xref: /openbmc/linux/fs/btrfs/disk-io.c (revision 0d375d61)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41 #include "block-group.h"
42 #include "discard.h"
43 #include "space-info.h"
44 #include "zoned.h"
45 #include "subpage.h"
46 
47 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
48 				 BTRFS_HEADER_FLAG_RELOC |\
49 				 BTRFS_SUPER_FLAG_ERROR |\
50 				 BTRFS_SUPER_FLAG_SEEDING |\
51 				 BTRFS_SUPER_FLAG_METADUMP |\
52 				 BTRFS_SUPER_FLAG_METADUMP_V2)
53 
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 				      struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60 					struct extent_io_tree *dirty_pages,
61 					int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63 				       struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66 
67 /*
68  * btrfs_end_io_wq structs are used to do processing in task context when an IO
69  * is complete.  This is used during reads to verify checksums, and it is used
70  * by writes to insert metadata for new file extents after IO is complete.
71  */
72 struct btrfs_end_io_wq {
73 	struct bio *bio;
74 	bio_end_io_t *end_io;
75 	void *private;
76 	struct btrfs_fs_info *info;
77 	blk_status_t status;
78 	enum btrfs_wq_endio_type metadata;
79 	struct btrfs_work work;
80 };
81 
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83 
84 int __init btrfs_end_io_wq_init(void)
85 {
86 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 					sizeof(struct btrfs_end_io_wq),
88 					0,
89 					SLAB_MEM_SPREAD,
90 					NULL);
91 	if (!btrfs_end_io_wq_cache)
92 		return -ENOMEM;
93 	return 0;
94 }
95 
96 void __cold btrfs_end_io_wq_exit(void)
97 {
98 	kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100 
101 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102 {
103 	if (fs_info->csum_shash)
104 		crypto_free_shash(fs_info->csum_shash);
105 }
106 
107 /*
108  * async submit bios are used to offload expensive checksumming
109  * onto the worker threads.  They checksum file and metadata bios
110  * just before they are sent down the IO stack.
111  */
112 struct async_submit_bio {
113 	struct inode *inode;
114 	struct bio *bio;
115 	extent_submit_bio_start_t *submit_bio_start;
116 	int mirror_num;
117 
118 	/* Optional parameter for submit_bio_start used by direct io */
119 	u64 dio_file_offset;
120 	struct btrfs_work work;
121 	blk_status_t status;
122 };
123 
124 /*
125  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
126  * eb, the lockdep key is determined by the btrfs_root it belongs to and
127  * the level the eb occupies in the tree.
128  *
129  * Different roots are used for different purposes and may nest inside each
130  * other and they require separate keysets.  As lockdep keys should be
131  * static, assign keysets according to the purpose of the root as indicated
132  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
133  * roots have separate keysets.
134  *
135  * Lock-nesting across peer nodes is always done with the immediate parent
136  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
137  * subclass to avoid triggering lockdep warning in such cases.
138  *
139  * The key is set by the readpage_end_io_hook after the buffer has passed
140  * csum validation but before the pages are unlocked.  It is also set by
141  * btrfs_init_new_buffer on freshly allocated blocks.
142  *
143  * We also add a check to make sure the highest level of the tree is the
144  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
145  * needs update as well.
146  */
147 #ifdef CONFIG_DEBUG_LOCK_ALLOC
148 # if BTRFS_MAX_LEVEL != 8
149 #  error
150 # endif
151 
152 #define DEFINE_LEVEL(stem, level)					\
153 	.names[level] = "btrfs-" stem "-0" #level,
154 
155 #define DEFINE_NAME(stem)						\
156 	DEFINE_LEVEL(stem, 0)						\
157 	DEFINE_LEVEL(stem, 1)						\
158 	DEFINE_LEVEL(stem, 2)						\
159 	DEFINE_LEVEL(stem, 3)						\
160 	DEFINE_LEVEL(stem, 4)						\
161 	DEFINE_LEVEL(stem, 5)						\
162 	DEFINE_LEVEL(stem, 6)						\
163 	DEFINE_LEVEL(stem, 7)
164 
165 static struct btrfs_lockdep_keyset {
166 	u64			id;		/* root objectid */
167 	/* Longest entry: btrfs-free-space-00 */
168 	char			names[BTRFS_MAX_LEVEL][20];
169 	struct lock_class_key	keys[BTRFS_MAX_LEVEL];
170 } btrfs_lockdep_keysets[] = {
171 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	DEFINE_NAME("root")	},
172 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	DEFINE_NAME("extent")	},
173 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	DEFINE_NAME("chunk")	},
174 	{ .id = BTRFS_DEV_TREE_OBJECTID,	DEFINE_NAME("dev")	},
175 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	DEFINE_NAME("csum")	},
176 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	DEFINE_NAME("quota")	},
177 	{ .id = BTRFS_TREE_LOG_OBJECTID,	DEFINE_NAME("log")	},
178 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	DEFINE_NAME("treloc")	},
179 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	DEFINE_NAME("dreloc")	},
180 	{ .id = BTRFS_UUID_TREE_OBJECTID,	DEFINE_NAME("uuid")	},
181 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	DEFINE_NAME("free-space") },
182 	{ .id = 0,				DEFINE_NAME("tree")	},
183 };
184 
185 #undef DEFINE_LEVEL
186 #undef DEFINE_NAME
187 
188 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
189 				    int level)
190 {
191 	struct btrfs_lockdep_keyset *ks;
192 
193 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
194 
195 	/* find the matching keyset, id 0 is the default entry */
196 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
197 		if (ks->id == objectid)
198 			break;
199 
200 	lockdep_set_class_and_name(&eb->lock,
201 				   &ks->keys[level], ks->names[level]);
202 }
203 
204 #endif
205 
206 /*
207  * Compute the csum of a btree block and store the result to provided buffer.
208  */
209 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
210 {
211 	struct btrfs_fs_info *fs_info = buf->fs_info;
212 	const int num_pages = num_extent_pages(buf);
213 	const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
214 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
215 	char *kaddr;
216 	int i;
217 
218 	shash->tfm = fs_info->csum_shash;
219 	crypto_shash_init(shash);
220 	kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
221 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
222 			    first_page_part - BTRFS_CSUM_SIZE);
223 
224 	for (i = 1; i < num_pages; i++) {
225 		kaddr = page_address(buf->pages[i]);
226 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
227 	}
228 	memset(result, 0, BTRFS_CSUM_SIZE);
229 	crypto_shash_final(shash, result);
230 }
231 
232 /*
233  * we can't consider a given block up to date unless the transid of the
234  * block matches the transid in the parent node's pointer.  This is how we
235  * detect blocks that either didn't get written at all or got written
236  * in the wrong place.
237  */
238 static int verify_parent_transid(struct extent_io_tree *io_tree,
239 				 struct extent_buffer *eb, u64 parent_transid,
240 				 int atomic)
241 {
242 	struct extent_state *cached_state = NULL;
243 	int ret;
244 
245 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
246 		return 0;
247 
248 	if (atomic)
249 		return -EAGAIN;
250 
251 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
252 			 &cached_state);
253 	if (extent_buffer_uptodate(eb) &&
254 	    btrfs_header_generation(eb) == parent_transid) {
255 		ret = 0;
256 		goto out;
257 	}
258 	btrfs_err_rl(eb->fs_info,
259 		"parent transid verify failed on %llu wanted %llu found %llu",
260 			eb->start,
261 			parent_transid, btrfs_header_generation(eb));
262 	ret = 1;
263 	clear_extent_buffer_uptodate(eb);
264 out:
265 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
266 			     &cached_state);
267 	return ret;
268 }
269 
270 static bool btrfs_supported_super_csum(u16 csum_type)
271 {
272 	switch (csum_type) {
273 	case BTRFS_CSUM_TYPE_CRC32:
274 	case BTRFS_CSUM_TYPE_XXHASH:
275 	case BTRFS_CSUM_TYPE_SHA256:
276 	case BTRFS_CSUM_TYPE_BLAKE2:
277 		return true;
278 	default:
279 		return false;
280 	}
281 }
282 
283 /*
284  * Return 0 if the superblock checksum type matches the checksum value of that
285  * algorithm. Pass the raw disk superblock data.
286  */
287 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
288 				  char *raw_disk_sb)
289 {
290 	struct btrfs_super_block *disk_sb =
291 		(struct btrfs_super_block *)raw_disk_sb;
292 	char result[BTRFS_CSUM_SIZE];
293 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
294 
295 	shash->tfm = fs_info->csum_shash;
296 
297 	/*
298 	 * The super_block structure does not span the whole
299 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
300 	 * filled with zeros and is included in the checksum.
301 	 */
302 	crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
303 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
304 
305 	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
306 		return 1;
307 
308 	return 0;
309 }
310 
311 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
312 			   struct btrfs_key *first_key, u64 parent_transid)
313 {
314 	struct btrfs_fs_info *fs_info = eb->fs_info;
315 	int found_level;
316 	struct btrfs_key found_key;
317 	int ret;
318 
319 	found_level = btrfs_header_level(eb);
320 	if (found_level != level) {
321 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
322 		     KERN_ERR "BTRFS: tree level check failed\n");
323 		btrfs_err(fs_info,
324 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
325 			  eb->start, level, found_level);
326 		return -EIO;
327 	}
328 
329 	if (!first_key)
330 		return 0;
331 
332 	/*
333 	 * For live tree block (new tree blocks in current transaction),
334 	 * we need proper lock context to avoid race, which is impossible here.
335 	 * So we only checks tree blocks which is read from disk, whose
336 	 * generation <= fs_info->last_trans_committed.
337 	 */
338 	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
339 		return 0;
340 
341 	/* We have @first_key, so this @eb must have at least one item */
342 	if (btrfs_header_nritems(eb) == 0) {
343 		btrfs_err(fs_info,
344 		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
345 			  eb->start);
346 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
347 		return -EUCLEAN;
348 	}
349 
350 	if (found_level)
351 		btrfs_node_key_to_cpu(eb, &found_key, 0);
352 	else
353 		btrfs_item_key_to_cpu(eb, &found_key, 0);
354 	ret = btrfs_comp_cpu_keys(first_key, &found_key);
355 
356 	if (ret) {
357 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
358 		     KERN_ERR "BTRFS: tree first key check failed\n");
359 		btrfs_err(fs_info,
360 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
361 			  eb->start, parent_transid, first_key->objectid,
362 			  first_key->type, first_key->offset,
363 			  found_key.objectid, found_key.type,
364 			  found_key.offset);
365 	}
366 	return ret;
367 }
368 
369 /*
370  * helper to read a given tree block, doing retries as required when
371  * the checksums don't match and we have alternate mirrors to try.
372  *
373  * @parent_transid:	expected transid, skip check if 0
374  * @level:		expected level, mandatory check
375  * @first_key:		expected key of first slot, skip check if NULL
376  */
377 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
378 					  u64 parent_transid, int level,
379 					  struct btrfs_key *first_key)
380 {
381 	struct btrfs_fs_info *fs_info = eb->fs_info;
382 	struct extent_io_tree *io_tree;
383 	int failed = 0;
384 	int ret;
385 	int num_copies = 0;
386 	int mirror_num = 0;
387 	int failed_mirror = 0;
388 
389 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
390 	while (1) {
391 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
392 		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
393 		if (!ret) {
394 			if (verify_parent_transid(io_tree, eb,
395 						   parent_transid, 0))
396 				ret = -EIO;
397 			else if (btrfs_verify_level_key(eb, level,
398 						first_key, parent_transid))
399 				ret = -EUCLEAN;
400 			else
401 				break;
402 		}
403 
404 		num_copies = btrfs_num_copies(fs_info,
405 					      eb->start, eb->len);
406 		if (num_copies == 1)
407 			break;
408 
409 		if (!failed_mirror) {
410 			failed = 1;
411 			failed_mirror = eb->read_mirror;
412 		}
413 
414 		mirror_num++;
415 		if (mirror_num == failed_mirror)
416 			mirror_num++;
417 
418 		if (mirror_num > num_copies)
419 			break;
420 	}
421 
422 	if (failed && !ret && failed_mirror)
423 		btrfs_repair_eb_io_failure(eb, failed_mirror);
424 
425 	return ret;
426 }
427 
428 static int csum_one_extent_buffer(struct extent_buffer *eb)
429 {
430 	struct btrfs_fs_info *fs_info = eb->fs_info;
431 	u8 result[BTRFS_CSUM_SIZE];
432 	int ret;
433 
434 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
435 				    offsetof(struct btrfs_header, fsid),
436 				    BTRFS_FSID_SIZE) == 0);
437 	csum_tree_block(eb, result);
438 
439 	if (btrfs_header_level(eb))
440 		ret = btrfs_check_node(eb);
441 	else
442 		ret = btrfs_check_leaf_full(eb);
443 
444 	if (ret < 0) {
445 		btrfs_print_tree(eb, 0);
446 		btrfs_err(fs_info,
447 			"block=%llu write time tree block corruption detected",
448 			eb->start);
449 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
450 		return ret;
451 	}
452 	write_extent_buffer(eb, result, 0, fs_info->csum_size);
453 
454 	return 0;
455 }
456 
457 /* Checksum all dirty extent buffers in one bio_vec */
458 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
459 				      struct bio_vec *bvec)
460 {
461 	struct page *page = bvec->bv_page;
462 	u64 bvec_start = page_offset(page) + bvec->bv_offset;
463 	u64 cur;
464 	int ret = 0;
465 
466 	for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
467 	     cur += fs_info->nodesize) {
468 		struct extent_buffer *eb;
469 		bool uptodate;
470 
471 		eb = find_extent_buffer(fs_info, cur);
472 		uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
473 						       fs_info->nodesize);
474 
475 		/* A dirty eb shouldn't disappear from buffer_radix */
476 		if (WARN_ON(!eb))
477 			return -EUCLEAN;
478 
479 		if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
480 			free_extent_buffer(eb);
481 			return -EUCLEAN;
482 		}
483 		if (WARN_ON(!uptodate)) {
484 			free_extent_buffer(eb);
485 			return -EUCLEAN;
486 		}
487 
488 		ret = csum_one_extent_buffer(eb);
489 		free_extent_buffer(eb);
490 		if (ret < 0)
491 			return ret;
492 	}
493 	return ret;
494 }
495 
496 /*
497  * Checksum a dirty tree block before IO.  This has extra checks to make sure
498  * we only fill in the checksum field in the first page of a multi-page block.
499  * For subpage extent buffers we need bvec to also read the offset in the page.
500  */
501 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
502 {
503 	struct page *page = bvec->bv_page;
504 	u64 start = page_offset(page);
505 	u64 found_start;
506 	struct extent_buffer *eb;
507 
508 	if (fs_info->sectorsize < PAGE_SIZE)
509 		return csum_dirty_subpage_buffers(fs_info, bvec);
510 
511 	eb = (struct extent_buffer *)page->private;
512 	if (page != eb->pages[0])
513 		return 0;
514 
515 	found_start = btrfs_header_bytenr(eb);
516 
517 	if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
518 		WARN_ON(found_start != 0);
519 		return 0;
520 	}
521 
522 	/*
523 	 * Please do not consolidate these warnings into a single if.
524 	 * It is useful to know what went wrong.
525 	 */
526 	if (WARN_ON(found_start != start))
527 		return -EUCLEAN;
528 	if (WARN_ON(!PageUptodate(page)))
529 		return -EUCLEAN;
530 
531 	return csum_one_extent_buffer(eb);
532 }
533 
534 static int check_tree_block_fsid(struct extent_buffer *eb)
535 {
536 	struct btrfs_fs_info *fs_info = eb->fs_info;
537 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
538 	u8 fsid[BTRFS_FSID_SIZE];
539 	u8 *metadata_uuid;
540 
541 	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
542 			   BTRFS_FSID_SIZE);
543 	/*
544 	 * Checking the incompat flag is only valid for the current fs. For
545 	 * seed devices it's forbidden to have their uuid changed so reading
546 	 * ->fsid in this case is fine
547 	 */
548 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
549 		metadata_uuid = fs_devices->metadata_uuid;
550 	else
551 		metadata_uuid = fs_devices->fsid;
552 
553 	if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
554 		return 0;
555 
556 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
557 		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
558 			return 0;
559 
560 	return 1;
561 }
562 
563 /* Do basic extent buffer checks at read time */
564 static int validate_extent_buffer(struct extent_buffer *eb)
565 {
566 	struct btrfs_fs_info *fs_info = eb->fs_info;
567 	u64 found_start;
568 	const u32 csum_size = fs_info->csum_size;
569 	u8 found_level;
570 	u8 result[BTRFS_CSUM_SIZE];
571 	const u8 *header_csum;
572 	int ret = 0;
573 
574 	found_start = btrfs_header_bytenr(eb);
575 	if (found_start != eb->start) {
576 		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
577 			     eb->start, found_start);
578 		ret = -EIO;
579 		goto out;
580 	}
581 	if (check_tree_block_fsid(eb)) {
582 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
583 			     eb->start);
584 		ret = -EIO;
585 		goto out;
586 	}
587 	found_level = btrfs_header_level(eb);
588 	if (found_level >= BTRFS_MAX_LEVEL) {
589 		btrfs_err(fs_info, "bad tree block level %d on %llu",
590 			  (int)btrfs_header_level(eb), eb->start);
591 		ret = -EIO;
592 		goto out;
593 	}
594 
595 	csum_tree_block(eb, result);
596 	header_csum = page_address(eb->pages[0]) +
597 		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
598 
599 	if (memcmp(result, header_csum, csum_size) != 0) {
600 		btrfs_warn_rl(fs_info,
601 	"checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
602 			      eb->start,
603 			      CSUM_FMT_VALUE(csum_size, header_csum),
604 			      CSUM_FMT_VALUE(csum_size, result),
605 			      btrfs_header_level(eb));
606 		ret = -EUCLEAN;
607 		goto out;
608 	}
609 
610 	/*
611 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
612 	 * that we don't try and read the other copies of this block, just
613 	 * return -EIO.
614 	 */
615 	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
616 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
617 		ret = -EIO;
618 	}
619 
620 	if (found_level > 0 && btrfs_check_node(eb))
621 		ret = -EIO;
622 
623 	if (!ret)
624 		set_extent_buffer_uptodate(eb);
625 	else
626 		btrfs_err(fs_info,
627 			  "block=%llu read time tree block corruption detected",
628 			  eb->start);
629 out:
630 	return ret;
631 }
632 
633 static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
634 				   int mirror)
635 {
636 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
637 	struct extent_buffer *eb;
638 	bool reads_done;
639 	int ret = 0;
640 
641 	/*
642 	 * We don't allow bio merge for subpage metadata read, so we should
643 	 * only get one eb for each endio hook.
644 	 */
645 	ASSERT(end == start + fs_info->nodesize - 1);
646 	ASSERT(PagePrivate(page));
647 
648 	eb = find_extent_buffer(fs_info, start);
649 	/*
650 	 * When we are reading one tree block, eb must have been inserted into
651 	 * the radix tree. If not, something is wrong.
652 	 */
653 	ASSERT(eb);
654 
655 	reads_done = atomic_dec_and_test(&eb->io_pages);
656 	/* Subpage read must finish in page read */
657 	ASSERT(reads_done);
658 
659 	eb->read_mirror = mirror;
660 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
661 		ret = -EIO;
662 		goto err;
663 	}
664 	ret = validate_extent_buffer(eb);
665 	if (ret < 0)
666 		goto err;
667 
668 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
669 		btree_readahead_hook(eb, ret);
670 
671 	set_extent_buffer_uptodate(eb);
672 
673 	free_extent_buffer(eb);
674 	return ret;
675 err:
676 	/*
677 	 * end_bio_extent_readpage decrements io_pages in case of error,
678 	 * make sure it has something to decrement.
