1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/slab.h> 29 #include <linux/migrate.h> 30 #include <linux/ratelimit.h> 31 #include <linux/uuid.h> 32 #include <linux/semaphore.h> 33 #include <asm/unaligned.h> 34 #include "ctree.h" 35 #include "disk-io.h" 36 #include "hash.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "volumes.h" 40 #include "print-tree.h" 41 #include "locking.h" 42 #include "tree-log.h" 43 #include "free-space-cache.h" 44 #include "free-space-tree.h" 45 #include "inode-map.h" 46 #include "check-integrity.h" 47 #include "rcu-string.h" 48 #include "dev-replace.h" 49 #include "raid56.h" 50 #include "sysfs.h" 51 #include "qgroup.h" 52 #include "compression.h" 53 54 #ifdef CONFIG_X86 55 #include <asm/cpufeature.h> 56 #endif 57 58 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 59 BTRFS_HEADER_FLAG_RELOC |\ 60 BTRFS_SUPER_FLAG_ERROR |\ 61 BTRFS_SUPER_FLAG_SEEDING |\ 62 BTRFS_SUPER_FLAG_METADUMP) 63 64 static const struct extent_io_ops btree_extent_io_ops; 65 static void end_workqueue_fn(struct btrfs_work *work); 66 static void free_fs_root(struct btrfs_root *root); 67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 68 int read_only); 69 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 71 struct btrfs_root *root); 72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 73 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 74 struct extent_io_tree *dirty_pages, 75 int mark); 76 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 77 struct extent_io_tree *pinned_extents); 78 static int btrfs_cleanup_transaction(struct btrfs_root *root); 79 static void btrfs_error_commit_super(struct btrfs_root *root); 80 81 /* 82 * btrfs_end_io_wq structs are used to do processing in task context when an IO 83 * is complete. This is used during reads to verify checksums, and it is used 84 * by writes to insert metadata for new file extents after IO is complete. 85 */ 86 struct btrfs_end_io_wq { 87 struct bio *bio; 88 bio_end_io_t *end_io; 89 void *private; 90 struct btrfs_fs_info *info; 91 int error; 92 enum btrfs_wq_endio_type metadata; 93 struct list_head list; 94 struct btrfs_work work; 95 }; 96 97 static struct kmem_cache *btrfs_end_io_wq_cache; 98 99 int __init btrfs_end_io_wq_init(void) 100 { 101 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 102 sizeof(struct btrfs_end_io_wq), 103 0, 104 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 105 NULL); 106 if (!btrfs_end_io_wq_cache) 107 return -ENOMEM; 108 return 0; 109 } 110 111 void btrfs_end_io_wq_exit(void) 112 { 113 kmem_cache_destroy(btrfs_end_io_wq_cache); 114 } 115 116 /* 117 * async submit bios are used to offload expensive checksumming 118 * onto the worker threads. They checksum file and metadata bios 119 * just before they are sent down the IO stack. 120 */ 121 struct async_submit_bio { 122 struct inode *inode; 123 struct bio *bio; 124 struct list_head list; 125 extent_submit_bio_hook_t *submit_bio_start; 126 extent_submit_bio_hook_t *submit_bio_done; 127 int rw; 128 int mirror_num; 129 unsigned long bio_flags; 130 /* 131 * bio_offset is optional, can be used if the pages in the bio 132 * can't tell us where in the file the bio should go 133 */ 134 u64 bio_offset; 135 struct btrfs_work work; 136 int error; 137 }; 138 139 /* 140 * Lockdep class keys for extent_buffer->lock's in this root. For a given 141 * eb, the lockdep key is determined by the btrfs_root it belongs to and 142 * the level the eb occupies in the tree. 143 * 144 * Different roots are used for different purposes and may nest inside each 145 * other and they require separate keysets. As lockdep keys should be 146 * static, assign keysets according to the purpose of the root as indicated 147 * by btrfs_root->objectid. This ensures that all special purpose roots 148 * have separate keysets. 149 * 150 * Lock-nesting across peer nodes is always done with the immediate parent 151 * node locked thus preventing deadlock. As lockdep doesn't know this, use 152 * subclass to avoid triggering lockdep warning in such cases. 153 * 154 * The key is set by the readpage_end_io_hook after the buffer has passed 155 * csum validation but before the pages are unlocked. It is also set by 156 * btrfs_init_new_buffer on freshly allocated blocks. 157 * 158 * We also add a check to make sure the highest level of the tree is the 159 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 160 * needs update as well. 161 */ 162 #ifdef CONFIG_DEBUG_LOCK_ALLOC 163 # if BTRFS_MAX_LEVEL != 8 164 # error 165 # endif 166 167 static struct btrfs_lockdep_keyset { 168 u64 id; /* root objectid */ 169 const char *name_stem; /* lock name stem */ 170 char names[BTRFS_MAX_LEVEL + 1][20]; 171 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 172 } btrfs_lockdep_keysets[] = { 173 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 174 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 175 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 176 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 177 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 178 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 179 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 180 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 181 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 182 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 183 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 184 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 185 { .id = 0, .name_stem = "tree" }, 186 }; 187 188 void __init btrfs_init_lockdep(void) 189 { 190 int i, j; 191 192 /* initialize lockdep class names */ 193 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 194 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 195 196 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 197 snprintf(ks->names[j], sizeof(ks->names[j]), 198 "btrfs-%s-%02d", ks->name_stem, j); 199 } 200 } 201 202 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 203 int level) 204 { 205 struct btrfs_lockdep_keyset *ks; 206 207 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 208 209 /* find the matching keyset, id 0 is the default entry */ 210 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 211 if (ks->id == objectid) 212 break; 213 214 lockdep_set_class_and_name(&eb->lock, 215 &ks->keys[level], ks->names[level]); 216 } 217 218 #endif 219 220 /* 221 * extents on the btree inode are pretty simple, there's one extent 222 * that covers the entire device 223 */ 224 static struct extent_map *btree_get_extent(struct inode *inode, 225 struct page *page, size_t pg_offset, u64 start, u64 len, 226 int create) 227 { 228 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 229 struct extent_map *em; 230 int ret; 231 232 read_lock(&em_tree->lock); 233 em = lookup_extent_mapping(em_tree, start, len); 234 if (em) { 235 em->bdev = 236 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 237 read_unlock(&em_tree->lock); 238 goto out; 239 } 240 read_unlock(&em_tree->lock); 241 242 em = alloc_extent_map(); 243 if (!em) { 244 em = ERR_PTR(-ENOMEM); 245 goto out; 246 } 247 em->start = 0; 248 em->len = (u64)-1; 249 em->block_len = (u64)-1; 250 em->block_start = 0; 251 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 252 253 write_lock(&em_tree->lock); 254 ret = add_extent_mapping(em_tree, em, 0); 255 if (ret == -EEXIST) { 256 free_extent_map(em); 257 em = lookup_extent_mapping(em_tree, start, len); 258 if (!em) 259 em = ERR_PTR(-EIO); 260 } else if (ret) { 261 free_extent_map(em); 262 em = ERR_PTR(ret); 263 } 264 write_unlock(&em_tree->lock); 265 266 out: 267 return em; 268 } 269 270 u32 btrfs_csum_data(char *data, u32 seed, size_t len) 271 { 272 return btrfs_crc32c(seed, data, len); 273 } 274 275 void btrfs_csum_final(u32 crc, char *result) 276 { 277 put_unaligned_le32(~crc, result); 278 } 279 280 /* 281 * compute the csum for a btree block, and either verify it or write it 282 * into the csum field of the block. 283 */ 284 static int csum_tree_block(struct btrfs_fs_info *fs_info, 285 struct extent_buffer *buf, 286 int verify) 287 { 288 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 289 char *result = NULL; 290 unsigned long len; 291 unsigned long cur_len; 292 unsigned long offset = BTRFS_CSUM_SIZE; 293 char *kaddr; 294 unsigned long map_start; 295 unsigned long map_len; 296 int err; 297 u32 crc = ~(u32)0; 298 unsigned long inline_result; 299 300 len = buf->len - offset; 301 while (len > 0) { 302 err = map_private_extent_buffer(buf, offset, 32, 303 &kaddr, &map_start, &map_len); 304 if (err) 305 return err; 306 cur_len = min(len, map_len - (offset - map_start)); 307 crc = btrfs_csum_data(kaddr + offset - map_start, 308 crc, cur_len); 309 len -= cur_len; 310 offset += cur_len; 311 } 312 if (csum_size > sizeof(inline_result)) { 313 result = kzalloc(csum_size, GFP_NOFS); 314 if (!result) 315 return -ENOMEM; 316 } else { 317 result = (char *)&inline_result; 318 } 319 320 btrfs_csum_final(crc, result); 321 322 if (verify) { 323 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 324 u32 val; 325 u32 found = 0; 326 memcpy(&found, result, csum_size); 327 328 read_extent_buffer(buf, &val, 0, csum_size); 329 btrfs_warn_rl(fs_info, 330 "%s checksum verify failed on %llu wanted %X found %X " 331 "level %d", 332 fs_info->sb->s_id, buf->start, 333 val, found, btrfs_header_level(buf)); 334 if (result != (char *)&inline_result) 335 kfree(result); 336 return -EUCLEAN; 337 } 338 } else { 339 write_extent_buffer(buf, result, 0, csum_size); 340 } 341 if (result != (char *)&inline_result) 342 kfree(result); 343 return 0; 344 } 345 346 /* 347 * we can't consider a given block up to date unless the transid of the 348 * block matches the transid in the parent node's pointer. This is how we 349 * detect blocks that either didn't get written at all or got written 350 * in the wrong place. 351 */ 352 static int verify_parent_transid(struct extent_io_tree *io_tree, 353 struct extent_buffer *eb, u64 parent_transid, 354 int atomic) 355 { 356 struct extent_state *cached_state = NULL; 357 int ret; 358 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 359 360 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 361 return 0; 362 363 if (atomic) 364 return -EAGAIN; 365 366 if (need_lock) { 367 btrfs_tree_read_lock(eb); 368 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 369 } 370 371 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 372 &cached_state); 373 if (extent_buffer_uptodate(eb) && 374 btrfs_header_generation(eb) == parent_transid) { 375 ret = 0; 376 goto out; 377 } 378 btrfs_err_rl(eb->fs_info, 379 "parent transid verify failed on %llu wanted %llu found %llu", 380 eb->start, 381 parent_transid, btrfs_header_generation(eb)); 382 ret = 1; 383 384 /* 385 * Things reading via commit roots that don't have normal protection, 386 * like send, can have a really old block in cache that may point at a 387 * block that has been freed and re-allocated. So don't clear uptodate 388 * if we find an eb that is under IO (dirty/writeback) because we could 389 * end up reading in the stale data and then writing it back out and 390 * making everybody very sad. 391 */ 392 if (!extent_buffer_under_io(eb)) 393 clear_extent_buffer_uptodate(eb); 394 out: 395 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 396 &cached_state, GFP_NOFS); 397 if (need_lock) 398 btrfs_tree_read_unlock_blocking(eb); 399 return ret; 400 } 401 402 /* 403 * Return 0 if the superblock checksum type matches the checksum value of that 404 * algorithm. Pass the raw disk superblock data. 405 */ 406 static int btrfs_check_super_csum(char *raw_disk_sb) 407 { 408 struct btrfs_super_block *disk_sb = 409 (struct btrfs_super_block *)raw_disk_sb; 410 u16 csum_type = btrfs_super_csum_type(disk_sb); 411 int ret = 0; 412 413 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 414 u32 crc = ~(u32)0; 415 const int csum_size = sizeof(crc); 416 char result[csum_size]; 417 418 /* 419 * The super_block structure does not span the whole 420 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 421 * is filled with zeros and is included in the checksum. 422 */ 423 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 424 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 425 btrfs_csum_final(crc, result); 426 427 if (memcmp(raw_disk_sb, result, csum_size)) 428 ret = 1; 429 } 430 431 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 432 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n", 433 csum_type); 434 ret = 1; 435 } 436 437 return ret; 438 } 439 440 /* 441 * helper to read a given tree block, doing retries as required when 442 * the checksums don't match and we have alternate mirrors to try. 443 */ 444 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 445 struct extent_buffer *eb, 446 u64 start, u64 parent_transid) 447 { 448 struct extent_io_tree *io_tree; 449 int failed = 0; 450 int ret; 451 int num_copies = 0; 452 int mirror_num = 0; 453 int failed_mirror = 0; 454 455 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 456 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 457 while (1) { 458 ret = read_extent_buffer_pages(io_tree, eb, start, 459 WAIT_COMPLETE, 460 btree_get_extent, mirror_num); 461 if (!ret) { 462 if (!verify_parent_transid(io_tree, eb, 463 parent_transid, 0)) 464 break; 465 else 466 ret = -EIO; 467 } 468 469 /* 470 * This buffer's crc is fine, but its contents are corrupted, so 471 * there is no reason to read the other copies, they won't be 472 * any less wrong. 473 */ 474 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 475 break; 476 477 num_copies = btrfs_num_copies(root->fs_info, 478 eb->start, eb->len); 479 if (num_copies == 1) 480 break; 481 482 if (!failed_mirror) { 483 failed = 1; 484 failed_mirror = eb->read_mirror; 485 } 486 487 mirror_num++; 488 if (mirror_num == failed_mirror) 489 mirror_num++; 490 491 if (mirror_num > num_copies) 492 break; 493 } 494 495 if (failed && !ret && failed_mirror) 496 repair_eb_io_failure(root, eb, failed_mirror); 497 498 return ret; 499 } 500 501 /* 502 * checksum a dirty tree block before IO. This has extra checks to make sure 503 * we only fill in the checksum field in the first page of a multi-page block 504 */ 505 506 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 507 { 508 u64 start = page_offset(page); 509 u64 found_start; 510 struct extent_buffer *eb; 511 512 eb = (struct extent_buffer *)page->private; 513 if (page != eb->pages[0]) 514 return 0; 515 516 found_start = btrfs_header_bytenr(eb); 517 /* 518 * Please do not consolidate these warnings into a single if. 519 * It is useful to know what went wrong. 520 */ 521 if (WARN_ON(found_start != start)) 522 return -EUCLEAN; 523 if (WARN_ON(!PageUptodate(page))) 524 return -EUCLEAN; 525 526 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid, 527 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0); 528 529 return csum_tree_block(fs_info, eb, 0); 530 } 531 532 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info, 533 struct extent_buffer *eb) 534 { 535 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 536 u8 fsid[BTRFS_UUID_SIZE]; 537 int ret = 1; 538 539 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 540 while (fs_devices) { 541 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 542 ret = 0; 543 break; 544 } 545 fs_devices = fs_devices->seed; 546 } 547 return ret; 548 } 549 550 #define CORRUPT(reason, eb, root, slot) \ 551 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \ 552 "root=%llu, slot=%d", reason, \ 553 btrfs_header_bytenr(eb), root->objectid, slot) 554 555 static noinline int check_leaf(struct btrfs_root *root, 556 struct extent_buffer *leaf) 557 { 558 struct btrfs_key key; 559 struct btrfs_key leaf_key; 560 u32 nritems = btrfs_header_nritems(leaf); 561 int slot; 562 563 if (nritems == 0) 564 return 0; 565 566 /* Check the 0 item */ 567 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 568 BTRFS_LEAF_DATA_SIZE(root)) { 569 CORRUPT("invalid item offset size pair", leaf, root, 0); 570 return -EIO; 571 } 572 573 /* 574 * Check to make sure each items keys are in the correct order and their 575 * offsets make sense. We only have to loop through nritems-1 because 576 * we check the current slot against the next slot, which verifies the 577 * next slot's offset+size makes sense and that the current's slot 578 * offset is correct. 579 */ 580 for (slot = 0; slot < nritems - 1; slot++) { 581 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 582 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 583 584 /* Make sure the keys are in the right order */ 585 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 586 CORRUPT("bad key order", leaf, root, slot); 587 return -EIO; 588 } 589 590 /* 591 * Make sure the offset and ends are right, remember that the 592 * item data starts at the end of the leaf and grows towards the 593 * front. 