errors while writing supers", total_errors);
3709 		return -EIO;
3710 	}
3711 	return 0;
3712 }
3713 
3714 int write_ctree_super(struct btrfs_trans_handle *trans,
3715 		      struct btrfs_root *root, int max_mirrors)
3716 {
3717 	return write_all_supers(root, max_mirrors);
3718 }
3719 
3720 /* Drop a fs root from the radix tree and free it. */
3721 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3722 				  struct btrfs_root *root)
3723 {
3724 	spin_lock(&fs_info->fs_roots_radix_lock);
3725 	radix_tree_delete(&fs_info->fs_roots_radix,
3726 			  (unsigned long)root->root_key.objectid);
3727 	spin_unlock(&fs_info->fs_roots_radix_lock);
3728 
3729 	if (btrfs_root_refs(&root->root_item) == 0)
3730 		synchronize_srcu(&fs_info->subvol_srcu);
3731 
3732 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3733 		btrfs_free_log(NULL, root);
3734 
3735 	if (root->free_ino_pinned)
3736 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3737 	if (root->free_ino_ctl)
3738 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3739 	free_fs_root(root);
3740 }
3741 
3742 static void free_fs_root(struct btrfs_root *root)
3743 {
3744 	iput(root->ino_cache_inode);
3745 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3746 	btrfs_free_block_rsv(root, root->orphan_block_rsv);
3747 	root->orphan_block_rsv = NULL;
3748 	if (root->anon_dev)
3749 		free_anon_bdev(root->anon_dev);
3750 	if (root->subv_writers)
3751 		btrfs_free_subvolume_writers(root->subv_writers);
3752 	free_extent_buffer(root->node);
3753 	free_extent_buffer(root->commit_root);
3754 	kfree(root->free_ino_ctl);
3755 	kfree(root->free_ino_pinned);
3756 	kfree(root->name);
3757 	btrfs_put_fs_root(root);
3758 }
3759 
3760 void btrfs_free_fs_root(struct btrfs_root *root)
3761 {
3762 	free_fs_root(root);
3763 }
3764 
3765 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3766 {
3767 	u64 root_objectid = 0;
3768 	struct btrfs_root *gang[8];
3769 	int i = 0;
3770 	int err = 0;
3771 	unsigned int ret = 0;
3772 	int index;
3773 
3774 	while (1) {
3775 		index = srcu_read_lock(&fs_info->subvol_srcu);
3776 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3777 					     (void **)gang, root_objectid,
3778 					     ARRAY_SIZE(gang));
3779 		if (!ret) {
3780 			srcu_read_unlock(&fs_info->subvol_srcu, index);
3781 			break;
3782 		}
3783 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3784 
3785 		for (i = 0; i < ret; i++) {
3786 			/* Avoid to grab roots in dead_roots */
3787 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3788 				gang[i] = NULL;
3789 				continue;
3790 			}
3791 			/* grab all the search result for later use */
3792 			gang[i] = btrfs_grab_fs_root(gang[i]);
3793 		}
3794 		srcu_read_unlock(&fs_info->subvol_srcu, index);
3795 
3796 		for (i = 0; i < ret; i++) {
3797 			if (!gang[i])
3798 				continue;
3799 			root_objectid = gang[i]->root_key.objectid;
3800 			err = btrfs_orphan_cleanup(gang[i]);
3801 			if (err)
3802 				break;
3803 			btrfs_put_fs_root(gang[i]);
3804 		}
3805 		root_objectid++;
3806 	}
3807 
3808 	/* release the uncleaned roots due to error */
3809 	for (; i < ret; i++) {
3810 		if (gang[i])
3811 			btrfs_put_fs_root(gang[i]);
3812 	}
3813 	return err;
3814 }
3815 
3816 int btrfs_commit_super(struct btrfs_root *root)
3817 {
3818 	struct btrfs_trans_handle *trans;
3819 
3820 	mutex_lock(&root->fs_info->cleaner_mutex);
3821 	btrfs_run_delayed_iputs(root);
3822 	mutex_unlock(&root->fs_info->cleaner_mutex);
3823 	wake_up_process(root->fs_info->cleaner_kthread);
3824 
3825 	/* wait until ongoing cleanup work done */
3826 	down_write(&root->fs_info->cleanup_work_sem);
3827 	up_write(&root->fs_info->cleanup_work_sem);
3828 
3829 	trans = btrfs_join_transaction(root);
3830 	if (IS_ERR(trans))
3831 		return PTR_ERR(trans);
3832 	return btrfs_commit_transaction(trans, root);
3833 }
3834 
3835 void close_ctree(struct btrfs_root *root)
3836 {
3837 	struct btrfs_fs_info *fs_info = root->fs_info;
3838 	int ret;
3839 
3840 	fs_info->closing = 1;
3841 	smp_mb();
3842 
3843 	/* wait for the qgroup rescan worker to stop */
3844 	btrfs_qgroup_wait_for_completion(fs_info);