679 	 */
680 	atomic_inc(&eb->io_pages);
681 	clear_extent_buffer_uptodate(eb);
682 	free_extent_buffer(eb);
683 	return ret;
684 }
685 
686 int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
687 				   struct page *page, u64 start, u64 end,
688 				   int mirror)
689 {
690 	struct extent_buffer *eb;
691 	int ret = 0;
692 	int reads_done;
693 
694 	ASSERT(page->private);
695 
696 	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
697 		return validate_subpage_buffer(page, start, end, mirror);
698 
699 	eb = (struct extent_buffer *)page->private;
700 
701 	/*
702 	 * The pending IO might have been the only thing that kept this buffer
703 	 * in memory.  Make sure we have a ref for all this other checks
704 	 */
705 	atomic_inc(&eb->refs);
706 
707 	reads_done = atomic_dec_and_test(&eb->io_pages);
708 	if (!reads_done)
709 		goto err;
710 
711 	eb->read_mirror = mirror;
712 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
713 		ret = -EIO;
714 		goto err;
715 	}
716 	ret = validate_extent_buffer(eb);
717 err:
718 	if (reads_done &&
719 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
720 		btree_readahead_hook(eb, ret);
721 
722 	if (ret) {
723 		/*
724 		 * our io error hook is going to dec the io pages
725 		 * again, we have to make sure it has something
726 		 * to decrement
727 		 */
728 		atomic_inc(&eb->io_pages);
729 		clear_extent_buffer_uptodate(eb);
730 	}
731 	free_extent_buffer(eb);
732 
733 	return ret;
734 }
735 
736 static void end_workqueue_bio(struct bio *bio)
737 {
738 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
739 	struct btrfs_fs_info *fs_info;
740 	struct btrfs_workqueue *wq;
741 
742 	fs_info = end_io_wq->info;
743 	end_io_wq->status = bio->bi_status;
744 
745 	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
746 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
747 			wq = fs_info->endio_meta_write_workers;
748 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
749 			wq = fs_info->endio_freespace_worker;
750 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
751 			wq = fs_info->endio_raid56_workers;
752 		else
753 			wq = fs_info->endio_write_workers;
754 	} else {
755 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
756 			wq = fs_info->endio_raid56_workers;
757 		else if (end_io_wq->metadata)
758 			wq = fs_info->endio_meta_workers;
759 		else
760 			wq = fs_info->endio_workers;
761 	}
762 
763 	btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
764 	btrfs_queue_work(wq, &end_io_wq->work);
765 }
766 
767 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
768 			enum btrfs_wq_endio_type metadata)
769 {
770 	struct btrfs_end_io_wq *end_io_wq;
771 
772 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
773 	if (!end_io_wq)
774 		return BLK_STS_RESOURCE;
775 
776 	end_io_wq->private = bio->bi_private;
777 	end_io_wq->end_io = bio->bi_end_io;
778 	end_io_wq->info = info;
779 	end_io_wq->status = 0;
780 	end_io_wq->bio = bio;
781 	end_io_wq->metadata = metadata;
782 
783 	bio->bi_private = end_io_wq;
784 	bio->bi_end_io = end_workqueue_bio;
785 	return 0;
786 }
787 
788 static void run_one_async_start(struct btrfs_work *work)
789 {
790 	struct async_submit_bio *async;
791 	blk_status_t ret;
792 
793 	async = container_of(work, struct  async_submit_bio, work);
794 	ret = async->submit_bio_start(async->inode, async->bio,
795 				      async->dio_file_offset);
796 	if (ret)
797 		async->status = ret;
798 }
799 
800 /*
801  * In order to insert checksums into the metadata in large chunks, we wait
802  * until bio submission time.   All the pages in the bio are checksummed and
803  * sums are attached onto the ordered extent record.
804  *
805  * At IO completion time the csums attached on the ordered extent record are
806  * inserted into the tree.
807  */
808 static void run_one_async_done(struct btrfs_work *work)
809 {
810 	struct async_submit_bio *async;
811 	struct inode *inode;
812 	blk_status_t ret;
813 
814 	async = container_of(work, struct  async_submit_bio, work);
815 	inode = async->inode;
816 
817 	/* If an error occurred we just want to clean up the bio and move on */
818 	if (async->status) {
819 		async->bio->bi_status = async->status;
820 		bio_endio(async->bio);
821 		return;
822 	}
823 
824 	/*
825 	 * All of the bios that pass through here are from async helpers.
826 	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
827 	 * This changes nothing when cgroups aren't in use.
828 	 */
829 	async->bio->bi_opf |= REQ_CGROUP_PUNT;
830 	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
831 	if (ret) {
832 		async->bio->bi_status = ret;
833 		bio_endio(async->bio);
834 	}
835 }
836 
837 static void run_one_async_free(struct btrfs_work *work)
838 {
839 	struct async_submit_bio *async;
840 
841 	async = container_of(work, struct  async_submit_bio, work);
842 	kfree(async);
843 }
844 
845 blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
846 				 int mirror_num, unsigned long bio_flags,
847 				 u64 dio_file_offset,
848 				 extent_submit_bio_start_t *submit_bio_start)
849 {
850 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
851 	struct async_submit_bio *async;
852 
853 	async = kmalloc(sizeof(*async), GFP_NOFS);
854 	if (!async)
855 		return BLK_STS_RESOURCE;
856 
857 	async->inode = inode;
858 	async->bio = bio;
859 	async->mirror_num = mirror_num;
860 	async->submit_bio_start = submit_bio_start;
861 
862 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
863 			run_one_async_free);
864 
865 	async->dio_file_offset = dio_file_offset;
866 
867 	async->status = 0;
868 
869 	if (op_is_sync(bio->bi_opf))
870 		btrfs_set_work_high_priority(&async->work);
871 
872 	btrfs_queue_work(fs_info->workers, &async->work);
873 	return 0;
874 }
875 
876 static blk_status_t btree_csum_one_bio(struct bio *bio)
877 {
878 	struct bio_vec *bvec;
879 	struct btrfs_root *root;
880 	int ret = 0;
881 	struct bvec_iter_all iter_all;
882 
883 	ASSERT(!bio_flagged(bio, BIO_CLONED));
884 	bio_for_each_segment_all(bvec, bio, iter_all) {
885 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
886 		ret = csum_dirty_buffer(root->fs_info, bvec);
887 		if (ret)
888 			break;
889 	}
890 
891 	return errno_to_blk_status(ret);
892 }
893 
894 static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
895 					   u64 dio_file_offset)
896 {
897 	/*
898 	 * when we're called for a write, we're already in the async
899 	 * submission context.  Just jump into btrfs_map_bio
900 	 */
901 	return btree_csum_one_bio(bio);
902 }
903 
904 static bool should_async_write(struct btrfs_fs_info *fs_info,
905 			     struct btrfs_inode *bi)
906 {
907 	if (btrfs_is_zoned(fs_info))
908 		return false;
909 	if (atomic_read(&bi->sync_writers))
910 		return false;
911 	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
912 		return false;
913 	return true;
914 }
915 
916 blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
917 				       int mirror_num, unsigned long bio_flags)
918 {
919 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
920 	blk_status_t ret;
921 
922 	if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
923 		/*
924 		 * called for a read, do the setup so that checksum validation
925 		 * can happen in the async kernel threads
926 		 */
927 		ret = btrfs_bio_wq_end_io(fs_info, bio,
928 					  BTRFS_WQ_ENDIO_METADATA);
929 		if (ret)
930 			goto out_w_error;
931 		ret = btrfs_map_bio(fs_info, bio, mirror_num);
932 	} else if (!should_async_write(fs_info, BTRFS_I(inode))) {
933 		ret = btree_csum_one_bio(bio);
934 		if (ret)
935 			goto out_w_error;
936 		ret = btrfs_map_bio(fs_info, bio, mirror_num);
937 	} else {
938 		/*
939 		 * kthread helpers are used to submit writes so that
940 		 * checksumming can happen in parallel across all CPUs
941 		 */
942 		ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
943 					  0, btree_submit_bio_start);
944 	}
945 
946 	if (ret)
947 		goto out_w_error;
948 	return 0;
949 
950 out_w_error:
951 	bio->bi_status = ret;
952 	bio_endio(bio);
953 	return ret;
954 }
955 
956 #ifdef CONFIG_MIGRATION
957 static int btree_migratepage(struct address_space *mapping,
958 			struct page *newpage, struct page *page,
959 			enum migrate_mode mode)
960 {
961 	/*
962 	 * we can't safely write a btree page from here,
963 	 * we haven't done the locking hook
964 	 */
965 	if (PageDirty(page))
966 		return -EAGAIN;
967 	/*
968 	 * Buffers may be managed in a filesystem specific way.
969 	 * We must have no buffers or drop them.
970 	 */
971 	if (page_has_private(page) &&
972 	    !try_to_release_page(page, GFP_KERNEL))
973 		return -EAGAIN;
974 	return migrate_page(mapping, newpage, page, mode);
975 }
976 #endif
977 
978 
979 static int btree_writepages(struct address_space *mapping,
980 			    struct writeback_control *wbc)
981 {
982 	struct btrfs_fs_info *fs_info;
983 	int ret;
984 
985 	if (wbc->sync_mode == WB_SYNC_NONE) {
986 
987 		if (wbc->for_kupdate)
988 			return 0;
989 
990 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
991 		/* this is a bit racy, but that's ok */
992 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
993 					     BTRFS_DIRTY_METADATA_THRESH,
994 					     fs_info->dirty_metadata_batch);
995 		if (ret < 0)
996 			return 0;
997 	}
998 	return btree_write_cache_pages(mapping, wbc);
999 }
1000 
1001 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1002 {
1003 	if (PageWriteback(page) || PageDirty(page))
1004 		return 0;
1005 
1006 	return try_release_extent_buffer(page);
1007 }
1008 
1009 static void btree_invalidatepage(struct page *page, unsigned int offset,
1010 				 unsigned int length)
1011 {
1012 	struct extent_io_tree *tree;
1013 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1014 	extent_invalidatepage(tree, page, offset);
1015 	btree_releasepage(page, GFP_NOFS);
1016 	if (PagePrivate(page)) {
1017 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1018 			   "page private not zero on page %llu",
1019 			   (unsigned long long)page_offset(page));
1020 		detach_page_private(page);
1021 	}
1022 }
1023 
1024 static int btree_set_page_dirty(struct page *page)
1025 {
1026 #ifdef DEBUG
1027 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
1028 	struct btrfs_subpage *subpage;
1029 	struct extent_buffer *eb;
1030 	int cur_bit = 0;
1031 	u64 page_start = page_offset(page);
1032 
1033 	if (fs_info->sectorsize == PAGE_SIZE) {
1034 		BUG_ON(!PagePrivate(page));
1035 		eb = (struct extent_buffer *)page->private;
1036 		BUG_ON(!eb);
1037 		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1038 		BUG_ON(!atomic_read(&eb->refs));
1039 		btrfs_assert_tree_write_locked(eb);
1040 		return __set_page_dirty_nobuffers(page);
1041 	}
1042 	ASSERT(PagePrivate(page) && page->private);
1043 	subpage = (struct btrfs_subpage *)page->private;
1044 
1045 	ASSERT(subpage->dirty_bitmap);
1046 	while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
1047 		unsigned long flags;
1048 		u64 cur;
1049 		u16 tmp = (1 << cur_bit);
1050 
1051 		spin_lock_irqsave(&subpage->lock, flags);
1052 		if (!(tmp & subpage->dirty_bitmap)) {
1053 			spin_unlock_irqrestore(&subpage->lock, flags);
1054 			cur_bit++;
1055 			continue;
1056 		}
1057 		spin_unlock_irqrestore(&subpage->lock, flags);
1058 		cur = page_start + cur_bit * fs_info->sectorsize;
1059 
1060 		eb = find_extent_buffer(fs_info, cur);
1061 		ASSERT(eb);
1062 		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1063 		ASSERT(atomic_read(&eb->refs));
1064 		btrfs_assert_tree_write_locked(eb);
1065 		free_extent_buffer(eb);
1066 
1067 		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
1068 	}
1069 #endif
1070 	return __set_page_dirty_nobuffers(page);
1071 }
1072 
1073 static const struct address_space_operations btree_aops = {
1074 	.writepages	= btree_writepages,
1075 	.releasepage	= btree_releasepage,
1076 	.invalidatepage = btree_invalidatepage,
1077 #ifdef CONFIG_MIGRATION
1078 	.migratepage	= btree_migratepage,
1079 #endif
1080 	.set_page_dirty = btree_set_page_dirty,
1081 };
1082 
1083 struct extent_buffer *btrfs_find_create_tree_block(
1084 						struct btrfs_fs_info *fs_info,
1085 						u64 bytenr, u64 owner_root,
1086 						int level)
1087 {
1088 	if (btrfs_is_testing(fs_info))
1089 		return alloc_test_extent_buffer(fs_info, bytenr);
1090 	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
1091 }
1092 
1093 /*
1094  * Read tree block at logical address @bytenr and do variant basic but critical
1095  * verification.
1096  *
1097  * @owner_root:		the objectid of the root owner for this block.
1098  * @parent_transid:	expected transid of this tree block, skip check if 0
1099  * @level:		expected level, mandatory check
1100  * @first_key:		expected key in slot 0, skip check if NULL
1101  */
1102 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1103 				      u64 owner_root, u64 parent_transid,
1104 				      int level, struct btrfs_key *first_key)
1105 {
1106 	struct extent_buffer *buf = NULL;
1107 	int ret;
1108 
1109 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
1110 	if (IS_ERR(buf))
1111 		return buf;
1112 
1113 	ret = btree_read_extent_buffer_pages(buf, parent_transid,
1114 					     level, first_key);
1115 	if (ret) {
1116 		free_extent_buffer_stale(buf);
1117 		return ERR_PTR(ret);
1118 	}
1119 	return buf;
1120 
1121 }
1122 
1123 void btrfs_clean_tree_block(struct extent_buffer *buf)
1124 {
1125 	struct btrfs_fs_info *fs_info = buf->fs_info;
1126 	if (btrfs_header_generation(buf) ==
1127 	    fs_info->running_transaction->transid) {
1128 		btrfs_assert_tree_write_locked(buf);
1129 
1130 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1131 			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1132 						 -buf->len,
1133 						 fs_info->dirty_metadata_batch);
1134 			clear_extent_buffer_dirty(buf);
1135 		}
1136 	}
1137 }
1138 
1139 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1140 			 u64 objectid)
1141 {
1142 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1143 	root->fs_info = fs_info;
1144 	root->node = NULL;
1145 	root->commit_root = NULL;
1146 	root->state = 0;
1147 	root->orphan_cleanup_state = 0;
1148 
1149 	root->last_trans = 0;
1150 	root->free_objectid = 0;
1151 	root->nr_delalloc_inodes = 0;
1152 	root->nr_ordered_extents = 0;
1153 	root->inode_tree = RB_ROOT;
1154 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1155 	root->block_rsv = NULL;
1156 
1157 	INIT_LIST_HEAD(&root->dirty_list);
1158 	INIT_LIST_HEAD(&root->root_list);
1159 	INIT_LIST_HEAD(&root->delalloc_inodes);
1160 	INIT_LIST_HEAD(&root->delalloc_root);
1161 	INIT_LIST_HEAD(&root->ordered_extents);
1162 	INIT_LIST_HEAD(&root->ordered_root);
1163 	INIT_LIST_HEAD(&root->reloc_dirty_list);
1164 	INIT_LIST_HEAD(&root->logged_list[0]);
1165 	INIT_LIST_HEAD(&root->logged_list[1]);
1166 	spin_lock_init(&root->inode_lock);
1167 	spin_lock_init(&root->delalloc_lock);
1168 	spin_lock_init(&root->ordered_extent_lock);
1169 	spin_lock_init(&root->accounting_lock);
1170 	spin_lock_init(&root->log_extents_lock[0]);
1171 	spin_lock_init(&root->log_extents_lock[1]);
1172 	spin_lock_init(&root->qgroup_meta_rsv_lock);
1173 	mutex_init(&root->objectid_mutex);
1174 	mutex_init(&root->log_mutex);
1175 	mutex_init(&root->ordered_extent_mutex);
1176 	mutex_init(&root->delalloc_mutex);
1177 	init_waitqueue_head(&root->qgroup_flush_wait);
1178 	init_waitqueue_head(&root->log_writer_wait);
1179 	init_waitqueue_head(&root->log_commit_wait[0]);
1180 	init_waitqueue_head(&root->log_commit_wait[1]);
1181 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1182 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1183 	atomic_set(&root->log_commit[0], 0);
1184 	atomic_set(&root->log_commit[1], 0);
1185 	atomic_set(&root->log_writers, 0);
1186 	atomic_set(&root->log_batch, 0);
1187 	refcount_set(&root->refs, 1);
1188 	atomic_set(&root->snapshot_force_cow, 0);
1189 	atomic_set(&root->nr_swapfiles, 0);
1190 	root->log_transid = 0;
1191 	root->log_transid_committed = -1;
1192 	root->last_log_commit = 0;
1193 	if (!dummy) {
1194 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1195 				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1196 		extent_io_tree_init(fs_info, &root->log_csum_range,
1197 				    IO_TREE_LOG_CSUM_RANGE, NULL);
1198 	}
1199 
1200 	memset(&root->root_key, 0, sizeof(root->root_key));
1201 	memset(&root->root_item, 0, sizeof(root->root_item));
1202 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1203 	root->root_key.objectid = objectid;
1204 	root->anon_dev = 0;
1205 
1206 	spin_lock_init(&root->root_item_lock);
1207 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1208 #ifdef CONFIG_BTRFS_DEBUG
1209 	INIT_LIST_HEAD(&root->leak_list);
1210 	spin_lock(&fs_info->fs_roots_radix_lock);
1211 	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1212 	spin_unlock(&fs_info->fs_roots_radix_lock);
1213 #endif
1214 }
1215 
1216 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1217 					   u64 objectid, gfp_t flags)
1218 {
1219 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1220 	if (root)
1221 		__setup_root(root, fs_info, objectid);
1222 	return root;
1223 }
1224 
1225 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1226 /* Should only be used by the testing infrastructure */
1227 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1228 {
1229 	struct btrfs_root *root;
1230 
1231 	if (!fs_info)
1232 		return ERR_PTR(-EINVAL);
1233 
1234 	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1235 	if (!root)
1236 		return ERR_PTR(-ENOMEM);
1237 
1238 	/* We don't use the stripesize in selftest, set it as sectorsize */
1239 	root->alloc_bytenr = 0;
1240 
1241 	return root;
1242 }
1243 #endif
1244 
1245 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1246 				     u64 objectid)
1247 {
1248 	struct btrfs_fs_info *fs_info = trans->fs_info;
1249 	struct extent_buffer *leaf;
1250 	struct btrfs_root *tree_root = fs_info->tree_root;
1251 	struct btrfs_root *root;
1252 	struct btrfs_key key;
1253 	unsigned int nofs_flag;
1254 	int ret = 0;
1255 
1256 	/*
1257 	 * We're holding a transaction handle, so use a NOFS memory allocation
1258 	 * context to avoid deadlock if reclaim happens.
1259 	 */
1260 	nofs_flag = memalloc_nofs_save();
1261 	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1262 	memalloc_nofs_restore(nofs_flag);
1263 	if (!root)
1264 		return ERR_PTR(-ENOMEM);
1265 
1266 	root->root_key.objectid = objectid;
1267 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1268 	root->root_key.offset = 0;
1269 
1270 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1271 				      BTRFS_NESTING_NORMAL);
1272 	if (IS_ERR(leaf)) {
1273 		ret = PTR_ERR(leaf);
1274 		leaf = NULL;
1275 		goto fail_unlock;
1276 	}
1277 
1278 	root->node = leaf;
1279 	btrfs_mark_buffer_dirty(leaf);
1280 
1281 	root->commit_root = btrfs_root_node(root);
1282 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1283 
1284 	btrfs_set_root_flags(&root->root_item, 0);
1285 	btrfs_set_root_limit(&root->root_item, 0);
1286 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1287 	btrfs_set_root_generation(&root->root_item, trans->transid);
1288 	btrfs_set_root_level(&root->root_item, 0);
1289 	btrfs_set_root_refs(&root->root_item, 1);
1290 	btrfs_set_root_used(&root->root_item, leaf->len);
1291 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1292 	btrfs_set_root_dirid(&root->root_item, 0);
1293 	if (is_fstree(objectid))
1294 		generate_random_guid(root->root_item.uuid);
1295 	else
1296 		export_guid(root->root_item.uuid, &guid_null);
1297 	btrfs_set_root_drop_level(&root->root_item, 0);
1298 
1299 	btrfs_tree_unlock(leaf);
1300 
1301 	key.objectid = objectid;
1302 	key.type = BTRFS_ROOT_ITEM_KEY;
1303 	key.offset = 0;
1304 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1305 	if (ret)
1306 		goto fail;
1307 
1308 	return root;
1309 
1310 fail_unlock:
1311 	if (leaf)
1312 		btrfs_tree_unlock(leaf);
1313 fail:
1314 	btrfs_put_root(root);
1315 
1316 	return ERR_PTR(ret);
1317 }
1318 
1319 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1320 					 struct btrfs_fs_info *fs_info)
1321 {
1322 	struct btrfs_root *root;
1323 
1324 	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1325 	if (!root)
1326 		return ERR_PTR(-ENOMEM);
1327 
1328 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1329 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1330 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1331 
1332 	return root;
1333 }
1334 
1335 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1336 			      struct btrfs_root *root)
1337 {
1338 	struct extent_buffer *leaf;
1339 
1340 	/*
1341 	 * DON'T set SHAREABLE bit for log trees.
