xref: /openbmc/linux/fs/btrfs/disk-io.c (revision 0eb76ba2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41 #include "block-group.h"
42 #include "discard.h"
43 #include "space-info.h"
44 #include "zoned.h"
45 
46 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
47 				 BTRFS_HEADER_FLAG_RELOC |\
48 				 BTRFS_SUPER_FLAG_ERROR |\
49 				 BTRFS_SUPER_FLAG_SEEDING |\
50 				 BTRFS_SUPER_FLAG_METADUMP |\
51 				 BTRFS_SUPER_FLAG_METADUMP_V2)
52 
53 static void end_workqueue_fn(struct btrfs_work *work);
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 				      struct btrfs_fs_info *fs_info);
57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59 					struct extent_io_tree *dirty_pages,
60 					int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62 				       struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65 
66 /*
67  * btrfs_end_io_wq structs are used to do processing in task context when an IO
68  * is complete.  This is used during reads to verify checksums, and it is used
69  * by writes to insert metadata for new file extents after IO is complete.
70  */
71 struct btrfs_end_io_wq {
72 	struct bio *bio;
73 	bio_end_io_t *end_io;
74 	void *private;
75 	struct btrfs_fs_info *info;
76 	blk_status_t status;
77 	enum btrfs_wq_endio_type metadata;
78 	struct btrfs_work work;
79 };
80 
81 static struct kmem_cache *btrfs_end_io_wq_cache;
82 
83 int __init btrfs_end_io_wq_init(void)
84 {
85 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86 					sizeof(struct btrfs_end_io_wq),
87 					0,
88 					SLAB_MEM_SPREAD,
89 					NULL);
90 	if (!btrfs_end_io_wq_cache)
91 		return -ENOMEM;
92 	return 0;
93 }
94 
95 void __cold btrfs_end_io_wq_exit(void)
96 {
97 	kmem_cache_destroy(btrfs_end_io_wq_cache);
98 }
99 
100 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
101 {
102 	if (fs_info->csum_shash)
103 		crypto_free_shash(fs_info->csum_shash);
104 }
105 
106 /*
107  * async submit bios are used to offload expensive checksumming
108  * onto the worker threads.  They checksum file and metadata bios
109  * just before they are sent down the IO stack.
110  */
111 struct async_submit_bio {
112 	struct inode *inode;
113 	struct bio *bio;
114 	extent_submit_bio_start_t *submit_bio_start;
115 	int mirror_num;
116 
117 	/* Optional parameter for submit_bio_start used by direct io */
118 	u64 dio_file_offset;
119 	struct btrfs_work work;
120 	blk_status_t status;
121 };
122 
123 /*
124  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
125  * eb, the lockdep key is determined by the btrfs_root it belongs to and
126  * the level the eb occupies in the tree.
127  *
128  * Different roots are used for different purposes and may nest inside each
129  * other and they require separate keysets.  As lockdep keys should be
130  * static, assign keysets according to the purpose of the root as indicated
131  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
132  * roots have separate keysets.
133  *
134  * Lock-nesting across peer nodes is always done with the immediate parent
135  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
136  * subclass to avoid triggering lockdep warning in such cases.
137  *
138  * The key is set by the readpage_end_io_hook after the buffer has passed
139  * csum validation but before the pages are unlocked.  It is also set by
140  * btrfs_init_new_buffer on freshly allocated blocks.
141  *
142  * We also add a check to make sure the highest level of the tree is the
143  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
144  * needs update as well.
145  */
146 #ifdef CONFIG_DEBUG_LOCK_ALLOC
147 # if BTRFS_MAX_LEVEL != 8
148 #  error
149 # endif
150 
151 #define DEFINE_LEVEL(stem, level)					\
152 	.names[level] = "btrfs-" stem "-0" #level,
153 
154 #define DEFINE_NAME(stem)						\
155 	DEFINE_LEVEL(stem, 0)						\
156 	DEFINE_LEVEL(stem, 1)						\
157 	DEFINE_LEVEL(stem, 2)						\
158 	DEFINE_LEVEL(stem, 3)						\
159 	DEFINE_LEVEL(stem, 4)						\
160 	DEFINE_LEVEL(stem, 5)						\
161 	DEFINE_LEVEL(stem, 6)						\
162 	DEFINE_LEVEL(stem, 7)
163 
164 static struct btrfs_lockdep_keyset {
165 	u64			id;		/* root objectid */
166 	/* Longest entry: btrfs-free-space-00 */
167 	char			names[BTRFS_MAX_LEVEL][20];
168 	struct lock_class_key	keys[BTRFS_MAX_LEVEL];
169 } btrfs_lockdep_keysets[] = {
170 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	DEFINE_NAME("root")	},
171 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	DEFINE_NAME("extent")	},
172 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	DEFINE_NAME("chunk")	},
173 	{ .id = BTRFS_DEV_TREE_OBJECTID,	DEFINE_NAME("dev")	},
174 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	DEFINE_NAME("csum")	},
175 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	DEFINE_NAME("quota")	},
176 	{ .id = BTRFS_TREE_LOG_OBJECTID,	DEFINE_NAME("log")	},
177 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	DEFINE_NAME("treloc")	},
178 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	DEFINE_NAME("dreloc")	},
179 	{ .id = BTRFS_UUID_TREE_OBJECTID,	DEFINE_NAME("uuid")	},
180 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	DEFINE_NAME("free-space") },
181 	{ .id = 0,				DEFINE_NAME("tree")	},
182 };
183 
184 #undef DEFINE_LEVEL
185 #undef DEFINE_NAME
186 
187 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
188 				    int level)
189 {
190 	struct btrfs_lockdep_keyset *ks;
191 
192 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
193 
194 	/* find the matching keyset, id 0 is the default entry */
195 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
196 		if (ks->id == objectid)
197 			break;
198 
199 	lockdep_set_class_and_name(&eb->lock,
200 				   &ks->keys[level], ks->names[level]);
201 }
202 
203 #endif
204 
205 /*
206  * Compute the csum of a btree block and store the result to provided buffer.
207  */
208 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
209 {
210 	struct btrfs_fs_info *fs_info = buf->fs_info;
211 	const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
212 	const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
213 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
214 	char *kaddr;
215 	int i;
216 
217 	shash->tfm = fs_info->csum_shash;
218 	crypto_shash_init(shash);
219 	kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
220 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
221 			    first_page_part - BTRFS_CSUM_SIZE);
222 
223 	for (i = 1; i < num_pages; i++) {
224 		kaddr = page_address(buf->pages[i]);
225 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
226 	}
227 	memset(result, 0, BTRFS_CSUM_SIZE);
228 	crypto_shash_final(shash, result);
229 }
230 
231 /*
232  * we can't consider a given block up to date unless the transid of the
233  * block matches the transid in the parent node's pointer.  This is how we
234  * detect blocks that either didn't get written at all or got written
235  * in the wrong place.
236  */
237 static int verify_parent_transid(struct extent_io_tree *io_tree,
238 				 struct extent_buffer *eb, u64 parent_transid,
239 				 int atomic)
240 {
241 	struct extent_state *cached_state = NULL;
242 	int ret;
243 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
244 
245 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
246 		return 0;
247 
248 	if (atomic)
249 		return -EAGAIN;
250 
251 	if (need_lock)
252 		btrfs_tree_read_lock(eb);
253 
254 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
255 			 &cached_state);
256 	if (extent_buffer_uptodate(eb) &&
257 	    btrfs_header_generation(eb) == parent_transid) {
258 		ret = 0;
259 		goto out;
260 	}
261 	btrfs_err_rl(eb->fs_info,
262 		"parent transid verify failed on %llu wanted %llu found %llu",
263 			eb->start,
264 			parent_transid, btrfs_header_generation(eb));
265 	ret = 1;
266 
267 	/*
268 	 * Things reading via commit roots that don't have normal protection,
269 	 * like send, can have a really old block in cache that may point at a
270 	 * block that has been freed and re-allocated.  So don't clear uptodate
271 	 * if we find an eb that is under IO (dirty/writeback) because we could
272 	 * end up reading in the stale data and then writing it back out and
273 	 * making everybody very sad.
274 	 */
275 	if (!extent_buffer_under_io(eb))
276 		clear_extent_buffer_uptodate(eb);
277 out:
278 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
279 			     &cached_state);
280 	if (need_lock)
281 		btrfs_tree_read_unlock(eb);
282 	return ret;
283 }
284 
285 static bool btrfs_supported_super_csum(u16 csum_type)
286 {
287 	switch (csum_type) {
288 	case BTRFS_CSUM_TYPE_CRC32:
289 	case BTRFS_CSUM_TYPE_XXHASH:
290 	case BTRFS_CSUM_TYPE_SHA256:
291 	case BTRFS_CSUM_TYPE_BLAKE2:
292 		return true;
293 	default:
294 		return false;
295 	}
296 }
297 
298 /*
299  * Return 0 if the superblock checksum type matches the checksum value of that
300  * algorithm. Pass the raw disk superblock data.
301  */
302 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
303 				  char *raw_disk_sb)
304 {
305 	struct btrfs_super_block *disk_sb =
306 		(struct btrfs_super_block *)raw_disk_sb;
307 	char result[BTRFS_CSUM_SIZE];
308 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
309 
310 	shash->tfm = fs_info->csum_shash;
311 
312 	/*
313 	 * The super_block structure does not span the whole
314 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
315 	 * filled with zeros and is included in the checksum.
316 	 */
317 	crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
318 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
319 
320 	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
321 		return 1;
322 
323 	return 0;
324 }
325 
326 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
327 			   struct btrfs_key *first_key, u64 parent_transid)
328 {
329 	struct btrfs_fs_info *fs_info = eb->fs_info;
330 	int found_level;
331 	struct btrfs_key found_key;
332 	int ret;
333 
334 	found_level = btrfs_header_level(eb);
335 	if (found_level != level) {
336 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
337 		     KERN_ERR "BTRFS: tree level check failed\n");
338 		btrfs_err(fs_info,
339 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
340 			  eb->start, level, found_level);
341 		return -EIO;
342 	}
343 
344 	if (!first_key)
345 		return 0;
346 
347 	/*
348 	 * For live tree block (new tree blocks in current transaction),
349 	 * we need proper lock context to avoid race, which is impossible here.
350 	 * So we only checks tree blocks which is read from disk, whose
351 	 * generation <= fs_info->last_trans_committed.
352 	 */
353 	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
354 		return 0;
355 
356 	/* We have @first_key, so this @eb must have at least one item */
357 	if (btrfs_header_nritems(eb) == 0) {
358 		btrfs_err(fs_info,
359 		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
360 			  eb->start);
361 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
362 		return -EUCLEAN;
363 	}
364 
365 	if (found_level)
366 		btrfs_node_key_to_cpu(eb, &found_key, 0);
367 	else
368 		btrfs_item_key_to_cpu(eb, &found_key, 0);
369 	ret = btrfs_comp_cpu_keys(first_key, &found_key);
370 
371 	if (ret) {
372 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
373 		     KERN_ERR "BTRFS: tree first key check failed\n");
374 		btrfs_err(fs_info,
375 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
376 			  eb->start, parent_transid, first_key->objectid,
377 			  first_key->type, first_key->offset,
378 			  found_key.objectid, found_key.type,
379 			  found_key.offset);
380 	}
381 	return ret;
382 }
383 
384 /*
385  * helper to read a given tree block, doing retries as required when
386  * the checksums don't match and we have alternate mirrors to try.
387  *
388  * @parent_transid:	expected transid, skip check if 0
389  * @level:		expected level, mandatory check
390  * @first_key:		expected key of first slot, skip check if NULL
391  */
392 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
393 					  u64 parent_transid, int level,
394 					  struct btrfs_key *first_key)
395 {
396 	struct btrfs_fs_info *fs_info = eb->fs_info;
397 	struct extent_io_tree *io_tree;
398 	int failed = 0;
399 	int ret;
400 	int num_copies = 0;
401 	int mirror_num = 0;
402 	int failed_mirror = 0;
403 
404 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
405 	while (1) {
406 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
407 		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
408 		if (!ret) {
409 			if (verify_parent_transid(io_tree, eb,
410 						   parent_transid, 0))
411 				ret = -EIO;
412 			else if (btrfs_verify_level_key(eb, level,
413 						first_key, parent_transid))
414 				ret = -EUCLEAN;
415 			else
416 				break;
417 		}
418 
419 		num_copies = btrfs_num_copies(fs_info,
420 					      eb->start, eb->len);
421 		if (num_copies == 1)
422 			break;
423 
424 		if (!failed_mirror) {
425 			failed = 1;
426 			failed_mirror = eb->read_mirror;
427 		}
428 
429 		mirror_num++;
430 		if (mirror_num == failed_mirror)
431 			mirror_num++;
432 
433 		if (mirror_num > num_copies)
434 			break;
435 	}
436 
437 	if (failed && !ret && failed_mirror)
438 		btrfs_repair_eb_io_failure(eb, failed_mirror);
439 
440 	return ret;
441 }
442 
443 /*
444  * Checksum a dirty tree block before IO.  This has extra checks to make sure
445  * we only fill in the checksum field in the first page of a multi-page block.
446  * For subpage extent buffers we need bvec to also read the offset in the page.
447  */
448 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
449 {
450 	struct page *page = bvec->bv_page;
451 	u64 start = page_offset(page);
452 	u64 found_start;
453 	u8 result[BTRFS_CSUM_SIZE];
454 	struct extent_buffer *eb;
455 	int ret;
456 
457 	eb = (struct extent_buffer *)page->private;
458 	if (page != eb->pages[0])
459 		return 0;
460 
461 	found_start = btrfs_header_bytenr(eb);
462 	/*
463 	 * Please do not consolidate these warnings into a single if.
464 	 * It is useful to know what went wrong.
465 	 */
466 	if (WARN_ON(found_start != start))
467 		return -EUCLEAN;
468 	if (WARN_ON(!PageUptodate(page)))
469 		return -EUCLEAN;
470 
471 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
472 				    offsetof(struct btrfs_header, fsid),
473 				    BTRFS_FSID_SIZE) == 0);
474 
475 	csum_tree_block(eb, result);
476 
477 	if (btrfs_header_level(eb))
478 		ret = btrfs_check_node(eb);
479 	else
480 		ret = btrfs_check_leaf_full(eb);
481 
482 	if (ret < 0) {
483 		btrfs_print_tree(eb, 0);
484 		btrfs_err(fs_info,
485 		"block=%llu write time tree block corruption detected",
486 			  eb->start);
487 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
488 		return ret;
489 	}
490 	write_extent_buffer(eb, result, 0, fs_info->csum_size);
491 
492 	return 0;
493 }
494 
495 static int check_tree_block_fsid(struct extent_buffer *eb)
496 {
497 	struct btrfs_fs_info *fs_info = eb->fs_info;
498 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
499 	u8 fsid[BTRFS_FSID_SIZE];
500 	u8 *metadata_uuid;
501 
502 	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
503 			   BTRFS_FSID_SIZE);
504 	/*
505 	 * Checking the incompat flag is only valid for the current fs. For
506 	 * seed devices it's forbidden to have their uuid changed so reading
507 	 * ->fsid in this case is fine
508 	 */
509 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
510 		metadata_uuid = fs_devices->metadata_uuid;
511 	else
512 		metadata_uuid = fs_devices->fsid;
513 
514 	if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
515 		return 0;
516 
517 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
518 		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
519 			return 0;
520 
521 	return 1;
522 }
523 
524 /* Do basic extent buffer checks at read time */
525 static int validate_extent_buffer(struct extent_buffer *eb)
526 {
527 	struct btrfs_fs_info *fs_info = eb->fs_info;
528 	u64 found_start;
529 	const u32 csum_size = fs_info->csum_size;
530 	u8 found_level;
531 	u8 result[BTRFS_CSUM_SIZE];
532 	int ret = 0;
533 
534 	found_start = btrfs_header_bytenr(eb);
535 	if (found_start != eb->start) {
536 		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
537 			     eb->start, found_start);
538 		ret = -EIO;
539 		goto out;
540 	}
541 	if (check_tree_block_fsid(eb)) {
542 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
543 			     eb->start);
544 		ret = -EIO;
545 		goto out;
546 	}
547 	found_level = btrfs_header_level(eb);
548 	if (found_level >= BTRFS_MAX_LEVEL) {
549 		btrfs_err(fs_info, "bad tree block level %d on %llu",
550 			  (int)btrfs_header_level(eb), eb->start);
551 		ret = -EIO;
552 		goto out;
553 	}
554 
555 	csum_tree_block(eb, result);
556 
557 	if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
558 		u8 val[BTRFS_CSUM_SIZE] = { 0 };
559 
560 		read_extent_buffer(eb, &val, 0, csum_size);
561 		btrfs_warn_rl(fs_info,
562 	"%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
563 			      fs_info->sb->s_id, eb->start,
564 			      CSUM_FMT_VALUE(csum_size, val),
565 			      CSUM_FMT_VALUE(csum_size, result),
566 			      btrfs_header_level(eb));
567 		ret = -EUCLEAN;
568 		goto out;
569 	}
570 
571 	/*
572 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
573 	 * that we don't try and read the other copies of this block, just
574 	 * return -EIO.
575 	 */
576 	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
577 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
578 		ret = -EIO;
579 	}
580 
581 	if (found_level > 0 && btrfs_check_node(eb))
582 		ret = -EIO;
583 
584 	if (!ret)
585 		set_extent_buffer_uptodate(eb);
586 	else
587 		btrfs_err(fs_info,
588 			  "block=%llu read time tree block corruption detected",
589 			  eb->start);
590 out:
591 	return ret;
592 }
593 
594 int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio,
595 				   struct page *page, u64 start, u64 end,
596 				   int mirror)
597 {
598 	struct extent_buffer *eb;
599 	int ret = 0;
600 	int reads_done;
601 
602 	ASSERT(page->private);
603 	eb = (struct extent_buffer *)page->private;
604 
605 	/*
606 	 * The pending IO might have been the only thing that kept this buffer
607 	 * in memory.  Make sure we have a ref for all this other checks
608 	 */
609 	atomic_inc(&eb->refs);
610 
611 	reads_done = atomic_dec_and_test(&eb->io_pages);
612 	if (!reads_done)
613 		goto err;
614 
615 	eb->read_mirror = mirror;
616 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
617 		ret = -EIO;
618 		goto err;
619 	}
620 	ret = validate_extent_buffer(eb);
621 err:
622 	if (reads_done &&
623 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
624 		btree_readahead_hook(eb, ret);
625 
626 	if (ret) {
627 		/*
628 		 * our io error hook is going to dec the io pages
629 		 * again, we have to make sure it has something
630 		 * to decrement
631 		 */
632 		atomic_inc(&eb->io_pages);
633 		clear_extent_buffer_uptodate(eb);
634 	}
635 	free_extent_buffer(eb);
636 
637 	return ret;
638 }
639 
640 static void end_workqueue_bio(struct bio *bio)
641 {
642 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
643 	struct btrfs_fs_info *fs_info;
644 	struct btrfs_workqueue *wq;
645 
646 	fs_info = end_io_wq->info;
647 	end_io_wq->status = bio->bi_status;
648 
649 	if (bio_op(bio) == REQ_OP_WRITE) {
650 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
651 			wq = fs_info->endio_meta_write_workers;
652 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
653 			wq = fs_info->endio_freespace_worker;
654 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
655 			wq = fs_info->endio_raid56_workers;
656 		else
657 			wq = fs_info->endio_write_workers;
658 	} else {
659 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
660 			wq = fs_info->endio_raid56_workers;
661 		else if (end_io_wq->metadata)
662 			wq = fs_info->endio_meta_workers;
663 		else
664 			wq = fs_info->endio_workers;
665 	}
666 
667 	btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
668 	btrfs_queue_work(wq, &end_io_wq->work);
669 }
670 
671 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
672 			enum btrfs_wq_endio_type metadata)
673 {
674 	struct btrfs_end_io_wq *end_io_wq;
675 
676 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
677 	if (!end_io_wq)
678 		return BLK_STS_RESOURCE;
679 
680 	end_io_wq->private = bio->bi_private;
681 	end_io_wq->end_io = bio->bi_end_io;
682 	end_io_wq->info = info;
683 	end_io_wq->status = 0;
684 	end_io_wq->bio = bio;
685 	end_io_wq->metadata = metadata;
686 
687 	bio->bi_private = end_io_wq;
688 	bio->bi_end_io = end_workqueue_bio;
689 	return 0;
690 }
691 
692 static void run_one_async_start(struct btrfs_work *work)
693 {
694 	struct async_submit_bio *async;
695 	blk_status_t ret;
696 
697 	async = container_of(work, struct  async_submit_bio, work);
698 	ret = async->submit_bio_start(async->inode, async->bio,
699 				      async->dio_file_offset);
700 	if (ret)
701 		async->status = ret;
702 }
703 
704 /*
705  * In order to insert checksums into the metadata in large chunks, we wait
706  * until bio submission time.   All the pages in the bio are checksummed and
707  * sums are attached onto the ordered extent record.
