1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/slab.h> 30 #include <linux/migrate.h> 31 #include <linux/ratelimit.h> 32 #include <linux/uuid.h> 33 #include <linux/semaphore.h> 34 #include <asm/unaligned.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "hash.h" 38 #include "transaction.h" 39 #include "btrfs_inode.h" 40 #include "volumes.h" 41 #include "print-tree.h" 42 #include "locking.h" 43 #include "tree-log.h" 44 #include "free-space-cache.h" 45 #include "inode-map.h" 46 #include "check-integrity.h" 47 #include "rcu-string.h" 48 #include "dev-replace.h" 49 #include "raid56.h" 50 #include "sysfs.h" 51 #include "qgroup.h" 52 53 #ifdef CONFIG_X86 54 #include <asm/cpufeature.h> 55 #endif 56 57 static const struct extent_io_ops btree_extent_io_ops; 58 static void end_workqueue_fn(struct btrfs_work *work); 59 static void free_fs_root(struct btrfs_root *root); 60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 61 int read_only); 62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 64 struct btrfs_root *root); 65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 66 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 67 struct extent_io_tree *dirty_pages, 68 int mark); 69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 70 struct extent_io_tree *pinned_extents); 71 static int btrfs_cleanup_transaction(struct btrfs_root *root); 72 static void btrfs_error_commit_super(struct btrfs_root *root); 73 74 /* 75 * btrfs_end_io_wq structs are used to do processing in task context when an IO 76 * is complete. This is used during reads to verify checksums, and it is used 77 * by writes to insert metadata for new file extents after IO is complete. 78 */ 79 struct btrfs_end_io_wq { 80 struct bio *bio; 81 bio_end_io_t *end_io; 82 void *private; 83 struct btrfs_fs_info *info; 84 int error; 85 enum btrfs_wq_endio_type metadata; 86 struct list_head list; 87 struct btrfs_work work; 88 }; 89 90 static struct kmem_cache *btrfs_end_io_wq_cache; 91 92 int __init btrfs_end_io_wq_init(void) 93 { 94 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 95 sizeof(struct btrfs_end_io_wq), 96 0, 97 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 98 NULL); 99 if (!btrfs_end_io_wq_cache) 100 return -ENOMEM; 101 return 0; 102 } 103 104 void btrfs_end_io_wq_exit(void) 105 { 106 if (btrfs_end_io_wq_cache) 107 kmem_cache_destroy(btrfs_end_io_wq_cache); 108 } 109 110 /* 111 * async submit bios are used to offload expensive checksumming 112 * onto the worker threads. They checksum file and metadata bios 113 * just before they are sent down the IO stack. 114 */ 115 struct async_submit_bio { 116 struct inode *inode; 117 struct bio *bio; 118 struct list_head list; 119 extent_submit_bio_hook_t *submit_bio_start; 120 extent_submit_bio_hook_t *submit_bio_done; 121 int rw; 122 int mirror_num; 123 unsigned long bio_flags; 124 /* 125 * bio_offset is optional, can be used if the pages in the bio 126 * can't tell us where in the file the bio should go 127 */ 128 u64 bio_offset; 129 struct btrfs_work work; 130 int error; 131 }; 132 133 /* 134 * Lockdep class keys for extent_buffer->lock's in this root. For a given 135 * eb, the lockdep key is determined by the btrfs_root it belongs to and 136 * the level the eb occupies in the tree. 137 * 138 * Different roots are used for different purposes and may nest inside each 139 * other and they require separate keysets. As lockdep keys should be 140 * static, assign keysets according to the purpose of the root as indicated 141 * by btrfs_root->objectid. This ensures that all special purpose roots 142 * have separate keysets. 143 * 144 * Lock-nesting across peer nodes is always done with the immediate parent 145 * node locked thus preventing deadlock. As lockdep doesn't know this, use 146 * subclass to avoid triggering lockdep warning in such cases. 147 * 148 * The key is set by the readpage_end_io_hook after the buffer has passed 149 * csum validation but before the pages are unlocked. It is also set by 150 * btrfs_init_new_buffer on freshly allocated blocks. 151 * 152 * We also add a check to make sure the highest level of the tree is the 153 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 154 * needs update as well. 155 */ 156 #ifdef CONFIG_DEBUG_LOCK_ALLOC 157 # if BTRFS_MAX_LEVEL != 8 158 # error 159 # endif 160 161 static struct btrfs_lockdep_keyset { 162 u64 id; /* root objectid */ 163 const char *name_stem; /* lock name stem */ 164 char names[BTRFS_MAX_LEVEL + 1][20]; 165 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 166 } btrfs_lockdep_keysets[] = { 167 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 168 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 169 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 170 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 171 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 172 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 173 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 174 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 175 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 176 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 177 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 178 { .id = 0, .name_stem = "tree" }, 179 }; 180 181 void __init btrfs_init_lockdep(void) 182 { 183 int i, j; 184 185 /* initialize lockdep class names */ 186 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 187 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 188 189 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 190 snprintf(ks->names[j], sizeof(ks->names[j]), 191 "btrfs-%s-%02d", ks->name_stem, j); 192 } 193 } 194 195 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 196 int level) 197 { 198 struct btrfs_lockdep_keyset *ks; 199 200 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 201 202 /* find the matching keyset, id 0 is the default entry */ 203 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 204 if (ks->id == objectid) 205 break; 206 207 lockdep_set_class_and_name(&eb->lock, 208 &ks->keys[level], ks->names[level]); 209 } 210 211 #endif 212 213 /* 214 * extents on the btree inode are pretty simple, there's one extent 215 * that covers the entire device 216 */ 217 static struct extent_map *btree_get_extent(struct inode *inode, 218 struct page *page, size_t pg_offset, u64 start, u64 len, 219 int create) 220 { 221 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 222 struct extent_map *em; 223 int ret; 224 225 read_lock(&em_tree->lock); 226 em = lookup_extent_mapping(em_tree, start, len); 227 if (em) { 228 em->bdev = 229 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 230 read_unlock(&em_tree->lock); 231 goto out; 232 } 233 read_unlock(&em_tree->lock); 234 235 em = alloc_extent_map(); 236 if (!em) { 237 em = ERR_PTR(-ENOMEM); 238 goto out; 239 } 240 em->start = 0; 241 em->len = (u64)-1; 242 em->block_len = (u64)-1; 243 em->block_start = 0; 244 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 245 246 write_lock(&em_tree->lock); 247 ret = add_extent_mapping(em_tree, em, 0); 248 if (ret == -EEXIST) { 249 free_extent_map(em); 250 em = lookup_extent_mapping(em_tree, start, len); 251 if (!em) 252 em = ERR_PTR(-EIO); 253 } else if (ret) { 254 free_extent_map(em); 255 em = ERR_PTR(ret); 256 } 257 write_unlock(&em_tree->lock); 258 259 out: 260 return em; 261 } 262 263 u32 btrfs_csum_data(char *data, u32 seed, size_t len) 264 { 265 return btrfs_crc32c(seed, data, len); 266 } 267 268 void btrfs_csum_final(u32 crc, char *result) 269 { 270 put_unaligned_le32(~crc, result); 271 } 272 273 /* 274 * compute the csum for a btree block, and either verify it or write it 275 * into the csum field of the block. 276 */ 277 static int csum_tree_block(struct btrfs_fs_info *fs_info, 278 struct extent_buffer *buf, 279 int verify) 280 { 281 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 282 char *result = NULL; 283 unsigned long len; 284 unsigned long cur_len; 285 unsigned long offset = BTRFS_CSUM_SIZE; 286 char *kaddr; 287 unsigned long map_start; 288 unsigned long map_len; 289 int err; 290 u32 crc = ~(u32)0; 291 unsigned long inline_result; 292 293 len = buf->len - offset; 294 while (len > 0) { 295 err = map_private_extent_buffer(buf, offset, 32, 296 &kaddr, &map_start, &map_len); 297 if (err) 298 return 1; 299 cur_len = min(len, map_len - (offset - map_start)); 300 crc = btrfs_csum_data(kaddr + offset - map_start, 301 crc, cur_len); 302 len -= cur_len; 303 offset += cur_len; 304 } 305 if (csum_size > sizeof(inline_result)) { 306 result = kzalloc(csum_size, GFP_NOFS); 307 if (!result) 308 return 1; 309 } else { 310 result = (char *)&inline_result; 311 } 312 313 btrfs_csum_final(crc, result); 314 315 if (verify) { 316 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 317 u32 val; 318 u32 found = 0; 319 memcpy(&found, result, csum_size); 320 321 read_extent_buffer(buf, &val, 0, csum_size); 322 printk_ratelimited(KERN_WARNING 323 "BTRFS: %s checksum verify failed on %llu wanted %X found %X " 324 "level %d\n", 325 fs_info->sb->s_id, buf->start, 326 val, found, btrfs_header_level(buf)); 327 if (result != (char *)&inline_result) 328 kfree(result); 329 return 1; 330 } 331 } else { 332 write_extent_buffer(buf, result, 0, csum_size); 333 } 334 if (result != (char *)&inline_result) 335 kfree(result); 336 return 0; 337 } 338 339 /* 340 * we can't consider a given block up to date unless the transid of the 341 * block matches the transid in the parent node's pointer. This is how we 342 * detect blocks that either didn't get written at all or got written 343 * in the wrong place. 344 */ 345 static int verify_parent_transid(struct extent_io_tree *io_tree, 346 struct extent_buffer *eb, u64 parent_transid, 347 int atomic) 348 { 349 struct extent_state *cached_state = NULL; 350 int ret; 351 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 352 353 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 354 return 0; 355 356 if (atomic) 357 return -EAGAIN; 358 359 if (need_lock) { 360 btrfs_tree_read_lock(eb); 361 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 362 } 363 364 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 365 0, &cached_state); 366 if (extent_buffer_uptodate(eb) && 367 btrfs_header_generation(eb) == parent_transid) { 368 ret = 0; 369 goto out; 370 } 371 printk_ratelimited(KERN_ERR 372 "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n", 373 eb->fs_info->sb->s_id, eb->start, 374 parent_transid, btrfs_header_generation(eb)); 375 ret = 1; 376 377 /* 378 * Things reading via commit roots that don't have normal protection, 379 * like send, can have a really old block in cache that may point at a 380 * block that has been free'd and re-allocated. So don't clear uptodate 381 * if we find an eb that is under IO (dirty/writeback) because we could 382 * end up reading in the stale data and then writing it back out and 383 * making everybody very sad. 384 */ 385 if (!extent_buffer_under_io(eb)) 386 clear_extent_buffer_uptodate(eb); 387 out: 388 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 389 &cached_state, GFP_NOFS); 390 if (need_lock) 391 btrfs_tree_read_unlock_blocking(eb); 392 return ret; 393 } 394 395 /* 396 * Return 0 if the superblock checksum type matches the checksum value of that 397 * algorithm. Pass the raw disk superblock data. 398 */ 399 static int btrfs_check_super_csum(char *raw_disk_sb) 400 { 401 struct btrfs_super_block *disk_sb = 402 (struct btrfs_super_block *)raw_disk_sb; 403 u16 csum_type = btrfs_super_csum_type(disk_sb); 404 int ret = 0; 405 406 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 407 u32 crc = ~(u32)0; 408 const int csum_size = sizeof(crc); 409 char result[csum_size]; 410 411 /* 412 * The super_block structure does not span the whole 413 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 414 * is filled with zeros and is included in the checkum. 415 */ 416 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 417 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 418 btrfs_csum_final(crc, result); 419 420 if (memcmp(raw_disk_sb, result, csum_size)) 421 ret = 1; 422 } 423 424 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 425 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n", 426 csum_type); 427 ret = 1; 428 } 429 430 return ret; 431 } 432 433 /* 434 * helper to read a given tree block, doing retries as required when 435 * the checksums don't match and we have alternate mirrors to try. 436 */ 437 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 438 struct extent_buffer *eb, 439 u64 start, u64 parent_transid) 440 { 441 struct extent_io_tree *io_tree; 442 int failed = 0; 443 int ret; 444 int num_copies = 0; 445 int mirror_num = 0; 446 int failed_mirror = 0; 447 448 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 449 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 450 while (1) { 451 ret = read_extent_buffer_pages(io_tree, eb, start, 452 WAIT_COMPLETE, 453 btree_get_extent, mirror_num); 454 if (!ret) { 455 if (!verify_parent_transid(io_tree, eb, 456 parent_transid, 0)) 457 break; 458 else 459 ret = -EIO; 460 } 461 462 /* 463 * This buffer's crc is fine, but its contents are corrupted, so 464 * there is no reason to read the other copies, they won't be 465 * any less wrong. 466 */ 467 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 468 break; 469 470 num_copies = btrfs_num_copies(root->fs_info, 471 eb->start, eb->len); 472 if (num_copies == 1) 473 break; 474 475 if (!failed_mirror) { 476 failed = 1; 477 failed_mirror = eb->read_mirror; 478 } 479 480 mirror_num++; 481 if (mirror_num == failed_mirror) 482 mirror_num++; 483 484 if (mirror_num > num_copies) 485 break; 486 } 487 488 if (failed && !ret && failed_mirror) 489 repair_eb_io_failure(root, eb, failed_mirror); 490 491 return ret; 492 } 493 494 /* 495 * checksum a dirty tree block before IO. This has extra checks to make sure 496 * we only fill in the checksum field in the first page of a multi-page block 497 */ 498 499 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 500 { 501 u64 start = page_offset(page); 502 u64 found_start; 503 struct extent_buffer *eb; 504 505 eb = (struct extent_buffer *)page->private; 506 if (page != eb->pages[0]) 507 return 0; 508 found_start = btrfs_header_bytenr(eb); 509 if (WARN_ON(found_start != start || !PageUptodate(page))) 510 return 0; 511 csum_tree_block(fs_info, eb, 0); 512 return 0; 513 } 514 515 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info, 516 struct extent_buffer *eb) 517 { 518 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 519 u8 fsid[BTRFS_UUID_SIZE]; 520 int ret = 1; 521 522 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 523 while (fs_devices) { 524 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 525 ret = 0; 526 break; 527 } 528 fs_devices = fs_devices->seed; 529 } 530 return ret; 531 } 532 533 #define CORRUPT(reason, eb, root, slot) \ 534 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \ 535 "root=%llu, slot=%d", reason, \ 536 btrfs_header_bytenr(eb), root->objectid, slot) 537 538 static noinline int check_leaf(struct btrfs_root *root, 539 struct extent_buffer *leaf) 540 { 541 struct btrfs_key key; 542 struct btrfs_key leaf_key; 543 u32 nritems = btrfs_header_nritems(leaf); 544 int slot; 545 546 if (nritems == 0) 547 return 0; 548 549 /* Check the 0 item */ 550 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 551 BTRFS_LEAF_DATA_SIZE(root)) { 552 CORRUPT("invalid item offset size pair", leaf, root, 0); 553 return -EIO; 554 } 555 556 /* 557 * Check to make sure each items keys are in the correct order and their 558 * offsets make sense. We only have to loop through nritems-1 because 559 * we check the current slot against the next slot, which verifies the 560 * next slot's offset+size makes sense and that the current's slot 561 * offset is correct. 562 */ 563 for (slot = 0; slot < nritems - 1; slot++) { 564 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 565 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 566 567 /* Make sure the keys are in the right order */ 568 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 569 CORRUPT("bad key order", leaf, root, slot); 570 return -EIO; 571 } 572 573 /* 574 * Make sure the offset and ends are right, remember that the 575 * item data starts at the end of the leaf and grows towards the 576 * front. 