594 */ 595 if (btrfs_item_offset_nr(leaf, slot) != 596 btrfs_item_end_nr(leaf, slot + 1)) { 597 CORRUPT("slot offset bad", leaf, root, slot); 598 return -EIO; 599 } 600 601 /* 602 * Check to make sure that we don't point outside of the leaf, 603 * just in case all the items are consistent to each other, but 604 * all point outside of the leaf. 605 */ 606 if (btrfs_item_end_nr(leaf, slot) > 607 BTRFS_LEAF_DATA_SIZE(root)) { 608 CORRUPT("slot end outside of leaf", leaf, root, slot); 609 return -EIO; 610 } 611 } 612 613 return 0; 614 } 615 616 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 617 u64 phy_offset, struct page *page, 618 u64 start, u64 end, int mirror) 619 { 620 u64 found_start; 621 int found_level; 622 struct extent_buffer *eb; 623 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 624 struct btrfs_fs_info *fs_info = root->fs_info; 625 int ret = 0; 626 int reads_done; 627 628 if (!page->private) 629 goto out; 630 631 eb = (struct extent_buffer *)page->private; 632 633 /* the pending IO might have been the only thing that kept this buffer 634 * in memory. Make sure we have a ref for all this other checks 635 */ 636 extent_buffer_get(eb); 637 638 reads_done = atomic_dec_and_test(&eb->io_pages); 639 if (!reads_done) 640 goto err; 641 642 eb->read_mirror = mirror; 643 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 644 ret = -EIO; 645 goto err; 646 } 647 648 found_start = btrfs_header_bytenr(eb); 649 if (found_start != eb->start) { 650 btrfs_err_rl(fs_info, "bad tree block start %llu %llu", 651 found_start, eb->start); 652 ret = -EIO; 653 goto err; 654 } 655 if (check_tree_block_fsid(fs_info, eb)) { 656 btrfs_err_rl(fs_info, "bad fsid on block %llu", 657 eb->start); 658 ret = -EIO; 659 goto err; 660 } 661 found_level = btrfs_header_level(eb); 662 if (found_level >= BTRFS_MAX_LEVEL) { 663 btrfs_err(fs_info, "bad tree block level %d", 664 (int)btrfs_header_level(eb)); 665 ret = -EIO; 666 goto err; 667 } 668 669 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 670 eb, found_level); 671 672 ret = csum_tree_block(fs_info, eb, 1); 673 if (ret) 674 goto err; 675 676 /* 677 * If this is a leaf block and it is corrupt, set the corrupt bit so 678 * that we don't try and read the other copies of this block, just 679 * return -EIO. 680 */ 681 if (found_level == 0 && check_leaf(root, eb)) { 682 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 683 ret = -EIO; 684 } 685 686 if (!ret) 687 set_extent_buffer_uptodate(eb); 688 err: 689 if (reads_done && 690 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 691 btree_readahead_hook(fs_info, eb, eb->start, ret); 692 693 if (ret) { 694 /* 695 * our io error hook is going to dec the io pages 696 * again, we have to make sure it has something 697 * to decrement 698 */ 699 atomic_inc(&eb->io_pages); 700 clear_extent_buffer_uptodate(eb); 701 } 702 free_extent_buffer(eb); 703 out: 704 return ret; 705 } 706 707 static int btree_io_failed_hook(struct page *page, int failed_mirror) 708 { 709 struct extent_buffer *eb; 710 711 eb = (struct extent_buffer *)page->private; 712 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 713 eb->read_mirror = failed_mirror; 714 atomic_dec(&eb->io_pages); 715 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 716 btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO); 717 return -EIO; /* we fixed nothing */ 718 } 719 720 static void end_workqueue_bio(struct bio *bio) 721 { 722 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 723 struct btrfs_fs_info *fs_info; 724 struct btrfs_workqueue *wq; 725 btrfs_work_func_t func; 726 727 fs_info = end_io_wq->info; 728 end_io_wq->error = bio->bi_error; 729 730 if (bio->bi_rw & REQ_WRITE) { 731 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 732 wq = fs_info->endio_meta_write_workers; 733 func = btrfs_endio_meta_write_helper; 734 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 735 wq = fs_info->endio_freespace_worker; 736 func = btrfs_freespace_write_helper; 737 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 738 wq = fs_info->endio_raid56_workers; 739 func = btrfs_endio_raid56_helper; 740 } else { 741 wq = fs_info->endio_write_workers; 742 func = btrfs_endio_write_helper; 743 } 744 } else { 745 if (unlikely(end_io_wq->metadata == 746 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 747 wq = fs_info->endio_repair_workers; 748 func = btrfs_endio_repair_helper; 749 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 750 wq = fs_info->endio_raid56_workers; 751 func = btrfs_endio_raid56_helper; 752 } else if (end_io_wq->metadata) { 753 wq = fs_info->endio_meta_workers; 754 func = btrfs_endio_meta_helper; 755 } else { 756 wq = fs_info->endio_workers; 757 func = btrfs_endio_helper; 758 } 759 } 760 761 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 762 btrfs_queue_work(wq, &end_io_wq->work); 763 } 764 765 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 766 enum btrfs_wq_endio_type metadata) 767 { 768 struct btrfs_end_io_wq *end_io_wq; 769 770 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 771 if (!end_io_wq) 772 return -ENOMEM; 773 774 end_io_wq->private = bio->bi_private; 775 end_io_wq->end_io = bio->bi_end_io; 776 end_io_wq->info = info; 777 end_io_wq->error = 0; 778 end_io_wq->bio = bio; 779 end_io_wq->metadata = metadata; 780 781 bio->bi_private = end_io_wq; 782 bio->bi_end_io = end_workqueue_bio; 783 return 0; 784 } 785 786 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 787 { 788 unsigned long limit = min_t(unsigned long, 789 info->thread_pool_size, 790 info->fs_devices->open_devices); 791 return 256 * limit; 792 } 793 794 static void run_one_async_start(struct btrfs_work *work) 795 { 796 struct async_submit_bio *async; 797 int ret; 798 799 async = container_of(work, struct async_submit_bio, work); 800 ret = async->submit_bio_start(async->inode, async->rw, async->bio, 801 async->mirror_num, async->bio_flags, 802 async->bio_offset); 803 if (ret) 804 async->error = ret; 805 } 806 807 static void run_one_async_done(struct btrfs_work *work) 808 { 809 struct btrfs_fs_info *fs_info; 810 struct async_submit_bio *async; 811 int limit; 812 813 async = container_of(work, struct async_submit_bio, work); 814 fs_info = BTRFS_I(async->inode)->root->fs_info; 815 816 limit = btrfs_async_submit_limit(fs_info); 817 limit = limit * 2 / 3; 818 819 /* 820 * atomic_dec_return implies a barrier for waitqueue_active 821 */ 822 if (atomic_dec_return(&fs_info->nr_async_submits) < limit && 823 waitqueue_active(&fs_info->async_submit_wait)) 824 wake_up(&fs_info->async_submit_wait); 825 826 /* If an error occurred we just want to clean up the bio and move on */ 827 if (async->error) { 828 async->bio->bi_error = async->error; 829 bio_endio(async->bio); 830 return; 831 } 832 833 async->submit_bio_done(async->inode, async->rw, async->bio, 834 async->mirror_num, async->bio_flags, 835 async->bio_offset); 836 } 837 838 static void run_one_async_free(struct btrfs_work *work) 839 { 840 struct async_submit_bio *async; 841 842 async = container_of(work, struct async_submit_bio, work); 843 kfree(async); 844 } 845 846 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 847 int rw, struct bio *bio, int mirror_num, 848 unsigned long bio_flags, 849 u64 bio_offset, 850 extent_submit_bio_hook_t *submit_bio_start, 851 extent_submit_bio_hook_t *submit_bio_done) 852 { 853 struct async_submit_bio *async; 854 855 async = kmalloc(sizeof(*async), GFP_NOFS); 856 if (!async) 857 return -ENOMEM; 858 859 async->inode = inode; 860 async->rw = rw; 861 async->bio = bio; 862 async->mirror_num = mirror_num; 863 async->submit_bio_start = submit_bio_start; 864 async->submit_bio_done = submit_bio_done; 865 866 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 867 run_one_async_done, run_one_async_free); 868 869 async->bio_flags = bio_flags; 870 async->bio_offset = bio_offset; 871 872 async->error = 0; 873 874 atomic_inc(&fs_info->nr_async_submits); 875 876 if (rw & REQ_SYNC) 877 btrfs_set_work_high_priority(&async->work); 878 879 btrfs_queue_work(fs_info->workers, &async->work); 880 881 while (atomic_read(&fs_info->async_submit_draining) && 882 atomic_read(&fs_info->nr_async_submits)) { 883 wait_event(fs_info->async_submit_wait, 884 (atomic_read(&fs_info->nr_async_submits) == 0)); 885 } 886 887 return 0; 888 } 889 890 static int btree_csum_one_bio(struct bio *bio) 891 { 892 struct bio_vec *bvec; 893 struct btrfs_root *root; 894 int i, ret = 0; 895 896 bio_for_each_segment_all(bvec, bio, i) { 897 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 898 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 899 if (ret) 900 break; 901 } 902 903 return ret; 904 } 905 906 static int __btree_submit_bio_start(struct inode *inode, int rw, 907 struct bio *bio, int mirror_num, 908 unsigned long bio_flags, 909 u64 bio_offset) 910 { 911 /* 912 * when we're called for a write, we're already in the async 913 * submission context. Just jump into btrfs_map_bio 914 */ 915 return btree_csum_one_bio(bio); 916 } 917 918 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 919 int mirror_num, unsigned long bio_flags, 920 u64 bio_offset) 921 { 922 int ret; 923 924 /* 925 * when we're called for a write, we're already in the async 926 * submission context. Just jump into btrfs_map_bio 927 */ 928 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 929 if (ret) { 930 bio->bi_error = ret; 931 bio_endio(bio); 932 } 933 return ret; 934 } 935 936 static int check_async_write(struct inode *inode, unsigned long bio_flags) 937 { 938 if (bio_flags & EXTENT_BIO_TREE_LOG) 939 return 0; 940 #ifdef CONFIG_X86 941 if (static_cpu_has(X86_FEATURE_XMM4_2)) 942 return 0; 943 #endif 944 return 1; 945 } 946 947 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 948 int mirror_num, unsigned long bio_flags, 949 u64 bio_offset) 950 { 951 int async = check_async_write(inode, bio_flags); 952 int ret; 953 954 if (!(rw & REQ_WRITE)) { 955 /* 956 * called for a read, do the setup so that checksum validation 957 * can happen in the async kernel threads 958 */ 959 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 960 bio, BTRFS_WQ_ENDIO_METADATA); 961 if (ret) 962 goto out_w_error; 963 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 964 mirror_num, 0); 965 } else if (!async) { 966 ret = btree_csum_one_bio(bio); 967 if (ret) 968 goto out_w_error; 969 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 970 mirror_num, 0); 971 } else { 972 /* 973 * kthread helpers are used to submit writes so that 974 * checksumming can happen in parallel across all CPUs 975 */ 976 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 977 inode, rw, bio, mirror_num, 0, 978 bio_offset, 979 __btree_submit_bio_start, 980 __btree_submit_bio_done); 981 } 982 983 if (ret) 984 goto out_w_error; 985 return 0; 986 987 out_w_error: 988 bio->bi_error = ret; 989 bio_endio(bio); 990 return ret; 991 } 992 993 #ifdef CONFIG_MIGRATION 994 static int btree_migratepage(struct address_space *mapping, 995 struct page *newpage, struct page *page, 996 enum migrate_mode mode) 997 { 998 /* 999 * we can't safely write a btree page from here, 1000 * we haven't done the locking hook 1001 */ 1002 if (PageDirty(page)) 1003 return -EAGAIN; 1004 /* 1005 * Buffers may be managed in a filesystem specific way. 1006 * We must have no buffers or drop them. 1007 */ 1008 if (page_has_private(page) && 1009 !try_to_release_page(page, GFP_KERNEL)) 1010 return -EAGAIN; 1011 return migrate_page(mapping, newpage, page, mode); 1012 } 1013 #endif 1014 1015 1016 static int btree_writepages(struct address_space *mapping, 1017 struct writeback_control *wbc) 1018 { 1019 struct btrfs_fs_info *fs_info; 1020 int ret; 1021 1022 if (wbc->sync_mode == WB_SYNC_NONE) { 1023 1024 if (wbc->for_kupdate) 1025 return 0; 1026 1027 fs_info = BTRFS_I(mapping->host)->root->fs_info; 1028 /* this is a bit racy, but that's ok */ 1029 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 1030 BTRFS_DIRTY_METADATA_THRESH); 1031 if (ret < 0) 1032 return 0; 1033 } 1034 return btree_write_cache_pages(mapping, wbc); 1035 } 1036 1037 static int btree_readpage(struct file *file, struct page *page) 1038 { 1039 struct extent_io_tree *tree; 1040 tree = &BTRFS_I(page->mapping->host)->io_tree; 1041 return extent_read_full_page(tree, page, btree_get_extent, 0); 1042 } 1043 1044 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 1045 { 1046 if (PageWriteback(page) || PageDirty(page)) 1047 return 0; 1048 1049 return try_release_extent_buffer(page); 1050 } 1051 1052 static void btree_invalidatepage(struct page *page, unsigned int offset, 1053 unsigned int length) 1054 { 1055 struct extent_io_tree *tree; 1056 tree = &BTRFS_I(page->mapping->host)->io_tree; 1057 extent_invalidatepage(tree, page, offset); 1058 btree_releasepage(page, GFP_NOFS); 1059 if (PagePrivate(page)) { 1060 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 1061 "page private not zero on page %llu", 1062 (unsigned long long)page_offset(page)); 1063 ClearPagePrivate(page); 1064 set_page_private(page, 0); 1065 put_page(page); 1066 } 1067 } 1068 1069 static int btree_set_page_dirty(struct page *page) 1070 { 1071 #ifdef DEBUG 1072 struct extent_buffer *eb; 1073 1074 BUG_ON(!PagePrivate(page)); 1075 eb = (struct extent_buffer *)page->private; 1076 BUG_ON(!eb); 1077 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1078 BUG_ON(!atomic_read(&eb->refs)); 1079 btrfs_assert_tree_locked(eb); 1080 #endif 1081 return __set_page_dirty_nobuffers(page); 1082 } 1083 1084 static const struct address_space_operations btree_aops = { 1085 .readpage = btree_readpage, 1086 .writepages = btree_writepages, 1087 .releasepage = btree_releasepage, 1088 .invalidatepage = btree_invalidatepage, 1089 #ifdef CONFIG_MIGRATION 1090 .migratepage = btree_migratepage, 1091 #endif 1092 .set_page_dirty = btree_set_page_dirty, 1093 }; 1094 1095 void readahead_tree_block(struct btrfs_root *root, u64 bytenr) 1096 { 1097 struct extent_buffer *buf = NULL; 1098 struct inode *btree_inode = root->fs_info->btree_inode; 1099 1100 buf = btrfs_find_create_tree_block(root, bytenr); 1101 if (!buf) 1102 return; 1103 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1104 buf, 0, WAIT_NONE, btree_get_extent, 0); 1105 free_extent_buffer(buf); 1106 } 1107 1108 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, 1109 int mirror_num, struct extent_buffer **eb) 1110 { 1111 struct extent_buffer *buf = NULL; 1112 struct inode *btree_inode = root->fs_info->btree_inode; 1113 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1114 int ret; 1115 1116 buf = btrfs_find_create_tree_block(root, bytenr); 1117 if (!buf) 1118 return 0; 1119 1120 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1121 1122 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1123 btree_get_extent, mirror_num); 1124 if (ret) { 1125 free_extent_buffer(buf); 1126 return ret; 1127 } 1128 1129 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1130 free_extent_buffer(buf); 1131 return -EIO; 1132 } else if (extent_buffer_uptodate(buf)) { 1133 *eb = buf; 1134 } else { 1135 free_extent_buffer(buf); 1136 } 1137 return 0; 1138 } 1139 1140 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info, 1141 u64 bytenr) 1142 { 1143 return find_extent_buffer(fs_info, bytenr); 1144 } 1145 1146 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1147 u64 bytenr) 1148 { 1149 if (btrfs_test_is_dummy_root(root)) 1150 return alloc_test_extent_buffer(root->fs_info, bytenr, 1151 root->nodesize); 1152 return alloc_extent_buffer(root->fs_info, bytenr); 1153 } 1154 1155 1156 int btrfs_write_tree_block(struct extent_buffer *buf) 1157 { 1158 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1159 buf->start + buf->len - 1); 1160 } 1161 1162 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1163 { 1164 return filemap_fdatawait_range(buf->pages[0]->mapping, 1165 buf->start, buf->start + buf->len - 1); 1166 } 1167 1168 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1169 u64 parent_transid) 1170 { 1171 struct extent_buffer *buf = NULL; 1172 int ret; 1173 1174 buf = btrfs_find_create_tree_block(root, bytenr); 1175 if (!buf) 1176 return ERR_PTR(-ENOMEM); 1177 1178 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1179 if (ret) { 1180 free_extent_buffer(buf); 1181 return ERR_PTR(ret); 1182 } 1183 return buf; 1184 1185 } 1186 1187 void clean_tree_block(struct btrfs_trans_handle *trans, 1188 struct btrfs_fs_info *fs_info, 1189 struct extent_buffer *buf) 1190 { 1191 if (btrfs_header_generation(buf) == 1192 fs_info->running_transaction->transid) { 1193 btrfs_assert_tree_locked(buf); 1194 1195 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1196 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 1197 -buf->len, 1198 fs_info->dirty_metadata_batch); 1199 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1200 btrfs_set_lock_blocking(buf); 1201 clear_extent_buffer_dirty(buf); 1202 } 1203 } 1204 } 1205 1206 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1207 { 1208 struct btrfs_subvolume_writers *writers; 1209 int ret; 1210 1211 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1212 if (!writers) 1213 return ERR_PTR(-ENOMEM); 1214 1215 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL); 