708  *
709  * At IO completion time the csums attached on the ordered extent record are
710  * inserted into the tree.
711  */
712 static void run_one_async_done(struct btrfs_work *work)
713 {
714 	struct async_submit_bio *async;
715 	struct inode *inode;
716 	blk_status_t ret;
717 
718 	async = container_of(work, struct  async_submit_bio, work);
719 	inode = async->inode;
720 
721 	/* If an error occurred we just want to clean up the bio and move on */
722 	if (async->status) {
723 		async->bio->bi_status = async->status;
724 		bio_endio(async->bio);
725 		return;
726 	}
727 
728 	/*
729 	 * All of the bios that pass through here are from async helpers.
730 	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
731 	 * This changes nothing when cgroups aren't in use.
732 	 */
733 	async->bio->bi_opf |= REQ_CGROUP_PUNT;
734 	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
735 	if (ret) {
736 		async->bio->bi_status = ret;
737 		bio_endio(async->bio);
738 	}
739 }
740 
741 static void run_one_async_free(struct btrfs_work *work)
742 {
743 	struct async_submit_bio *async;
744 
745 	async = container_of(work, struct  async_submit_bio, work);
746 	kfree(async);
747 }
748 
749 blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
750 				 int mirror_num, unsigned long bio_flags,
751 				 u64 dio_file_offset,
752 				 extent_submit_bio_start_t *submit_bio_start)
753 {
754 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
755 	struct async_submit_bio *async;
756 
757 	async = kmalloc(sizeof(*async), GFP_NOFS);
758 	if (!async)
759 		return BLK_STS_RESOURCE;
760 
761 	async->inode = inode;
762 	async->bio = bio;
763 	async->mirror_num = mirror_num;
764 	async->submit_bio_start = submit_bio_start;
765 
766 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
767 			run_one_async_free);
768 
769 	async->dio_file_offset = dio_file_offset;
770 
771 	async->status = 0;
772 
773 	if (op_is_sync(bio->bi_opf))
774 		btrfs_set_work_high_priority(&async->work);
775 
776 	btrfs_queue_work(fs_info->workers, &async->work);
777 	return 0;
778 }
779 
780 static blk_status_t btree_csum_one_bio(struct bio *bio)
781 {
782 	struct bio_vec *bvec;
783 	struct btrfs_root *root;
784 	int ret = 0;
785 	struct bvec_iter_all iter_all;
786 
787 	ASSERT(!bio_flagged(bio, BIO_CLONED));
788 	bio_for_each_segment_all(bvec, bio, iter_all) {
789 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
790 		ret = csum_dirty_buffer(root->fs_info, bvec);
791 		if (ret)
792 			break;
793 	}
794 
795 	return errno_to_blk_status(ret);
796 }
797 
798 static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
799 					   u64 dio_file_offset)
800 {
801 	/*
802 	 * when we're called for a write, we're already in the async
803 	 * submission context.  Just jump into btrfs_map_bio
804 	 */
805 	return btree_csum_one_bio(bio);
806 }
807 
808 static int check_async_write(struct btrfs_fs_info *fs_info,
809 			     struct btrfs_inode *bi)
810 {
811 	if (atomic_read(&bi->sync_writers))
812 		return 0;
813 	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
814 		return 0;
815 	return 1;
816 }
817 
818 blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
819 				       int mirror_num, unsigned long bio_flags)
820 {
821 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
822 	int async = check_async_write(fs_info, BTRFS_I(inode));
823 	blk_status_t ret;
824 
825 	if (bio_op(bio) != REQ_OP_WRITE) {
826 		/*
827 		 * called for a read, do the setup so that checksum validation
828 		 * can happen in the async kernel threads
829 		 */
830 		ret = btrfs_bio_wq_end_io(fs_info, bio,
831 					  BTRFS_WQ_ENDIO_METADATA);
832 		if (ret)
833 			goto out_w_error;
834 		ret = btrfs_map_bio(fs_info, bio, mirror_num);
835 	} else if (!async) {
836 		ret = btree_csum_one_bio(bio);
837 		if (ret)
838 			goto out_w_error;
839 		ret = btrfs_map_bio(fs_info, bio, mirror_num);
840 	} else {
841 		/*
842 		 * kthread helpers are used to submit writes so that
843 		 * checksumming can happen in parallel across all CPUs
844 		 */
845 		ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
846 					  0, btree_submit_bio_start);
847 	}
848 
849 	if (ret)
850 		goto out_w_error;
851 	return 0;
852 
853 out_w_error:
854 	bio->bi_status = ret;
855 	bio_endio(bio);
856 	return ret;
857 }
858 
859 #ifdef CONFIG_MIGRATION
860 static int btree_migratepage(struct address_space *mapping,
861 			struct page *newpage, struct page *page,
862 			enum migrate_mode mode)
863 {
864 	/*
865 	 * we can't safely write a btree page from here,
866 	 * we haven't done the locking hook
867 	 */
868 	if (PageDirty(page))
869 		return -EAGAIN;
870 	/*
871 	 * Buffers may be managed in a filesystem specific way.
872 	 * We must have no buffers or drop them.
873 	 */
874 	if (page_has_private(page) &&
875 	    !try_to_release_page(page, GFP_KERNEL))
876 		return -EAGAIN;
877 	return migrate_page(mapping, newpage, page, mode);
878 }
879 #endif
880 
881 
882 static int btree_writepages(struct address_space *mapping,
883 			    struct writeback_control *wbc)
884 {
885 	struct btrfs_fs_info *fs_info;
886 	int ret;
887 
888 	if (wbc->sync_mode == WB_SYNC_NONE) {
889 
890 		if (wbc->for_kupdate)
891 			return 0;
892 
893 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
894 		/* this is a bit racy, but that's ok */
895 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
896 					     BTRFS_DIRTY_METADATA_THRESH,
897 					     fs_info->dirty_metadata_batch);
898 		if (ret < 0)
899 			return 0;
900 	}
901 	return btree_write_cache_pages(mapping, wbc);
902 }
903 
904 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
905 {
906 	if (PageWriteback(page) || PageDirty(page))
907 		return 0;
908 
909 	return try_release_extent_buffer(page);
910 }
911 
912 static void btree_invalidatepage(struct page *page, unsigned int offset,
913 				 unsigned int length)
914 {
915 	struct extent_io_tree *tree;
916 	tree = &BTRFS_I(page->mapping->host)->io_tree;
917 	extent_invalidatepage(tree, page, offset);
918 	btree_releasepage(page, GFP_NOFS);
919 	if (PagePrivate(page)) {
920 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
921 			   "page private not zero on page %llu",
922 			   (unsigned long long)page_offset(page));
923 		detach_page_private(page);
924 	}
925 }
926 
927 static int btree_set_page_dirty(struct page *page)
928 {
929 #ifdef DEBUG
930 	struct extent_buffer *eb;
931 
932 	BUG_ON(!PagePrivate(page));
933 	eb = (struct extent_buffer *)page->private;
934 	BUG_ON(!eb);
935 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
936 	BUG_ON(!atomic_read(&eb->refs));
937 	btrfs_assert_tree_locked(eb);
938 #endif
939 	return __set_page_dirty_nobuffers(page);
940 }
941 
942 static const struct address_space_operations btree_aops = {
943 	.writepages	= btree_writepages,
944 	.releasepage	= btree_releasepage,
945 	.invalidatepage = btree_invalidatepage,
946 #ifdef CONFIG_MIGRATION
947 	.migratepage	= btree_migratepage,
948 #endif
949 	.set_page_dirty = btree_set_page_dirty,
950 };
951 
952 struct extent_buffer *btrfs_find_create_tree_block(
953 						struct btrfs_fs_info *fs_info,
954 						u64 bytenr, u64 owner_root,
955 						int level)
956 {
957 	if (btrfs_is_testing(fs_info))
958 		return alloc_test_extent_buffer(fs_info, bytenr);
959 	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
960 }
961 
962 /*
963  * Read tree block at logical address @bytenr and do variant basic but critical
964  * verification.
965  *
966  * @owner_root:		the objectid of the root owner for this block.
967  * @parent_transid:	expected transid of this tree block, skip check if 0
968  * @level:		expected level, mandatory check
969  * @first_key:		expected key in slot 0, skip check if NULL
970  */
971 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
972 				      u64 owner_root, u64 parent_transid,
973 				      int level, struct btrfs_key *first_key)
974 {
975 	struct extent_buffer *buf = NULL;
976 	int ret;
977 
978 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
979 	if (IS_ERR(buf))
980 		return buf;
981 
982 	ret = btree_read_extent_buffer_pages(buf, parent_transid,
983 					     level, first_key);
984 	if (ret) {
985 		free_extent_buffer_stale(buf);
986 		return ERR_PTR(ret);
987 	}
988 	return buf;
989 
990 }
991 
992 void btrfs_clean_tree_block(struct extent_buffer *buf)
993 {
994 	struct btrfs_fs_info *fs_info = buf->fs_info;
995 	if (btrfs_header_generation(buf) ==
996 	    fs_info->running_transaction->transid) {
997 		btrfs_assert_tree_locked(buf);
998 
999 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1000 			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1001 						 -buf->len,
1002 						 fs_info->dirty_metadata_batch);
1003 			clear_extent_buffer_dirty(buf);
1004 		}
1005 	}
1006 }
1007 
1008 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1009 			 u64 objectid)
1010 {
1011 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1012 	root->fs_info = fs_info;
1013 	root->node = NULL;
1014 	root->commit_root = NULL;
1015 	root->state = 0;
1016 	root->orphan_cleanup_state = 0;
1017 
1018 	root->last_trans = 0;
1019 	root->highest_objectid = 0;
1020 	root->nr_delalloc_inodes = 0;
1021 	root->nr_ordered_extents = 0;
1022 	root->inode_tree = RB_ROOT;
1023 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1024 	root->block_rsv = NULL;
1025 
1026 	INIT_LIST_HEAD(&root->dirty_list);
1027 	INIT_LIST_HEAD(&root->root_list);
1028 	INIT_LIST_HEAD(&root->delalloc_inodes);
1029 	INIT_LIST_HEAD(&root->delalloc_root);
1030 	INIT_LIST_HEAD(&root->ordered_extents);
1031 	INIT_LIST_HEAD(&root->ordered_root);
1032 	INIT_LIST_HEAD(&root->reloc_dirty_list);
1033 	INIT_LIST_HEAD(&root->logged_list[0]);
1034 	INIT_LIST_HEAD(&root->logged_list[1]);
1035 	spin_lock_init(&root->inode_lock);
1036 	spin_lock_init(&root->delalloc_lock);
1037 	spin_lock_init(&root->ordered_extent_lock);
1038 	spin_lock_init(&root->accounting_lock);
1039 	spin_lock_init(&root->log_extents_lock[0]);
1040 	spin_lock_init(&root->log_extents_lock[1]);
1041 	spin_lock_init(&root->qgroup_meta_rsv_lock);
1042 	mutex_init(&root->objectid_mutex);
1043 	mutex_init(&root->log_mutex);
1044 	mutex_init(&root->ordered_extent_mutex);
1045 	mutex_init(&root->delalloc_mutex);
1046 	init_waitqueue_head(&root->qgroup_flush_wait);
1047 	init_waitqueue_head(&root->log_writer_wait);
1048 	init_waitqueue_head(&root->log_commit_wait[0]);
1049 	init_waitqueue_head(&root->log_commit_wait[1]);
1050 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1051 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1052 	atomic_set(&root->log_commit[0], 0);
1053 	atomic_set(&root->log_commit[1], 0);
1054 	atomic_set(&root->log_writers, 0);
1055 	atomic_set(&root->log_batch, 0);
1056 	refcount_set(&root->refs, 1);
1057 	atomic_set(&root->snapshot_force_cow, 0);
1058 	atomic_set(&root->nr_swapfiles, 0);
1059 	root->log_transid = 0;
1060 	root->log_transid_committed = -1;
1061 	root->last_log_commit = 0;
1062 	if (!dummy) {
1063 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1064 				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1065 		extent_io_tree_init(fs_info, &root->log_csum_range,
1066 				    IO_TREE_LOG_CSUM_RANGE, NULL);
1067 	}
1068 
1069 	memset(&root->root_key, 0, sizeof(root->root_key));
1070 	memset(&root->root_item, 0, sizeof(root->root_item));
1071 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1072 	root->root_key.objectid = objectid;
1073 	root->anon_dev = 0;
1074 
1075 	spin_lock_init(&root->root_item_lock);
1076 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1077 #ifdef CONFIG_BTRFS_DEBUG
1078 	INIT_LIST_HEAD(&root->leak_list);
1079 	spin_lock(&fs_info->fs_roots_radix_lock);
1080 	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1081 	spin_unlock(&fs_info->fs_roots_radix_lock);
1082 #endif
1083 }
1084 
1085 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1086 					   u64 objectid, gfp_t flags)
1087 {
1088 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1089 	if (root)
1090 		__setup_root(root, fs_info, objectid);
1091 	return root;
1092 }
1093 
1094 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1095 /* Should only be used by the testing infrastructure */
1096 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1097 {
1098 	struct btrfs_root *root;
1099 
1100 	if (!fs_info)
1101 		return ERR_PTR(-EINVAL);
1102 
1103 	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1104 	if (!root)
1105 		return ERR_PTR(-ENOMEM);
1106 
1107 	/* We don't use the stripesize in selftest, set it as sectorsize */
1108 	root->alloc_bytenr = 0;
1109 
1110 	return root;
1111 }
1112 #endif
1113 
1114 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1115 				     u64 objectid)
1116 {
1117 	struct btrfs_fs_info *fs_info = trans->fs_info;
1118 	struct extent_buffer *leaf;
1119 	struct btrfs_root *tree_root = fs_info->tree_root;
1120 	struct btrfs_root *root;
1121 	struct btrfs_key key;
1122 	unsigned int nofs_flag;
1123 	int ret = 0;
1124 
1125 	/*
1126 	 * We're holding a transaction handle, so use a NOFS memory allocation
1127 	 * context to avoid deadlock if reclaim happens.
1128 	 */
1129 	nofs_flag = memalloc_nofs_save();
1130 	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1131 	memalloc_nofs_restore(nofs_flag);
1132 	if (!root)
1133 		return ERR_PTR(-ENOMEM);
1134 
1135 	root->root_key.objectid = objectid;
1136 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1137 	root->root_key.offset = 0;
1138 
1139 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1140 				      BTRFS_NESTING_NORMAL);
1141 	if (IS_ERR(leaf)) {
1142 		ret = PTR_ERR(leaf);
1143 		leaf = NULL;
1144 		goto fail_unlock;
1145 	}
1146 
1147 	root->node = leaf;
1148 	btrfs_mark_buffer_dirty(leaf);
1149 
1150 	root->commit_root = btrfs_root_node(root);
1151 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1152 
1153 	btrfs_set_root_flags(&root->root_item, 0);
1154 	btrfs_set_root_limit(&root->root_item, 0);
1155 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1156 	btrfs_set_root_generation(&root->root_item, trans->transid);
1157 	btrfs_set_root_level(&root->root_item, 0);
1158 	btrfs_set_root_refs(&root->root_item, 1);
1159 	btrfs_set_root_used(&root->root_item, leaf->len);
1160 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1161 	btrfs_set_root_dirid(&root->root_item, 0);
1162 	if (is_fstree(objectid))
1163 		generate_random_guid(root->root_item.uuid);
1164 	else
1165 		export_guid(root->root_item.uuid, &guid_null);
1166 	btrfs_set_root_drop_level(&root->root_item, 0);
1167 
1168 	btrfs_tree_unlock(leaf);
1169 
1170 	key.objectid = objectid;
1171 	key.type = BTRFS_ROOT_ITEM_KEY;
1172 	key.offset = 0;
1173 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1174 	if (ret)
1175 		goto fail;
1176 
1177 	return root;
1178 
1179 fail_unlock:
1180 	if (leaf)
1181 		btrfs_tree_unlock(leaf);
1182 fail:
1183 	btrfs_put_root(root);
1184 
1185 	return ERR_PTR(ret);
1186 }
1187 
1188 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1189 					 struct btrfs_fs_info *fs_info)
1190 {
1191 	struct btrfs_root *root;
1192 	struct extent_buffer *leaf;
1193 
1194 	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1195 	if (!root)
1196 		return ERR_PTR(-ENOMEM);
1197 
1198 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1199 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1200 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1201 
1202 	/*
1203 	 * DON'T set SHAREABLE bit for log trees.
1204 	 *
1205 	 * Log trees are not exposed to user space thus can't be snapshotted,
1206 	 * and they go away before a real commit is actually done.
1207 	 *
1208 	 * They do store pointers to file data extents, and those reference
1209 	 * counts still get updated (along with back refs to the log tree).