577 */ 578 if (btrfs_item_offset_nr(leaf, slot) != 579 btrfs_item_end_nr(leaf, slot + 1)) { 580 CORRUPT("slot offset bad", leaf, root, slot); 581 return -EIO; 582 } 583 584 /* 585 * Check to make sure that we don't point outside of the leaf, 586 * just incase all the items are consistent to eachother, but 587 * all point outside of the leaf. 588 */ 589 if (btrfs_item_end_nr(leaf, slot) > 590 BTRFS_LEAF_DATA_SIZE(root)) { 591 CORRUPT("slot end outside of leaf", leaf, root, slot); 592 return -EIO; 593 } 594 } 595 596 return 0; 597 } 598 599 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 600 u64 phy_offset, struct page *page, 601 u64 start, u64 end, int mirror) 602 { 603 u64 found_start; 604 int found_level; 605 struct extent_buffer *eb; 606 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 607 int ret = 0; 608 int reads_done; 609 610 if (!page->private) 611 goto out; 612 613 eb = (struct extent_buffer *)page->private; 614 615 /* the pending IO might have been the only thing that kept this buffer 616 * in memory. Make sure we have a ref for all this other checks 617 */ 618 extent_buffer_get(eb); 619 620 reads_done = atomic_dec_and_test(&eb->io_pages); 621 if (!reads_done) 622 goto err; 623 624 eb->read_mirror = mirror; 625 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 626 ret = -EIO; 627 goto err; 628 } 629 630 found_start = btrfs_header_bytenr(eb); 631 if (found_start != eb->start) { 632 printk_ratelimited(KERN_ERR "BTRFS (device %s): bad tree block start " 633 "%llu %llu\n", 634 eb->fs_info->sb->s_id, found_start, eb->start); 635 ret = -EIO; 636 goto err; 637 } 638 if (check_tree_block_fsid(root->fs_info, eb)) { 639 printk_ratelimited(KERN_ERR "BTRFS (device %s): bad fsid on block %llu\n", 640 eb->fs_info->sb->s_id, eb->start); 641 ret = -EIO; 642 goto err; 643 } 644 found_level = btrfs_header_level(eb); 645 if (found_level >= BTRFS_MAX_LEVEL) { 646 btrfs_err(root->fs_info, "bad tree block level %d", 647 (int)btrfs_header_level(eb)); 648 ret = -EIO; 649 goto err; 650 } 651 652 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 653 eb, found_level); 654 655 ret = csum_tree_block(root->fs_info, eb, 1); 656 if (ret) { 657 ret = -EIO; 658 goto err; 659 } 660 661 /* 662 * If this is a leaf block and it is corrupt, set the corrupt bit so 663 * that we don't try and read the other copies of this block, just 664 * return -EIO. 665 */ 666 if (found_level == 0 && check_leaf(root, eb)) { 667 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 668 ret = -EIO; 669 } 670 671 if (!ret) 672 set_extent_buffer_uptodate(eb); 673 err: 674 if (reads_done && 675 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 676 btree_readahead_hook(root, eb, eb->start, ret); 677 678 if (ret) { 679 /* 680 * our io error hook is going to dec the io pages 681 * again, we have to make sure it has something 682 * to decrement 683 */ 684 atomic_inc(&eb->io_pages); 685 clear_extent_buffer_uptodate(eb); 686 } 687 free_extent_buffer(eb); 688 out: 689 return ret; 690 } 691 692 static int btree_io_failed_hook(struct page *page, int failed_mirror) 693 { 694 struct extent_buffer *eb; 695 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 696 697 eb = (struct extent_buffer *)page->private; 698 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 699 eb->read_mirror = failed_mirror; 700 atomic_dec(&eb->io_pages); 701 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 702 btree_readahead_hook(root, eb, eb->start, -EIO); 703 return -EIO; /* we fixed nothing */ 704 } 705 706 static void end_workqueue_bio(struct bio *bio, int err) 707 { 708 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 709 struct btrfs_fs_info *fs_info; 710 struct btrfs_workqueue *wq; 711 btrfs_work_func_t func; 712 713 fs_info = end_io_wq->info; 714 end_io_wq->error = err; 715 716 if (bio->bi_rw & REQ_WRITE) { 717 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 718 wq = fs_info->endio_meta_write_workers; 719 func = btrfs_endio_meta_write_helper; 720 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 721 wq = fs_info->endio_freespace_worker; 722 func = btrfs_freespace_write_helper; 723 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 724 wq = fs_info->endio_raid56_workers; 725 func = btrfs_endio_raid56_helper; 726 } else { 727 wq = fs_info->endio_write_workers; 728 func = btrfs_endio_write_helper; 729 } 730 } else { 731 if (unlikely(end_io_wq->metadata == 732 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 733 wq = fs_info->endio_repair_workers; 734 func = btrfs_endio_repair_helper; 735 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 736 wq = fs_info->endio_raid56_workers; 737 func = btrfs_endio_raid56_helper; 738 } else if (end_io_wq->metadata) { 739 wq = fs_info->endio_meta_workers; 740 func = btrfs_endio_meta_helper; 741 } else { 742 wq = fs_info->endio_workers; 743 func = btrfs_endio_helper; 744 } 745 } 746 747 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 748 btrfs_queue_work(wq, &end_io_wq->work); 749 } 750 751 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 752 enum btrfs_wq_endio_type metadata) 753 { 754 struct btrfs_end_io_wq *end_io_wq; 755 756 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 757 if (!end_io_wq) 758 return -ENOMEM; 759 760 end_io_wq->private = bio->bi_private; 761 end_io_wq->end_io = bio->bi_end_io; 762 end_io_wq->info = info; 763 end_io_wq->error = 0; 764 end_io_wq->bio = bio; 765 end_io_wq->metadata = metadata; 766 767 bio->bi_private = end_io_wq; 768 bio->bi_end_io = end_workqueue_bio; 769 return 0; 770 } 771 772 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 773 { 774 unsigned long limit = min_t(unsigned long, 775 info->thread_pool_size, 776 info->fs_devices->open_devices); 777 return 256 * limit; 778 } 779 780 static void run_one_async_start(struct btrfs_work *work) 781 { 782 struct async_submit_bio *async; 783 int ret; 784 785 async = container_of(work, struct async_submit_bio, work); 786 ret = async->submit_bio_start(async->inode, async->rw, async->bio, 787 async->mirror_num, async->bio_flags, 788 async->bio_offset); 789 if (ret) 790 async->error = ret; 791 } 792 793 static void run_one_async_done(struct btrfs_work *work) 794 { 795 struct btrfs_fs_info *fs_info; 796 struct async_submit_bio *async; 797 int limit; 798 799 async = container_of(work, struct async_submit_bio, work); 800 fs_info = BTRFS_I(async->inode)->root->fs_info; 801 802 limit = btrfs_async_submit_limit(fs_info); 803 limit = limit * 2 / 3; 804 805 if (atomic_dec_return(&fs_info->nr_async_submits) < limit && 806 waitqueue_active(&fs_info->async_submit_wait)) 807 wake_up(&fs_info->async_submit_wait); 808 809 /* If an error occured we just want to clean up the bio and move on */ 810 if (async->error) { 811 bio_endio(async->bio, async->error); 812 return; 813 } 814 815 async->submit_bio_done(async->inode, async->rw, async->bio, 816 async->mirror_num, async->bio_flags, 817 async->bio_offset); 818 } 819 820 static void run_one_async_free(struct btrfs_work *work) 821 { 822 struct async_submit_bio *async; 823 824 async = container_of(work, struct async_submit_bio, work); 825 kfree(async); 826 } 827 828 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 829 int rw, struct bio *bio, int mirror_num, 830 unsigned long bio_flags, 831 u64 bio_offset, 832 extent_submit_bio_hook_t *submit_bio_start, 833 extent_submit_bio_hook_t *submit_bio_done) 834 { 835 struct async_submit_bio *async; 836 837 async = kmalloc(sizeof(*async), GFP_NOFS); 838 if (!async) 839 return -ENOMEM; 840 841 async->inode = inode; 842 async->rw = rw; 843 async->bio = bio; 844 async->mirror_num = mirror_num; 845 async->submit_bio_start = submit_bio_start; 846 async->submit_bio_done = submit_bio_done; 847 848 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 849 run_one_async_done, run_one_async_free); 850 851 async->bio_flags = bio_flags; 852 async->bio_offset = bio_offset; 853 854 async->error = 0; 855 856 atomic_inc(&fs_info->nr_async_submits); 857 858 if (rw & REQ_SYNC) 859 btrfs_set_work_high_priority(&async->work); 860 861 btrfs_queue_work(fs_info->workers, &async->work); 862 863 while (atomic_read(&fs_info->async_submit_draining) && 864 atomic_read(&fs_info->nr_async_submits)) { 865 wait_event(fs_info->async_submit_wait, 866 (atomic_read(&fs_info->nr_async_submits) == 0)); 867 } 868 869 return 0; 870 } 871 872 static int btree_csum_one_bio(struct bio *bio) 873 { 874 struct bio_vec *bvec; 875 struct btrfs_root *root; 876 int i, ret = 0; 877 878 bio_for_each_segment_all(bvec, bio, i) { 879 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 880 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 881 if (ret) 882 break; 883 } 884 885 return ret; 886 } 887 888 static int __btree_submit_bio_start(struct inode *inode, int rw, 889 struct bio *bio, int mirror_num, 890 unsigned long bio_flags, 891 u64 bio_offset) 892 { 893 /* 894 * when we're called for a write, we're already in the async 895 * submission context. Just jump into btrfs_map_bio 896 */ 897 return btree_csum_one_bio(bio); 898 } 899 900 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 901 int mirror_num, unsigned long bio_flags, 902 u64 bio_offset) 903 { 904 int ret; 905 906 /* 907 * when we're called for a write, we're already in the async 908 * submission context. Just jump into btrfs_map_bio 909 */ 910 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 911 if (ret) 912 bio_endio(bio, ret); 913 return ret; 914 } 915 916 static int check_async_write(struct inode *inode, unsigned long bio_flags) 917 { 918 if (bio_flags & EXTENT_BIO_TREE_LOG) 919 return 0; 920 #ifdef CONFIG_X86 921 if (cpu_has_xmm4_2) 922 return 0; 923 #endif 924 return 1; 925 } 926 927 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 928 int mirror_num, unsigned long bio_flags, 929 u64 bio_offset) 930 { 931 int async = check_async_write(inode, bio_flags); 932 int ret; 933 934 if (!(rw & REQ_WRITE)) { 935 /* 936 * called for a read, do the setup so that checksum validation 937 * can happen in the async kernel threads 938 */ 939 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 940 bio, BTRFS_WQ_ENDIO_METADATA); 941 if (ret) 942 goto out_w_error; 943 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 944 mirror_num, 0); 945 } else if (!async) { 946 ret = btree_csum_one_bio(bio); 947 if (ret) 948 goto out_w_error; 949 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 950 mirror_num, 0); 951 } else { 952 /* 953 * kthread helpers are used to submit writes so that 954 * checksumming can happen in parallel across all CPUs 955 */ 956 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 957 inode, rw, bio, mirror_num, 0, 958 bio_offset, 959 __btree_submit_bio_start, 960 __btree_submit_bio_done); 961 } 962 963 if (ret) { 964 out_w_error: 965 bio_endio(bio, ret); 966 } 967 return ret; 968 } 969 970 #ifdef CONFIG_MIGRATION 971 static int btree_migratepage(struct address_space *mapping, 972 struct page *newpage, struct page *page, 973 enum migrate_mode mode) 974 { 975 /* 976 * we can't safely write a btree page from here, 977 * we haven't done the locking hook 978 */ 979 if (PageDirty(page)) 980 return -EAGAIN; 981 /* 982 * Buffers may be managed in a filesystem specific way. 983 * We must have no buffers or drop them. 984 */ 985 if (page_has_private(page) && 986 !try_to_release_page(page, GFP_KERNEL)) 987 return -EAGAIN; 988 return migrate_page(mapping, newpage, page, mode); 989 } 990 #endif 991 992 993 static int btree_writepages(struct address_space *mapping, 994 struct writeback_control *wbc) 995 { 996 struct btrfs_fs_info *fs_info; 997 int ret; 998 999 if (wbc->sync_mode == WB_SYNC_NONE) { 1000 1001 if (wbc->for_kupdate) 1002 return 0; 1003 1004 fs_info = BTRFS_I(mapping->host)->root->fs_info; 1005 /* this is a bit racy, but that's ok */ 1006 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 1007 BTRFS_DIRTY_METADATA_THRESH); 1008 if (ret < 0) 1009 return 0; 1010 } 1011 return btree_write_cache_pages(mapping, wbc); 1012 } 1013 1014 static int btree_readpage(struct file *file, struct page *page) 1015 { 1016 struct extent_io_tree *tree; 1017 tree = &BTRFS_I(page->mapping->host)->io_tree; 1018 return extent_read_full_page(tree, page, btree_get_extent, 0); 1019 } 1020 1021 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 1022 { 1023 if (PageWriteback(page) || PageDirty(page)) 1024 return 0; 1025 1026 return try_release_extent_buffer(page); 1027 } 1028 1029 static void btree_invalidatepage(struct page *page, unsigned int offset, 1030 unsigned int length) 1031 { 1032 struct extent_io_tree *tree; 1033 tree = &BTRFS_I(page->mapping->host)->io_tree; 1034 extent_invalidatepage(tree, page, offset); 1035 btree_releasepage(page, GFP_NOFS); 1036 if (PagePrivate(page)) { 1037 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 1038 "page private not zero on page %llu", 1039 (unsigned long long)page_offset(page)); 1040 ClearPagePrivate(page); 1041 set_page_private(page, 0); 1042 page_cache_release(page); 1043 } 1044 } 1045 1046 static int btree_set_page_dirty(struct page *page) 1047 { 1048 #ifdef DEBUG 1049 struct extent_buffer *eb; 1050 1051 BUG_ON(!PagePrivate(page)); 1052 eb = (struct extent_buffer *)page->private; 1053 BUG_ON(!eb); 1054 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1055 BUG_ON(!atomic_read(&eb->refs)); 1056 btrfs_assert_tree_locked(eb); 1057 #endif 1058 return __set_page_dirty_nobuffers(page); 1059 } 1060 1061 static const struct address_space_operations btree_aops = { 1062 .readpage = btree_readpage, 1063 .writepages = btree_writepages, 1064 .releasepage = btree_releasepage, 1065 .invalidatepage = btree_invalidatepage, 1066 #ifdef CONFIG_MIGRATION 1067 .migratepage = btree_migratepage, 1068 #endif 1069 .set_page_dirty = btree_set_page_dirty, 1070 }; 1071 1072 void readahead_tree_block(struct btrfs_root *root, u64 bytenr) 1073 { 1074 struct extent_buffer *buf = NULL; 1075 struct inode *btree_inode = root->fs_info->btree_inode; 1076 1077 buf = btrfs_find_create_tree_block(root, bytenr); 1078 if (!buf) 1079 return; 1080 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1081 buf, 0, WAIT_NONE, btree_get_extent, 0); 1082 free_extent_buffer(buf); 1083 } 1084 1085 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, 1086 int mirror_num, struct extent_buffer **eb) 1087 { 1088 struct extent_buffer *buf = NULL; 1089 struct inode *btree_inode = root->fs_info->btree_inode; 1090 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1091 int ret; 1092 1093 buf = btrfs_find_create_tree_block(root, bytenr); 1094 if (!buf) 1095 return 0; 1096 1097 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1098 1099 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1100 btree_get_extent, mirror_num); 1101 if (ret) { 1102 free_extent_buffer(buf); 1103 return ret; 1104 } 1105 1106 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1107 free_extent_buffer(buf); 1108 return -EIO; 1109 } else if (extent_buffer_uptodate(buf)) { 1110 *eb = buf; 1111 } else { 1112 free_extent_buffer(buf); 1113 } 1114 return 0; 1115 } 1116 1117 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info, 1118 u64 bytenr) 1119 { 1120 return find_extent_buffer(fs_info, bytenr); 1121 } 1122 1123 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1124 u64 bytenr) 1125 { 1126 if (btrfs_test_is_dummy_root(root)) 1127 return alloc_test_extent_buffer(root->fs_info, bytenr); 1128 return alloc_extent_buffer(root->fs_info, bytenr); 1129 } 1130 1131 1132 int btrfs_write_tree_block(struct extent_buffer *buf) 1133 { 1134 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1135 buf->start + buf->len - 1); 1136 } 1137 1138 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1139 { 1140 return filemap_fdatawait_range(buf->pages[0]->mapping, 1141 buf->start, buf->start + buf->len - 1); 1142 } 1143 1144 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1145 u64 parent_transid) 1146 { 1147 struct extent_buffer *buf = NULL; 1148 int ret; 1149 1150 buf = btrfs_find_create_tree_block(root, bytenr); 1151 if (!buf) 1152 return NULL; 1153 1154 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1155 if (ret) { 1156 free_extent_buffer(buf); 1157 return NULL; 1158 } 1159 return buf; 1160 1161 } 1162 1163 void clean_tree_block(struct