xref: /openbmc/linux/fs/btrfs/disk-io.c (revision 05bcf503)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 
49 #ifdef CONFIG_X86
50 #include <asm/cpufeature.h>
51 #endif
52 
53 static struct extent_io_ops btree_extent_io_ops;
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void free_fs_root(struct btrfs_root *root);
56 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
57 				    int read_only);
58 static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
59 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
60 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
61 				      struct btrfs_root *root);
62 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
63 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
64 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
65 					struct extent_io_tree *dirty_pages,
66 					int mark);
67 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
68 				       struct extent_io_tree *pinned_extents);
69 
70 /*
71  * end_io_wq structs are used to do processing in task context when an IO is
72  * complete.  This is used during reads to verify checksums, and it is used
73  * by writes to insert metadata for new file extents after IO is complete.
74  */
75 struct end_io_wq {
76 	struct bio *bio;
77 	bio_end_io_t *end_io;
78 	void *private;
79 	struct btrfs_fs_info *info;
80 	int error;
81 	int metadata;
82 	struct list_head list;
83 	struct btrfs_work work;
84 };
85 
86 /*
87  * async submit bios are used to offload expensive checksumming
88  * onto the worker threads.  They checksum file and metadata bios
89  * just before they are sent down the IO stack.
90  */
91 struct async_submit_bio {
92 	struct inode *inode;
93 	struct bio *bio;
94 	struct list_head list;
95 	extent_submit_bio_hook_t *submit_bio_start;
96 	extent_submit_bio_hook_t *submit_bio_done;
97 	int rw;
98 	int mirror_num;
99 	unsigned long bio_flags;
100 	/*
101 	 * bio_offset is optional, can be used if the pages in the bio
102 	 * can't tell us where in the file the bio should go
103 	 */
104 	u64 bio_offset;
105 	struct btrfs_work work;
106 	int error;
107 };
108 
109 /*
110  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
111  * eb, the lockdep key is determined by the btrfs_root it belongs to and
112  * the level the eb occupies in the tree.
113  *
114  * Different roots are used for different purposes and may nest inside each
115  * other and they require separate keysets.  As lockdep keys should be
116  * static, assign keysets according to the purpose of the root as indicated
117  * by btrfs_root->objectid.  This ensures that all special purpose roots
118  * have separate keysets.
119  *
120  * Lock-nesting across peer nodes is always done with the immediate parent
121  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
122  * subclass to avoid triggering lockdep warning in such cases.
123  *
124  * The key is set by the readpage_end_io_hook after the buffer has passed
125  * csum validation but before the pages are unlocked.  It is also set by
126  * btrfs_init_new_buffer on freshly allocated blocks.
127  *
128  * We also add a check to make sure the highest level of the tree is the
129  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
130  * needs update as well.
131  */
132 #ifdef CONFIG_DEBUG_LOCK_ALLOC
133 # if BTRFS_MAX_LEVEL != 8
134 #  error
135 # endif
136 
137 static struct btrfs_lockdep_keyset {
138 	u64			id;		/* root objectid */
139 	const char		*name_stem;	/* lock name stem */
140 	char			names[BTRFS_MAX_LEVEL + 1][20];
141 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
142 } btrfs_lockdep_keysets[] = {
143 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
144 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
145 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
146 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
147 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
148 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
149 	{ .id = BTRFS_ORPHAN_OBJECTID,		.name_stem = "orphan"	},
150 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
151 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
152 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
153 	{ .id = 0,				.name_stem = "tree"	},
154 };
155 
156 void __init btrfs_init_lockdep(void)
157 {
158 	int i, j;
159 
160 	/* initialize lockdep class names */
161 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
162 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
163 
164 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
165 			snprintf(ks->names[j], sizeof(ks->names[j]),
166 				 "btrfs-%s-%02d", ks->name_stem, j);
167 	}
168 }
169 
170 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
171 				    int level)
172 {
173 	struct btrfs_lockdep_keyset *ks;
174 
175 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
176 
177 	/* find the matching keyset, id 0 is the default entry */
178 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
179 		if (ks->id == objectid)
180 			break;
181 
182 	lockdep_set_class_and_name(&eb->lock,
183 				   &ks->keys[level], ks->names[level]);
184 }
185 
186 #endif
187 
188 /*
189  * extents on the btree inode are pretty simple, there's one extent
190  * that covers the entire device
191  */
192 static struct extent_map *btree_get_extent(struct inode *inode,
193 		struct page *page, size_t pg_offset, u64 start, u64 len,
194 		int create)
195 {
196 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
197 	struct extent_map *em;
198 	int ret;
199 
200 	read_lock(&em_tree->lock);
201 	em = lookup_extent_mapping(em_tree, start, len);
202 	if (em) {
203 		em->bdev =
204 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
205 		read_unlock(&em_tree->lock);
206 		goto out;
207 	}
208 	read_unlock(&em_tree->lock);
209 
210 	em = alloc_extent_map();
211 	if (!em) {
212 		em = ERR_PTR(-ENOMEM);
213 		goto out;
214 	}
215 	em->start = 0;
216 	em->len = (u64)-1;
217 	em->block_len = (u64)-1;
218 	em->block_start = 0;
219 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
220 
221 	write_lock(&em_tree->lock);
222 	ret = add_extent_mapping(em_tree, em);
223 	if (ret == -EEXIST) {
224 		free_extent_map(em);
225 		em = lookup_extent_mapping(em_tree, start, len);
226 		if (!em)
227 			em = ERR_PTR(-EIO);
228 	} else if (ret) {
229 		free_extent_map(em);
230 		em = ERR_PTR(ret);
231 	}
232 	write_unlock(&em_tree->lock);
233 
234 out:
235 	return em;
236 }
237 
238 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
239 {
240 	return crc32c(seed, data, len);
241 }
242 
243 void btrfs_csum_final(u32 crc, char *result)
244 {
245 	put_unaligned_le32(~crc, result);
246 }
247 
248 /*
249  * compute the csum for a btree block, and either verify it or write it
250  * into the csum field of the block.
251  */
252 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
253 			   int verify)
254 {
255 	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
256 	char *result = NULL;
257 	unsigned long len;
258 	unsigned long cur_len;
259 	unsigned long offset = BTRFS_CSUM_SIZE;
260 	char *kaddr;
261 	unsigned long map_start;
262 	unsigned long map_len;
263 	int err;
264 	u32 crc = ~(u32)0;
265 	unsigned long inline_result;
266 
267 	len = buf->len - offset;
268 	while (len > 0) {
269 		err = map_private_extent_buffer(buf, offset, 32,
270 					&kaddr, &map_start, &map_len);
271 		if (err)
272 			return 1;
273 		cur_len = min(len, map_len - (offset - map_start));
274 		crc = btrfs_csum_data(root, kaddr + offset - map_start,
275 				      crc, cur_len);
276 		len -= cur_len;
277 		offset += cur_len;
278 	}
279 	if (csum_size > sizeof(inline_result)) {
280 		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
281 		if (!result)
282 			return 1;
283 	} else {
284 		result = (char *)&inline_result;
285 	}
286 
287 	btrfs_csum_final(crc, result);
288 
289 	if (verify) {
290 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
291 			u32 val;
292 			u32 found = 0;
293 			memcpy(&found, result, csum_size);
294 
295 			read_extent_buffer(buf, &val, 0, csum_size);
296 			printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
297 				       "failed on %llu wanted %X found %X "
298 				       "level %d\n",
299 				       root->fs_info->sb->s_id,
300 				       (unsigned long long)buf->start, val, found,
301 				       btrfs_header_level(buf));
302 			if (result != (char *)&inline_result)
303 				kfree(result);
304 			return 1;
305 		}
306 	} else {
307 		write_extent_buffer(buf, result, 0, csum_size);
308 	}
309 	if (result != (char *)&inline_result)
310 		kfree(result);
311 	return 0;
312 }
313 
314 /*
315  * we can't consider a given block up to date unless the transid of the
316  * block matches the transid in the parent node's pointer.  This is how we
317  * detect blocks that either didn't get written at all or got written
318  * in the wrong place.
319  */
320 static int verify_parent_transid(struct extent_io_tree *io_tree,
321 				 struct extent_buffer *eb, u64 parent_transid,
322 				 int atomic)
323 {
324 	struct extent_state *cached_state = NULL;
325 	int ret;
326 
327 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
328 		return 0;
329 
330 	if (atomic)
331 		return -EAGAIN;
332 
333 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
334 			 0, &cached_state);
335 	if (extent_buffer_uptodate(eb) &&
336 	    btrfs_header_generation(eb) == parent_transid) {
337 		ret = 0;
338 		goto out;
339 	}
340 	printk_ratelimited("parent transid verify failed on %llu wanted %llu "
341 		       "found %llu\n",
342 		       (unsigned long long)eb->start,
343 		       (unsigned long long)parent_transid,
344 		       (unsigned long long)btrfs_header_generation(eb));
345 	ret = 1;
346 	clear_extent_buffer_uptodate(eb);
347 out:
348 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
349 			     &cached_state, GFP_NOFS);
350 	return ret;
351 }
352 
353 /*
354  * helper to read a given tree block, doing retries as required when
355  * the checksums don't match and we have alternate mirrors to try.
356  */
357 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
358 					  struct extent_buffer *eb,
359 					  u64 start, u64 parent_transid)
360 {
361 	struct extent_io_tree *io_tree;
362 	int failed = 0;
363 	int ret;
364 	int num_copies = 0;
365 	int mirror_num = 0;
366 	int failed_mirror = 0;
367 
368 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
369 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
370 	while (1) {
371 		ret = read_extent_buffer_pages(io_tree, eb, start,
372 					       WAIT_COMPLETE,
373 					       btree_get_extent, mirror_num);
374 		if (!ret) {
375 			if (!verify_parent_transid(io_tree, eb,
376 						   parent_transid, 0))
377 				break;
378 			else
379 				ret = -EIO;
380 		}
381 
382 		/*
383 		 * This buffer's crc is fine, but its contents are corrupted, so
384 		 * there is no reason to read the other copies, they won't be
385 		 * any less wrong.