1210 	 */
1211 
1212 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1213 			NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1214 	if (IS_ERR(leaf)) {
1215 		btrfs_put_root(root);
1216 		return ERR_CAST(leaf);
1217 	}
1218 
1219 	root->node = leaf;
1220 
1221 	btrfs_mark_buffer_dirty(root->node);
1222 	btrfs_tree_unlock(root->node);
1223 	return root;
1224 }
1225 
1226 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1227 			     struct btrfs_fs_info *fs_info)
1228 {
1229 	struct btrfs_root *log_root;
1230 
1231 	log_root = alloc_log_tree(trans, fs_info);
1232 	if (IS_ERR(log_root))
1233 		return PTR_ERR(log_root);
1234 	WARN_ON(fs_info->log_root_tree);
1235 	fs_info->log_root_tree = log_root;
1236 	return 0;
1237 }
1238 
1239 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1240 		       struct btrfs_root *root)
1241 {
1242 	struct btrfs_fs_info *fs_info = root->fs_info;
1243 	struct btrfs_root *log_root;
1244 	struct btrfs_inode_item *inode_item;
1245 
1246 	log_root = alloc_log_tree(trans, fs_info);
1247 	if (IS_ERR(log_root))
1248 		return PTR_ERR(log_root);
1249 
1250 	log_root->last_trans = trans->transid;
1251 	log_root->root_key.offset = root->root_key.objectid;
1252 
1253 	inode_item = &log_root->root_item.inode;
1254 	btrfs_set_stack_inode_generation(inode_item, 1);
1255 	btrfs_set_stack_inode_size(inode_item, 3);
1256 	btrfs_set_stack_inode_nlink(inode_item, 1);
1257 	btrfs_set_stack_inode_nbytes(inode_item,
1258 				     fs_info->nodesize);
1259 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1260 
1261 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1262 
1263 	WARN_ON(root->log_root);
1264 	root->log_root = log_root;
1265 	root->log_transid = 0;
1266 	root->log_transid_committed = -1;
1267 	root->last_log_commit = 0;
1268 	return 0;
1269 }
1270 
1271 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1272 					      struct btrfs_path *path,
1273 					      struct btrfs_key *key)
1274 {
1275 	struct btrfs_root *root;
1276 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1277 	u64 generation;
1278 	int ret;
1279 	int level;
1280 
1281 	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1282 	if (!root)
1283 		return ERR_PTR(-ENOMEM);
1284 
1285 	ret = btrfs_find_root(tree_root, key, path,
1286 			      &root->root_item, &root->root_key);
1287 	if (ret) {
1288 		if (ret > 0)
1289 			ret = -ENOENT;
1290 		goto fail;
1291 	}
1292 
1293 	generation = btrfs_root_generation(&root->root_item);
1294 	level = btrfs_root_level(&root->root_item);
1295 	root->node = read_tree_block(fs_info,
1296 				     btrfs_root_bytenr(&root->root_item),
1297 				     key->objectid, generation, level, NULL);
1298 	if (IS_ERR(root->node)) {
1299 		ret = PTR_ERR(root->node);
1300 		root->node = NULL;
1301 		goto fail;
1302 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1303 		ret = -EIO;
1304 		goto fail;
1305 	}
1306 	root->commit_root = btrfs_root_node(root);
1307 	return root;
1308 fail:
1309 	btrfs_put_root(root);
1310 	return ERR_PTR(ret);
1311 }
1312 
1313 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1314 					struct btrfs_key *key)
1315 {
1316 	struct btrfs_root *root;
1317 	struct btrfs_path *path;
1318 
1319 	path = btrfs_alloc_path();
1320 	if (!path)
1321 		return ERR_PTR(-ENOMEM);
1322 	root = read_tree_root_path(tree_root, path, key);
1323 	btrfs_free_path(path);
1324 
1325 	return root;
1326 }
1327 
1328 /*
1329  * Initialize subvolume root in-memory structure
1330  *
1331  * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1332  */
1333 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1334 {
1335 	int ret;
1336 	unsigned int nofs_flag;
1337 
1338 	/*
1339 	 * We might be called under a transaction (e.g. indirect backref
1340 	 * resolution) which could deadlock if it triggers memory reclaim
1341 	 */
1342 	nofs_flag = memalloc_nofs_save();
1343 	ret = btrfs_drew_lock_init(&root->snapshot_lock);
1344 	memalloc_nofs_restore(nofs_flag);
1345 	if (ret)
1346 		goto fail;
1347 
1348 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1349 	    root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1350 		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1351 		btrfs_check_and_init_root_item(&root->root_item);
1352 	}
1353 
1354 	/*
1355 	 * Don't assign anonymous block device to roots that are not exposed to
1356 	 * userspace, the id pool is limited to 1M
1357 	 */
1358 	if (is_fstree(root->root_key.objectid) &&
1359 	    btrfs_root_refs(&root->root_item) > 0) {
1360 		if (!anon_dev) {
1361 			ret = get_anon_bdev(&root->anon_dev);
1362 			if (ret)
1363 				goto fail;
1364 		} else {
1365 			root->anon_dev = anon_dev;
1366 		}
1367 	}
1368 
1369 	mutex_lock(&root->objectid_mutex);
1370 	ret = btrfs_find_highest_objectid(root,
1371 					&root->highest_objectid);
1372 	if (ret) {
1373 		mutex_unlock(&root->objectid_mutex);
1374 		goto fail;
1375 	}
1376 
1377 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1378 
1379 	mutex_unlock(&root->objectid_mutex);
1380 
1381 	return 0;
1382 fail:
1383 	/* The caller is responsible to call btrfs_free_fs_root */
1384 	return ret;
1385 }
1386 
1387 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1388 					       u64 root_id)
1389 {
1390 	struct btrfs_root *root;
1391 
1392 	spin_lock(&fs_info->fs_roots_radix_lock);
1393 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1394 				 (unsigned long)root_id);
1395 	if (root)
1396 		root = btrfs_grab_root(root);
1397 	spin_unlock(&fs_info->fs_roots_radix_lock);
1398 	return root;
1399 }
1400 
1401 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1402 						u64 objectid)
1403 {
1404 	if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1405 		return btrfs_grab_root(fs_info->tree_root);
1406 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1407 		return btrfs_grab_root(fs_info->extent_root);
1408 	if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1409 		return btrfs_grab_root(fs_info->chunk_root);
1410 	if (objectid == BTRFS_DEV_TREE_OBJECTID)
1411 		return btrfs_grab_root(fs_info->dev_root);
1412 	if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1413 		return btrfs_grab_root(fs_info->csum_root);
1414 	if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1415 		return btrfs_grab_root(fs_info->quota_root) ?
1416 			fs_info->quota_root : ERR_PTR(-ENOENT);
1417 	if (objectid == BTRFS_UUID_TREE_OBJECTID)
1418 		return btrfs_grab_root(fs_info->uuid_root) ?
1419 			fs_info->uuid_root : ERR_PTR(-ENOENT);
1420 	if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1421 		return btrfs_grab_root(fs_info->free_space_root) ?
1422 			fs_info->free_space_root : ERR_PTR(-ENOENT);
1423 	return NULL;
1424 }
1425 
1426 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1427 			 struct btrfs_root *root)
1428 {
1429 	int ret;
1430 
1431 	ret = radix_tree_preload(GFP_NOFS);
1432 	if (ret)
1433 		return ret;
1434 
1435 	spin_lock(&fs_info->fs_roots_radix_lock);
1436 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1437 				(unsigned long)root->root_key.objectid,
1438 				root);
1439 	if (ret == 0) {
1440 		btrfs_grab_root(root);
1441 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1442 	}
1443 	spin_unlock(&fs_info->fs_roots_radix_lock);
1444 	radix_tree_preload_end();
1445 
1446 	return ret;
1447 }
1448 
1449 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1450 {
1451 #ifdef CONFIG_BTRFS_DEBUG
1452 	struct btrfs_root *root;
1453 
1454 	while (!list_empty(&fs_info->allocated_roots)) {
1455 		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1456 
1457 		root = list_first_entry(&fs_info->allocated_roots,
1458 					struct btrfs_root, leak_list);
1459 		btrfs_err(fs_info, "leaked root %s refcount %d",
1460 			  btrfs_root_name(root->root_key.objectid, buf),
1461 			  refcount_read(&root->refs));
1462 		while (refcount_read(&root->refs) > 1)
1463 			btrfs_put_root(root);
1464 		btrfs_put_root(root);
1465 	}
1466 #endif
1467 }
1468 
1469 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1470 {
1471 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1472 	percpu_counter_destroy(&fs_info->delalloc_bytes);
1473 	percpu_counter_destroy(&fs_info->dio_bytes);
1474 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1475 	btrfs_free_csum_hash(fs_info);
1476 	btrfs_free_stripe_hash_table(fs_info);
1477 	btrfs_free_ref_cache(fs_info);
1478 	kfree(fs_info->balance_ctl);
1479 	kfree(fs_info->delayed_root);
1480 	btrfs_put_root(fs_info->extent_root);
1481 	btrfs_put_root(fs_info->tree_root);
1482 	btrfs_put_root(fs_info->chunk_root);
1483 	btrfs_put_root(fs_info->dev_root);
1484 	btrfs_put_root(fs_info->csum_root);
1485 	btrfs_put_root(fs_info->quota_root);
1486 	btrfs_put_root(fs_info->uuid_root);
1487 	btrfs_put_root(fs_info->free_space_root);
1488 	btrfs_put_root(fs_info->fs_root);
1489 	btrfs_put_root(fs_info->data_reloc_root);
1490 	btrfs_check_leaked_roots(fs_info);
1491 	btrfs_extent_buffer_leak_debug_check(fs_info);
1492 	kfree(fs_info->super_copy);
1493 	kfree(fs_info->super_for_commit);
1494 	kvfree(fs_info);
1495 }
1496 
1497 
1498 /*
1499  * Get an in-memory reference of a root structure.
1500  *
1501  * For essential trees like root/extent tree, we grab it from fs_info directly.
1502  * For subvolume trees, we check the cached filesystem roots first. If not
1503  * found, then read it from disk and add it to cached fs roots.
1504  *
1505  * Caller should release the root by calling btrfs_put_root() after the usage.
1506  *
1507  * NOTE: Reloc and log trees can't be read by this function as they share the
1508  *	 same root objectid.
1509  *
1510  * @objectid:	root id
1511  * @anon_dev:	preallocated anonymous block device number for new roots,
1512  * 		pass 0 for new allocation.
1513  * @check_ref:	whether to check root item references, If true, return -ENOENT
1514  *		for orphan roots
1515  */
1516 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1517 					     u64 objectid, dev_t anon_dev,
1518 					     bool check_ref)
1519 {
1520 	struct btrfs_root *root;
1521 	struct btrfs_path *path;
1522 	struct btrfs_key key;
1523 	int ret;
1524 
1525 	root = btrfs_get_global_root(fs_info, objectid);
1526 	if (root)
1527 		return root;
1528 again:
1529 	root = btrfs_lookup_fs_root(fs_info, objectid);
1530 	if (root) {
1531 		/* Shouldn't get preallocated anon_dev for cached roots */
1532 		ASSERT(!anon_dev);
1533 		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1534 			btrfs_put_root(root);
1535 			return ERR_PTR(-ENOENT);
1536 		}
1537 		return root;
1538 	}
1539 
1540 	key.objectid = objectid;
1541 	key.type = BTRFS_ROOT_ITEM_KEY;
1542 	key.offset = (u64)-1;
1543 	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1544 	if (IS_ERR(root))
1545 		return root;
1546 
1547 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1548 		ret = -ENOENT;
1549 		goto fail;
1550 	}
1551 
1552 	ret = btrfs_init_fs_root(root, anon_dev);
1553 	if (ret)
1554 		goto fail;
1555 
1556 	path = btrfs_alloc_path();
1557 	if (!path) {
1558 		ret = -ENOMEM;
1559 		goto fail;
1560 	}
1561 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1562 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1563 	key.offset = objectid;
1564 
1565 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1566 	btrfs_free_path(path);
1567 	if (ret < 0)
1568 		goto fail;
1569 	if (ret == 0)
1570 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1571 
1572 	ret = btrfs_insert_fs_root(fs_info, root);
1573 	if (ret) {
1574 		btrfs_put_root(root);
1575 		if (ret == -EEXIST)
1576 			goto again;
1577 		goto fail;
1578 	}
1579 	return root;
1580 fail:
1581 	btrfs_put_root(root);
1582 	return ERR_PTR(ret);
1583 }
1584 
1585 /*
1586  * Get in-memory reference of a root structure
1587  *
1588  * @objectid:	tree objectid
1589  * @check_ref:	if set, verify that the tree exists and the item has at least
1590  *		one reference
1591  */
1592 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1593 				     u64 objectid, bool check_ref)
1594 {
1595 	return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1596 }
1597 
1598 /*
1599  * Get in-memory reference of a root structure, created as new, optionally pass
1600  * the anonymous block device id
1601  *
1602  * @objectid:	tree objectid
1603  * @anon_dev:	if zero, allocate a new anonymous block device or use the
1604  *		parameter value
1605  */
1606 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1607 					 u64 objectid, dev_t anon_dev)
1608 {
1609 	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1610 }
1611 
1612 /*
1613  * btrfs_get_fs_root_commit_root - return a root for the given objectid
1614  * @fs_info:	the fs_info
1615  * @objectid:	the objectid we need to lookup
1616  *
1617  * This is exclusively used for backref walking, and exists specifically because
1618  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1619  * creation time, which means we may have to read the tree_root in order to look
1620  * up a fs root that is not in memory.  If the root is not in memory we will
1621  * read the tree root commit root and look up the fs root from there.  This is a
1622  * temporary root, it will not be inserted into the radix tree as it doesn't
1623  * have the most uptodate information, it'll simply be discarded once the
1624  * backref code is finished using the root.
1625  */
1626 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1627 						 struct btrfs_path *path,
1628 						 u64 objectid)
1629 {
1630 	struct btrfs_root *root;
1631 	struct btrfs_key key;
1632 
1633 	ASSERT(path->search_commit_root && path->skip_locking);
1634 
1635 	/*
1636 	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1637 	 * since this is called via the backref walking code we won't be looking
1638 	 * up a root that doesn't exist, unless there's corruption.  So if root
1639 	 * != NULL just return it.
1640 	 */
1641 	root = btrfs_get_global_root(fs_info, objectid);
1642 	if (root)
1643 		return root;
1644 
1645 	root = btrfs_lookup_fs_root(fs_info, objectid);
1646 	if (root)
1647 		return root;
1648 
1649 	key.objectid = objectid;
1650 	key.type = BTRFS_ROOT_ITEM_KEY;
1651 	key.offset = (u64)-1;
1652 	root = read_tree_root_path(fs_info->tree_root, path, &key);
1653 	btrfs_release_path(path);
1654 
1655 	return root;
1656 }
1657 
1658 /*
1659  * called by the kthread helper functions to finally call the bio end_io
1660  * functions.  This is where read checksum verification actually happens
1661  */
1662 static void end_workqueue_fn(struct btrfs_work *work)
1663 {
1664 	struct bio *bio;
1665 	struct btrfs_end_io_wq *end_io_wq;
1666 
1667 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1668 	bio = end_io_wq->bio;
1669 
1670 	bio->bi_status = end_io_wq->status;
1671 	bio->bi_private = end_io_wq->private;
1672 	bio->bi_end_io = end_io_wq->end_io;
1673 	bio_endio(bio);
1674 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1675 }
1676 
1677 static int cleaner_kthread(void *arg)
1678 {
1679 	struct btrfs_root *root = arg;
1680 	struct btrfs_fs_info *fs_info = root->fs_info;
1681 	int again;
1682 
1683 	while (1) {
1684 		again = 0;
1685 
1686 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1687 
1688 		/* Make the cleaner go to sleep early. */
1689 		if (btrfs_need_cleaner_sleep(fs_info))
1690 			goto sleep;
1691 
1692 		/*
1693 		 * Do not do anything if we might cause open_ctree() to block
1694 		 * before we have finished mounting the filesystem.
1695 		 */
1696 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1697 			goto sleep;
1698 
1699 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1700 			goto sleep;
1701 
1702 		/*
1703 		 * Avoid the problem that we change the status of the fs
1704 		 * during the above check and trylock.
1705 		 */
1706 		if (btrfs_need_cleaner_sleep(fs_info)) {
1707 			mutex_unlock(&fs_info->cleaner_mutex);
1708 			goto sleep;
1709 		}
1710 
1711 		btrfs_run_delayed_iputs(fs_info);
1712 
1713 		again = btrfs_clean_one_deleted_snapshot(root);
1714 		mutex_unlock(&fs_info->cleaner_mutex);
1715 
1716 		/*
1717 		 * The defragger has dealt with the R/O remount and umount,
1718 		 * needn't do anything special here.
1719 		 */
1720 		btrfs_run_defrag_inodes(fs_info);
1721 
1722 		/*
1723 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1724 		 * with relocation (btrfs_relocate_chunk) and relocation
1725 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1726 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1727 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1728 		 * unused block groups.
1729 		 */
1730 		btrfs_delete_unused_bgs(fs_info);
1731 sleep:
1732 		clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1733 		if (kthread_should_park())
1734 			kthread_parkme();
1735 		if (kthread_should_stop())
1736 			return 0;
1737 		if (!again) {
1738 			set_current_state(TASK_INTERRUPTIBLE);
1739 			schedule();
1740 			__set_current_state(TASK_RUNNING);
1741 		}
1742 	}
1743 }
1744 
1745 static int transaction_kthread(void *arg)
1746 {
1747 	struct btrfs_root *root = arg;
1748 	struct btrfs_fs_info *fs_info = root->fs_info;
1749 	struct btrfs_trans_handle *trans;
1750 	struct btrfs_transaction *cur;
1751 	u64 transid;
1752 	time64_t delta;
1753 	unsigned long delay;
1754 	bool cannot_commit;
1755 
1756 	do {
1757 		cannot_commit = false;
1758 		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1759 		mutex_lock(&fs_info->transaction_kthread_mutex);
1760 
1761 		spin_lock(&fs_info->trans_lock);
1762 		cur = fs_info->running_transaction;
1763 		if (!cur) {
1764 			spin_unlock(&fs_info->trans_lock);
1765 			goto sleep;
1766 		}
1767 
1768 		delta = ktime_get_seconds() - cur->start_time;
1769 		if (cur->state < TRANS_STATE_COMMIT_START &&
1770 		    delta < fs_info->commit_interval) {
1771 			spin_unlock(&fs_info->trans_lock);
1772 			delay -= msecs_to_jiffies((delta - 1) * 1000);
1773 			delay = min(delay,
1774 				    msecs_to_jiffies(fs_info->commit_interval * 1000));
1775 			goto sleep;
1776 		}
1777 		transid = cur->transid;
1778 		spin_unlock(&fs_info->trans_lock);
1779 
1780 		/* If the file system is aborted, this will always fail. */
1781 		trans = btrfs_attach_transaction(root);
1782 		if (IS_ERR(trans)) {
1783 			if (PTR_ERR(trans) != -ENOENT)
1784 				cannot_commit = true;
1785 			goto sleep;
1786 		}
1787 		if (transid == trans->transid) {
1788 			btrfs_commit_transaction(trans);
1789 		} else {
1790 			btrfs_end_transaction(trans);
1791 		}
1792 sleep:
1793 		wake_up_process(fs_info->cleaner_kthread);
1794 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1795 
1796 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1797 				      &fs_info->fs_state)))
1798 			btrfs_cleanup_transaction(fs_info);
1799 		if (!kthread_should_stop() &&
1800 				(!btrfs_transaction_blocked(fs_info) ||
1801 				 cannot_commit))
1802 			schedule_timeout_interruptible(delay);
1803 	} while (!kthread_should_stop());
1804 	return 0;
1805 }
1806 
1807 /*
1808  * This will find the highest generation in the array of root backups.  The
1809  * index of the highest array is returned, or -EINVAL if we can't find
1810  * anything.