3845 
3846 	/* wait for the uuid_scan task to finish */
3847 	down(&fs_info->uuid_tree_rescan_sem);
3848 	/* avoid complains from lockdep et al., set sem back to initial state */
3849 	up(&fs_info->uuid_tree_rescan_sem);
3850 
3851 	/* pause restriper - we want to resume on mount */
3852 	btrfs_pause_balance(fs_info);
3853 
3854 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3855 
3856 	btrfs_scrub_cancel(fs_info);
3857 
3858 	/* wait for any defraggers to finish */
3859 	wait_event(fs_info->transaction_wait,
3860 		   (atomic_read(&fs_info->defrag_running) == 0));
3861 
3862 	/* clear out the rbtree of defraggable inodes */
3863 	btrfs_cleanup_defrag_inodes(fs_info);
3864 
3865 	cancel_work_sync(&fs_info->async_reclaim_work);
3866 
3867 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3868 		/*
3869 		 * If the cleaner thread is stopped and there are
3870 		 * block groups queued for removal, the deletion will be
3871 		 * skipped when we quit the cleaner thread.
3872 		 */
3873 		btrfs_delete_unused_bgs(root->fs_info);
3874 
3875 		ret = btrfs_commit_super(root);
3876 		if (ret)
3877 			btrfs_err(fs_info, "commit super ret %d", ret);
3878 	}
3879 
3880 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3881 		btrfs_error_commit_super(root);
3882 
3883 	kthread_stop(fs_info->transaction_kthread);
3884 	kthread_stop(fs_info->cleaner_kthread);
3885 
3886 	fs_info->closing = 2;
3887 	smp_mb();
3888 
3889 	btrfs_free_qgroup_config(fs_info);
3890 
3891 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3892 		btrfs_info(fs_info, "at unmount delalloc count %lld",
3893 		       percpu_counter_sum(&fs_info->delalloc_bytes));
3894 	}
3895 
3896 	btrfs_sysfs_remove_mounted(fs_info);
3897 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3898 
3899 	btrfs_free_fs_roots(fs_info);
3900 
3901 	btrfs_put_block_group_cache(fs_info);
3902 
3903 	btrfs_free_block_groups(fs_info);
3904 
3905 	/*
3906 	 * we must make sure there is not any read request to
3907 	 * submit after we stopping all workers.
3908 	 */
3909 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3910 	btrfs_stop_all_workers(fs_info);
3911 
3912 	fs_info->open = 0;
3913 	free_root_pointers(fs_info, 1);
3914 
3915 	iput(fs_info->btree_inode);
3916 
3917 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3918 	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3919 		btrfsic_unmount(root, fs_info->fs_devices);
3920 #endif
3921 
3922 	btrfs_close_devices(fs_info->fs_devices);
3923 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3924 
3925 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3926 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3927 	percpu_counter_destroy(&fs_info->bio_counter);
3928 	bdi_destroy(&fs_info->bdi);
3929 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3930 
3931 	btrfs_free_stripe_hash_table(fs_info);
3932 
3933 	__btrfs_free_block_rsv(root->orphan_block_rsv);
3934 	root->orphan_block_rsv = NULL;
3935 
3936 	lock_chunks(root);
3937 	while (!list_empty(&fs_info->pinned_chunks)) {
3938 		struct extent_map *em;
3939 
3940 		em = list_first_entry(&fs_info->pinned_chunks,
3941 				      struct extent_map, list);
3942 		list_del_init(&em->list);
3943 		free_extent_map(em);
3944 	}
3945 	unlock_chunks(root);
3946 }
3947 
3948 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3949 			  int atomic)
3950 {
3951 	int ret;
3952 	struct inode *btree_inode = buf->pages[0]->mapping->host;
3953 
3954 	ret = extent_buffer_uptodate(buf);
3955 	if (!ret)
3956 		return ret;
3957 
3958 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3959 				    parent_transid, atomic);
3960 	if (ret == -EAGAIN)
3961 		return ret;
3962 	return !ret;
3963 }
3964 
3965 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3966 {
3967 	struct btrfs_root *root;
3968 	u64 transid = btrfs_header_generation(buf);
3969 	int was_dirty;
3970 
3971 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3972 	/*
3973 	 * This is a fast path so only do this check if we have sanity tests
3974 	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3975 	 * outside of the sanity tests.