386 		 */
387 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
388 			break;
389 
390 		num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
391 					      eb->start, eb->len);
392 		if (num_copies == 1)
393 			break;
394 
395 		if (!failed_mirror) {
396 			failed = 1;
397 			failed_mirror = eb->read_mirror;
398 		}
399 
400 		mirror_num++;
401 		if (mirror_num == failed_mirror)
402 			mirror_num++;
403 
404 		if (mirror_num > num_copies)
405 			break;
406 	}
407 
408 	if (failed && !ret && failed_mirror)
409 		repair_eb_io_failure(root, eb, failed_mirror);
410 
411 	return ret;
412 }
413 
414 /*
415  * checksum a dirty tree block before IO.  This has extra checks to make sure
416  * we only fill in the checksum field in the first page of a multi-page block
417  */
418 
419 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
420 {
421 	struct extent_io_tree *tree;
422 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
423 	u64 found_start;
424 	struct extent_buffer *eb;
425 
426 	tree = &BTRFS_I(page->mapping->host)->io_tree;
427 
428 	eb = (struct extent_buffer *)page->private;
429 	if (page != eb->pages[0])
430 		return 0;
431 	found_start = btrfs_header_bytenr(eb);
432 	if (found_start != start) {
433 		WARN_ON(1);
434 		return 0;
435 	}
436 	if (!PageUptodate(page)) {
437 		WARN_ON(1);
438 		return 0;
439 	}
440 	csum_tree_block(root, eb, 0);
441 	return 0;
442 }
443 
444 static int check_tree_block_fsid(struct btrfs_root *root,
445 				 struct extent_buffer *eb)
446 {
447 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
448 	u8 fsid[BTRFS_UUID_SIZE];
449 	int ret = 1;
450 
451 	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
452 			   BTRFS_FSID_SIZE);
453 	while (fs_devices) {
454 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
455 			ret = 0;
456 			break;
457 		}
458 		fs_devices = fs_devices->seed;
459 	}
460 	return ret;
461 }
462 
463 #define CORRUPT(reason, eb, root, slot)				\
464 	printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu,"	\
465 	       "root=%llu, slot=%d\n", reason,			\
466 	       (unsigned long long)btrfs_header_bytenr(eb),	\
467 	       (unsigned long long)root->objectid, slot)
468 
469 static noinline int check_leaf(struct btrfs_root *root,
470 			       struct extent_buffer *leaf)
471 {
472 	struct btrfs_key key;
473 	struct btrfs_key leaf_key;
474 	u32 nritems = btrfs_header_nritems(leaf);
475 	int slot;
476 
477 	if (nritems == 0)
478 		return 0;
479 
480 	/* Check the 0 item */
481 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
482 	    BTRFS_LEAF_DATA_SIZE(root)) {
483 		CORRUPT("invalid item offset size pair", leaf, root, 0);
484 		return -EIO;
485 	}
486 
487 	/*
488 	 * Check to make sure each items keys are in the correct order and their
489 	 * offsets make sense.  We only have to loop through nritems-1 because
490 	 * we check the current slot against the next slot, which verifies the
491 	 * next slot's offset+size makes sense and that the current's slot
492 	 * offset is correct.
493 	 */
494 	for (slot = 0; slot < nritems - 1; slot++) {
495 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
496 		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
497 
498 		/* Make sure the keys are in the right order */
499 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
500 			CORRUPT("bad key order", leaf, root, slot);
501 			return -EIO;
502 		}
503 
504 		/*
505 		 * Make sure the offset and ends are right, remember that the
506 		 * item data starts at the end of the leaf and grows towards the
507 		 * front.
508 		 */
509 		if (btrfs_item_offset_nr(leaf, slot) !=
510 			btrfs_item_end_nr(leaf, slot + 1)) {
511 			CORRUPT("slot offset bad", leaf, root, slot);
512 			return -EIO;
513 		}
514 
515 		/*
516 		 * Check to make sure that we don't point outside of the leaf,
517 		 * just incase all the items are consistent to eachother, but
518 		 * all point outside of the leaf.
519 		 */
520 		if (btrfs_item_end_nr(leaf, slot) >
521 		    BTRFS_LEAF_DATA_SIZE(root)) {
522 			CORRUPT("slot end outside of leaf", leaf, root, slot);
523 			return -EIO;
524 		}
525 	}
526 
527 	return 0;
528 }
529 
530 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
531 				       struct page *page, int max_walk)
532 {
533 	struct extent_buffer *eb;
534 	u64 start = page_offset(page);
535 	u64 target = start;
536 	u64 min_start;
537 
538 	if (start < max_walk)
539 		min_start = 0;
540 	else
541 		min_start = start - max_walk;
542 
543 	while (start >= min_start) {
544 		eb = find_extent_buffer(tree, start, 0);
545 		if (eb) {
546 			/*
547 			 * we found an extent buffer and it contains our page
548 			 * horray!
549 			 */
550 			if (eb->start <= target &&
551 			    eb->start + eb->len > target)
552 				return eb;
553 
554 			/* we found an extent buffer that wasn't for us */
555 			free_extent_buffer(eb);
556 			return NULL;
557 		}
558 		if (start == 0)
559 			break;
560 		start -= PAGE_CACHE_SIZE;
561 	}
562 	return NULL;
563 }
564 
565 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
566 			       struct extent_state *state, int mirror)
567 {
568 	struct extent_io_tree *tree;
569 	u64 found_start;
570 	int found_level;
571 	struct extent_buffer *eb;
572 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
573 	int ret = 0;
574 	int reads_done;
575 
576 	if (!page->private)
577 		goto out;
578 
579 	tree = &BTRFS_I(page->mapping->host)->io_tree;
580 	eb = (struct extent_buffer *)page->private;
581 
582 	/* the pending IO might have been the only thing that kept this buffer
583 	 * in memory.  Make sure we have a ref for all this other checks
584 	 */
585 	extent_buffer_get(eb);
586 
587 	reads_done = atomic_dec_and_test(&eb->io_pages);
588 	if (!reads_done)
589 		goto err;
590 
591 	eb->read_mirror = mirror;
592 	if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
593 		ret = -EIO;
594 		goto err;
595 	}
596 
597 	found_start = btrfs_header_bytenr(eb);
598 	if (found_start != eb->start) {
599 		printk_ratelimited(KERN_INFO "btrfs bad tree block start "
600 			       "%llu %llu\n",
601 			       (unsigned long long)found_start,
602 			       (unsigned long long)eb->start);
603 		ret = -EIO;
604 		goto err;
605 	}
606 	if (check_tree_block_fsid(root, eb)) {
607 		printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
608 			       (unsigned long long)eb->start);
609 		ret = -EIO;
610 		goto err;
611 	}
612 	found_level = btrfs_header_level(eb);
613 
614 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
615 				       eb, found_level);
616 
617 	ret = csum_tree_block(root, eb, 1);
618 	if (ret) {
619 		ret = -EIO;
620 		goto err;
621 	}
622 
623 	/*
624 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
625 	 * that we don't try and read the other copies of this block, just
626 	 * return -EIO.
627 	 */
628 	if (found_level == 0 && check_leaf(root, eb)) {
629 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
630 		ret = -EIO;
631 	}
632 
633 	if (!ret)
634 		set_extent_buffer_uptodate(eb);
635 err:
636 	if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
637 		clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
638 		btree_readahead_hook(root, eb, eb->start, ret);
639 	}
640 
641 	if (ret)
642 		clear_extent_buffer_uptodate(eb);
643 	free_extent_buffer(eb);
644 out:
645 	return ret;
646 }
647 
648 static int btree_io_failed_hook(struct page *page, int failed_mirror)
649 {
650 	struct extent_buffer *eb;
651 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
652 
653 	eb = (struct extent_buffer *)page->private;
654 	set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
655 	eb->read_mirror = failed_mirror;
656 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
657 		btree_readahead_hook(root, eb, eb->start, -EIO);
658 	return -EIO;	/* we fixed nothing */
659 }
660 
661 static void end_workqueue_bio(struct bio *bio, int err)
662 {
663 	struct end_io_wq *end_io_wq = bio->bi_private;
664 	struct btrfs_fs_info *fs_info;
665 
666 	fs_info = end_io_wq->info;
667 	end_io_wq->error = err;
668 	end_io_wq->work.func = end_workqueue_fn;
669 	end_io_wq->work.flags = 0;
670 
671 	if (bio->bi_rw & REQ_WRITE) {
672 		if (end_io_wq->metadata == 1)
673 			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
674 					   &end_io_wq->work);
675 		else if (end_io_wq->metadata == 2)
676 			btrfs_queue_worker(&fs_info->endio_freespace_worker,
677 					   &end_io_wq->work);
678 		else