1811  *
1812  * We check to make sure the array is valid by comparing the
1813  * generation of the latest  root in the array with the generation
1814  * in the super block.  If they don't match we pitch it.
1815  */
1816 static int find_newest_super_backup(struct btrfs_fs_info *info)
1817 {
1818 	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1819 	u64 cur;
1820 	struct btrfs_root_backup *root_backup;
1821 	int i;
1822 
1823 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1824 		root_backup = info->super_copy->super_roots + i;
1825 		cur = btrfs_backup_tree_root_gen(root_backup);
1826 		if (cur == newest_gen)
1827 			return i;
1828 	}
1829 
1830 	return -EINVAL;
1831 }
1832 
1833 /*
1834  * copy all the root pointers into the super backup array.
1835  * this will bump the backup pointer by one when it is
1836  * done
1837  */
1838 static void backup_super_roots(struct btrfs_fs_info *info)
1839 {
1840 	const int next_backup = info->backup_root_index;
1841 	struct btrfs_root_backup *root_backup;
1842 
1843 	root_backup = info->super_for_commit->super_roots + next_backup;
1844 
1845 	/*
1846 	 * make sure all of our padding and empty slots get zero filled
1847 	 * regardless of which ones we use today
1848 	 */
1849 	memset(root_backup, 0, sizeof(*root_backup));
1850 
1851 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1852 
1853 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1854 	btrfs_set_backup_tree_root_gen(root_backup,
1855 			       btrfs_header_generation(info->tree_root->node));
1856 
1857 	btrfs_set_backup_tree_root_level(root_backup,
1858 			       btrfs_header_level(info->tree_root->node));
1859 
1860 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1861 	btrfs_set_backup_chunk_root_gen(root_backup,
1862 			       btrfs_header_generation(info->chunk_root->node));
1863 	btrfs_set_backup_chunk_root_level(root_backup,
1864 			       btrfs_header_level(info->chunk_root->node));
1865 
1866 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1867 	btrfs_set_backup_extent_root_gen(root_backup,
1868 			       btrfs_header_generation(info->extent_root->node));
1869 	btrfs_set_backup_extent_root_level(root_backup,
1870 			       btrfs_header_level(info->extent_root->node));
1871 
1872 	/*
1873 	 * we might commit during log recovery, which happens before we set
1874 	 * the fs_root.  Make sure it is valid before we fill it in.
1875 	 */
1876 	if (info->fs_root && info->fs_root->node) {
1877 		btrfs_set_backup_fs_root(root_backup,
1878 					 info->fs_root->node->start);
1879 		btrfs_set_backup_fs_root_gen(root_backup,
1880 			       btrfs_header_generation(info->fs_root->node));
1881 		btrfs_set_backup_fs_root_level(root_backup,
1882 			       btrfs_header_level(info->fs_root->node));
1883 	}
1884 
1885 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1886 	btrfs_set_backup_dev_root_gen(root_backup,
1887 			       btrfs_header_generation(info->dev_root->node));
1888 	btrfs_set_backup_dev_root_level(root_backup,
1889 				       btrfs_header_level(info->dev_root->node));
1890 
1891 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1892 	btrfs_set_backup_csum_root_gen(root_backup,
1893 			       btrfs_header_generation(info->csum_root->node));
1894 	btrfs_set_backup_csum_root_level(root_backup,
1895 			       btrfs_header_level(info->csum_root->node));
1896 
1897 	btrfs_set_backup_total_bytes(root_backup,
1898 			     btrfs_super_total_bytes(info->super_copy));
1899 	btrfs_set_backup_bytes_used(root_backup,
1900 			     btrfs_super_bytes_used(info->super_copy));
1901 	btrfs_set_backup_num_devices(root_backup,
1902 			     btrfs_super_num_devices(info->super_copy));
1903 
1904 	/*
1905 	 * if we don't copy this out to the super_copy, it won't get remembered
1906 	 * for the next commit
1907 	 */
1908 	memcpy(&info->super_copy->super_roots,
1909 	       &info->super_for_commit->super_roots,
1910 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1911 }
1912 
1913 /*
1914  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1915  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1916  *
1917  * fs_info - filesystem whose backup roots need to be read
1918  * priority - priority of backup root required
1919  *
1920  * Returns backup root index on success and -EINVAL otherwise.
1921  */
1922 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1923 {
1924 	int backup_index = find_newest_super_backup(fs_info);
1925 	struct btrfs_super_block *super = fs_info->super_copy;
1926 	struct btrfs_root_backup *root_backup;
1927 
1928 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1929 		if (priority == 0)
1930 			return backup_index;
1931 
1932 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1933 		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1934 	} else {
1935 		return -EINVAL;
1936 	}
1937 
1938 	root_backup = super->super_roots + backup_index;
1939 
1940 	btrfs_set_super_generation(super,
1941 				   btrfs_backup_tree_root_gen(root_backup));
1942 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1943 	btrfs_set_super_root_level(super,
1944 				   btrfs_backup_tree_root_level(root_backup));
1945 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1946 
1947 	/*
1948 	 * Fixme: the total bytes and num_devices need to match or we should
1949 	 * need a fsck
1950 	 */
1951 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1952 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1953 
1954 	return backup_index;
1955 }
1956 
1957 /* helper to cleanup workers */
1958 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1959 {
1960 	btrfs_destroy_workqueue(fs_info->fixup_workers);
1961 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1962 	btrfs_destroy_workqueue(fs_info->workers);
1963 	btrfs_destroy_workqueue(fs_info->endio_workers);
1964 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1965 	btrfs_destroy_workqueue(fs_info->rmw_workers);
1966 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
1967 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1968 	btrfs_destroy_workqueue(fs_info->delayed_workers);
1969 	btrfs_destroy_workqueue(fs_info->caching_workers);
1970 	btrfs_destroy_workqueue(fs_info->readahead_workers);
1971 	btrfs_destroy_workqueue(fs_info->flush_workers);
1972 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1973 	if (fs_info->discard_ctl.discard_workers)
1974 		destroy_workqueue(fs_info->discard_ctl.discard_workers);
1975 	/*
1976 	 * Now that all other work queues are destroyed, we can safely destroy
1977 	 * the queues used for metadata I/O, since tasks from those other work
1978 	 * queues can do metadata I/O operations.
1979 	 */
1980 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
1981 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
1982 }
1983 
1984 static void free_root_extent_buffers(struct btrfs_root *root)
1985 {
1986 	if (root) {
1987 		free_extent_buffer(root->node);
1988 		free_extent_buffer(root->commit_root);
1989 		root->node = NULL;
1990 		root->commit_root = NULL;
1991 	}
1992 }
1993 
1994 /* helper to cleanup tree roots */
1995 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1996 {
1997 	free_root_extent_buffers(info->tree_root);
1998 
1999 	free_root_extent_buffers(info->dev_root);
2000 	free_root_extent_buffers(info->extent_root);
2001 	free_root_extent_buffers(info->csum_root);
2002 	free_root_extent_buffers(info->quota_root);
2003 	free_root_extent_buffers(info->uuid_root);
2004 	free_root_extent_buffers(info->fs_root);
2005 	free_root_extent_buffers(info->data_reloc_root);
2006 	if (free_chunk_root)
2007 		free_root_extent_buffers(info->chunk_root);
2008 	free_root_extent_buffers(info->free_space_root);
2009 }
2010 
2011 void btrfs_put_root(struct btrfs_root *root)
2012 {
2013 	if (!root)
2014 		return;
2015 
2016 	if (refcount_dec_and_test(&root->refs)) {
2017 		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2018 		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2019 		if (root->anon_dev)
2020 			free_anon_bdev(root->anon_dev);
2021 		btrfs_drew_lock_destroy(&root->snapshot_lock);
2022 		free_root_extent_buffers(root);
2023 #ifdef CONFIG_BTRFS_DEBUG
2024 		spin_lock(&root->fs_info->fs_roots_radix_lock);
2025 		list_del_init(&root->leak_list);
2026 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
2027 #endif
2028 		kfree(root);
2029 	}
2030 }
2031 
2032 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2033 {
2034 	int ret;
2035 	struct btrfs_root *gang[8];
2036 	int i;
2037 
2038 	while (!list_empty(&fs_info->dead_roots)) {
2039 		gang[0] = list_entry(fs_info->dead_roots.next,
2040 				     struct btrfs_root, root_list);
2041 		list_del(&gang[0]->root_list);
2042 
2043 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2044 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2045 		btrfs_put_root(gang[0]);
2046 	}
2047 
2048 	while (1) {
2049 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2050 					     (void **)gang, 0,
2051 					     ARRAY_SIZE(gang));
2052 		if (!ret)
2053 			break;
2054 		for (i = 0; i < ret; i++)
2055 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2056 	}
2057 }
2058 
2059 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2060 {
2061 	mutex_init(&fs_info->scrub_lock);
2062 	atomic_set(&fs_info->scrubs_running, 0);
2063 	atomic_set(&fs_info->scrub_pause_req, 0);
2064 	atomic_set(&fs_info->scrubs_paused, 0);
2065 	atomic_set(&fs_info->scrub_cancel_req, 0);
2066 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2067 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2068 }
2069 
2070 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2071 {
2072 	spin_lock_init(&fs_info->balance_lock);
2073 	mutex_init(&fs_info->balance_mutex);
2074 	atomic_set(&fs_info->balance_pause_req, 0);
2075 	atomic_set(&fs_info->balance_cancel_req, 0);
2076 	fs_info->balance_ctl = NULL;
2077 	init_waitqueue_head(&fs_info->balance_wait_q);
2078 }
2079 
2080 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2081 {
2082 	struct inode *inode = fs_info->btree_inode;
2083 
2084 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2085 	set_nlink(inode, 1);
2086 	/*
2087 	 * we set the i_size on the btree inode to the max possible int.
2088 	 * the real end of the address space is determined by all of
2089 	 * the devices in the system
2090 	 */
2091 	inode->i_size = OFFSET_MAX;
2092 	inode->i_mapping->a_ops = &btree_aops;
2093 
2094 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2095 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2096 			    IO_TREE_BTREE_INODE_IO, inode);
2097 	BTRFS_I(inode)->io_tree.track_uptodate = false;
2098 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2099 
2100 	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2101 	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2102 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2103 	btrfs_insert_inode_hash(inode);
2104 }
2105 
2106 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2107 {
2108 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2109 	init_rwsem(&fs_info->dev_replace.rwsem);
2110 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2111 }
2112 
2113 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2114 {
2115 	spin_lock_init(&fs_info->qgroup_lock);
2116 	mutex_init(&fs_info->qgroup_ioctl_lock);
2117 	fs_info->qgroup_tree = RB_ROOT;
2118 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2119 	fs_info->qgroup_seq = 1;
2120 	fs_info->qgroup_ulist = NULL;
2121 	fs_info->qgroup_rescan_running = false;
2122 	mutex_init(&fs_info->qgroup_rescan_lock);
2123 }
2124 
2125 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2126 		struct btrfs_fs_devices *fs_devices)
2127 {
2128 	u32 max_active = fs_info->thread_pool_size;
2129 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2130 
2131 	fs_info->workers =
2132 		btrfs_alloc_workqueue(fs_info, "worker",
2133 				      flags | WQ_HIGHPRI, max_active, 16);
2134 
2135 	fs_info->delalloc_workers =
2136 		btrfs_alloc_workqueue(fs_info, "delalloc",
2137 				      flags, max_active, 2);
2138 
2139 	fs_info->flush_workers =
2140 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2141 				      flags, max_active, 0);
2142 
2143 	fs_info->caching_workers =
2144 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2145 
2146 	fs_info->fixup_workers =
2147 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2148 
2149 	/*
2150 	 * endios are largely parallel and should have a very
2151 	 * low idle thresh
2152 	 */
2153 	fs_info->endio_workers =
2154 		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2155 	fs_info->endio_meta_workers =
2156 		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2157 				      max_active, 4);
2158 	fs_info->endio_meta_write_workers =
2159 		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2160 				      max_active, 2);
2161 	fs_info->endio_raid56_workers =
2162 		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2163 				      max_active, 4);
2164 	fs_info->rmw_workers =
2165 		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2166 	fs_info->endio_write_workers =
2167 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2168 				      max_active, 2);
2169 	fs_info->endio_freespace_worker =
2170 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2171 				      max_active, 0);
2172 	fs_info->delayed_workers =
2173 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2174 				      max_active, 0);
2175 	fs_info->readahead_workers =
2176 		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2177 				      max_active, 2);
2178 	fs_info->qgroup_rescan_workers =
2179 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2180 	fs_info->discard_ctl.discard_workers =
2181 		alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2182 
2183 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2184 	      fs_info->flush_workers &&
2185 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2186 	      fs_info->endio_meta_write_workers &&
2187 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2188 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2189 	      fs_info->caching_workers && fs_info->readahead_workers &&
2190 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2191 	      fs_info->qgroup_rescan_workers &&
2192 	      fs_info->discard_ctl.discard_workers)) {
2193 		return -ENOMEM;
2194 	}
2195 
2196 	return 0;
2197 }
2198 
2199 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2200 {
2201 	struct crypto_shash *csum_shash;
2202 	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2203 
2204 	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2205 
2206 	if (IS_ERR(csum_shash)) {
2207 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2208 			  csum_driver);
2209 		return PTR_ERR(csum_shash);
2210 	}
2211 
2212 	fs_info->csum_shash = csum_shash;
2213 
2214 	return 0;
2215 }
2216 
2217 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2218 			    struct btrfs_fs_devices *fs_devices)
2219 {
2220 	int ret;
2221 	struct btrfs_root *log_tree_root;
2222 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2223 	u64 bytenr = btrfs_super_log_root(disk_super);
2224 	int level = btrfs_super_log_root_level(disk_super);
2225 
2226 	if (fs_devices->rw_devices == 0) {
2227 		btrfs_warn(fs_info, "log replay required on RO media");
2228 		return -EIO;
2229 	}
2230 
2231 	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2232 					 GFP_KERNEL);
2233 	if (!log_tree_root)
2234 		return -ENOMEM;
2235 
2236 	log_tree_root->node = read_tree_block(fs_info, bytenr,
2237 					      BTRFS_TREE_LOG_OBJECTID,
2238 					      fs_info->generation + 1, level,
2239 					      NULL);
2240 	if (IS_ERR(log_tree_root->node)) {
2241 		btrfs_warn(fs_info, "failed to read log tree");
2242 		ret = PTR_ERR(log_tree_root->node);
2243 		log_tree_root->node = NULL;
2244 		btrfs_put_root(log_tree_root);
2245 		return ret;
2246 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2247 		btrfs_err(fs_info, "failed to read log tree");
2248 		btrfs_put_root(log_tree_root);
2249 		return -EIO;
2250 	}
2251 	/* returns with log_tree_root freed on success */
2252 	ret = btrfs_recover_log_trees(log_tree_root);
2253 	if (ret) {
2254 		btrfs_handle_fs_error(fs_info, ret,
2255 				      "Failed to recover log tree");
2256 		btrfs_put_root(log_tree_root);
2257 		return ret;
2258 	}
2259 
2260 	if (sb_rdonly(fs_info->sb)) {
2261 		ret = btrfs_commit_super(fs_info);
2262 		if (ret)
2263 			return ret;
2264 	}
2265 
2266 	return 0;
2267 }
2268 
2269 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2270 {
2271 	struct btrfs_root *tree_root = fs_info->tree_root;
2272 	struct btrfs_root *root;
2273 	struct btrfs_key location;
2274 	int ret;
2275 
2276 	BUG_ON(!fs_info->tree_root);
2277 
2278 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2279 	location.type = BTRFS_ROOT_ITEM_KEY;
2280 	location.offset = 0;
2281 
2282 	root = btrfs_read_tree_root(tree_root, &location);
2283 	if (IS_ERR(root)) {
2284 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2285 			ret = PTR_ERR(root);
2286 			goto out;
2287 		}
2288 	} else {
2289 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2290 		fs_info->extent_root = root;
2291 	}
2292 
2293 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2294 	root = btrfs_read_tree_root(tree_root, &location);
2295 	if (IS_ERR(root)) {
2296 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2297 			ret = PTR_ERR(root);
2298 			goto out;
2299 		}
2300 	} else {
2301 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2302 		fs_info->dev_root = root;
2303 		btrfs_init_devices_late(fs_info);
2304 	}
2305 
2306 	/* If IGNOREDATACSUMS is set don't bother reading the csum root. */
2307 	if (!btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2308 		location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2309 		root = btrfs_read_tree_root(tree_root, &location);
2310 		if (IS_ERR(root)) {
2311 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2312 				ret = PTR_ERR(root);
2313 				goto out;
2314 			}
2315 		} else {
2316 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2317 			fs_info->csum_root = root;
2318 		}
2319 	}
2320 
2321 	/*
2322 	 * This tree can share blocks with some other fs tree during relocation
2323 	 * and we need a proper setup by btrfs_get_fs_root
2324 	 */
2325 	root = btrfs_get_fs_root(tree_root->fs_info,
2326 				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2327 	if (IS_ERR(root)) {
2328 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2329 			ret = PTR_ERR(root);
2330 			goto out;
2331 		}
2332 	} else {
2333 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2334 		fs_info->data_reloc_root = root;
2335 	}
2336 
2337 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2338 	root = btrfs_read_tree_root(tree_root, &location);
2339 	if (!IS_ERR(root)) {
2340 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2341 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2342 		fs_info->quota_root = root;
2343 	}
2344 
2345 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2346 	root = btrfs_read_tree_root(tree_root, &location);
2347 	if (IS_ERR(root)) {
2348 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2349 			ret = PTR_ERR(root);
2350 			if (ret != -ENOENT)
2351 				goto out;
2352 		}
2353 	} else {
2354 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2355 		fs_info->uuid_root = root;
2356 	}
2357 
2358 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2359 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2360 		root = btrfs_read_tree_root(tree_root, &location);
2361 		if (IS_ERR(root)) {
2362 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2363 				ret = PTR_ERR(root);
2364 				goto out;
2365 			}
2366 		}  else {
2367 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2368 			fs_info->free_space_root = root;
2369 		}
2370 	}
2371 
2372 	return 0;
2373 out:
2374 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2375 		   location.objectid, ret);
2376 	return ret;
2377 }
2378 
2379 /*
2380  * Real super block validation
2381  * NOTE: super csum type and incompat features will not be checked here.