btrfs_trans_handle *trans, 1164 struct btrfs_fs_info *fs_info, 1165 struct extent_buffer *buf) 1166 { 1167 if (btrfs_header_generation(buf) == 1168 fs_info->running_transaction->transid) { 1169 btrfs_assert_tree_locked(buf); 1170 1171 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1172 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 1173 -buf->len, 1174 fs_info->dirty_metadata_batch); 1175 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1176 btrfs_set_lock_blocking(buf); 1177 clear_extent_buffer_dirty(buf); 1178 } 1179 } 1180 } 1181 1182 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1183 { 1184 struct btrfs_subvolume_writers *writers; 1185 int ret; 1186 1187 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1188 if (!writers) 1189 return ERR_PTR(-ENOMEM); 1190 1191 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL); 1192 if (ret < 0) { 1193 kfree(writers); 1194 return ERR_PTR(ret); 1195 } 1196 1197 init_waitqueue_head(&writers->wait); 1198 return writers; 1199 } 1200 1201 static void 1202 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1203 { 1204 percpu_counter_destroy(&writers->counter); 1205 kfree(writers); 1206 } 1207 1208 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize, 1209 struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1210 u64 objectid) 1211 { 1212 root->node = NULL; 1213 root->commit_root = NULL; 1214 root->sectorsize = sectorsize; 1215 root->nodesize = nodesize; 1216 root->stripesize = stripesize; 1217 root->state = 0; 1218 root->orphan_cleanup_state = 0; 1219 1220 root->objectid = objectid; 1221 root->last_trans = 0; 1222 root->highest_objectid = 0; 1223 root->nr_delalloc_inodes = 0; 1224 root->nr_ordered_extents = 0; 1225 root->name = NULL; 1226 root->inode_tree = RB_ROOT; 1227 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1228 root->block_rsv = NULL; 1229 root->orphan_block_rsv = NULL; 1230 1231 INIT_LIST_HEAD(&root->dirty_list); 1232 INIT_LIST_HEAD(&root->root_list); 1233 INIT_LIST_HEAD(&root->delalloc_inodes); 1234 INIT_LIST_HEAD(&root->delalloc_root); 1235 INIT_LIST_HEAD(&root->ordered_extents); 1236 INIT_LIST_HEAD(&root->ordered_root); 1237 INIT_LIST_HEAD(&root->logged_list[0]); 1238 INIT_LIST_HEAD(&root->logged_list[1]); 1239 spin_lock_init(&root->orphan_lock); 1240 spin_lock_init(&root->inode_lock); 1241 spin_lock_init(&root->delalloc_lock); 1242 spin_lock_init(&root->ordered_extent_lock); 1243 spin_lock_init(&root->accounting_lock); 1244 spin_lock_init(&root->log_extents_lock[0]); 1245 spin_lock_init(&root->log_extents_lock[1]); 1246 mutex_init(&root->objectid_mutex); 1247 mutex_init(&root->log_mutex); 1248 mutex_init(&root->ordered_extent_mutex); 1249 mutex_init(&root->delalloc_mutex); 1250 init_waitqueue_head(&root->log_writer_wait); 1251 init_waitqueue_head(&root->log_commit_wait[0]); 1252 init_waitqueue_head(&root->log_commit_wait[1]); 1253 INIT_LIST_HEAD(&root->log_ctxs[0]); 1254 INIT_LIST_HEAD(&root->log_ctxs[1]); 1255 atomic_set(&root->log_commit[0], 0); 1256 atomic_set(&root->log_commit[1], 0); 1257 atomic_set(&root->log_writers, 0); 1258 atomic_set(&root->log_batch, 0); 1259 atomic_set(&root->orphan_inodes, 0); 1260 atomic_set(&root->refs, 1); 1261 atomic_set(&root->will_be_snapshoted, 0); 1262 root->log_transid = 0; 1263 root->log_transid_committed = -1; 1264 root->last_log_commit = 0; 1265 if (fs_info) 1266 extent_io_tree_init(&root->dirty_log_pages, 1267 fs_info->btree_inode->i_mapping); 1268 1269 memset(&root->root_key, 0, sizeof(root->root_key)); 1270 memset(&root->root_item, 0, sizeof(root->root_item)); 1271 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1272 if (fs_info) 1273 root->defrag_trans_start = fs_info->generation; 1274 else 1275 root->defrag_trans_start = 0; 1276 root->root_key.objectid = objectid; 1277 root->anon_dev = 0; 1278 1279 spin_lock_init(&root->root_item_lock); 1280 } 1281 1282 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info) 1283 { 1284 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS); 1285 if (root) 1286 root->fs_info = fs_info; 1287 return root; 1288 } 1289 1290 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1291 /* Should only be used by the testing infrastructure */ 1292 struct btrfs_root *btrfs_alloc_dummy_root(void) 1293 { 1294 struct btrfs_root *root; 1295 1296 root = btrfs_alloc_root(NULL); 1297 if (!root) 1298 return ERR_PTR(-ENOMEM); 1299 __setup_root(4096, 4096, 4096, root, NULL, 1); 1300 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state); 1301 root->alloc_bytenr = 0; 1302 1303 return root; 1304 } 1305 #endif 1306 1307 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1308 struct btrfs_fs_info *fs_info, 1309 u64 objectid) 1310 { 1311 struct extent_buffer *leaf; 1312 struct btrfs_root *tree_root = fs_info->tree_root; 1313 struct btrfs_root *root; 1314 struct btrfs_key key; 1315 int ret = 0; 1316 uuid_le uuid; 1317 1318 root = btrfs_alloc_root(fs_info); 1319 if (!root) 1320 return ERR_PTR(-ENOMEM); 1321 1322 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1323 tree_root->stripesize, root, fs_info, objectid); 1324 root->root_key.objectid = objectid; 1325 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1326 root->root_key.offset = 0; 1327 1328 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1329 if (IS_ERR(leaf)) { 1330 ret = PTR_ERR(leaf); 1331 leaf = NULL; 1332 goto fail; 1333 } 1334 1335 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1336 btrfs_set_header_bytenr(leaf, leaf->start); 1337 btrfs_set_header_generation(leaf, trans->transid); 1338 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1339 btrfs_set_header_owner(leaf, objectid); 1340 root->node = leaf; 1341 1342 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(), 1343 BTRFS_FSID_SIZE); 1344 write_extent_buffer(leaf, fs_info->chunk_tree_uuid, 1345 btrfs_header_chunk_tree_uuid(leaf), 1346 BTRFS_UUID_SIZE); 1347 btrfs_mark_buffer_dirty(leaf); 1348 1349 root->commit_root = btrfs_root_node(root); 1350 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1351 1352 root->root_item.flags = 0; 1353 root->root_item.byte_limit = 0; 1354 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1355 btrfs_set_root_generation(&root->root_item, trans->transid); 1356 btrfs_set_root_level(&root->root_item, 0); 1357 btrfs_set_root_refs(&root->root_item, 1); 1358 btrfs_set_root_used(&root->root_item, leaf->len); 1359 btrfs_set_root_last_snapshot(&root->root_item, 0); 1360 btrfs_set_root_dirid(&root->root_item, 0); 1361 uuid_le_gen(&uuid); 1362 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1363 root->root_item.drop_level = 0; 1364 1365 key.objectid = objectid; 1366 key.type = BTRFS_ROOT_ITEM_KEY; 1367 key.offset = 0; 1368 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1369 if (ret) 1370 goto fail; 1371 1372 btrfs_tree_unlock(leaf); 1373 1374 return root; 1375 1376 fail: 1377 if (leaf) { 1378 btrfs_tree_unlock(leaf); 1379 free_extent_buffer(root->commit_root); 1380 free_extent_buffer(leaf); 1381 } 1382 kfree(root); 1383 1384 return ERR_PTR(ret); 1385 } 1386 1387 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1388 struct btrfs_fs_info *fs_info) 1389 { 1390 struct btrfs_root *root; 1391 struct btrfs_root *tree_root = fs_info->tree_root; 1392 struct extent_buffer *leaf; 1393 1394 root = btrfs_alloc_root(fs_info); 1395 if (!root) 1396 return ERR_PTR(-ENOMEM); 1397 1398 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1399 tree_root->stripesize, root, fs_info, 1400 BTRFS_TREE_LOG_OBJECTID); 1401 1402 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1403 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1404 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1405 1406 /* 1407 * DON'T set REF_COWS for log trees 1408 * 1409 * log trees do not get reference counted because they go away 1410 * before a real commit is actually done. They do store pointers 1411 * to file data extents, and those reference counts still get 1412 * updated (along with back refs to the log tree). 1413 */ 1414 1415 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1416 NULL, 0, 0, 0); 1417 if (IS_ERR(leaf)) { 1418 kfree(root); 1419 return ERR_CAST(leaf); 1420 } 1421 1422 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1423 btrfs_set_header_bytenr(leaf, leaf->start); 1424 btrfs_set_header_generation(leaf, trans->transid); 1425 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1426 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1427 root->node = leaf; 1428 1429 write_extent_buffer(root->node, root->fs_info->fsid, 1430 btrfs_header_fsid(), BTRFS_FSID_SIZE); 1431 btrfs_mark_buffer_dirty(root->node); 1432 btrfs_tree_unlock(root->node); 1433 return root; 1434 } 1435 1436 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1437 struct btrfs_fs_info *fs_info) 1438 { 1439 struct btrfs_root *log_root; 1440 1441 log_root = alloc_log_tree(trans, fs_info); 1442 if (IS_ERR(log_root)) 1443 return PTR_ERR(log_root); 1444 WARN_ON(fs_info->log_root_tree); 1445 fs_info->log_root_tree = log_root; 1446 return 0; 1447 } 1448 1449 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1450 struct btrfs_root *root) 1451 { 1452 struct btrfs_root *log_root; 1453 struct btrfs_inode_item *inode_item; 1454 1455 log_root = alloc_log_tree(trans, root->fs_info); 1456 if (IS_ERR(log_root)) 1457 return PTR_ERR(log_root); 1458 1459 log_root->last_trans = trans->transid; 1460 log_root->root_key.offset = root->root_key.objectid; 1461 1462 inode_item = &log_root->root_item.inode; 1463 btrfs_set_stack_inode_generation(inode_item, 1); 1464 btrfs_set_stack_inode_size(inode_item, 3); 1465 btrfs_set_stack_inode_nlink(inode_item, 1); 1466 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize); 1467 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1468 1469 btrfs_set_root_node(&log_root->root_item, log_root->node); 1470 1471 WARN_ON(root->log_root); 1472 root->log_root = log_root; 1473 root->log_transid = 0; 1474 root->log_transid_committed = -1; 1475 root->last_log_commit = 0; 1476 return 0; 1477 } 1478 1479 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1480 struct btrfs_key *key) 1481 { 1482 struct btrfs_root *root; 1483 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1484 struct btrfs_path *path; 1485 u64 generation; 1486 int ret; 1487 1488 path = btrfs_alloc_path(); 1489 if (!path) 1490 return ERR_PTR(-ENOMEM); 1491 1492 root = btrfs_alloc_root(fs_info); 1493 if (!root) { 1494 ret = -ENOMEM; 1495 goto alloc_fail; 1496 } 1497 1498 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1499 tree_root->stripesize, root, fs_info, key->objectid); 1500 1501 ret = btrfs_find_root(tree_root, key, path, 1502 &root->root_item, &root->root_key); 1503 if (ret) { 1504 if (ret > 0) 1505 ret = -ENOENT; 1506 goto find_fail; 1507 } 1508 1509 generation = btrfs_root_generation(&root->root_item); 1510 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1511 generation); 1512 if (!root->node) { 1513 ret = -ENOMEM; 1514 goto find_fail; 1515 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1516 ret = -EIO; 1517 goto read_fail; 1518 } 1519 root->commit_root = btrfs_root_node(root); 1520 out: 1521 btrfs_free_path(path); 1522 return root; 1523 1524 read_fail: 1525 free_extent_buffer(root->node); 1526 find_fail: 1527 kfree(root); 1528 alloc_fail: 1529 root = ERR_PTR(ret); 1530 goto out; 1531 } 1532 1533 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1534 struct btrfs_key *location) 1535 { 1536 struct btrfs_root *root; 1537 1538 root = btrfs_read_tree_root(tree_root, location); 1539 if (IS_ERR(root)) 1540 return root; 1541 1542 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1543 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1544 btrfs_check_and_init_root_item(&root->root_item); 1545 } 1546 1547 return root; 1548 } 1549 1550 int btrfs_init_fs_root(struct btrfs_root *root) 1551 { 1552 int ret; 1553 struct btrfs_subvolume_writers *writers; 1554 1555 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1556 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1557 GFP_NOFS); 1558 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1559 ret = -ENOMEM; 1560 goto fail; 1561 } 1562 1563 writers = btrfs_alloc_subvolume_writers(); 1564 if (IS_ERR(writers)) { 1565 ret = PTR_ERR(writers); 1566 goto fail; 1567 } 1568 root->subv_writers = writers; 1569 1570 btrfs_init_free_ino_ctl(root); 1571 spin_lock_init(&root->ino_cache_lock); 1572 init_waitqueue_head(&root->ino_cache_wait); 1573 1574 ret = get_anon_bdev(&root->anon_dev); 1575 if (ret) 1576 goto free_writers; 1577 return 0; 1578 1579 free_writers: 1580 btrfs_free_subvolume_writers(root->subv_writers); 1581 fail: 1582 kfree(root->free_ino_ctl); 1583 kfree(root->free_ino_pinned); 1584 return ret; 1585 } 1586 1587 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1588 u64 root_id) 1589 { 1590 struct btrfs_root *root; 1591 1592 spin_lock(&fs_info->fs_roots_radix_lock); 1593 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1594 (unsigned long)root_id); 1595 spin_unlock(&fs_info->fs_roots_radix_lock); 1596 return root; 1597 } 1598 1599 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1600 struct btrfs_root *root) 1601 { 1602 int ret; 1603 1604 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1605 if (ret) 1606 return ret; 1607 1608 spin_lock(&fs_info->fs_roots_radix_lock); 1609 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1610 (unsigned long)root->root_key.objectid, 1611 root); 1612 if (ret == 0) 1613 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1614 spin_unlock(&fs_info->fs_roots_radix_lock); 1615 radix_tree_preload_end(); 1616 1617 return ret; 1618 } 1619 1620 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1621 struct btrfs_key *location, 1622 bool check_ref) 1623 { 1624 struct btrfs_root *root; 1625 struct btrfs_path *path; 1626 struct btrfs_key key; 1627 int ret; 1628 1629 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1630 return fs_info->tree_root; 1631 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1632 return fs_info->extent_root; 1633 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1634 return fs_info->chunk_root; 1635 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1636 return fs_info->dev_root; 1637 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1638 return fs_info->csum_root; 1639 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1640 return fs_info->quota_root ? fs_info->quota_root : 1641 ERR_PTR(-ENOENT); 1642 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1643 return fs_info->uuid_root ? fs_info->uuid_root : 1644 ERR_PTR(-ENOENT); 1645 again: 1646 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1647 if (root) { 1648 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1649 return ERR_PTR(-ENOENT); 1650 return root; 1651 } 1652 1653 root = btrfs_read_fs_root(fs_info->tree_root, location); 1654 if (IS_ERR(root)) 1655 return root; 1656 1657 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1658 ret = -ENOENT; 1659 goto fail; 1660 } 1661 1662 ret = btrfs_init_fs_root(root); 1663 if (ret) 1664 goto fail; 1665 1666 path = btrfs_alloc_path(); 1667 if (!path) { 1668 ret = -ENOMEM; 1669 goto fail; 1670 } 1671 key.objectid = BTRFS_ORPHAN_OBJECTID; 1672 key.type = BTRFS_ORPHAN_ITEM_KEY; 1673 key.offset = location->objectid; 1674 1675 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1676 btrfs_free_path(path); 1677 if (ret < 0) 1678 goto fail; 1679 if (ret == 0) 1680 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1681 1682 ret = btrfs_insert_fs_root(fs_info, root); 1683 if (ret) { 1684 if (ret == -EEXIST) { 1685 free_fs_root(root); 1686 goto again; 1687 } 1688 goto fail; 1689 } 1690 return root; 1691 fail: 1692 free_fs_root(root); 1693 return ERR_PTR(ret); 1694 } 1695 1696 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1697 { 1698 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1699 int ret = 0; 1700 struct btrfs_device *device; 1701 struct backing_dev_info *bdi; 1702 1703 rcu_read_lock(); 1704 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1705 if (!device->bdev) 1706 continue; 1707 bdi = blk_get_backing_dev_info(device->bdev); 1708 if (bdi_congested(bdi, bdi_bits)) { 1709 ret = 1; 1710 break; 1711 } 1712 } 1713 rcu_read_unlock(); 1714 return ret; 1715 } 1716 1717 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1718 { 1719 int err; 1720 1721 err = bdi_setup_and_register(bdi, "btrfs"); 1722 if (err) 1723 return err; 1724 1725 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE; 1726 bdi->congested_fn = btrfs_congested_fn; 1727 bdi->congested_data = info; 1728 return 0; 1729 } 1730 1731 /* 1732 * called by the kthread helper functions to finally call the bio end_io 1733 * functions. This is where read checksum verification actually happens 1734 */ 1735 static void end_workqueue_fn(struct btrfs_work *work) 1736 { 1737 struct bio *bio; 1738 struct btrfs_end_io_wq *end_io_wq; 1739 int error; 1740 1741 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1742 bio = end_io_wq->bio; 1743 1744 error = end_io_wq->error; 1745 bio->bi_private = end_io_wq->private; 1746 bio->bi_end_io = end_io_wq->end_io; 1747 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1748 bio_endio_nodec(bio, error); 1749 } 1750 1751 static int cleaner_kthread(void *arg) 1752 { 1753 struct btrfs_root *root = arg; 1754 int again; 1755 1756 do { 1757 again = 0; 1758 1759 /* Make the cleaner go to sleep early. */ 1760 if (btrfs_need_cleaner_sleep(root)) 1761 goto sleep; 1762 1763 if (!mutex_trylock(&root->fs_info->cleaner_mutex)) 1764 goto sleep; 1765 1766 /* 1767 * Avoid the problem that we change the status of the fs 1768 * during the above check and trylock. 