679 			btrfs_queue_worker(&fs_info->endio_write_workers,
680 					   &end_io_wq->work);
681 	} else {
682 		if (end_io_wq->metadata)
683 			btrfs_queue_worker(&fs_info->endio_meta_workers,
684 					   &end_io_wq->work);
685 		else
686 			btrfs_queue_worker(&fs_info->endio_workers,
687 					   &end_io_wq->work);
688 	}
689 }
690 
691 /*
692  * For the metadata arg you want
693  *
694  * 0 - if data
695  * 1 - if normal metadta
696  * 2 - if writing to the free space cache area
697  */
698 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
699 			int metadata)
700 {
701 	struct end_io_wq *end_io_wq;
702 	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
703 	if (!end_io_wq)
704 		return -ENOMEM;
705 
706 	end_io_wq->private = bio->bi_private;
707 	end_io_wq->end_io = bio->bi_end_io;
708 	end_io_wq->info = info;
709 	end_io_wq->error = 0;
710 	end_io_wq->bio = bio;
711 	end_io_wq->metadata = metadata;
712 
713 	bio->bi_private = end_io_wq;
714 	bio->bi_end_io = end_workqueue_bio;
715 	return 0;
716 }
717 
718 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
719 {
720 	unsigned long limit = min_t(unsigned long,
721 				    info->workers.max_workers,
722 				    info->fs_devices->open_devices);
723 	return 256 * limit;
724 }
725 
726 static void run_one_async_start(struct btrfs_work *work)
727 {
728 	struct async_submit_bio *async;
729 	int ret;
730 
731 	async = container_of(work, struct  async_submit_bio, work);
732 	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
733 				      async->mirror_num, async->bio_flags,
734 				      async->bio_offset);
735 	if (ret)
736 		async->error = ret;
737 }
738 
739 static void run_one_async_done(struct btrfs_work *work)
740 {
741 	struct btrfs_fs_info *fs_info;
742 	struct async_submit_bio *async;
743 	int limit;
744 
745 	async = container_of(work, struct  async_submit_bio, work);
746 	fs_info = BTRFS_I(async->inode)->root->fs_info;
747 
748 	limit = btrfs_async_submit_limit(fs_info);
749 	limit = limit * 2 / 3;
750 
751 	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
752 	    waitqueue_active(&fs_info->async_submit_wait))
753 		wake_up(&fs_info->async_submit_wait);
754 
755 	/* If an error occured we just want to clean up the bio and move on */
756 	if (async->error) {
757 		bio_endio(async->bio, async->error);
758 		return;
759 	}
760 
761 	async->submit_bio_done(async->inode, async->rw, async->bio,
762 			       async->mirror_num, async->bio_flags,
763 			       async->bio_offset);
764 }
765 
766 static void run_one_async_free(struct btrfs_work *work)
767 {
768 	struct async_submit_bio *async;
769 
770 	async = container_of(work, struct  async_submit_bio, work);
771 	kfree(async);
772 }
773 
774 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
775 			int rw, struct bio *bio, int mirror_num,
776 			unsigned long bio_flags,
777 			u64 bio_offset,
778 			extent_submit_bio_hook_t *submit_bio_start,
779 			extent_submit_bio_hook_t *submit_bio_done)
780 {
781 	struct async_submit_bio *async;
782 
783 	async = kmalloc(sizeof(*async), GFP_NOFS);
784 	if (!async)
785 		return -ENOMEM;
786 
787 	async->inode = inode;
788 	async->rw = rw;
789 	async->bio = bio;
790 	async->mirror_num = mirror_num;
791 	async->submit_bio_start = submit_bio_start;
792 	async->submit_bio_done = submit_bio_done;
793 
794 	async->work.func = run_one_async_start;
795 	async->work.ordered_func = run_one_async_done;
796 	async->work.ordered_free = run_one_async_free;
797 
798 	async->work.flags = 0;
799 	async->bio_flags = bio_flags;
800 	async->bio_offset = bio_offset;
801 
802 	async->error = 0;
803 
804 	atomic_inc(&fs_info->nr_async_submits);
805 
806 	if (rw & REQ_SYNC)
807 		btrfs_set_work_high_prio(&async->work);
808 
809 	btrfs_queue_worker(&fs_info->workers, &async->work);
810 
811 	while (atomic_read(&fs_info->async_submit_draining) &&
812 	      atomic_read(&fs_info->nr_async_submits)) {
813 		wait_event(fs_info->async_submit_wait,
814 			   (atomic_read(&fs_info->nr_async_submits) == 0));
815 	}
816 
817 	return 0;
818 }
819 
820 static int btree_csum_one_bio(struct bio *bio)
821 {
822 	struct bio_vec *bvec = bio->bi_io_vec;
823 	int bio_index = 0;
824 	struct btrfs_root *root;
825 	int ret = 0;
826 
827 	WARN_ON(bio->bi_vcnt <= 0);
828 	while (bio_index < bio->bi_vcnt) {
829 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
830 		ret = csum_dirty_buffer(root, bvec->bv_page);
831 		if (ret)
832 			break;
833 		bio_index++;
834 		bvec++;
835 	}
836 	return ret;
837 }
838 
839 static int __btree_submit_bio_start(struct inode *inode, int rw,
840 				    struct bio *bio, int mirror_num,
841 				    unsigned long bio_flags,
842 				    u64 bio_offset)
843 {
844 	/*
845 	 * when we're called for a write, we're already in the async
846 	 * submission context.  Just jump into btrfs_map_bio
847 	 */
848 	return btree_csum_one_bio(bio);
849 }
850 
851 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
852 				 int mirror_num, unsigned long bio_flags,
853 				 u64 bio_offset)
854 {
855 	/*
856 	 * when we're called for a write, we're already in the async
857 	 * submission context.  Just jump into btrfs_map_bio
858 	 */
859 	return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
860 }
861 
862 static int check_async_write(struct inode *inode, unsigned long bio_flags)
863 {
864 	if (bio_flags & EXTENT_BIO_TREE_LOG)
865 		return 0;
866 #ifdef CONFIG_X86
867 	if (cpu_has_xmm4_2)
868 		return 0;
869 #endif
870 	return 1;
871 }
872 
873 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
874 				 int mirror_num, unsigned long bio_flags,
875 				 u64 bio_offset)
876 {
877 	int async = check_async_write(inode, bio_flags);
878 	int ret;
879 
880 	if (!(rw & REQ_WRITE)) {
881 
882 		/*
883 		 * called for a read, do the setup so that checksum validation
884 		 * can happen in the async kernel threads
885 		 */
886 		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
887 					  bio, 1);
888 		if (ret)
889 			return ret;
890 		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
891 				     mirror_num, 0);
892 	} else if (!async) {
893 		ret = btree_csum_one_bio(bio);
894 		if (ret)
895 			return ret;
896 		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
897 				     mirror_num, 0);
898 	}
899 
900 	/*
901 	 * kthread helpers are used to submit writes so that checksumming
902 	 * can happen in parallel across all CPUs
903 	 */
904 	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
905 				   inode, rw, bio, mirror_num, 0,
906 				   bio_offset,
907 				   __btree_submit_bio_start,
908 				   __btree_submit_bio_done);
909 }
910 
911 #ifdef CONFIG_MIGRATION
912 static int btree_migratepage(struct address_space *mapping,
913 			struct page *newpage, struct page *page,
914 			enum migrate_mode mode)
915 {
916 	/*
917 	 * we can't safely write a btree page from here,
918 	 * we haven't done the locking hook
919 	 */
920 	if (PageDirty(page))
921 		return -EAGAIN;
922 	/*
923 	 * Buffers may be managed in a filesystem specific way.
924 	 * We must have no buffers or drop them.
925 	 */
926 	if (page_has_private(page) &&
927 	    !try_to_release_page(page, GFP_KERNEL))
928 		return -EAGAIN;
929 	return migrate_page(mapping, newpage, page, mode);
930 }
931 #endif
932 
933 
934 static int btree_writepages(struct address_space *mapping,
935 			    struct writeback_control *wbc)
936 {
937 	struct extent_io_tree *tree;
938 	tree = &BTRFS_I(mapping->host)->io_tree;
939 	if (wbc->sync_mode == WB_SYNC_NONE) {
940 		struct btrfs_root *root = BTRFS_I(mapping->host)->root;
941 		u64 num_dirty;
942 		unsigned long thresh = 32 * 1024 * 1024;
943 
944 		if (wbc->for_kupdate)
945 			return 0;
946 
947 		/* this is a bit racy, but that's ok */
948 		num_dirty = root->fs_info->dirty_metadata_bytes;
949 		if (num_dirty < thresh)
950 			return 0;
951 	}
952 	return btree_write_cache_pages(mapping, wbc);
953 }
954 
955 static int btree_readpage(struct file *file, struct page *page)
956 {
957 	struct extent_io_tree *tree;
958 	tree = &BTRFS_I(page->mapping->host)->io_tree;
959 	return extent_read_full_page(tree, page, btree_get_extent, 0);
960 }
961 
962 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
963 {
964 	if (PageWriteback(page) || PageDirty(page))
965 		return 0;
966 	/*
967 	 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
968 	 * slab allocation from alloc_extent_state down the callchain where
969 	 * it'd hit a BUG_ON as those flags are not allowed.