3976 	 */
3977 	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3978 		return;
3979 #endif
3980 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3981 	btrfs_assert_tree_locked(buf);
3982 	if (transid != root->fs_info->generation)
3983 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3984 		       "found %llu running %llu\n",
3985 			buf->start, transid, root->fs_info->generation);
3986 	was_dirty = set_extent_buffer_dirty(buf);
3987 	if (!was_dirty)
3988 		__percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3989 				     buf->len,
3990 				     root->fs_info->dirty_metadata_batch);
3991 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3992 	if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3993 		btrfs_print_leaf(root, buf);
3994 		ASSERT(0);
3995 	}
3996 #endif
3997 }
3998 
3999 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4000 					int flush_delayed)
4001 {
4002 	/*
4003 	 * looks as though older kernels can get into trouble with
4004 	 * this code, they end up stuck in balance_dirty_pages forever
4005 	 */
4006 	int ret;
4007 
4008 	if (current->flags & PF_MEMALLOC)
4009 		return;
4010 
4011 	if (flush_delayed)
4012 		btrfs_balance_delayed_items(root);
4013 
4014 	ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4015 				     BTRFS_DIRTY_METADATA_THRESH);
4016 	if (ret > 0) {
4017 		balance_dirty_pages_ratelimited(
4018 				   root->fs_info->btree_inode->i_mapping);
4019 	}
4020 }
4021 
4022 void btrfs_btree_balance_dirty(struct btrfs_root *root)
4023 {
4024 	__btrfs_btree_balance_dirty(root, 1);
4025 }
4026 
4027 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4028 {
4029 	__btrfs_btree_balance_dirty(root, 0);
4030 }
4031 
4032 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4033 {
4034 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4035 	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
4036 }
4037 
4038 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4039 			      int read_only)
4040 {
4041 	struct btrfs_super_block *sb = fs_info->super_copy;
4042 	u64 nodesize = btrfs_super_nodesize(sb);
4043 	u64 sectorsize = btrfs_super_sectorsize(sb);
4044 	int ret = 0;
4045 
4046 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4047 		printk(KERN_ERR "BTRFS: no valid FS found\n");
4048 		ret = -EINVAL;
4049 	}
4050 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4051 		printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
4052 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4053 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4054 		printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4055 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4056 		ret = -EINVAL;
4057 	}
4058 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4059 		printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4060 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4061 		ret = -EINVAL;
4062 	}
4063 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4064 		printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4065 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4066 		ret = -EINVAL;
4067 	}
4068 
4069 	/*
4070 	 * Check sectorsize and nodesize first, other check will need it.
4071 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4072 	 */
4073 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4074 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4075 		printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
4076 		ret = -EINVAL;
4077 	}
4078 	/* Only PAGE SIZE is supported yet */
4079 	if (sectorsize != PAGE_SIZE) {
4080 		printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
4081 				sectorsize, PAGE_SIZE);
4082 		ret = -EINVAL;
4083 	}
4084 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4085 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4086 		printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
4087 		ret = -EINVAL;
4088 	}
4089 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4090 		printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
4091 				le32_to_cpu(sb->__unused_leafsize),
4092 				nodesize);
4093 		ret = -EINVAL;
4094 	}
4095 
4096 	/* Root alignment check */
4097 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4098 		printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4099 				btrfs_super_root(sb));
4100 		ret = -EINVAL;
4101 	}
4102 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4103 		printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4104 				btrfs_super_chunk_root(sb));
4105 		ret = -EINVAL;
4106 	}
4107 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4108 		printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4109 				btrfs_super_log_root(sb));
4110 		ret = -EINVAL;
4111 	}
4112 
4113 	if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4114 		printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4115 				fs_info->fsid, sb->dev_item.fsid);
4116 		ret = -EINVAL;
4117 	}
4118 
4119 	/*
4120 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4121 	 * done later
4122 	 */
4123 	if (btrfs_super_num_devices(sb) > (1UL << 31))
4124 		printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4125 				btrfs_super_num_devices(sb));
4126 	if (btrfs_super_num_devices(sb) == 0) {
4127 		printk(KERN_ERR "BTRFS: number of devices is 0\n");
4128 		ret = -EINVAL;
4129 	}
4130 
4131 	if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4132 		printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4133 				btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4134 		ret = -EINVAL;
4135 	}
4136 
4137 	/*
4138 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
4139 	 * and one chunk
4140 	 */
4141 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4142 		printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4143 				btrfs_super_sys_array_size(sb),
4144 				BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4145 		ret = -EINVAL;
4146 	}
4147 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4148 			+ sizeof(struct btrfs_chunk)) {
4149 		printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4150 				btrfs_super_sys_array_size(sb),
4151 				sizeof(struct btrfs_disk_key)
4152 				+ sizeof(struct btrfs_chunk));
4153 		ret = -EINVAL;
4154 	}
4155 
4156 	/*
4157 	 * The generation is a global counter, we'll trust it more than the others
4158 	 * but it's still possible that it's the one that's wrong.