2382  *
2383  * @sb:		super block to check
2384  * @mirror_num:	the super block number to check its bytenr:
2385  * 		0	the primary (1st) sb
2386  * 		1, 2	2nd and 3rd backup copy
2387  * 	       -1	skip bytenr check
2388  */
2389 static int validate_super(struct btrfs_fs_info *fs_info,
2390 			    struct btrfs_super_block *sb, int mirror_num)
2391 {
2392 	u64 nodesize = btrfs_super_nodesize(sb);
2393 	u64 sectorsize = btrfs_super_sectorsize(sb);
2394 	int ret = 0;
2395 
2396 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2397 		btrfs_err(fs_info, "no valid FS found");
2398 		ret = -EINVAL;
2399 	}
2400 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2401 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2402 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2403 		ret = -EINVAL;
2404 	}
2405 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2406 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2407 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2408 		ret = -EINVAL;
2409 	}
2410 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2411 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2412 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2413 		ret = -EINVAL;
2414 	}
2415 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2416 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2417 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2418 		ret = -EINVAL;
2419 	}
2420 
2421 	/*
2422 	 * Check sectorsize and nodesize first, other check will need it.
2423 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2424 	 */
2425 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2426 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2427 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2428 		ret = -EINVAL;
2429 	}
2430 	/* Only PAGE SIZE is supported yet */
2431 	if (sectorsize != PAGE_SIZE) {
2432 		btrfs_err(fs_info,
2433 			"sectorsize %llu not supported yet, only support %lu",
2434 			sectorsize, PAGE_SIZE);
2435 		ret = -EINVAL;
2436 	}
2437 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2438 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2439 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2440 		ret = -EINVAL;
2441 	}
2442 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2443 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2444 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2445 		ret = -EINVAL;
2446 	}
2447 
2448 	/* Root alignment check */
2449 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2450 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2451 			   btrfs_super_root(sb));
2452 		ret = -EINVAL;
2453 	}
2454 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2455 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2456 			   btrfs_super_chunk_root(sb));
2457 		ret = -EINVAL;
2458 	}
2459 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2460 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2461 			   btrfs_super_log_root(sb));
2462 		ret = -EINVAL;
2463 	}
2464 
2465 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2466 		   BTRFS_FSID_SIZE) != 0) {
2467 		btrfs_err(fs_info,
2468 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2469 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2470 		ret = -EINVAL;
2471 	}
2472 
2473 	/*
2474 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2475 	 * done later
2476 	 */
2477 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2478 		btrfs_err(fs_info, "bytes_used is too small %llu",
2479 			  btrfs_super_bytes_used(sb));
2480 		ret = -EINVAL;
2481 	}
2482 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2483 		btrfs_err(fs_info, "invalid stripesize %u",
2484 			  btrfs_super_stripesize(sb));
2485 		ret = -EINVAL;
2486 	}
2487 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2488 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2489 			   btrfs_super_num_devices(sb));
2490 	if (btrfs_super_num_devices(sb) == 0) {
2491 		btrfs_err(fs_info, "number of devices is 0");
2492 		ret = -EINVAL;
2493 	}
2494 
2495 	if (mirror_num >= 0 &&
2496 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2497 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2498 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2499 		ret = -EINVAL;
2500 	}
2501 
2502 	/*
2503 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2504 	 * and one chunk
2505 	 */
2506 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2507 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2508 			  btrfs_super_sys_array_size(sb),
2509 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2510 		ret = -EINVAL;
2511 	}
2512 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2513 			+ sizeof(struct btrfs_chunk)) {
2514 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2515 			  btrfs_super_sys_array_size(sb),
2516 			  sizeof(struct btrfs_disk_key)
2517 			  + sizeof(struct btrfs_chunk));
2518 		ret = -EINVAL;
2519 	}
2520 
2521 	/*
2522 	 * The generation is a global counter, we'll trust it more than the others
2523 	 * but it's still possible that it's the one that's wrong.
2524 	 */
2525 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2526 		btrfs_warn(fs_info,
2527 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2528 			btrfs_super_generation(sb),
2529 			btrfs_super_chunk_root_generation(sb));
2530 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2531 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2532 		btrfs_warn(fs_info,
2533 			"suspicious: generation < cache_generation: %llu < %llu",
2534 			btrfs_super_generation(sb),
2535 			btrfs_super_cache_generation(sb));
2536 
2537 	return ret;
2538 }
2539 
2540 /*
2541  * Validation of super block at mount time.
2542  * Some checks already done early at mount time, like csum type and incompat
2543  * flags will be skipped.
2544  */
2545 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2546 {
2547 	return validate_super(fs_info, fs_info->super_copy, 0);
2548 }
2549 
2550 /*
2551  * Validation of super block at write time.
2552  * Some checks like bytenr check will be skipped as their values will be
2553  * overwritten soon.
2554  * Extra checks like csum type and incompat flags will be done here.
2555  */
2556 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2557 				      struct btrfs_super_block *sb)
2558 {
2559 	int ret;
2560 
2561 	ret = validate_super(fs_info, sb, -1);
2562 	if (ret < 0)
2563 		goto out;
2564 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2565 		ret = -EUCLEAN;
2566 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2567 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2568 		goto out;
2569 	}
2570 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2571 		ret = -EUCLEAN;
2572 		btrfs_err(fs_info,
2573 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2574 			  btrfs_super_incompat_flags(sb),
2575 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2576 		goto out;
2577 	}
2578 out:
2579 	if (ret < 0)
2580 		btrfs_err(fs_info,
2581 		"super block corruption detected before writing it to disk");
2582 	return ret;
2583 }
2584 
2585 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2586 {
2587 	int backup_index = find_newest_super_backup(fs_info);
2588 	struct btrfs_super_block *sb = fs_info->super_copy;
2589 	struct btrfs_root *tree_root = fs_info->tree_root;
2590 	bool handle_error = false;
2591 	int ret = 0;
2592 	int i;
2593 
2594 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2595 		u64 generation;
2596 		int level;
2597 
2598 		if (handle_error) {
2599 			if (!IS_ERR(tree_root->node))
2600 				free_extent_buffer(tree_root->node);
2601 			tree_root->node = NULL;
2602 
2603 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2604 				break;
2605 
2606 			free_root_pointers(fs_info, 0);
2607 
2608 			/*
2609 			 * Don't use the log in recovery mode, it won't be
2610 			 * valid
2611 			 */
2612 			btrfs_set_super_log_root(sb, 0);
2613 
2614 			/* We can't trust the free space cache either */
2615 			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2616 
2617 			ret = read_backup_root(fs_info, i);
2618 			backup_index = ret;
2619 			if (ret < 0)
2620 				return ret;
2621 		}
2622 		generation = btrfs_super_generation(sb);
2623 		level = btrfs_super_root_level(sb);
2624 		tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2625 						  BTRFS_ROOT_TREE_OBJECTID,
2626 						  generation, level, NULL);
2627 		if (IS_ERR(tree_root->node)) {
2628 			handle_error = true;
2629 			ret = PTR_ERR(tree_root->node);
2630 			tree_root->node = NULL;
2631 			btrfs_warn(fs_info, "couldn't read tree root");
2632 			continue;
2633 
2634 		} else if (!extent_buffer_uptodate(tree_root->node)) {
2635 			handle_error = true;
2636 			ret = -EIO;
2637 			btrfs_warn(fs_info, "error while reading tree root");
2638 			continue;
2639 		}
2640 
2641 		btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2642 		tree_root->commit_root = btrfs_root_node(tree_root);
2643 		btrfs_set_root_refs(&tree_root->root_item, 1);
2644 
2645 		/*
2646 		 * No need to hold btrfs_root::objectid_mutex since the fs
2647 		 * hasn't been fully initialised and we are the only user
2648 		 */
2649 		ret = btrfs_find_highest_objectid(tree_root,
2650 						&tree_root->highest_objectid);
2651 		if (ret < 0) {
2652 			handle_error = true;
2653 			continue;
2654 		}
2655 
2656 		ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2657 
2658 		ret = btrfs_read_roots(fs_info);
2659 		if (ret < 0) {
2660 			handle_error = true;
2661 			continue;
2662 		}
2663 
2664 		/* All successful */
2665 		fs_info->generation = generation;
2666 		fs_info->last_trans_committed = generation;
2667 
2668 		/* Always begin writing backup roots after the one being used */
2669 		if (backup_index < 0) {
2670 			fs_info->backup_root_index = 0;
2671 		} else {
2672 			fs_info->backup_root_index = backup_index + 1;
2673 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2674 		}
2675 		break;
2676 	}
2677 
2678 	return ret;
2679 }
2680 
2681 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2682 {
2683 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2684 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2685 	INIT_LIST_HEAD(&fs_info->trans_list);
2686 	INIT_LIST_HEAD(&fs_info->dead_roots);
2687 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2688 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2689 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2690 	spin_lock_init(&fs_info->delalloc_root_lock);
2691 	spin_lock_init(&fs_info->trans_lock);
2692 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2693 	spin_lock_init(&fs_info->delayed_iput_lock);
2694 	spin_lock_init(&fs_info->defrag_inodes_lock);
2695 	spin_lock_init(&fs_info->super_lock);
2696 	spin_lock_init(&fs_info->buffer_lock);
2697 	spin_lock_init(&fs_info->unused_bgs_lock);
2698 	rwlock_init(&fs_info->tree_mod_log_lock);
2699 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2700 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2701 	mutex_init(&fs_info->reloc_mutex);
2702 	mutex_init(&fs_info->delalloc_root_mutex);
2703 	seqlock_init(&fs_info->profiles_lock);
2704 
2705 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2706 	INIT_LIST_HEAD(&fs_info->space_info);
2707 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2708 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2709 #ifdef CONFIG_BTRFS_DEBUG
2710 	INIT_LIST_HEAD(&fs_info->allocated_roots);
2711 	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2712 	spin_lock_init(&fs_info->eb_leak_lock);
2713 #endif
2714 	extent_map_tree_init(&fs_info->mapping_tree);
2715 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2716 			     BTRFS_BLOCK_RSV_GLOBAL);
2717 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2718 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2719 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2720 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2721 			     BTRFS_BLOCK_RSV_DELOPS);
2722 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2723 			     BTRFS_BLOCK_RSV_DELREFS);
2724 
2725 	atomic_set(&fs_info->async_delalloc_pages, 0);
2726 	atomic_set(&fs_info->defrag_running, 0);
2727 	atomic_set(&fs_info->reada_works_cnt, 0);
2728 	atomic_set(&fs_info->nr_delayed_iputs, 0);
2729 	atomic64_set(&fs_info->tree_mod_seq, 0);
2730 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2731 	fs_info->metadata_ratio = 0;
2732 	fs_info->defrag_inodes = RB_ROOT;
2733 	atomic64_set(&fs_info->free_chunk_space, 0);
2734 	fs_info->tree_mod_log = RB_ROOT;
2735 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2736 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2737 	/* readahead state */
2738 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2739 	spin_lock_init(&fs_info->reada_lock);
2740 	btrfs_init_ref_verify(fs_info);
2741 
2742 	fs_info->thread_pool_size = min_t(unsigned long,
2743 					  num_online_cpus() + 2, 8);
2744 
2745 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2746 	spin_lock_init(&fs_info->ordered_root_lock);
2747 
2748 	btrfs_init_scrub(fs_info);
2749 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2750 	fs_info->check_integrity_print_mask = 0;
2751 #endif
2752 	btrfs_init_balance(fs_info);
2753 	btrfs_init_async_reclaim_work(fs_info);
2754 
2755 	spin_lock_init(&fs_info->block_group_cache_lock);
2756 	fs_info->block_group_cache_tree = RB_ROOT;
2757 	fs_info->first_logical_byte = (u64)-1;
2758 
2759 	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2760 			    IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2761 	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2762 
2763 	mutex_init(&fs_info->ordered_operations_mutex);
2764 	mutex_init(&fs_info->tree_log_mutex);
2765 	mutex_init(&fs_info->chunk_mutex);
2766 	mutex_init(&fs_info->transaction_kthread_mutex);
2767 	mutex_init(&fs_info->cleaner_mutex);
2768 	mutex_init(&fs_info->ro_block_group_mutex);
2769 	init_rwsem(&fs_info->commit_root_sem);
2770 	init_rwsem(&fs_info->cleanup_work_sem);
2771 	init_rwsem(&fs_info->subvol_sem);
2772 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2773 
2774 	btrfs_init_dev_replace_locks(fs_info);
2775 	btrfs_init_qgroup(fs_info);
2776 	btrfs_discard_init(fs_info);
2777 
2778 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2779 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2780 
2781 	init_waitqueue_head(&fs_info->transaction_throttle);
2782 	init_waitqueue_head(&fs_info->transaction_wait);
2783 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2784 	init_waitqueue_head(&fs_info->async_submit_wait);
2785 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2786 
2787 	/* Usable values until the real ones are cached from the superblock */
2788 	fs_info->nodesize = 4096;
2789 	fs_info->sectorsize = 4096;
2790 	fs_info->sectorsize_bits = ilog2(4096);
2791 	fs_info->stripesize = 4096;
2792 
2793 	spin_lock_init(&fs_info->swapfile_pins_lock);
2794 	fs_info->swapfile_pins = RB_ROOT;
2795 
2796 	fs_info->send_in_progress = 0;
2797 }
2798 
2799 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2800 {
2801 	int ret;
2802 
2803 	fs_info->sb = sb;
2804 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2805 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2806 
2807 	ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2808 	if (ret)
2809 		return ret;
2810 
2811 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2812 	if (ret)
2813 		return ret;
2814 
2815 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2816 					(1 + ilog2(nr_cpu_ids));
2817 
2818 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2819 	if (ret)
2820 		return ret;
2821 
2822 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2823 			GFP_KERNEL);
2824 	if (ret)
2825 		return ret;
2826 
2827 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2828 					GFP_KERNEL);
2829 	if (!fs_info->delayed_root)
2830 		return -ENOMEM;
2831 	btrfs_init_delayed_root(fs_info->delayed_root);
2832 
2833 	return btrfs_alloc_stripe_hash_table(fs_info);
2834 }
2835 
2836 static int btrfs_uuid_rescan_kthread(void *data)
2837 {
2838 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2839 	int ret;
2840 
2841 	/*
2842 	 * 1st step is to iterate through the existing UUID tree and
2843 	 * to delete all entries that contain outdated data.
2844 	 * 2nd step is to add all missing entries to the UUID tree.
2845 	 */
2846 	ret = btrfs_uuid_tree_iterate(fs_info);
2847 	if (ret < 0) {
2848 		if (ret != -EINTR)
2849 			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2850 				   ret);
2851 		up(&fs_info->uuid_tree_rescan_sem);
2852 		return ret;
2853 	}
2854 	return btrfs_uuid_scan_kthread(data);
2855 }
2856 
2857 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2858 {
2859 	struct task_struct *task;
2860 
2861 	down(&fs_info->uuid_tree_rescan_sem);
2862 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2863 	if (IS_ERR(task)) {
2864 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
2865 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
2866 		up(&fs_info->uuid_tree_rescan_sem);
2867 		return PTR_ERR(task);
2868 	}
2869 
2870 	return 0;
2871 }
2872 
2873 /*
2874  * Some options only have meaning at mount time and shouldn't persist across
2875  * remounts, or be displayed. Clear these at the end of mount and remount
2876  * code paths.
2877  */
2878 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
2879 {
2880 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
2881 	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
2882 }
2883 
2884 /*
2885  * Mounting logic specific to read-write file systems. Shared by open_ctree
2886  * and btrfs_remount when remounting from read-only to read-write.
2887  */
2888 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2889 {
2890 	int ret;
2891 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
2892 	bool clear_free_space_tree = false;
2893 
2894 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2895 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2896 		clear_free_space_tree = true;
2897 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2898 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2899 		btrfs_warn(fs_info, "free space tree is invalid");
2900 		clear_free_space_tree = true;
2901 	}
2902 
2903 	if (clear_free_space_tree) {
2904 		btrfs_info(fs_info, "clearing free space tree");
2905 		ret = btrfs_clear_free_space_tree(fs_info);
2906 		if (ret) {
2907 			btrfs_warn(fs_info,
2908 				   "failed to clear free space tree: %d", ret);
2909 			goto out;
2910 		}
2911 	}
2912 
2913 	ret = btrfs_cleanup_fs_roots(fs_info);
2914 	if (ret)
2915 		goto out;
2916 
2917 	down_read(&fs_info->cleanup_work_sem);
2918 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2919 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2920 		up_read(&fs_info->cleanup_work_sem);
2921 		goto out;
2922 	}
2923 	up_read(&fs_info->cleanup_work_sem);
2924 
2925 	mutex_lock(&fs_info->cleaner_mutex);
2926 	ret = btrfs_recover_relocation(fs_info->tree_root);
2927 	mutex_unlock(&fs_info->cleaner_mutex);
2928 	if (ret < 0) {
2929 		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
2930 		goto out;
2931 	}
2932 
2933 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
2934 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2935 		btrfs_info(fs_info, "creating free space tree");
2936 		ret = btrfs_create_free_space_tree(fs_info);
2937 		if (ret) {
2938 			btrfs_warn(fs_info,
2939 				"failed to create free space tree: %d", ret);
2940 			goto out;
2941 		}
2942 	}
2943 
2944 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
2945 		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
2946 		if (ret)
2947 			goto out;
2948 	}
2949 
2950 	ret = btrfs_resume_balance_async(fs_info);
2951 	if (ret)
2952 		goto out;
2953 
2954 	ret = btrfs_resume_dev_replace_async(fs_info);
2955 	if (ret) {
2956 		btrfs_warn(fs_info, "failed to resume dev_replace");
2957 		goto out;
2958 	}
2959 
2960 	btrfs_qgroup_rescan_resume(fs_info);
2961 
2962 	if (!fs_info->uuid_root) {
2963 		btrfs_info(fs_info, "creating UUID tree");
2964 		ret = btrfs_create_uuid_tree(fs_info);
2965 		if (ret) {
2966 			btrfs_warn(fs_info,
2967 				   "failed to create the UUID tree %d", ret);
2968 			goto out;
2969 		}
2970 	}
2971 
2972 out:
2973 	return ret;
2974 }
2975 
2976 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2977 		      char *options)
2978 {
2979 	u32 sectorsize;
2980 	u32 nodesize;
2981 	u32 stripesize;
2982 	u64 generation;
2983 	u64 features;
2984 	u16 csum_type;
2985 	struct btrfs_super_block *disk_super;
2986 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2987 	struct btrfs_root *tree_root;
2988 	struct btrfs_root *chunk_root;
2989 	int ret;
2990 	int err = -EINVAL;
2991 	int level;
2992 
2993 	ret = init_mount_fs_info(fs_info, sb);
2994 	if (ret) {
2995 		err = ret;
2996 		goto fail;
2997 	}
2998 
2999 	/* These need to be init'ed before we start creating inodes and such. */
3000 	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3001 				     GFP_KERNEL);
3002 	fs_info->tree_root = tree_root;
3003 	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3004 				      GFP_KERNEL);
3005 	fs_info->chunk_root = chunk_root;
3006 	if (!tree_root || !chunk_root) {
3007 		err = -ENOMEM;
3008 		goto fail;
3009 	}
3010 
3011 	fs_info->btree_inode = new_inode(sb);
3012 	if (!fs_info->btree_inode) {
3013 		err = -ENOMEM;
3014 		goto fail;
3015 	}
3016 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3017 	btrfs_init_btree_inode(fs_info);
3018 
3019 	invalidate_bdev(fs_devices->latest_bdev);
3020 
3021 	/*
3022 	 * Read super block and check the signature bytes only
3023 	 */
3024 	disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
3025 	if (IS_ERR(disk_super)) {
3026 		err = PTR_ERR(disk_super);
3027 		goto fail_alloc;
3028 	}
3029 
3030 	/*
3031 	 * Verify the type first, if that or the checksum value are
3032 	 * corrupted, we'll find out
3033 	 */
3034 	csum_type = btrfs_super_csum_type(disk_super);
3035 	if (!btrfs_supported_super_csum(csum_type)) {
3036 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3037 			  csum_type);
3038 		err = -EINVAL;
3039 		btrfs_release_disk_super(disk_super);
3040 		goto fail_alloc;
3041 	}
3042 
3043 	ret = btrfs_init_csum_hash(fs_info, csum_type);
3044 	if (ret) {
3045 		err = ret;
3046 		btrfs_release_disk_super(disk_super);
3047 		goto fail_alloc;
3048 	}
3049 
3050 	/*
3051 	 * We want to check superblock checksum, the type is stored inside.