970 	 */
971 	gfp_flags &= ~GFP_SLAB_BUG_MASK;
972 
973 	return try_release_extent_buffer(page, gfp_flags);
974 }
975 
976 static void btree_invalidatepage(struct page *page, unsigned long offset)
977 {
978 	struct extent_io_tree *tree;
979 	tree = &BTRFS_I(page->mapping->host)->io_tree;
980 	extent_invalidatepage(tree, page, offset);
981 	btree_releasepage(page, GFP_NOFS);
982 	if (PagePrivate(page)) {
983 		printk(KERN_WARNING "btrfs warning page private not zero "
984 		       "on page %llu\n", (unsigned long long)page_offset(page));
985 		ClearPagePrivate(page);
986 		set_page_private(page, 0);
987 		page_cache_release(page);
988 	}
989 }
990 
991 static int btree_set_page_dirty(struct page *page)
992 {
993 	struct extent_buffer *eb;
994 
995 	BUG_ON(!PagePrivate(page));
996 	eb = (struct extent_buffer *)page->private;
997 	BUG_ON(!eb);
998 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
999 	BUG_ON(!atomic_read(&eb->refs));
1000 	btrfs_assert_tree_locked(eb);
1001 	return __set_page_dirty_nobuffers(page);
1002 }
1003 
1004 static const struct address_space_operations btree_aops = {
1005 	.readpage	= btree_readpage,
1006 	.writepages	= btree_writepages,
1007 	.releasepage	= btree_releasepage,
1008 	.invalidatepage = btree_invalidatepage,
1009 #ifdef CONFIG_MIGRATION
1010 	.migratepage	= btree_migratepage,
1011 #endif
1012 	.set_page_dirty = btree_set_page_dirty,
1013 };
1014 
1015 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1016 			 u64 parent_transid)
1017 {
1018 	struct extent_buffer *buf = NULL;
1019 	struct inode *btree_inode = root->fs_info->btree_inode;
1020 	int ret = 0;
1021 
1022 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1023 	if (!buf)
1024 		return 0;
1025 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1026 				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1027 	free_extent_buffer(buf);
1028 	return ret;
1029 }
1030 
1031 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1032 			 int mirror_num, struct extent_buffer **eb)
1033 {
1034 	struct extent_buffer *buf = NULL;
1035 	struct inode *btree_inode = root->fs_info->btree_inode;
1036 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1037 	int ret;
1038 
1039 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1040 	if (!buf)
1041 		return 0;
1042 
1043 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1044 
1045 	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1046 				       btree_get_extent, mirror_num);
1047 	if (ret) {
1048 		free_extent_buffer(buf);
1049 		return ret;
1050 	}
1051 
1052 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1053 		free_extent_buffer(buf);
1054 		return -EIO;
1055 	} else if (extent_buffer_uptodate(buf)) {
1056 		*eb = buf;
1057 	} else {
1058 		free_extent_buffer(buf);
1059 	}
1060 	return 0;
1061 }
1062 
1063 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1064 					    u64 bytenr, u32 blocksize)
1065 {
1066 	struct inode *btree_inode = root->fs_info->btree_inode;
1067 	struct extent_buffer *eb;
1068 	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1069 				bytenr, blocksize);
1070 	return eb;
1071 }
1072 
1073 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1074 						 u64 bytenr, u32 blocksize)
1075 {
1076 	struct inode *btree_inode = root->fs_info->btree_inode;
1077 	struct extent_buffer *eb;
1078 
1079 	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1080 				 bytenr, blocksize);
1081 	return eb;
1082 }
1083 
1084 
1085 int btrfs_write_tree_block(struct extent_buffer *buf)
1086 {
1087 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1088 					buf->start + buf->len - 1);
1089 }
1090 
1091 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1092 {
1093 	return filemap_fdatawait_range(buf->pages[0]->mapping,
1094 				       buf->start, buf->start + buf->len - 1);
1095 }
1096 
1097 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1098 				      u32 blocksize, u64 parent_transid)
1099 {
1100 	struct extent_buffer *buf = NULL;
1101 	int ret;
1102 
1103 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1104 	if (!buf)
1105 		return NULL;
1106 
1107 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1108 	return buf;
1109 
1110 }
1111 
1112 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1113 		      struct extent_buffer *buf)
1114 {
1115 	if (btrfs_header_generation(buf) ==
1116 	    root->fs_info->running_transaction->transid) {
1117 		btrfs_assert_tree_locked(buf);
1118 
1119 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1120 			spin_lock(&root->fs_info->delalloc_lock);
1121 			if (root->fs_info->dirty_metadata_bytes >= buf->len)
1122 				root->fs_info->dirty_metadata_bytes -= buf->len;
1123 			else {
1124 				spin_unlock(&root->fs_info->delalloc_lock);
1125 				btrfs_panic(root->fs_info, -EOVERFLOW,
1126 					  "Can't clear %lu bytes from "
1127 					  " dirty_mdatadata_bytes (%llu)",
1128 					  buf->len,
1129 					  root->fs_info->dirty_metadata_bytes);
1130 			}
1131 			spin_unlock(&root->fs_info->delalloc_lock);
1132 		}
1133 
1134 		/* ugh, clear_extent_buffer_dirty needs to lock the page */
1135 		btrfs_set_lock_blocking(buf);
1136 		clear_extent_buffer_dirty(buf);
1137 	}
1138 }
1139 
1140 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1141 			 u32 stripesize, struct btrfs_root *root,
1142 			 struct btrfs_fs_info *fs_info,
1143 			 u64 objectid)
1144 {
1145 	root->node = NULL;
1146 	root->commit_root = NULL;
1147 	root->sectorsize = sectorsize;
1148 	root->nodesize = nodesize;
1149 	root->leafsize = leafsize;
1150 	root->stripesize = stripesize;
1151 	root->ref_cows = 0;
1152 	root->track_dirty = 0;
1153 	root->in_radix = 0;
1154 	root->orphan_item_inserted = 0;
1155 	root->orphan_cleanup_state = 0;
1156 
1157 	root->objectid = objectid;
1158 	root->last_trans = 0;
1159 	root->highest_objectid = 0;
1160 	root->name = NULL;
1161 	root->inode_tree = RB_ROOT;
1162 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1163 	root->block_rsv = NULL;
1164 	root->orphan_block_rsv = NULL;
1165 
1166 	INIT_LIST_HEAD(&root->dirty_list);
1167 	INIT_LIST_HEAD(&root->root_list);
1168 	spin_lock_init(&root->orphan_lock);
1169 	spin_lock_init(&root->inode_lock);
1170 	spin_lock_init(&root->accounting_lock);
1171 	mutex_init(&root->objectid_mutex);
1172 	mutex_init(&root->log_mutex);
1173 	init_waitqueue_head(&root->log_writer_wait);
1174 	init_waitqueue_head(&root->log_commit_wait[0]);
1175 	init_waitqueue_head(&root->log_commit_wait[1]);
1176 	atomic_set(&root->log_commit[0], 0);
1177 	atomic_set(&root->log_commit[1], 0);
1178 	atomic_set(&root->log_writers, 0);
1179 	atomic_set(&root->log_batch, 0);
1180 	atomic_set(&root->orphan_inodes, 0);
1181 	root->log_transid = 0;
1182 	root->last_log_commit = 0;
1183 	extent_io_tree_init(&root->dirty_log_pages,
1184 			     fs_info->btree_inode->i_mapping);
1185 
1186 	memset(&root->root_key, 0, sizeof(root->root_key));
1187 	memset(&root->root_item, 0, sizeof(root->root_item));
1188 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1189 	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1190 	root->defrag_trans_start = fs_info->generation;
1191 	init_completion(&root->kobj_unregister);
1192 	root->defrag_running = 0;
1193 	root->root_key.objectid = objectid;
1194 	root->anon_dev = 0;
1195 
1196 	spin_lock_init(&root->root_times_lock);
1197 }
1198 
1199 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1200 					    struct btrfs_fs_info *fs_info,
1201 					    u64 objectid,
1202 					    struct btrfs_root *root)
1203 {
1204 	int ret;
1205 	u32 blocksize;
1206 	u64 generation;
1207 
1208 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1209 		     tree_root->sectorsize, tree_root->stripesize,
1210 		     root, fs_info, objectid);
1211 	ret = btrfs_find_last_root(tree_root, objectid,
1212 				   &root->root_item, &root->root_key);
1213 	if (ret > 0)
1214 		return -ENOENT;
1215 	else if (ret < 0)
1216 		return ret;
1217 
1218 	generation = btrfs_root_generation(&root->root_item);
1219 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1220 	root->commit_root = NULL;
1221 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1222 				     blocksize, generation);
1223 	if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1224 		free_extent_buffer(root->node);
1225 		root->node = NULL;
1226 		return -EIO;
1227 	}
1228 	root->commit_root = btrfs_root_node(root);
1229 	return 0;
1230 }
1231 
1232 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1233 {
1234 	struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1235 	if (root)
1236 		root->fs_info = fs_info;
1237 	return root;
1238 }
1239 
1240 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1241 				     struct btrfs_fs_info *fs_info,
1242 				     u64 objectid)
1243 {
1244 	struct extent_buffer *leaf;
1245 	struct btrfs_root *tree_root = fs_info->tree_root;
1246 	struct btrfs_root *root;
1247 	struct btrfs_key key;
1248 	int ret = 0;
1249 	u64 bytenr;
1250 
1251 	root = btrfs_alloc_root(fs_info);
1252 	if (!root)
1253 		return ERR_PTR(-ENOMEM);
1254 
1255 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1256 		     tree_root->sectorsize, tree_root->stripesize,
1257 		     root, fs_info, objectid);
1258 	root->root_key.objectid = objectid;
1259 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1260 	root->root_key.offset = 0;
1261 
1262 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1263 				      0, objectid, NULL, 0, 0, 0);
1264 	if (IS_ERR(leaf)) {
1265 		ret = PTR_ERR(leaf);
1266 		goto fail;
1267 	}
1268 
1269 	bytenr = leaf->start;
1270 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1271 	btrfs_set_header_bytenr(leaf, leaf->start);
1272 	btrfs_set_header_generation(leaf, trans->transid);
1273 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1274 	btrfs_set_header_owner(leaf, objectid);
1275 	root->node = leaf;
1276 
1277 	write_extent_buffer(leaf, fs_info->fsid,
1278 			    (unsigned long)btrfs_header_fsid(leaf),
1279 			    BTRFS_FSID_SIZE);
1280 	write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1281 			    (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1282 			    BTRFS_UUID_SIZE);
1283 	btrfs_mark_buffer_dirty(leaf);
1284 
1285 	root->commit_root = btrfs_root_node(root);
1286 	root->track_dirty = 1;
1287 
1288 
1289 	root->root_item.flags = 0;
1290 	root->root_item.byte_limit = 0;
1291 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1292 	btrfs_set_root_generation(&root->root_item, trans->transid);
1293 	btrfs_set_root_level(&root->root_item, 0);
1294 	btrfs_set_root_refs(&root->root_item, 1);
1295 	btrfs_set_root_used(&root->root_item, leaf->len);
1296 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1297 	btrfs_set_root_dirid(&root->root_item, 0);
1298 	root->root_item.drop_level = 0;
1299 
1300 	key.objectid = objectid;
1301 	key.type = BTRFS_ROOT_ITEM_KEY;
1302 	key.offset = 0;
1303 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1304 	if (ret)
1305 		goto fail;
1306 
1307 	btrfs_tree_unlock(leaf);
1308 
1309 fail:
1310 	if (ret)
1311 		return ERR_PTR(ret);
1312 
1313 	return root;
1314 }
1315 
1316 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1317 					 struct btrfs_fs_info *fs_info)
1318 {
1319 	struct btrfs_root *root;
1320 	struct btrfs_root *tree_root = fs_info->tree_root;
1321 	struct extent_buffer *leaf;
1322 
1323 	root = btrfs_alloc_root(fs_info);
1324 	if (!root)
1325 		return ERR_PTR(-ENOMEM);
1326 
1327 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1328 		     tree_root->sectorsize, tree_root->stripesize,
1329 		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1330 
1331 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1332 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1333 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1334 	/*
1335 	 * log trees do not get reference counted because they go away
1336 	 * before a real commit is actually done.  They do store pointers
1337 	 * to file data extents, and those reference counts still get
1338 	 * updated (along with back refs to the log tree).