1769 */ 1770 if (btrfs_need_cleaner_sleep(root)) { 1771 mutex_unlock(&root->fs_info->cleaner_mutex); 1772 goto sleep; 1773 } 1774 1775 btrfs_run_delayed_iputs(root); 1776 btrfs_delete_unused_bgs(root->fs_info); 1777 again = btrfs_clean_one_deleted_snapshot(root); 1778 mutex_unlock(&root->fs_info->cleaner_mutex); 1779 1780 /* 1781 * The defragger has dealt with the R/O remount and umount, 1782 * needn't do anything special here. 1783 */ 1784 btrfs_run_defrag_inodes(root->fs_info); 1785 sleep: 1786 if (!try_to_freeze() && !again) { 1787 set_current_state(TASK_INTERRUPTIBLE); 1788 if (!kthread_should_stop()) 1789 schedule(); 1790 __set_current_state(TASK_RUNNING); 1791 } 1792 } while (!kthread_should_stop()); 1793 return 0; 1794 } 1795 1796 static int transaction_kthread(void *arg) 1797 { 1798 struct btrfs_root *root = arg; 1799 struct btrfs_trans_handle *trans; 1800 struct btrfs_transaction *cur; 1801 u64 transid; 1802 unsigned long now; 1803 unsigned long delay; 1804 bool cannot_commit; 1805 1806 do { 1807 cannot_commit = false; 1808 delay = HZ * root->fs_info->commit_interval; 1809 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1810 1811 spin_lock(&root->fs_info->trans_lock); 1812 cur = root->fs_info->running_transaction; 1813 if (!cur) { 1814 spin_unlock(&root->fs_info->trans_lock); 1815 goto sleep; 1816 } 1817 1818 now = get_seconds(); 1819 if (cur->state < TRANS_STATE_BLOCKED && 1820 (now < cur->start_time || 1821 now - cur->start_time < root->fs_info->commit_interval)) { 1822 spin_unlock(&root->fs_info->trans_lock); 1823 delay = HZ * 5; 1824 goto sleep; 1825 } 1826 transid = cur->transid; 1827 spin_unlock(&root->fs_info->trans_lock); 1828 1829 /* If the file system is aborted, this will always fail. */ 1830 trans = btrfs_attach_transaction(root); 1831 if (IS_ERR(trans)) { 1832 if (PTR_ERR(trans) != -ENOENT) 1833 cannot_commit = true; 1834 goto sleep; 1835 } 1836 if (transid == trans->transid) { 1837 btrfs_commit_transaction(trans, root); 1838 } else { 1839 btrfs_end_transaction(trans, root); 1840 } 1841 sleep: 1842 wake_up_process(root->fs_info->cleaner_kthread); 1843 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1844 1845 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1846 &root->fs_info->fs_state))) 1847 btrfs_cleanup_transaction(root); 1848 if (!try_to_freeze()) { 1849 set_current_state(TASK_INTERRUPTIBLE); 1850 if (!kthread_should_stop() && 1851 (!btrfs_transaction_blocked(root->fs_info) || 1852 cannot_commit)) 1853 schedule_timeout(delay); 1854 __set_current_state(TASK_RUNNING); 1855 } 1856 } while (!kthread_should_stop()); 1857 return 0; 1858 } 1859 1860 /* 1861 * this will find the highest generation in the array of 1862 * root backups. The index of the highest array is returned, 1863 * or -1 if we can't find anything. 1864 * 1865 * We check to make sure the array is valid by comparing the 1866 * generation of the latest root in the array with the generation 1867 * in the super block. If they don't match we pitch it. 1868 */ 1869 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1870 { 1871 u64 cur; 1872 int newest_index = -1; 1873 struct btrfs_root_backup *root_backup; 1874 int i; 1875 1876 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1877 root_backup = info->super_copy->super_roots + i; 1878 cur = btrfs_backup_tree_root_gen(root_backup); 1879 if (cur == newest_gen) 1880 newest_index = i; 1881 } 1882 1883 /* check to see if we actually wrapped around */ 1884 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1885 root_backup = info->super_copy->super_roots; 1886 cur = btrfs_backup_tree_root_gen(root_backup); 1887 if (cur == newest_gen) 1888 newest_index = 0; 1889 } 1890 return newest_index; 1891 } 1892 1893 1894 /* 1895 * find the oldest backup so we know where to store new entries 1896 * in the backup array. This will set the backup_root_index 1897 * field in the fs_info struct 1898 */ 1899 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1900 u64 newest_gen) 1901 { 1902 int newest_index = -1; 1903 1904 newest_index = find_newest_super_backup(info, newest_gen); 1905 /* if there was garbage in there, just move along */ 1906 if (newest_index == -1) { 1907 info->backup_root_index = 0; 1908 } else { 1909 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1910 } 1911 } 1912 1913 /* 1914 * copy all the root pointers into the super backup array. 1915 * this will bump the backup pointer by one when it is 1916 * done 1917 */ 1918 static void backup_super_roots(struct btrfs_fs_info *info) 1919 { 1920 int next_backup; 1921 struct btrfs_root_backup *root_backup; 1922 int last_backup; 1923 1924 next_backup = info->backup_root_index; 1925 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1926 BTRFS_NUM_BACKUP_ROOTS; 1927 1928 /* 1929 * just overwrite the last backup if we're at the same generation 1930 * this happens only at umount 1931 */ 1932 root_backup = info->super_for_commit->super_roots + last_backup; 1933 if (btrfs_backup_tree_root_gen(root_backup) == 1934 btrfs_header_generation(info->tree_root->node)) 1935 next_backup = last_backup; 1936 1937 root_backup = info->super_for_commit->super_roots + next_backup; 1938 1939 /* 1940 * make sure all of our padding and empty slots get zero filled 1941 * regardless of which ones we use today 1942 */ 1943 memset(root_backup, 0, sizeof(*root_backup)); 1944 1945 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1946 1947 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1948 btrfs_set_backup_tree_root_gen(root_backup, 1949 btrfs_header_generation(info->tree_root->node)); 1950 1951 btrfs_set_backup_tree_root_level(root_backup, 1952 btrfs_header_level(info->tree_root->node)); 1953 1954 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1955 btrfs_set_backup_chunk_root_gen(root_backup, 1956 btrfs_header_generation(info->chunk_root->node)); 1957 btrfs_set_backup_chunk_root_level(root_backup, 1958 btrfs_header_level(info->chunk_root->node)); 1959 1960 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1961 btrfs_set_backup_extent_root_gen(root_backup, 1962 btrfs_header_generation(info->extent_root->node)); 1963 btrfs_set_backup_extent_root_level(root_backup, 1964 btrfs_header_level(info->extent_root->node)); 1965 1966 /* 1967 * we might commit during log recovery, which happens before we set 1968 * the fs_root. Make sure it is valid before we fill it in. 1969 */ 1970 if (info->fs_root && info->fs_root->node) { 1971 btrfs_set_backup_fs_root(root_backup, 1972 info->fs_root->node->start); 1973 btrfs_set_backup_fs_root_gen(root_backup, 1974 btrfs_header_generation(info->fs_root->node)); 1975 btrfs_set_backup_fs_root_level(root_backup, 1976 btrfs_header_level(info->fs_root->node)); 1977 } 1978 1979 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1980 btrfs_set_backup_dev_root_gen(root_backup, 1981 btrfs_header_generation(info->dev_root->node)); 1982 btrfs_set_backup_dev_root_level(root_backup, 1983 btrfs_header_level(info->dev_root->node)); 1984 1985 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1986 btrfs_set_backup_csum_root_gen(root_backup, 1987 btrfs_header_generation(info->csum_root->node)); 1988 btrfs_set_backup_csum_root_level(root_backup, 1989 btrfs_header_level(info->csum_root->node)); 1990 1991 btrfs_set_backup_total_bytes(root_backup, 1992 btrfs_super_total_bytes(info->super_copy)); 1993 btrfs_set_backup_bytes_used(root_backup, 1994 btrfs_super_bytes_used(info->super_copy)); 1995 btrfs_set_backup_num_devices(root_backup, 1996 btrfs_super_num_devices(info->super_copy)); 1997 1998 /* 1999 * if we don't copy this out to the super_copy, it won't get remembered 2000 * for the next commit 2001 */ 2002 memcpy(&info->super_copy->super_roots, 2003 &info->super_for_commit->super_roots, 2004 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 2005 } 2006 2007 /* 2008 * this copies info out of the root backup array and back into 2009 * the in-memory super block. It is meant to help iterate through 2010 * the array, so you send it the number of backups you've already 2011 * tried and the last backup index you used. 2012 * 2013 * this returns -1 when it has tried all the backups 2014 */ 2015 static noinline int next_root_backup(struct btrfs_fs_info *info, 2016 struct btrfs_super_block *super, 2017 int *num_backups_tried, int *backup_index) 2018 { 2019 struct btrfs_root_backup *root_backup; 2020 int newest = *backup_index; 2021 2022 if (*num_backups_tried == 0) { 2023 u64 gen = btrfs_super_generation(super); 2024 2025 newest = find_newest_super_backup(info, gen); 2026 if (newest == -1) 2027 return -1; 2028 2029 *backup_index = newest; 2030 *num_backups_tried = 1; 2031 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 2032 /* we've tried all the backups, all done */ 2033 return -1; 2034 } else { 2035 /* jump to the next oldest backup */ 2036 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 2037 BTRFS_NUM_BACKUP_ROOTS; 2038 *backup_index = newest; 2039 *num_backups_tried += 1; 2040 } 2041 root_backup = super->super_roots + newest; 2042 2043 btrfs_set_super_generation(super, 2044 btrfs_backup_tree_root_gen(root_backup)); 2045 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2046 btrfs_set_super_root_level(super, 2047 btrfs_backup_tree_root_level(root_backup)); 2048 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2049 2050 /* 2051 * fixme: the total bytes and num_devices need to match or we should 2052 * need a fsck 2053 */ 2054 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2055 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2056 return 0; 2057 } 2058 2059 /* helper to cleanup workers */ 2060 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2061 { 2062 btrfs_destroy_workqueue(fs_info->fixup_workers); 2063 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2064 btrfs_destroy_workqueue(fs_info->workers); 2065 btrfs_destroy_workqueue(fs_info->endio_workers); 2066 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2067 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2068 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 2069 btrfs_destroy_workqueue(fs_info->rmw_workers); 2070 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2071 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2072 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2073 btrfs_destroy_workqueue(fs_info->submit_workers); 2074 btrfs_destroy_workqueue(fs_info->delayed_workers); 2075 btrfs_destroy_workqueue(fs_info->caching_workers); 2076 btrfs_destroy_workqueue(fs_info->readahead_workers); 2077 btrfs_destroy_workqueue(fs_info->flush_workers); 2078 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2079 btrfs_destroy_workqueue(fs_info->extent_workers); 2080 } 2081 2082 static void free_root_extent_buffers(struct btrfs_root *root) 2083 { 2084 if (root) { 2085 free_extent_buffer(root->node); 2086 free_extent_buffer(root->commit_root); 2087 root->node = NULL; 2088 root->commit_root = NULL; 2089 } 2090 } 2091 2092 /* helper to cleanup tree roots */ 2093 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2094 { 2095 free_root_extent_buffers(info->tree_root); 2096 2097 free_root_extent_buffers(info->dev_root); 2098 free_root_extent_buffers(info->extent_root); 2099 free_root_extent_buffers(info->csum_root); 2100 free_root_extent_buffers(info->quota_root); 2101 free_root_extent_buffers(info->uuid_root); 2102 if (chunk_root) 2103 free_root_extent_buffers(info->chunk_root); 2104 } 2105 2106 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2107 { 2108 int ret; 2109 struct btrfs_root *gang[8]; 2110 int i; 2111 2112 while (!list_empty(&fs_info->dead_roots)) { 2113 gang[0] = list_entry(fs_info->dead_roots.next, 2114 struct btrfs_root, root_list); 2115 list_del(&gang[0]->root_list); 2116 2117 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2118 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2119 } else { 2120 free_extent_buffer(gang[0]->node); 2121 free_extent_buffer(gang[0]->commit_root); 2122 btrfs_put_fs_root(gang[0]); 2123 } 2124 } 2125 2126 while (1) { 2127 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2128 (void **)gang, 0, 2129 ARRAY_SIZE(gang)); 2130 if (!ret) 2131 break; 2132 for (i = 0; i < ret; i++) 2133 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2134 } 2135 2136 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2137 btrfs_free_log_root_tree(NULL, fs_info); 2138 btrfs_destroy_pinned_extent(fs_info->tree_root, 2139 fs_info->pinned_extents); 2140 } 2141 } 2142 2143 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2144 { 2145 mutex_init(&fs_info->scrub_lock); 2146 atomic_set(&fs_info->scrubs_running, 0); 2147 atomic_set(&fs_info->scrub_pause_req, 0); 2148 atomic_set(&fs_info->scrubs_paused, 0); 2149 atomic_set(&fs_info->scrub_cancel_req, 0); 2150 init_waitqueue_head(&fs_info->scrub_pause_wait); 2151 fs_info->scrub_workers_refcnt = 0; 2152 } 2153 2154 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2155 { 2156 spin_lock_init(&fs_info->balance_lock); 2157 mutex_init(&fs_info->balance_mutex); 2158 atomic_set(&fs_info->balance_running, 0); 2159 atomic_set(&fs_info->balance_pause_req, 0); 2160 atomic_set(&fs_info->balance_cancel_req, 0); 2161 fs_info->balance_ctl = NULL; 2162 init_waitqueue_head(&fs_info->balance_wait_q); 2163 } 2164 2165 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info, 2166 struct btrfs_root *tree_root) 2167 { 2168 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2169 set_nlink(fs_info->btree_inode, 1); 2170 /* 2171 * we set the i_size on the btree inode to the max possible int. 2172 * the real end of the address space is determined by all of 2173 * the devices in the system 2174 */ 2175 fs_info->btree_inode->i_size = OFFSET_MAX; 2176 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 2177 2178 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2179 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2180 fs_info->btree_inode->i_mapping); 2181 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0; 2182 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2183 2184 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2185 2186 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2187 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2188 sizeof(struct btrfs_key)); 2189 set_bit(BTRFS_INODE_DUMMY, 2190 &BTRFS_I(fs_info->btree_inode)->runtime_flags); 2191 btrfs_insert_inode_hash(fs_info->btree_inode); 2192 } 2193 2194 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2195 { 2196 fs_info->dev_replace.lock_owner = 0; 2197 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2198 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2199 mutex_init(&fs_info->dev_replace.lock_management_lock); 2200 mutex_init(&fs_info->dev_replace.lock); 2201 init_waitqueue_head(&fs_info->replace_wait); 2202 } 2203 2204 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2205 { 2206 spin_lock_init(&fs_info->qgroup_lock); 2207 mutex_init(&fs_info->qgroup_ioctl_lock); 2208 fs_info->qgroup_tree = RB_ROOT; 2209 fs_info->qgroup_op_tree = RB_ROOT; 2210 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2211 fs_info->qgroup_seq = 1; 2212 fs_info->quota_enabled = 0; 2213 fs_info->pending_quota_state = 0; 2214 fs_info->qgroup_ulist = NULL; 2215 mutex_init(&fs_info->qgroup_rescan_lock); 2216 } 2217 2218 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2219 struct btrfs_fs_devices *fs_devices) 2220 { 2221 int max_active = fs_info->thread_pool_size; 2222 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2223 2224 fs_info->workers = 2225 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI, 2226 max_active, 16); 2227 2228 fs_info->delalloc_workers = 2229 btrfs_alloc_workqueue("delalloc", flags, max_active, 2); 2230 2231 fs_info->flush_workers = 2232 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0); 2233 2234 fs_info->caching_workers = 2235 btrfs_alloc_workqueue("cache", flags, max_active, 0); 2236 2237 /* 2238 * a higher idle thresh on the submit workers makes it much more 2239 * likely that bios will be send down in a sane order to the 2240 * devices 2241 */ 2242 fs_info->submit_workers = 2243 btrfs_alloc_workqueue("submit", flags, 2244 min_t(u64, fs_devices->num_devices, 2245 max_active), 64); 2246 2247 fs_info->fixup_workers = 2248 btrfs_alloc_workqueue("fixup", flags, 1, 0); 2249 2250 /* 2251 * endios are largely parallel and should have a very 2252 * low idle thresh 2253 */ 2254 fs_info->endio_workers = 2255 btrfs_alloc_workqueue("endio", flags, max_active, 4); 2256 fs_info->endio_meta_workers = 2257 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4); 2258 fs_info->endio_meta_write_workers = 2259 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2); 2260 fs_info->endio_raid56_workers = 2261 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4); 2262 fs_info->endio_repair_workers = 2263 btrfs_alloc_workqueue("endio-repair", flags, 1, 0); 2264 fs_info->rmw_workers = 2265 btrfs_alloc_workqueue("rmw", flags, max_active, 2); 2266 fs_info->endio_write_workers = 2267 btrfs_alloc_workqueue("endio-write", flags, max_active, 2); 2268 fs_info->endio_freespace_worker = 2269 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0); 2270 fs_info->delayed_workers = 2271 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0); 2272 fs_info->readahead_workers = 2273 btrfs_alloc_workqueue("readahead", flags, max_active, 2); 2274 fs_info->qgroup_rescan_workers = 2275 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0); 2276 fs_info->extent_workers = 2277 btrfs_alloc_workqueue("extent-refs", flags, 2278 min_t(u64, fs_devices->num_devices, 2279 max_active), 8); 2280 2281 if (!(fs_info->workers && fs_info->delalloc_workers && 2282 fs_info->submit_workers && fs_info->flush_workers && 2283 fs_info->endio_workers && fs_info->endio_meta_workers && 2284 fs_info->endio_meta_write_workers && 2285 fs_info->endio_repair_workers && 2286 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2287 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2288 fs_info->caching_workers && fs_info->readahead_workers && 2289 fs_info->fixup_workers && fs_info->delayed_workers && 2290 fs_info->extent_workers && 2291 fs_info->qgroup_rescan_workers)) { 2292 return -ENOMEM; 2293 } 2294 2295 return 0; 2296 } 2297 2298 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2299 struct btrfs_fs_devices *fs_devices) 2300 { 2301 int ret; 2302 struct btrfs_root *tree_root = fs_info->tree_root; 2303 struct btrfs_root *log_tree_root; 2304 struct btrfs_super_block *disk_super = fs_info->super_copy; 2305 u64 bytenr = btrfs_super_log_root(disk_super); 2306 2307 if (fs_devices->rw_devices == 0) { 2308 printk(KERN_WARNING "BTRFS: log replay required " 2309 "on RO media\n"); 2310 return -EIO; 2311 } 2312 2313 log_tree_root = btrfs_alloc_root(fs_info); 2314 if (!log_tree_root) 2315 return -ENOMEM; 2316 2317 __setup_root(tree_root->nodesize, tree_root->sectorsize, 2318 tree_root->stripesize, log_tree_root, fs_info, 2319 BTRFS_TREE_LOG_OBJECTID); 2320 2321 log_tree_root->node = read_tree_block(tree_root, bytenr, 2322 fs_info->generation + 1); 2323 if (!log_tree_root->node || 2324 !extent_buffer_uptodate(log_tree_root->node)) { 2325 printk(KERN_ERR "BTRFS: failed to read log tree\n"); 2326 free_extent_buffer(log_tree_root->node); 2327 kfree(log_tree_root); 2328 return -EIO; 2329 } 2330 /* returns with log_tree_root freed on success */ 2331 ret = btrfs_recover_log_trees(log_tree_root); 2332 if (ret) { 2333 btrfs_error(tree_root->fs_info, ret, 2334 "Failed to recover log tree"); 2335 free_extent_buffer(log_tree_root->node); 2336 kfree(log_tree_root); 2337 return ret; 2338 } 2339 2340 if (fs_info->sb->s_flags & MS_RDONLY) { 2341 ret = btrfs_commit_super(tree_root); 2342 if (ret) 2343 return ret; 2344 } 2345 2346 return 0; 2347 } 2348 2349 static int btrfs_read_roots(struct btrfs_fs_info *fs_info, 2350 struct btrfs_root *tree_root) 2351 { 2352 struct btrfs_root *root; 2353 struct btrfs_key location; 2354 int ret; 2355 2356 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2357 location.type = BTRFS_ROOT_ITEM_KEY; 2358 location.offset = 0; 2359 2360 root = btrfs_read_tree_root(tree_root, &location); 2361 if (IS_ERR(root)) 2362 return PTR_ERR(root); 2363 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2364 fs_info->extent_root = root; 2365 2366 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2367 root = btrfs_read_tree_root(tree_root, &location); 2368 if (IS_ERR(root)) 2369 return PTR_ERR(root); 2370 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2371 fs_info->dev_root = root; 2372 btrfs_init_devices_late(fs_info); 2373 2374 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2375 root = btrfs_read_tree_root(tree_root, &location); 2376 if (IS_ERR(root)) 2377 return PTR_ERR(root); 2378 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2379 fs_info->csum_root = root; 2380 2381 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2382 root = btrfs_read_tree_root(tree_root, &location); 2383 if (!IS_ERR(root)) { 2384 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2385 fs_info->quota_enabled = 1; 2386 fs_info->pending_quota_state = 1; 2387 fs_info->quota_root = root; 2388 } 2389 2390 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2391 root = btrfs_read_tree_root(tree_root, &location); 2392 if (IS_ERR(root)) { 2393 ret = PTR_ERR(root); 2394 if (ret != -ENOENT) 2395 return ret; 2396 } else { 2397 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2398 fs_info->uuid_root = root; 2399 } 2400 2401 return 0; 2402 } 2403 2404 int open_ctree(struct super_block *sb, 2405 struct btrfs_fs_devices *fs_devices, 2406 char *options) 2407 { 2408 u32 sectorsize; 2409 u32 nodesize; 2410 u32 stripesize; 2411 u64 generation; 2412 u64 features; 2413 struct btrfs_key location; 2414 struct buffer_head *bh; 2415 struct btrfs_super_block *disk_super; 2416 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2417 struct btrfs_root *tree_root; 2418 struct btrfs_root *chunk_root; 2419 int ret; 2420 int err = -EINVAL; 2421 int num_backups_tried = 0; 2422 int backup_index = 0; 2423 int max_active; 2424 2425 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info); 2426 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info); 2427 if (!tree_root || !chunk_root) { 2428 err = -ENOMEM; 2429 goto fail; 2430 } 2431 2432 ret = init_srcu_struct(&fs_info->subvol_srcu); 2433 if (ret) { 2434 err = ret; 2435 goto fail; 2436 } 2437 2438 ret = setup_bdi(fs_info, &fs_info->bdi); 2439 if (ret) { 2440 err = ret; 2441 goto fail_srcu; 2442 } 2443 2444 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2445 if (ret) { 2446 err = ret; 2447 goto fail_bdi; 2448 } 2449 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE * 2450 (1 + ilog2(nr_cpu_ids)); 2451 2452 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2453 if (ret) { 2454 err = ret; 2455 goto fail_dirty_metadata_bytes; 2456 } 2457 2458 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL); 2459 if (ret) { 2460 err = ret; 2461 goto fail_delalloc_bytes; 2462 } 2463 2464 fs_info->btree_inode = new_inode(sb); 2465 if (!fs_info->btree_inode) { 2466 err = -ENOMEM; 2467 goto fail_bio_counter; 2468 } 2469 2470 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2471 2472 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2473 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2474 INIT_LIST_HEAD(&fs_info->trans_list); 2475 INIT_LIST_HEAD(&fs_info->dead_roots); 2476 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2477 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2478 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2479 spin_lock_init(&fs_info->delalloc_root_lock); 2480 spin_lock_init(&fs_info->trans_lock); 2481 spin_lock_init(&fs_info->fs_roots_radix_lock); 2482 spin_lock_init(&fs_info->delayed_iput_lock); 2483 spin_lock_init(&fs_info->defrag_inodes_lock); 2484 spin_lock_init(&fs_info->free_chunk_lock); 2485 spin_lock_init(&fs_info->tree_mod_seq_lock); 2486 spin_lock_init(&fs_info->super_lock); 2487 spin_lock_init(&fs_info->qgroup_op_lock); 2488 spin_lock_init(&fs_info->buffer_lock); 2489 spin_lock_init(&fs_info->unused_bgs_lock); 2490 rwlock_init(&fs_info->tree_mod_log_lock); 2491 mutex_init(&fs_info->unused_bg_unpin_mutex); 2492 mutex_init(&fs_info->reloc_mutex); 2493 mutex_init(&fs_info->delalloc_root_mutex); 2494 seqlock_init(&fs_info->profiles_lock); 2495 init_rwsem(&fs_info->delayed_iput_sem); 2496 2497 init_completion(&fs_info->kobj_unregister); 2498 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2499 INIT_LIST_HEAD(&fs_info->space_info); 2500 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2501 INIT_LIST_HEAD(&fs_info->unused_bgs); 2502 btrfs_mapping_init(&fs_info->mapping_tree); 2503 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2504 BTRFS_BLOCK_RSV_GLOBAL); 2505 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, 2506 BTRFS_BLOCK_RSV_DELALLOC); 2507 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2508 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2509 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2510 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2511 BTRFS_BLOCK_RSV_DELOPS); 2512 atomic_set(&fs_info->nr_async_submits, 0); 2513 atomic_set(&fs_info->async_delalloc_pages, 0); 2514 atomic_set(&fs_info->async_submit_draining, 0); 2515 atomic_set(&fs_info->nr_async_bios, 0); 2516 atomic_set(&fs_info->defrag_running, 0); 2517 atomic_set(&fs_info->qgroup_op_seq, 0); 2518 atomic64_set(&fs_info->tree_mod_seq, 0); 2519 fs_info->sb = sb; 2520 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2521 fs_info->metadata_ratio = 0; 2522 fs_info->defrag_inodes = RB_ROOT; 2523 fs_info->free_chunk_space = 0; 2524 fs_info->tree_mod_log = RB_ROOT; 2525 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2526 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2527 /* readahead state */ 2528 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT); 2529 spin_lock_init(&fs_info->reada_lock); 2530 2531 fs_info->thread_pool_size = min_t(unsigned long, 2532 num_online_cpus() + 2, 8); 2533 2534 INIT_LIST_HEAD(&fs_info->ordered_roots); 2535 spin_lock_init(&fs_info->ordered_root_lock); 2536 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2537 GFP_NOFS); 2538 if (!fs_info->delayed_root) { 2539 err = -ENOMEM; 2540 goto fail_iput; 2541 } 2542 btrfs_init_delayed_root(fs_info->delayed_root); 2543 2544 btrfs_init_scrub(fs_info); 2545 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2546 fs_info->check_integrity_print_mask = 0; 2547 #endif 2548 btrfs_init_balance(fs_info); 2549 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2550 2551 sb->s_blocksize = 4096; 2552 sb->s_blocksize_bits = blksize_bits(4096); 2553 sb->s_bdi = &fs_info->bdi; 2554 2555 btrfs_init_btree_inode(fs_info, tree_root); 2556 2557 spin_lock_init(&fs_info->block_group_cache_lock); 2558 fs_info->block_group_cache_tree = RB_ROOT; 2559 fs_info->first_logical_byte = (u64)-1; 2560 2561 extent_io_tree_init(&fs_info->freed_extents[0], 2562 fs_info->btree_inode->i_mapping); 2563 extent_io_tree_init(&fs_info->freed_extents[1], 2564 fs_info->btree_inode->i_mapping); 2565 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2566 fs_info->do_barriers = 1; 2567 2568 2569 mutex_init(&fs_info->ordered_operations_mutex); 2570 mutex_init(&fs_info->ordered_extent_flush_mutex); 2571 mutex_init(&fs_info->tree_log_mutex); 2572 mutex_init(&fs_info->chunk_mutex); 2573 mutex_init(&fs_info->transaction_kthread_mutex); 2574 mutex_init(&fs_info->cleaner_mutex); 2575 mutex_init(&fs_info->volume_mutex); 2576 mutex_init(&fs_info->ro_block_group_mutex); 2577 init_rwsem(&fs_info->commit_root_sem); 2578 init_rwsem(&fs_info->cleanup_work_sem); 2579 init_rwsem(&fs_info->subvol_sem); 2580 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2581 2582 btrfs_init_dev_replace_locks(fs_info); 2583 btrfs_init_qgroup(fs_info); 2584 2585 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2586 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2587 2588 init_waitqueue_head(&fs_info->transaction_throttle); 2589 init_waitqueue_head(&fs_info->transaction_wait); 2590 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2591 init_waitqueue_head(&fs_info->async_submit_wait); 2592 2593 INIT_LIST_HEAD(&fs_info->pinned_chunks); 2594 2595 ret = btrfs_alloc_stripe_hash_table(fs_info); 2596 if (ret) { 2597 err = ret; 2598 goto fail_alloc; 2599 } 2600 2601 __setup_root(4096, 4096, 4096, tree_root, 2602 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2603 2604 invalidate_bdev(fs_devices->latest_bdev); 2605 2606 /* 2607 * Read super block and check the signature bytes only 2608 */ 2609 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2610 if (!bh) { 2611 err = -EINVAL; 2612 goto fail_alloc; 2613 } 2614 2615 /* 2616 * We want to check superblock checksum, the type is stored inside. 2617 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2618 */ 2619 if (btrfs_check_super_csum(bh->b_data)) { 2620 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n"); 2621 err = -EINVAL; 2622 goto fail_alloc; 2623 } 2624 2625 /* 2626 * super_copy is zeroed at allocation time and we never touch the 2627 * following bytes up to INFO_SIZE, the checksum is calculated from 2628 * the whole block of INFO_SIZE 2629 */ 2630 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2631 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2632 sizeof(*fs_info->super_for_commit)); 2633 brelse(bh); 2634 2635 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2636 2637 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2638 if (ret) { 2639 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n"); 2640 err = -EINVAL; 2641 goto fail_alloc; 2642 } 2643 2644 disk_super = fs_info->super_copy; 2645 if (!btrfs_super_root(disk_super)) 2646 goto fail_alloc; 2647 2648 /* check FS state, whether FS is broken. */ 2649 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2650 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2651 2652 /* 2653 * run through our array of backup supers and setup 2654 * our ring pointer to the oldest one 2655 */ 2656 generation = btrfs_super_generation(disk_super); 2657 find_oldest_super_backup(fs_info, generation); 2658 2659 /* 2660 * In the long term, we'll store the compression type in the super 2661 * block, and it'll be used for per file compression control. 2662 */ 2663 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2664 2665 ret = btrfs_parse_options(tree_root, options); 2666 if (ret) { 2667 err = ret; 2668 goto fail_alloc; 2669 } 2670 2671 features = btrfs_super_incompat_flags(disk_super) & 2672 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2673 if (features) { 2674 printk(KERN_ERR "BTRFS: couldn't mount because of " 2675 "unsupported optional features (%Lx).\n", 2676 features); 2677 err = -EINVAL; 2678 goto fail_alloc; 2679 } 2680 2681 /* 2682 * Leafsize and nodesize were always equal, this is only a sanity check. 