3052 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3053 	 */
3054 	if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
3055 		btrfs_err(fs_info, "superblock checksum mismatch");
3056 		err = -EINVAL;
3057 		btrfs_release_disk_super(disk_super);
3058 		goto fail_alloc;
3059 	}
3060 
3061 	/*
3062 	 * super_copy is zeroed at allocation time and we never touch the
3063 	 * following bytes up to INFO_SIZE, the checksum is calculated from
3064 	 * the whole block of INFO_SIZE
3065 	 */
3066 	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3067 	btrfs_release_disk_super(disk_super);
3068 
3069 	disk_super = fs_info->super_copy;
3070 
3071 	ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
3072 		       BTRFS_FSID_SIZE));
3073 
3074 	if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
3075 		ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
3076 				fs_info->super_copy->metadata_uuid,
3077 				BTRFS_FSID_SIZE));
3078 	}
3079 
3080 	features = btrfs_super_flags(disk_super);
3081 	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3082 		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3083 		btrfs_set_super_flags(disk_super, features);
3084 		btrfs_info(fs_info,
3085 			"found metadata UUID change in progress flag, clearing");
3086 	}
3087 
3088 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3089 	       sizeof(*fs_info->super_for_commit));
3090 
3091 	ret = btrfs_validate_mount_super(fs_info);
3092 	if (ret) {
3093 		btrfs_err(fs_info, "superblock contains fatal errors");
3094 		err = -EINVAL;
3095 		goto fail_alloc;
3096 	}
3097 
3098 	if (!btrfs_super_root(disk_super))
3099 		goto fail_alloc;
3100 
3101 	/* check FS state, whether FS is broken. */
3102 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3103 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3104 
3105 	/*
3106 	 * In the long term, we'll store the compression type in the super
3107 	 * block, and it'll be used for per file compression control.
3108 	 */
3109 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3110 
3111 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3112 	if (ret) {
3113 		err = ret;
3114 		goto fail_alloc;
3115 	}
3116 
3117 	features = btrfs_super_incompat_flags(disk_super) &
3118 		~BTRFS_FEATURE_INCOMPAT_SUPP;
3119 	if (features) {
3120 		btrfs_err(fs_info,
3121 		    "cannot mount because of unsupported optional features (%llx)",
3122 		    features);
3123 		err = -EINVAL;
3124 		goto fail_alloc;
3125 	}
3126 
3127 	features = btrfs_super_incompat_flags(disk_super);
3128 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3129 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3130 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3131 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3132 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3133 
3134 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3135 		btrfs_info(fs_info, "has skinny extents");
3136 
3137 	fs_info->zoned = (features & BTRFS_FEATURE_INCOMPAT_ZONED);
3138 
3139 	/*
3140 	 * flag our filesystem as having big metadata blocks if
3141 	 * they are bigger than the page size
3142 	 */
3143 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3144 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3145 			btrfs_info(fs_info,
3146 				"flagging fs with big metadata feature");
3147 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3148 	}
3149 
3150 	nodesize = btrfs_super_nodesize(disk_super);
3151 	sectorsize = btrfs_super_sectorsize(disk_super);
3152 	stripesize = sectorsize;
3153 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3154 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3155 
3156 	/* Cache block sizes */
3157 	fs_info->nodesize = nodesize;
3158 	fs_info->sectorsize = sectorsize;
3159 	fs_info->sectorsize_bits = ilog2(sectorsize);
3160 	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3161 	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3162 	fs_info->stripesize = stripesize;
3163 
3164 	/*
3165 	 * mixed block groups end up with duplicate but slightly offset
3166 	 * extent buffers for the same range.  It leads to corruptions
3167 	 */
3168 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3169 	    (sectorsize != nodesize)) {
3170 		btrfs_err(fs_info,
3171 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3172 			nodesize, sectorsize);
3173 		goto fail_alloc;
3174 	}
3175 
3176 	/*
3177 	 * Needn't use the lock because there is no other task which will
3178 	 * update the flag.
3179 	 */
3180 	btrfs_set_super_incompat_flags(disk_super, features);
3181 
3182 	features = btrfs_super_compat_ro_flags(disk_super) &
3183 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
3184 	if (!sb_rdonly(sb) && features) {
3185 		btrfs_err(fs_info,
3186 	"cannot mount read-write because of unsupported optional features (%llx)",
3187 		       features);
3188 		err = -EINVAL;
3189 		goto fail_alloc;
3190 	}
3191 
3192 	ret = btrfs_init_workqueues(fs_info, fs_devices);
3193 	if (ret) {
3194 		err = ret;
3195 		goto fail_sb_buffer;
3196 	}
3197 
3198 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3199 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3200 
3201 	sb->s_blocksize = sectorsize;
3202 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3203 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3204 
3205 	mutex_lock(&fs_info->chunk_mutex);
3206 	ret = btrfs_read_sys_array(fs_info);
3207 	mutex_unlock(&fs_info->chunk_mutex);
3208 	if (ret) {
3209 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3210 		goto fail_sb_buffer;
3211 	}
3212 
3213 	generation = btrfs_super_chunk_root_generation(disk_super);
3214 	level = btrfs_super_chunk_root_level(disk_super);
3215 
3216 	chunk_root->node = read_tree_block(fs_info,
3217 					   btrfs_super_chunk_root(disk_super),
3218 					   BTRFS_CHUNK_TREE_OBJECTID,
3219 					   generation, level, NULL);
3220 	if (IS_ERR(chunk_root->node) ||
3221 	    !extent_buffer_uptodate(chunk_root->node)) {
3222 		btrfs_err(fs_info, "failed to read chunk root");
3223 		if (!IS_ERR(chunk_root->node))
3224 			free_extent_buffer(chunk_root->node);
3225 		chunk_root->node = NULL;
3226 		goto fail_tree_roots;
3227 	}
3228 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3229 	chunk_root->commit_root = btrfs_root_node(chunk_root);
3230 
3231 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3232 			   offsetof(struct btrfs_header, chunk_tree_uuid),
3233 			   BTRFS_UUID_SIZE);
3234 
3235 	ret = btrfs_read_chunk_tree(fs_info);
3236 	if (ret) {
3237 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3238 		goto fail_tree_roots;
3239 	}
3240 
3241 	/*
3242 	 * At this point we know all the devices that make this filesystem,
3243 	 * including the seed devices but we don't know yet if the replace
3244 	 * target is required. So free devices that are not part of this
3245 	 * filesystem but skip the replace traget device which is checked
3246 	 * below in btrfs_init_dev_replace().
3247 	 */
3248 	btrfs_free_extra_devids(fs_devices);
3249 	if (!fs_devices->latest_bdev) {
3250 		btrfs_err(fs_info, "failed to read devices");
3251 		goto fail_tree_roots;
3252 	}
3253 
3254 	ret = init_tree_roots(fs_info);
3255 	if (ret)
3256 		goto fail_tree_roots;
3257 
3258 	/*
3259 	 * If we have a uuid root and we're not being told to rescan we need to
3260 	 * check the generation here so we can set the
3261 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3262 	 * transaction during a balance or the log replay without updating the
3263 	 * uuid generation, and then if we crash we would rescan the uuid tree,
3264 	 * even though it was perfectly fine.
3265 	 */
3266 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3267 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3268 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3269 
3270 	ret = btrfs_verify_dev_extents(fs_info);
3271 	if (ret) {
3272 		btrfs_err(fs_info,
3273 			  "failed to verify dev extents against chunks: %d",
3274 			  ret);
3275 		goto fail_block_groups;
3276 	}
3277 	ret = btrfs_recover_balance(fs_info);
3278 	if (ret) {
3279 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3280 		goto fail_block_groups;
3281 	}
3282 
3283 	ret = btrfs_init_dev_stats(fs_info);
3284 	if (ret) {
3285 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3286 		goto fail_block_groups;
3287 	}
3288 
3289 	ret = btrfs_init_dev_replace(fs_info);
3290 	if (ret) {
3291 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3292 		goto fail_block_groups;
3293 	}
3294 
3295 	ret = btrfs_check_zoned_mode(fs_info);
3296 	if (ret) {
3297 		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3298 			  ret);
3299 		goto fail_block_groups;
3300 	}
3301 
3302 	ret = btrfs_sysfs_add_fsid(fs_devices);
3303 	if (ret) {
3304 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3305 				ret);
3306 		goto fail_block_groups;
3307 	}
3308 
3309 	ret = btrfs_sysfs_add_mounted(fs_info);
3310 	if (ret) {
3311 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3312 		goto fail_fsdev_sysfs;
3313 	}
3314 
3315 	ret = btrfs_init_space_info(fs_info);
3316 	if (ret) {
3317 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3318 		goto fail_sysfs;
3319 	}
3320 
3321 	ret = btrfs_read_block_groups(fs_info);
3322 	if (ret) {
3323 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3324 		goto fail_sysfs;
3325 	}
3326 
3327 	if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3328 		btrfs_warn(fs_info,
3329 		"writable mount is not allowed due to too many missing devices");
3330 		goto fail_sysfs;
3331 	}
3332 
3333 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3334 					       "btrfs-cleaner");
3335 	if (IS_ERR(fs_info->cleaner_kthread))
3336 		goto fail_sysfs;
3337 
3338 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3339 						   tree_root,
3340 						   "btrfs-transaction");
3341 	if (IS_ERR(fs_info->transaction_kthread))
3342 		goto fail_cleaner;
3343 
3344 	if (!btrfs_test_opt(fs_info, NOSSD) &&
3345 	    !fs_info->fs_devices->rotating) {
3346 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3347 	}
3348 
3349 	/*
3350 	 * Mount does not set all options immediately, we can do it now and do
3351 	 * not have to wait for transaction commit
3352 	 */
3353 	btrfs_apply_pending_changes(fs_info);
3354 
3355 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3356 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3357 		ret = btrfsic_mount(fs_info, fs_devices,
3358 				    btrfs_test_opt(fs_info,
3359 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3360 				    1 : 0,
3361 				    fs_info->check_integrity_print_mask);
3362 		if (ret)
3363 			btrfs_warn(fs_info,
3364 				"failed to initialize integrity check module: %d",
3365 				ret);
3366 	}
3367 #endif
3368 	ret = btrfs_read_qgroup_config(fs_info);
3369 	if (ret)
3370 		goto fail_trans_kthread;
3371 
3372 	if (btrfs_build_ref_tree(fs_info))
3373 		btrfs_err(fs_info, "couldn't build ref tree");
3374 
3375 	/* do not make disk changes in broken FS or nologreplay is given */
3376 	if (btrfs_super_log_root(disk_super) != 0 &&
3377 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3378 		btrfs_info(fs_info, "start tree-log replay");
3379 		ret = btrfs_replay_log(fs_info, fs_devices);
3380 		if (ret) {
3381 			err = ret;
3382 			goto fail_qgroup;
3383 		}
3384 	}
3385 
3386 	ret = btrfs_find_orphan_roots(fs_info);
3387 	if (ret)
3388 		goto fail_qgroup;
3389 
3390 	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3391 	if (IS_ERR(fs_info->fs_root)) {
3392 		err = PTR_ERR(fs_info->fs_root);
3393 		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3394 		fs_info->fs_root = NULL;
3395 		goto fail_qgroup;
3396 	}
3397 
3398 	if (sb_rdonly(sb))
3399 		goto clear_oneshot;
3400 
3401 	ret = btrfs_start_pre_rw_mount(fs_info);
3402 	if (ret) {
3403 		close_ctree(fs_info);
3404 		return ret;
3405 	}
3406 	btrfs_discard_resume(fs_info);
3407 
3408 	if (fs_info->uuid_root &&
3409 	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3410 	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3411 		btrfs_info(fs_info, "checking UUID tree");
3412 		ret = btrfs_check_uuid_tree(fs_info);
3413 		if (ret) {
3414 			btrfs_warn(fs_info,
3415 				"failed to check the UUID tree: %d", ret);
3416 			close_ctree(fs_info);
3417 			return ret;
3418 		}
3419 	}
3420 
3421 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3422 
3423 clear_oneshot:
3424 	btrfs_clear_oneshot_options(fs_info);
3425 	return 0;
3426 
3427 fail_qgroup:
3428 	btrfs_free_qgroup_config(fs_info);
3429 fail_trans_kthread:
3430 	kthread_stop(fs_info->transaction_kthread);
3431 	btrfs_cleanup_transaction(fs_info);
3432 	btrfs_free_fs_roots(fs_info);
3433 fail_cleaner:
3434 	kthread_stop(fs_info->cleaner_kthread);
3435 
3436 	/*
3437 	 * make sure we're done with the btree inode before we stop our
3438 	 * kthreads
3439 	 */
3440 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3441 
3442 fail_sysfs:
3443 	btrfs_sysfs_remove_mounted(fs_info);
3444 
3445 fail_fsdev_sysfs:
3446 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3447 
3448 fail_block_groups:
3449 	btrfs_put_block_group_cache(fs_info);
3450 
3451 fail_tree_roots:
3452 	if (fs_info->data_reloc_root)
3453 		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3454 	free_root_pointers(fs_info, true);
3455 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3456 
3457 fail_sb_buffer:
3458 	btrfs_stop_all_workers(fs_info);
3459 	btrfs_free_block_groups(fs_info);
3460 fail_alloc:
3461 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3462 
3463 	iput(fs_info->btree_inode);
3464 fail:
3465 	btrfs_close_devices(fs_info->fs_devices);
3466 	return err;
3467 }
3468 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3469 
3470 static void btrfs_end_super_write(struct bio *bio)
3471 {
3472 	struct btrfs_device *device = bio->bi_private;
3473 	struct bio_vec *bvec;
3474 	struct bvec_iter_all iter_all;
3475 	struct page *page;
3476 
3477 	bio_for_each_segment_all(bvec, bio, iter_all) {
3478 		page = bvec->bv_page;
3479 
3480 		if (bio->bi_status) {
3481 			btrfs_warn_rl_in_rcu(device->fs_info,
3482 				"lost page write due to IO error on %s (%d)",
3483 				rcu_str_deref(device->name),
3484 				blk_status_to_errno(bio->bi_status));
3485 			ClearPageUptodate(page);
3486 			SetPageError(page);
3487 			btrfs_dev_stat_inc_and_print(device,
3488 						     BTRFS_DEV_STAT_WRITE_ERRS);
3489 		} else {
3490 			SetPageUptodate(page);
3491 		}
3492 
3493 		put_page(page);
3494 		unlock_page(page);
3495 	}
3496 
3497 	bio_put(bio);
3498 }
3499 
3500 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3501 						   int copy_num)
3502 {
3503 	struct btrfs_super_block *super;
3504 	struct page *page;
3505 	u64 bytenr, bytenr_orig;
3506 	struct address_space *mapping = bdev->bd_inode->i_mapping;
3507 	int ret;
3508 
3509 	bytenr_orig = btrfs_sb_offset(copy_num);
3510 	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3511 	if (ret == -ENOENT)
3512 		return ERR_PTR(-EINVAL);
3513 	else if (ret)
3514 		return ERR_PTR(ret);
3515 
3516 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3517 		return ERR_PTR(-EINVAL);
3518 
3519 	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3520 	if (IS_ERR(page))
3521 		return ERR_CAST(page);
3522 
3523 	super = page_address(page);
3524 	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3525 		btrfs_release_disk_super(super);
3526 		return ERR_PTR(-ENODATA);
3527 	}
3528 
3529 	if (btrfs_super_bytenr(super) != bytenr_orig) {
3530 		btrfs_release_disk_super(super);
3531 		return ERR_PTR(-EINVAL);
3532 	}
3533 
3534 	return super;
3535 }
3536 
3537 
3538 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3539 {
3540 	struct btrfs_super_block *super, *latest = NULL;
3541 	int i;
3542 	u64 transid = 0;
3543 
3544 	/* we would like to check all the supers, but that would make
3545 	 * a btrfs mount succeed after a mkfs from a different FS.
3546 	 * So, we need to add a special mount option to scan for
3547 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3548 	 */
3549 	for (i = 0; i < 1; i++) {
3550 		super = btrfs_read_dev_one_super(bdev, i);
3551 		if (IS_ERR(super))
3552 			continue;
3553 
3554 		if (!latest || btrfs_super_generation(super) > transid) {
3555 			if (latest)
3556 				btrfs_release_disk_super(super);
3557 
3558 			latest = super;
3559 			transid = btrfs_super_generation(super);
3560 		}
3561 	}
3562 
3563 	return super;
3564 }
3565 
3566 /*
3567  * Write superblock @sb to the @device. Do not wait for completion, all the
3568  * pages we use for writing are locked.
3569  *
3570  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3571  * the expected device size at commit time. Note that max_mirrors must be
3572  * same for write and wait phases.
3573  *
3574  * Return number of errors when page is not found or submission fails.
3575  */
3576 static int write_dev_supers(struct btrfs_device *device,
3577 			    struct btrfs_super_block *sb, int max_mirrors)
3578 {
3579 	struct btrfs_fs_info *fs_info = device->fs_info;
3580 	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3581 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3582 	int i;
3583 	int errors = 0;
3584 	int ret;
3585 	u64 bytenr, bytenr_orig;
3586 
3587 	if (max_mirrors == 0)
3588 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3589 
3590 	shash->tfm = fs_info->csum_shash;
3591 
3592 	for (i = 0; i < max_mirrors; i++) {
3593 		struct page *page;
3594 		struct bio *bio;
3595 		struct btrfs_super_block *disk_super;
3596 
3597 		bytenr_orig = btrfs_sb_offset(i);
3598 		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3599 		if (ret == -ENOENT) {
3600 			continue;
3601 		} else if (ret < 0) {
3602 			btrfs_err(device->fs_info,
3603 				"couldn't get super block location for mirror %d",
3604 				i);
3605 			errors++;
3606 			continue;
3607 		}
3608 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3609 		    device->commit_total_bytes)
3610 			break;
3611 
3612 		btrfs_set_super_bytenr(sb, bytenr_orig);
3613 
3614 		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3615 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3616 				    sb->csum);
3617 
3618 		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3619 					   GFP_NOFS);
3620 		if (!page) {
3621 			btrfs_err(device->fs_info,
3622 			    "couldn't get super block page for bytenr %llu",
3623 			    bytenr);
3624 			errors++;
3625 			continue;
3626 		}
3627 
3628 		/* Bump the refcount for wait_dev_supers() */
3629 		get_page(page);
3630 
3631 		disk_super = page_address(page);
3632 		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3633 
3634 		/*
3635 		 * Directly use bios here instead of relying on the page cache
3636 		 * to do I/O, so we don't lose the ability to do integrity
3637 		 * checking.