1342 	 *
1343 	 * Log trees are not exposed to user space thus can't be snapshotted,
1344 	 * and they go away before a real commit is actually done.
1345 	 *
1346 	 * They do store pointers to file data extents, and those reference
1347 	 * counts still get updated (along with back refs to the log tree).
1348 	 */
1349 
1350 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1351 			NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1352 	if (IS_ERR(leaf))
1353 		return PTR_ERR(leaf);
1354 
1355 	root->node = leaf;
1356 
1357 	btrfs_mark_buffer_dirty(root->node);
1358 	btrfs_tree_unlock(root->node);
1359 
1360 	return 0;
1361 }
1362 
1363 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1364 			     struct btrfs_fs_info *fs_info)
1365 {
1366 	struct btrfs_root *log_root;
1367 
1368 	log_root = alloc_log_tree(trans, fs_info);
1369 	if (IS_ERR(log_root))
1370 		return PTR_ERR(log_root);
1371 
1372 	if (!btrfs_is_zoned(fs_info)) {
1373 		int ret = btrfs_alloc_log_tree_node(trans, log_root);
1374 
1375 		if (ret) {
1376 			btrfs_put_root(log_root);
1377 			return ret;
1378 		}
1379 	}
1380 
1381 	WARN_ON(fs_info->log_root_tree);
1382 	fs_info->log_root_tree = log_root;
1383 	return 0;
1384 }
1385 
1386 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1387 		       struct btrfs_root *root)
1388 {
1389 	struct btrfs_fs_info *fs_info = root->fs_info;
1390 	struct btrfs_root *log_root;
1391 	struct btrfs_inode_item *inode_item;
1392 	int ret;
1393 
1394 	log_root = alloc_log_tree(trans, fs_info);
1395 	if (IS_ERR(log_root))
1396 		return PTR_ERR(log_root);
1397 
1398 	ret = btrfs_alloc_log_tree_node(trans, log_root);
1399 	if (ret) {
1400 		btrfs_put_root(log_root);
1401 		return ret;
1402 	}
1403 
1404 	log_root->last_trans = trans->transid;
1405 	log_root->root_key.offset = root->root_key.objectid;
1406 
1407 	inode_item = &log_root->root_item.inode;
1408 	btrfs_set_stack_inode_generation(inode_item, 1);
1409 	btrfs_set_stack_inode_size(inode_item, 3);
1410 	btrfs_set_stack_inode_nlink(inode_item, 1);
1411 	btrfs_set_stack_inode_nbytes(inode_item,
1412 				     fs_info->nodesize);
1413 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1414 
1415 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1416 
1417 	WARN_ON(root->log_root);
1418 	root->log_root = log_root;
1419 	root->log_transid = 0;
1420 	root->log_transid_committed = -1;
1421 	root->last_log_commit = 0;
1422 	return 0;
1423 }
1424 
1425 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1426 					      struct btrfs_path *path,
1427 					      struct btrfs_key *key)
1428 {
1429 	struct btrfs_root *root;
1430 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1431 	u64 generation;
1432 	int ret;
1433 	int level;
1434 
1435 	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1436 	if (!root)
1437 		return ERR_PTR(-ENOMEM);
1438 
1439 	ret = btrfs_find_root(tree_root, key, path,
1440 			      &root->root_item, &root->root_key);
1441 	if (ret) {
1442 		if (ret > 0)
1443 			ret = -ENOENT;
1444 		goto fail;
1445 	}
1446 
1447 	generation = btrfs_root_generation(&root->root_item);
1448 	level = btrfs_root_level(&root->root_item);
1449 	root->node = read_tree_block(fs_info,
1450 				     btrfs_root_bytenr(&root->root_item),
1451 				     key->objectid, generation, level, NULL);
1452 	if (IS_ERR(root->node)) {
1453 		ret = PTR_ERR(root->node);
1454 		root->node = NULL;
1455 		goto fail;
1456 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1457 		ret = -EIO;
1458 		goto fail;
1459 	}
1460 	root->commit_root = btrfs_root_node(root);
1461 	return root;
1462 fail:
1463 	btrfs_put_root(root);
1464 	return ERR_PTR(ret);
1465 }
1466 
1467 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1468 					struct btrfs_key *key)
1469 {
1470 	struct btrfs_root *root;
1471 	struct btrfs_path *path;
1472 
1473 	path = btrfs_alloc_path();
1474 	if (!path)
1475 		return ERR_PTR(-ENOMEM);
1476 	root = read_tree_root_path(tree_root, path, key);
1477 	btrfs_free_path(path);
1478 
1479 	return root;
1480 }
1481 
1482 /*
1483  * Initialize subvolume root in-memory structure
1484  *
1485  * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1486  */
1487 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1488 {
1489 	int ret;
1490 	unsigned int nofs_flag;
1491 
1492 	/*
1493 	 * We might be called under a transaction (e.g. indirect backref
1494 	 * resolution) which could deadlock if it triggers memory reclaim
1495 	 */
1496 	nofs_flag = memalloc_nofs_save();
1497 	ret = btrfs_drew_lock_init(&root->snapshot_lock);
1498 	memalloc_nofs_restore(nofs_flag);
1499 	if (ret)
1500 		goto fail;
1501 
1502 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1503 	    !btrfs_is_data_reloc_root(root)) {
1504 		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1505 		btrfs_check_and_init_root_item(&root->root_item);
1506 	}
1507 
1508 	/*
1509 	 * Don't assign anonymous block device to roots that are not exposed to
1510 	 * userspace, the id pool is limited to 1M
1511 	 */
1512 	if (is_fstree(root->root_key.objectid) &&
1513 	    btrfs_root_refs(&root->root_item) > 0) {
1514 		if (!anon_dev) {
1515 			ret = get_anon_bdev(&root->anon_dev);
1516 			if (ret)
1517 				goto fail;
1518 		} else {
1519 			root->anon_dev = anon_dev;
1520 		}
1521 	}
1522 
1523 	mutex_lock(&root->objectid_mutex);
1524 	ret = btrfs_init_root_free_objectid(root);
1525 	if (ret) {
1526 		mutex_unlock(&root->objectid_mutex);
1527 		goto fail;
1528 	}
1529 
1530 	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1531 
1532 	mutex_unlock(&root->objectid_mutex);
1533 
1534 	return 0;
1535 fail:
1536 	/* The caller is responsible to call btrfs_free_fs_root */
1537 	return ret;
1538 }
1539 
1540 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1541 					       u64 root_id)
1542 {
1543 	struct btrfs_root *root;
1544 
1545 	spin_lock(&fs_info->fs_roots_radix_lock);
1546 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1547 				 (unsigned long)root_id);
1548 	if (root)
1549 		root = btrfs_grab_root(root);
1550 	spin_unlock(&fs_info->fs_roots_radix_lock);
1551 	return root;
1552 }
1553 
1554 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1555 						u64 objectid)
1556 {
1557 	if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1558 		return btrfs_grab_root(fs_info->tree_root);
1559 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1560 		return btrfs_grab_root(fs_info->extent_root);
1561 	if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1562 		return btrfs_grab_root(fs_info->chunk_root);
1563 	if (objectid == BTRFS_DEV_TREE_OBJECTID)
1564 		return btrfs_grab_root(fs_info->dev_root);
1565 	if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1566 		return btrfs_grab_root(fs_info->csum_root);
1567 	if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1568 		return btrfs_grab_root(fs_info->quota_root) ?
1569 			fs_info->quota_root : ERR_PTR(-ENOENT);
1570 	if (objectid == BTRFS_UUID_TREE_OBJECTID)
1571 		return btrfs_grab_root(fs_info->uuid_root) ?
1572 			fs_info->uuid_root : ERR_PTR(-ENOENT);
1573 	if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1574 		return btrfs_grab_root(fs_info->free_space_root) ?
1575 			fs_info->free_space_root : ERR_PTR(-ENOENT);
1576 	return NULL;
1577 }
1578 
1579 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1580 			 struct btrfs_root *root)
1581 {
1582 	int ret;
1583 
1584 	ret = radix_tree_preload(GFP_NOFS);
1585 	if (ret)
1586 		return ret;
1587 
1588 	spin_lock(&fs_info->fs_roots_radix_lock);
1589 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1590 				(unsigned long)root->root_key.objectid,
1591 				root);
1592 	if (ret == 0) {
1593 		btrfs_grab_root(root);
1594 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1595 	}
1596 	spin_unlock(&fs_info->fs_roots_radix_lock);
1597 	radix_tree_preload_end();
1598 
1599 	return ret;
1600 }
1601 
1602 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1603 {
1604 #ifdef CONFIG_BTRFS_DEBUG
1605 	struct btrfs_root *root;
1606 
1607 	while (!list_empty(&fs_info->allocated_roots)) {
1608 		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1609 
1610 		root = list_first_entry(&fs_info->allocated_roots,
1611 					struct btrfs_root, leak_list);
1612 		btrfs_err(fs_info, "leaked root %s refcount %d",
1613 			  btrfs_root_name(&root->root_key, buf),
1614 			  refcount_read(&root->refs));
1615 		while (refcount_read(&root->refs) > 1)
1616 			btrfs_put_root(root);
1617 		btrfs_put_root(root);
1618 	}
1619 #endif
1620 }
1621 
1622 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1623 {
1624 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1625 	percpu_counter_destroy(&fs_info->delalloc_bytes);
1626 	percpu_counter_destroy(&fs_info->ordered_bytes);
1627 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1628 	btrfs_free_csum_hash(fs_info);
1629 	btrfs_free_stripe_hash_table(fs_info);
1630 	btrfs_free_ref_cache(fs_info);
1631 	kfree(fs_info->balance_ctl);
1632 	kfree(fs_info->delayed_root);
1633 	btrfs_put_root(fs_info->extent_root);
1634 	btrfs_put_root(fs_info->tree_root);
1635 	btrfs_put_root(fs_info->chunk_root);
1636 	btrfs_put_root(fs_info->dev_root);
1637 	btrfs_put_root(fs_info->csum_root);
1638 	btrfs_put_root(fs_info->quota_root);
1639 	btrfs_put_root(fs_info->uuid_root);
1640 	btrfs_put_root(fs_info->free_space_root);
1641 	btrfs_put_root(fs_info->fs_root);
1642 	btrfs_put_root(fs_info->data_reloc_root);
1643 	btrfs_check_leaked_roots(fs_info);
1644 	btrfs_extent_buffer_leak_debug_check(fs_info);
1645 	kfree(fs_info->super_copy);
1646 	kfree(fs_info->super_for_commit);
1647 	kfree(fs_info->subpage_info);
1648 	kvfree(fs_info);
1649 }
1650 
1651 
1652 /*
1653  * Get an in-memory reference of a root structure.
1654  *
1655  * For essential trees like root/extent tree, we grab it from fs_info directly.
1656  * For subvolume trees, we check the cached filesystem roots first. If not
1657  * found, then read it from disk and add it to cached fs roots.
1658  *
1659  * Caller should release the root by calling btrfs_put_root() after the usage.
1660  *
1661  * NOTE: Reloc and log trees can't be read by this function as they share the
1662  *	 same root objectid.
1663  *
1664  * @objectid:	root id
1665  * @anon_dev:	preallocated anonymous block device number for new roots,
1666  * 		pass 0 for new allocation.
1667  * @check_ref:	whether to check root item references, If true, return -ENOENT
1668  *		for orphan roots
1669  */
1670 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1671 					     u64 objectid, dev_t anon_dev,
1672 					     bool check_ref)
1673 {
1674 	struct btrfs_root *root;
1675 	struct btrfs_path *path;
1676 	struct btrfs_key key;
1677 	int ret;
1678 
1679 	root = btrfs_get_global_root(fs_info, objectid);
1680 	if (root)
1681 		return root;
1682 again:
1683 	root = btrfs_lookup_fs_root(fs_info, objectid);
1684 	if (root) {
1685 		/* Shouldn't get preallocated anon_dev for cached roots */
1686 		ASSERT(!anon_dev);
1687 		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1688 			btrfs_put_root(root);
1689 			return ERR_PTR(-ENOENT);
1690 		}
1691 		return root;
1692 	}
1693 
1694 	key.objectid = objectid;
1695 	key.type = BTRFS_ROOT_ITEM_KEY;
1696 	key.offset = (u64)-1;
1697 	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1698 	if (IS_ERR(root))
1699 		return root;
1700 
1701 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1702 		ret = -ENOENT;
1703 		goto fail;
1704 	}
1705 
1706 	ret = btrfs_init_fs_root(root, anon_dev);
1707 	if (ret)
1708 		goto fail;
1709 
1710 	path = btrfs_alloc_path();
1711 	if (!path) {
1712 		ret = -ENOMEM;
1713 		goto fail;
1714 	}
1715 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1716 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1717 	key.offset = objectid;
1718 
1719 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1720 	btrfs_free_path(path);
1721 	if (ret < 0)
1722 		goto fail;
1723 	if (ret == 0)
1724 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1725 
1726 	ret = btrfs_insert_fs_root(fs_info, root);
1727 	if (ret) {
1728 		btrfs_put_root(root);
1729 		if (ret == -EEXIST)
1730 			goto again;
1731 		goto fail;
1732 	}
1733 	return root;
1734 fail:
1735 	/*
1736 	 * If our caller provided us an anonymous device, then it's his
1737 	 * responsability to free it in case we fail. So we have to set our
1738 	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1739 	 * and once again by our caller.
1740 	 */
1741 	if (anon_dev)
1742 		root->anon_dev = 0;
1743 	btrfs_put_root(root);
1744 	return ERR_PTR(ret);
1745 }
1746 
1747 /*
1748  * Get in-memory reference of a root structure
1749  *
1750  * @objectid:	tree objectid
1751  * @check_ref:	if set, verify that the tree exists and the item has at least
1752  *		one reference
1753  */
1754 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1755 				     u64 objectid, bool check_ref)
1756 {
1757 	return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1758 }
1759 
1760 /*
1761  * Get in-memory reference of a root structure, created as new, optionally pass
1762  * the anonymous block device id
1763  *
1764  * @objectid:	tree objectid
1765  * @anon_dev:	if zero, allocate a new anonymous block device or use the
1766  *		parameter value
1767  */
1768 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1769 					 u64 objectid, dev_t anon_dev)
1770 {
1771 	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1772 }
1773 
1774 /*
1775  * btrfs_get_fs_root_commit_root - return a root for the given objectid
1776  * @fs_info:	the fs_info
1777  * @objectid:	the objectid we need to lookup
1778  *
1779  * This is exclusively used for backref walking, and exists specifically because
1780  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1781  * creation time, which means we may have to read the tree_root in order to look
1782  * up a fs root that is not in memory.  If the root is not in memory we will
1783  * read the tree root commit root and look up the fs root from there.  This is a
1784  * temporary root, it will not be inserted into the radix tree as it doesn't
1785  * have the most uptodate information, it'll simply be discarded once the
1786  * backref code is finished using the root.
1787  */
1788 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1789 						 struct btrfs_path *path,
1790 						 u64 objectid)
1791 {
1792 	struct btrfs_root *root;
1793 	struct btrfs_key key;
1794 
1795 	ASSERT(path->search_commit_root && path->skip_locking);
1796 
1797 	/*
1798 	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1799 	 * since this is called via the backref walking code we won't be looking
1800 	 * up a root that doesn't exist, unless there's corruption.  So if root
1801 	 * != NULL just return it.
1802 	 */
1803 	root = btrfs_get_global_root(fs_info, objectid);
1804 	if (root)
1805 		return root;
1806 
1807 	root = btrfs_lookup_fs_root(fs_info, objectid);
1808 	if (root)
1809 		return root;
1810 
1811 	key.objectid = objectid;
1812 	key.type = BTRFS_ROOT_ITEM_KEY;
1813 	key.offset = (u64)-1;
1814 	root = read_tree_root_path(fs_info->tree_root, path, &key);
1815 	btrfs_release_path(path);
1816 
1817 	return root;
1818 }
1819 
1820 /*
1821  * called by the kthread helper functions to finally call the bio end_io
1822  * functions.  This is where read checksum verification actually happens
1823  */
1824 static void end_workqueue_fn(struct btrfs_work *work)
1825 {
1826 	struct bio *bio;
1827 	struct btrfs_end_io_wq *end_io_wq;
1828 
1829 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1830 	bio = end_io_wq->bio;
1831 
1832 	bio->bi_status = end_io_wq->status;
1833 	bio->bi_private = end_io_wq->private;
1834 	bio->bi_end_io = end_io_wq->end_io;
1835 	bio_endio(bio);
1836 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1837 }
1838 
1839 static int cleaner_kthread(void *arg)
1840 {
1841 	struct btrfs_root *root = arg;
1842 	struct btrfs_fs_info *fs_info = root->fs_info;
1843 	int again;
1844 
1845 	while (1) {
1846 		again = 0;
1847 
1848 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1849 
1850 		/* Make the cleaner go to sleep early. */
1851 		if (btrfs_need_cleaner_sleep(fs_info))
1852 			goto sleep;
1853 
1854 		/*
1855 		 * Do not do anything if we might cause open_ctree() to block
1856 		 * before we have finished mounting the filesystem.
1857 		 */
1858 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1859 			goto sleep;
1860 
1861 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1862 			goto sleep;
1863 
1864 		/*
1865 		 * Avoid the problem that we change the status of the fs
1866 		 * during the above check and trylock.
1867 		 */
1868 		if (btrfs_need_cleaner_sleep(fs_info)) {
1869 			mutex_unlock(&fs_info->cleaner_mutex);
1870 			goto sleep;
1871 		}
1872 
1873 		btrfs_run_delayed_iputs(fs_info);
1874 
1875 		again = btrfs_clean_one_deleted_snapshot(root);
1876 		mutex_unlock(&fs_info->cleaner_mutex);
1877 
1878 		/*
1879 		 * The defragger has dealt with the R/O remount and umount,
1880 		 * needn't do anything special here.
1881 		 */
1882 		btrfs_run_defrag_inodes(fs_info);
1883 
1884 		/*
1885 		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1886 		 * with relocation (btrfs_relocate_chunk) and relocation
1887 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1888 		 * after acquiring fs_info->reclaim_bgs_lock. So we
1889 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1890 		 * unused block groups.
1891 		 */
1892 		btrfs_delete_unused_bgs(fs_info);
1893 
1894 		/*
1895 		 * Reclaim block groups in the reclaim_bgs list after we deleted
1896 		 * all unused block_groups. This possibly gives us some more free
1897 		 * space.