1216 if (ret < 0) { 1217 kfree(writers); 1218 return ERR_PTR(ret); 1219 } 1220 1221 init_waitqueue_head(&writers->wait); 1222 return writers; 1223 } 1224 1225 static void 1226 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1227 { 1228 percpu_counter_destroy(&writers->counter); 1229 kfree(writers); 1230 } 1231 1232 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize, 1233 struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1234 u64 objectid) 1235 { 1236 root->node = NULL; 1237 root->commit_root = NULL; 1238 root->sectorsize = sectorsize; 1239 root->nodesize = nodesize; 1240 root->stripesize = stripesize; 1241 root->state = 0; 1242 root->orphan_cleanup_state = 0; 1243 1244 root->objectid = objectid; 1245 root->last_trans = 0; 1246 root->highest_objectid = 0; 1247 root->nr_delalloc_inodes = 0; 1248 root->nr_ordered_extents = 0; 1249 root->name = NULL; 1250 root->inode_tree = RB_ROOT; 1251 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1252 root->block_rsv = NULL; 1253 root->orphan_block_rsv = NULL; 1254 1255 INIT_LIST_HEAD(&root->dirty_list); 1256 INIT_LIST_HEAD(&root->root_list); 1257 INIT_LIST_HEAD(&root->delalloc_inodes); 1258 INIT_LIST_HEAD(&root->delalloc_root); 1259 INIT_LIST_HEAD(&root->ordered_extents); 1260 INIT_LIST_HEAD(&root->ordered_root); 1261 INIT_LIST_HEAD(&root->logged_list[0]); 1262 INIT_LIST_HEAD(&root->logged_list[1]); 1263 spin_lock_init(&root->orphan_lock); 1264 spin_lock_init(&root->inode_lock); 1265 spin_lock_init(&root->delalloc_lock); 1266 spin_lock_init(&root->ordered_extent_lock); 1267 spin_lock_init(&root->accounting_lock); 1268 spin_lock_init(&root->log_extents_lock[0]); 1269 spin_lock_init(&root->log_extents_lock[1]); 1270 mutex_init(&root->objectid_mutex); 1271 mutex_init(&root->log_mutex); 1272 mutex_init(&root->ordered_extent_mutex); 1273 mutex_init(&root->delalloc_mutex); 1274 init_waitqueue_head(&root->log_writer_wait); 1275 init_waitqueue_head(&root->log_commit_wait[0]); 1276 init_waitqueue_head(&root->log_commit_wait[1]); 1277 INIT_LIST_HEAD(&root->log_ctxs[0]); 1278 INIT_LIST_HEAD(&root->log_ctxs[1]); 1279 atomic_set(&root->log_commit[0], 0); 1280 atomic_set(&root->log_commit[1], 0); 1281 atomic_set(&root->log_writers, 0); 1282 atomic_set(&root->log_batch, 0); 1283 atomic_set(&root->orphan_inodes, 0); 1284 atomic_set(&root->refs, 1); 1285 atomic_set(&root->will_be_snapshoted, 0); 1286 atomic_set(&root->qgroup_meta_rsv, 0); 1287 root->log_transid = 0; 1288 root->log_transid_committed = -1; 1289 root->last_log_commit = 0; 1290 if (fs_info) 1291 extent_io_tree_init(&root->dirty_log_pages, 1292 fs_info->btree_inode->i_mapping); 1293 1294 memset(&root->root_key, 0, sizeof(root->root_key)); 1295 memset(&root->root_item, 0, sizeof(root->root_item)); 1296 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1297 if (fs_info) 1298 root->defrag_trans_start = fs_info->generation; 1299 else 1300 root->defrag_trans_start = 0; 1301 root->root_key.objectid = objectid; 1302 root->anon_dev = 0; 1303 1304 spin_lock_init(&root->root_item_lock); 1305 } 1306 1307 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1308 gfp_t flags) 1309 { 1310 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1311 if (root) 1312 root->fs_info = fs_info; 1313 return root; 1314 } 1315 1316 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1317 /* Should only be used by the testing infrastructure */ 1318 struct btrfs_root *btrfs_alloc_dummy_root(u32 sectorsize, u32 nodesize) 1319 { 1320 struct btrfs_root *root; 1321 1322 root = btrfs_alloc_root(NULL, GFP_KERNEL); 1323 if (!root) 1324 return ERR_PTR(-ENOMEM); 1325 /* We don't use the stripesize in selftest, set it as sectorsize */ 1326 __setup_root(nodesize, sectorsize, sectorsize, root, NULL, 1327 BTRFS_ROOT_TREE_OBJECTID); 1328 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state); 1329 root->alloc_bytenr = 0; 1330 1331 return root; 1332 } 1333 #endif 1334 1335 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1336 struct btrfs_fs_info *fs_info, 1337 u64 objectid) 1338 { 1339 struct extent_buffer *leaf; 1340 struct btrfs_root *tree_root = fs_info->tree_root; 1341 struct btrfs_root *root; 1342 struct btrfs_key key; 1343 int ret = 0; 1344 uuid_le uuid; 1345 1346 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1347 if (!root) 1348 return ERR_PTR(-ENOMEM); 1349 1350 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1351 tree_root->stripesize, root, fs_info, objectid); 1352 root->root_key.objectid = objectid; 1353 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1354 root->root_key.offset = 0; 1355 1356 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1357 if (IS_ERR(leaf)) { 1358 ret = PTR_ERR(leaf); 1359 leaf = NULL; 1360 goto fail; 1361 } 1362 1363 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1364 btrfs_set_header_bytenr(leaf, leaf->start); 1365 btrfs_set_header_generation(leaf, trans->transid); 1366 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1367 btrfs_set_header_owner(leaf, objectid); 1368 root->node = leaf; 1369 1370 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(), 1371 BTRFS_FSID_SIZE); 1372 write_extent_buffer(leaf, fs_info->chunk_tree_uuid, 1373 btrfs_header_chunk_tree_uuid(leaf), 1374 BTRFS_UUID_SIZE); 1375 btrfs_mark_buffer_dirty(leaf); 1376 1377 root->commit_root = btrfs_root_node(root); 1378 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1379 1380 root->root_item.flags = 0; 1381 root->root_item.byte_limit = 0; 1382 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1383 btrfs_set_root_generation(&root->root_item, trans->transid); 1384 btrfs_set_root_level(&root->root_item, 0); 1385 btrfs_set_root_refs(&root->root_item, 1); 1386 btrfs_set_root_used(&root->root_item, leaf->len); 1387 btrfs_set_root_last_snapshot(&root->root_item, 0); 1388 btrfs_set_root_dirid(&root->root_item, 0); 1389 uuid_le_gen(&uuid); 1390 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1391 root->root_item.drop_level = 0; 1392 1393 key.objectid = objectid; 1394 key.type = BTRFS_ROOT_ITEM_KEY; 1395 key.offset = 0; 1396 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1397 if (ret) 1398 goto fail; 1399 1400 btrfs_tree_unlock(leaf); 1401 1402 return root; 1403 1404 fail: 1405 if (leaf) { 1406 btrfs_tree_unlock(leaf); 1407 free_extent_buffer(root->commit_root); 1408 free_extent_buffer(leaf); 1409 } 1410 kfree(root); 1411 1412 return ERR_PTR(ret); 1413 } 1414 1415 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1416 struct btrfs_fs_info *fs_info) 1417 { 1418 struct btrfs_root *root; 1419 struct btrfs_root *tree_root = fs_info->tree_root; 1420 struct extent_buffer *leaf; 1421 1422 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1423 if (!root) 1424 return ERR_PTR(-ENOMEM); 1425 1426 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1427 tree_root->stripesize, root, fs_info, 1428 BTRFS_TREE_LOG_OBJECTID); 1429 1430 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1431 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1432 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1433 1434 /* 1435 * DON'T set REF_COWS for log trees 1436 * 1437 * log trees do not get reference counted because they go away 1438 * before a real commit is actually done. They do store pointers 1439 * to file data extents, and those reference counts still get 1440 * updated (along with back refs to the log tree). 1441 */ 1442 1443 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1444 NULL, 0, 0, 0); 1445 if (IS_ERR(leaf)) { 1446 kfree(root); 1447 return ERR_CAST(leaf); 1448 } 1449 1450 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1451 btrfs_set_header_bytenr(leaf, leaf->start); 1452 btrfs_set_header_generation(leaf, trans->transid); 1453 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1454 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1455 root->node = leaf; 1456 1457 write_extent_buffer(root->node, root->fs_info->fsid, 1458 btrfs_header_fsid(), BTRFS_FSID_SIZE); 1459 btrfs_mark_buffer_dirty(root->node); 1460 btrfs_tree_unlock(root->node); 1461 return root; 1462 } 1463 1464 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1465 struct btrfs_fs_info *fs_info) 1466 { 1467 struct btrfs_root *log_root; 1468 1469 log_root = alloc_log_tree(trans, fs_info); 1470 if (IS_ERR(log_root)) 1471 return PTR_ERR(log_root); 1472 WARN_ON(fs_info->log_root_tree); 1473 fs_info->log_root_tree = log_root; 1474 return 0; 1475 } 1476 1477 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1478 struct btrfs_root *root) 1479 { 1480 struct btrfs_root *log_root; 1481 struct btrfs_inode_item *inode_item; 1482 1483 log_root = alloc_log_tree(trans, root->fs_info); 1484 if (IS_ERR(log_root)) 1485 return PTR_ERR(log_root); 1486 1487 log_root->last_trans = trans->transid; 1488 log_root->root_key.offset = root->root_key.objectid; 1489 1490 inode_item = &log_root->root_item.inode; 1491 btrfs_set_stack_inode_generation(inode_item, 1); 1492 btrfs_set_stack_inode_size(inode_item, 3); 1493 btrfs_set_stack_inode_nlink(inode_item, 1); 1494 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize); 1495 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1496 1497 btrfs_set_root_node(&log_root->root_item, log_root->node); 1498 1499 WARN_ON(root->log_root); 1500 root->log_root = log_root; 1501 root->log_transid = 0; 1502 root->log_transid_committed = -1; 1503 root->last_log_commit = 0; 1504 return 0; 1505 } 1506 1507 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1508 struct btrfs_key *key) 1509 { 1510 struct btrfs_root *root; 1511 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1512 struct btrfs_path *path; 1513 u64 generation; 1514 int ret; 1515 1516 path = btrfs_alloc_path(); 1517 if (!path) 1518 return ERR_PTR(-ENOMEM); 1519 1520 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1521 if (!root) { 1522 ret = -ENOMEM; 1523 goto alloc_fail; 1524 } 1525 1526 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1527 tree_root->stripesize, root, fs_info, key->objectid); 1528 1529 ret = btrfs_find_root(tree_root, key, path, 1530 &root->root_item, &root->root_key); 1531 if (ret) { 1532 if (ret > 0) 1533 ret = -ENOENT; 1534 goto find_fail; 1535 } 1536 1537 generation = btrfs_root_generation(&root->root_item); 1538 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1539 generation); 1540 if (IS_ERR(root->node)) { 1541 ret = PTR_ERR(root->node); 1542 goto find_fail; 1543 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1544 ret = -EIO; 1545 free_extent_buffer(root->node); 1546 goto find_fail; 1547 } 1548 root->commit_root = btrfs_root_node(root); 1549 out: 1550 btrfs_free_path(path); 1551 return root; 1552 1553 find_fail: 1554 kfree(root); 1555 alloc_fail: 1556 root = ERR_PTR(ret); 1557 goto out; 1558 } 1559 1560 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1561 struct btrfs_key *location) 1562 { 1563 struct btrfs_root *root; 1564 1565 root = btrfs_read_tree_root(tree_root, location); 1566 if (IS_ERR(root)) 1567 return root; 1568 1569 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1570 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1571 btrfs_check_and_init_root_item(&root->root_item); 1572 } 1573 1574 return root; 1575 } 1576 1577 int btrfs_init_fs_root(struct btrfs_root *root) 1578 { 1579 int ret; 1580 struct btrfs_subvolume_writers *writers; 1581 1582 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1583 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1584 GFP_NOFS); 1585 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1586 ret = -ENOMEM; 1587 goto fail; 1588 } 1589 1590 writers = btrfs_alloc_subvolume_writers(); 1591 if (IS_ERR(writers)) { 1592 ret = PTR_ERR(writers); 1593 goto fail; 1594 } 1595 root->subv_writers = writers; 1596 1597 btrfs_init_free_ino_ctl(root); 1598 spin_lock_init(&root->ino_cache_lock); 1599 init_waitqueue_head(&root->ino_cache_wait); 1600 1601 ret = get_anon_bdev(&root->anon_dev); 1602 if (ret) 1603 goto free_writers; 1604 1605 mutex_lock(&root->objectid_mutex); 1606 ret = btrfs_find_highest_objectid(root, 1607 &root->highest_objectid); 1608 if (ret) { 1609 mutex_unlock(&root->objectid_mutex); 1610 goto free_root_dev; 1611 } 1612 1613 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1614 1615 mutex_unlock(&root->objectid_mutex); 1616 1617 return 0; 1618 1619 free_root_dev: 1620 free_anon_bdev(root->anon_dev); 1621 free_writers: 1622 btrfs_free_subvolume_writers(root->subv_writers); 1623 fail: 1624 kfree(root->free_ino_ctl); 1625 kfree(root->free_ino_pinned); 1626 return ret; 1627 } 1628 1629 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1630 u64 root_id) 1631 { 1632 struct btrfs_root *root; 1633 1634 spin_lock(&fs_info->fs_roots_radix_lock); 1635 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1636 (unsigned long)root_id); 1637 spin_unlock(&fs_info->fs_roots_radix_lock); 1638 return root; 1639 } 1640 1641 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1642 struct btrfs_root *root) 1643 { 1644 int ret; 1645 1646 ret = radix_tree_preload(GFP_NOFS); 1647 if (ret) 1648 return ret; 1649 1650 spin_lock(&fs_info->fs_roots_radix_lock); 1651 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1652 (unsigned long)root->root_key.objectid, 1653 root); 1654 if (ret == 0) 1655 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1656 spin_unlock(&fs_info->fs_roots_radix_lock); 1657 radix_tree_preload_end(); 1658 1659 return ret; 1660 } 1661 1662 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1663 struct btrfs_key *location, 1664 bool check_ref) 1665 { 1666 struct btrfs_root *root; 1667 struct btrfs_path *path; 1668 struct btrfs_key key; 1669 int ret; 1670 1671 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1672 return fs_info->tree_root; 1673 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1674 return fs_info->extent_root; 1675 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1676 return fs_info->chunk_root; 1677 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1678 return fs_info->dev_root; 1679 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1680 return fs_info->csum_root; 1681 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1682 return fs_info->quota_root ? fs_info->quota_root : 1683 ERR_PTR(-ENOENT); 1684 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1685 return fs_info->uuid_root ? fs_info->uuid_root : 1686 ERR_PTR(-ENOENT); 1687 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1688 return fs_info->free_space_root ? fs_info->free_space_root : 1689 ERR_PTR(-ENOENT); 1690 again: 1691 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1692 if (root) { 1693 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1694 return ERR_PTR(-ENOENT); 1695 return root; 1696 } 1697 1698 root = btrfs_read_fs_root(fs_info->tree_root, location); 1699 if (IS_ERR(root)) 1700 return root; 1701 1702 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1703 ret = -ENOENT; 1704 goto fail; 1705 } 1706 1707 ret = btrfs_init_fs_root(root); 1708 if (ret) 1709 goto fail; 1710 1711 path = btrfs_alloc_path(); 1712 if (!path) { 1713 ret = -ENOMEM; 1714 goto fail; 1715 } 1716 key.objectid = BTRFS_ORPHAN_OBJECTID; 1717 key.type = BTRFS_ORPHAN_ITEM_KEY; 1718 key.offset = location->objectid; 1719 1720 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1721 btrfs_free_path(path); 1722 if (ret < 0) 1723 goto fail; 1724 if (ret == 0) 1725 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1726 1727 ret = btrfs_insert_fs_root(fs_info, root); 1728 if (ret) { 1729 if (ret == -EEXIST) { 1730 free_fs_root(root); 1731 goto again; 1732 } 1733 goto fail; 1734 } 1735 return root; 1736 fail: 1737 free_fs_root(root); 1738 return ERR_PTR(ret); 1739 } 1740 1741 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1742 { 1743 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1744 int ret = 0; 1745 struct btrfs_device *device; 1746 struct backing_dev_info *bdi; 1747 1748 rcu_read_lock(); 1749 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1750 if (!device->bdev) 1751 continue; 1752 bdi = blk_get_backing_dev_info(device->bdev); 1753 if (bdi_congested(bdi, bdi_bits)) { 1754 ret = 1; 1755 break; 1756 } 1757 } 1758 rcu_read_unlock(); 1759 return ret; 1760 } 1761 1762 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1763 { 1764 int err; 1765 1766 err = bdi_setup_and_register(bdi, "btrfs"); 1767 if (err) 1768 return err; 1769 1770 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE; 1771 bdi->congested_fn = btrfs_congested_fn; 1772 bdi->congested_data = info; 1773 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 1774 return 0; 1775 } 1776 1777 /* 1778 * called by the kthread helper functions to finally call the bio end_io 1779 * functions. This is where read checksum verification actually happens 1780 */ 1781 static void end_workqueue_fn(struct btrfs_work *work) 1782 { 1783 struct bio *bio; 1784 struct btrfs_end_io_wq *end_io_wq; 1785 1786 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1787 bio = end_io_wq->bio; 1788 1789 bio->bi_error = end_io_wq->error; 1790 bio->bi_private = end_io_wq->private; 1791 bio->bi_end_io = end_io_wq->end_io; 1792 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1793 bio_endio(bio); 1794 } 1795 1796 static int cleaner_kthread(void *arg) 1797 { 1798 struct btrfs_root *root = arg; 1799 int again; 1800 struct btrfs_trans_handle *trans; 1801 1802 do { 1803 again = 0; 1804 1805 /* Make the cleaner go to sleep early. */ 1806 if (btrfs_need_cleaner_sleep(root)) 1807 goto sleep; 1808 1809 if (!mutex_trylock(&root->fs_info->cleaner_mutex)) 1810 goto sleep; 1811 1812 /* 1813 * Avoid the problem that we change the status of the fs 1814 * during the above check and trylock. 