2683 */ 2684 if (le32_to_cpu(disk_super->__unused_leafsize) != 2685 btrfs_super_nodesize(disk_super)) { 2686 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2687 "blocksizes don't match. node %d leaf %d\n", 2688 btrfs_super_nodesize(disk_super), 2689 le32_to_cpu(disk_super->__unused_leafsize)); 2690 err = -EINVAL; 2691 goto fail_alloc; 2692 } 2693 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) { 2694 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2695 "blocksize (%d) was too large\n", 2696 btrfs_super_nodesize(disk_super)); 2697 err = -EINVAL; 2698 goto fail_alloc; 2699 } 2700 2701 features = btrfs_super_incompat_flags(disk_super); 2702 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2703 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 2704 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2705 2706 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2707 printk(KERN_INFO "BTRFS: has skinny extents\n"); 2708 2709 /* 2710 * flag our filesystem as having big metadata blocks if 2711 * they are bigger than the page size 2712 */ 2713 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) { 2714 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2715 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n"); 2716 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2717 } 2718 2719 nodesize = btrfs_super_nodesize(disk_super); 2720 sectorsize = btrfs_super_sectorsize(disk_super); 2721 stripesize = btrfs_super_stripesize(disk_super); 2722 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2723 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2724 2725 /* 2726 * mixed block groups end up with duplicate but slightly offset 2727 * extent buffers for the same range. It leads to corruptions 2728 */ 2729 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2730 (sectorsize != nodesize)) { 2731 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes " 2732 "are not allowed for mixed block groups on %s\n", 2733 sb->s_id); 2734 goto fail_alloc; 2735 } 2736 2737 /* 2738 * Needn't use the lock because there is no other task which will 2739 * update the flag. 2740 */ 2741 btrfs_set_super_incompat_flags(disk_super, features); 2742 2743 features = btrfs_super_compat_ro_flags(disk_super) & 2744 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2745 if (!(sb->s_flags & MS_RDONLY) && features) { 2746 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 2747 "unsupported option features (%Lx).\n", 2748 features); 2749 err = -EINVAL; 2750 goto fail_alloc; 2751 } 2752 2753 max_active = fs_info->thread_pool_size; 2754 2755 ret = btrfs_init_workqueues(fs_info, fs_devices); 2756 if (ret) { 2757 err = ret; 2758 goto fail_sb_buffer; 2759 } 2760 2761 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2762 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2763 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 2764 2765 tree_root->nodesize = nodesize; 2766 tree_root->sectorsize = sectorsize; 2767 tree_root->stripesize = stripesize; 2768 2769 sb->s_blocksize = sectorsize; 2770 sb->s_blocksize_bits = blksize_bits(sectorsize); 2771 2772 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 2773 printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id); 2774 goto fail_sb_buffer; 2775 } 2776 2777 if (sectorsize != PAGE_SIZE) { 2778 printk(KERN_ERR "BTRFS: incompatible sector size (%lu) " 2779 "found on %s\n", (unsigned long)sectorsize, sb->s_id); 2780 goto fail_sb_buffer; 2781 } 2782 2783 mutex_lock(&fs_info->chunk_mutex); 2784 ret = btrfs_read_sys_array(tree_root); 2785 mutex_unlock(&fs_info->chunk_mutex); 2786 if (ret) { 2787 printk(KERN_ERR "BTRFS: failed to read the system " 2788 "array on %s\n", sb->s_id); 2789 goto fail_sb_buffer; 2790 } 2791 2792 generation = btrfs_super_chunk_root_generation(disk_super); 2793 2794 __setup_root(nodesize, sectorsize, stripesize, chunk_root, 2795 fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2796 2797 chunk_root->node = read_tree_block(chunk_root, 2798 btrfs_super_chunk_root(disk_super), 2799 generation); 2800 if (!chunk_root->node || 2801 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { 2802 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n", 2803 sb->s_id); 2804 goto fail_tree_roots; 2805 } 2806 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2807 chunk_root->commit_root = btrfs_root_node(chunk_root); 2808 2809 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2810 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2811 2812 ret = btrfs_read_chunk_tree(chunk_root); 2813 if (ret) { 2814 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n", 2815 sb->s_id); 2816 goto fail_tree_roots; 2817 } 2818 2819 /* 2820 * keep the device that is marked to be the target device for the 2821 * dev_replace procedure 2822 */ 2823 btrfs_close_extra_devices(fs_devices, 0); 2824 2825 if (!fs_devices->latest_bdev) { 2826 printk(KERN_ERR "BTRFS: failed to read devices on %s\n", 2827 sb->s_id); 2828 goto fail_tree_roots; 2829 } 2830 2831 retry_root_backup: 2832 generation = btrfs_super_generation(disk_super); 2833 2834 tree_root->node = read_tree_block(tree_root, 2835 btrfs_super_root(disk_super), 2836 generation); 2837 if (!tree_root->node || 2838 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { 2839 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n", 2840 sb->s_id); 2841 2842 goto recovery_tree_root; 2843 } 2844 2845 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2846 tree_root->commit_root = btrfs_root_node(tree_root); 2847 btrfs_set_root_refs(&tree_root->root_item, 1); 2848 2849 ret = btrfs_read_roots(fs_info, tree_root); 2850 if (ret) 2851 goto recovery_tree_root; 2852 2853 fs_info->generation = generation; 2854 fs_info->last_trans_committed = generation; 2855 2856 ret = btrfs_recover_balance(fs_info); 2857 if (ret) { 2858 printk(KERN_ERR "BTRFS: failed to recover balance\n"); 2859 goto fail_block_groups; 2860 } 2861 2862 ret = btrfs_init_dev_stats(fs_info); 2863 if (ret) { 2864 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n", 2865 ret); 2866 goto fail_block_groups; 2867 } 2868 2869 ret = btrfs_init_dev_replace(fs_info); 2870 if (ret) { 2871 pr_err("BTRFS: failed to init dev_replace: %d\n", ret); 2872 goto fail_block_groups; 2873 } 2874 2875 btrfs_close_extra_devices(fs_devices, 1); 2876 2877 ret = btrfs_sysfs_add_one(fs_info); 2878 if (ret) { 2879 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret); 2880 goto fail_block_groups; 2881 } 2882 2883 ret = btrfs_init_space_info(fs_info); 2884 if (ret) { 2885 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret); 2886 goto fail_sysfs; 2887 } 2888 2889 ret = btrfs_read_block_groups(fs_info->extent_root); 2890 if (ret) { 2891 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret); 2892 goto fail_sysfs; 2893 } 2894 fs_info->num_tolerated_disk_barrier_failures = 2895 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 2896 if (fs_info->fs_devices->missing_devices > 2897 fs_info->num_tolerated_disk_barrier_failures && 2898 !(sb->s_flags & MS_RDONLY)) { 2899 printk(KERN_WARNING "BTRFS: " 2900 "too many missing devices, writeable mount is not allowed\n"); 2901 goto fail_sysfs; 2902 } 2903 2904 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2905 "btrfs-cleaner"); 2906 if (IS_ERR(fs_info->cleaner_kthread)) 2907 goto fail_sysfs; 2908 2909 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2910 tree_root, 2911 "btrfs-transaction"); 2912 if (IS_ERR(fs_info->transaction_kthread)) 2913 goto fail_cleaner; 2914 2915 if (!btrfs_test_opt(tree_root, SSD) && 2916 !btrfs_test_opt(tree_root, NOSSD) && 2917 !fs_info->fs_devices->rotating) { 2918 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD " 2919 "mode\n"); 2920 btrfs_set_opt(fs_info->mount_opt, SSD); 2921 } 2922 2923 /* 2924 * Mount does not set all options immediatelly, we can do it now and do 2925 * not have to wait for transaction commit 2926 */ 2927 btrfs_apply_pending_changes(fs_info); 2928 2929 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2930 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) { 2931 ret = btrfsic_mount(tree_root, fs_devices, 2932 btrfs_test_opt(tree_root, 2933 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 2934 1 : 0, 2935 fs_info->check_integrity_print_mask); 2936 if (ret) 2937 printk(KERN_WARNING "BTRFS: failed to initialize" 2938 " integrity check module %s\n", sb->s_id); 2939 } 2940 #endif 2941 ret = btrfs_read_qgroup_config(fs_info); 2942 if (ret) 2943 goto fail_trans_kthread; 2944 2945 /* do not make disk changes in broken FS */ 2946 if (btrfs_super_log_root(disk_super) != 0) { 2947 ret = btrfs_replay_log(fs_info, fs_devices); 2948 if (ret) { 2949 err = ret; 2950 goto fail_qgroup; 2951 } 2952 } 2953 2954 ret = btrfs_find_orphan_roots(tree_root); 2955 if (ret) 2956 goto fail_qgroup; 2957 2958 if (!(sb->s_flags & MS_RDONLY)) { 2959 ret = btrfs_cleanup_fs_roots(fs_info); 2960 if (ret) 2961 goto fail_qgroup; 2962 2963 mutex_lock(&fs_info->cleaner_mutex); 2964 ret = btrfs_recover_relocation(tree_root); 2965 mutex_unlock(&fs_info->cleaner_mutex); 2966 if (ret < 0) { 2967 printk(KERN_WARNING 2968 "BTRFS: failed to recover relocation\n"); 2969 err = -EINVAL; 2970 goto fail_qgroup; 2971 } 2972 } 2973 2974 location.objectid = BTRFS_FS_TREE_OBJECTID; 2975 location.type = BTRFS_ROOT_ITEM_KEY; 2976 location.offset = 0; 2977 2978 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 2979 if (IS_ERR(fs_info->fs_root)) { 2980 err = PTR_ERR(fs_info->fs_root); 2981 goto fail_qgroup; 2982 } 2983 2984 if (sb->s_flags & MS_RDONLY) 2985 return 0; 2986 2987 down_read(&fs_info->cleanup_work_sem); 2988 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 2989 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 2990 up_read(&fs_info->cleanup_work_sem); 2991 close_ctree(tree_root); 2992 return ret; 2993 } 2994 up_read(&fs_info->cleanup_work_sem); 2995 2996 ret = btrfs_resume_balance_async(fs_info); 2997 if (ret) { 2998 printk(KERN_WARNING "BTRFS: failed to resume balance\n"); 2999 close_ctree(tree_root); 3000 return ret; 3001 } 3002 3003 ret = btrfs_resume_dev_replace_async(fs_info); 3004 if (ret) { 3005 pr_warn("BTRFS: failed to resume dev_replace\n"); 3006 close_ctree(tree_root); 3007 return ret; 3008 } 3009 3010 btrfs_qgroup_rescan_resume(fs_info); 3011 3012 if (!fs_info->uuid_root) { 3013 pr_info("BTRFS: creating UUID tree\n"); 3014 ret = btrfs_create_uuid_tree(fs_info); 3015 if (ret) { 3016 pr_warn("BTRFS: failed to create the UUID tree %d\n", 3017 ret); 3018 close_ctree(tree_root); 3019 return ret; 3020 } 3021 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) || 3022 fs_info->generation != 3023 btrfs_super_uuid_tree_generation(disk_super)) { 3024 pr_info("BTRFS: checking UUID tree\n"); 3025 ret = btrfs_check_uuid_tree(fs_info); 3026 if (ret) { 3027 pr_warn("BTRFS: failed to check the UUID tree %d\n", 3028 ret); 3029 close_ctree(tree_root); 3030 return ret; 3031 } 3032 } else { 3033 fs_info->update_uuid_tree_gen = 1; 3034 } 3035 3036 fs_info->open = 1; 3037 3038 return 0; 3039 3040 fail_qgroup: 3041 btrfs_free_qgroup_config(fs_info); 3042 fail_trans_kthread: 3043 kthread_stop(fs_info->transaction_kthread); 3044 btrfs_cleanup_transaction(fs_info->tree_root); 3045 btrfs_free_fs_roots(fs_info); 3046 fail_cleaner: 3047 kthread_stop(fs_info->cleaner_kthread); 3048 3049 /* 3050 * make sure we're done with the btree inode before we stop our 3051 * kthreads 3052 */ 3053 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3054 3055 fail_sysfs: 3056 btrfs_sysfs_remove_one(fs_info); 3057 3058 fail_block_groups: 3059 btrfs_put_block_group_cache(fs_info); 3060 btrfs_free_block_groups(fs_info); 3061 3062 fail_tree_roots: 3063 free_root_pointers(fs_info, 1); 3064 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3065 3066 fail_sb_buffer: 3067 btrfs_stop_all_workers(fs_info); 3068 fail_alloc: 3069 fail_iput: 3070 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3071 3072 iput(fs_info->btree_inode); 3073 fail_bio_counter: 3074 percpu_counter_destroy(&fs_info->bio_counter); 3075 fail_delalloc_bytes: 3076 percpu_counter_destroy(&fs_info->delalloc_bytes); 3077 fail_dirty_metadata_bytes: 3078 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3079 fail_bdi: 3080 bdi_destroy(&fs_info->bdi); 3081 fail_srcu: 3082 cleanup_srcu_struct(&fs_info->subvol_srcu); 3083 fail: 3084 btrfs_free_stripe_hash_table(fs_info); 3085 btrfs_close_devices(fs_info->fs_devices); 3086 return err; 3087 3088 recovery_tree_root: 3089 if (!btrfs_test_opt(tree_root, RECOVERY)) 3090 goto fail_tree_roots; 3091 3092 free_root_pointers(fs_info, 0); 3093 3094 /* don't use the log in recovery mode, it won't be valid */ 3095 btrfs_set_super_log_root(disk_super, 0); 3096 3097 /* we can't trust the free space cache either */ 3098 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3099 3100 ret = next_root_backup(fs_info, fs_info->super_copy, 3101 &num_backups_tried, &backup_index); 3102 if (ret == -1) 3103 goto fail_block_groups; 3104 goto retry_root_backup; 3105 } 3106 3107 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3108 { 3109 if (uptodate) { 3110 set_buffer_uptodate(bh); 3111 } else { 3112 struct btrfs_device *device = (struct btrfs_device *) 3113 bh->b_private; 3114 3115 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to " 3116 "I/O error on %s\n", 3117 rcu_str_deref(device->name)); 3118 /* note, we dont' set_buffer_write_io_error because we have 3119 * our own ways of dealing with the IO errors 3120 */ 3121 clear_buffer_uptodate(bh); 3122 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3123 } 3124 unlock_buffer(bh); 3125 put_bh(bh); 3126 } 3127 3128 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3129 { 3130 struct buffer_head *bh; 3131 struct buffer_head *latest = NULL; 3132 struct btrfs_super_block *super; 3133 int i; 3134 u64 transid = 0; 3135 u64 bytenr; 3136 3137 /* we would like to check all the supers, but that would make 3138 * a btrfs mount succeed after a mkfs from a different FS. 3139 * So, we need to add a special mount option to scan for 3140 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3141 */ 3142 for (i = 0; i < 1; i++) { 3143 bytenr = btrfs_sb_offset(i); 3144 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3145 i_size_read(bdev->bd_inode)) 3146 break; 3147 bh = __bread(bdev, bytenr / 4096, 3148 BTRFS_SUPER_INFO_SIZE); 3149 if (!bh) 3150 continue; 3151 3152 super = (struct btrfs_super_block *)bh->b_data; 3153 if (btrfs_super_bytenr(super) != bytenr || 3154 btrfs_super_magic(super) != BTRFS_MAGIC) { 3155 brelse(bh); 3156 continue; 3157 } 3158 3159 if (!latest || btrfs_super_generation(super) > transid) { 3160 brelse(latest); 3161 latest = bh; 3162 transid = btrfs_super_generation(super); 3163 } else { 3164 brelse(bh); 3165 } 3166 } 3167 return latest; 3168 } 3169 3170 /* 3171 * this should be called twice, once with wait == 0 and 3172 * once with wait == 1. When wait == 0 is done, all the buffer heads 3173 * we write are pinned. 3174 * 3175 * They are released when wait == 1 is done. 3176 * max_mirrors must be the same for both runs, and it indicates how 3177 * many supers on this one device should be written. 3178 * 3179 * max_mirrors == 0 means to write them all. 3180 */ 3181 static int write_dev_supers(struct btrfs_device *device, 3182 struct btrfs_super_block *sb, 3183 int do_barriers, int wait, int max_mirrors) 3184 { 3185 struct buffer_head *bh; 3186 int i; 3187 int ret; 3188 int errors = 0; 3189 u32 crc; 3190 u64 bytenr; 3191 3192 if (max_mirrors == 0) 3193 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3194 3195 for (i = 0; i < max_mirrors; i++) { 3196 bytenr = btrfs_sb_offset(i); 3197 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3198 device->commit_total_bytes) 3199 break; 3200 3201 if (wait) { 3202 bh = __find_get_block(device->bdev, bytenr / 4096, 3203 BTRFS_SUPER_INFO_SIZE); 3204 if (!bh) { 3205 errors++; 3206 continue; 3207 } 3208 wait_on_buffer(bh); 3209 if (!buffer_uptodate(bh)) 3210 errors++; 3211 3212 /* drop our reference */ 3213 brelse(bh); 3214 3215 /* drop the reference from the wait == 0 run */ 3216 brelse(bh); 3217 continue; 3218 } else { 3219 btrfs_set_super_bytenr(sb, bytenr); 3220 3221 crc = ~(u32)0; 3222 crc = btrfs_csum_data((char *)sb + 3223 BTRFS_CSUM_SIZE, crc, 3224 BTRFS_SUPER_INFO_SIZE - 3225 BTRFS_CSUM_SIZE); 3226 btrfs_csum_final(crc, sb->csum); 3227 3228 /* 3229 * one reference for us, and we leave it for the 3230 * caller 3231 */ 3232 bh = __getblk(device->bdev, bytenr / 4096, 3233 BTRFS_SUPER_INFO_SIZE); 3234 if (!bh) { 3235 printk(KERN_ERR "BTRFS: couldn't get super " 3236 "buffer head for bytenr %Lu\n", bytenr); 3237 errors++; 3238 continue; 3239 } 3240 3241 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3242 3243 /* one reference for submit_bh */ 3244 get_bh(bh); 3245 3246 set_buffer_uptodate(bh); 3247 lock_buffer(bh); 3248 bh->b_end_io = btrfs_end_buffer_write_sync; 3249 bh->b_private = device; 3250 } 3251 3252 /* 3253 * we fua the first super. The others we allow 3254 * to go down lazy. 3255 */ 3256 if (i == 0) 3257 ret = btrfsic_submit_bh(WRITE_FUA, bh); 3258 else 3259 ret = btrfsic_submit_bh(WRITE_SYNC, bh); 3260 if (ret) 3261 errors++; 3262 } 3263 return errors < i ? 