1898 		 */
1899 		btrfs_reclaim_bgs(fs_info);
1900 sleep:
1901 		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1902 		if (kthread_should_park())
1903 			kthread_parkme();
1904 		if (kthread_should_stop())
1905 			return 0;
1906 		if (!again) {
1907 			set_current_state(TASK_INTERRUPTIBLE);
1908 			schedule();
1909 			__set_current_state(TASK_RUNNING);
1910 		}
1911 	}
1912 }
1913 
1914 static int transaction_kthread(void *arg)
1915 {
1916 	struct btrfs_root *root = arg;
1917 	struct btrfs_fs_info *fs_info = root->fs_info;
1918 	struct btrfs_trans_handle *trans;
1919 	struct btrfs_transaction *cur;
1920 	u64 transid;
1921 	time64_t delta;
1922 	unsigned long delay;
1923 	bool cannot_commit;
1924 
1925 	do {
1926 		cannot_commit = false;
1927 		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1928 		mutex_lock(&fs_info->transaction_kthread_mutex);
1929 
1930 		spin_lock(&fs_info->trans_lock);
1931 		cur = fs_info->running_transaction;
1932 		if (!cur) {
1933 			spin_unlock(&fs_info->trans_lock);
1934 			goto sleep;
1935 		}
1936 
1937 		delta = ktime_get_seconds() - cur->start_time;
1938 		if (cur->state < TRANS_STATE_COMMIT_START &&
1939 		    delta < fs_info->commit_interval) {
1940 			spin_unlock(&fs_info->trans_lock);
1941 			delay -= msecs_to_jiffies((delta - 1) * 1000);
1942 			delay = min(delay,
1943 				    msecs_to_jiffies(fs_info->commit_interval * 1000));
1944 			goto sleep;
1945 		}
1946 		transid = cur->transid;
1947 		spin_unlock(&fs_info->trans_lock);
1948 
1949 		/* If the file system is aborted, this will always fail. */
1950 		trans = btrfs_attach_transaction(root);
1951 		if (IS_ERR(trans)) {
1952 			if (PTR_ERR(trans) != -ENOENT)
1953 				cannot_commit = true;
1954 			goto sleep;
1955 		}
1956 		if (transid == trans->transid) {
1957 			btrfs_commit_transaction(trans);
1958 		} else {
1959 			btrfs_end_transaction(trans);
1960 		}
1961 sleep:
1962 		wake_up_process(fs_info->cleaner_kthread);
1963 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1964 
1965 		if (BTRFS_FS_ERROR(fs_info))
1966 			btrfs_cleanup_transaction(fs_info);
1967 		if (!kthread_should_stop() &&
1968 				(!btrfs_transaction_blocked(fs_info) ||
1969 				 cannot_commit))
1970 			schedule_timeout_interruptible(delay);
1971 	} while (!kthread_should_stop());
1972 	return 0;
1973 }
1974 
1975 /*
1976  * This will find the highest generation in the array of root backups.  The
1977  * index of the highest array is returned, or -EINVAL if we can't find
1978  * anything.
1979  *
1980  * We check to make sure the array is valid by comparing the
1981  * generation of the latest  root in the array with the generation
1982  * in the super block.  If they don't match we pitch it.
1983  */
1984 static int find_newest_super_backup(struct btrfs_fs_info *info)
1985 {
1986 	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1987 	u64 cur;
1988 	struct btrfs_root_backup *root_backup;
1989 	int i;
1990 
1991 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1992 		root_backup = info->super_copy->super_roots + i;
1993 		cur = btrfs_backup_tree_root_gen(root_backup);
1994 		if (cur == newest_gen)
1995 			return i;
1996 	}
1997 
1998 	return -EINVAL;
1999 }
2000 
2001 /*
2002  * copy all the root pointers into the super backup array.
2003  * this will bump the backup pointer by one when it is
2004  * done
2005  */
2006 static void backup_super_roots(struct btrfs_fs_info *info)
2007 {
2008 	const int next_backup = info->backup_root_index;
2009 	struct btrfs_root_backup *root_backup;
2010 
2011 	root_backup = info->super_for_commit->super_roots + next_backup;
2012 
2013 	/*
2014 	 * make sure all of our padding and empty slots get zero filled
2015 	 * regardless of which ones we use today
2016 	 */
2017 	memset(root_backup, 0, sizeof(*root_backup));
2018 
2019 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2020 
2021 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2022 	btrfs_set_backup_tree_root_gen(root_backup,
2023 			       btrfs_header_generation(info->tree_root->node));
2024 
2025 	btrfs_set_backup_tree_root_level(root_backup,
2026 			       btrfs_header_level(info->tree_root->node));
2027 
2028 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2029 	btrfs_set_backup_chunk_root_gen(root_backup,
2030 			       btrfs_header_generation(info->chunk_root->node));
2031 	btrfs_set_backup_chunk_root_level(root_backup,
2032 			       btrfs_header_level(info->chunk_root->node));
2033 
2034 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2035 	btrfs_set_backup_extent_root_gen(root_backup,
2036 			       btrfs_header_generation(info->extent_root->node));
2037 	btrfs_set_backup_extent_root_level(root_backup,
2038 			       btrfs_header_level(info->extent_root->node));
2039 
2040 	/*
2041 	 * we might commit during log recovery, which happens before we set
2042 	 * the fs_root.  Make sure it is valid before we fill it in.
2043 	 */
2044 	if (info->fs_root && info->fs_root->node) {
2045 		btrfs_set_backup_fs_root(root_backup,
2046 					 info->fs_root->node->start);
2047 		btrfs_set_backup_fs_root_gen(root_backup,
2048 			       btrfs_header_generation(info->fs_root->node));
2049 		btrfs_set_backup_fs_root_level(root_backup,
2050 			       btrfs_header_level(info->fs_root->node));
2051 	}
2052 
2053 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2054 	btrfs_set_backup_dev_root_gen(root_backup,
2055 			       btrfs_header_generation(info->dev_root->node));
2056 	btrfs_set_backup_dev_root_level(root_backup,
2057 				       btrfs_header_level(info->dev_root->node));
2058 
2059 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2060 	btrfs_set_backup_csum_root_gen(root_backup,
2061 			       btrfs_header_generation(info->csum_root->node));
2062 	btrfs_set_backup_csum_root_level(root_backup,
2063 			       btrfs_header_level(info->csum_root->node));
2064 
2065 	btrfs_set_backup_total_bytes(root_backup,
2066 			     btrfs_super_total_bytes(info->super_copy));
2067 	btrfs_set_backup_bytes_used(root_backup,
2068 			     btrfs_super_bytes_used(info->super_copy));
2069 	btrfs_set_backup_num_devices(root_backup,
2070 			     btrfs_super_num_devices(info->super_copy));
2071 
2072 	/*
2073 	 * if we don't copy this out to the super_copy, it won't get remembered
2074 	 * for the next commit
2075 	 */
2076 	memcpy(&info->super_copy->super_roots,
2077 	       &info->super_for_commit->super_roots,
2078 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2079 }
2080 
2081 /*
2082  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2083  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2084  *
2085  * fs_info - filesystem whose backup roots need to be read
2086  * priority - priority of backup root required
2087  *
2088  * Returns backup root index on success and -EINVAL otherwise.
2089  */
2090 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2091 {
2092 	int backup_index = find_newest_super_backup(fs_info);
2093 	struct btrfs_super_block *super = fs_info->super_copy;
2094 	struct btrfs_root_backup *root_backup;
2095 
2096 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2097 		if (priority == 0)
2098 			return backup_index;
2099 
2100 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2101 		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2102 	} else {
2103 		return -EINVAL;
2104 	}
2105 
2106 	root_backup = super->super_roots + backup_index;
2107 
2108 	btrfs_set_super_generation(super,
2109 				   btrfs_backup_tree_root_gen(root_backup));
2110 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2111 	btrfs_set_super_root_level(super,
2112 				   btrfs_backup_tree_root_level(root_backup));
2113 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2114 
2115 	/*
2116 	 * Fixme: the total bytes and num_devices need to match or we should
2117 	 * need a fsck
2118 	 */
2119 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2120 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2121 
2122 	return backup_index;
2123 }
2124 
2125 /* helper to cleanup workers */
2126 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2127 {
2128 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2129 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2130 	btrfs_destroy_workqueue(fs_info->workers);
2131 	btrfs_destroy_workqueue(fs_info->endio_workers);
2132 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2133 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2134 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2135 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2136 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2137 	btrfs_destroy_workqueue(fs_info->caching_workers);
2138 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2139 	btrfs_destroy_workqueue(fs_info->flush_workers);
2140 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2141 	if (fs_info->discard_ctl.discard_workers)
2142 		destroy_workqueue(fs_info->discard_ctl.discard_workers);
2143 	/*
2144 	 * Now that all other work queues are destroyed, we can safely destroy
2145 	 * the queues used for metadata I/O, since tasks from those other work
2146 	 * queues can do metadata I/O operations.
2147 	 */
2148 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2149 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2150 }
2151 
2152 static void free_root_extent_buffers(struct btrfs_root *root)
2153 {
2154 	if (root) {
2155 		free_extent_buffer(root->node);
2156 		free_extent_buffer(root->commit_root);
2157 		root->node = NULL;
2158 		root->commit_root = NULL;
2159 	}
2160 }
2161 
2162 /* helper to cleanup tree roots */
2163 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2164 {
2165 	free_root_extent_buffers(info->tree_root);
2166 
2167 	free_root_extent_buffers(info->dev_root);
2168 	free_root_extent_buffers(info->extent_root);
2169 	free_root_extent_buffers(info->csum_root);
2170 	free_root_extent_buffers(info->quota_root);
2171 	free_root_extent_buffers(info->uuid_root);
2172 	free_root_extent_buffers(info->fs_root);
2173 	free_root_extent_buffers(info->data_reloc_root);
2174 	if (free_chunk_root)
2175 		free_root_extent_buffers(info->chunk_root);
2176 	free_root_extent_buffers(info->free_space_root);
2177 }
2178 
2179 void btrfs_put_root(struct btrfs_root *root)
2180 {
2181 	if (!root)
2182 		return;
2183 
2184 	if (refcount_dec_and_test(&root->refs)) {
2185 		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2186 		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2187 		if (root->anon_dev)
2188 			free_anon_bdev(root->anon_dev);
2189 		btrfs_drew_lock_destroy(&root->snapshot_lock);
2190 		free_root_extent_buffers(root);
2191 #ifdef CONFIG_BTRFS_DEBUG
2192 		spin_lock(&root->fs_info->fs_roots_radix_lock);
2193 		list_del_init(&root->leak_list);
2194 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
2195 #endif
2196 		kfree(root);
2197 	}
2198 }
2199 
2200 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2201 {
2202 	int ret;
2203 	struct btrfs_root *gang[8];
2204 	int i;
2205 
2206 	while (!list_empty(&fs_info->dead_roots)) {
2207 		gang[0] = list_entry(fs_info->dead_roots.next,
2208 				     struct btrfs_root, root_list);
2209 		list_del(&gang[0]->root_list);
2210 
2211 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2212 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2213 		btrfs_put_root(gang[0]);
2214 	}
2215 
2216 	while (1) {
2217 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2218 					     (void **)gang, 0,
2219 					     ARRAY_SIZE(gang));
2220 		if (!ret)
2221 			break;
2222 		for (i = 0; i < ret; i++)
2223 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2224 	}
2225 }
2226 
2227 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2228 {
2229 	mutex_init(&fs_info->scrub_lock);
2230 	atomic_set(&fs_info->scrubs_running, 0);
2231 	atomic_set(&fs_info->scrub_pause_req, 0);
2232 	atomic_set(&fs_info->scrubs_paused, 0);
2233 	atomic_set(&fs_info->scrub_cancel_req, 0);
2234 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2235 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2236 }
2237 
2238 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2239 {
2240 	spin_lock_init(&fs_info->balance_lock);
2241 	mutex_init(&fs_info->balance_mutex);
2242 	atomic_set(&fs_info->balance_pause_req, 0);
2243 	atomic_set(&fs_info->balance_cancel_req, 0);
2244 	fs_info->balance_ctl = NULL;
2245 	init_waitqueue_head(&fs_info->balance_wait_q);
2246 	atomic_set(&fs_info->reloc_cancel_req, 0);
2247 }
2248 
2249 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2250 {
2251 	struct inode *inode = fs_info->btree_inode;
2252 
2253 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2254 	set_nlink(inode, 1);
2255 	/*
2256 	 * we set the i_size on the btree inode to the max possible int.
2257 	 * the real end of the address space is determined by all of
2258 	 * the devices in the system
2259 	 */
2260 	inode->i_size = OFFSET_MAX;
2261 	inode->i_mapping->a_ops = &btree_aops;
2262 
2263 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2264 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2265 			    IO_TREE_BTREE_INODE_IO, inode);
2266 	BTRFS_I(inode)->io_tree.track_uptodate = false;
2267 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2268 
2269 	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2270 	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2271 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2272 	btrfs_insert_inode_hash(inode);
2273 }
2274 
2275 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2276 {
2277 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2278 	init_rwsem(&fs_info->dev_replace.rwsem);
2279 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2280 }
2281 
2282 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2283 {
2284 	spin_lock_init(&fs_info->qgroup_lock);
2285 	mutex_init(&fs_info->qgroup_ioctl_lock);
2286 	fs_info->qgroup_tree = RB_ROOT;
2287 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2288 	fs_info->qgroup_seq = 1;
2289 	fs_info->qgroup_ulist = NULL;
2290 	fs_info->qgroup_rescan_running = false;
2291 	mutex_init(&fs_info->qgroup_rescan_lock);
2292 }
2293 
2294 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2295 		struct btrfs_fs_devices *fs_devices)
2296 {
2297 	u32 max_active = fs_info->thread_pool_size;
2298 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2299 
2300 	fs_info->workers =
2301 		btrfs_alloc_workqueue(fs_info, "worker",
2302 				      flags | WQ_HIGHPRI, max_active, 16);
2303 
2304 	fs_info->delalloc_workers =
2305 		btrfs_alloc_workqueue(fs_info, "delalloc",
2306 				      flags, max_active, 2);
2307 
2308 	fs_info->flush_workers =
2309 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2310 				      flags, max_active, 0);
2311 
2312 	fs_info->caching_workers =
2313 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2314 
2315 	fs_info->fixup_workers =
2316 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2317 
2318 	/*
2319 	 * endios are largely parallel and should have a very
2320 	 * low idle thresh
2321 	 */
2322 	fs_info->endio_workers =
2323 		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2324 	fs_info->endio_meta_workers =
2325 		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2326 				      max_active, 4);
2327 	fs_info->endio_meta_write_workers =
2328 		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2329 				      max_active, 2);
2330 	fs_info->endio_raid56_workers =
2331 		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2332 				      max_active, 4);
2333 	fs_info->rmw_workers =
2334 		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2335 	fs_info->endio_write_workers =
2336 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2337 				      max_active, 2);
2338 	fs_info->endio_freespace_worker =
2339 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2340 				      max_active, 0);
2341 	fs_info->delayed_workers =
2342 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2343 				      max_active, 0);
2344 	fs_info->readahead_workers =
2345 		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2346 				      max_active, 2);
2347 	fs_info->qgroup_rescan_workers =
2348 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2349 	fs_info->discard_ctl.discard_workers =
2350 		alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2351 
2352 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2353 	      fs_info->flush_workers &&
2354 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2355 	      fs_info->endio_meta_write_workers &&
2356 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2357 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2358 	      fs_info->caching_workers && fs_info->readahead_workers &&
2359 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2360 	      fs_info->qgroup_rescan_workers &&
2361 	      fs_info->discard_ctl.discard_workers)) {
2362 		return -ENOMEM;
2363 	}
2364 
2365 	return 0;
2366 }
2367 
2368 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2369 {
2370 	struct crypto_shash *csum_shash;
2371 	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2372 
2373 	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2374 
2375 	if (IS_ERR(csum_shash)) {
2376 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2377 			  csum_driver);
2378 		return PTR_ERR(csum_shash);
2379 	}
2380 
2381 	fs_info->csum_shash = csum_shash;
2382 
2383 	return 0;
2384 }
2385 
2386 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2387 			    struct btrfs_fs_devices *fs_devices)
2388 {
2389 	int ret;
2390 	struct btrfs_root *log_tree_root;
2391 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2392 	u64 bytenr = btrfs_super_log_root(disk_super);
2393 	int level = btrfs_super_log_root_level(disk_super);
2394 
2395 	if (fs_devices->rw_devices == 0) {
2396 		btrfs_warn(fs_info, "log replay required on RO media");
2397 		return -EIO;
2398 	}
2399 
2400 	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2401 					 GFP_KERNEL);
2402 	if (!log_tree_root)
2403 		return -ENOMEM;
2404 
2405 	log_tree_root->node = read_tree_block(fs_info, bytenr,
2406 					      BTRFS_TREE_LOG_OBJECTID,
2407 					      fs_info->generation + 1, level,
2408 					      NULL);
2409 	if (IS_ERR(log_tree_root->node)) {
2410 		btrfs_warn(fs_info, "failed to read log tree");
2411 		ret = PTR_ERR(log_tree_root->node);
2412 		log_tree_root->node = NULL;
2413 		btrfs_put_root(log_tree_root);
2414 		return ret;
2415 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2416 		btrfs_err(fs_info, "failed to read log tree");
2417 		btrfs_put_root(log_tree_root);
2418 		return -EIO;
2419 	}
2420 	/* returns with log_tree_root freed on success */
2421 	ret = btrfs_recover_log_trees(log_tree_root);
2422 	if (ret) {
2423 		btrfs_handle_fs_error(fs_info, ret,
2424 				      "Failed to recover log tree");
2425 		btrfs_put_root(log_tree_root);
2426 		return ret;
2427 	}
2428 
2429 	if (sb_rdonly(fs_info->sb)) {
2430 		ret = btrfs_commit_super(fs_info);
2431 		if (ret)
2432 			return ret;
2433 	}
2434 
2435 	return 0;
2436 }
2437 
2438 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2439 {
2440 	struct btrfs_root *tree_root = fs_info->tree_root;
2441 	struct btrfs_root *root;
2442 	struct btrfs_key location;
2443 	int ret;
2444 
2445 	BUG_ON(!fs_info->tree_root);
2446 
2447 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2448 	location.type = BTRFS_ROOT_ITEM_KEY;
2449 	location.offset = 0;
2450 
2451 	root = btrfs_read_tree_root(tree_root, &location);
2452 	if (IS_ERR(root)) {
2453 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2454 			ret = PTR_ERR(root);
2455 			goto out;
2456 		}
2457 	} else {
2458 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2459 		fs_info->extent_root = root;
2460 	}
2461 
2462 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2463 	root = btrfs_read_tree_root(tree_root, &location);
2464 	if (IS_ERR(root)) {
2465 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2466 			ret = PTR_ERR(root);
2467 			goto out;
2468 		}
2469 	} else {
2470 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2471 		fs_info->dev_root = root;
2472 	}
2473 	/* Initialize fs_info for all devices in any case */
2474 	btrfs_init_devices_late(fs_info);
2475 
2476 	/* If IGNOREDATACSUMS is set don't bother reading the csum root. */
2477 	if (!btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2478 		location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2479 		root = btrfs_read_tree_root(tree_root, &location);
2480 		if (IS_ERR(root)) {
2481 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2482 				ret = PTR_ERR(root);
2483 				goto out;
2484 			}
2485 		} else {
2486 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2487 			fs_info->csum_root = root;
2488 		}
2489 	}
2490 
2491 	/*
2492 	 * This tree can share blocks with some other fs tree during relocation
2493 	 * and we need a proper setup by btrfs_get_fs_root
2494 	 */
2495 	root = btrfs_get_fs_root(tree_root->fs_info,
2496 				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2497 	if (IS_ERR(root)) {
2498 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2499 			ret = PTR_ERR(root);
2500 			goto out;
2501 		}
2502 	} else {
2503 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2504 		fs_info->data_reloc_root = root;
2505 	}
2506 
2507 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2508 	root = btrfs_read_tree_root(tree_root, &location);
2509 	if (!IS_ERR(root)) {
2510 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2511 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2512 		fs_info->quota_root = root;
2513 	}
2514 
2515 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2516 	root = btrfs_read_tree_root(tree_root, &location);
2517 	if (IS_ERR(root)) {
2518 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2519 			ret = PTR_ERR(root);
2520 			if (ret != -ENOENT)
2521 				goto out;
2522 		}
2523 	} else {
2524 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2525 		fs_info->uuid_root = root;
2526 	}
2527 
2528 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2529 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2530 		root = btrfs_read_tree_root(tree_root, &location);
2531 		if (IS_ERR(root)) {
2532 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2533 				ret = PTR_ERR(root);
2534 				goto out;
2535 			}
2536 		}  else {
2537 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2538 			fs_info->free_space_root = root;
2539 		}
2540 	}
2541 
2542 	return 0;
2543 out:
2544 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2545 		   location.objectid, ret);
2546 	return ret;
2547 }
2548 
2549 /*
2550  * Real super block validation
2551  * NOTE: super csum type and incompat features will not be checked here.