1815 */ 1816 if (btrfs_need_cleaner_sleep(root)) { 1817 mutex_unlock(&root->fs_info->cleaner_mutex); 1818 goto sleep; 1819 } 1820 1821 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex); 1822 btrfs_run_delayed_iputs(root); 1823 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex); 1824 1825 again = btrfs_clean_one_deleted_snapshot(root); 1826 mutex_unlock(&root->fs_info->cleaner_mutex); 1827 1828 /* 1829 * The defragger has dealt with the R/O remount and umount, 1830 * needn't do anything special here. 1831 */ 1832 btrfs_run_defrag_inodes(root->fs_info); 1833 1834 /* 1835 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1836 * with relocation (btrfs_relocate_chunk) and relocation 1837 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1838 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1839 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1840 * unused block groups. 1841 */ 1842 btrfs_delete_unused_bgs(root->fs_info); 1843 sleep: 1844 if (!again) { 1845 set_current_state(TASK_INTERRUPTIBLE); 1846 if (!kthread_should_stop()) 1847 schedule(); 1848 __set_current_state(TASK_RUNNING); 1849 } 1850 } while (!kthread_should_stop()); 1851 1852 /* 1853 * Transaction kthread is stopped before us and wakes us up. 1854 * However we might have started a new transaction and COWed some 1855 * tree blocks when deleting unused block groups for example. So 1856 * make sure we commit the transaction we started to have a clean 1857 * shutdown when evicting the btree inode - if it has dirty pages 1858 * when we do the final iput() on it, eviction will trigger a 1859 * writeback for it which will fail with null pointer dereferences 1860 * since work queues and other resources were already released and 1861 * destroyed by the time the iput/eviction/writeback is made. 1862 */ 1863 trans = btrfs_attach_transaction(root); 1864 if (IS_ERR(trans)) { 1865 if (PTR_ERR(trans) != -ENOENT) 1866 btrfs_err(root->fs_info, 1867 "cleaner transaction attach returned %ld", 1868 PTR_ERR(trans)); 1869 } else { 1870 int ret; 1871 1872 ret = btrfs_commit_transaction(trans, root); 1873 if (ret) 1874 btrfs_err(root->fs_info, 1875 "cleaner open transaction commit returned %d", 1876 ret); 1877 } 1878 1879 return 0; 1880 } 1881 1882 static int transaction_kthread(void *arg) 1883 { 1884 struct btrfs_root *root = arg; 1885 struct btrfs_trans_handle *trans; 1886 struct btrfs_transaction *cur; 1887 u64 transid; 1888 unsigned long now; 1889 unsigned long delay; 1890 bool cannot_commit; 1891 1892 do { 1893 cannot_commit = false; 1894 delay = HZ * root->fs_info->commit_interval; 1895 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1896 1897 spin_lock(&root->fs_info->trans_lock); 1898 cur = root->fs_info->running_transaction; 1899 if (!cur) { 1900 spin_unlock(&root->fs_info->trans_lock); 1901 goto sleep; 1902 } 1903 1904 now = get_seconds(); 1905 if (cur->state < TRANS_STATE_BLOCKED && 1906 (now < cur->start_time || 1907 now - cur->start_time < root->fs_info->commit_interval)) { 1908 spin_unlock(&root->fs_info->trans_lock); 1909 delay = HZ * 5; 1910 goto sleep; 1911 } 1912 transid = cur->transid; 1913 spin_unlock(&root->fs_info->trans_lock); 1914 1915 /* If the file system is aborted, this will always fail. */ 1916 trans = btrfs_attach_transaction(root); 1917 if (IS_ERR(trans)) { 1918 if (PTR_ERR(trans) != -ENOENT) 1919 cannot_commit = true; 1920 goto sleep; 1921 } 1922 if (transid == trans->transid) { 1923 btrfs_commit_transaction(trans, root); 1924 } else { 1925 btrfs_end_transaction(trans, root); 1926 } 1927 sleep: 1928 wake_up_process(root->fs_info->cleaner_kthread); 1929 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1930 1931 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1932 &root->fs_info->fs_state))) 1933 btrfs_cleanup_transaction(root); 1934 set_current_state(TASK_INTERRUPTIBLE); 1935 if (!kthread_should_stop() && 1936 (!btrfs_transaction_blocked(root->fs_info) || 1937 cannot_commit)) 1938 schedule_timeout(delay); 1939 __set_current_state(TASK_RUNNING); 1940 } while (!kthread_should_stop()); 1941 return 0; 1942 } 1943 1944 /* 1945 * this will find the highest generation in the array of 1946 * root backups. The index of the highest array is returned, 1947 * or -1 if we can't find anything. 1948 * 1949 * We check to make sure the array is valid by comparing the 1950 * generation of the latest root in the array with the generation 1951 * in the super block. If they don't match we pitch it. 1952 */ 1953 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1954 { 1955 u64 cur; 1956 int newest_index = -1; 1957 struct btrfs_root_backup *root_backup; 1958 int i; 1959 1960 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1961 root_backup = info->super_copy->super_roots + i; 1962 cur = btrfs_backup_tree_root_gen(root_backup); 1963 if (cur == newest_gen) 1964 newest_index = i; 1965 } 1966 1967 /* check to see if we actually wrapped around */ 1968 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1969 root_backup = info->super_copy->super_roots; 1970 cur = btrfs_backup_tree_root_gen(root_backup); 1971 if (cur == newest_gen) 1972 newest_index = 0; 1973 } 1974 return newest_index; 1975 } 1976 1977 1978 /* 1979 * find the oldest backup so we know where to store new entries 1980 * in the backup array. This will set the backup_root_index 1981 * field in the fs_info struct 1982 */ 1983 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1984 u64 newest_gen) 1985 { 1986 int newest_index = -1; 1987 1988 newest_index = find_newest_super_backup(info, newest_gen); 1989 /* if there was garbage in there, just move along */ 1990 if (newest_index == -1) { 1991 info->backup_root_index = 0; 1992 } else { 1993 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1994 } 1995 } 1996 1997 /* 1998 * copy all the root pointers into the super backup array. 1999 * this will bump the backup pointer by one when it is 2000 * done 2001 */ 2002 static void backup_super_roots(struct btrfs_fs_info *info) 2003 { 2004 int next_backup; 2005 struct btrfs_root_backup *root_backup; 2006 int last_backup; 2007 2008 next_backup = info->backup_root_index; 2009 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 2010 BTRFS_NUM_BACKUP_ROOTS; 2011 2012 /* 2013 * just overwrite the last backup if we're at the same generation 2014 * this happens only at umount 2015 */ 2016 root_backup = info->super_for_commit->super_roots + last_backup; 2017 if (btrfs_backup_tree_root_gen(root_backup) == 2018 btrfs_header_generation(info->tree_root->node)) 2019 next_backup = last_backup; 2020 2021 root_backup = info->super_for_commit->super_roots + next_backup; 2022 2023 /* 2024 * make sure all of our padding and empty slots get zero filled 2025 * regardless of which ones we use today 2026 */ 2027 memset(root_backup, 0, sizeof(*root_backup)); 2028 2029 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 2030 2031 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 2032 btrfs_set_backup_tree_root_gen(root_backup, 2033 btrfs_header_generation(info->tree_root->node)); 2034 2035 btrfs_set_backup_tree_root_level(root_backup, 2036 btrfs_header_level(info->tree_root->node)); 2037 2038 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 2039 btrfs_set_backup_chunk_root_gen(root_backup, 2040 btrfs_header_generation(info->chunk_root->node)); 2041 btrfs_set_backup_chunk_root_level(root_backup, 2042 btrfs_header_level(info->chunk_root->node)); 2043 2044 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 2045 btrfs_set_backup_extent_root_gen(root_backup, 2046 btrfs_header_generation(info->extent_root->node)); 2047 btrfs_set_backup_extent_root_level(root_backup, 2048 btrfs_header_level(info->extent_root->node)); 2049 2050 /* 2051 * we might commit during log recovery, which happens before we set 2052 * the fs_root. Make sure it is valid before we fill it in. 2053 */ 2054 if (info->fs_root && info->fs_root->node) { 2055 btrfs_set_backup_fs_root(root_backup, 2056 info->fs_root->node->start); 2057 btrfs_set_backup_fs_root_gen(root_backup, 2058 btrfs_header_generation(info->fs_root->node)); 2059 btrfs_set_backup_fs_root_level(root_backup, 2060 btrfs_header_level(info->fs_root->node)); 2061 } 2062 2063 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 2064 btrfs_set_backup_dev_root_gen(root_backup, 2065 btrfs_header_generation(info->dev_root->node)); 2066 btrfs_set_backup_dev_root_level(root_backup, 2067 btrfs_header_level(info->dev_root->node)); 2068 2069 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 2070 btrfs_set_backup_csum_root_gen(root_backup, 2071 btrfs_header_generation(info->csum_root->node)); 2072 btrfs_set_backup_csum_root_level(root_backup, 2073 btrfs_header_level(info->csum_root->node)); 2074 2075 btrfs_set_backup_total_bytes(root_backup, 2076 btrfs_super_total_bytes(info->super_copy)); 2077 btrfs_set_backup_bytes_used(root_backup, 2078 btrfs_super_bytes_used(info->super_copy)); 2079 btrfs_set_backup_num_devices(root_backup, 2080 btrfs_super_num_devices(info->super_copy)); 2081 2082 /* 2083 * if we don't copy this out to the super_copy, it won't get remembered 2084 * for the next commit 2085 */ 2086 memcpy(&info->super_copy->super_roots, 2087 &info->super_for_commit->super_roots, 2088 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 2089 } 2090 2091 /* 2092 * this copies info out of the root backup array and back into 2093 * the in-memory super block. It is meant to help iterate through 2094 * the array, so you send it the number of backups you've already 2095 * tried and the last backup index you used. 2096 * 2097 * this returns -1 when it has tried all the backups 2098 */ 2099 static noinline int next_root_backup(struct btrfs_fs_info *info, 2100 struct btrfs_super_block *super, 2101 int *num_backups_tried, int *backup_index) 2102 { 2103 struct btrfs_root_backup *root_backup; 2104 int newest = *backup_index; 2105 2106 if (*num_backups_tried == 0) { 2107 u64 gen = btrfs_super_generation(super); 2108 2109 newest = find_newest_super_backup(info, gen); 2110 if (newest == -1) 2111 return -1; 2112 2113 *backup_index = newest; 2114 *num_backups_tried = 1; 2115 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 2116 /* we've tried all the backups, all done */ 2117 return -1; 2118 } else { 2119 /* jump to the next oldest backup */ 2120 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 2121 BTRFS_NUM_BACKUP_ROOTS; 2122 *backup_index = newest; 2123 *num_backups_tried += 1; 2124 } 2125 root_backup = super->super_roots + newest; 2126 2127 btrfs_set_super_generation(super, 2128 btrfs_backup_tree_root_gen(root_backup)); 2129 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2130 btrfs_set_super_root_level(super, 2131 btrfs_backup_tree_root_level(root_backup)); 2132 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2133 2134 /* 2135 * fixme: the total bytes and num_devices need to match or we should 2136 * need a fsck 2137 */ 2138 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2139 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2140 return 0; 2141 } 2142 2143 /* helper to cleanup workers */ 2144 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2145 { 2146 btrfs_destroy_workqueue(fs_info->fixup_workers); 2147 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2148 btrfs_destroy_workqueue(fs_info->workers); 2149 btrfs_destroy_workqueue(fs_info->endio_workers); 2150 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2151 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2152 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 2153 btrfs_destroy_workqueue(fs_info->rmw_workers); 2154 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2155 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2156 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2157 btrfs_destroy_workqueue(fs_info->submit_workers); 2158 btrfs_destroy_workqueue(fs_info->delayed_workers); 2159 btrfs_destroy_workqueue(fs_info->caching_workers); 2160 btrfs_destroy_workqueue(fs_info->readahead_workers); 2161 btrfs_destroy_workqueue(fs_info->flush_workers); 2162 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2163 btrfs_destroy_workqueue(fs_info->extent_workers); 2164 } 2165 2166 static void free_root_extent_buffers(struct btrfs_root *root) 2167 { 2168 if (root) { 2169 free_extent_buffer(root->node); 2170 free_extent_buffer(root->commit_root); 2171 root->node = NULL; 2172 root->commit_root = NULL; 2173 } 2174 } 2175 2176 /* helper to cleanup tree roots */ 2177 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2178 { 2179 free_root_extent_buffers(info->tree_root); 2180 2181 free_root_extent_buffers(info->dev_root); 2182 free_root_extent_buffers(info->extent_root); 2183 free_root_extent_buffers(info->csum_root); 2184 free_root_extent_buffers(info->quota_root); 2185 free_root_extent_buffers(info->uuid_root); 2186 if (chunk_root) 2187 free_root_extent_buffers(info->chunk_root); 2188 free_root_extent_buffers(info->free_space_root); 2189 } 2190 2191 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2192 { 2193 int ret; 2194 struct btrfs_root *gang[8]; 2195 int i; 2196 2197 while (!list_empty(&fs_info->dead_roots)) { 2198 gang[0] = list_entry(fs_info->dead_roots.next, 2199 struct btrfs_root, root_list); 2200 list_del(&gang[0]->root_list); 2201 2202 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2203 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2204 } else { 2205 free_extent_buffer(gang[0]->node); 2206 free_extent_buffer(gang[0]->commit_root); 2207 btrfs_put_fs_root(gang[0]); 2208 } 2209 } 2210 2211 while (1) { 2212 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2213 (void **)gang, 0, 2214 ARRAY_SIZE(gang)); 2215 if (!ret) 2216 break; 2217 for (i = 0; i < ret; i++) 2218 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2219 } 2220 2221 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2222 btrfs_free_log_root_tree(NULL, fs_info); 2223 btrfs_destroy_pinned_extent(fs_info->tree_root, 2224 fs_info->pinned_extents); 2225 } 2226 } 2227 2228 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2229 { 2230 mutex_init(&fs_info->scrub_lock); 2231 atomic_set(&fs_info->scrubs_running, 0); 2232 atomic_set(&fs_info->scrub_pause_req, 0); 2233 atomic_set(&fs_info->scrubs_paused, 0); 2234 atomic_set(&fs_info->scrub_cancel_req, 0); 2235 init_waitqueue_head(&fs_info->scrub_pause_wait); 2236 fs_info->scrub_workers_refcnt = 0; 2237 } 2238 2239 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2240 { 2241 spin_lock_init(&fs_info->balance_lock); 2242 mutex_init(&fs_info->balance_mutex); 2243 atomic_set(&fs_info->balance_running, 0); 2244 atomic_set(&fs_info->balance_pause_req, 0); 2245 atomic_set(&fs_info->balance_cancel_req, 0); 2246 fs_info->balance_ctl = NULL; 2247 init_waitqueue_head(&fs_info->balance_wait_q); 2248 } 2249 2250 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info, 2251 struct btrfs_root *tree_root) 2252 { 2253 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2254 set_nlink(fs_info->btree_inode, 1); 2255 /* 2256 * we set the i_size on the btree inode to the max possible int. 2257 * the real end of the address space is determined by all of 2258 * the devices in the system 2259 */ 2260 fs_info->btree_inode->i_size = OFFSET_MAX; 2261 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 2262 2263 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2264 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2265 fs_info->btree_inode->i_mapping); 2266 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0; 2267 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2268 2269 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2270 2271 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2272 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2273 sizeof(struct btrfs_key)); 2274 set_bit(BTRFS_INODE_DUMMY, 2275 &BTRFS_I(fs_info->btree_inode)->runtime_flags); 2276 btrfs_insert_inode_hash(fs_info->btree_inode); 2277 } 2278 2279 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2280 { 2281 fs_info->dev_replace.lock_owner = 0; 2282 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2283 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2284 rwlock_init(&fs_info->dev_replace.lock); 2285 atomic_set(&fs_info->dev_replace.read_locks, 0); 2286 atomic_set(&fs_info->dev_replace.blocking_readers, 0); 2287 init_waitqueue_head(&fs_info->replace_wait); 2288 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq); 2289 } 2290 2291 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2292 { 2293 spin_lock_init(&fs_info->qgroup_lock); 2294 mutex_init(&fs_info->qgroup_ioctl_lock); 2295 fs_info->qgroup_tree = RB_ROOT; 2296 fs_info->qgroup_op_tree = RB_ROOT; 2297 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2298 fs_info->qgroup_seq = 1; 2299 fs_info->quota_enabled = 0; 2300 fs_info->pending_quota_state = 0; 2301 fs_info->qgroup_ulist = NULL; 2302 mutex_init(&fs_info->qgroup_rescan_lock); 2303 } 2304 2305 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2306 struct btrfs_fs_devices *fs_devices) 2307 { 2308 int max_active = fs_info->thread_pool_size; 2309 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2310 2311 fs_info->workers = 2312 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI, 2313 max_active, 16); 2314 2315 fs_info->delalloc_workers = 2316 btrfs_alloc_workqueue("delalloc", flags, max_active, 2); 2317 2318 fs_info->flush_workers = 2319 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0); 2320 2321 fs_info->caching_workers = 2322 btrfs_alloc_workqueue("cache", flags, max_active, 0); 2323 2324 /* 2325 * a higher idle thresh on the submit workers makes it much more 2326 * likely that bios will be send down in a sane order to the 2327 * devices 2328 */ 2329 fs_info->submit_workers = 2330 btrfs_alloc_workqueue("submit", flags, 2331 min_t(u64, fs_devices->num_devices, 2332 max_active), 64); 2333 2334 fs_info->fixup_workers = 2335 btrfs_alloc_workqueue("fixup", flags, 1, 0); 2336 2337 /* 2338 * endios are largely parallel and should have a very 2339 * low idle thresh 2340 */ 2341 fs_info->endio_workers = 2342 btrfs_alloc_workqueue("endio", flags, max_active, 4); 2343 fs_info->endio_meta_workers = 2344 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4); 2345 fs_info->endio_meta_write_workers = 2346 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2); 2347 fs_info->endio_raid56_workers = 2348 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4); 2349 fs_info->endio_repair_workers = 2350 btrfs_alloc_workqueue("endio-repair", flags, 1, 0); 2351 fs_info->rmw_workers = 2352 btrfs_alloc_workqueue("rmw", flags, max_active, 2); 2353 fs_info->endio_write_workers = 2354 btrfs_alloc_workqueue("endio-write", flags, max_active, 2); 2355 fs_info->endio_freespace_worker = 2356 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0); 2357 fs_info->delayed_workers = 2358 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0); 2359 fs_info->readahead_workers = 2360 btrfs_alloc_workqueue("readahead", flags, max_active, 2); 2361 fs_info->qgroup_rescan_workers = 2362 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0); 2363 fs_info->extent_workers = 2364 btrfs_alloc_workqueue("extent-refs", flags, 2365 min_t(u64, fs_devices->num_devices, 2366 max_active), 8); 2367 2368 if (!(fs_info->workers && fs_info->delalloc_workers && 2369 fs_info->submit_workers && fs_info->flush_workers && 2370 fs_info->endio_workers && fs_info->endio_meta_workers && 2371 fs_info->endio_meta_write_workers && 2372 fs_info->endio_repair_workers && 2373 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2374 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2375 fs_info->caching_workers && fs_info->readahead_workers && 2376 fs_info->fixup_workers && fs_info->delayed_workers && 2377 fs_info->extent_workers && 2378 fs_info->qgroup_rescan_workers)) { 2379 return -ENOMEM; 2380 } 2381 2382 return 0; 2383 } 2384 2385 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2386 struct btrfs_fs_devices *fs_devices) 2387 { 2388 int ret; 2389 struct btrfs_root *tree_root = fs_info->tree_root; 2390 struct btrfs_root *log_tree_root; 2391 struct btrfs_super_block *disk_super = fs_info->super_copy; 2392 u64 bytenr = btrfs_super_log_root(disk_super); 2393 2394 if (fs_devices->rw_devices == 0) { 2395 btrfs_warn(fs_info, "log replay required on RO media"); 2396 return -EIO; 2397 } 2398 2399 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2400 if (!log_tree_root) 2401 return -ENOMEM; 2402 2403 __setup_root(tree_root->nodesize, tree_root->sectorsize, 2404 tree_root->stripesize, log_tree_root, fs_info, 2405 BTRFS_TREE_LOG_OBJECTID); 2406 2407 log_tree_root->node = read_tree_block(tree_root, bytenr, 2408 fs_info->generation + 1); 2409 if (IS_ERR(log_tree_root->node)) { 2410 btrfs_warn(fs_info, "failed to read log tree"); 2411 ret = PTR_ERR(log_tree_root->node); 2412 kfree(log_tree_root); 2413 return ret; 2414 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2415 btrfs_err(fs_info, "failed to read log tree"); 2416 free_extent_buffer(log_tree_root->node); 2417 kfree(log_tree_root); 2418 return -EIO; 2419 } 2420 /* returns with log_tree_root freed on success */ 2421 ret = btrfs_recover_log_trees(log_tree_root); 2422 if (ret) { 2423 btrfs_handle_fs_error(tree_root->fs_info, ret, 2424 "Failed to recover log tree"); 2425 free_extent_buffer(log_tree_root->node); 2426 kfree(log_tree_root); 2427 return ret; 2428 } 2429 2430 if (fs_info->sb->s_flags & MS_RDONLY) { 2431 ret = btrfs_commit_super(tree_root); 2432 if (ret) 2433 return ret; 2434 } 2435 2436 return 0; 2437 } 2438 2439 static int btrfs_read_roots(struct btrfs_fs_info *fs_info, 2440 struct btrfs_root *tree_root) 2441 { 2442 struct btrfs_root *root; 2443 struct btrfs_key location; 2444 int ret; 2445 2446 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2447 location.type = BTRFS_ROOT_ITEM_KEY; 2448 location.offset = 0; 2449 2450 root = btrfs_read_tree_root(tree_root, &location); 2451 if (IS_ERR(root)) 2452 return PTR_ERR(root); 2453 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2454 fs_info->extent_root = root; 2455 2456 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2457 root = btrfs_read_tree_root(tree_root, &location); 2458 if (IS_ERR(root)) 2459 return PTR_ERR(root); 2460 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2461 fs_info->dev_root = root; 2462 btrfs_init_devices_late(fs_info); 2463 2464 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2465 root = btrfs_read_tree_root(tree_root, &location); 2466 if (IS_ERR(root)) 2467 return PTR_ERR(root); 2468 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2469 fs_info->csum_root = root; 2470 2471 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2472 root = btrfs_read_tree_root(tree_root, &location); 2473 if (!IS_ERR(root)) { 2474 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2475 fs_info->quota_enabled = 1; 2476 fs_info->pending_quota_state = 1; 2477 fs_info->quota_root = root; 2478 } 2479 2480 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2481 root = btrfs_read_tree_root(tree_root, &location); 2482 if (IS_ERR(root)) { 2483 ret = PTR_ERR(root); 2484 if (ret != -ENOENT) 2485 return ret; 2486 } else { 2487 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2488 fs_info->uuid_root = root; 2489 } 2490 2491 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2492 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2493 root = btrfs_read_tree_root(tree_root, &location); 2494 if (IS_ERR(root)) 2495 return PTR_ERR(root); 2496 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2497 fs_info->free_space_root = root; 2498 } 2499 2500 return 0; 2501 } 2502 2503 int open_ctree(struct super_block *sb, 2504 struct btrfs_fs_devices *fs_devices, 2505 char *options) 2506 { 2507 u32 sectorsize; 2508 u32 nodesize; 2509 u32 stripesize; 2510 u64 generation; 2511 u64 features; 2512 struct btrfs_key location; 2513 struct buffer_head *bh; 2514 struct btrfs_super_block *disk_super; 2515 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2516 struct btrfs_root *tree_root; 2517 struct btrfs_root *chunk_root; 2518 int ret; 2519 int err = -EINVAL; 2520 int num_backups_tried = 0; 2521 int backup_index = 0; 2522 int max_active; 2523 bool cleaner_mutex_locked = false; 2524 2525 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2526 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2527 if (!tree_root || !chunk_root) { 2528 err = -ENOMEM; 2529 goto fail; 2530 } 2531 2532 ret = init_srcu_struct(&fs_info->subvol_srcu); 2533 if (ret) { 2534 err = ret; 2535 goto fail; 2536 } 2537 2538 ret = setup_bdi(fs_info, &fs_info->bdi); 2539 if (ret) { 2540 err = ret; 2541 goto fail_srcu; 2542 } 2543 2544 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2545 if (ret) { 2546 err = ret; 2547 goto fail_bdi; 2548 } 2549 fs_info->dirty_metadata_batch = PAGE_SIZE * 2550 (1 + ilog2(nr_cpu_ids)); 2551 2552 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2553 if (ret) { 2554 err = ret; 2555 goto fail_dirty_metadata_bytes; 2556 } 2557 2558 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL); 2559 if (ret) { 2560 err = ret; 2561 goto fail_delalloc_bytes; 2562 } 2563 2564 fs_info->btree_inode = new_inode(sb); 2565 if (!fs_info->btree_inode) { 2566 err = -ENOMEM; 2567 goto fail_bio_counter; 2568 } 2569 2570 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2571 2572 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2573 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2574 INIT_LIST_HEAD(&fs_info->trans_list); 2575 INIT_LIST_HEAD(&fs_info->dead_roots); 2576 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2577 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2578 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2579 spin_lock_init(&fs_info->delalloc_root_lock); 2580 spin_lock_init(&fs_info->trans_lock); 2581 spin_lock_init(&fs_info->fs_roots_radix_lock); 2582 spin_lock_init(&fs_info->delayed_iput_lock); 2583 spin_lock_init(&fs_info->defrag_inodes_lock); 2584 spin_lock_init(&fs_info->free_chunk_lock); 2585 spin_lock_init(&fs_info->tree_mod_seq_lock); 2586 spin_lock_init(&fs_info->super_lock); 2587 spin_lock_init(&fs_info->qgroup_op_lock); 2588 spin_lock_init(&fs_info->buffer_lock); 2589 spin_lock_init(&fs_info->unused_bgs_lock); 2590 rwlock_init(&fs_info->tree_mod_log_lock); 2591 mutex_init(&fs_info->unused_bg_unpin_mutex); 2592 mutex_init(&fs_info->delete_unused_bgs_mutex); 2593 mutex_init(&fs_info->reloc_mutex); 2594 mutex_init(&fs_info->delalloc_root_mutex); 2595 mutex_init(&fs_info->cleaner_delayed_iput_mutex); 2596 seqlock_init(&fs_info->profiles_lock); 2597 2598 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2599 INIT_LIST_HEAD(&fs_info->space_info); 2600 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2601 INIT_LIST_HEAD(&fs_info->unused_bgs); 2602 btrfs_mapping_init(&fs_info->mapping_tree); 2603 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2604 BTRFS_BLOCK_RSV_GLOBAL); 2605 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, 2606 BTRFS_BLOCK_RSV_DELALLOC); 2607 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2608 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2609 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2610 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2611 BTRFS_BLOCK_RSV_DELOPS); 2612 atomic_set(&fs_info->nr_async_submits, 0); 2613 atomic_set(&fs_info->async_delalloc_pages, 0); 2614 atomic_set(&fs_info->async_submit_draining, 0); 2615 atomic_set(&fs_info->nr_async_bios, 0); 2616 atomic_set(&fs_info->defrag_running, 0); 2617 atomic_set(&fs_info->qgroup_op_seq, 0); 2618 atomic_set(&fs_info->reada_works_cnt, 0); 2619 atomic64_set(&fs_info->tree_mod_seq, 0); 2620 fs_info->sb = sb; 2621 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2622 fs_info->metadata_ratio = 0; 2623 fs_info->defrag_inodes = RB_ROOT; 2624 fs_info->free_chunk_space = 0; 2625 fs_info->tree_mod_log = RB_ROOT; 2626 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2627 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2628 /* readahead state */ 2629 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2630 spin_lock_init(&fs_info->reada_lock); 2631 2632 fs_info->thread_pool_size = min_t(unsigned long, 2633 num_online_cpus() + 2, 8); 2634 2635 INIT_LIST_HEAD(&fs_info->ordered_roots); 2636 spin_lock_init(&fs_info->ordered_root_lock); 2637 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2638 GFP_KERNEL); 2639 if (!fs_info->delayed_root) { 2640 err = -ENOMEM; 2641 goto fail_iput; 2642 } 2643 btrfs_init_delayed_root(fs_info->delayed_root); 2644 2645 btrfs_init_scrub(fs_info); 2646 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2647 fs_info->check_integrity_print_mask = 0; 2648 #endif 2649 btrfs_init_balance(fs_info); 2650 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2651 2652 sb->s_blocksize = 4096; 2653 sb->s_blocksize_bits = blksize_bits(4096); 2654 sb->s_bdi = &fs_info->bdi; 2655 2656 btrfs_init_btree_inode(fs_info, tree_root); 2657 2658 spin_lock_init(&fs_info->block_group_cache_lock); 2659 fs_info->block_group_cache_tree = RB_ROOT; 2660 fs_info->first_logical_byte = (u64)-1; 2661 2662 extent_io_tree_init(&fs_info->freed_extents[0], 2663 fs_info->btree_inode->i_mapping); 2664 extent_io_tree_init(&fs_info->freed_extents[1], 2665 fs_info->btree_inode->i_mapping); 2666 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2667 fs_info->do_barriers = 1; 2668 2669 2670 mutex_init(&fs_info->ordered_operations_mutex); 2671 mutex_init(&fs_info->tree_log_mutex); 2672 mutex_init(&fs_info->chunk_mutex); 2673 mutex_init(&fs_info->transaction_kthread_mutex); 2674 mutex_init(&fs_info->cleaner_mutex); 2675 mutex_init(&fs_info->volume_mutex); 2676 mutex_init(&fs_info->ro_block_group_mutex); 2677 init_rwsem(&fs_info->commit_root_sem); 2678 init_rwsem(&fs_info->cleanup_work_sem); 2679 init_rwsem(&fs_info->subvol_sem); 2680 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2681 2682 btrfs_init_dev_replace_locks(fs_info); 2683 btrfs_init_qgroup(fs_info); 2684 2685 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2686 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2687 2688 init_waitqueue_head(&fs_info->transaction_throttle); 2689 init_waitqueue_head(&fs_info->transaction_wait); 2690 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2691 init_waitqueue_head(&fs_info->async_submit_wait); 2692 2693 INIT_LIST_HEAD(&fs_info->pinned_chunks); 2694 2695 ret = btrfs_alloc_stripe_hash_table(fs_info); 2696 if (ret) { 2697 err = ret; 2698 goto fail_alloc; 2699 } 2700 2701 __setup_root(4096, 4096, 4096, tree_root, 2702 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2703 2704 invalidate_bdev(fs_devices->latest_bdev); 2705 2706 /* 2707 * Read super block and check the signature bytes only 2708 */ 2709 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2710 if (IS_ERR(bh)) { 2711 err = PTR_ERR(bh); 2712 goto fail_alloc; 2713 } 2714 2715 /* 2716 * We want to check superblock checksum, the type is stored inside. 2717 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2718 */ 2719 if (btrfs_check_super_csum(bh->b_data)) { 2720 btrfs_err(fs_info, "superblock checksum mismatch"); 2721 err = -EINVAL; 2722 brelse(bh); 2723 goto fail_alloc; 2724 } 2725 2726 /* 2727 * super_copy is zeroed at allocation time and we never touch the 2728 * following bytes up to INFO_SIZE, the checksum is calculated from 2729 * the whole block of INFO_SIZE 2730 */ 2731 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2732 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2733 sizeof(*fs_info->super_for_commit)); 2734 brelse(bh); 2735 2736 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2737 2738 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2739 if (ret) { 2740 btrfs_err(fs_info, "superblock contains fatal errors"); 2741 err = -EINVAL; 2742 goto fail_alloc; 2743 } 2744 2745 disk_super = fs_info->super_copy; 2746 if (!btrfs_super_root(disk_super)) 2747 goto fail_alloc; 2748 2749 /* check FS state, whether FS is broken. */ 2750 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2751 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2752 2753 /* 2754 * run through our array of backup supers and setup 2755 * our ring pointer to the oldest one 2756 */ 2757 generation = btrfs_super_generation(disk_super); 2758 find_oldest_super_backup(fs_info, generation); 2759 2760 /* 2761 * In the long term, we'll store the compression type in the super 2762 * block, and it'll be used for per file compression control. 