3638 		 */
3639 		bio = bio_alloc(GFP_NOFS, 1);
3640 		bio_set_dev(bio, device->bdev);
3641 		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3642 		bio->bi_private = device;
3643 		bio->bi_end_io = btrfs_end_super_write;
3644 		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3645 			       offset_in_page(bytenr));
3646 
3647 		/*
3648 		 * We FUA only the first super block.  The others we allow to
3649 		 * go down lazy and there's a short window where the on-disk
3650 		 * copies might still contain the older version.
3651 		 */
3652 		bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3653 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3654 			bio->bi_opf |= REQ_FUA;
3655 
3656 		btrfsic_submit_bio(bio);
3657 		btrfs_advance_sb_log(device, i);
3658 	}
3659 	return errors < i ? 0 : -1;
3660 }
3661 
3662 /*
3663  * Wait for write completion of superblocks done by write_dev_supers,
3664  * @max_mirrors same for write and wait phases.
3665  *
3666  * Return number of errors when page is not found or not marked up to
3667  * date.
3668  */
3669 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3670 {
3671 	int i;
3672 	int errors = 0;
3673 	bool primary_failed = false;
3674 	int ret;
3675 	u64 bytenr;
3676 
3677 	if (max_mirrors == 0)
3678 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3679 
3680 	for (i = 0; i < max_mirrors; i++) {
3681 		struct page *page;
3682 
3683 		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3684 		if (ret == -ENOENT) {
3685 			break;
3686 		} else if (ret < 0) {
3687 			errors++;
3688 			if (i == 0)
3689 				primary_failed = true;
3690 			continue;
3691 		}
3692 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3693 		    device->commit_total_bytes)
3694 			break;
3695 
3696 		page = find_get_page(device->bdev->bd_inode->i_mapping,
3697 				     bytenr >> PAGE_SHIFT);
3698 		if (!page) {
3699 			errors++;
3700 			if (i == 0)
3701 				primary_failed = true;
3702 			continue;
3703 		}
3704 		/* Page is submitted locked and unlocked once the IO completes */
3705 		wait_on_page_locked(page);
3706 		if (PageError(page)) {
3707 			errors++;
3708 			if (i == 0)
3709 				primary_failed = true;
3710 		}
3711 
3712 		/* Drop our reference */
3713 		put_page(page);
3714 
3715 		/* Drop the reference from the writing run */
3716 		put_page(page);
3717 	}
3718 
3719 	/* log error, force error return */
3720 	if (primary_failed) {
3721 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3722 			  device->devid);
3723 		return -1;
3724 	}
3725 
3726 	return errors < i ? 0 : -1;
3727 }
3728 
3729 /*
3730  * endio for the write_dev_flush, this will wake anyone waiting
3731  * for the barrier when it is done
3732  */
3733 static void btrfs_end_empty_barrier(struct bio *bio)
3734 {
3735 	complete(bio->bi_private);
3736 }
3737 
3738 /*
3739  * Submit a flush request to the device if it supports it. Error handling is
3740  * done in the waiting counterpart.
3741  */
3742 static void write_dev_flush(struct btrfs_device *device)
3743 {
3744 	struct request_queue *q = bdev_get_queue(device->bdev);
3745 	struct bio *bio = device->flush_bio;
3746 
3747 	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3748 		return;
3749 
3750 	bio_reset(bio);
3751 	bio->bi_end_io = btrfs_end_empty_barrier;
3752 	bio_set_dev(bio, device->bdev);
3753 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3754 	init_completion(&device->flush_wait);
3755 	bio->bi_private = &device->flush_wait;
3756 
3757 	btrfsic_submit_bio(bio);
3758 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3759 }
3760 
3761 /*
3762  * If the flush bio has been submitted by write_dev_flush, wait for it.
3763  */
3764 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3765 {
3766 	struct bio *bio = device->flush_bio;
3767 
3768 	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3769 		return BLK_STS_OK;
3770 
3771 	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3772 	wait_for_completion_io(&device->flush_wait);
3773 
3774 	return bio->bi_status;
3775 }
3776 
3777 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3778 {
3779 	if (!btrfs_check_rw_degradable(fs_info, NULL))
3780 		return -EIO;
3781 	return 0;
3782 }
3783 
3784 /*
3785  * send an empty flush down to each device in parallel,
3786  * then wait for them
3787  */
3788 static int barrier_all_devices(struct btrfs_fs_info *info)
3789 {
3790 	struct list_head *head;
3791 	struct btrfs_device *dev;
3792 	int errors_wait = 0;
3793 	blk_status_t ret;
3794 
3795 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3796 	/* send down all the barriers */
3797 	head = &info->fs_devices->devices;
3798 	list_for_each_entry(dev, head, dev_list) {
3799 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3800 			continue;
3801 		if (!dev->bdev)
3802 			continue;
3803 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3804 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3805 			continue;
3806 
3807 		write_dev_flush(dev);
3808 		dev->last_flush_error = BLK_STS_OK;
3809 	}
3810 
3811 	/* wait for all the barriers */
3812 	list_for_each_entry(dev, head, dev_list) {
3813 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3814 			continue;
3815 		if (!dev->bdev) {
3816 			errors_wait++;
3817 			continue;
3818 		}
3819 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3820 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3821 			continue;
3822 
3823 		ret = wait_dev_flush(dev);
3824 		if (ret) {
3825 			dev->last_flush_error = ret;
3826 			btrfs_dev_stat_inc_and_print(dev,
3827 					BTRFS_DEV_STAT_FLUSH_ERRS);
3828 			errors_wait++;
3829 		}
3830 	}
3831 
3832 	if (errors_wait) {
3833 		/*
3834 		 * At some point we need the status of all disks
3835 		 * to arrive at the volume status. So error checking
3836 		 * is being pushed to a separate loop.
3837 		 */
3838 		return check_barrier_error(info);
3839 	}
3840 	return 0;
3841 }
3842 
3843 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3844 {
3845 	int raid_type;
3846 	int min_tolerated = INT_MAX;
3847 
3848 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3849 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3850 		min_tolerated = min_t(int, min_tolerated,
3851 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3852 				    tolerated_failures);
3853 
3854 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3855 		if (raid_type == BTRFS_RAID_SINGLE)
3856 			continue;
3857 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3858 			continue;
3859 		min_tolerated = min_t(int, min_tolerated,
3860 				    btrfs_raid_array[raid_type].
3861 				    tolerated_failures);
3862 	}
3863 
3864 	if (min_tolerated == INT_MAX) {
3865 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3866 		min_tolerated = 0;
3867 	}
3868 
3869 	return min_tolerated;
3870 }
3871 
3872 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3873 {
3874 	struct list_head *head;
3875 	struct btrfs_device *dev;
3876 	struct btrfs_super_block *sb;
3877 	struct btrfs_dev_item *dev_item;
3878 	int ret;
3879 	int do_barriers;
3880 	int max_errors;
3881 	int total_errors = 0;
3882 	u64 flags;
3883 
3884 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3885 
3886 	/*
3887 	 * max_mirrors == 0 indicates we're from commit_transaction,
3888 	 * not from fsync where the tree roots in fs_info have not
3889 	 * been consistent on disk.
3890 	 */
3891 	if (max_mirrors == 0)
3892 		backup_super_roots(fs_info);
3893 
3894 	sb = fs_info->super_for_commit;
3895 	dev_item = &sb->dev_item;
3896 
3897 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3898 	head = &fs_info->fs_devices->devices;
3899 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3900 
3901 	if (do_barriers) {
3902 		ret = barrier_all_devices(fs_info);
3903 		if (ret) {
3904 			mutex_unlock(
3905 				&fs_info->fs_devices->device_list_mutex);
3906 			btrfs_handle_fs_error(fs_info, ret,
3907 					      "errors while submitting device barriers.");
3908 			return ret;
3909 		}
3910 	}
3911 
3912 	list_for_each_entry(dev, head, dev_list) {
3913 		if (!dev->bdev) {
3914 			total_errors++;
3915 			continue;
3916 		}
3917 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3918 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3919 			continue;
3920 
3921 		btrfs_set_stack_device_generation(dev_item, 0);
3922 		btrfs_set_stack_device_type(dev_item, dev->type);
3923 		btrfs_set_stack_device_id(dev_item, dev->devid);
3924 		btrfs_set_stack_device_total_bytes(dev_item,
3925 						   dev->commit_total_bytes);
3926 		btrfs_set_stack_device_bytes_used(dev_item,
3927 						  dev->commit_bytes_used);
3928 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3929 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3930 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3931 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3932 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3933 		       BTRFS_FSID_SIZE);
3934 
3935 		flags = btrfs_super_flags(sb);
3936 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3937 
3938 		ret = btrfs_validate_write_super(fs_info, sb);
3939 		if (ret < 0) {
3940 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3941 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
3942 				"unexpected superblock corruption detected");
3943 			return -EUCLEAN;
3944 		}
3945 
3946 		ret = write_dev_supers(dev, sb, max_mirrors);
3947 		if (ret)
3948 			total_errors++;
3949 	}
3950 	if (total_errors > max_errors) {
3951 		btrfs_err(fs_info, "%d errors while writing supers",
3952 			  total_errors);
3953 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3954 
3955 		/* FUA is masked off if unsupported and can't be the reason */
3956 		btrfs_handle_fs_error(fs_info, -EIO,
3957 				      "%d errors while writing supers",
3958 				      total_errors);
3959 		return -EIO;
3960 	}
3961 
3962 	total_errors = 0;
3963 	list_for_each_entry(dev, head, dev_list) {
3964 		if (!dev->bdev)
3965 			continue;
3966 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3967 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3968 			continue;
3969 
3970 		ret = wait_dev_supers(dev, max_mirrors);
3971 		if (ret)
3972 			total_errors++;
3973 	}
3974 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3975 	if (total_errors > max_errors) {
3976 		btrfs_handle_fs_error(fs_info, -EIO,
3977 				      "%d errors while writing supers",
3978 				      total_errors);
3979 		return -EIO;
3980 	}
3981 	return 0;
3982 }
3983 
3984 /* Drop a fs root from the radix tree and free it. */
3985 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3986 				  struct btrfs_root *root)
3987 {
3988 	bool drop_ref = false;
3989 
3990 	spin_lock(&fs_info->fs_roots_radix_lock);
3991 	radix_tree_delete(&fs_info->fs_roots_radix,
3992 			  (unsigned long)root->root_key.objectid);
3993 	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
3994 		drop_ref = true;
3995 	spin_unlock(&fs_info->fs_roots_radix_lock);
3996 
3997 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3998 		ASSERT(root->log_root == NULL);
3999 		if (root->reloc_root) {
4000 			btrfs_put_root(root->reloc_root);
4001 			root->reloc_root = NULL;
4002 		}
4003 	}
4004 
4005 	if (drop_ref)
4006 		btrfs_put_root(root);
4007 }
4008 
4009 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4010 {
4011 	u64 root_objectid = 0;
4012 	struct btrfs_root *gang[8];
4013 	int i = 0;
4014 	int err = 0;
4015 	unsigned int ret = 0;
4016 
4017 	while (1) {
4018 		spin_lock(&fs_info->fs_roots_radix_lock);
4019 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4020 					     (void **)gang, root_objectid,
4021 					     ARRAY_SIZE(gang));
4022 		if (!ret) {
4023 			spin_unlock(&fs_info->fs_roots_radix_lock);
4024 			break;
4025 		}
4026 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
4027 
4028 		for (i = 0; i < ret; i++) {
4029 			/* Avoid to grab roots in dead_roots */
4030 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4031 				gang[i] = NULL;
4032 				continue;
4033 			}
4034 			/* grab all the search result for later use */
4035 			gang[i] = btrfs_grab_root(gang[i]);
4036 		}
4037 		spin_unlock(&fs_info->fs_roots_radix_lock);
4038 
4039 		for (i = 0; i < ret; i++) {
4040 			if (!gang[i])
4041 				continue;
4042 			root_objectid = gang[i]->root_key.objectid;
4043 			err = btrfs_orphan_cleanup(gang[i]);
4044 			if (err)
4045 				break;
4046 			btrfs_put_root(gang[i]);
4047 		}
4048 		root_objectid++;
4049 	}
4050 
4051 	/* release the uncleaned roots due to error */
4052 	for (; i < ret; i++) {
4053 		if (gang[i])
4054 			btrfs_put_root(gang[i]);
4055 	}
4056 	return err;
4057 }
4058 
4059 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4060 {
4061 	struct btrfs_root *root = fs_info->tree_root;
4062 	struct btrfs_trans_handle *trans;
4063 
4064 	mutex_lock(&fs_info->cleaner_mutex);
4065 	btrfs_run_delayed_iputs(fs_info);
4066 	mutex_unlock(&fs_info->cleaner_mutex);
4067 	wake_up_process(fs_info->cleaner_kthread);
4068 
4069 	/* wait until ongoing cleanup work done */
4070 	down_write(&fs_info->cleanup_work_sem);
4071 	up_write(&fs_info->cleanup_work_sem);
4072 
4073 	trans = btrfs_join_transaction(root);
4074 	if (IS_ERR(trans))
4075 		return PTR_ERR(trans);
4076 	return btrfs_commit_transaction(trans);
4077 }
4078 
4079 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4080 {
4081 	int ret;
4082 
4083 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4084 	/*
4085 	 * We don't want the cleaner to start new transactions, add more delayed
4086 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4087 	 * because that frees the task_struct, and the transaction kthread might
4088 	 * still try to wake up the cleaner.
4089 	 */
4090 	kthread_park(fs_info->cleaner_kthread);
4091 
4092 	/* wait for the qgroup rescan worker to stop */
4093 	btrfs_qgroup_wait_for_completion(fs_info, false);
4094 
4095 	/* wait for the uuid_scan task to finish */
4096 	down(&fs_info->uuid_tree_rescan_sem);
4097 	/* avoid complains from lockdep et al., set sem back to initial state */
4098 	up(&fs_info->uuid_tree_rescan_sem);
4099 
4100 	/* pause restriper - we want to resume on mount */
4101 	btrfs_pause_balance(fs_info);
4102 
4103 	btrfs_dev_replace_suspend_for_unmount(fs_info);
4104 
4105 	btrfs_scrub_cancel(fs_info);
4106 
4107 	/* wait for any defraggers to finish */
4108 	wait_event(fs_info->transaction_wait,
4109 		   (atomic_read(&fs_info->defrag_running) == 0));
4110 
4111 	/* clear out the rbtree of defraggable inodes */
4112 	btrfs_cleanup_defrag_inodes(fs_info);
4113 
4114 	cancel_work_sync(&fs_info->async_reclaim_work);
4115 	cancel_work_sync(&fs_info->async_data_reclaim_work);
4116 
4117 	/* Cancel or finish ongoing discard work */
4118 	btrfs_discard_cleanup(fs_info);
4119 
4120 	if (!sb_rdonly(fs_info->sb)) {
4121 		/*
4122 		 * The cleaner kthread is stopped, so do one final pass over
4123 		 * unused block groups.
4124 		 */
4125 		btrfs_delete_unused_bgs(fs_info);
4126 
4127 		/*
4128 		 * There might be existing delayed inode workers still running
4129 		 * and holding an empty delayed inode item. We must wait for
4130 		 * them to complete first because they can create a transaction.
4131 		 * This happens when someone calls btrfs_balance_delayed_items()
4132 		 * and then a transaction commit runs the same delayed nodes
4133 		 * before any delayed worker has done something with the nodes.
4134 		 * We must wait for any worker here and not at transaction
4135 		 * commit time since that could cause a deadlock.
4136 		 * This is a very rare case.
4137 		 */
4138 		btrfs_flush_workqueue(fs_info->delayed_workers);
4139 
4140 		ret = btrfs_commit_super(fs_info);
4141 		if (ret)
4142 			btrfs_err(fs_info, "commit super ret %d", ret);
4143 	}
4144 
4145 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4146 	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4147 		btrfs_error_commit_super(fs_info);
4148 
4149 	kthread_stop(fs_info->transaction_kthread);
4150 	kthread_stop(fs_info->cleaner_kthread);
4151 
4152 	ASSERT(list_empty(&fs_info->delayed_iputs));
4153 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4154 
4155 	if (btrfs_check_quota_leak(fs_info)) {
4156 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4157 		btrfs_err(fs_info, "qgroup reserved space leaked");
4158 	}
4159 
4160 	btrfs_free_qgroup_config(fs_info);
4161 	ASSERT(list_empty(&fs_info->delalloc_roots));
4162 
4163 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4164 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4165 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4166 	}
4167 
4168 	if (percpu_counter_sum(&fs_info->dio_bytes))
4169 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4170 			   percpu_counter_sum(&fs_info->dio_bytes));
4171 
4172 	btrfs_sysfs_remove_mounted(fs_info);
4173 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4174 
4175 	btrfs_put_block_group_cache(fs_info);
4176 
4177 	/*
4178 	 * we must make sure there is not any read request to
4179 	 * submit after we stopping all workers.
4180 	 */
4181 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4182 	btrfs_stop_all_workers(fs_info);
4183 
4184 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4185 	free_root_pointers(fs_info, true);
4186 	btrfs_free_fs_roots(fs_info);
4187 
4188 	/*
4189 	 * We must free the block groups after dropping the fs_roots as we could
4190 	 * have had an IO error and have left over tree log blocks that aren't
4191 	 * cleaned up until the fs roots are freed.  This makes the block group
4192 	 * accounting appear to be wrong because there's pending reserved bytes,
4193 	 * so make sure we do the block group cleanup afterwards.
4194 	 */
4195 	btrfs_free_block_groups(fs_info);
4196 
4197 	iput(fs_info->btree_inode);
4198 
4199 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4200 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4201 		btrfsic_unmount(fs_info->fs_devices);
4202 #endif
4203 
4204 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4205 	btrfs_close_devices(fs_info->fs_devices);
4206 }
4207 
4208 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4209 			  int atomic)
4210 {
4211 	int ret;
4212 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4213 
4214 	ret = extent_buffer_uptodate(buf);
4215 	if (!ret)
4216 		return ret;
4217 
4218 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4219 				    parent_transid, atomic);
4220 	if (ret == -EAGAIN)
4221 		return ret;
4222 	return !ret;
4223 }
4224 
4225 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4226 {
4227 	struct btrfs_fs_info *fs_info = buf->fs_info;
4228 	u64 transid = btrfs_header_generation(buf);
4229 	int was_dirty;
4230 
4231 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4232 	/*
4233 	 * This is a fast path so only do this check if we have sanity tests
4234 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4235 	 * outside of the sanity tests.