4159 	 */
4160 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4161 		printk(KERN_WARNING
4162 			"BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4163 			btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4164 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4165 	    && btrfs_super_cache_generation(sb) != (u64)-1)
4166 		printk(KERN_WARNING
4167 			"BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4168 			btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4169 
4170 	return ret;
4171 }
4172 
4173 static void btrfs_error_commit_super(struct btrfs_root *root)
4174 {
4175 	mutex_lock(&root->fs_info->cleaner_mutex);
4176 	btrfs_run_delayed_iputs(root);
4177 	mutex_unlock(&root->fs_info->cleaner_mutex);
4178 
4179 	down_write(&root->fs_info->cleanup_work_sem);
4180 	up_write(&root->fs_info->cleanup_work_sem);
4181 
4182 	/* cleanup FS via transaction */
4183 	btrfs_cleanup_transaction(root);
4184 }
4185 
4186 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4187 {
4188 	struct btrfs_ordered_extent *ordered;
4189 
4190 	spin_lock(&root->ordered_extent_lock);
4191 	/*
4192 	 * This will just short circuit the ordered completion stuff which will
4193 	 * make sure the ordered extent gets properly cleaned up.
4194 	 */
4195 	list_for_each_entry(ordered, &root->ordered_extents,
4196 			    root_extent_list)
4197 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4198 	spin_unlock(&root->ordered_extent_lock);
4199 }
4200 
4201 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4202 {
4203 	struct btrfs_root *root;
4204 	struct list_head splice;
4205 
4206 	INIT_LIST_HEAD(&splice);
4207 
4208 	spin_lock(&fs_info->ordered_root_lock);
4209 	list_splice_init(&fs_info->ordered_roots, &splice);
4210 	while (!list_empty(&splice)) {
4211 		root = list_first_entry(&splice, struct btrfs_root,
4212 					ordered_root);
4213 		list_move_tail(&root->ordered_root,
4214 			       &fs_info->ordered_roots);
4215 
4216 		spin_unlock(&fs_info->ordered_root_lock);
4217 		btrfs_destroy_ordered_extents(root);
4218 
4219 		cond_resched();
4220 		spin_lock(&fs_info->ordered_root_lock);
4221 	}
4222 	spin_unlock(&fs_info->ordered_root_lock);
4223 }
4224 
4225 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4226 				      struct btrfs_root *root)
4227 {
4228 	struct rb_node *node;
4229 	struct btrfs_delayed_ref_root *delayed_refs;
4230 	struct btrfs_delayed_ref_node *ref;
4231 	int ret = 0;
4232 
4233 	delayed_refs = &trans->delayed_refs;
4234 
4235 	spin_lock(&delayed_refs->lock);
4236 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4237 		spin_unlock(&delayed_refs->lock);
4238 		btrfs_info(root->fs_info, "delayed_refs has NO entry");
4239 		return ret;
4240 	}
4241 
4242 	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4243 		struct btrfs_delayed_ref_head *head;
4244 		struct btrfs_delayed_ref_node *tmp;
4245 		bool pin_bytes = false;
4246 
4247 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4248 				href_node);
4249 		if (!mutex_trylock(&head->mutex)) {
4250 			atomic_inc(&head->node.refs);
4251 			spin_unlock(&delayed_refs->lock);
4252 
4253 			mutex_lock(&head->mutex);
4254 			mutex_unlock(&head->mutex);
4255 			btrfs_put_delayed_ref(&head->node);
4256 			spin_lock(&delayed_refs->lock);
4257 			continue;
4258 		}
4259 		spin_lock(&head->lock);
4260 		list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4261 						 list) {
4262 			ref->in_tree = 0;
4263 			list_del(&ref->list);
4264 			atomic_dec(&delayed_refs->num_entries);
4265 			btrfs_put_delayed_ref(ref);
4266 		}
4267 		if (head->must_insert_reserved)