2763 */ 2764 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2765 2766 ret = btrfs_parse_options(tree_root, options, sb->s_flags); 2767 if (ret) { 2768 err = ret; 2769 goto fail_alloc; 2770 } 2771 2772 features = btrfs_super_incompat_flags(disk_super) & 2773 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2774 if (features) { 2775 btrfs_err(fs_info, 2776 "cannot mount because of unsupported optional features (%llx)", 2777 features); 2778 err = -EINVAL; 2779 goto fail_alloc; 2780 } 2781 2782 features = btrfs_super_incompat_flags(disk_super); 2783 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2784 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 2785 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2786 2787 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2788 btrfs_info(fs_info, "has skinny extents"); 2789 2790 /* 2791 * flag our filesystem as having big metadata blocks if 2792 * they are bigger than the page size 2793 */ 2794 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 2795 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2796 btrfs_info(fs_info, 2797 "flagging fs with big metadata feature"); 2798 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2799 } 2800 2801 nodesize = btrfs_super_nodesize(disk_super); 2802 sectorsize = btrfs_super_sectorsize(disk_super); 2803 stripesize = btrfs_super_stripesize(disk_super); 2804 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2805 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2806 2807 /* 2808 * mixed block groups end up with duplicate but slightly offset 2809 * extent buffers for the same range. It leads to corruptions 2810 */ 2811 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2812 (sectorsize != nodesize)) { 2813 btrfs_err(fs_info, 2814 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 2815 nodesize, sectorsize); 2816 goto fail_alloc; 2817 } 2818 2819 /* 2820 * Needn't use the lock because there is no other task which will 2821 * update the flag. 2822 */ 2823 btrfs_set_super_incompat_flags(disk_super, features); 2824 2825 features = btrfs_super_compat_ro_flags(disk_super) & 2826 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2827 if (!(sb->s_flags & MS_RDONLY) && features) { 2828 btrfs_err(fs_info, 2829 "cannot mount read-write because of unsupported optional features (%llx)", 2830 features); 2831 err = -EINVAL; 2832 goto fail_alloc; 2833 } 2834 2835 max_active = fs_info->thread_pool_size; 2836 2837 ret = btrfs_init_workqueues(fs_info, fs_devices); 2838 if (ret) { 2839 err = ret; 2840 goto fail_sb_buffer; 2841 } 2842 2843 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2844 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2845 SZ_4M / PAGE_SIZE); 2846 2847 tree_root->nodesize = nodesize; 2848 tree_root->sectorsize = sectorsize; 2849 tree_root->stripesize = stripesize; 2850 2851 sb->s_blocksize = sectorsize; 2852 sb->s_blocksize_bits = blksize_bits(sectorsize); 2853 2854 mutex_lock(&fs_info->chunk_mutex); 2855 ret = btrfs_read_sys_array(tree_root); 2856 mutex_unlock(&fs_info->chunk_mutex); 2857 if (ret) { 2858 btrfs_err(fs_info, "failed to read the system array: %d", ret); 2859 goto fail_sb_buffer; 2860 } 2861 2862 generation = btrfs_super_chunk_root_generation(disk_super); 2863 2864 __setup_root(nodesize, sectorsize, stripesize, chunk_root, 2865 fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2866 2867 chunk_root->node = read_tree_block(chunk_root, 2868 btrfs_super_chunk_root(disk_super), 2869 generation); 2870 if (IS_ERR(chunk_root->node) || 2871 !extent_buffer_uptodate(chunk_root->node)) { 2872 btrfs_err(fs_info, "failed to read chunk root"); 2873 if (!IS_ERR(chunk_root->node)) 2874 free_extent_buffer(chunk_root->node); 2875 chunk_root->node = NULL; 2876 goto fail_tree_roots; 2877 } 2878 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2879 chunk_root->commit_root = btrfs_root_node(chunk_root); 2880 2881 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2882 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2883 2884 ret = btrfs_read_chunk_tree(chunk_root); 2885 if (ret) { 2886 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 2887 goto fail_tree_roots; 2888 } 2889 2890 /* 2891 * keep the device that is marked to be the target device for the 2892 * dev_replace procedure 2893 */ 2894 btrfs_close_extra_devices(fs_devices, 0); 2895 2896 if (!fs_devices->latest_bdev) { 2897 btrfs_err(fs_info, "failed to read devices"); 2898 goto fail_tree_roots; 2899 } 2900 2901 retry_root_backup: 2902 generation = btrfs_super_generation(disk_super); 2903 2904 tree_root->node = read_tree_block(tree_root, 2905 btrfs_super_root(disk_super), 2906 generation); 2907 if (IS_ERR(tree_root->node) || 2908 !extent_buffer_uptodate(tree_root->node)) { 2909 btrfs_warn(fs_info, "failed to read tree root"); 2910 if (!IS_ERR(tree_root->node)) 2911 free_extent_buffer(tree_root->node); 2912 tree_root->node = NULL; 2913 goto recovery_tree_root; 2914 } 2915 2916 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2917 tree_root->commit_root = btrfs_root_node(tree_root); 2918 btrfs_set_root_refs(&tree_root->root_item, 1); 2919 2920 mutex_lock(&tree_root->objectid_mutex); 2921 ret = btrfs_find_highest_objectid(tree_root, 2922 &tree_root->highest_objectid); 2923 if (ret) { 2924 mutex_unlock(&tree_root->objectid_mutex); 2925 goto recovery_tree_root; 2926 } 2927 2928 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 2929 2930 mutex_unlock(&tree_root->objectid_mutex); 2931 2932 ret = btrfs_read_roots(fs_info, tree_root); 2933 if (ret) 2934 goto recovery_tree_root; 2935 2936 fs_info->generation = generation; 2937 fs_info->last_trans_committed = generation; 2938 2939 ret = btrfs_recover_balance(fs_info); 2940 if (ret) { 2941 btrfs_err(fs_info, "failed to recover balance: %d", ret); 2942 goto fail_block_groups; 2943 } 2944 2945 ret = btrfs_init_dev_stats(fs_info); 2946 if (ret) { 2947 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 2948 goto fail_block_groups; 2949 } 2950 2951 ret = btrfs_init_dev_replace(fs_info); 2952 if (ret) { 2953 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 2954 goto fail_block_groups; 2955 } 2956 2957 btrfs_close_extra_devices(fs_devices, 1); 2958 2959 ret = btrfs_sysfs_add_fsid(fs_devices, NULL); 2960 if (ret) { 2961 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 2962 ret); 2963 goto fail_block_groups; 2964 } 2965 2966 ret = btrfs_sysfs_add_device(fs_devices); 2967 if (ret) { 2968 btrfs_err(fs_info, "failed to init sysfs device interface: %d", 2969 ret); 2970 goto fail_fsdev_sysfs; 2971 } 2972 2973 ret = btrfs_sysfs_add_mounted(fs_info); 2974 if (ret) { 2975 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 2976 goto fail_fsdev_sysfs; 2977 } 2978 2979 ret = btrfs_init_space_info(fs_info); 2980 if (ret) { 2981 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 2982 goto fail_sysfs; 2983 } 2984 2985 ret = btrfs_read_block_groups(fs_info->extent_root); 2986 if (ret) { 2987 btrfs_err(fs_info, "failed to read block groups: %d", ret); 2988 goto fail_sysfs; 2989 } 2990 fs_info->num_tolerated_disk_barrier_failures = 2991 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 2992 if (fs_info->fs_devices->missing_devices > 2993 fs_info->num_tolerated_disk_barrier_failures && 2994 !(sb->s_flags & MS_RDONLY)) { 2995 btrfs_warn(fs_info, 2996 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed", 2997 fs_info->fs_devices->missing_devices, 2998 fs_info->num_tolerated_disk_barrier_failures); 2999 goto fail_sysfs; 3000 } 3001 3002 /* 3003 * Hold the cleaner_mutex thread here so that we don't block 3004 * for a long time on btrfs_recover_relocation. cleaner_kthread 3005 * will wait for us to finish mounting the filesystem. 3006 */ 3007 mutex_lock(&fs_info->cleaner_mutex); 3008 cleaner_mutex_locked = true; 3009 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3010 "btrfs-cleaner"); 3011 if (IS_ERR(fs_info->cleaner_kthread)) 3012 goto fail_sysfs; 3013 3014 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3015 tree_root, 3016 "btrfs-transaction"); 3017 if (IS_ERR(fs_info->transaction_kthread)) 3018 goto fail_cleaner; 3019 3020 if (!btrfs_test_opt(tree_root, SSD) && 3021 !btrfs_test_opt(tree_root, NOSSD) && 3022 !fs_info->fs_devices->rotating) { 3023 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode"); 3024 btrfs_set_opt(fs_info->mount_opt, SSD); 3025 } 3026 3027 /* 3028 * Mount does not set all options immediately, we can do it now and do 3029 * not have to wait for transaction commit 3030 */ 3031 btrfs_apply_pending_changes(fs_info); 3032 3033 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3034 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) { 3035 ret = btrfsic_mount(tree_root, fs_devices, 3036 btrfs_test_opt(tree_root, 3037 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3038 1 : 0, 3039 fs_info->check_integrity_print_mask); 3040 if (ret) 3041 btrfs_warn(fs_info, 3042 "failed to initialize integrity check module: %d", 3043 ret); 3044 } 3045 #endif 3046 ret = btrfs_read_qgroup_config(fs_info); 3047 if (ret) 3048 goto fail_trans_kthread; 3049 3050 /* do not make disk changes in broken FS or nologreplay is given */ 3051 if (btrfs_super_log_root(disk_super) != 0 && 3052 !btrfs_test_opt(tree_root, NOLOGREPLAY)) { 3053 ret = btrfs_replay_log(fs_info, fs_devices); 3054 if (ret) { 3055 err = ret; 3056 goto fail_qgroup; 3057 } 3058 } 3059 3060 ret = btrfs_find_orphan_roots(tree_root); 3061 if (ret) 3062 goto fail_qgroup; 3063 3064 if (!(sb->s_flags & MS_RDONLY)) { 3065 ret = btrfs_cleanup_fs_roots(fs_info); 3066 if (ret) 3067 goto fail_qgroup; 3068 /* We locked cleaner_mutex before creating cleaner_kthread. */ 3069 ret = btrfs_recover_relocation(tree_root); 3070 if (ret < 0) { 3071 btrfs_warn(fs_info, "failed to recover relocation: %d", 3072 ret); 3073 err = -EINVAL; 3074 goto fail_qgroup; 3075 } 3076 } 3077 mutex_unlock(&fs_info->cleaner_mutex); 3078 cleaner_mutex_locked = false; 3079 3080 location.objectid = BTRFS_FS_TREE_OBJECTID; 3081 location.type = BTRFS_ROOT_ITEM_KEY; 3082 location.offset = 0; 3083 3084 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 3085 if (IS_ERR(fs_info->fs_root)) { 3086 err = PTR_ERR(fs_info->fs_root); 3087 goto fail_qgroup; 3088 } 3089 3090 if (sb->s_flags & MS_RDONLY) 3091 return 0; 3092 3093 if (btrfs_test_opt(tree_root, FREE_SPACE_TREE) && 3094 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3095 btrfs_info(fs_info, "creating free space tree"); 3096 ret = btrfs_create_free_space_tree(fs_info); 3097 if (ret) { 3098 btrfs_warn(fs_info, 3099 "failed to create free space tree: %d", ret); 3100 close_ctree(tree_root); 3101 return ret; 3102 } 3103 } 3104 3105 down_read(&fs_info->cleanup_work_sem); 3106 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3107 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3108 up_read(&fs_info->cleanup_work_sem); 3109 close_ctree(tree_root); 3110 return ret; 3111 } 3112 up_read(&fs_info->cleanup_work_sem); 3113 3114 ret = btrfs_resume_balance_async(fs_info); 3115 if (ret) { 3116 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3117 close_ctree(tree_root); 3118 return ret; 3119 } 3120 3121 ret = btrfs_resume_dev_replace_async(fs_info); 3122 if (ret) { 3123 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3124 close_ctree(tree_root); 3125 return ret; 3126 } 3127 3128 btrfs_qgroup_rescan_resume(fs_info); 3129 3130 if (btrfs_test_opt(tree_root, CLEAR_CACHE) && 3131 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3132 btrfs_info(fs_info, "clearing free space tree"); 3133 ret = btrfs_clear_free_space_tree(fs_info); 3134 if (ret) { 3135 btrfs_warn(fs_info, 3136 "failed to clear free space tree: %d", ret); 3137 close_ctree(tree_root); 3138 return ret; 3139 } 3140 } 3141 3142 if (!fs_info->uuid_root) { 3143 btrfs_info(fs_info, "creating UUID tree"); 3144 ret = btrfs_create_uuid_tree(fs_info); 3145 if (ret) { 3146 btrfs_warn(fs_info, 3147 "failed to create the UUID tree: %d", ret); 3148 close_ctree(tree_root); 3149 return ret; 3150 } 3151 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) || 3152 fs_info->generation != 3153 btrfs_super_uuid_tree_generation(disk_super)) { 3154 btrfs_info(fs_info, "checking UUID tree"); 3155 ret = btrfs_check_uuid_tree(fs_info); 3156 if (ret) { 3157 btrfs_warn(fs_info, 3158 "failed to check the UUID tree: %d", ret); 3159 close_ctree(tree_root); 3160 return ret; 3161 } 3162 } else { 3163 fs_info->update_uuid_tree_gen = 1; 3164 } 3165 3166 fs_info->open = 1; 3167 3168 /* 3169 * backuproot only affect mount behavior, and if open_ctree succeeded, 3170 * no need to keep the flag 3171 */ 3172 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3173 3174 return 0; 3175 3176 fail_qgroup: 3177 btrfs_free_qgroup_config(fs_info); 3178 fail_trans_kthread: 3179 kthread_stop(fs_info->transaction_kthread); 3180 btrfs_cleanup_transaction(fs_info->tree_root); 3181 btrfs_free_fs_roots(fs_info); 3182 fail_cleaner: 3183 kthread_stop(fs_info->cleaner_kthread); 3184 3185 /* 3186 * make sure we're done with the btree inode before we stop our 3187 * kthreads 3188 */ 3189 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3190 3191 fail_sysfs: 3192 if (cleaner_mutex_locked) { 3193 mutex_unlock(&fs_info->cleaner_mutex); 3194 cleaner_mutex_locked = false; 3195 } 3196 btrfs_sysfs_remove_mounted(fs_info); 3197 3198 fail_fsdev_sysfs: 3199 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3200 3201 fail_block_groups: 3202 btrfs_put_block_group_cache(fs_info); 3203 btrfs_free_block_groups(fs_info); 3204 3205 fail_tree_roots: 3206 free_root_pointers(fs_info, 1); 3207 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3208 3209 fail_sb_buffer: 3210 btrfs_stop_all_workers(fs_info); 3211 fail_alloc: 3212 fail_iput: 3213 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3214 3215 iput(fs_info->btree_inode); 3216 fail_bio_counter: 3217 percpu_counter_destroy(&fs_info->bio_counter); 3218 fail_delalloc_bytes: 3219 percpu_counter_destroy(&fs_info->delalloc_bytes); 3220 fail_dirty_metadata_bytes: 3221 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3222 fail_bdi: 3223 bdi_destroy(&fs_info->bdi); 3224 fail_srcu: 3225 cleanup_srcu_struct(&fs_info->subvol_srcu); 3226 fail: 3227 btrfs_free_stripe_hash_table(fs_info); 3228 btrfs_close_devices(fs_info->fs_devices); 3229 return err; 3230 3231 recovery_tree_root: 3232 if (!btrfs_test_opt(tree_root, USEBACKUPROOT)) 3233 goto fail_tree_roots; 3234 3235 free_root_pointers(fs_info, 0); 3236 3237 /* don't use the log in recovery mode, it won't be valid */ 3238 btrfs_set_super_log_root(disk_super, 0); 3239 3240 /* we can't trust the free space cache either */ 3241 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3242 3243 ret = next_root_backup(fs_info, fs_info->super_copy, 3244 &num_backups_tried, &backup_index); 3245 if (ret == -1) 3246 goto fail_block_groups; 3247 goto retry_root_backup; 3248 } 3249 3250 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3251 { 3252 if (uptodate) { 3253 set_buffer_uptodate(bh); 3254 } else { 3255 struct btrfs_device *device = (struct btrfs_device *) 3256 bh->b_private; 3257 3258 btrfs_warn_rl_in_rcu(device->dev_root->fs_info, 3259 "lost page write due to IO error on %s", 3260 rcu_str_deref(device->name)); 3261 /* note, we don't set_buffer_write_io_error because we have 3262 * our own ways of dealing with the IO errors 3263 */ 3264 clear_buffer_uptodate(bh); 3265 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3266 } 3267 unlock_buffer(bh); 3268 put_bh(bh); 3269 } 3270 3271 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, 3272 struct buffer_head **bh_ret) 3273 { 3274 struct buffer_head *bh; 3275 struct btrfs_super_block *super; 3276 u64 bytenr; 3277 3278 bytenr = btrfs_sb_offset(copy_num); 3279 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3280 return -EINVAL; 3281 3282 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE); 3283 /* 3284 * If we fail to read from the underlying devices, as of now 3285 * the best option we have is to mark it EIO. 3286 */ 3287 if (!bh) 3288 return -EIO; 3289 3290 super = (struct btrfs_super_block *)bh->b_data; 3291 if (btrfs_super_bytenr(super) != bytenr || 3292 btrfs_super_magic(super) != BTRFS_MAGIC) { 3293 brelse(bh); 3294 return -EINVAL; 3295 } 3296 3297 *bh_ret = bh; 3298 return 0; 3299 } 3300 3301 3302 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3303 { 3304 struct buffer_head *bh; 3305 struct buffer_head *latest = NULL; 3306 struct btrfs_super_block *super; 3307 int i; 3308 u64 transid = 0; 3309 int ret = -EINVAL; 3310 3311 /* we would like to check all the supers, but that would make 3312 * a btrfs mount succeed after a mkfs from a different FS. 3313 * So, we need to add a special mount option to scan for 3314 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3315 */ 3316 for (i = 0; i < 1; i++) { 3317 ret = btrfs_read_dev_one_super(bdev, i, &bh); 3318 if (ret) 3319 continue; 3320 3321 super = (struct btrfs_super_block *)bh->b_data; 3322 3323 if (!latest || btrfs_super_generation(super) > transid) { 3324 brelse(latest); 3325 latest = bh; 3326 transid = btrfs_super_generation(super); 3327 } else { 3328 brelse(bh); 3329 } 3330 } 3331 3332 if (!latest) 3333 return ERR_PTR(ret); 3334 3335 return latest; 3336 } 3337 3338 /* 3339 * this should be called twice, once with wait == 0 and 3340 * once with wait == 1. When wait == 0 is done, all the buffer heads 3341 * we write are pinned. 3342 * 3343 * They are released when wait == 1 is done. 3344 * max_mirrors must be the same for both runs, and it indicates how 3345 * many supers on this one device should be written. 