0 : -1; 3264 } 3265 3266 /* 3267 * endio for the write_dev_flush, this will wake anyone waiting 3268 * for the barrier when it is done 3269 */ 3270 static void btrfs_end_empty_barrier(struct bio *bio, int err) 3271 { 3272 if (err) { 3273 if (err == -EOPNOTSUPP) 3274 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 3275 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3276 } 3277 if (bio->bi_private) 3278 complete(bio->bi_private); 3279 bio_put(bio); 3280 } 3281 3282 /* 3283 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 3284 * sent down. With wait == 1, it waits for the previous flush. 3285 * 3286 * any device where the flush fails with eopnotsupp are flagged as not-barrier 3287 * capable 3288 */ 3289 static int write_dev_flush(struct btrfs_device *device, int wait) 3290 { 3291 struct bio *bio; 3292 int ret = 0; 3293 3294 if (device->nobarriers) 3295 return 0; 3296 3297 if (wait) { 3298 bio = device->flush_bio; 3299 if (!bio) 3300 return 0; 3301 3302 wait_for_completion(&device->flush_wait); 3303 3304 if (bio_flagged(bio, BIO_EOPNOTSUPP)) { 3305 printk_in_rcu("BTRFS: disabling barriers on dev %s\n", 3306 rcu_str_deref(device->name)); 3307 device->nobarriers = 1; 3308 } else if (!bio_flagged(bio, BIO_UPTODATE)) { 3309 ret = -EIO; 3310 btrfs_dev_stat_inc_and_print(device, 3311 BTRFS_DEV_STAT_FLUSH_ERRS); 3312 } 3313 3314 /* drop the reference from the wait == 0 run */ 3315 bio_put(bio); 3316 device->flush_bio = NULL; 3317 3318 return ret; 3319 } 3320 3321 /* 3322 * one reference for us, and we leave it for the 3323 * caller 3324 */ 3325 device->flush_bio = NULL; 3326 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 3327 if (!bio) 3328 return -ENOMEM; 3329 3330 bio->bi_end_io = btrfs_end_empty_barrier; 3331 bio->bi_bdev = device->bdev; 3332 init_completion(&device->flush_wait); 3333 bio->bi_private = &device->flush_wait; 3334 device->flush_bio = bio; 3335 3336 bio_get(bio); 3337 btrfsic_submit_bio(WRITE_FLUSH, bio); 3338 3339 return 0; 3340 } 3341 3342 /* 3343 * send an empty flush down to each device in parallel, 3344 * then wait for them 3345 */ 3346 static int barrier_all_devices(struct btrfs_fs_info *info) 3347 { 3348 struct list_head *head; 3349 struct btrfs_device *dev; 3350 int errors_send = 0; 3351 int errors_wait = 0; 3352 int ret; 3353 3354 /* send down all the barriers */ 3355 head = &info->fs_devices->devices; 3356 list_for_each_entry_rcu(dev, head, dev_list) { 3357 if (dev->missing) 3358 continue; 3359 if (!dev->bdev) { 3360 errors_send++; 3361 continue; 3362 } 3363 if (!dev->in_fs_metadata || !dev->writeable) 3364 continue; 3365 3366 ret = write_dev_flush(dev, 0); 3367 if (ret) 3368 errors_send++; 3369 } 3370 3371 /* wait for all the barriers */ 3372 list_for_each_entry_rcu(dev, head, dev_list) { 3373 if (dev->missing) 3374 continue; 3375 if (!dev->bdev) { 3376 errors_wait++; 3377 continue; 3378 } 3379 if (!dev->in_fs_metadata || !dev->writeable) 3380 continue; 3381 3382 ret = write_dev_flush(dev, 1); 3383 if (ret) 3384 errors_wait++; 3385 } 3386 if (errors_send > info->num_tolerated_disk_barrier_failures || 3387 errors_wait > info->num_tolerated_disk_barrier_failures) 3388 return -EIO; 3389 return 0; 3390 } 3391 3392 int btrfs_calc_num_tolerated_disk_barrier_failures( 3393 struct btrfs_fs_info *fs_info) 3394 { 3395 struct btrfs_ioctl_space_info space; 3396 struct btrfs_space_info *sinfo; 3397 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3398 BTRFS_BLOCK_GROUP_SYSTEM, 3399 BTRFS_BLOCK_GROUP_METADATA, 3400 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3401 int num_types = 4; 3402 int i; 3403 int c; 3404 int num_tolerated_disk_barrier_failures = 3405 (int)fs_info->fs_devices->num_devices; 3406 3407 for (i = 0; i < num_types; i++) { 3408 struct btrfs_space_info *tmp; 3409 3410 sinfo = NULL; 3411 rcu_read_lock(); 3412 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) { 3413 if (tmp->flags == types[i]) { 3414 sinfo = tmp; 3415 break; 3416 } 3417 } 3418 rcu_read_unlock(); 3419 3420 if (!sinfo) 3421 continue; 3422 3423 down_read(&sinfo->groups_sem); 3424 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3425 if (!list_empty(&sinfo->block_groups[c])) { 3426 u64 flags; 3427 3428 btrfs_get_block_group_info( 3429 &sinfo->block_groups[c], &space); 3430 if (space.total_bytes == 0 || 3431 space.used_bytes == 0) 3432 continue; 3433 flags = space.flags; 3434 /* 3435 * return 3436 * 0: if dup, single or RAID0 is configured for 3437 * any of metadata, system or data, else 3438 * 1: if RAID5 is configured, or if RAID1 or 3439 * RAID10 is configured and only two mirrors 3440 * are used, else 3441 * 2: if RAID6 is configured, else 3442 * num_mirrors - 1: if RAID1 or RAID10 is 3443 * configured and more than 3444 * 2 mirrors are used. 3445 */ 3446 if (num_tolerated_disk_barrier_failures > 0 && 3447 ((flags & (BTRFS_BLOCK_GROUP_DUP | 3448 BTRFS_BLOCK_GROUP_RAID0)) || 3449 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) 3450 == 0))) 3451 num_tolerated_disk_barrier_failures = 0; 3452 else if (num_tolerated_disk_barrier_failures > 1) { 3453 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 3454 BTRFS_BLOCK_GROUP_RAID5 | 3455 BTRFS_BLOCK_GROUP_RAID10)) { 3456 num_tolerated_disk_barrier_failures = 1; 3457 } else if (flags & 3458 BTRFS_BLOCK_GROUP_RAID6) { 3459 num_tolerated_disk_barrier_failures = 2; 3460 } 3461 } 3462 } 3463 } 3464 up_read(&sinfo->groups_sem); 3465 } 3466 3467 return num_tolerated_disk_barrier_failures; 3468 } 3469 3470 static int write_all_supers(struct btrfs_root *root, int max_mirrors) 3471 { 3472 struct list_head *head; 3473 struct btrfs_device *dev; 3474 struct btrfs_super_block *sb; 3475 struct btrfs_dev_item *dev_item; 3476 int ret; 3477 int do_barriers; 3478 int max_errors; 3479 int total_errors = 0; 3480 u64 flags; 3481 3482 do_barriers = !btrfs_test_opt(root, NOBARRIER); 3483 backup_super_roots(root->fs_info); 3484 3485 sb = root->fs_info->super_for_commit; 3486 dev_item = &sb->dev_item; 3487 3488 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 3489 head = &root->fs_info->fs_devices->devices; 3490 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 3491 3492 if (do_barriers) { 3493 ret = barrier_all_devices(root->fs_info); 3494 if (ret) { 3495 mutex_unlock( 3496 &root->fs_info->fs_devices->device_list_mutex); 3497 btrfs_error(root->fs_info, ret, 3498 "errors while submitting device barriers."); 3499 return ret; 3500 } 3501 } 3502 3503 list_for_each_entry_rcu(dev, head, dev_list) { 3504 if (!dev->bdev) { 3505 total_errors++; 3506 continue; 3507 } 3508 if (!dev->in_fs_metadata || !dev->writeable) 3509 continue; 3510 3511 btrfs_set_stack_device_generation(dev_item, 0); 3512 btrfs_set_stack_device_type(dev_item, dev->type); 3513 btrfs_set_stack_device_id(dev_item, dev->devid); 3514 btrfs_set_stack_device_total_bytes(dev_item, 3515 dev->commit_total_bytes); 3516 btrfs_set_stack_device_bytes_used(dev_item, 3517 dev->commit_bytes_used); 3518 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3519 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3520 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3521 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3522 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 3523 3524 flags = btrfs_super_flags(sb); 3525 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3526 3527 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 3528 if (ret) 3529 total_errors++; 3530 } 3531 if (total_errors > max_errors) { 3532 btrfs_err(root->fs_info, "%d errors while writing supers", 3533 total_errors); 3534 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3535 3536 /* FUA is masked off if unsupported and can't be the reason */ 3537 btrfs_error(root->fs_info, -EIO, 3538 "%d errors while writing supers", total_errors); 3539 return -EIO; 3540 } 3541 3542 total_errors = 0; 3543 list_for_each_entry_rcu(dev, head, dev_list) { 3544 if (!dev->bdev) 3545 continue; 3546 if (!dev->in_fs_metadata || !dev->writeable) 3547 continue; 3548 3549 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 3550 if (ret) 3551 total_errors++; 3552 } 3553 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3554 if (total_errors > max_errors) { 3555 btrfs_error(root->fs_info, -EIO, 3556 "%d errors while writing supers", total_errors); 3557 return -EIO; 3558 } 3559 return 0; 3560 } 3561 3562 int write_ctree_super(struct btrfs_trans_handle *trans, 3563 struct btrfs_root *root, int max_mirrors) 3564 { 3565 return write_all_supers(root, max_mirrors); 3566 } 3567 3568 /* Drop a fs root from the radix tree and free it. */ 3569 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3570 struct btrfs_root *root) 3571 { 3572 spin_lock(&fs_info->fs_roots_radix_lock); 3573 radix_tree_delete(&fs_info->fs_roots_radix, 3574 (unsigned long)root->root_key.objectid); 3575 spin_unlock(&fs_info->fs_roots_radix_lock); 3576 3577 if (btrfs_root_refs(&root->root_item) == 0) 3578 synchronize_srcu(&fs_info->subvol_srcu); 3579 3580 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3581 btrfs_free_log(NULL, root); 3582 3583 if (root->free_ino_pinned) 3584 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3585 if (root->free_ino_ctl) 3586 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3587 free_fs_root(root); 3588 } 3589 3590 static void free_fs_root(struct btrfs_root *root) 3591 { 3592 iput(root->ino_cache_inode); 3593 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3594 btrfs_free_block_rsv(root, root->orphan_block_rsv); 3595 root->orphan_block_rsv = NULL; 3596 if (root->anon_dev) 3597 free_anon_bdev(root->anon_dev); 3598 if (root->subv_writers) 3599 btrfs_free_subvolume_writers(root->subv_writers); 3600 free_extent_buffer(root->node); 3601 free_extent_buffer(root->commit_root); 3602 kfree(root->free_ino_ctl); 3603 kfree(root->free_ino_pinned); 3604 kfree(root->name); 3605 btrfs_put_fs_root(root); 3606 } 3607 3608 void btrfs_free_fs_root(struct btrfs_root *root) 3609 { 3610 free_fs_root(root); 3611 } 3612 3613 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3614 { 3615 u64 root_objectid = 0; 3616 struct btrfs_root *gang[8]; 3617 int i = 0; 3618 int err = 0; 3619 unsigned int ret = 0; 3620 int index; 3621 3622 while (1) { 3623 index = srcu_read_lock(&fs_info->subvol_srcu); 3624 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3625 (void **)gang, root_objectid, 3626 ARRAY_SIZE(gang)); 3627 if (!ret) { 3628 srcu_read_unlock(&fs_info->subvol_srcu, index); 3629 break; 3630 } 3631 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3632 3633 for (i = 0; i < ret; i++) { 3634 /* Avoid to grab roots in dead_roots */ 3635 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3636 gang[i] = NULL; 3637 continue; 3638 } 3639 /* grab all the search result for later use */ 3640 gang[i] = btrfs_grab_fs_root(gang[i]); 3641 } 3642 srcu_read_unlock(&fs_info->subvol_srcu, index); 3643 3644 for (i = 0; i < ret; i++) { 3645 if (!gang[i]) 3646 continue; 3647 root_objectid = gang[i]->root_key.objectid; 3648 err = btrfs_orphan_cleanup(gang[i]); 3649 if (err) 3650 break; 3651 btrfs_put_fs_root(gang[i]); 3652 } 3653 root_objectid++; 3654 } 3655 3656 /* release the uncleaned roots due to error */ 3657 for (; i < ret; i++) { 3658 if (gang[i]) 3659 btrfs_put_fs_root(gang[i]); 3660 } 3661 return err; 3662 } 3663 3664 int btrfs_commit_super(struct btrfs_root *root) 3665 { 3666 struct btrfs_trans_handle *trans; 3667 3668 mutex_lock(&root->fs_info->cleaner_mutex); 3669 btrfs_run_delayed_iputs(root); 3670 mutex_unlock(&root->fs_info->cleaner_mutex); 3671 wake_up_process(root->fs_info->cleaner_kthread); 3672 3673 /* wait until ongoing cleanup work done */ 3674 down_write(&root->fs_info->cleanup_work_sem); 3675 up_write(&root->fs_info->cleanup_work_sem); 3676 3677 trans = btrfs_join_transaction(root); 3678 if (IS_ERR(trans)) 3679 return PTR_ERR(trans); 3680 return btrfs_commit_transaction(trans, root); 3681 } 3682 3683 void close_ctree(struct btrfs_root *root) 3684 { 3685 struct btrfs_fs_info *fs_info = root->fs_info; 3686 int ret; 3687 3688 fs_info->closing = 1; 3689 smp_mb(); 3690 3691 /* wait for the uuid_scan task to finish */ 3692 down(&fs_info->uuid_tree_rescan_sem); 3693 /* avoid complains from lockdep et al., set sem back to initial state */ 3694 up(&fs_info->uuid_tree_rescan_sem); 3695 3696 /* pause restriper - we want to resume on mount */ 3697 btrfs_pause_balance(fs_info); 3698 3699 btrfs_dev_replace_suspend_for_unmount(fs_info); 3700 3701 btrfs_scrub_cancel(fs_info); 3702 3703 /* wait for any defraggers to finish */ 3704 wait_event(fs_info->transaction_wait, 3705 (atomic_read(&fs_info->defrag_running) == 0)); 3706 3707 /* clear out the rbtree of defraggable inodes */ 3708 btrfs_cleanup_defrag_inodes(fs_info); 3709 3710 cancel_work_sync(&fs_info->async_reclaim_work); 3711 3712 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3713 ret = btrfs_commit_super(root); 3714 if (ret) 3715 btrfs_err(fs_info, "commit super ret %d", ret); 3716 } 3717 3718 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3719 btrfs_error_commit_super(root); 3720 3721 kthread_stop(fs_info->transaction_kthread); 3722 kthread_stop(fs_info->cleaner_kthread); 3723 3724 fs_info->closing = 2; 3725 smp_mb(); 3726 3727 btrfs_free_qgroup_config(fs_info); 3728 3729 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3730 btrfs_info(fs_info, "at unmount delalloc count %lld", 3731 percpu_counter_sum(&fs_info->delalloc_bytes)); 3732 } 3733 3734 btrfs_sysfs_remove_one(fs_info); 3735 3736 btrfs_free_fs_roots(fs_info); 3737 3738 btrfs_put_block_group_cache(fs_info); 3739 3740 btrfs_free_block_groups(fs_info); 3741 3742 /* 3743 * we must make sure there is not any read request to 3744 * submit after we stopping all workers. 3745 */ 3746 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3747 btrfs_stop_all_workers(fs_info); 3748 3749 fs_info->open = 0; 3750 free_root_pointers(fs_info, 1); 3751 3752 iput(fs_info->btree_inode); 3753 3754 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3755 if (btrfs_test_opt(root, CHECK_INTEGRITY)) 3756 btrfsic_unmount(root, fs_info->fs_devices); 3757 #endif 3758 3759 btrfs_close_devices(fs_info->fs_devices); 3760 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3761 3762 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3763 percpu_counter_destroy(&fs_info->delalloc_bytes); 3764 percpu_counter_destroy(&fs_info->bio_counter); 3765 bdi_destroy(&fs_info->bdi); 3766 cleanup_srcu_struct(&fs_info->subvol_srcu); 3767 3768 btrfs_free_stripe_hash_table(fs_info); 3769 3770 __btrfs_free_block_rsv(root->orphan_block_rsv); 3771 root->orphan_block_rsv = NULL; 3772 3773 lock_chunks(root); 3774 while (!list_empty(&fs_info->pinned_chunks)) { 3775 struct extent_map *em; 3776 3777 em = list_first_entry(&fs_info->pinned_chunks, 3778 struct extent_map, list); 3779 list_del_init(&em->list); 3780 free_extent_map(em); 3781 } 3782 unlock_chunks(root); 3783 } 3784 3785 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 3786 int atomic) 3787 { 3788 int ret; 3789 struct inode *btree_inode = buf->pages[0]->mapping->host; 3790 3791 ret = extent_buffer_uptodate(buf); 3792 if (!ret) 3793 return ret; 3794 3795 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3796 parent_transid, atomic); 3797 if (ret == -EAGAIN) 3798 return ret; 3799 return !ret; 3800 } 3801 3802 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 3803 { 3804 return set_extent_buffer_uptodate(buf); 3805 } 3806 3807 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3808 { 3809 struct btrfs_root *root; 3810 u64 transid = btrfs_header_generation(buf); 3811 int was_dirty; 3812 3813 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3814 /* 3815 * This is a fast path so only do this check if we have sanity tests 3816 * enabled. Normal people shouldn't be marking dummy buffers as dirty 3817 * outside of the sanity tests. 