2552  *
2553  * @sb:		super block to check
2554  * @mirror_num:	the super block number to check its bytenr:
2555  * 		0	the primary (1st) sb
2556  * 		1, 2	2nd and 3rd backup copy
2557  * 	       -1	skip bytenr check
2558  */
2559 static int validate_super(struct btrfs_fs_info *fs_info,
2560 			    struct btrfs_super_block *sb, int mirror_num)
2561 {
2562 	u64 nodesize = btrfs_super_nodesize(sb);
2563 	u64 sectorsize = btrfs_super_sectorsize(sb);
2564 	int ret = 0;
2565 
2566 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2567 		btrfs_err(fs_info, "no valid FS found");
2568 		ret = -EINVAL;
2569 	}
2570 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2571 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2572 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2573 		ret = -EINVAL;
2574 	}
2575 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2576 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2577 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2578 		ret = -EINVAL;
2579 	}
2580 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2581 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2582 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2583 		ret = -EINVAL;
2584 	}
2585 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2586 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2587 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2588 		ret = -EINVAL;
2589 	}
2590 
2591 	/*
2592 	 * Check sectorsize and nodesize first, other check will need it.
2593 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2594 	 */
2595 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2596 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2597 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2598 		ret = -EINVAL;
2599 	}
2600 
2601 	/*
2602 	 * For 4K page size, we only support 4K sector size.
2603 	 * For 64K page size, we support 64K and 4K sector sizes.
2604 	 */
2605 	if ((PAGE_SIZE == SZ_4K && sectorsize != PAGE_SIZE) ||
2606 	    (PAGE_SIZE == SZ_64K && (sectorsize != SZ_4K &&
2607 				     sectorsize != SZ_64K))) {
2608 		btrfs_err(fs_info,
2609 			"sectorsize %llu not yet supported for page size %lu",
2610 			sectorsize, PAGE_SIZE);
2611 		ret = -EINVAL;
2612 	}
2613 
2614 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2615 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2616 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2617 		ret = -EINVAL;
2618 	}
2619 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2620 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2621 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2622 		ret = -EINVAL;
2623 	}
2624 
2625 	/* Root alignment check */
2626 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2627 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2628 			   btrfs_super_root(sb));
2629 		ret = -EINVAL;
2630 	}
2631 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2632 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2633 			   btrfs_super_chunk_root(sb));
2634 		ret = -EINVAL;
2635 	}
2636 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2637 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2638 			   btrfs_super_log_root(sb));
2639 		ret = -EINVAL;
2640 	}
2641 
2642 	if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2643 		   BTRFS_FSID_SIZE)) {
2644 		btrfs_err(fs_info,
2645 		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2646 			fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2647 		ret = -EINVAL;
2648 	}
2649 
2650 	if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2651 	    memcmp(fs_info->fs_devices->metadata_uuid,
2652 		   fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2653 		btrfs_err(fs_info,
2654 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2655 			fs_info->super_copy->metadata_uuid,
2656 			fs_info->fs_devices->metadata_uuid);
2657 		ret = -EINVAL;
2658 	}
2659 
2660 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2661 		   BTRFS_FSID_SIZE) != 0) {
2662 		btrfs_err(fs_info,
2663 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2664 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2665 		ret = -EINVAL;
2666 	}
2667 
2668 	/*
2669 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2670 	 * done later
2671 	 */
2672 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2673 		btrfs_err(fs_info, "bytes_used is too small %llu",
2674 			  btrfs_super_bytes_used(sb));
2675 		ret = -EINVAL;
2676 	}
2677 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2678 		btrfs_err(fs_info, "invalid stripesize %u",
2679 			  btrfs_super_stripesize(sb));
2680 		ret = -EINVAL;
2681 	}
2682 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2683 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2684 			   btrfs_super_num_devices(sb));
2685 	if (btrfs_super_num_devices(sb) == 0) {
2686 		btrfs_err(fs_info, "number of devices is 0");
2687 		ret = -EINVAL;
2688 	}
2689 
2690 	if (mirror_num >= 0 &&
2691 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2692 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2693 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2694 		ret = -EINVAL;
2695 	}
2696 
2697 	/*
2698 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2699 	 * and one chunk
2700 	 */
2701 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2702 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2703 			  btrfs_super_sys_array_size(sb),
2704 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2705 		ret = -EINVAL;
2706 	}
2707 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2708 			+ sizeof(struct btrfs_chunk)) {
2709 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2710 			  btrfs_super_sys_array_size(sb),
2711 			  sizeof(struct btrfs_disk_key)
2712 			  + sizeof(struct btrfs_chunk));
2713 		ret = -EINVAL;
2714 	}
2715 
2716 	/*
2717 	 * The generation is a global counter, we'll trust it more than the others
2718 	 * but it's still possible that it's the one that's wrong.
2719 	 */
2720 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2721 		btrfs_warn(fs_info,
2722 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2723 			btrfs_super_generation(sb),
2724 			btrfs_super_chunk_root_generation(sb));
2725 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2726 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2727 		btrfs_warn(fs_info,
2728 			"suspicious: generation < cache_generation: %llu < %llu",
2729 			btrfs_super_generation(sb),
2730 			btrfs_super_cache_generation(sb));
2731 
2732 	return ret;
2733 }
2734 
2735 /*
2736  * Validation of super block at mount time.
2737  * Some checks already done early at mount time, like csum type and incompat
2738  * flags will be skipped.
2739  */
2740 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2741 {
2742 	return validate_super(fs_info, fs_info->super_copy, 0);
2743 }
2744 
2745 /*
2746  * Validation of super block at write time.
2747  * Some checks like bytenr check will be skipped as their values will be
2748  * overwritten soon.
2749  * Extra checks like csum type and incompat flags will be done here.
2750  */
2751 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2752 				      struct btrfs_super_block *sb)
2753 {
2754 	int ret;
2755 
2756 	ret = validate_super(fs_info, sb, -1);
2757 	if (ret < 0)
2758 		goto out;
2759 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2760 		ret = -EUCLEAN;
2761 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2762 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2763 		goto out;
2764 	}
2765 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2766 		ret = -EUCLEAN;
2767 		btrfs_err(fs_info,
2768 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2769 			  btrfs_super_incompat_flags(sb),
2770 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2771 		goto out;
2772 	}
2773 out:
2774 	if (ret < 0)
2775 		btrfs_err(fs_info,
2776 		"super block corruption detected before writing it to disk");
2777 	return ret;
2778 }
2779 
2780 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2781 {
2782 	int backup_index = find_newest_super_backup(fs_info);
2783 	struct btrfs_super_block *sb = fs_info->super_copy;
2784 	struct btrfs_root *tree_root = fs_info->tree_root;
2785 	bool handle_error = false;
2786 	int ret = 0;
2787 	int i;
2788 
2789 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2790 		u64 generation;
2791 		int level;
2792 
2793 		if (handle_error) {
2794 			if (!IS_ERR(tree_root->node))
2795 				free_extent_buffer(tree_root->node);
2796 			tree_root->node = NULL;
2797 
2798 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2799 				break;
2800 
2801 			free_root_pointers(fs_info, 0);
2802 
2803 			/*
2804 			 * Don't use the log in recovery mode, it won't be
2805 			 * valid
2806 			 */
2807 			btrfs_set_super_log_root(sb, 0);
2808 
2809 			/* We can't trust the free space cache either */
2810 			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2811 
2812 			ret = read_backup_root(fs_info, i);
2813 			backup_index = ret;
2814 			if (ret < 0)
2815 				return ret;
2816 		}
2817 		generation = btrfs_super_generation(sb);
2818 		level = btrfs_super_root_level(sb);
2819 		tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2820 						  BTRFS_ROOT_TREE_OBJECTID,
2821 						  generation, level, NULL);
2822 		if (IS_ERR(tree_root->node)) {
2823 			handle_error = true;
2824 			ret = PTR_ERR(tree_root->node);
2825 			tree_root->node = NULL;
2826 			btrfs_warn(fs_info, "couldn't read tree root");
2827 			continue;
2828 
2829 		} else if (!extent_buffer_uptodate(tree_root->node)) {
2830 			handle_error = true;
2831 			ret = -EIO;
2832 			btrfs_warn(fs_info, "error while reading tree root");
2833 			continue;
2834 		}
2835 
2836 		btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2837 		tree_root->commit_root = btrfs_root_node(tree_root);
2838 		btrfs_set_root_refs(&tree_root->root_item, 1);
2839 
2840 		/*
2841 		 * No need to hold btrfs_root::objectid_mutex since the fs
2842 		 * hasn't been fully initialised and we are the only user
2843 		 */
2844 		ret = btrfs_init_root_free_objectid(tree_root);
2845 		if (ret < 0) {
2846 			handle_error = true;
2847 			continue;
2848 		}
2849 
2850 		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2851 
2852 		ret = btrfs_read_roots(fs_info);
2853 		if (ret < 0) {
2854 			handle_error = true;
2855 			continue;
2856 		}
2857 
2858 		/* All successful */
2859 		fs_info->generation = generation;
2860 		fs_info->last_trans_committed = generation;
2861 
2862 		/* Always begin writing backup roots after the one being used */
2863 		if (backup_index < 0) {
2864 			fs_info->backup_root_index = 0;
2865 		} else {
2866 			fs_info->backup_root_index = backup_index + 1;
2867 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2868 		}
2869 		break;
2870 	}
2871 
2872 	return ret;
2873 }
2874 
2875 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2876 {
2877 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2878 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2879 	INIT_LIST_HEAD(&fs_info->trans_list);
2880 	INIT_LIST_HEAD(&fs_info->dead_roots);
2881 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2882 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2883 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2884 	spin_lock_init(&fs_info->delalloc_root_lock);
2885 	spin_lock_init(&fs_info->trans_lock);
2886 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2887 	spin_lock_init(&fs_info->delayed_iput_lock);
2888 	spin_lock_init(&fs_info->defrag_inodes_lock);
2889 	spin_lock_init(&fs_info->super_lock);
2890 	spin_lock_init(&fs_info->buffer_lock);
2891 	spin_lock_init(&fs_info->unused_bgs_lock);
2892 	spin_lock_init(&fs_info->treelog_bg_lock);
2893 	spin_lock_init(&fs_info->zone_active_bgs_lock);
2894 	spin_lock_init(&fs_info->relocation_bg_lock);
2895 	rwlock_init(&fs_info->tree_mod_log_lock);
2896 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2897 	mutex_init(&fs_info->reclaim_bgs_lock);
2898 	mutex_init(&fs_info->reloc_mutex);
2899 	mutex_init(&fs_info->delalloc_root_mutex);
2900 	mutex_init(&fs_info->zoned_meta_io_lock);
2901 	seqlock_init(&fs_info->profiles_lock);
2902 
2903 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2904 	INIT_LIST_HEAD(&fs_info->space_info);
2905 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2906 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2907 	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2908 	INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2909 #ifdef CONFIG_BTRFS_DEBUG
2910 	INIT_LIST_HEAD(&fs_info->allocated_roots);
2911 	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2912 	spin_lock_init(&fs_info->eb_leak_lock);
2913 #endif
2914 	extent_map_tree_init(&fs_info->mapping_tree);
2915 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2916 			     BTRFS_BLOCK_RSV_GLOBAL);
2917 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2918 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2919 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2920 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2921 			     BTRFS_BLOCK_RSV_DELOPS);
2922 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2923 			     BTRFS_BLOCK_RSV_DELREFS);
2924 
2925 	atomic_set(&fs_info->async_delalloc_pages, 0);
2926 	atomic_set(&fs_info->defrag_running, 0);
2927 	atomic_set(&fs_info->reada_works_cnt, 0);
2928 	atomic_set(&fs_info->nr_delayed_iputs, 0);
2929 	atomic64_set(&fs_info->tree_mod_seq, 0);
2930 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2931 	fs_info->metadata_ratio = 0;
2932 	fs_info->defrag_inodes = RB_ROOT;
2933 	atomic64_set(&fs_info->free_chunk_space, 0);
2934 	fs_info->tree_mod_log = RB_ROOT;
2935 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2936 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2937 	/* readahead state */
2938 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2939 	spin_lock_init(&fs_info->reada_lock);
2940 	btrfs_init_ref_verify(fs_info);
2941 
2942 	fs_info->thread_pool_size = min_t(unsigned long,
2943 					  num_online_cpus() + 2, 8);
2944 
2945 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2946 	spin_lock_init(&fs_info->ordered_root_lock);
2947 
2948 	btrfs_init_scrub(fs_info);
2949 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2950 	fs_info->check_integrity_print_mask = 0;
2951 #endif
2952 	btrfs_init_balance(fs_info);
2953 	btrfs_init_async_reclaim_work(fs_info);
2954 
2955 	spin_lock_init(&fs_info->block_group_cache_lock);
2956 	fs_info->block_group_cache_tree = RB_ROOT;
2957 	fs_info->first_logical_byte = (u64)-1;
2958 
2959 	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2960 			    IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2961 	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2962 
2963 	mutex_init(&fs_info->ordered_operations_mutex);
2964 	mutex_init(&fs_info->tree_log_mutex);
2965 	mutex_init(&fs_info->chunk_mutex);
2966 	mutex_init(&fs_info->transaction_kthread_mutex);
2967 	mutex_init(&fs_info->cleaner_mutex);
2968 	mutex_init(&fs_info->ro_block_group_mutex);
2969 	init_rwsem(&fs_info->commit_root_sem);
2970 	init_rwsem(&fs_info->cleanup_work_sem);
2971 	init_rwsem(&fs_info->subvol_sem);
2972 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2973 
2974 	btrfs_init_dev_replace_locks(fs_info);
2975 	btrfs_init_qgroup(fs_info);
2976 	btrfs_discard_init(fs_info);
2977 
2978 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2979 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2980 
2981 	init_waitqueue_head(&fs_info->transaction_throttle);
2982 	init_waitqueue_head(&fs_info->transaction_wait);
2983 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2984 	init_waitqueue_head(&fs_info->async_submit_wait);
2985 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2986 
2987 	/* Usable values until the real ones are cached from the superblock */
2988 	fs_info->nodesize = 4096;
2989 	fs_info->sectorsize = 4096;
2990 	fs_info->sectorsize_bits = ilog2(4096);
2991 	fs_info->stripesize = 4096;
2992 
2993 	spin_lock_init(&fs_info->swapfile_pins_lock);
2994 	fs_info->swapfile_pins = RB_ROOT;
2995 
2996 	spin_lock_init(&fs_info->send_reloc_lock);
2997 	fs_info->send_in_progress = 0;
2998 
2999 	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3000 	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
3001 }
3002 
3003 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3004 {
3005 	int ret;
3006 
3007 	fs_info->sb = sb;
3008 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3009 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
3010 
3011 	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
3012 	if (ret)
3013 		return ret;
3014 
3015 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3016 	if (ret)
3017 		return ret;
3018 
3019 	fs_info->dirty_metadata_batch = PAGE_SIZE *
3020 					(1 + ilog2(nr_cpu_ids));
3021 
3022 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3023 	if (ret)
3024 		return ret;
3025 
3026 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3027 			GFP_KERNEL);
3028 	if (ret)
3029 		return ret;
3030 
3031 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3032 					GFP_KERNEL);
3033 	if (!fs_info->delayed_root)
3034 		return -ENOMEM;
3035 	btrfs_init_delayed_root(fs_info->delayed_root);
3036 
3037 	if (sb_rdonly(sb))
3038 		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3039 
3040 	return btrfs_alloc_stripe_hash_table(fs_info);
3041 }
3042 
3043 static int btrfs_uuid_rescan_kthread(void *data)
3044 {
3045 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3046 	int ret;
3047 
3048 	/*
3049 	 * 1st step is to iterate through the existing UUID tree and
3050 	 * to delete all entries that contain outdated data.
3051 	 * 2nd step is to add all missing entries to the UUID tree.
3052 	 */
3053 	ret = btrfs_uuid_tree_iterate(fs_info);
3054 	if (ret < 0) {
3055 		if (ret != -EINTR)
3056 			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3057 				   ret);
3058 		up(&fs_info->uuid_tree_rescan_sem);
3059 		return ret;
3060 	}
3061 	return btrfs_uuid_scan_kthread(data);
3062 }
3063 
3064 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3065 {
3066 	struct task_struct *task;
3067 
3068 	down(&fs_info->uuid_tree_rescan_sem);
3069 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3070 	if (IS_ERR(task)) {
3071 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
3072 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
3073 		up(&fs_info->uuid_tree_rescan_sem);
3074 		return PTR_ERR(task);
3075 	}
3076 
3077 	return 0;
3078 }
3079 
3080 /*
3081  * Some options only have meaning at mount time and shouldn't persist across
3082  * remounts, or be displayed. Clear these at the end of mount and remount
3083  * code paths.
3084  */
3085 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3086 {
3087 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3088 	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
3089 }
3090 
3091 /*
3092  * Mounting logic specific to read-write file systems. Shared by open_ctree
3093  * and btrfs_remount when remounting from read-only to read-write.
3094  */
3095 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3096 {
3097 	int ret;
3098 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3099 	bool clear_free_space_tree = false;
3100 
3101 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3102 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3103 		clear_free_space_tree = true;
3104 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3105 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3106 		btrfs_warn(fs_info, "free space tree is invalid");
3107 		clear_free_space_tree = true;
3108 	}
3109 
3110 	if (clear_free_space_tree) {
3111 		btrfs_info(fs_info, "clearing free space tree");
3112 		ret = btrfs_clear_free_space_tree(fs_info);
3113 		if (ret) {
3114 			btrfs_warn(fs_info,
3115 				   "failed to clear free space tree: %d", ret);
3116 			goto out;
3117 		}
3118 	}
3119 
3120 	/*
3121 	 * btrfs_find_orphan_roots() is responsible for finding all the dead
3122 	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3123 	 * them into the fs_info->fs_roots_radix tree. This must be done before
3124 	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3125 	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3126 	 * item before the root's tree is deleted - this means that if we unmount
3127 	 * or crash before the deletion completes, on the next mount we will not
3128 	 * delete what remains of the tree because the orphan item does not
3129 	 * exists anymore, which is what tells us we have a pending deletion.