3346 * 3347 * max_mirrors == 0 means to write them all. 3348 */ 3349 static int write_dev_supers(struct btrfs_device *device, 3350 struct btrfs_super_block *sb, 3351 int do_barriers, int wait, int max_mirrors) 3352 { 3353 struct buffer_head *bh; 3354 int i; 3355 int ret; 3356 int errors = 0; 3357 u32 crc; 3358 u64 bytenr; 3359 3360 if (max_mirrors == 0) 3361 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3362 3363 for (i = 0; i < max_mirrors; i++) { 3364 bytenr = btrfs_sb_offset(i); 3365 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3366 device->commit_total_bytes) 3367 break; 3368 3369 if (wait) { 3370 bh = __find_get_block(device->bdev, bytenr / 4096, 3371 BTRFS_SUPER_INFO_SIZE); 3372 if (!bh) { 3373 errors++; 3374 continue; 3375 } 3376 wait_on_buffer(bh); 3377 if (!buffer_uptodate(bh)) 3378 errors++; 3379 3380 /* drop our reference */ 3381 brelse(bh); 3382 3383 /* drop the reference from the wait == 0 run */ 3384 brelse(bh); 3385 continue; 3386 } else { 3387 btrfs_set_super_bytenr(sb, bytenr); 3388 3389 crc = ~(u32)0; 3390 crc = btrfs_csum_data((char *)sb + 3391 BTRFS_CSUM_SIZE, crc, 3392 BTRFS_SUPER_INFO_SIZE - 3393 BTRFS_CSUM_SIZE); 3394 btrfs_csum_final(crc, sb->csum); 3395 3396 /* 3397 * one reference for us, and we leave it for the 3398 * caller 3399 */ 3400 bh = __getblk(device->bdev, bytenr / 4096, 3401 BTRFS_SUPER_INFO_SIZE); 3402 if (!bh) { 3403 btrfs_err(device->dev_root->fs_info, 3404 "couldn't get super buffer head for bytenr %llu", 3405 bytenr); 3406 errors++; 3407 continue; 3408 } 3409 3410 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3411 3412 /* one reference for submit_bh */ 3413 get_bh(bh); 3414 3415 set_buffer_uptodate(bh); 3416 lock_buffer(bh); 3417 bh->b_end_io = btrfs_end_buffer_write_sync; 3418 bh->b_private = device; 3419 } 3420 3421 /* 3422 * we fua the first super. The others we allow 3423 * to go down lazy. 3424 */ 3425 if (i == 0) 3426 ret = btrfsic_submit_bh(WRITE_FUA, bh); 3427 else 3428 ret = btrfsic_submit_bh(WRITE_SYNC, bh); 3429 if (ret) 3430 errors++; 3431 } 3432 return errors < i ? 0 : -1; 3433 } 3434 3435 /* 3436 * endio for the write_dev_flush, this will wake anyone waiting 3437 * for the barrier when it is done 3438 */ 3439 static void btrfs_end_empty_barrier(struct bio *bio) 3440 { 3441 if (bio->bi_private) 3442 complete(bio->bi_private); 3443 bio_put(bio); 3444 } 3445 3446 /* 3447 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 3448 * sent down. With wait == 1, it waits for the previous flush. 3449 * 3450 * any device where the flush fails with eopnotsupp are flagged as not-barrier 3451 * capable 3452 */ 3453 static int write_dev_flush(struct btrfs_device *device, int wait) 3454 { 3455 struct bio *bio; 3456 int ret = 0; 3457 3458 if (device->nobarriers) 3459 return 0; 3460 3461 if (wait) { 3462 bio = device->flush_bio; 3463 if (!bio) 3464 return 0; 3465 3466 wait_for_completion(&device->flush_wait); 3467 3468 if (bio->bi_error) { 3469 ret = bio->bi_error; 3470 btrfs_dev_stat_inc_and_print(device, 3471 BTRFS_DEV_STAT_FLUSH_ERRS); 3472 } 3473 3474 /* drop the reference from the wait == 0 run */ 3475 bio_put(bio); 3476 device->flush_bio = NULL; 3477 3478 return ret; 3479 } 3480 3481 /* 3482 * one reference for us, and we leave it for the 3483 * caller 3484 */ 3485 device->flush_bio = NULL; 3486 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 3487 if (!bio) 3488 return -ENOMEM; 3489 3490 bio->bi_end_io = btrfs_end_empty_barrier; 3491 bio->bi_bdev = device->bdev; 3492 init_completion(&device->flush_wait); 3493 bio->bi_private = &device->flush_wait; 3494 device->flush_bio = bio; 3495 3496 bio_get(bio); 3497 btrfsic_submit_bio(WRITE_FLUSH, bio); 3498 3499 return 0; 3500 } 3501 3502 /* 3503 * send an empty flush down to each device in parallel, 3504 * then wait for them 3505 */ 3506 static int barrier_all_devices(struct btrfs_fs_info *info) 3507 { 3508 struct list_head *head; 3509 struct btrfs_device *dev; 3510 int errors_send = 0; 3511 int errors_wait = 0; 3512 int ret; 3513 3514 /* send down all the barriers */ 3515 head = &info->fs_devices->devices; 3516 list_for_each_entry_rcu(dev, head, dev_list) { 3517 if (dev->missing) 3518 continue; 3519 if (!dev->bdev) { 3520 errors_send++; 3521 continue; 3522 } 3523 if (!dev->in_fs_metadata || !dev->writeable) 3524 continue; 3525 3526 ret = write_dev_flush(dev, 0); 3527 if (ret) 3528 errors_send++; 3529 } 3530 3531 /* wait for all the barriers */ 3532 list_for_each_entry_rcu(dev, head, dev_list) { 3533 if (dev->missing) 3534 continue; 3535 if (!dev->bdev) { 3536 errors_wait++; 3537 continue; 3538 } 3539 if (!dev->in_fs_metadata || !dev->writeable) 3540 continue; 3541 3542 ret = write_dev_flush(dev, 1); 3543 if (ret) 3544 errors_wait++; 3545 } 3546 if (errors_send > info->num_tolerated_disk_barrier_failures || 3547 errors_wait > info->num_tolerated_disk_barrier_failures) 3548 return -EIO; 3549 return 0; 3550 } 3551 3552 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3553 { 3554 int raid_type; 3555 int min_tolerated = INT_MAX; 3556 3557 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3558 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3559 min_tolerated = min(min_tolerated, 3560 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3561 tolerated_failures); 3562 3563 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3564 if (raid_type == BTRFS_RAID_SINGLE) 3565 continue; 3566 if (!(flags & btrfs_raid_group[raid_type])) 3567 continue; 3568 min_tolerated = min(min_tolerated, 3569 btrfs_raid_array[raid_type]. 3570 tolerated_failures); 3571 } 3572 3573 if (min_tolerated == INT_MAX) { 3574 pr_warn("BTRFS: unknown raid flag: %llu\n", flags); 3575 min_tolerated = 0; 3576 } 3577 3578 return min_tolerated; 3579 } 3580 3581 int btrfs_calc_num_tolerated_disk_barrier_failures( 3582 struct btrfs_fs_info *fs_info) 3583 { 3584 struct btrfs_ioctl_space_info space; 3585 struct btrfs_space_info *sinfo; 3586 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3587 BTRFS_BLOCK_GROUP_SYSTEM, 3588 BTRFS_BLOCK_GROUP_METADATA, 3589 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3590 int i; 3591 int c; 3592 int num_tolerated_disk_barrier_failures = 3593 (int)fs_info->fs_devices->num_devices; 3594 3595 for (i = 0; i < ARRAY_SIZE(types); i++) { 3596 struct btrfs_space_info *tmp; 3597 3598 sinfo = NULL; 3599 rcu_read_lock(); 3600 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) { 3601 if (tmp->flags == types[i]) { 3602 sinfo = tmp; 3603 break; 3604 } 3605 } 3606 rcu_read_unlock(); 3607 3608 if (!sinfo) 3609 continue; 3610 3611 down_read(&sinfo->groups_sem); 3612 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3613 u64 flags; 3614 3615 if (list_empty(&sinfo->block_groups[c])) 3616 continue; 3617 3618 btrfs_get_block_group_info(&sinfo->block_groups[c], 3619 &space); 3620 if (space.total_bytes == 0 || space.used_bytes == 0) 3621 continue; 3622 flags = space.flags; 3623 3624 num_tolerated_disk_barrier_failures = min( 3625 num_tolerated_disk_barrier_failures, 3626 btrfs_get_num_tolerated_disk_barrier_failures( 3627 flags)); 3628 } 3629 up_read(&sinfo->groups_sem); 3630 } 3631 3632 return num_tolerated_disk_barrier_failures; 3633 } 3634 3635 static int write_all_supers(struct btrfs_root *root, int max_mirrors) 3636 { 3637 struct list_head *head; 3638 struct btrfs_device *dev; 3639 struct btrfs_super_block *sb; 3640 struct btrfs_dev_item *dev_item; 3641 int ret; 3642 int do_barriers; 3643 int max_errors; 3644 int total_errors = 0; 3645 u64 flags; 3646 3647 do_barriers = !btrfs_test_opt(root, NOBARRIER); 3648 backup_super_roots(root->fs_info); 3649 3650 sb = root->fs_info->super_for_commit; 3651 dev_item = &sb->dev_item; 3652 3653 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 3654 head = &root->fs_info->fs_devices->devices; 3655 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 3656 3657 if (do_barriers) { 3658 ret = barrier_all_devices(root->fs_info); 3659 if (ret) { 3660 mutex_unlock( 3661 &root->fs_info->fs_devices->device_list_mutex); 3662 btrfs_handle_fs_error(root->fs_info, ret, 3663 "errors while submitting device barriers."); 3664 return ret; 3665 } 3666 } 3667 3668 list_for_each_entry_rcu(dev, head, dev_list) { 3669 if (!dev->bdev) { 3670 total_errors++; 3671 continue; 3672 } 3673 if (!dev->in_fs_metadata || !dev->writeable) 3674 continue; 3675 3676 btrfs_set_stack_device_generation(dev_item, 0); 3677 btrfs_set_stack_device_type(dev_item, dev->type); 3678 btrfs_set_stack_device_id(dev_item, dev->devid); 3679 btrfs_set_stack_device_total_bytes(dev_item, 3680 dev->commit_total_bytes); 3681 btrfs_set_stack_device_bytes_used(dev_item, 3682 dev->commit_bytes_used); 3683 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3684 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3685 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3686 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3687 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 3688 3689 flags = btrfs_super_flags(sb); 3690 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3691 3692 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 3693 if (ret) 3694 total_errors++; 3695 } 3696 if (total_errors > max_errors) { 3697 btrfs_err(root->fs_info, "%d errors while writing supers", 3698 total_errors); 3699 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3700 3701 /* FUA is masked off if unsupported and can't be the reason */ 3702 btrfs_handle_fs_error(root->fs_info, -EIO, 3703 "%d errors while writing supers", total_errors); 3704 return -EIO; 3705 } 3706 3707 total_errors = 0; 3708 list_for_each_entry_rcu(dev, head, dev_list) { 3709 if (!dev->bdev) 3710 continue; 3711 if (!dev->in_fs_metadata || !dev->writeable) 3712 continue; 3713 3714 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 3715 if (ret) 3716 total_errors++; 3717 } 3718 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3719 if (total_errors > max_errors) { 3720 btrfs_handle_fs_error(root->fs_info, -EIO, 3721 "%d errors while writing supers", total_errors); 3722 return -EIO; 3723 } 3724 return 0; 3725 } 3726 3727 int write_ctree_super(struct btrfs_trans_handle *trans, 3728 struct btrfs_root *root, int max_mirrors) 3729 { 3730 return write_all_supers(root, max_mirrors); 3731 } 3732 3733 /* Drop a fs root from the radix tree and free it. */ 3734 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3735 struct btrfs_root *root) 3736 { 3737 spin_lock(&fs_info->fs_roots_radix_lock); 3738 radix_tree_delete(&fs_info->fs_roots_radix, 3739 (unsigned long)root->root_key.objectid); 3740 spin_unlock(&fs_info->fs_roots_radix_lock); 3741 3742 if (btrfs_root_refs(&root->root_item) == 0) 3743 synchronize_srcu(&fs_info->subvol_srcu); 3744 3745 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3746 btrfs_free_log(NULL, root); 3747 3748 if (root->free_ino_pinned) 3749 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3750 if (root->free_ino_ctl) 3751 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3752 free_fs_root(root); 3753 } 3754 3755 static void free_fs_root(struct btrfs_root *root) 3756 { 3757 iput(root->ino_cache_inode); 3758 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3759 btrfs_free_block_rsv(root, root->orphan_block_rsv); 3760 root->orphan_block_rsv = NULL; 3761 if (root->anon_dev) 3762 free_anon_bdev(root->anon_dev); 3763 if (root->subv_writers) 3764 btrfs_free_subvolume_writers(root->subv_writers); 3765 free_extent_buffer(root->node); 3766 free_extent_buffer(root->commit_root); 3767 kfree(root->free_ino_ctl); 3768 kfree(root->free_ino_pinned); 3769 kfree(root->name); 3770 btrfs_put_fs_root(root); 3771 } 3772 3773 void btrfs_free_fs_root(struct btrfs_root *root) 3774 { 3775 free_fs_root(root); 3776 } 3777 3778 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3779 { 3780 u64 root_objectid = 0; 3781 struct btrfs_root *gang[8]; 3782 int i = 0; 3783 int err = 0; 3784 unsigned int ret = 0; 3785 int index; 3786 3787 while (1) { 3788 index = srcu_read_lock(&fs_info->subvol_srcu); 3789 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3790 (void **)gang, root_objectid, 3791 ARRAY_SIZE(gang)); 3792 if (!ret) { 3793 srcu_read_unlock(&fs_info->subvol_srcu, index); 3794 break; 3795 } 3796 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3797 3798 for (i = 0; i < ret; i++) { 3799 /* Avoid to grab roots in dead_roots */ 3800 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3801 gang[i] = NULL; 3802 continue; 3803 } 3804 /* grab all the search result for later use */ 3805 gang[i] = btrfs_grab_fs_root(gang[i]); 3806 } 3807 srcu_read_unlock(&fs_info->subvol_srcu, index); 3808 3809 for (i = 0; i < ret; i++) { 3810 if (!gang[i]) 3811 continue; 3812 root_objectid = gang[i]->root_key.objectid; 3813 err = btrfs_orphan_cleanup(gang[i]); 3814 if (err) 3815 break; 3816 btrfs_put_fs_root(gang[i]); 3817 } 3818 root_objectid++; 3819 } 3820 3821 /* release the uncleaned roots due to error */ 3822 for (; i < ret; i++) { 3823 if (gang[i]) 3824 btrfs_put_fs_root(gang[i]); 3825 } 3826 return err; 3827 } 3828 3829 int btrfs_commit_super(struct btrfs_root *root) 3830 { 3831 struct btrfs_trans_handle *trans; 3832 3833 mutex_lock(&root->fs_info->cleaner_mutex); 3834 btrfs_run_delayed_iputs(root); 3835 mutex_unlock(&root->fs_info->cleaner_mutex); 3836 wake_up_process(root->fs_info->cleaner_kthread); 3837 3838 /* wait until ongoing cleanup work done */ 3839 down_write(&root->fs_info->cleanup_work_sem); 3840 up_write(&root->fs_info->cleanup_work_sem); 3841 3842 trans = btrfs_join_transaction(root); 3843 if (IS_ERR(trans)) 3844 return PTR_ERR(trans); 3845 return btrfs_commit_transaction(trans, root); 3846 } 3847 3848 void close_ctree(struct btrfs_root *root) 3849 { 3850 struct btrfs_fs_info *fs_info = root->fs_info; 3851 int ret; 3852 3853 fs_info->closing = 1; 3854 smp_mb(); 3855 3856 /* wait for the qgroup rescan worker to stop */ 3857 btrfs_qgroup_wait_for_completion(fs_info); 3858 3859 /* wait for the uuid_scan task to finish */ 3860 down(&fs_info->uuid_tree_rescan_sem); 3861 /* avoid complains from lockdep et al., set sem back to initial state */ 3862 up(&fs_info->uuid_tree_rescan_sem); 3863 3864 /* pause restriper - we want to resume on mount */ 3865 btrfs_pause_balance(fs_info); 3866 3867 btrfs_dev_replace_suspend_for_unmount(fs_info); 3868 3869 btrfs_scrub_cancel(fs_info); 3870 3871 /* wait for any defraggers to finish */ 3872 wait_event(fs_info->transaction_wait, 3873 (atomic_read(&fs_info->defrag_running) == 0)); 3874 3875 /* clear out the rbtree of defraggable inodes */ 3876 btrfs_cleanup_defrag_inodes(fs_info); 3877 3878 cancel_work_sync(&fs_info->async_reclaim_work); 3879 3880 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3881 /* 3882 * If the cleaner thread is stopped and there are 3883 * block groups queued for removal, the deletion will be 3884 * skipped when we quit the cleaner thread. 3885 */ 3886 btrfs_delete_unused_bgs(root->fs_info); 3887 3888 ret = btrfs_commit_super(root); 3889 if (ret) 3890 btrfs_err(fs_info, "commit super ret %d", ret); 3891 } 3892 3893 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3894 btrfs_error_commit_super(root); 3895 3896 kthread_stop(fs_info->transaction_kthread); 3897 kthread_stop(fs_info->cleaner_kthread); 3898 3899 fs_info->closing = 2; 3900 smp_mb(); 3901 3902 btrfs_free_qgroup_config(fs_info); 3903 3904 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3905 btrfs_info(fs_info, "at unmount delalloc count %lld", 3906 percpu_counter_sum(&fs_info->delalloc_bytes)); 3907 } 3908 3909 btrfs_sysfs_remove_mounted(fs_info); 3910 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3911 3912 btrfs_free_fs_roots(fs_info); 3913 3914 btrfs_put_block_group_cache(fs_info); 3915 3916 btrfs_free_block_groups(fs_info); 3917 3918 /* 3919 * we must make sure there is not any read request to 3920 * submit after we stopping all workers. 3921 */ 3922 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3923 btrfs_stop_all_workers(fs_info); 3924 3925 fs_info->open = 0; 3926 free_root_pointers(fs_info, 1); 3927 3928 iput(fs_info->btree_inode); 3929 3930 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3931 if (btrfs_test_opt(root, CHECK_INTEGRITY)) 3932 btrfsic_unmount(root, fs_info->fs_devices); 3933 #endif 3934 3935 btrfs_close_devices(fs_info->fs_devices); 3936 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3937 3938 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3939 percpu_counter_destroy(&fs_info->delalloc_bytes); 3940 percpu_counter_destroy(&fs_info->bio_counter); 3941 bdi_destroy(&fs_info->bdi); 3942 cleanup_srcu_struct(&fs_info->subvol_srcu); 3943 3944 btrfs_free_stripe_hash_table(fs_info); 3945 3946 __btrfs_free_block_rsv(root->orphan_block_rsv); 3947 root->orphan_block_rsv = NULL; 3948 3949 lock_chunks(root); 3950 while (!list_empty(&fs_info->pinned_chunks)) { 3951 struct extent_map *em; 3952 3953 em = list_first_entry(&fs_info->pinned_chunks, 3954 struct extent_map, list); 3955 list_del_init(&em->list); 3956 free_extent_map(em); 3957 } 3958 unlock_chunks(root); 3959 } 3960 3961 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 3962 int atomic) 3963 { 3964 int ret; 3965 struct inode *btree_inode = buf->pages[0]->mapping->host; 3966 3967 ret = extent_buffer_uptodate(buf); 3968 if (!ret) 3969 return ret; 3970 3971 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3972 parent_transid, atomic); 3973 if (ret == -EAGAIN) 3974 return ret; 3975 return !ret; 3976 } 3977 3978 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3979 { 3980 struct btrfs_root *root; 3981 u64 transid = btrfs_header_generation(buf); 3982 int was_dirty; 3983 3984 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3985 /* 3986 * This is a fast path so only do this check if we have sanity tests 3987 * enabled. Normal people shouldn't be marking dummy buffers as dirty 3988 * outside of the sanity tests. 