1339 	 */
1340 	root->ref_cows = 0;
1341 
1342 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1343 				      BTRFS_TREE_LOG_OBJECTID, NULL,
1344 				      0, 0, 0);
1345 	if (IS_ERR(leaf)) {
1346 		kfree(root);
1347 		return ERR_CAST(leaf);
1348 	}
1349 
1350 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1351 	btrfs_set_header_bytenr(leaf, leaf->start);
1352 	btrfs_set_header_generation(leaf, trans->transid);
1353 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1354 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1355 	root->node = leaf;
1356 
1357 	write_extent_buffer(root->node, root->fs_info->fsid,
1358 			    (unsigned long)btrfs_header_fsid(root->node),
1359 			    BTRFS_FSID_SIZE);
1360 	btrfs_mark_buffer_dirty(root->node);
1361 	btrfs_tree_unlock(root->node);
1362 	return root;
1363 }
1364 
1365 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1366 			     struct btrfs_fs_info *fs_info)
1367 {
1368 	struct btrfs_root *log_root;
1369 
1370 	log_root = alloc_log_tree(trans, fs_info);
1371 	if (IS_ERR(log_root))
1372 		return PTR_ERR(log_root);
1373 	WARN_ON(fs_info->log_root_tree);
1374 	fs_info->log_root_tree = log_root;
1375 	return 0;
1376 }
1377 
1378 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1379 		       struct btrfs_root *root)
1380 {
1381 	struct btrfs_root *log_root;
1382 	struct btrfs_inode_item *inode_item;
1383 
1384 	log_root = alloc_log_tree(trans, root->fs_info);
1385 	if (IS_ERR(log_root))
1386 		return PTR_ERR(log_root);
1387 
1388 	log_root->last_trans = trans->transid;
1389 	log_root->root_key.offset = root->root_key.objectid;
1390 
1391 	inode_item = &log_root->root_item.inode;
1392 	inode_item->generation = cpu_to_le64(1);
1393 	inode_item->size = cpu_to_le64(3);
1394 	inode_item->nlink = cpu_to_le32(1);
1395 	inode_item->nbytes = cpu_to_le64(root->leafsize);
1396 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1397 
1398 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1399 
1400 	WARN_ON(root->log_root);
1401 	root->log_root = log_root;
1402 	root->log_transid = 0;
1403 	root->last_log_commit = 0;
1404 	return 0;
1405 }
1406 
1407 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1408 					       struct btrfs_key *location)
1409 {
1410 	struct btrfs_root *root;
1411 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1412 	struct btrfs_path *path;
1413 	struct extent_buffer *l;
1414 	u64 generation;
1415 	u32 blocksize;
1416 	int ret = 0;
1417 	int slot;
1418 
1419 	root = btrfs_alloc_root(fs_info);
1420 	if (!root)
1421 		return ERR_PTR(-ENOMEM);
1422 	if (location->offset == (u64)-1) {
1423 		ret = find_and_setup_root(tree_root, fs_info,
1424 					  location->objectid, root);
1425 		if (ret) {
1426 			kfree(root);
1427 			return ERR_PTR(ret);
1428 		}
1429 		goto out;
1430 	}
1431 
1432 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1433 		     tree_root->sectorsize, tree_root->stripesize,
1434 		     root, fs_info, location->objectid);
1435 
1436 	path = btrfs_alloc_path();
1437 	if (!path) {
1438 		kfree(root);
1439 		return ERR_PTR(-ENOMEM);
1440 	}
1441 	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1442 	if (ret == 0) {
1443 		l = path->nodes[0];
1444 		slot = path->slots[0];
1445 		btrfs_read_root_item(tree_root, l, slot, &root->root_item);
1446 		memcpy(&root->root_key, location, sizeof(*location));
1447 	}
1448 	btrfs_free_path(path);
1449 	if (ret) {
1450 		kfree(root);
1451 		if (ret > 0)
1452 			ret = -ENOENT;
1453 		return ERR_PTR(ret);
1454 	}
1455 
1456 	generation = btrfs_root_generation(&root->root_item);
1457 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1458 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1459 				     blocksize, generation);
1460 	root->commit_root = btrfs_root_node(root);
1461 	BUG_ON(!root->node); /* -ENOMEM */
1462 out:
1463 	if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1464 		root->ref_cows = 1;
1465 		btrfs_check_and_init_root_item(&root->root_item);
1466 	}
1467 
1468 	return root;
1469 }
1470 
1471 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1472 					      struct btrfs_key *location)
1473 {
1474 	struct btrfs_root *root;
1475 	int ret;
1476 
1477 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1478 		return fs_info->tree_root;
1479 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1480 		return fs_info->extent_root;
1481 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1482 		return fs_info->chunk_root;
1483 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1484 		return fs_info->dev_root;
1485 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1486 		return fs_info->csum_root;
1487 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1488 		return fs_info->quota_root ? fs_info->quota_root :
1489 					     ERR_PTR(-ENOENT);
1490 again:
1491 	spin_lock(&fs_info->fs_roots_radix_lock);
1492 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1493 				 (unsigned long)location->objectid);
1494 	spin_unlock(&fs_info->fs_roots_radix_lock);
1495 	if (root)
1496 		return root;
1497 
1498 	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1499 	if (IS_ERR(root))
1500 		return root;
1501 
1502 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1503 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1504 					GFP_NOFS);
1505 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1506 		ret = -ENOMEM;
1507 		goto fail;
1508 	}
1509 
1510 	btrfs_init_free_ino_ctl(root);
1511 	mutex_init(&root->fs_commit_mutex);
1512 	spin_lock_init(&root->cache_lock);
1513 	init_waitqueue_head(&root->cache_wait);
1514 
1515 	ret = get_anon_bdev(&root->anon_dev);
1516 	if (ret)
1517 		goto fail;
1518 
1519 	if (btrfs_root_refs(&root->root_item) == 0) {
1520 		ret = -ENOENT;
1521 		goto fail;
1522 	}
1523 
1524 	ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1525 	if (ret < 0)
1526 		goto fail;
1527 	if (ret == 0)
1528 		root->orphan_item_inserted = 1;
1529 
1530 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1531 	if (ret)
1532 		goto fail;
1533 
1534 	spin_lock(&fs_info->fs_roots_radix_lock);
1535 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1536 				(unsigned long)root->root_key.objectid,
1537 				root);
1538 	if (ret == 0)
1539 		root->in_radix = 1;
1540 
1541 	spin_unlock(&fs_info->fs_roots_radix_lock);
1542 	radix_tree_preload_end();
1543 	if (ret) {
1544 		if (ret == -EEXIST) {
1545 			free_fs_root(root);
1546 			goto again;
1547 		}
1548 		goto fail;
1549 	}
1550 
1551 	ret = btrfs_find_dead_roots(fs_info->tree_root,
1552 				    root->root_key.objectid);
1553 	WARN_ON(ret);
1554 	return root;
1555 fail:
1556 	free_fs_root(root);
1557 	return ERR_PTR(ret);
1558 }
1559 
1560 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1561 {
1562 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1563 	int ret = 0;
1564 	struct btrfs_device *device;
1565 	struct backing_dev_info *bdi;
1566 
1567 	rcu_read_lock();
1568 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1569 		if (!device->bdev)
1570 			continue;
1571 		bdi = blk_get_backing_dev_info(device->bdev);
1572 		if (bdi && bdi_congested(bdi, bdi_bits)) {
1573 			ret = 1;
1574 			break;
1575 		}
1576 	}
1577 	rcu_read_unlock();
1578 	return ret;
1579 }
1580 
1581 /*
1582  * If this fails, caller must call bdi_destroy() to get rid of the
1583  * bdi again.
1584  */
1585 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1586 {
1587 	int err;
1588 
1589 	bdi->capabilities = BDI_CAP_MAP_COPY;
1590 	err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1591 	if (err)
1592 		return err;
1593 
1594 	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1595 	bdi->congested_fn	= btrfs_congested_fn;
1596 	bdi->congested_data	= info;
1597 	return 0;
1598 }
1599 
1600 /*
1601  * called by the kthread helper functions to finally call the bio end_io
1602  * functions.  This is where read checksum verification actually happens
1603  */
1604 static void end_workqueue_fn(struct btrfs_work *work)
1605 {
1606 	struct bio *bio;
1607 	struct end_io_wq *end_io_wq;
1608 	struct btrfs_fs_info *fs_info;
1609 	int error;
1610 
1611 	end_io_wq = container_of(work, struct end_io_wq, work);
1612 	bio = end_io_wq->bio;
1613 	fs_info = end_io_wq->info;
1614 
1615 	error = end_io_wq->error;
1616 	bio->bi_private = end_io_wq->private;
1617 	bio->bi_end_io = end_io_wq->end_io;
1618 	kfree(end_io_wq);
1619 	bio_endio(bio, error);
1620 }
1621 
1622 static int cleaner_kthread(void *arg)
1623 {
1624 	struct btrfs_root *root = arg;
1625 
1626 	do {
1627 		if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1628 		    mutex_trylock(&root->fs_info->cleaner_mutex)) {
1629 			btrfs_run_delayed_iputs(root);
1630 			btrfs_clean_old_snapshots(root);
1631 			mutex_unlock(&root->fs_info->cleaner_mutex);
1632 			btrfs_run_defrag_inodes(root->fs_info);
1633 		}
1634 
1635 		if (!try_to_freeze()) {
1636 			set_current_state(TASK_INTERRUPTIBLE);
1637 			if (!kthread_should_stop())
1638 				schedule();
1639 			__set_current_state(TASK_RUNNING);
1640 		}
1641 	} while (!kthread_should_stop());
1642 	return 0;
1643 }
1644 
1645 static int transaction_kthread(void *arg)
1646 {
1647 	struct btrfs_root *root = arg;
1648 	struct btrfs_trans_handle *trans;
1649 	struct btrfs_transaction *cur;
1650 	u64 transid;
1651 	unsigned long now;
1652 	unsigned long delay;
1653 	bool cannot_commit;
1654 
1655 	do {
1656 		cannot_commit = false;
1657 		delay = HZ * 30;
1658 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1659 
1660 		spin_lock(&root->fs_info->trans_lock);
1661 		cur = root->fs_info->running_transaction;
1662 		if (!cur) {
1663 			spin_unlock(&root->fs_info->trans_lock);
1664 			goto sleep;
1665 		}
1666 
1667 		now = get_seconds();
1668 		if (!cur->blocked &&
1669 		    (now < cur->start_time || now - cur->start_time < 30)) {
1670 			spin_unlock(&root->fs_info->trans_lock);
1671 			delay = HZ * 5;
1672 			goto sleep;
1673 		}
1674 		transid = cur->transid;
1675 		spin_unlock(&root->fs_info->trans_lock);
1676 
1677 		/* If the file system is aborted, this will always fail. */
1678 		trans = btrfs_attach_transaction(root);
1679 		if (IS_ERR(trans)) {
1680 			if (PTR_ERR(trans) != -ENOENT)
1681 				cannot_commit = true;
1682 			goto sleep;
1683 		}
1684 		if (transid == trans->transid) {
1685 			btrfs_commit_transaction(trans, root);
1686 		} else {
1687 			btrfs_end_transaction(trans, root);
1688 		}
1689 sleep:
1690 		wake_up_process(root->fs_info->cleaner_kthread);
1691 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1692 
1693 		if (!try_to_freeze()) {
1694 			set_current_state(TASK_INTERRUPTIBLE);
1695 			if (!kthread_should_stop() &&
1696 			    (!btrfs_transaction_blocked(root->fs_info) ||
1697 			     cannot_commit))
1698 				schedule_timeout(delay);
1699 			__set_current_state(TASK_RUNNING);
1700 		}
1701 	} while (!kthread_should_stop());
1702 	return 0;
1703 }
1704 
1705 /*
1706  * this will find the highest generation in the array of
1707  * root backups.  The index of the highest array is returned,
1708  * or -1 if we can't find anything.