3130 	 */
3131 	ret = btrfs_find_orphan_roots(fs_info);
3132 	if (ret)
3133 		goto out;
3134 
3135 	ret = btrfs_cleanup_fs_roots(fs_info);
3136 	if (ret)
3137 		goto out;
3138 
3139 	down_read(&fs_info->cleanup_work_sem);
3140 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3141 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3142 		up_read(&fs_info->cleanup_work_sem);
3143 		goto out;
3144 	}
3145 	up_read(&fs_info->cleanup_work_sem);
3146 
3147 	mutex_lock(&fs_info->cleaner_mutex);
3148 	ret = btrfs_recover_relocation(fs_info->tree_root);
3149 	mutex_unlock(&fs_info->cleaner_mutex);
3150 	if (ret < 0) {
3151 		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3152 		goto out;
3153 	}
3154 
3155 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3156 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3157 		btrfs_info(fs_info, "creating free space tree");
3158 		ret = btrfs_create_free_space_tree(fs_info);
3159 		if (ret) {
3160 			btrfs_warn(fs_info,
3161 				"failed to create free space tree: %d", ret);
3162 			goto out;
3163 		}
3164 	}
3165 
3166 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3167 		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3168 		if (ret)
3169 			goto out;
3170 	}
3171 
3172 	ret = btrfs_resume_balance_async(fs_info);
3173 	if (ret)
3174 		goto out;
3175 
3176 	ret = btrfs_resume_dev_replace_async(fs_info);
3177 	if (ret) {
3178 		btrfs_warn(fs_info, "failed to resume dev_replace");
3179 		goto out;
3180 	}
3181 
3182 	btrfs_qgroup_rescan_resume(fs_info);
3183 
3184 	if (!fs_info->uuid_root) {
3185 		btrfs_info(fs_info, "creating UUID tree");
3186 		ret = btrfs_create_uuid_tree(fs_info);
3187 		if (ret) {
3188 			btrfs_warn(fs_info,
3189 				   "failed to create the UUID tree %d", ret);
3190 			goto out;
3191 		}
3192 	}
3193 
3194 out:
3195 	return ret;
3196 }
3197 
3198 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3199 		      char *options)
3200 {
3201 	u32 sectorsize;
3202 	u32 nodesize;
3203 	u32 stripesize;
3204 	u64 generation;
3205 	u64 features;
3206 	u16 csum_type;
3207 	struct btrfs_super_block *disk_super;
3208 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3209 	struct btrfs_root *tree_root;
3210 	struct btrfs_root *chunk_root;
3211 	int ret;
3212 	int err = -EINVAL;
3213 	int level;
3214 
3215 	ret = init_mount_fs_info(fs_info, sb);
3216 	if (ret) {
3217 		err = ret;
3218 		goto fail;
3219 	}
3220 
3221 	/* These need to be init'ed before we start creating inodes and such. */
3222 	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3223 				     GFP_KERNEL);
3224 	fs_info->tree_root = tree_root;
3225 	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3226 				      GFP_KERNEL);
3227 	fs_info->chunk_root = chunk_root;
3228 	if (!tree_root || !chunk_root) {
3229 		err = -ENOMEM;
3230 		goto fail;
3231 	}
3232 
3233 	fs_info->btree_inode = new_inode(sb);
3234 	if (!fs_info->btree_inode) {
3235 		err = -ENOMEM;
3236 		goto fail;
3237 	}
3238 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3239 	btrfs_init_btree_inode(fs_info);
3240 
3241 	invalidate_bdev(fs_devices->latest_dev->bdev);
3242 
3243 	/*
3244 	 * Read super block and check the signature bytes only
3245 	 */
3246 	disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3247 	if (IS_ERR(disk_super)) {
3248 		err = PTR_ERR(disk_super);
3249 		goto fail_alloc;
3250 	}
3251 
3252 	/*
3253 	 * Verify the type first, if that or the checksum value are
3254 	 * corrupted, we'll find out
3255 	 */
3256 	csum_type = btrfs_super_csum_type(disk_super);
3257 	if (!btrfs_supported_super_csum(csum_type)) {
3258 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3259 			  csum_type);
3260 		err = -EINVAL;
3261 		btrfs_release_disk_super(disk_super);
3262 		goto fail_alloc;
3263 	}
3264 
3265 	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3266 
3267 	ret = btrfs_init_csum_hash(fs_info, csum_type);
3268 	if (ret) {
3269 		err = ret;
3270 		btrfs_release_disk_super(disk_super);
3271 		goto fail_alloc;
3272 	}
3273 
3274 	/*
3275 	 * We want to check superblock checksum, the type is stored inside.
3276 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3277 	 */
3278 	if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
3279 		btrfs_err(fs_info, "superblock checksum mismatch");
3280 		err = -EINVAL;
3281 		btrfs_release_disk_super(disk_super);
3282 		goto fail_alloc;
3283 	}
3284 
3285 	/*
3286 	 * super_copy is zeroed at allocation time and we never touch the
3287 	 * following bytes up to INFO_SIZE, the checksum is calculated from
3288 	 * the whole block of INFO_SIZE
3289 	 */
3290 	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3291 	btrfs_release_disk_super(disk_super);
3292 
3293 	disk_super = fs_info->super_copy;
3294 
3295 
3296 	features = btrfs_super_flags(disk_super);
3297 	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3298 		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3299 		btrfs_set_super_flags(disk_super, features);
3300 		btrfs_info(fs_info,
3301 			"found metadata UUID change in progress flag, clearing");
3302 	}
3303 
3304 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3305 	       sizeof(*fs_info->super_for_commit));
3306 
3307 	ret = btrfs_validate_mount_super(fs_info);
3308 	if (ret) {
3309 		btrfs_err(fs_info, "superblock contains fatal errors");
3310 		err = -EINVAL;
3311 		goto fail_alloc;
3312 	}
3313 
3314 	if (!btrfs_super_root(disk_super))
3315 		goto fail_alloc;
3316 
3317 	/* check FS state, whether FS is broken. */
3318 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3319 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3320 
3321 	/*
3322 	 * In the long term, we'll store the compression type in the super
3323 	 * block, and it'll be used for per file compression control.
3324 	 */
3325 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3326 
3327 	/*
3328 	 * Flag our filesystem as having big metadata blocks if they are bigger
3329 	 * than the page size.
3330 	 */
3331 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3332 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3333 			btrfs_info(fs_info,
3334 				"flagging fs with big metadata feature");
3335 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3336 	}
3337 
3338 	/* Set up fs_info before parsing mount options */
3339 	nodesize = btrfs_super_nodesize(disk_super);
3340 	sectorsize = btrfs_super_sectorsize(disk_super);
3341 	stripesize = sectorsize;
3342 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3343 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3344 
3345 	fs_info->nodesize = nodesize;
3346 	fs_info->sectorsize = sectorsize;
3347 	fs_info->sectorsize_bits = ilog2(sectorsize);
3348 	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3349 	fs_info->stripesize = stripesize;
3350 
3351 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3352 	if (ret) {
3353 		err = ret;
3354 		goto fail_alloc;
3355 	}
3356 
3357 	features = btrfs_super_incompat_flags(disk_super) &
3358 		~BTRFS_FEATURE_INCOMPAT_SUPP;
3359 	if (features) {
3360 		btrfs_err(fs_info,
3361 		    "cannot mount because of unsupported optional features (%llx)",
3362 		    features);
3363 		err = -EINVAL;
3364 		goto fail_alloc;
3365 	}
3366 
3367 	features = btrfs_super_incompat_flags(disk_super);
3368 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3369 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3370 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3371 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3372 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3373 
3374 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3375 		btrfs_info(fs_info, "has skinny extents");
3376 
3377 	/*
3378 	 * mixed block groups end up with duplicate but slightly offset
3379 	 * extent buffers for the same range.  It leads to corruptions
3380 	 */
3381 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3382 	    (sectorsize != nodesize)) {
3383 		btrfs_err(fs_info,
3384 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3385 			nodesize, sectorsize);
3386 		goto fail_alloc;
3387 	}
3388 
3389 	/*
3390 	 * Needn't use the lock because there is no other task which will
3391 	 * update the flag.
3392 	 */
3393 	btrfs_set_super_incompat_flags(disk_super, features);
3394 
3395 	features = btrfs_super_compat_ro_flags(disk_super) &
3396 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
3397 	if (!sb_rdonly(sb) && features) {
3398 		btrfs_err(fs_info,
3399 	"cannot mount read-write because of unsupported optional features (%llx)",
3400 		       features);
3401 		err = -EINVAL;
3402 		goto fail_alloc;
3403 	}
3404 
3405 	if (sectorsize < PAGE_SIZE) {
3406 		struct btrfs_subpage_info *subpage_info;
3407 
3408 		btrfs_warn(fs_info,
3409 		"read-write for sector size %u with page size %lu is experimental",
3410 			   sectorsize, PAGE_SIZE);
3411 		if (btrfs_super_incompat_flags(fs_info->super_copy) &
3412 			BTRFS_FEATURE_INCOMPAT_RAID56) {
3413 			btrfs_err(fs_info,
3414 		"RAID56 is not yet supported for sector size %u with page size %lu",
3415 				sectorsize, PAGE_SIZE);
3416 			err = -EINVAL;
3417 			goto fail_alloc;
3418 		}
3419 		subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3420 		if (!subpage_info)
3421 			goto fail_alloc;
3422 		btrfs_init_subpage_info(subpage_info, sectorsize);
3423 		fs_info->subpage_info = subpage_info;
3424 	}
3425 
3426 	ret = btrfs_init_workqueues(fs_info, fs_devices);
3427 	if (ret) {
3428 		err = ret;
3429 		goto fail_sb_buffer;
3430 	}
3431 
3432 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3433 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3434 
3435 	sb->s_blocksize = sectorsize;
3436 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3437 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3438 
3439 	mutex_lock(&fs_info->chunk_mutex);
3440 	ret = btrfs_read_sys_array(fs_info);
3441 	mutex_unlock(&fs_info->chunk_mutex);
3442 	if (ret) {
3443 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3444 		goto fail_sb_buffer;
3445 	}
3446 
3447 	generation = btrfs_super_chunk_root_generation(disk_super);
3448 	level = btrfs_super_chunk_root_level(disk_super);
3449 
3450 	chunk_root->node = read_tree_block(fs_info,
3451 					   btrfs_super_chunk_root(disk_super),
3452 					   BTRFS_CHUNK_TREE_OBJECTID,
3453 					   generation, level, NULL);
3454 	if (IS_ERR(chunk_root->node) ||
3455 	    !extent_buffer_uptodate(chunk_root->node)) {
3456 		btrfs_err(fs_info, "failed to read chunk root");
3457 		if (!IS_ERR(chunk_root->node))
3458 			free_extent_buffer(chunk_root->node);
3459 		chunk_root->node = NULL;
3460 		goto fail_tree_roots;
3461 	}
3462 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3463 	chunk_root->commit_root = btrfs_root_node(chunk_root);
3464 
3465 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3466 			   offsetof(struct btrfs_header, chunk_tree_uuid),
3467 			   BTRFS_UUID_SIZE);
3468 
3469 	ret = btrfs_read_chunk_tree(fs_info);
3470 	if (ret) {
3471 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3472 		goto fail_tree_roots;
3473 	}
3474 
3475 	/*
3476 	 * At this point we know all the devices that make this filesystem,
3477 	 * including the seed devices but we don't know yet if the replace
3478 	 * target is required. So free devices that are not part of this
3479 	 * filesystem but skip the replace target device which is checked
3480 	 * below in btrfs_init_dev_replace().
3481 	 */
3482 	btrfs_free_extra_devids(fs_devices);
3483 	if (!fs_devices->latest_dev->bdev) {
3484 		btrfs_err(fs_info, "failed to read devices");
3485 		goto fail_tree_roots;
3486 	}
3487 
3488 	ret = init_tree_roots(fs_info);
3489 	if (ret)
3490 		goto fail_tree_roots;
3491 
3492 	/*
3493 	 * Get zone type information of zoned block devices. This will also
3494 	 * handle emulation of a zoned filesystem if a regular device has the
3495 	 * zoned incompat feature flag set.
3496 	 */
3497 	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3498 	if (ret) {
3499 		btrfs_err(fs_info,
3500 			  "zoned: failed to read device zone info: %d",
3501 			  ret);
3502 		goto fail_block_groups;
3503 	}
3504 
3505 	/*
3506 	 * If we have a uuid root and we're not being told to rescan we need to
3507 	 * check the generation here so we can set the
3508 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3509 	 * transaction during a balance or the log replay without updating the
3510 	 * uuid generation, and then if we crash we would rescan the uuid tree,
3511 	 * even though it was perfectly fine.
3512 	 */
3513 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3514 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3515 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3516 
3517 	ret = btrfs_verify_dev_extents(fs_info);
3518 	if (ret) {
3519 		btrfs_err(fs_info,
3520 			  "failed to verify dev extents against chunks: %d",
3521 			  ret);
3522 		goto fail_block_groups;
3523 	}
3524 	ret = btrfs_recover_balance(fs_info);
3525 	if (ret) {
3526 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3527 		goto fail_block_groups;
3528 	}
3529 
3530 	ret = btrfs_init_dev_stats(fs_info);
3531 	if (ret) {
3532 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3533 		goto fail_block_groups;
3534 	}
3535 
3536 	ret = btrfs_init_dev_replace(fs_info);
3537 	if (ret) {
3538 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3539 		goto fail_block_groups;
3540 	}
3541 
3542 	ret = btrfs_check_zoned_mode(fs_info);
3543 	if (ret) {
3544 		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3545 			  ret);
3546 		goto fail_block_groups;
3547 	}
3548 
3549 	ret = btrfs_sysfs_add_fsid(fs_devices);
3550 	if (ret) {
3551 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3552 				ret);
3553 		goto fail_block_groups;
3554 	}
3555 
3556 	ret = btrfs_sysfs_add_mounted(fs_info);
3557 	if (ret) {
3558 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3559 		goto fail_fsdev_sysfs;
3560 	}
3561 
3562 	ret = btrfs_init_space_info(fs_info);
3563 	if (ret) {
3564 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3565 		goto fail_sysfs;
3566 	}
3567 
3568 	ret = btrfs_read_block_groups(fs_info);
3569 	if (ret) {
3570 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3571 		goto fail_sysfs;
3572 	}
3573 
3574 	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3575 	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3576 		btrfs_warn(fs_info,
3577 		"writable mount is not allowed due to too many missing devices");
3578 		goto fail_sysfs;
3579 	}
3580 
3581 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3582 					       "btrfs-cleaner");
3583 	if (IS_ERR(fs_info->cleaner_kthread))
3584 		goto fail_sysfs;
3585 
3586 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3587 						   tree_root,
3588 						   "btrfs-transaction");
3589 	if (IS_ERR(fs_info->transaction_kthread))
3590 		goto fail_cleaner;
3591 
3592 	if (!btrfs_test_opt(fs_info, NOSSD) &&
3593 	    !fs_info->fs_devices->rotating) {
3594 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3595 	}
3596 
3597 	/*
3598 	 * Mount does not set all options immediately, we can do it now and do
3599 	 * not have to wait for transaction commit
3600 	 */
3601 	btrfs_apply_pending_changes(fs_info);
3602 
3603 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3604 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3605 		ret = btrfsic_mount(fs_info, fs_devices,
3606 				    btrfs_test_opt(fs_info,
3607 					CHECK_INTEGRITY_DATA) ? 1 : 0,
3608 				    fs_info->check_integrity_print_mask);
3609 		if (ret)
3610 			btrfs_warn(fs_info,
3611 				"failed to initialize integrity check module: %d",
3612 				ret);
3613 	}
3614 #endif
3615 	ret = btrfs_read_qgroup_config(fs_info);
3616 	if (ret)
3617 		goto fail_trans_kthread;
3618 
3619 	if (btrfs_build_ref_tree(fs_info))
3620 		btrfs_err(fs_info, "couldn't build ref tree");
3621 
3622 	/* do not make disk changes in broken FS or nologreplay is given */
3623 	if (btrfs_super_log_root(disk_super) != 0 &&
3624 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3625 		btrfs_info(fs_info, "start tree-log replay");
3626 		ret = btrfs_replay_log(fs_info, fs_devices);
3627 		if (ret) {
3628 			err = ret;
3629 			goto fail_qgroup;
3630 		}
3631 	}
3632 
3633 	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3634 	if (IS_ERR(fs_info->fs_root)) {
3635 		err = PTR_ERR(fs_info->fs_root);
3636 		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3637 		fs_info->fs_root = NULL;
3638 		goto fail_qgroup;
3639 	}
3640 
3641 	if (sb_rdonly(sb))
3642 		goto clear_oneshot;
3643 
3644 	ret = btrfs_start_pre_rw_mount(fs_info);
3645 	if (ret) {
3646 		close_ctree(fs_info);
3647 		return ret;
3648 	}
3649 	btrfs_discard_resume(fs_info);
3650 
3651 	if (fs_info->uuid_root &&
3652 	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3653 	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3654 		btrfs_info(fs_info, "checking UUID tree");
3655 		ret = btrfs_check_uuid_tree(fs_info);
3656 		if (ret) {
3657 			btrfs_warn(fs_info,
3658 				"failed to check the UUID tree: %d", ret);
3659 			close_ctree(fs_info);
3660 			return ret;
3661 		}
3662 	}
3663 
3664 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3665 
3666 clear_oneshot:
3667 	btrfs_clear_oneshot_options(fs_info);
3668 	return 0;
3669 
3670 fail_qgroup:
3671 	btrfs_free_qgroup_config(fs_info);
3672 fail_trans_kthread:
3673 	kthread_stop(fs_info->transaction_kthread);
3674 	btrfs_cleanup_transaction(fs_info);
3675 	btrfs_free_fs_roots(fs_info);
3676 fail_cleaner:
3677 	kthread_stop(fs_info->cleaner_kthread);
3678 
3679 	/*
3680 	 * make sure we're done with the btree inode before we stop our
3681 	 * kthreads
3682 	 */
3683 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3684 
3685 fail_sysfs:
3686 	btrfs_sysfs_remove_mounted(fs_info);
3687 
3688 fail_fsdev_sysfs:
3689 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3690 
3691 fail_block_groups:
3692 	btrfs_put_block_group_cache(fs_info);
3693 
3694 fail_tree_roots:
3695 	if (fs_info->data_reloc_root)
3696 		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3697 	free_root_pointers(fs_info, true);
3698 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3699 
3700 fail_sb_buffer:
3701 	btrfs_stop_all_workers(fs_info);
3702 	btrfs_free_block_groups(fs_info);
3703 fail_alloc:
3704 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3705 
3706 	iput(fs_info->btree_inode);
3707 fail:
3708 	btrfs_close_devices(fs_info->fs_devices);
3709 	return err;
3710 }
3711 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3712 
3713 static void btrfs_end_super_write(struct bio *bio)
3714 {
3715 	struct btrfs_device *device = bio->bi_private;
3716 	struct bio_vec *bvec;
3717 	struct bvec_iter_all iter_all;
3718 	struct page *page;
3719 
3720 	bio_for_each_segment_all(bvec, bio, iter_all) {
3721 		page = bvec->bv_page;
3722 
3723 		if (bio->bi_status) {
3724 			btrfs_warn_rl_in_rcu(device->fs_info,
3725 				"lost page write due to IO error on %s (%d)",
3726 				rcu_str_deref(device->name),
3727 				blk_status_to_errno(bio->bi_status));
3728 			ClearPageUptodate(page);
3729 			SetPageError(page);
3730 			btrfs_dev_stat_inc_and_print(device,
3731 						     BTRFS_DEV_STAT_WRITE_ERRS);
3732 		} else {
3733 			SetPageUptodate(page);
3734 		}
3735 
3736 		put_page(page);
3737 		unlock_page(page);
3738 	}
3739 
3740 	bio_put(bio);
3741 }
3742 
3743 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3744 						   int copy_num)
3745 {
3746 	struct btrfs_super_block *super;
3747 	struct page *page;
3748 	u64 bytenr, bytenr_orig;
3749 	struct address_space *mapping = bdev->bd_inode->i_mapping;
3750 	int ret;
3751 
3752 	bytenr_orig = btrfs_sb_offset(copy_num);
3753 	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3754 	if (ret == -ENOENT)
3755 		return ERR_PTR(-EINVAL);
3756 	else if (ret)
3757 		return ERR_PTR(ret);
3758 
3759 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3760 		return ERR_PTR(-EINVAL);
3761 
3762 	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3763 	if (IS_ERR(page))
3764 		return ERR_CAST(page);
3765 
3766 	super = page_address(page);
3767 	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3768 		btrfs_release_disk_super(super);
3769 		return ERR_PTR(-ENODATA);
3770 	}
3771 
3772 	if (btrfs_super_bytenr(super) != bytenr_orig) {
3773 		btrfs_release_disk_super(super);
3774 		return ERR_PTR(-EINVAL);
3775 	}
3776 
3777 	return super;
3778 }
3779 
3780 
3781 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3782 {
3783 	struct btrfs_super_block *super, *latest = NULL;
3784 	int i;
3785 	u64 transid = 0;
3786 
3787 	/* we would like to check all the supers, but that would make
3788 	 * a btrfs mount succeed after a mkfs from a different FS.
3789 	 * So, we need to add a special mount option to scan for
3790 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3791 	 */
3792 	for (i = 0; i < 1; i++) {
3793 		super = btrfs_read_dev_one_super(bdev, i);
3794 		if (IS_ERR(super))
3795 			continue;
3796 
3797 		if (!latest || btrfs_super_generation(super) > transid) {
3798 			if (latest)
3799 				btrfs_release_disk_super(super);
3800 
3801 			latest = super;
3802 			transid = btrfs_super_generation(super);
3803 		}
3804 	}
3805 
3806 	return super;
3807 }
3808 
3809 /*
3810  * Write superblock @sb to the @device. Do not wait for completion, all the
3811  * pages we use for writing are locked.
3812  *
3813  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3814  * the expected device size at commit time. Note that max_mirrors must be
3815  * same for write and wait phases.
3816  *
3817  * Return number of errors when page is not found or submission fails.