4268 			pin_bytes = true;
4269 		btrfs_free_delayed_extent_op(head->extent_op);
4270 		delayed_refs->num_heads--;
4271 		if (head->processing == 0)
4272 			delayed_refs->num_heads_ready--;
4273 		atomic_dec(&delayed_refs->num_entries);
4274 		head->node.in_tree = 0;
4275 		rb_erase(&head->href_node, &delayed_refs->href_root);
4276 		spin_unlock(&head->lock);
4277 		spin_unlock(&delayed_refs->lock);
4278 		mutex_unlock(&head->mutex);
4279 
4280 		if (pin_bytes)
4281 			btrfs_pin_extent(root, head->node.bytenr,
4282 					 head->node.num_bytes, 1);
4283 		btrfs_put_delayed_ref(&head->node);
4284 		cond_resched();
4285 		spin_lock(&delayed_refs->lock);
4286 	}
4287 
4288 	spin_unlock(&delayed_refs->lock);
4289 
4290 	return ret;
4291 }
4292 
4293 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4294 {
4295 	struct btrfs_inode *btrfs_inode;
4296 	struct list_head splice;
4297 
4298 	INIT_LIST_HEAD(&splice);
4299 
4300 	spin_lock(&root->delalloc_lock);
4301 	list_splice_init(&root->delalloc_inodes, &splice);
4302 
4303 	while (!list_empty(&splice)) {
4304 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4305 					       delalloc_inodes);
4306 
4307 		list_del_init(&btrfs_inode->delalloc_inodes);
4308 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4309 			  &btrfs_inode->runtime_flags);
4310 		spin_unlock(&root->delalloc_lock);
4311 
4312 		btrfs_invalidate_inodes(btrfs_inode->root);
4313 
4314 		spin_lock(&root->delalloc_lock);
4315 	}
4316 
4317 	spin_unlock(&root->delalloc_lock);
4318 }
4319 
4320 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4321 {
4322 	struct btrfs_root *root;
4323 	struct list_head splice;
4324 
4325 	INIT_LIST_HEAD(&splice);
4326 
4327 	spin_lock(&fs_info->delalloc_root_lock);
4328 	list_splice_init(&fs_info->delalloc_roots, &splice);
4329 	while (!list_empty(&splice)) {
4330 		root = list_first_entry(&splice, struct btrfs_root,
4331 					 delalloc_root);
4332 		list_del_init(&root->delalloc_root);
4333 		root = btrfs_grab_fs_root(root);
4334 		BUG_ON(!root);
4335 		spin_unlock(&fs_info->delalloc_root_lock);
4336 
4337 		btrfs_destroy_delalloc_inodes(root);
4338 		btrfs_put_fs_root(root);
4339 
4340 		spin_lock(&fs_info->delalloc_root_lock);
4341 	}
4342 	spin_unlock(&fs_info->delalloc_root_lock);
4343 }
4344 
4345 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4346 					struct extent_io_tree *dirty_pages,
4347 					int mark)
4348 {
4349 	int ret;
4350 	struct extent_buffer *eb;
4351 	u64 start = 0;
4352 	u64 end;
4353 
4354 	while (1) {
4355 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4356 					    mark, NULL);
4357 		if (ret)
4358 			break;
4359 
4360 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4361 		while (start <= end) {
4362 			eb = btrfs_find_tree_block(root->fs_info, start);
4363 			start += root->nodesize;
4364 			if (!eb)
4365 				continue;
4366 			wait_on_extent_buffer_writeback(eb);
4367 
4368 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4369 					       &eb->bflags))
4370 				clear_extent_buffer_dirty(eb);
4371 			free_extent_buffer_stale(eb);
4372 		}
4373 	}
4374 
4375 	return ret;
4376 }
4377 
4378 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4379 				       struct extent_io_tree *pinned_extents)
4380 {
4381 	struct extent_io_tree *unpin;
4382 	u64 start;
4383 	u64 end;
4384 	int ret;
4385 	bool loop = true;
4386 
4387 	unpin = pinned_extents;
4388 again:
4389 	while (1) {
4390 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4391 					    EXTENT_DIRTY, NULL);
4392 		if (ret)
4393 			break;
4394 