1709  *
1710  * We check to make sure the array is valid by comparing the
1711  * generation of the latest  root in the array with the generation
1712  * in the super block.  If they don't match we pitch it.
1713  */
1714 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1715 {
1716 	u64 cur;
1717 	int newest_index = -1;
1718 	struct btrfs_root_backup *root_backup;
1719 	int i;
1720 
1721 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1722 		root_backup = info->super_copy->super_roots + i;
1723 		cur = btrfs_backup_tree_root_gen(root_backup);
1724 		if (cur == newest_gen)
1725 			newest_index = i;
1726 	}
1727 
1728 	/* check to see if we actually wrapped around */
1729 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1730 		root_backup = info->super_copy->super_roots;
1731 		cur = btrfs_backup_tree_root_gen(root_backup);
1732 		if (cur == newest_gen)
1733 			newest_index = 0;
1734 	}
1735 	return newest_index;
1736 }
1737 
1738 
1739 /*
1740  * find the oldest backup so we know where to store new entries
1741  * in the backup array.  This will set the backup_root_index
1742  * field in the fs_info struct
1743  */
1744 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1745 				     u64 newest_gen)
1746 {
1747 	int newest_index = -1;
1748 
1749 	newest_index = find_newest_super_backup(info, newest_gen);
1750 	/* if there was garbage in there, just move along */
1751 	if (newest_index == -1) {
1752 		info->backup_root_index = 0;
1753 	} else {
1754 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1755 	}
1756 }
1757 
1758 /*
1759  * copy all the root pointers into the super backup array.
1760  * this will bump the backup pointer by one when it is
1761  * done
1762  */
1763 static void backup_super_roots(struct btrfs_fs_info *info)
1764 {
1765 	int next_backup;
1766 	struct btrfs_root_backup *root_backup;
1767 	int last_backup;
1768 
1769 	next_backup = info->backup_root_index;
1770 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1771 		BTRFS_NUM_BACKUP_ROOTS;
1772 
1773 	/*
1774 	 * just overwrite the last backup if we're at the same generation
1775 	 * this happens only at umount
1776 	 */
1777 	root_backup = info->super_for_commit->super_roots + last_backup;
1778 	if (btrfs_backup_tree_root_gen(root_backup) ==
1779 	    btrfs_header_generation(info->tree_root->node))
1780 		next_backup = last_backup;
1781 
1782 	root_backup = info->super_for_commit->super_roots + next_backup;
1783 
1784 	/*
1785 	 * make sure all of our padding and empty slots get zero filled
1786 	 * regardless of which ones we use today
1787 	 */
1788 	memset(root_backup, 0, sizeof(*root_backup));
1789 
1790 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1791 
1792 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1793 	btrfs_set_backup_tree_root_gen(root_backup,
1794 			       btrfs_header_generation(info->tree_root->node));
1795 
1796 	btrfs_set_backup_tree_root_level(root_backup,
1797 			       btrfs_header_level(info->tree_root->node));
1798 
1799 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1800 	btrfs_set_backup_chunk_root_gen(root_backup,
1801 			       btrfs_header_generation(info->chunk_root->node));
1802 	btrfs_set_backup_chunk_root_level(root_backup,
1803 			       btrfs_header_level(info->chunk_root->node));
1804 
1805 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1806 	btrfs_set_backup_extent_root_gen(root_backup,
1807 			       btrfs_header_generation(info->extent_root->node));
1808 	btrfs_set_backup_extent_root_level(root_backup,
1809 			       btrfs_header_level(info->extent_root->node));
1810 
1811 	/*
1812 	 * we might commit during log recovery, which happens before we set
1813 	 * the fs_root.  Make sure it is valid before we fill it in.
1814 	 */
1815 	if (info->fs_root && info->fs_root->node) {
1816 		btrfs_set_backup_fs_root(root_backup,
1817 					 info->fs_root->node->start);
1818 		btrfs_set_backup_fs_root_gen(root_backup,
1819 			       btrfs_header_generation(info->fs_root->node));
1820 		btrfs_set_backup_fs_root_level(root_backup,
1821 			       btrfs_header_level(info->fs_root->node));
1822 	}
1823 
1824 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1825 	btrfs_set_backup_dev_root_gen(root_backup,
1826 			       btrfs_header_generation(info->dev_root->node));
1827 	btrfs_set_backup_dev_root_level(root_backup,
1828 				       btrfs_header_level(info->dev_root->node));
1829 
1830 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1831 	btrfs_set_backup_csum_root_gen(root_backup,
1832 			       btrfs_header_generation(info->csum_root->node));
1833 	btrfs_set_backup_csum_root_level(root_backup,
1834 			       btrfs_header_level(info->csum_root->node));
1835 
1836 	btrfs_set_backup_total_bytes(root_backup,
1837 			     btrfs_super_total_bytes(info->super_copy));
1838 	btrfs_set_backup_bytes_used(root_backup,
1839 			     btrfs_super_bytes_used(info->super_copy));
1840 	btrfs_set_backup_num_devices(root_backup,
1841 			     btrfs_super_num_devices(info->super_copy));
1842 
1843 	/*
1844 	 * if we don't copy this out to the super_copy, it won't get remembered
1845 	 * for the next commit
1846 	 */
1847 	memcpy(&info->super_copy->super_roots,
1848 	       &info->super_for_commit->super_roots,
1849 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1850 }
1851 
1852 /*
1853  * this copies info out of the root backup array and back into
1854  * the in-memory super block.  It is meant to help iterate through
1855  * the array, so you send it the number of backups you've already
1856  * tried and the last backup index you used.
1857  *
1858  * this returns -1 when it has tried all the backups
1859  */
1860 static noinline int next_root_backup(struct btrfs_fs_info *info,
1861 				     struct btrfs_super_block *super,
1862 				     int *num_backups_tried, int *backup_index)
1863 {
1864 	struct btrfs_root_backup *root_backup;
1865 	int newest = *backup_index;
1866 
1867 	if (*num_backups_tried == 0) {
1868 		u64 gen = btrfs_super_generation(super);
1869 
1870 		newest = find_newest_super_backup(info, gen);
1871 		if (newest == -1)
1872 			return -1;
1873 
1874 		*backup_index = newest;
1875 		*num_backups_tried = 1;
1876 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1877 		/* we've tried all the backups, all done */
1878 		return -1;
1879 	} else {
1880 		/* jump to the next oldest backup */
1881 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1882 			BTRFS_NUM_BACKUP_ROOTS;
1883 		*backup_index = newest;
1884 		*num_backups_tried += 1;
1885 	}
1886 	root_backup = super->super_roots + newest;
1887 
1888 	btrfs_set_super_generation(super,
1889 				   btrfs_backup_tree_root_gen(root_backup));
1890 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1891 	btrfs_set_super_root_level(super,
1892 				   btrfs_backup_tree_root_level(root_backup));
1893 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1894 
1895 	/*
1896 	 * fixme: the total bytes and num_devices need to match or we should
1897 	 * need a fsck
1898 	 */
1899 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1900 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1901 	return 0;
1902 }
1903 
1904 /* helper to cleanup tree roots */
1905 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1906 {
1907 	free_extent_buffer(info->tree_root->node);
1908 	free_extent_buffer(info->tree_root->commit_root);
1909 	free_extent_buffer(info->dev_root->node);
1910 	free_extent_buffer(info->dev_root->commit_root);
1911 	free_extent_buffer(info->extent_root->node);
1912 	free_extent_buffer(info->extent_root->commit_root);
1913 	free_extent_buffer(info->csum_root->node);
1914 	free_extent_buffer(info->csum_root->commit_root);
1915 	if (info->quota_root) {
1916 		free_extent_buffer(info->quota_root->node);
1917 		free_extent_buffer(info->quota_root->commit_root);
1918 	}
1919 
1920 	info->tree_root->node = NULL;
1921 	info->tree_root->commit_root = NULL;
1922 	info->dev_root->node = NULL;
1923 	info->dev_root->commit_root = NULL;
1924 	info->extent_root->node = NULL;
1925 	info->extent_root->commit_root = NULL;
1926 	info->csum_root->node = NULL;
1927 	info->csum_root->commit_root = NULL;
1928 	if (info->quota_root) {
1929 		info->quota_root->node = NULL;
1930 		info->quota_root->commit_root = NULL;
1931 	}
1932 
1933 	if (chunk_root) {
1934 		free_extent_buffer(info->chunk_root->node);
1935 		free_extent_buffer(info->chunk_root->commit_root);
1936 		info->chunk_root->node = NULL;
1937 		info->chunk_root->commit_root = NULL;
1938 	}
1939 }
1940 
1941 
1942 int open_ctree(struct super_block *sb,
1943 	       struct btrfs_fs_devices *fs_devices,
1944 	       char *options)
1945 {
1946 	u32 sectorsize;
1947 	u32 nodesize;
1948 	u32 leafsize;
1949 	u32 blocksize;
1950 	u32 stripesize;
1951 	u64 generation;
1952 	u64 features;
1953 	struct btrfs_key location;
1954 	struct buffer_head *bh;
1955 	struct btrfs_super_block *disk_super;