3818  */
3819 static int write_dev_supers(struct btrfs_device *device,
3820 			    struct btrfs_super_block *sb, int max_mirrors)
3821 {
3822 	struct btrfs_fs_info *fs_info = device->fs_info;
3823 	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3824 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3825 	int i;
3826 	int errors = 0;
3827 	int ret;
3828 	u64 bytenr, bytenr_orig;
3829 
3830 	if (max_mirrors == 0)
3831 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3832 
3833 	shash->tfm = fs_info->csum_shash;
3834 
3835 	for (i = 0; i < max_mirrors; i++) {
3836 		struct page *page;
3837 		struct bio *bio;
3838 		struct btrfs_super_block *disk_super;
3839 
3840 		bytenr_orig = btrfs_sb_offset(i);
3841 		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3842 		if (ret == -ENOENT) {
3843 			continue;
3844 		} else if (ret < 0) {
3845 			btrfs_err(device->fs_info,
3846 				"couldn't get super block location for mirror %d",
3847 				i);
3848 			errors++;
3849 			continue;
3850 		}
3851 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3852 		    device->commit_total_bytes)
3853 			break;
3854 
3855 		btrfs_set_super_bytenr(sb, bytenr_orig);
3856 
3857 		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3858 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3859 				    sb->csum);
3860 
3861 		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3862 					   GFP_NOFS);
3863 		if (!page) {
3864 			btrfs_err(device->fs_info,
3865 			    "couldn't get super block page for bytenr %llu",
3866 			    bytenr);
3867 			errors++;
3868 			continue;
3869 		}
3870 
3871 		/* Bump the refcount for wait_dev_supers() */
3872 		get_page(page);
3873 
3874 		disk_super = page_address(page);
3875 		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3876 
3877 		/*
3878 		 * Directly use bios here instead of relying on the page cache
3879 		 * to do I/O, so we don't lose the ability to do integrity
3880 		 * checking.
3881 		 */
3882 		bio = bio_alloc(GFP_NOFS, 1);
3883 		bio_set_dev(bio, device->bdev);
3884 		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3885 		bio->bi_private = device;
3886 		bio->bi_end_io = btrfs_end_super_write;
3887 		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3888 			       offset_in_page(bytenr));
3889 
3890 		/*
3891 		 * We FUA only the first super block.  The others we allow to
3892 		 * go down lazy and there's a short window where the on-disk
3893 		 * copies might still contain the older version.
3894 		 */
3895 		bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3896 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3897 			bio->bi_opf |= REQ_FUA;
3898 
3899 		btrfsic_submit_bio(bio);
3900 
3901 		if (btrfs_advance_sb_log(device, i))
3902 			errors++;
3903 	}
3904 	return errors < i ? 0 : -1;
3905 }
3906 
3907 /*
3908  * Wait for write completion of superblocks done by write_dev_supers,
3909  * @max_mirrors same for write and wait phases.
3910  *
3911  * Return number of errors when page is not found or not marked up to
3912  * date.
3913  */
3914 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3915 {
3916 	int i;
3917 	int errors = 0;
3918 	bool primary_failed = false;
3919 	int ret;
3920 	u64 bytenr;
3921 
3922 	if (max_mirrors == 0)
3923 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3924 
3925 	for (i = 0; i < max_mirrors; i++) {
3926 		struct page *page;
3927 
3928 		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3929 		if (ret == -ENOENT) {
3930 			break;
3931 		} else if (ret < 0) {
3932 			errors++;
3933 			if (i == 0)
3934 				primary_failed = true;
3935 			continue;
3936 		}
3937 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3938 		    device->commit_total_bytes)
3939 			break;
3940 
3941 		page = find_get_page(device->bdev->bd_inode->i_mapping,
3942 				     bytenr >> PAGE_SHIFT);
3943 		if (!page) {
3944 			errors++;
3945 			if (i == 0)
3946 				primary_failed = true;
3947 			continue;
3948 		}
3949 		/* Page is submitted locked and unlocked once the IO completes */
3950 		wait_on_page_locked(page);
3951 		if (PageError(page)) {
3952 			errors++;
3953 			if (i == 0)
3954 				primary_failed = true;
3955 		}
3956 
3957 		/* Drop our reference */
3958 		put_page(page);
3959 
3960 		/* Drop the reference from the writing run */
3961 		put_page(page);
3962 	}
3963 
3964 	/* log error, force error return */
3965 	if (primary_failed) {
3966 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3967 			  device->devid);
3968 		return -1;
3969 	}
3970 
3971 	return errors < i ? 0 : -1;
3972 }
3973 
3974 /*
3975  * endio for the write_dev_flush, this will wake anyone waiting
3976  * for the barrier when it is done
3977  */
3978 static void btrfs_end_empty_barrier(struct bio *bio)
3979 {
3980 	complete(bio->bi_private);
3981 }
3982 
3983 /*
3984  * Submit a flush request to the device if it supports it. Error handling is
3985  * done in the waiting counterpart.
3986  */
3987 static void write_dev_flush(struct btrfs_device *device)
3988 {
3989 	struct bio *bio = device->flush_bio;
3990 
3991 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3992 	/*
3993 	 * When a disk has write caching disabled, we skip submission of a bio
3994 	 * with flush and sync requests before writing the superblock, since
3995 	 * it's not needed. However when the integrity checker is enabled, this
3996 	 * results in reports that there are metadata blocks referred by a
3997 	 * superblock that were not properly flushed. So don't skip the bio
3998 	 * submission only when the integrity checker is enabled for the sake
3999 	 * of simplicity, since this is a debug tool and not meant for use in
4000 	 * non-debug builds.
4001 	 */
4002 	struct request_queue *q = bdev_get_queue(device->bdev);
4003 	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4004 		return;
4005 #endif
4006 
4007 	bio_reset(bio);
4008 	bio->bi_end_io = btrfs_end_empty_barrier;
4009 	bio_set_dev(bio, device->bdev);
4010 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
4011 	init_completion(&device->flush_wait);
4012 	bio->bi_private = &device->flush_wait;
4013 
4014 	btrfsic_submit_bio(bio);
4015 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4016 }
4017 
4018 /*
4019  * If the flush bio has been submitted by write_dev_flush, wait for it.
4020  */
4021 static blk_status_t wait_dev_flush(struct btrfs_device *device)
4022 {
4023 	struct bio *bio = device->flush_bio;
4024 
4025 	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
4026 		return BLK_STS_OK;
4027 
4028 	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4029 	wait_for_completion_io(&device->flush_wait);
4030 
4031 	return bio->bi_status;
4032 }
4033 
4034 static int check_barrier_error(struct btrfs_fs_info *fs_info)
4035 {
4036 	if (!btrfs_check_rw_degradable(fs_info, NULL))
4037 		return -EIO;
4038 	return 0;
4039 }
4040 
4041 /*
4042  * send an empty flush down to each device in parallel,
4043  * then wait for them
4044  */
4045 static int barrier_all_devices(struct btrfs_fs_info *info)
4046 {
4047 	struct list_head *head;
4048 	struct btrfs_device *dev;
4049 	int errors_wait = 0;
4050 	blk_status_t ret;
4051 
4052 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
4053 	/* send down all the barriers */
4054 	head = &info->fs_devices->devices;
4055 	list_for_each_entry(dev, head, dev_list) {
4056 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4057 			continue;
4058 		if (!dev->bdev)
4059 			continue;
4060 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4061 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4062 			continue;
4063 
4064 		write_dev_flush(dev);
4065 		dev->last_flush_error = BLK_STS_OK;
4066 	}
4067 
4068 	/* wait for all the barriers */
4069 	list_for_each_entry(dev, head, dev_list) {
4070 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4071 			continue;
4072 		if (!dev->bdev) {
4073 			errors_wait++;
4074 			continue;
4075 		}
4076 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4077 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4078 			continue;
4079 
4080 		ret = wait_dev_flush(dev);
4081 		if (ret) {
4082 			dev->last_flush_error = ret;
4083 			btrfs_dev_stat_inc_and_print(dev,
4084 					BTRFS_DEV_STAT_FLUSH_ERRS);
4085 			errors_wait++;
4086 		}
4087 	}
4088 
4089 	if (errors_wait) {
4090 		/*
4091 		 * At some point we need the status of all disks
4092 		 * to arrive at the volume status. So error checking
4093 		 * is being pushed to a separate loop.
4094 		 */
4095 		return check_barrier_error(info);
4096 	}
4097 	return 0;
4098 }
4099 
4100 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4101 {
4102 	int raid_type;
4103 	int min_tolerated = INT_MAX;
4104 
4105 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4106 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4107 		min_tolerated = min_t(int, min_tolerated,
4108 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
4109 				    tolerated_failures);
4110 
4111 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4112 		if (raid_type == BTRFS_RAID_SINGLE)
4113 			continue;
4114 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4115 			continue;
4116 		min_tolerated = min_t(int, min_tolerated,
4117 				    btrfs_raid_array[raid_type].
4118 				    tolerated_failures);
4119 	}
4120 
4121 	if (min_tolerated == INT_MAX) {
4122 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4123 		min_tolerated = 0;
4124 	}
4125 
4126 	return min_tolerated;
4127 }
4128 
4129 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4130 {
4131 	struct list_head *head;
4132 	struct btrfs_device *dev;
4133 	struct btrfs_super_block *sb;
4134 	struct btrfs_dev_item *dev_item;
4135 	int ret;
4136 	int do_barriers;
4137 	int max_errors;
4138 	int total_errors = 0;
4139 	u64 flags;
4140 
4141 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4142 
4143 	/*
4144 	 * max_mirrors == 0 indicates we're from commit_transaction,
4145 	 * not from fsync where the tree roots in fs_info have not
4146 	 * been consistent on disk.
4147 	 */
4148 	if (max_mirrors == 0)
4149 		backup_super_roots(fs_info);
4150 
4151 	sb = fs_info->super_for_commit;
4152 	dev_item = &sb->dev_item;
4153 
4154 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4155 	head = &fs_info->fs_devices->devices;
4156 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4157 
4158 	if (do_barriers) {
4159 		ret = barrier_all_devices(fs_info);
4160 		if (ret) {
4161 			mutex_unlock(
4162 				&fs_info->fs_devices->device_list_mutex);
4163 			btrfs_handle_fs_error(fs_info, ret,
4164 					      "errors while submitting device barriers.");
4165 			return ret;
4166 		}
4167 	}
4168 
4169 	list_for_each_entry(dev, head, dev_list) {
4170 		if (!dev->bdev) {
4171 			total_errors++;
4172 			continue;
4173 		}
4174 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4175 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4176 			continue;
4177 
4178 		btrfs_set_stack_device_generation(dev_item, 0);
4179 		btrfs_set_stack_device_type(dev_item, dev->type);
4180 		btrfs_set_stack_device_id(dev_item, dev->devid);
4181 		btrfs_set_stack_device_total_bytes(dev_item,
4182 						   dev->commit_total_bytes);
4183 		btrfs_set_stack_device_bytes_used(dev_item,
4184 						  dev->commit_bytes_used);
4185 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4186 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4187 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4188 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4189 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4190 		       BTRFS_FSID_SIZE);
4191 
4192 		flags = btrfs_super_flags(sb);
4193 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4194 
4195 		ret = btrfs_validate_write_super(fs_info, sb);
4196 		if (ret < 0) {
4197 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4198 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4199 				"unexpected superblock corruption detected");
4200 			return -EUCLEAN;
4201 		}
4202 
4203 		ret = write_dev_supers(dev, sb, max_mirrors);
4204 		if (ret)
4205 			total_errors++;
4206 	}
4207 	if (total_errors > max_errors) {
4208 		btrfs_err(fs_info, "%d errors while writing supers",
4209 			  total_errors);
4210 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4211 
4212 		/* FUA is masked off if unsupported and can't be the reason */
4213 		btrfs_handle_fs_error(fs_info, -EIO,
4214 				      "%d errors while writing supers",
4215 				      total_errors);
4216 		return -EIO;
4217 	}
4218 
4219 	total_errors = 0;
4220 	list_for_each_entry(dev, head, dev_list) {
4221 		if (!dev->bdev)
4222 			continue;
4223 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4224 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4225 			continue;
4226 
4227 		ret = wait_dev_supers(dev, max_mirrors);
4228 		if (ret)
4229 			total_errors++;
4230 	}
4231 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4232 	if (total_errors > max_errors) {
4233 		btrfs_handle_fs_error(fs_info, -EIO,
4234 				      "%d errors while writing supers",
4235 				      total_errors);
4236 		return -EIO;
4237 	}
4238 	return 0;
4239 }
4240 
4241 /* Drop a fs root from the radix tree and free it. */
4242 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4243 				  struct btrfs_root *root)
4244 {
4245 	bool drop_ref = false;
4246 
4247 	spin_lock(&fs_info->fs_roots_radix_lock);
4248 	radix_tree_delete(&fs_info->fs_roots_radix,
4249 			  (unsigned long)root->root_key.objectid);
4250 	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4251 		drop_ref = true;
4252 	spin_unlock(&fs_info->fs_roots_radix_lock);
4253 
4254 	if (BTRFS_FS_ERROR(fs_info)) {
4255 		ASSERT(root->log_root == NULL);
4256 		if (root->reloc_root) {
4257 			btrfs_put_root(root->reloc_root);
4258 			root->reloc_root = NULL;
4259 		}
4260 	}
4261 
4262 	if (drop_ref)
4263 		btrfs_put_root(root);
4264 }
4265 
4266 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4267 {
4268 	u64 root_objectid = 0;
4269 	struct btrfs_root *gang[8];
4270 	int i = 0;
4271 	int err = 0;
4272 	unsigned int ret = 0;
4273 
4274 	while (1) {
4275 		spin_lock(&fs_info->fs_roots_radix_lock);
4276 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4277 					     (void **)gang, root_objectid,
4278 					     ARRAY_SIZE(gang));
4279 		if (!ret) {
4280 			spin_unlock(&fs_info->fs_roots_radix_lock);
4281 			break;
4282 		}
4283 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
4284 
4285 		for (i = 0; i < ret; i++) {
4286 			/* Avoid to grab roots in dead_roots */
4287 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4288 				gang[i] = NULL;
4289 				continue;
4290 			}
4291 			/* grab all the search result for later use */
4292 			gang[i] = btrfs_grab_root(gang[i]);
4293 		}
4294 		spin_unlock(&fs_info->fs_roots_radix_lock);
4295 
4296 		for (i = 0; i < ret; i++) {
4297 			if (!gang[i])
4298 				continue;
4299 			root_objectid = gang[i]->root_key.objectid;
4300 			err = btrfs_orphan_cleanup(gang[i]);
4301 			if (err)
4302 				break;
4303 			btrfs_put_root(gang[i]);
4304 		}
4305 		root_objectid++;
4306 	}
4307 
4308 	/* release the uncleaned roots due to error */
4309 	for (; i < ret; i++) {
4310 		if (gang[i])
4311 			btrfs_put_root(gang[i]);
4312 	}
4313 	return err;
4314 }
4315 
4316 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4317 {
4318 	struct btrfs_root *root = fs_info->tree_root;
4319 	struct btrfs_trans_handle *trans;
4320 
4321 	mutex_lock(&fs_info->cleaner_mutex);
4322 	btrfs_run_delayed_iputs(fs_info);
4323 	mutex_unlock(&fs_info->cleaner_mutex);
4324 	wake_up_process(fs_info->cleaner_kthread);
4325 
4326 	/* wait until ongoing cleanup work done */
4327 	down_write(&fs_info->cleanup_work_sem);
4328 	up_write(&fs_info->cleanup_work_sem);
4329 
4330 	trans = btrfs_join_transaction(root);
4331 	if (IS_ERR(trans))
4332 		return PTR_ERR(trans);
4333 	return btrfs_commit_transaction(trans);
4334 }
4335 
4336 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4337 {
4338 	int ret;
4339 
4340 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4341 	/*
4342 	 * We don't want the cleaner to start new transactions, add more delayed
4343 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4344 	 * because that frees the task_struct, and the transaction kthread might
4345 	 * still try to wake up the cleaner.
4346 	 */
4347 	kthread_park(fs_info->cleaner_kthread);
4348 
4349 	/* wait for the qgroup rescan worker to stop */
4350 	btrfs_qgroup_wait_for_completion(fs_info, false);
4351 
4352 	/* wait for the uuid_scan task to finish */
4353 	down(&fs_info->uuid_tree_rescan_sem);
4354 	/* avoid complains from lockdep et al., set sem back to initial state */
4355 	up(&fs_info->uuid_tree_rescan_sem);
4356 
4357 	/* pause restriper - we want to resume on mount */
4358 	btrfs_pause_balance(fs_info);
4359 
4360 	btrfs_dev_replace_suspend_for_unmount(fs_info);
4361 
4362 	btrfs_scrub_cancel(fs_info);
4363 
4364 	/* wait for any defraggers to finish */
4365 	wait_event(fs_info->transaction_wait,
4366 		   (atomic_read(&fs_info->defrag_running) == 0));
4367 
4368 	/* clear out the rbtree of defraggable inodes */
4369 	btrfs_cleanup_defrag_inodes(fs_info);
4370 
4371 	cancel_work_sync(&fs_info->async_reclaim_work);
4372 	cancel_work_sync(&fs_info->async_data_reclaim_work);
4373 	cancel_work_sync(&fs_info->preempt_reclaim_work);
4374 
4375 	cancel_work_sync(&fs_info->reclaim_bgs_work);
4376 
4377 	/* Cancel or finish ongoing discard work */
4378 	btrfs_discard_cleanup(fs_info);
4379 
4380 	if (!sb_rdonly(fs_info->sb)) {
4381 		/*
4382 		 * The cleaner kthread is stopped, so do one final pass over
4383 		 * unused block groups.
4384 		 */
4385 		btrfs_delete_unused_bgs(fs_info);
4386 
4387 		/*
4388 		 * There might be existing delayed inode workers still running
4389 		 * and holding an empty delayed inode item. We must wait for
4390 		 * them to complete first because they can create a transaction.
4391 		 * This happens when someone calls btrfs_balance_delayed_items()
4392 		 * and then a transaction commit runs the same delayed nodes
4393 		 * before any delayed worker has done something with the nodes.
4394 		 * We must wait for any worker here and not at transaction
4395 		 * commit time since that could cause a deadlock.
4396 		 * This is a very rare case.
4397 		 */
4398 		btrfs_flush_workqueue(fs_info->delayed_workers);
4399 
4400 		ret = btrfs_commit_super(fs_info);
4401 		if (ret)
4402 			btrfs_err(fs_info, "commit super ret %d", ret);
4403 	}
4404 
4405 	if (BTRFS_FS_ERROR(fs_info))
4406 		btrfs_error_commit_super(fs_info);
4407 
4408 	kthread_stop(fs_info->transaction_kthread);
4409 	kthread_stop(fs_info->cleaner_kthread);
4410 
4411 	ASSERT(list_empty(&fs_info->delayed_iputs));
4412 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4413 
4414 	if (btrfs_check_quota_leak(fs_info)) {
4415 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4416 		btrfs_err(fs_info, "qgroup reserved space leaked");
4417 	}
4418 
4419 	btrfs_free_qgroup_config(fs_info);
4420 	ASSERT(list_empty(&fs_info->delalloc_roots));
4421 
4422 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4423 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4424 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4425 	}
4426 
4427 	if (percpu_counter_sum(&fs_info->ordered_bytes))
4428 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4429 			   percpu_counter_sum(&fs_info->ordered_bytes));
4430 
4431 	btrfs_sysfs_remove_mounted(fs_info);
4432 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4433 
4434 	btrfs_put_block_group_cache(fs_info);
4435 
4436 	/*
4437 	 * we must make sure there is not any read request to
4438 	 * submit after we stopping all workers.
4439 	 */
4440 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4441 	btrfs_stop_all_workers(fs_info);
4442 
4443 	/* We shouldn't have any transaction open at this point */
4444 	ASSERT(list_empty(&fs_info->trans_list));
4445 
4446 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4447 	free_root_pointers(fs_info, true);
4448 	btrfs_free_fs_roots(fs_info);
4449 
4450 	/*
4451 	 * We must free the block groups after dropping the fs_roots as we could
4452 	 * have had an IO error and have left over tree log blocks that aren't
4453 	 * cleaned up until the fs roots are freed.  This makes the block group
4454 	 * accounting appear to be wrong because there's pending reserved bytes,
4455 	 * so make sure we do the block group cleanup afterwards.