4236 	 */
4237 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4238 		return;
4239 #endif
4240 	btrfs_assert_tree_locked(buf);
4241 	if (transid != fs_info->generation)
4242 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4243 			buf->start, transid, fs_info->generation);
4244 	was_dirty = set_extent_buffer_dirty(buf);
4245 	if (!was_dirty)
4246 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4247 					 buf->len,
4248 					 fs_info->dirty_metadata_batch);
4249 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4250 	/*
4251 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4252 	 * but item data not updated.
4253 	 * So here we should only check item pointers, not item data.
4254 	 */
4255 	if (btrfs_header_level(buf) == 0 &&
4256 	    btrfs_check_leaf_relaxed(buf)) {
4257 		btrfs_print_leaf(buf);
4258 		ASSERT(0);
4259 	}
4260 #endif
4261 }
4262 
4263 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4264 					int flush_delayed)
4265 {
4266 	/*
4267 	 * looks as though older kernels can get into trouble with
4268 	 * this code, they end up stuck in balance_dirty_pages forever
4269 	 */
4270 	int ret;
4271 
4272 	if (current->flags & PF_MEMALLOC)
4273 		return;
4274 
4275 	if (flush_delayed)
4276 		btrfs_balance_delayed_items(fs_info);
4277 
4278 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4279 				     BTRFS_DIRTY_METADATA_THRESH,
4280 				     fs_info->dirty_metadata_batch);
4281 	if (ret > 0) {
4282 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4283 	}
4284 }
4285 
4286 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4287 {
4288 	__btrfs_btree_balance_dirty(fs_info, 1);
4289 }
4290 
4291 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4292 {
4293 	__btrfs_btree_balance_dirty(fs_info, 0);
4294 }
4295 
4296 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4297 		      struct btrfs_key *first_key)
4298 {
4299 	return btree_read_extent_buffer_pages(buf, parent_transid,
4300 					      level, first_key);
4301 }
4302 
4303 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4304 {
4305 	/* cleanup FS via transaction */
4306 	btrfs_cleanup_transaction(fs_info);
4307 
4308 	mutex_lock(&fs_info->cleaner_mutex);
4309 	btrfs_run_delayed_iputs(fs_info);
4310 	mutex_unlock(&fs_info->cleaner_mutex);
4311 
4312 	down_write(&fs_info->cleanup_work_sem);
4313 	up_write(&fs_info->cleanup_work_sem);
4314 }
4315 
4316 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4317 {
4318 	struct btrfs_root *gang[8];
4319 	u64 root_objectid = 0;
4320 	int ret;
4321 
4322 	spin_lock(&fs_info->fs_roots_radix_lock);
4323 	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4324 					     (void **)gang, root_objectid,
4325 					     ARRAY_SIZE(gang))) != 0) {
4326 		int i;
4327 
4328 		for (i = 0; i < ret; i++)
4329 			gang[i] = btrfs_grab_root(gang[i]);
4330 		spin_unlock(&fs_info->fs_roots_radix_lock);
4331 
4332 		for (i = 0; i < ret; i++) {
4333 			if (!gang[i])
4334 				continue;
4335 			root_objectid = gang[i]->root_key.objectid;
4336 			btrfs_free_log(NULL, gang[i]);
4337 			btrfs_put_root(gang[i]);
4338 		}
4339 		root_objectid++;
4340 		spin_lock(&fs_info->fs_roots_radix_lock);
4341 	}
4342 	spin_unlock(&fs_info->fs_roots_radix_lock);
4343 	btrfs_free_log_root_tree(NULL, fs_info);
4344 }
4345 
4346 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4347 {
4348 	struct btrfs_ordered_extent *ordered;
4349 
4350 	spin_lock(&root->ordered_extent_lock);
4351 	/*
4352 	 * This will just short circuit the ordered completion stuff which will
4353 	 * make sure the ordered extent gets properly cleaned up.
4354 	 */
4355 	list_for_each_entry(ordered, &root->ordered_extents,
4356 			    root_extent_list)
4357 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4358 	spin_unlock(&root->ordered_extent_lock);
4359 }
4360 
4361 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4362 {
4363 	struct btrfs_root *root;
4364 	struct list_head splice;
4365 
4366 	INIT_LIST_HEAD(&splice);
4367 
4368 	spin_lock(&fs_info->ordered_root_lock);
4369 	list_splice_init(&fs_info->ordered_roots, &splice);
4370 	while (!list_empty(&splice)) {
4371 		root = list_first_entry(&splice, struct btrfs_root,
4372 					ordered_root);
4373 		list_move_tail(&root->ordered_root,
4374 			       &fs_info->ordered_roots);
4375 
4376 		spin_unlock(&fs_info->ordered_root_lock);
4377 		btrfs_destroy_ordered_extents(root);
4378 
4379 		cond_resched();
4380 		spin_lock(&fs_info->ordered_root_lock);
4381 	}
4382 	spin_unlock(&fs_info->ordered_root_lock);
4383 
4384 	/*
4385 	 * We need this here because if we've been flipped read-only we won't
4386 	 * get sync() from the umount, so we need to make sure any ordered
4387 	 * extents that haven't had their dirty pages IO start writeout yet
4388 	 * actually get run and error out properly.
4389 	 */
4390 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4391 }
4392 
4393 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4394 				      struct btrfs_fs_info *fs_info)
4395 {
4396 	struct rb_node *node;
4397 	struct btrfs_delayed_ref_root *delayed_refs;
4398 	struct btrfs_delayed_ref_node *ref;
4399 	int ret = 0;
4400 
4401 	delayed_refs = &trans->delayed_refs;
4402 
4403 	spin_lock(&delayed_refs->lock);
4404 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4405 		spin_unlock(&delayed_refs->lock);
4406 		btrfs_debug(fs_info, "delayed_refs has NO entry");
4407 		return ret;
4408 	}
4409 
4410 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4411 		struct btrfs_delayed_ref_head *head;
4412 		struct rb_node *n;
4413 		bool pin_bytes = false;
4414 
4415 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4416 				href_node);
4417 		if (btrfs_delayed_ref_lock(delayed_refs, head))
4418 			continue;
4419 
4420 		spin_lock(&head->lock);
4421 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4422 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4423 				       ref_node);
4424 			ref->in_tree = 0;
4425 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4426 			RB_CLEAR_NODE(&ref->ref_node);
4427 			if (!list_empty(&ref->add_list))
4428 				list_del(&ref->add_list);
4429 			atomic_dec(&delayed_refs->num_entries);
4430 			btrfs_put_delayed_ref(ref);
4431 		}
4432 		if (head->must_insert_reserved)
4433 			pin_bytes = true;
4434 		btrfs_free_delayed_extent_op(head->extent_op);
4435 		btrfs_delete_ref_head(delayed_refs, head);
4436 		spin_unlock(&head->lock);
4437 		spin_unlock(&delayed_refs->lock);
4438 		mutex_unlock(&head->mutex);
4439 
4440 		if (pin_bytes) {
4441 			struct btrfs_block_group *cache;
4442 
4443 			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4444 			BUG_ON(!cache);
4445 
4446 			spin_lock(&cache->space_info->lock);
4447 			spin_lock(&cache->lock);
4448 			cache->pinned += head->num_bytes;
4449 			btrfs_space_info_update_bytes_pinned(fs_info,
4450 				cache->space_info, head->num_bytes);
4451 			cache->reserved -= head->num_bytes;
4452 			cache->space_info->bytes_reserved -= head->num_bytes;
4453 			spin_unlock(&cache->lock);
4454 			spin_unlock(&cache->space_info->lock);
4455 			percpu_counter_add_batch(
4456 				&cache->space_info->total_bytes_pinned,
4457 				head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4458 
4459 			btrfs_put_block_group(cache);
4460 
4461 			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4462 				head->bytenr + head->num_bytes - 1);
4463 		}
4464 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4465 		btrfs_put_delayed_ref_head(head);
4466 		cond_resched();
4467 		spin_lock(&delayed_refs->lock);
4468 	}
4469 	btrfs_qgroup_destroy_extent_records(trans);
4470 
4471 	spin_unlock(&delayed_refs->lock);
4472 
4473 	return ret;
4474 }
4475 
4476 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4477 {
4478 	struct btrfs_inode *btrfs_inode;
4479 	struct list_head splice;
4480 
4481 	INIT_LIST_HEAD(&splice);
4482 
4483 	spin_lock(&root->delalloc_lock);
4484 	list_splice_init(&root->delalloc_inodes, &splice);
4485 
4486 	while (!list_empty(&splice)) {
4487 		struct inode *inode = NULL;
4488 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4489 					       delalloc_inodes);
4490 		__btrfs_del_delalloc_inode(root, btrfs_inode);
4491 		spin_unlock(&root->delalloc_lock);
4492 
4493 		/*
4494 		 * Make sure we get a live inode and that it'll not disappear
4495 		 * meanwhile.
4496 		 */
4497 		inode = igrab(&btrfs_inode->vfs_inode);
4498 		if (inode) {
4499 			invalidate_inode_pages2(inode->i_mapping);
4500 			iput(inode);
4501 		}
4502 		spin_lock(&root->delalloc_lock);
4503 	}
4504 	spin_unlock(&root->delalloc_lock);
4505 }
4506 
4507 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4508 {
4509 	struct btrfs_root *root;
4510 	struct list_head splice;
4511 
4512 	INIT_LIST_HEAD(&splice);
4513 
4514 	spin_lock(&fs_info->delalloc_root_lock);
4515 	list_splice_init(&fs_info->delalloc_roots, &splice);
4516 	while (!list_empty(&splice)) {
4517 		root = list_first_entry(&splice, struct btrfs_root,
4518 					 delalloc_root);
4519 		root = btrfs_grab_root(root);
4520 		BUG_ON(!root);
4521 		spin_unlock(&fs_info->delalloc_root_lock);
4522 
4523 		btrfs_destroy_delalloc_inodes(root);
4524 		btrfs_put_root(root);
4525 
4526 		spin_lock(&fs_info->delalloc_root_lock);
4527 	}
4528 	spin_unlock(&fs_info->delalloc_root_lock);
4529 }
4530 
4531 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4532 					struct extent_io_tree *dirty_pages,
4533 					int mark)
4534 {
4535 	int ret;
4536 	struct extent_buffer *eb;
4537 	u64 start = 0;
4538 	u64 end;
4539 
4540 	while (1) {
4541 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4542 					    mark, NULL);
4543 		if (ret)
4544 			break;
4545 
4546 		clear_extent_bits(dirty_pages, start, end, mark);
4547 		while (start <= end) {
4548 			eb = find_extent_buffer(fs_info, start);
4549 			start += fs_info->nodesize;
4550 			if (!eb)
4551 				continue;
4552 			wait_on_extent_buffer_writeback(eb);
4553 
4554 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4555 					       &eb->bflags))
4556 				clear_extent_buffer_dirty(eb);
4557 			free_extent_buffer_stale(eb);
4558 		}
4559 	}
4560 
4561 	return ret;
4562 }
4563 
4564 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4565 				       struct extent_io_tree *unpin)
4566 {
4567 	u64 start;
4568 	u64 end;
4569 	int ret;
4570 
4571 	while (1) {
4572 		struct extent_state *cached_state = NULL;
4573 
4574 		/*
4575 		 * The btrfs_finish_extent_commit() may get the same range as
4576 		 * ours between find_first_extent_bit and clear_extent_dirty.
4577 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4578 		 * the same extent range.
4579 		 */
4580 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4581 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4582 					    EXTENT_DIRTY, &cached_state);
4583 		if (ret) {
4584 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4585 			break;
4586 		}
4587 
4588 		clear_extent_dirty(unpin, start, end, &cached_state);
4589 		free_extent_state(cached_state);
4590 		btrfs_error_unpin_extent_range(fs_info, start, end);
4591 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4592 		cond_resched();
4593 	}
4594 
4595 	return 0;
4596 }
4597 
4598 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4599 {
4600 	struct inode *inode;
4601 
4602 	inode = cache->io_ctl.inode;
4603 	if (inode) {
4604 		invalidate_inode_pages2(inode->i_mapping);
4605 		BTRFS_I(inode)->generation = 0;
4606 		cache->io_ctl.inode = NULL;
4607 		iput(inode);
4608 	}
4609 	ASSERT(cache->io_ctl.pages == NULL);
4610 	btrfs_put_block_group(cache);
4611 }
4612 
4613 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4614 			     struct btrfs_fs_info *fs_info)
4615 {
4616 	struct btrfs_block_group *cache;
4617 
4618 	spin_lock(&cur_trans->dirty_bgs_lock);
4619 	while (!list_empty(&cur_trans->dirty_bgs)) {
4620 		cache = list_first_entry(&cur_trans->dirty_bgs,
4621 					 struct btrfs_block_group,
4622 					 dirty_list);
4623 
4624 		if (!list_empty(&cache->io_list)) {
4625 			spin_unlock(&cur_trans->dirty_bgs_lock);
4626 			list_del_init(&cache->io_list);
4627 			btrfs_cleanup_bg_io(cache);
4628 			spin_lock(&cur_trans->dirty_bgs_lock);
4629 		}
4630 
4631 		list_del_init(&cache->dirty_list);
4632 		spin_lock(&cache->lock);
4633 		cache->disk_cache_state = BTRFS_DC_ERROR;
4634 		spin_unlock(&cache->lock);
4635 
4636 		spin_unlock(&cur_trans->dirty_bgs_lock);
4637 		btrfs_put_block_group(cache);
4638 		btrfs_delayed_refs_rsv_release(fs_info, 1);
4639 		spin_lock(&cur_trans->dirty_bgs_lock);
4640 	}
4641 	spin_unlock(&cur_trans->dirty_bgs_lock);
4642 
4643 	/*
4644 	 * Refer to the definition of io_bgs member for details why it's safe
4645 	 * to use it without any locking
4646 	 */
4647 	while (!list_empty(&cur_trans->io_bgs)) {
4648 		cache = list_first_entry(&cur_trans->io_bgs,
4649 					 struct btrfs_block_group,
4650 					 io_list);
4651 
4652 		list_del_init(&cache->io_list);
4653 		spin_lock(&cache->lock);
4654 		cache->disk_cache_state = BTRFS_DC_ERROR;
4655 		spin_unlock(&cache->lock);
4656 		btrfs_cleanup_bg_io(cache);
4657 	}
4658 }
4659 
4660 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4661 				   struct btrfs_fs_info *fs_info)
4662 {
4663 	struct btrfs_device *dev, *tmp;
4664 
4665 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4666 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4667 	ASSERT(list_empty(&cur_trans->io_bgs));
4668 
4669 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4670 				 post_commit_list) {
4671 		list_del_init(&dev->post_commit_list);
4672 	}
4673 
4674 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4675 
4676 	cur_trans->state = TRANS_STATE_COMMIT_START;
4677 	wake_up(&fs_info->transaction_blocked_wait);
4678 
4679 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4680 	wake_up(&fs_info->transaction_wait);
4681 
4682 	btrfs_destroy_delayed_inodes(fs_info);
4683 
4684 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4685 				     EXTENT_DIRTY);
4686 	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4687 
4688 	cur_trans->state =TRANS_STATE_COMPLETED;
4689 	wake_up(&cur_trans->commit_wait);
4690 }
4691 
4692 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4693 {
4694 	struct btrfs_transaction *t;
4695 
4696 	mutex_lock(&fs_info->transaction_kthread_mutex);
4697 
4698 	spin_lock(&fs_info->trans_lock);
4699 	while (!list_empty(&fs_info->trans_list)) {
4700 		t = list_first_entry(&fs_info->trans_list,
4701 				     struct btrfs_transaction, list);
4702 		if (t->state >= TRANS_STATE_COMMIT_START) {
4703 			refcount_inc(&t->use_count);
4704 			spin_unlock(&fs_info->trans_lock);
4705 			btrfs_wait_for_commit(fs_info, t->transid);
4706 			btrfs_put_transaction(t);
4707 			spin_lock(&fs_info->trans_lock);
4708 			continue;
4709 		}
4710 		if (t == fs_info->running_transaction) {
4711 			t->state = TRANS_STATE_COMMIT_DOING;
4712 			spin_unlock(&fs_info->trans_lock);
4713 			/*
4714 			 * We wait for 0 num_writers since we don't hold a trans
4715 			 * handle open currently for this transaction.
4716 			 */
4717 			wait_event(t->writer_wait,
4718 				   atomic_read(&t->num_writers) == 0);
4719 		} else {
4720 			spin_unlock(&fs_info->trans_lock);
4721 		}
4722 		btrfs_cleanup_one_transaction(t, fs_info);
4723 
4724 		spin_lock(&fs_info->trans_lock);
4725 		if (t == fs_info->running_transaction)
4726 			fs_info->running_transaction = NULL;
4727 		list_del_init(&t->list);
4728 		spin_unlock(&fs_info->trans_lock);
4729 
4730 		btrfs_put_transaction(t);
4731 		trace_btrfs_transaction_commit(fs_info->tree_root);
4732 		spin_lock(&fs_info->trans_lock);
4733 	}
4734 	spin_unlock(&fs_info->trans_lock);
4735 	btrfs_destroy_all_ordered_extents(fs_info);
4736 	btrfs_destroy_delayed_inodes(fs_info);
4737 	btrfs_assert_delayed_root_empty(fs_info);
4738 	btrfs_destroy_all_delalloc_inodes(fs_info);
4739 	btrfs_drop_all_logs(fs_info);
4740 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4741 
4742 	return 0;
4743 }
4744 
4745 int btrfs_find_highest_objectid(struct btrfs_root *root, u64 *objectid)
4746 {
4747 	struct btrfs_path *path;
4748 	int ret;
4749 	struct extent_buffer *l;
4750 	struct btrfs_key search_key;
4751 	struct btrfs_key found_key;
4752 	int slot;
4753 
4754 	path = btrfs_alloc_path();
4755 	if (!path)
4756 		return -ENOMEM;
4757 
4758 	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4759 	search_key.type = -1;
4760 	search_key.offset = (u64)-1;
4761 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4762 	if (ret < 0)
4763 		goto error;
4764 	BUG_ON(ret == 0); /* Corruption */
4765 	if (path->slots[0] > 0) {
4766 		slot = path->slots[0] - 1;
4767 		l = path->nodes[0];
4768 		btrfs_item_key_to_cpu(l, &found_key, slot);
4769 		*objectid = max_t(u64, found_key.objectid,
4770 				  BTRFS_FIRST_FREE_OBJECTID - 1);
4771 	} else {
4772 		*objectid = BTRFS_FIRST_FREE_OBJECTID - 1;
4773 	}
4774 	ret = 0;
4775 error:
4776 	btrfs_free_path(path);
4777 	return ret;
4778 }
4779 
4780 int btrfs_find_free_objectid(struct btrfs_root *root, u64 *objectid)
4781 {
4782 	int ret;
4783 	mutex_lock(&root->objectid_mutex);
4784 
4785 	if (unlikely(root->highest_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4786 		btrfs_warn(root->fs_info,
4787 			   "the objectid of root %llu reaches its highest value",
4788 			   root->root_key.objectid);
4789 		ret = -ENOSPC;
4790 		goto out;
4791 	}
4792 
4793 	*objectid = ++root->highest_objectid;
4794 	ret = 0;
4795 out:
4796 	mutex_unlock(&root->objectid_mutex);
4797 	return ret;
4798 }
4799