3989 */ 3990 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags))) 3991 return; 3992 #endif 3993 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3994 btrfs_assert_tree_locked(buf); 3995 if (transid != root->fs_info->generation) 3996 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, " 3997 "found %llu running %llu\n", 3998 buf->start, transid, root->fs_info->generation); 3999 was_dirty = set_extent_buffer_dirty(buf); 4000 if (!was_dirty) 4001 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes, 4002 buf->len, 4003 root->fs_info->dirty_metadata_batch); 4004 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4005 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) { 4006 btrfs_print_leaf(root, buf); 4007 ASSERT(0); 4008 } 4009 #endif 4010 } 4011 4012 static void __btrfs_btree_balance_dirty(struct btrfs_root *root, 4013 int flush_delayed) 4014 { 4015 /* 4016 * looks as though older kernels can get into trouble with 4017 * this code, they end up stuck in balance_dirty_pages forever 4018 */ 4019 int ret; 4020 4021 if (current->flags & PF_MEMALLOC) 4022 return; 4023 4024 if (flush_delayed) 4025 btrfs_balance_delayed_items(root); 4026 4027 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes, 4028 BTRFS_DIRTY_METADATA_THRESH); 4029 if (ret > 0) { 4030 balance_dirty_pages_ratelimited( 4031 root->fs_info->btree_inode->i_mapping); 4032 } 4033 } 4034 4035 void btrfs_btree_balance_dirty(struct btrfs_root *root) 4036 { 4037 __btrfs_btree_balance_dirty(root, 1); 4038 } 4039 4040 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root) 4041 { 4042 __btrfs_btree_balance_dirty(root, 0); 4043 } 4044 4045 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 4046 { 4047 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4048 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 4049 } 4050 4051 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 4052 int read_only) 4053 { 4054 struct btrfs_super_block *sb = fs_info->super_copy; 4055 u64 nodesize = btrfs_super_nodesize(sb); 4056 u64 sectorsize = btrfs_super_sectorsize(sb); 4057 int ret = 0; 4058 4059 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 4060 printk(KERN_ERR "BTRFS: no valid FS found\n"); 4061 ret = -EINVAL; 4062 } 4063 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) 4064 printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n", 4065 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 4066 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 4067 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n", 4068 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 4069 ret = -EINVAL; 4070 } 4071 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 4072 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n", 4073 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 4074 ret = -EINVAL; 4075 } 4076 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 4077 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n", 4078 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 4079 ret = -EINVAL; 4080 } 4081 4082 /* 4083 * Check sectorsize and nodesize first, other check will need it. 4084 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 4085 */ 4086 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 4087 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 4088 printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize); 4089 ret = -EINVAL; 4090 } 4091 /* Only PAGE SIZE is supported yet */ 4092 if (sectorsize != PAGE_SIZE) { 4093 printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n", 4094 sectorsize, PAGE_SIZE); 4095 ret = -EINVAL; 4096 } 4097 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 4098 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 4099 printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize); 4100 ret = -EINVAL; 4101 } 4102 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 4103 printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n", 4104 le32_to_cpu(sb->__unused_leafsize), 4105 nodesize); 4106 ret = -EINVAL; 4107 } 4108 4109 /* Root alignment check */ 4110 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 4111 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n", 4112 btrfs_super_root(sb)); 4113 ret = -EINVAL; 4114 } 4115 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 4116 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n", 4117 btrfs_super_chunk_root(sb)); 4118 ret = -EINVAL; 4119 } 4120 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 4121 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n", 4122 btrfs_super_log_root(sb)); 4123 ret = -EINVAL; 4124 } 4125 4126 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) { 4127 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n", 4128 fs_info->fsid, sb->dev_item.fsid); 4129 ret = -EINVAL; 4130 } 4131 4132 /* 4133 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 4134 * done later 4135 */ 4136 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 4137 btrfs_err(fs_info, "bytes_used is too small %llu", 4138 btrfs_super_bytes_used(sb)); 4139 ret = -EINVAL; 4140 } 4141 if (!is_power_of_2(btrfs_super_stripesize(sb)) || 4142 btrfs_super_stripesize(sb) != sectorsize) { 4143 btrfs_err(fs_info, "invalid stripesize %u", 4144 btrfs_super_stripesize(sb)); 4145 ret = -EINVAL; 4146 } 4147 if (btrfs_super_num_devices(sb) > (1UL << 31)) 4148 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n", 4149 btrfs_super_num_devices(sb)); 4150 if (btrfs_super_num_devices(sb) == 0) { 4151 printk(KERN_ERR "BTRFS: number of devices is 0\n"); 4152 ret = -EINVAL; 4153 } 4154 4155 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) { 4156 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n", 4157 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 4158 ret = -EINVAL; 4159 } 4160 4161 /* 4162 * Obvious sys_chunk_array corruptions, it must hold at least one key 4163 * and one chunk 4164 */ 4165 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4166 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n", 4167 btrfs_super_sys_array_size(sb), 4168 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 4169 ret = -EINVAL; 4170 } 4171 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 4172 + sizeof(struct btrfs_chunk)) { 4173 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n", 4174 btrfs_super_sys_array_size(sb), 4175 sizeof(struct btrfs_disk_key) 4176 + sizeof(struct btrfs_chunk)); 4177 ret = -EINVAL; 4178 } 4179 4180 /* 4181 * The generation is a global counter, we'll trust it more than the others 4182 * but it's still possible that it's the one that's wrong. 4183 */ 4184 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 4185 printk(KERN_WARNING 4186 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n", 4187 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb)); 4188 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 4189 && btrfs_super_cache_generation(sb) != (u64)-1) 4190 printk(KERN_WARNING 4191 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n", 4192 btrfs_super_generation(sb), btrfs_super_cache_generation(sb)); 4193 4194 return ret; 4195 } 4196 4197 static void btrfs_error_commit_super(struct btrfs_root *root) 4198 { 4199 mutex_lock(&root->fs_info->cleaner_mutex); 4200 btrfs_run_delayed_iputs(root); 4201 mutex_unlock(&root->fs_info->cleaner_mutex); 4202 4203 down_write(&root->fs_info->cleanup_work_sem); 4204 up_write(&root->fs_info->cleanup_work_sem); 4205 4206 /* cleanup FS via transaction */ 4207 btrfs_cleanup_transaction(root); 4208 } 4209 4210 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4211 { 4212 struct btrfs_ordered_extent *ordered; 4213 4214 spin_lock(&root->ordered_extent_lock); 4215 /* 4216 * This will just short circuit the ordered completion stuff which will 4217 * make sure the ordered extent gets properly cleaned up. 4218 */ 4219 list_for_each_entry(ordered, &root->ordered_extents, 4220 root_extent_list) 4221 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4222 spin_unlock(&root->ordered_extent_lock); 4223 } 4224 4225 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4226 { 4227 struct btrfs_root *root; 4228 struct list_head splice; 4229 4230 INIT_LIST_HEAD(&splice); 4231 4232 spin_lock(&fs_info->ordered_root_lock); 4233 list_splice_init(&fs_info->ordered_roots, &splice); 4234 while (!list_empty(&splice)) { 4235 root = list_first_entry(&splice, struct btrfs_root, 4236 ordered_root); 4237 list_move_tail(&root->ordered_root, 4238 &fs_info->ordered_roots); 4239 4240 spin_unlock(&fs_info->ordered_root_lock); 4241 btrfs_destroy_ordered_extents(root); 4242 4243 cond_resched(); 4244 spin_lock(&fs_info->ordered_root_lock); 4245 } 4246 spin_unlock(&fs_info->ordered_root_lock); 4247 } 4248 4249 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4250 struct btrfs_root *root) 4251 { 4252 struct rb_node *node; 4253 struct btrfs_delayed_ref_root *delayed_refs; 4254 struct btrfs_delayed_ref_node *ref; 4255 int ret = 0; 4256 4257 delayed_refs = &trans->delayed_refs; 4258 4259 spin_lock(&delayed_refs->lock); 4260 if (atomic_read(&delayed_refs->num_entries) == 0) { 4261 spin_unlock(&delayed_refs->lock); 4262 btrfs_info(root->fs_info, "delayed_refs has NO entry"); 4263 return ret; 4264 } 4265 4266 while ((node = rb_first(&delayed_refs->href_root)) != NULL) { 4267 struct btrfs_delayed_ref_head *head; 4268 struct btrfs_delayed_ref_node *tmp; 4269 bool pin_bytes = false; 4270 4271 head = rb_entry(node, struct btrfs_delayed_ref_head, 4272 href_node); 4273 if (!mutex_trylock(&head->mutex)) { 4274 atomic_inc(&head->node.refs); 4275 spin_unlock(&delayed_refs->lock); 4276 4277 mutex_lock(&head->mutex); 4278 mutex_unlock(&head->mutex); 4279 btrfs_put_delayed_ref(&head->node); 4280 spin_lock(&delayed_refs->lock); 4281 continue; 4282 } 4283 spin_lock(&head->lock); 4284 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list, 4285 list) { 4286 ref->in_tree = 0; 4287 list_del(&ref->list); 4288 atomic_dec(&delayed_refs->num_entries); 4289 btrfs_put_delayed_ref(ref); 4290 } 4291 if (head->must_insert_reserved) 4292 pin_bytes = true; 4293 btrfs_free_delayed_extent_op(head->extent_op); 4294 delayed_refs->num_heads--; 4295 if (head->processing == 0) 4296 delayed_refs->num_heads_ready--; 4297 atomic_dec(&delayed_refs->num_entries); 4298 head->node.in_tree = 0; 4299 rb_erase(&head->href_node, &delayed_refs->href_root); 4300 spin_unlock(&head->lock); 4301 spin_unlock(&delayed_refs->lock); 4302 mutex_unlock(&head->mutex); 4303 4304 if (pin_bytes) 4305 btrfs_pin_extent(root, head->node.bytenr, 4306 head->node.num_bytes, 1); 4307 btrfs_put_delayed_ref(&head->node); 4308 cond_resched(); 4309 spin_lock(&delayed_refs->lock); 4310 } 4311 4312 spin_unlock(&delayed_refs->lock); 4313 4314 return ret; 4315 } 4316 4317 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4318 { 4319 struct btrfs_inode *btrfs_inode; 4320 struct list_head splice; 4321 4322 INIT_LIST_HEAD(&splice); 4323 4324 spin_lock(&root->delalloc_lock); 4325 list_splice_init(&root->delalloc_inodes, &splice); 4326 4327 while (!list_empty(&splice)) { 4328 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4329 delalloc_inodes); 4330 4331 list_del_init(&btrfs_inode->delalloc_inodes); 4332 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 4333 &btrfs_inode->runtime_flags); 4334 spin_unlock(&root->delalloc_lock); 4335 4336 btrfs_invalidate_inodes(btrfs_inode->root); 4337 4338 spin_lock(&root->delalloc_lock); 4339 } 4340 4341 spin_unlock(&root->delalloc_lock); 4342 } 4343 4344 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4345 { 4346 struct btrfs_root *root; 4347 struct list_head splice; 4348 4349 INIT_LIST_HEAD(&splice); 4350 4351 spin_lock(&fs_info->delalloc_root_lock); 4352 list_splice_init(&fs_info->delalloc_roots, &splice); 4353 while (!list_empty(&splice)) { 4354 root = list_first_entry(&splice, struct btrfs_root, 4355 delalloc_root); 4356 list_del_init(&root->delalloc_root); 4357 root = btrfs_grab_fs_root(root); 4358 BUG_ON(!root); 4359 spin_unlock(&fs_info->delalloc_root_lock); 4360 4361 btrfs_destroy_delalloc_inodes(root); 4362 btrfs_put_fs_root(root); 4363 4364 spin_lock(&fs_info->delalloc_root_lock); 4365 } 4366 spin_unlock(&fs_info->delalloc_root_lock); 4367 } 4368 4369 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 4370 struct extent_io_tree *dirty_pages, 4371 int mark) 4372 { 4373 int ret; 4374 struct extent_buffer *eb; 4375 u64 start = 0; 4376 u64 end; 4377 4378 while (1) { 4379 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4380 mark, NULL); 4381 if (ret) 4382 break; 4383 4384 clear_extent_bits(dirty_pages, start, end, mark); 4385 while (start <= end) { 4386 eb = btrfs_find_tree_block(root->fs_info, start); 4387 start += root->nodesize; 4388 if (!eb) 4389 continue; 4390 wait_on_extent_buffer_writeback(eb); 4391 4392 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4393 &eb->bflags)) 4394 clear_extent_buffer_dirty(eb); 4395 free_extent_buffer_stale(eb); 4396 } 4397 } 4398 4399 return ret; 4400 } 4401 4402 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 4403 struct extent_io_tree *pinned_extents) 4404 { 4405 struct extent_io_tree *unpin; 4406 u64 start; 4407 u64 end; 4408 int ret; 4409 bool loop = true; 4410 4411 unpin = pinned_extents; 4412 again: 4413 while (1) { 4414 ret = find_first_extent_bit(unpin, 0, &start, &end, 4415 EXTENT_DIRTY, NULL); 4416 if (ret) 4417 break; 4418 4419 clear_extent_dirty(unpin, start, end); 4420 btrfs_error_unpin_extent_range(root, start, end); 4421 cond_resched(); 4422 } 4423 4424 if (loop) { 4425 if (unpin == &root->fs_info->freed_extents[0]) 4426 unpin = &root->fs_info->freed_extents[1]; 4427 else 4428 unpin = &root->fs_info->freed_extents[0]; 4429 loop = false; 4430 goto again; 4431 } 4432 4433 return 0; 4434 } 4435 4436 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4437 struct btrfs_root *root) 4438 { 4439 btrfs_destroy_delayed_refs(cur_trans, root); 4440 4441 cur_trans->state = TRANS_STATE_COMMIT_START; 4442 wake_up(&root->fs_info->transaction_blocked_wait); 4443 4444 cur_trans->state = TRANS_STATE_UNBLOCKED; 4445 wake_up(&root->fs_info->transaction_wait); 4446 4447 btrfs_destroy_delayed_inodes(root); 4448 btrfs_assert_delayed_root_empty(root); 4449 4450 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages, 4451 EXTENT_DIRTY); 4452 btrfs_destroy_pinned_extent(root, 4453 root->fs_info->pinned_extents); 4454 4455 cur_trans->state =TRANS_STATE_COMPLETED; 4456 wake_up(&cur_trans->commit_wait); 4457 4458 /* 4459 memset(cur_trans, 0, sizeof(*cur_trans)); 4460 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 4461 */ 4462 } 4463 4464 static int btrfs_cleanup_transaction(struct btrfs_root *root) 4465 { 4466 struct btrfs_transaction *t; 4467 4468 mutex_lock(&root->fs_info->transaction_kthread_mutex); 4469 4470 spin_lock(&root->fs_info->trans_lock); 4471 while (!list_empty(&root->fs_info->trans_list)) { 4472 t = list_first_entry(&root->fs_info->trans_list, 4473 struct btrfs_transaction, list); 4474 if (t->state >= TRANS_STATE_COMMIT_START) { 4475 atomic_inc(&t->use_count); 4476 spin_unlock(&root->fs_info->trans_lock); 4477 btrfs_wait_for_commit(root, t->transid); 4478 btrfs_put_transaction(t); 4479 spin_lock(&root->fs_info->trans_lock); 4480 continue; 4481 } 4482 if (t == root->fs_info->running_transaction) { 4483 t->state = TRANS_STATE_COMMIT_DOING; 4484 spin_unlock(&root->fs_info->trans_lock); 4485 /* 4486 * We wait for 0 num_writers since we don't hold a trans 4487 * handle open currently for this transaction. 4488 */ 4489 wait_event(t->writer_wait, 4490 atomic_read(&t->num_writers) == 0); 4491 } else { 4492 spin_unlock(&root->fs_info->trans_lock); 4493 } 4494 btrfs_cleanup_one_transaction(t, root); 4495 4496 spin_lock(&root->fs_info->trans_lock); 4497 if (t == root->fs_info->running_transaction) 4498 root->fs_info->running_transaction = NULL; 4499 list_del_init(&t->list); 4500 spin_unlock(&root->fs_info->trans_lock); 4501 4502 btrfs_put_transaction(t); 4503 trace_btrfs_transaction_commit(root); 4504 spin_lock(&root->fs_info->trans_lock); 4505 } 4506 spin_unlock(&root->fs_info->trans_lock); 4507 btrfs_destroy_all_ordered_extents(root->fs_info); 4508 btrfs_destroy_delayed_inodes(root); 4509 btrfs_assert_delayed_root_empty(root); 4510 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents); 4511 btrfs_destroy_all_delalloc_inodes(root->fs_info); 4512 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 4513 4514 return 0; 4515 } 4516 4517 static const struct extent_io_ops btree_extent_io_ops = { 4518 .readpage_end_io_hook = btree_readpage_end_io_hook, 4519 .readpage_io_failed_hook = btree_io_failed_hook, 4520 .submit_bio_hook = btree_submit_bio_hook, 4521 /* note we're sharing with inode.c for the merge bio hook */ 4522 .merge_bio_hook = btrfs_merge_bio_hook, 4523 }; 4524