1956 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1957 	struct btrfs_root *tree_root;
1958 	struct btrfs_root *extent_root;
1959 	struct btrfs_root *csum_root;
1960 	struct btrfs_root *chunk_root;
1961 	struct btrfs_root *dev_root;
1962 	struct btrfs_root *quota_root;
1963 	struct btrfs_root *log_tree_root;
1964 	int ret;
1965 	int err = -EINVAL;
1966 	int num_backups_tried = 0;
1967 	int backup_index = 0;
1968 
1969 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1970 	extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1971 	csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1972 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1973 	dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1974 	quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
1975 
1976 	if (!tree_root || !extent_root || !csum_root ||
1977 	    !chunk_root || !dev_root || !quota_root) {
1978 		err = -ENOMEM;
1979 		goto fail;
1980 	}
1981 
1982 	ret = init_srcu_struct(&fs_info->subvol_srcu);
1983 	if (ret) {
1984 		err = ret;
1985 		goto fail;
1986 	}
1987 
1988 	ret = setup_bdi(fs_info, &fs_info->bdi);
1989 	if (ret) {
1990 		err = ret;
1991 		goto fail_srcu;
1992 	}
1993 
1994 	fs_info->btree_inode = new_inode(sb);
1995 	if (!fs_info->btree_inode) {
1996 		err = -ENOMEM;
1997 		goto fail_bdi;
1998 	}
1999 
2000 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2001 
2002 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2003 	INIT_LIST_HEAD(&fs_info->trans_list);
2004 	INIT_LIST_HEAD(&fs_info->dead_roots);
2005 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2006 	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2007 	INIT_LIST_HEAD(&fs_info->ordered_operations);
2008 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2009 	spin_lock_init(&fs_info->delalloc_lock);
2010 	spin_lock_init(&fs_info->trans_lock);
2011 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2012 	spin_lock_init(&fs_info->delayed_iput_lock);
2013 	spin_lock_init(&fs_info->defrag_inodes_lock);
2014 	spin_lock_init(&fs_info->free_chunk_lock);
2015 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2016 	rwlock_init(&fs_info->tree_mod_log_lock);
2017 	mutex_init(&fs_info->reloc_mutex);
2018 
2019 	init_completion(&fs_info->kobj_unregister);
2020 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2021 	INIT_LIST_HEAD(&fs_info->space_info);
2022 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2023 	btrfs_mapping_init(&fs_info->mapping_tree);
2024 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2025 			     BTRFS_BLOCK_RSV_GLOBAL);
2026 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2027 			     BTRFS_BLOCK_RSV_DELALLOC);
2028 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2029 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2030 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2031 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2032 			     BTRFS_BLOCK_RSV_DELOPS);
2033 	atomic_set(&fs_info->nr_async_submits, 0);
2034 	atomic_set(&fs_info->async_delalloc_pages, 0);
2035 	atomic_set(&fs_info->async_submit_draining, 0);
2036 	atomic_set(&fs_info->nr_async_bios, 0);
2037 	atomic_set(&fs_info->defrag_running, 0);
2038 	atomic_set(&fs_info->tree_mod_seq, 0);
2039 	fs_info->sb = sb;
2040 	fs_info->max_inline = 8192 * 1024;
2041 	fs_info->metadata_ratio = 0;
2042 	fs_info->defrag_inodes = RB_ROOT;
2043 	fs_info->trans_no_join = 0;
2044 	fs_info->free_chunk_space = 0;
2045 	fs_info->tree_mod_log = RB_ROOT;
2046 
2047 	/* readahead state */
2048 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2049 	spin_lock_init(&fs_info->reada_lock);
2050 
2051 	fs_info->thread_pool_size = min_t(unsigned long,
2052 					  num_online_cpus() + 2, 8);
2053 
2054 	INIT_LIST_HEAD(&fs_info->ordered_extents);
2055 	spin_lock_init(&fs_info->ordered_extent_lock);
2056 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2057 					GFP_NOFS);
2058 	if (!fs_info->delayed_root) {
2059 		err = -ENOMEM;
2060 		goto fail_iput;
2061 	}
2062 	btrfs_init_delayed_root(fs_info->delayed_root);
2063 
2064 	mutex_init(&fs_info->scrub_lock);
2065 	atomic_set(&fs_info->scrubs_running, 0);
2066 	atomic_set(&fs_info->scrub_pause_req, 0);
2067 	atomic_set(&fs_info->scrubs_paused, 0);
2068 	atomic_set(&fs_info->scrub_cancel_req, 0);
2069 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2070 	init_rwsem(&fs_info->scrub_super_lock);
2071 	fs_info->scrub_workers_refcnt = 0;
2072 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2073 	fs_info->check_integrity_print_mask = 0;
2074 #endif
2075 
2076 	spin_lock_init(&fs_info->balance_lock);
2077 	mutex_init(&fs_info->balance_mutex);
2078 	atomic_set(&fs_info->balance_running, 0);
2079 	atomic_set(&fs_info->balance_pause_req, 0);
2080 	atomic_set(&fs_info->balance_cancel_req, 0);
2081 	fs_info->balance_ctl = NULL;
2082 	init_waitqueue_head(&fs_info->balance_wait_q);
2083 
2084 	sb->s_blocksize = 4096;
2085 	sb->s_blocksize_bits = blksize_bits(4096);
2086 	sb->s_bdi = &fs_info->bdi;
2087 
2088 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2089 	set_nlink(fs_info->btree_inode, 1);
2090 	/*
2091 	 * we set the i_size on the btree inode to the max possible int.
2092 	 * the real end of the address space is determined by all of
2093 	 * the devices in the system
2094 	 */
2095 	fs_info->btree_inode->i_size = OFFSET_MAX;
2096 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2097 	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2098 
2099 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2100 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2101 			     fs_info->btree_inode->i_mapping);
2102 	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2103 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2104 
2105 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2106 
2107 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2108 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2109 	       sizeof(struct btrfs_key));
2110 	set_bit(BTRFS_INODE_DUMMY,
2111 		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2112 	insert_inode_hash(fs_info->btree_inode);
2113 
2114 	spin_lock_init(&fs_info->block_group_cache_lock);
2115 	fs_info->block_group_cache_tree = RB_ROOT;
2116 
2117 	extent_io_tree_init(&fs_info->freed_extents[0],
2118 			     fs_info->btree_inode->i_mapping);
2119 	extent_io_tree_init(&fs_info->freed_extents[1],
2120 			     fs_info->btree_inode->i_mapping);
2121 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2122 	fs_info->do_barriers = 1;
2123 
2124 
2125 	mutex_init(&fs_info->ordered_operations_mutex);
2126 	mutex_init(&fs_info->tree_log_mutex);
2127 	mutex_init(&fs_info->chunk_mutex);
2128 	mutex_init(&fs_info->transaction_kthread_mutex);
2129 	mutex_init(&fs_info->cleaner_mutex);
2130 	mutex_init(&fs_info->volume_mutex);
2131 	init_rwsem(&fs_info->extent_commit_sem);
2132 	init_rwsem(&fs_info->cleanup_work_sem);
2133 	init_rwsem(&fs_info->subvol_sem);
2134 
2135 	spin_lock_init(&fs_info->qgroup_lock);
2136 	fs_info->qgroup_tree = RB_ROOT;
2137 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2138 	fs_info->qgroup_seq = 1;
2139 	fs_info->quota_enabled = 0;
2140 	fs_info->pending_quota_state = 0;
2141 
2142 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2143 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2144 
2145 	init_waitqueue_head(&fs_info->transaction_throttle);
2146 	init_waitqueue_head(&fs_info->transaction_wait);
2147 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2148 	init_waitqueue_head(&fs_info->async_submit_wait);
2149 
2150 	__setup_root(4096, 4096, 4096, 4096, tree_root,
2151 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2152 
2153 	invalidate_bdev(fs_devices->latest_bdev);
2154 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2155 	if (!bh) {
2156 		err = -EINVAL;
2157 		goto fail_alloc;
2158 	}
2159 
2160 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2161 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2162 	       sizeof(*fs_info->super_for_commit));
2163 	brelse(bh);
2164 
2165 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2166 
2167 	disk_super = fs_info->super_copy;
2168 	if (!btrfs_super_root(disk_super))
2169 		goto fail_alloc;
2170 
2171 	/* check FS state, whether FS is broken. */
2172 	fs_info->fs_state |= btrfs_super_flags(disk_super);
2173 
2174 	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2175 	if (ret) {
2176 		printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2177 		err = ret;
2178 		goto fail_alloc;
2179 	}
2180 
2181 	/*
2182 	 * run through our array of backup supers and setup
2183 	 * our ring pointer to the oldest one
2184 	 */
2185 	generation = btrfs_super_generation(disk_super);
2186 	find_oldest_super_backup(fs_info, generation);
2187 
2188 	/*
2189 	 * In the long term, we'll store the compression type in the super
2190 	 * block, and it'll be used for per file compression control.