4456 	 */
4457 	btrfs_free_block_groups(fs_info);
4458 
4459 	iput(fs_info->btree_inode);
4460 
4461 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4462 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4463 		btrfsic_unmount(fs_info->fs_devices);
4464 #endif
4465 
4466 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4467 	btrfs_close_devices(fs_info->fs_devices);
4468 }
4469 
4470 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4471 			  int atomic)
4472 {
4473 	int ret;
4474 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4475 
4476 	ret = extent_buffer_uptodate(buf);
4477 	if (!ret)
4478 		return ret;
4479 
4480 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4481 				    parent_transid, atomic);
4482 	if (ret == -EAGAIN)
4483 		return ret;
4484 	return !ret;
4485 }
4486 
4487 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4488 {
4489 	struct btrfs_fs_info *fs_info = buf->fs_info;
4490 	u64 transid = btrfs_header_generation(buf);
4491 	int was_dirty;
4492 
4493 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4494 	/*
4495 	 * This is a fast path so only do this check if we have sanity tests
4496 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4497 	 * outside of the sanity tests.
4498 	 */
4499 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4500 		return;
4501 #endif
4502 	btrfs_assert_tree_write_locked(buf);
4503 	if (transid != fs_info->generation)
4504 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4505 			buf->start, transid, fs_info->generation);
4506 	was_dirty = set_extent_buffer_dirty(buf);
4507 	if (!was_dirty)
4508 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4509 					 buf->len,
4510 					 fs_info->dirty_metadata_batch);
4511 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4512 	/*
4513 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4514 	 * but item data not updated.
4515 	 * So here we should only check item pointers, not item data.
4516 	 */
4517 	if (btrfs_header_level(buf) == 0 &&
4518 	    btrfs_check_leaf_relaxed(buf)) {
4519 		btrfs_print_leaf(buf);
4520 		ASSERT(0);
4521 	}
4522 #endif
4523 }
4524 
4525 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4526 					int flush_delayed)
4527 {
4528 	/*
4529 	 * looks as though older kernels can get into trouble with
4530 	 * this code, they end up stuck in balance_dirty_pages forever
4531 	 */
4532 	int ret;
4533 
4534 	if (current->flags & PF_MEMALLOC)
4535 		return;
4536 
4537 	if (flush_delayed)
4538 		btrfs_balance_delayed_items(fs_info);
4539 
4540 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4541 				     BTRFS_DIRTY_METADATA_THRESH,
4542 				     fs_info->dirty_metadata_batch);
4543 	if (ret > 0) {
4544 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4545 	}
4546 }
4547 
4548 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4549 {
4550 	__btrfs_btree_balance_dirty(fs_info, 1);
4551 }
4552 
4553 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4554 {
4555 	__btrfs_btree_balance_dirty(fs_info, 0);
4556 }
4557 
4558 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4559 		      struct btrfs_key *first_key)
4560 {
4561 	return btree_read_extent_buffer_pages(buf, parent_transid,
4562 					      level, first_key);
4563 }
4564 
4565 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4566 {
4567 	/* cleanup FS via transaction */
4568 	btrfs_cleanup_transaction(fs_info);
4569 
4570 	mutex_lock(&fs_info->cleaner_mutex);
4571 	btrfs_run_delayed_iputs(fs_info);
4572 	mutex_unlock(&fs_info->cleaner_mutex);
4573 
4574 	down_write(&fs_info->cleanup_work_sem);
4575 	up_write(&fs_info->cleanup_work_sem);
4576 }
4577 
4578 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4579 {
4580 	struct btrfs_root *gang[8];
4581 	u64 root_objectid = 0;
4582 	int ret;
4583 
4584 	spin_lock(&fs_info->fs_roots_radix_lock);
4585 	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4586 					     (void **)gang, root_objectid,
4587 					     ARRAY_SIZE(gang))) != 0) {
4588 		int i;
4589 
4590 		for (i = 0; i < ret; i++)
4591 			gang[i] = btrfs_grab_root(gang[i]);
4592 		spin_unlock(&fs_info->fs_roots_radix_lock);
4593 
4594 		for (i = 0; i < ret; i++) {
4595 			if (!gang[i])
4596 				continue;
4597 			root_objectid = gang[i]->root_key.objectid;
4598 			btrfs_free_log(NULL, gang[i]);
4599 			btrfs_put_root(gang[i]);
4600 		}
4601 		root_objectid++;
4602 		spin_lock(&fs_info->fs_roots_radix_lock);
4603 	}
4604 	spin_unlock(&fs_info->fs_roots_radix_lock);
4605 	btrfs_free_log_root_tree(NULL, fs_info);
4606 }
4607 
4608 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4609 {
4610 	struct btrfs_ordered_extent *ordered;
4611 
4612 	spin_lock(&root->ordered_extent_lock);
4613 	/*
4614 	 * This will just short circuit the ordered completion stuff which will
4615 	 * make sure the ordered extent gets properly cleaned up.
4616 	 */
4617 	list_for_each_entry(ordered, &root->ordered_extents,
4618 			    root_extent_list)
4619 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4620 	spin_unlock(&root->ordered_extent_lock);
4621 }
4622 
4623 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4624 {
4625 	struct btrfs_root *root;
4626 	struct list_head splice;
4627 
4628 	INIT_LIST_HEAD(&splice);
4629 
4630 	spin_lock(&fs_info->ordered_root_lock);
4631 	list_splice_init(&fs_info->ordered_roots, &splice);
4632 	while (!list_empty(&splice)) {
4633 		root = list_first_entry(&splice, struct btrfs_root,
4634 					ordered_root);
4635 		list_move_tail(&root->ordered_root,
4636 			       &fs_info->ordered_roots);
4637 
4638 		spin_unlock(&fs_info->ordered_root_lock);
4639 		btrfs_destroy_ordered_extents(root);
4640 
4641 		cond_resched();
4642 		spin_lock(&fs_info->ordered_root_lock);
4643 	}
4644 	spin_unlock(&fs_info->ordered_root_lock);
4645 
4646 	/*
4647 	 * We need this here because if we've been flipped read-only we won't
4648 	 * get sync() from the umount, so we need to make sure any ordered
4649 	 * extents that haven't had their dirty pages IO start writeout yet
4650 	 * actually get run and error out properly.
4651 	 */
4652 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4653 }
4654 
4655 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4656 				      struct btrfs_fs_info *fs_info)
4657 {
4658 	struct rb_node *node;
4659 	struct btrfs_delayed_ref_root *delayed_refs;
4660 	struct btrfs_delayed_ref_node *ref;
4661 	int ret = 0;
4662 
4663 	delayed_refs = &trans->delayed_refs;
4664 
4665 	spin_lock(&delayed_refs->lock);
4666 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4667 		spin_unlock(&delayed_refs->lock);
4668 		btrfs_debug(fs_info, "delayed_refs has NO entry");
4669 		return ret;
4670 	}
4671 
4672 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4673 		struct btrfs_delayed_ref_head *head;
4674 		struct rb_node *n;
4675 		bool pin_bytes = false;
4676 
4677 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4678 				href_node);
4679 		if (btrfs_delayed_ref_lock(delayed_refs, head))
4680 			continue;
4681 
4682 		spin_lock(&head->lock);
4683 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4684 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4685 				       ref_node);
4686 			ref->in_tree = 0;
4687 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4688 			RB_CLEAR_NODE(&ref->ref_node);
4689 			if (!list_empty(&ref->add_list))
4690 				list_del(&ref->add_list);
4691 			atomic_dec(&delayed_refs->num_entries);
4692 			btrfs_put_delayed_ref(ref);
4693 		}
4694 		if (head->must_insert_reserved)
4695 			pin_bytes = true;
4696 		btrfs_free_delayed_extent_op(head->extent_op);
4697 		btrfs_delete_ref_head(delayed_refs, head);
4698 		spin_unlock(&head->lock);
4699 		spin_unlock(&delayed_refs->lock);
4700 		mutex_unlock(&head->mutex);
4701 
4702 		if (pin_bytes) {
4703 			struct btrfs_block_group *cache;
4704 
4705 			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4706 			BUG_ON(!cache);
4707 
4708 			spin_lock(&cache->space_info->lock);
4709 			spin_lock(&cache->lock);
4710 			cache->pinned += head->num_bytes;
4711 			btrfs_space_info_update_bytes_pinned(fs_info,
4712 				cache->space_info, head->num_bytes);
4713 			cache->reserved -= head->num_bytes;
4714 			cache->space_info->bytes_reserved -= head->num_bytes;
4715 			spin_unlock(&cache->lock);
4716 			spin_unlock(&cache->space_info->lock);
4717 
4718 			btrfs_put_block_group(cache);
4719 
4720 			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4721 				head->bytenr + head->num_bytes - 1);
4722 		}
4723 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4724 		btrfs_put_delayed_ref_head(head);
4725 		cond_resched();
4726 		spin_lock(&delayed_refs->lock);
4727 	}
4728 	btrfs_qgroup_destroy_extent_records(trans);
4729 
4730 	spin_unlock(&delayed_refs->lock);
4731 
4732 	return ret;
4733 }
4734 
4735 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4736 {
4737 	struct btrfs_inode *btrfs_inode;
4738 	struct list_head splice;
4739 
4740 	INIT_LIST_HEAD(&splice);
4741 
4742 	spin_lock(&root->delalloc_lock);
4743 	list_splice_init(&root->delalloc_inodes, &splice);
4744 
4745 	while (!list_empty(&splice)) {
4746 		struct inode *inode = NULL;
4747 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4748 					       delalloc_inodes);
4749 		__btrfs_del_delalloc_inode(root, btrfs_inode);
4750 		spin_unlock(&root->delalloc_lock);
4751 
4752 		/*
4753 		 * Make sure we get a live inode and that it'll not disappear
4754 		 * meanwhile.
4755 		 */
4756 		inode = igrab(&btrfs_inode->vfs_inode);
4757 		if (inode) {
4758 			invalidate_inode_pages2(inode->i_mapping);
4759 			iput(inode);
4760 		}
4761 		spin_lock(&root->delalloc_lock);
4762 	}
4763 	spin_unlock(&root->delalloc_lock);
4764 }
4765 
4766 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4767 {
4768 	struct btrfs_root *root;
4769 	struct list_head splice;
4770 
4771 	INIT_LIST_HEAD(&splice);
4772 
4773 	spin_lock(&fs_info->delalloc_root_lock);
4774 	list_splice_init(&fs_info->delalloc_roots, &splice);
4775 	while (!list_empty(&splice)) {
4776 		root = list_first_entry(&splice, struct btrfs_root,
4777 					 delalloc_root);
4778 		root = btrfs_grab_root(root);
4779 		BUG_ON(!root);
4780 		spin_unlock(&fs_info->delalloc_root_lock);
4781 
4782 		btrfs_destroy_delalloc_inodes(root);
4783 		btrfs_put_root(root);
4784 
4785 		spin_lock(&fs_info->delalloc_root_lock);
4786 	}
4787 	spin_unlock(&fs_info->delalloc_root_lock);
4788 }
4789 
4790 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4791 					struct extent_io_tree *dirty_pages,
4792 					int mark)
4793 {
4794 	int ret;
4795 	struct extent_buffer *eb;
4796 	u64 start = 0;
4797 	u64 end;
4798 
4799 	while (1) {
4800 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4801 					    mark, NULL);
4802 		if (ret)
4803 			break;
4804 
4805 		clear_extent_bits(dirty_pages, start, end, mark);
4806 		while (start <= end) {
4807 			eb = find_extent_buffer(fs_info, start);
4808 			start += fs_info->nodesize;
4809 			if (!eb)
4810 				continue;
4811 			wait_on_extent_buffer_writeback(eb);
4812 
4813 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4814 					       &eb->bflags))
4815 				clear_extent_buffer_dirty(eb);
4816 			free_extent_buffer_stale(eb);
4817 		}
4818 	}
4819 
4820 	return ret;
4821 }
4822 
4823 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4824 				       struct extent_io_tree *unpin)
4825 {
4826 	u64 start;
4827 	u64 end;
4828 	int ret;
4829 
4830 	while (1) {
4831 		struct extent_state *cached_state = NULL;
4832 
4833 		/*
4834 		 * The btrfs_finish_extent_commit() may get the same range as
4835 		 * ours between find_first_extent_bit and clear_extent_dirty.
4836 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4837 		 * the same extent range.
4838 		 */
4839 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4840 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4841 					    EXTENT_DIRTY, &cached_state);
4842 		if (ret) {
4843 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4844 			break;
4845 		}
4846 
4847 		clear_extent_dirty(unpin, start, end, &cached_state);
4848 		free_extent_state(cached_state);
4849 		btrfs_error_unpin_extent_range(fs_info, start, end);
4850 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4851 		cond_resched();
4852 	}
4853 
4854 	return 0;
4855 }
4856 
4857 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4858 {
4859 	struct inode *inode;
4860 
4861 	inode = cache->io_ctl.inode;
4862 	if (inode) {
4863 		invalidate_inode_pages2(inode->i_mapping);
4864 		BTRFS_I(inode)->generation = 0;
4865 		cache->io_ctl.inode = NULL;
4866 		iput(inode);
4867 	}
4868 	ASSERT(cache->io_ctl.pages == NULL);
4869 	btrfs_put_block_group(cache);
4870 }
4871 
4872 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4873 			     struct btrfs_fs_info *fs_info)
4874 {
4875 	struct btrfs_block_group *cache;
4876 
4877 	spin_lock(&cur_trans->dirty_bgs_lock);
4878 	while (!list_empty(&cur_trans->dirty_bgs)) {
4879 		cache = list_first_entry(&cur_trans->dirty_bgs,
4880 					 struct btrfs_block_group,
4881 					 dirty_list);
4882 
4883 		if (!list_empty(&cache->io_list)) {
4884 			spin_unlock(&cur_trans->dirty_bgs_lock);
4885 			list_del_init(&cache->io_list);
4886 			btrfs_cleanup_bg_io(cache);
4887 			spin_lock(&cur_trans->dirty_bgs_lock);
4888 		}
4889 
4890 		list_del_init(&cache->dirty_list);
4891 		spin_lock(&cache->lock);
4892 		cache->disk_cache_state = BTRFS_DC_ERROR;
4893 		spin_unlock(&cache->lock);
4894 
4895 		spin_unlock(&cur_trans->dirty_bgs_lock);
4896 		btrfs_put_block_group(cache);
4897 		btrfs_delayed_refs_rsv_release(fs_info, 1);
4898 		spin_lock(&cur_trans->dirty_bgs_lock);
4899 	}
4900 	spin_unlock(&cur_trans->dirty_bgs_lock);
4901 
4902 	/*
4903 	 * Refer to the definition of io_bgs member for details why it's safe
4904 	 * to use it without any locking
4905 	 */
4906 	while (!list_empty(&cur_trans->io_bgs)) {
4907 		cache = list_first_entry(&cur_trans->io_bgs,
4908 					 struct btrfs_block_group,
4909 					 io_list);
4910 
4911 		list_del_init(&cache->io_list);
4912 		spin_lock(&cache->lock);
4913 		cache->disk_cache_state = BTRFS_DC_ERROR;
4914 		spin_unlock(&cache->lock);
4915 		btrfs_cleanup_bg_io(cache);
4916 	}
4917 }
4918 
4919 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4920 				   struct btrfs_fs_info *fs_info)
4921 {
4922 	struct btrfs_device *dev, *tmp;
4923 
4924 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4925 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4926 	ASSERT(list_empty(&cur_trans->io_bgs));
4927 
4928 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4929 				 post_commit_list) {
4930 		list_del_init(&dev->post_commit_list);
4931 	}
4932 
4933 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4934 
4935 	cur_trans->state = TRANS_STATE_COMMIT_START;
4936 	wake_up(&fs_info->transaction_blocked_wait);
4937 
4938 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4939 	wake_up(&fs_info->transaction_wait);
4940 
4941 	btrfs_destroy_delayed_inodes(fs_info);
4942 
4943 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4944 				     EXTENT_DIRTY);
4945 	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4946 
4947 	btrfs_free_redirty_list(cur_trans);
4948 
4949 	cur_trans->state =TRANS_STATE_COMPLETED;
4950 	wake_up(&cur_trans->commit_wait);
4951 }
4952 
4953 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4954 {
4955 	struct btrfs_transaction *t;
4956 
4957 	mutex_lock(&fs_info->transaction_kthread_mutex);
4958 
4959 	spin_lock(&fs_info->trans_lock);
4960 	while (!list_empty(&fs_info->trans_list)) {
4961 		t = list_first_entry(&fs_info->trans_list,
4962 				     struct btrfs_transaction, list);
4963 		if (t->state >= TRANS_STATE_COMMIT_START) {
4964 			refcount_inc(&t->use_count);
4965 			spin_unlock(&fs_info->trans_lock);
4966 			btrfs_wait_for_commit(fs_info, t->transid);
4967 			btrfs_put_transaction(t);
4968 			spin_lock(&fs_info->trans_lock);
4969 			continue;
4970 		}
4971 		if (t == fs_info->running_transaction) {
4972 			t->state = TRANS_STATE_COMMIT_DOING;
4973 			spin_unlock(&fs_info->trans_lock);
4974 			/*
4975 			 * We wait for 0 num_writers since we don't hold a trans
4976 			 * handle open currently for this transaction.
4977 			 */
4978 			wait_event(t->writer_wait,
4979 				   atomic_read(&t->num_writers) == 0);
4980 		} else {
4981 			spin_unlock(&fs_info->trans_lock);
4982 		}
4983 		btrfs_cleanup_one_transaction(t, fs_info);
4984 
4985 		spin_lock(&fs_info->trans_lock);
4986 		if (t == fs_info->running_transaction)
4987 			fs_info->running_transaction = NULL;
4988 		list_del_init(&t->list);
4989 		spin_unlock(&fs_info->trans_lock);
4990 
4991 		btrfs_put_transaction(t);
4992 		trace_btrfs_transaction_commit(fs_info->tree_root);
4993 		spin_lock(&fs_info->trans_lock);
4994 	}
4995 	spin_unlock(&fs_info->trans_lock);
4996 	btrfs_destroy_all_ordered_extents(fs_info);
4997 	btrfs_destroy_delayed_inodes(fs_info);
4998 	btrfs_assert_delayed_root_empty(fs_info);
4999 	btrfs_destroy_all_delalloc_inodes(fs_info);
5000 	btrfs_drop_all_logs(fs_info);
5001 	mutex_unlock(&fs_info->transaction_kthread_mutex);
5002 
5003 	return 0;
5004 }
5005 
5006 int btrfs_init_root_free_objectid(struct btrfs_root *root)
5007 {
5008 	struct btrfs_path *path;
5009 	int ret;
5010 	struct extent_buffer *l;
5011 	struct btrfs_key search_key;
5012 	struct btrfs_key found_key;
5013 	int slot;
5014 
5015 	path = btrfs_alloc_path();
5016 	if (!path)
5017 		return -ENOMEM;
5018 
5019 	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5020 	search_key.type = -1;
5021 	search_key.offset = (u64)-1;
5022 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5023 	if (ret < 0)
5024 		goto error;
5025 	BUG_ON(ret == 0); /* Corruption */
5026 	if (path->slots[0] > 0) {
5027 		slot = path->slots[0] - 1;
5028 		l = path->nodes[0];
5029 		btrfs_item_key_to_cpu(l, &found_key, slot);
5030 		root->free_objectid = max_t(u64, found_key.objectid + 1,
5031 					    BTRFS_FIRST_FREE_OBJECTID);
5032 	} else {
5033 		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
5034 	}
5035 	ret = 0;
5036 error:
5037 	btrfs_free_path(path);
5038 	return ret;
5039 }
5040 
5041 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
5042 {
5043 	int ret;
5044 	mutex_lock(&root->objectid_mutex);
5045 
5046 	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
5047 		btrfs_warn(root->fs_info,
5048 			   "the objectid of root %llu reaches its highest value",
5049 			   root->root_key.objectid);
5050 		ret = -ENOSPC;
5051 		goto out;
5052 	}
5053 
5054 	*objectid = root->free_objectid++;
5055 	ret = 0;
5056 out:
5057 	mutex_unlock(&root->objectid_mutex);
5058 	return ret;
5059 }
5060