3818 */ 3819 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags))) 3820 return; 3821 #endif 3822 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3823 btrfs_assert_tree_locked(buf); 3824 if (transid != root->fs_info->generation) 3825 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, " 3826 "found %llu running %llu\n", 3827 buf->start, transid, root->fs_info->generation); 3828 was_dirty = set_extent_buffer_dirty(buf); 3829 if (!was_dirty) 3830 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes, 3831 buf->len, 3832 root->fs_info->dirty_metadata_batch); 3833 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3834 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) { 3835 btrfs_print_leaf(root, buf); 3836 ASSERT(0); 3837 } 3838 #endif 3839 } 3840 3841 static void __btrfs_btree_balance_dirty(struct btrfs_root *root, 3842 int flush_delayed) 3843 { 3844 /* 3845 * looks as though older kernels can get into trouble with 3846 * this code, they end up stuck in balance_dirty_pages forever 3847 */ 3848 int ret; 3849 3850 if (current->flags & PF_MEMALLOC) 3851 return; 3852 3853 if (flush_delayed) 3854 btrfs_balance_delayed_items(root); 3855 3856 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes, 3857 BTRFS_DIRTY_METADATA_THRESH); 3858 if (ret > 0) { 3859 balance_dirty_pages_ratelimited( 3860 root->fs_info->btree_inode->i_mapping); 3861 } 3862 return; 3863 } 3864 3865 void btrfs_btree_balance_dirty(struct btrfs_root *root) 3866 { 3867 __btrfs_btree_balance_dirty(root, 1); 3868 } 3869 3870 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root) 3871 { 3872 __btrfs_btree_balance_dirty(root, 0); 3873 } 3874 3875 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 3876 { 3877 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3878 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 3879 } 3880 3881 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 3882 int read_only) 3883 { 3884 struct btrfs_super_block *sb = fs_info->super_copy; 3885 int ret = 0; 3886 3887 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 3888 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n", 3889 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 3890 ret = -EINVAL; 3891 } 3892 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 3893 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n", 3894 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 3895 ret = -EINVAL; 3896 } 3897 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 3898 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n", 3899 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 3900 ret = -EINVAL; 3901 } 3902 3903 /* 3904 * The common minimum, we don't know if we can trust the nodesize/sectorsize 3905 * items yet, they'll be verified later. Issue just a warning. 3906 */ 3907 if (!IS_ALIGNED(btrfs_super_root(sb), 4096)) 3908 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n", 3909 btrfs_super_root(sb)); 3910 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096)) 3911 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n", 3912 btrfs_super_chunk_root(sb)); 3913 if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096)) 3914 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n", 3915 btrfs_super_log_root(sb)); 3916 3917 /* 3918 * Check the lower bound, the alignment and other constraints are 3919 * checked later. 3920 */ 3921 if (btrfs_super_nodesize(sb) < 4096) { 3922 printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n", 3923 btrfs_super_nodesize(sb)); 3924 ret = -EINVAL; 3925 } 3926 if (btrfs_super_sectorsize(sb) < 4096) { 3927 printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n", 3928 btrfs_super_sectorsize(sb)); 3929 ret = -EINVAL; 3930 } 3931 3932 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) { 3933 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n", 3934 fs_info->fsid, sb->dev_item.fsid); 3935 ret = -EINVAL; 3936 } 3937 3938 /* 3939 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 3940 * done later 3941 */ 3942 if (btrfs_super_num_devices(sb) > (1UL << 31)) 3943 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n", 3944 btrfs_super_num_devices(sb)); 3945 if (btrfs_super_num_devices(sb) == 0) { 3946 printk(KERN_ERR "BTRFS: number of devices is 0\n"); 3947 ret = -EINVAL; 3948 } 3949 3950 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) { 3951 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n", 3952 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 3953 ret = -EINVAL; 3954 } 3955 3956 /* 3957 * Obvious sys_chunk_array corruptions, it must hold at least one key 3958 * and one chunk 3959 */ 3960 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 3961 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n", 3962 btrfs_super_sys_array_size(sb), 3963 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 3964 ret = -EINVAL; 3965 } 3966 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 3967 + sizeof(struct btrfs_chunk)) { 3968 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n", 3969 btrfs_super_sys_array_size(sb), 3970 sizeof(struct btrfs_disk_key) 3971 + sizeof(struct btrfs_chunk)); 3972 ret = -EINVAL; 3973 } 3974 3975 /* 3976 * The generation is a global counter, we'll trust it more than the others 3977 * but it's still possible that it's the one that's wrong. 3978 */ 3979 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 3980 printk(KERN_WARNING 3981 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n", 3982 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb)); 3983 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 3984 && btrfs_super_cache_generation(sb) != (u64)-1) 3985 printk(KERN_WARNING 3986 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n", 3987 btrfs_super_generation(sb), btrfs_super_cache_generation(sb)); 3988 3989 return ret; 3990 } 3991 3992 static void btrfs_error_commit_super(struct btrfs_root *root) 3993 { 3994 mutex_lock(&root->fs_info->cleaner_mutex); 3995 btrfs_run_delayed_iputs(root); 3996 mutex_unlock(&root->fs_info->cleaner_mutex); 3997 3998 down_write(&root->fs_info->cleanup_work_sem); 3999 up_write(&root->fs_info->cleanup_work_sem); 4000 4001 /* cleanup FS via transaction */ 4002 btrfs_cleanup_transaction(root); 4003 } 4004 4005 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4006 { 4007 struct btrfs_ordered_extent *ordered; 4008 4009 spin_lock(&root->ordered_extent_lock); 4010 /* 4011 * This will just short circuit the ordered completion stuff which will 4012 * make sure the ordered extent gets properly cleaned up. 4013 */ 4014 list_for_each_entry(ordered, &root->ordered_extents, 4015 root_extent_list) 4016 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4017 spin_unlock(&root->ordered_extent_lock); 4018 } 4019 4020 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4021 { 4022 struct btrfs_root *root; 4023 struct list_head splice; 4024 4025 INIT_LIST_HEAD(&splice); 4026 4027 spin_lock(&fs_info->ordered_root_lock); 4028 list_splice_init(&fs_info->ordered_roots, &splice); 4029 while (!list_empty(&splice)) { 4030 root = list_first_entry(&splice, struct btrfs_root, 4031 ordered_root); 4032 list_move_tail(&root->ordered_root, 4033 &fs_info->ordered_roots); 4034 4035 spin_unlock(&fs_info->ordered_root_lock); 4036 btrfs_destroy_ordered_extents(root); 4037 4038 cond_resched(); 4039 spin_lock(&fs_info->ordered_root_lock); 4040 } 4041 spin_unlock(&fs_info->ordered_root_lock); 4042 } 4043 4044 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4045 struct btrfs_root *root) 4046 { 4047 struct rb_node *node; 4048 struct btrfs_delayed_ref_root *delayed_refs; 4049 struct btrfs_delayed_ref_node *ref; 4050 int ret = 0; 4051 4052 delayed_refs = &trans->delayed_refs; 4053 4054 spin_lock(&delayed_refs->lock); 4055 if (atomic_read(&delayed_refs->num_entries) == 0) { 4056 spin_unlock(&delayed_refs->lock); 4057 btrfs_info(root->fs_info, "delayed_refs has NO entry"); 4058 return ret; 4059 } 4060 4061 while ((node = rb_first(&delayed_refs->href_root)) != NULL) { 4062 struct btrfs_delayed_ref_head *head; 4063 bool pin_bytes = false; 4064 4065 head = rb_entry(node, struct btrfs_delayed_ref_head, 4066 href_node); 4067 if (!mutex_trylock(&head->mutex)) { 4068 atomic_inc(&head->node.refs); 4069 spin_unlock(&delayed_refs->lock); 4070 4071 mutex_lock(&head->mutex); 4072 mutex_unlock(&head->mutex); 4073 btrfs_put_delayed_ref(&head->node); 4074 spin_lock(&delayed_refs->lock); 4075 continue; 4076 } 4077 spin_lock(&head->lock); 4078 while ((node = rb_first(&head->ref_root)) != NULL) { 4079 ref = rb_entry(node, struct btrfs_delayed_ref_node, 4080 rb_node); 4081 ref->in_tree = 0; 4082 rb_erase(&ref->rb_node, &head->ref_root); 4083 atomic_dec(&delayed_refs->num_entries); 4084 btrfs_put_delayed_ref(ref); 4085 } 4086 if (head->must_insert_reserved) 4087 pin_bytes = true; 4088 btrfs_free_delayed_extent_op(head->extent_op); 4089 delayed_refs->num_heads--; 4090 if (head->processing == 0) 4091 delayed_refs->num_heads_ready--; 4092 atomic_dec(&delayed_refs->num_entries); 4093 head->node.in_tree = 0; 4094 rb_erase(&head->href_node, &delayed_refs->href_root); 4095 spin_unlock(&head->lock); 4096 spin_unlock(&delayed_refs->lock); 4097 mutex_unlock(&head->mutex); 4098 4099 if (pin_bytes) 4100 btrfs_pin_extent(root, head->node.bytenr, 4101 head->node.num_bytes, 1); 4102 btrfs_put_delayed_ref(&head->node); 4103 cond_resched(); 4104 spin_lock(&delayed_refs->lock); 4105 } 4106 4107 spin_unlock(&delayed_refs->lock); 4108 4109 return ret; 4110 } 4111 4112 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4113 { 4114 struct btrfs_inode *btrfs_inode; 4115 struct list_head splice; 4116 4117 INIT_LIST_HEAD(&splice); 4118 4119 spin_lock(&root->delalloc_lock); 4120 list_splice_init(&root->delalloc_inodes, &splice); 4121 4122 while (!list_empty(&splice)) { 4123 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4124 delalloc_inodes); 4125 4126 list_del_init(&btrfs_inode->delalloc_inodes); 4127 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 4128 &btrfs_inode->runtime_flags); 4129 spin_unlock(&root->delalloc_lock); 4130 4131 btrfs_invalidate_inodes(btrfs_inode->root); 4132 4133 spin_lock(&root->delalloc_lock); 4134 } 4135 4136 spin_unlock(&root->delalloc_lock); 4137 } 4138 4139 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4140 { 4141 struct btrfs_root *root; 4142 struct list_head splice; 4143 4144 INIT_LIST_HEAD(&splice); 4145 4146 spin_lock(&fs_info->delalloc_root_lock); 4147 list_splice_init(&fs_info->delalloc_roots, &splice); 4148 while (!list_empty(&splice)) { 4149 root = list_first_entry(&splice, struct btrfs_root, 4150 delalloc_root); 4151 list_del_init(&root->delalloc_root); 4152 root = btrfs_grab_fs_root(root); 4153 BUG_ON(!root); 4154 spin_unlock(&fs_info->delalloc_root_lock); 4155 4156 btrfs_destroy_delalloc_inodes(root); 4157 btrfs_put_fs_root(root); 4158 4159 spin_lock(&fs_info->delalloc_root_lock); 4160 } 4161 spin_unlock(&fs_info->delalloc_root_lock); 4162 } 4163 4164 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 4165 struct extent_io_tree *dirty_pages, 4166 int mark) 4167 { 4168 int ret; 4169 struct extent_buffer *eb; 4170 u64 start = 0; 4171 u64 end; 4172 4173 while (1) { 4174 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4175 mark, NULL); 4176 if (ret) 4177 break; 4178 4179 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 4180 while (start <= end) { 4181 eb = btrfs_find_tree_block(root->fs_info, start); 4182 start += root->nodesize; 4183 if (!eb) 4184 continue; 4185 wait_on_extent_buffer_writeback(eb); 4186 4187 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4188 &eb->bflags)) 4189 clear_extent_buffer_dirty(eb); 4190 free_extent_buffer_stale(eb); 4191 } 4192 } 4193 4194 return ret; 4195 } 4196 4197 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 4198 struct extent_io_tree *pinned_extents) 4199 { 4200 struct extent_io_tree *unpin; 4201 u64 start; 4202 u64 end; 4203 int ret; 4204 bool loop = true; 4205 4206 unpin = pinned_extents; 4207 again: 4208 while (1) { 4209 ret = find_first_extent_bit(unpin, 0, &start, &end, 4210 EXTENT_DIRTY, NULL); 4211 if (ret) 4212 break; 4213 4214 clear_extent_dirty(unpin, start, end, GFP_NOFS); 4215 btrfs_error_unpin_extent_range(root, start, end); 4216 cond_resched(); 4217 } 4218 4219 if (loop) { 4220 if (unpin == &root->fs_info->freed_extents[0]) 4221 unpin = &root->fs_info->freed_extents[1]; 4222 else 4223 unpin = &root->fs_info->freed_extents[0]; 4224 loop = false; 4225 goto again; 4226 } 4227 4228 return 0; 4229 } 4230 4231 static void btrfs_free_pending_ordered(struct btrfs_transaction *cur_trans, 4232 struct btrfs_fs_info *fs_info) 4233 { 4234 struct btrfs_ordered_extent *ordered; 4235 4236 spin_lock(&fs_info->trans_lock); 4237 while (!list_empty(&cur_trans->pending_ordered)) { 4238 ordered = list_first_entry(&cur_trans->pending_ordered, 4239 struct btrfs_ordered_extent, 4240 trans_list); 4241 list_del_init(&ordered->trans_list); 4242 spin_unlock(&fs_info->trans_lock); 4243 4244 btrfs_put_ordered_extent(ordered); 4245 spin_lock(&fs_info->trans_lock); 4246 } 4247 spin_unlock(&fs_info->trans_lock); 4248 } 4249 4250 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4251 struct btrfs_root *root) 4252 { 4253 btrfs_destroy_delayed_refs(cur_trans, root); 4254 4255 cur_trans->state = TRANS_STATE_COMMIT_START; 4256 wake_up(&root->fs_info->transaction_blocked_wait); 4257 4258 cur_trans->state = TRANS_STATE_UNBLOCKED; 4259 wake_up(&root->fs_info->transaction_wait); 4260 4261 btrfs_free_pending_ordered(cur_trans, root->fs_info); 4262 btrfs_destroy_delayed_inodes(root); 4263 btrfs_assert_delayed_root_empty(root); 4264 4265 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages, 4266 EXTENT_DIRTY); 4267 btrfs_destroy_pinned_extent(root, 4268 root->fs_info->pinned_extents); 4269 4270 cur_trans->state =TRANS_STATE_COMPLETED; 4271 wake_up(&cur_trans->commit_wait); 4272 4273 /* 4274 memset(cur_trans, 0, sizeof(*cur_trans)); 4275 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 4276 */ 4277 } 4278 4279 static int btrfs_cleanup_transaction(struct btrfs_root *root) 4280 { 4281 struct btrfs_transaction *t; 4282 4283 mutex_lock(&root->fs_info->transaction_kthread_mutex); 4284 4285 spin_lock(&root->fs_info->trans_lock); 4286 while (!list_empty(&root->fs_info->trans_list)) { 4287 t = list_first_entry(&root->fs_info->trans_list, 4288 struct btrfs_transaction, list); 4289 if (t->state >= TRANS_STATE_COMMIT_START) { 4290 atomic_inc(&t->use_count); 4291 spin_unlock(&root->fs_info->trans_lock); 4292 btrfs_wait_for_commit(root, t->transid); 4293 btrfs_put_transaction(t); 4294 spin_lock(&root->fs_info->trans_lock); 4295 continue; 4296 } 4297 if (t == root->fs_info->running_transaction) { 4298 t->state = TRANS_STATE_COMMIT_DOING; 4299 spin_unlock(&root->fs_info->trans_lock); 4300 /* 4301 * We wait for 0 num_writers since we don't hold a trans 4302 * handle open currently for this transaction. 4303 */ 4304 wait_event(t->writer_wait, 4305 atomic_read(&t->num_writers) == 0); 4306 } else { 4307 spin_unlock(&root->fs_info->trans_lock); 4308 } 4309 btrfs_cleanup_one_transaction(t, root); 4310 4311 spin_lock(&root->fs_info->trans_lock); 4312 if (t == root->fs_info->running_transaction) 4313 root->fs_info->running_transaction = NULL; 4314 list_del_init(&t->list); 4315 spin_unlock(&root->fs_info->trans_lock); 4316 4317 btrfs_put_transaction(t); 4318 trace_btrfs_transaction_commit(root); 4319 spin_lock(&root->fs_info->trans_lock); 4320 } 4321 spin_unlock(&root->fs_info->trans_lock); 4322 btrfs_destroy_all_ordered_extents(root->fs_info); 4323 btrfs_destroy_delayed_inodes(root); 4324 btrfs_assert_delayed_root_empty(root); 4325 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents); 4326 btrfs_destroy_all_delalloc_inodes(root->fs_info); 4327 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 4328 4329 return 0; 4330 } 4331 4332 static const struct extent_io_ops btree_extent_io_ops = { 4333 .readpage_end_io_hook = btree_readpage_end_io_hook, 4334 .readpage_io_failed_hook = btree_io_failed_hook, 4335 .submit_bio_hook = btree_submit_bio_hook, 4336 /* note we're sharing with inode.c for the merge bio hook */ 4337 .merge_bio_hook = btrfs_merge_bio_hook, 4338 }; 4339