4395 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
4396 		btrfs_error_unpin_extent_range(root, start, end);
4397 		cond_resched();
4398 	}
4399 
4400 	if (loop) {
4401 		if (unpin == &root->fs_info->freed_extents[0])
4402 			unpin = &root->fs_info->freed_extents[1];
4403 		else
4404 			unpin = &root->fs_info->freed_extents[0];
4405 		loop = false;
4406 		goto again;
4407 	}
4408 
4409 	return 0;
4410 }
4411 
4412 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4413 				   struct btrfs_root *root)
4414 {
4415 	btrfs_destroy_delayed_refs(cur_trans, root);
4416 
4417 	cur_trans->state = TRANS_STATE_COMMIT_START;
4418 	wake_up(&root->fs_info->transaction_blocked_wait);
4419 
4420 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4421 	wake_up(&root->fs_info->transaction_wait);
4422 
4423 	btrfs_destroy_delayed_inodes(root);
4424 	btrfs_assert_delayed_root_empty(root);
4425 
4426 	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4427 				     EXTENT_DIRTY);
4428 	btrfs_destroy_pinned_extent(root,
4429 				    root->fs_info->pinned_extents);
4430 
4431 	cur_trans->state =TRANS_STATE_COMPLETED;
4432 	wake_up(&cur_trans->commit_wait);
4433 
4434 	/*
4435 	memset(cur_trans, 0, sizeof(*cur_trans));
4436 	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4437 	*/
4438 }
4439 
4440 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4441 {
4442 	struct btrfs_transaction *t;
4443 
4444 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
4445 
4446 	spin_lock(&root->fs_info->trans_lock);
4447 	while (!list_empty(&root->fs_info->trans_list)) {
4448 		t = list_first_entry(&root->fs_info->trans_list,
4449 				     struct btrfs_transaction, list);
4450 		if (t->state >= TRANS_STATE_COMMIT_START) {
4451 			atomic_inc(&t->use_count);
4452 			spin_unlock(&root->fs_info->trans_lock);
4453 			btrfs_wait_for_commit(root, t->transid);
4454 			btrfs_put_transaction(t);
4455 			spin_lock(&root->fs_info->trans_lock);
4456 			continue;
4457 		}
4458 		if (t == root->fs_info->running_transaction) {
4459 			t->state = TRANS_STATE_COMMIT_DOING;
4460 			spin_unlock(&root->fs_info->trans_lock);
4461 			/*
4462 			 * We wait for 0 num_writers since we don't hold a trans
4463 			 * handle open currently for this transaction.
4464 			 */
4465 			wait_event(t->writer_wait,
4466 				   atomic_read(&t->num_writers) == 0);
4467 		} else {
4468 			spin_unlock(&root->fs_info->trans_lock);
4469 		}
4470 		btrfs_cleanup_one_transaction(t, root);
4471 
4472 		spin_lock(&root->fs_info->trans_lock);
4473 		if (t == root->fs_info->running_transaction)
4474 			root->fs_info->running_transaction = NULL;
4475 		list_del_init(&t->list);
4476 		spin_unlock(&root->fs_info->trans_lock);
4477 
4478 		btrfs_put_transaction(t);
4479 		trace_btrfs_transaction_commit(root);
4480 		spin_lock(&root->fs_info->trans_lock);
4481 	}
4482 	spin_unlock(&root->fs_info->trans_lock);
4483 	btrfs_destroy_all_ordered_extents(root->fs_info);
4484 	btrfs_destroy_delayed_inodes(root);
4485 	btrfs_assert_delayed_root_empty(root);
4486 	btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4487 	btrfs_destroy_all_delalloc_inodes(root->fs_info);
4488 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4489 
4490 	return 0;
4491 }
4492 
4493 static const struct extent_io_ops btree_extent_io_ops = {
4494 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4495 	.readpage_io_failed_hook = btree_io_failed_hook,
4496 	.submit_bio_hook = btree_submit_bio_hook,
4497 	/* note we're sharing with inode.c for the merge bio hook */
4498 	.merge_bio_hook = btrfs_merge_bio_hook,
4499 };
4500