2191 	 */
2192 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2193 
2194 	ret = btrfs_parse_options(tree_root, options);
2195 	if (ret) {
2196 		err = ret;
2197 		goto fail_alloc;
2198 	}
2199 
2200 	features = btrfs_super_incompat_flags(disk_super) &
2201 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2202 	if (features) {
2203 		printk(KERN_ERR "BTRFS: couldn't mount because of "
2204 		       "unsupported optional features (%Lx).\n",
2205 		       (unsigned long long)features);
2206 		err = -EINVAL;
2207 		goto fail_alloc;
2208 	}
2209 
2210 	if (btrfs_super_leafsize(disk_super) !=
2211 	    btrfs_super_nodesize(disk_super)) {
2212 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2213 		       "blocksizes don't match.  node %d leaf %d\n",
2214 		       btrfs_super_nodesize(disk_super),
2215 		       btrfs_super_leafsize(disk_super));
2216 		err = -EINVAL;
2217 		goto fail_alloc;
2218 	}
2219 	if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2220 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2221 		       "blocksize (%d) was too large\n",
2222 		       btrfs_super_leafsize(disk_super));
2223 		err = -EINVAL;
2224 		goto fail_alloc;
2225 	}
2226 
2227 	features = btrfs_super_incompat_flags(disk_super);
2228 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2229 	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2230 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2231 
2232 	/*
2233 	 * flag our filesystem as having big metadata blocks if
2234 	 * they are bigger than the page size
2235 	 */
2236 	if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2237 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2238 			printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2239 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2240 	}
2241 
2242 	nodesize = btrfs_super_nodesize(disk_super);
2243 	leafsize = btrfs_super_leafsize(disk_super);
2244 	sectorsize = btrfs_super_sectorsize(disk_super);
2245 	stripesize = btrfs_super_stripesize(disk_super);
2246 
2247 	/*
2248 	 * mixed block groups end up with duplicate but slightly offset
2249 	 * extent buffers for the same range.  It leads to corruptions
2250 	 */
2251 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2252 	    (sectorsize != leafsize)) {
2253 		printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2254 				"are not allowed for mixed block groups on %s\n",
2255 				sb->s_id);
2256 		goto fail_alloc;
2257 	}
2258 
2259 	btrfs_set_super_incompat_flags(disk_super, features);
2260 
2261 	features = btrfs_super_compat_ro_flags(disk_super) &
2262 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2263 	if (!(sb->s_flags & MS_RDONLY) && features) {
2264 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2265 		       "unsupported option features (%Lx).\n",
2266 		       (unsigned long long)features);
2267 		err = -EINVAL;
2268 		goto fail_alloc;
2269 	}
2270 
2271 	btrfs_init_workers(&fs_info->generic_worker,
2272 			   "genwork", 1, NULL);
2273 
2274 	btrfs_init_workers(&fs_info->workers, "worker",
2275 			   fs_info->thread_pool_size,
2276 			   &fs_info->generic_worker);
2277 
2278 	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2279 			   fs_info->thread_pool_size,
2280 			   &fs_info->generic_worker);
2281 
2282 	btrfs_init_workers(&fs_info->submit_workers, "submit",
2283 			   min_t(u64, fs_devices->num_devices,
2284 			   fs_info->thread_pool_size),
2285 			   &fs_info->generic_worker);
2286 
2287 	btrfs_init_workers(&fs_info->caching_workers, "cache",
2288 			   2, &fs_info->generic_worker);
2289 
2290 	/* a higher idle thresh on the submit workers makes it much more
2291 	 * likely that bios will be send down in a sane order to the
2292 	 * devices
2293 	 */
2294 	fs_info->submit_workers.idle_thresh = 64;
2295 
2296 	fs_info->workers.idle_thresh = 16;
2297 	fs_info->workers.ordered = 1;
2298 
2299 	fs_info->delalloc_workers.idle_thresh = 2;
2300 	fs_info->delalloc_workers.ordered = 1;
2301 
2302 	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2303 			   &fs_info->generic_worker);
2304 	btrfs_init_workers(&fs_info->endio_workers, "endio",
2305 			   fs_info->thread_pool_size,
2306 			   &fs_info->generic_worker);
2307 	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2308 			   fs_info->thread_pool_size,
2309 			   &fs_info->generic_worker);
2310 	btrfs_init_workers(&fs_info->endio_meta_write_workers,
2311 			   "endio-meta-write", fs_info->thread_pool_size,
2312 			   &fs_info->generic_worker);
2313 	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2314 			   fs_info->thread_pool_size,
2315 			   &fs_info->generic_worker);
2316 	btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2317 			   1, &fs_info->generic_worker);
2318 	btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2319 			   fs_info->thread_pool_size,
2320 			   &fs_info->generic_worker);
2321 	btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2322 			   fs_info->thread_pool_size,
2323 			   &fs_info->generic_worker);
2324 
2325 	/*
2326 	 * endios are largely parallel and should have a very
2327 	 * low idle thresh
2328 	 */
2329 	fs_info->endio_workers.idle_thresh = 4;
2330 	fs_info->endio_meta_workers.idle_thresh = 4;
2331 
2332 	fs_info->endio_write_workers.idle_thresh = 2;
2333 	fs_info->endio_meta_write_workers.idle_thresh = 2;
2334 	fs_info->readahead_workers.idle_thresh = 2;
2335 
2336 	/*
2337 	 * btrfs_start_workers can really only fail because of ENOMEM so just
2338 	 * return -ENOMEM if any of these fail.
2339 	 */
2340 	ret = btrfs_start_workers(&fs_info->workers);
2341 	ret |= btrfs_start_workers(&fs_info->generic_worker);
2342 	ret |= btrfs_start_workers(&fs_info->submit_workers);
2343 	ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2344 	ret |= btrfs_start_workers(&fs_info->fixup_workers);
2345 	ret |= btrfs_start_workers(&fs_info->endio_workers);
2346 	ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2347 	ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2348 	ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2349 	ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2350 	ret |= btrfs_start_workers(&fs_info->delayed_workers);
2351 	ret |= btrfs_start_workers(&fs_info->caching_workers);
2352 	ret |= btrfs_start_workers(&fs_info->readahead_workers);
2353 	if (ret) {
2354 		err = -ENOMEM;
2355 		goto fail_sb_buffer;
2356 	}
2357 
2358 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2359 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2360 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2361 
2362 	tree_root->nodesize = nodesize;
2363 	tree_root->leafsize = leafsize;
2364 	tree_root->sectorsize = sectorsize;
2365 	tree_root->stripesize = stripesize;
2366 
2367 	sb->s_blocksize = sectorsize;
2368 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2369 
2370 	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2371 		    sizeof(disk_super->magic))) {
2372 		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2373 		goto fail_sb_buffer;
2374 	}
2375 
2376 	if (sectorsize != PAGE_SIZE) {
2377 		printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2378 		       "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2379 		goto fail_sb_buffer;
2380 	}
2381 
2382 	mutex_lock(&fs_info->chunk_mutex);
2383 	ret = btrfs_read_sys_array(tree_root);
2384 	mutex_unlock(&fs_info->chunk_mutex);
2385 	if (ret) {
2386 		printk(KERN_WARNING "btrfs: failed to read the system "
2387 		       "array on %s\n", sb->s_id);
2388 		goto fail_sb_buffer;
2389 	}
2390 
2391 	blocksize = btrfs_level_size(tree_root,
2392 				     btrfs_super_chunk_root_level(disk_super));
2393 	generation = btrfs_super_chunk_root_generation(disk_super);
2394 
2395 	__setup_root(nodesize, leafsize, sectorsize, stripesize,
2396 		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2397 
2398 	chunk_root->node = read_tree_block(chunk_root,
2399 					   btrfs_super_chunk_root(disk_super),
2400 					   blocksize, generation);
2401 	BUG_ON(!chunk_root->node); /* -ENOMEM */
2402 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2403 		printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2404 		       sb->s_id);
2405 		goto fail_tree_roots;
2406 	}
2407 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2408 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2409 
2410 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2411 	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2412 	   BTRFS_UUID_SIZE);
2413 
2414 	ret = btrfs_read_chunk_tree(chunk_root);
2415 	if (ret) {
2416 		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2417 		       sb->s_id);
2418 		goto fail_tree_roots;
2419 	}
2420 
2421 	btrfs_close_extra_devices(fs_devices);
2422 
2423 	if (!fs_devices->latest_bdev) {
2424 		printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2425 		       sb->s_id);
2426 		goto fail_tree_roots;
2427 	}
2428 
2429 retry_root_backup:
2430 	blocksize = btrfs_level_size(tree_root,
2431 				     btrfs_super_root_level(disk_super));
2432 	generation = btrfs_super_generation(disk_super);
2433 
2434 	tree_root->node = read_tree_block(tree_root,
2435 					  btrfs_super_root(disk_super),
2436 					  blocksize, generation);
2437 	if (!tree_root->node ||
2438 	    !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2439 		printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2440 		       sb->s_id);
2441 
2442 		goto recovery_tree_root;
2443 	}
2444 
2445 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2446 	tree_root->commit_root = btrfs_root_node(tree_root);
2447 
2448 	ret = find_and_setup_root(tree_root, fs_info,
2449 				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2450 	if (ret)
2451 		goto recovery_tree_root;
2452 	extent_root->track_dirty = 1;
2453 
2454 	ret = find_and_setup_root(tree_root, fs_info,
2455 				  BTRFS_DEV_TREE_OBJECTID, dev_root);
2456 	if (ret)
2457 		goto recovery_tree_root;
2458 	dev_root->track_dirty = 1;
2459 
2460 	ret = find_and_setup_root(tree_root, fs_info,
2461 				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
2462 	if (ret)
2463 		goto recovery_tree_root;
2464 	csum_root->track_dirty = 1;
2465 
2466 	ret = find_and_setup_root(tree_root, fs_info,
2467 				  BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2468 	if (ret) {
2469 		kfree(quota_root);
2470 		quota_root = fs_info->quota_root = NULL;
2471 	} else {
2472 		quota_root->track_dirty = 1;
2473 		fs_info->quota_enabled = 1;
2474 		fs_info->pending_quota_state = 1;
2475 	}
2476 
2477 	fs_info->generation = generation;
2478 	fs_info->last_trans_committed = generation;
2479 
2480 	ret = btrfs_recover_balance(fs_info);
2481 	if (ret) {
2482 		printk(KERN_WARNING "btrfs: failed to recover balance\n");
2483 		goto fail_block_groups;
2484 	}
2485 
2486 	ret = btrfs_init_dev_stats(fs_info);
2487 	if (ret) {
2488 		printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2489 		       ret);
2490 		goto fail_block_groups;
2491 	}
2492 
2493 	ret = btrfs_init_space_info(fs_info);
2494 	if (ret) {
2495 		printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2496 		goto fail_block_groups;
2497 	}
2498 
2499 	ret = btrfs_read_block_groups(extent_root);
2500 	if (ret) {
2501 		printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2502 		goto fail_block_groups;
2503 	}
2504 	fs_info->num_tolerated_disk_barrier_failures =
2505 		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2506 
2507 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2508 					       "btrfs-cleaner");
2509 	if (IS_ERR(fs_info->cleaner_kthread))
2510 		goto fail_block_groups;
2511 
2512 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2513 						   tree_root,
2514 						   "btrfs-transaction");
2515 	if (IS_ERR(fs_info->transaction_kthread))
2516 		goto fail_cleaner;
2517 
2518 	if (!btrfs_test_opt(tree_root, SSD) &&
2519 	    !btrfs_test_opt(tree_root, NOSSD) &&
2520 	    !fs_info->fs_devices->rotating) {
2521 		printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2522 		       "mode\n");
2523 		btrfs_set_opt(fs_info->mount_opt, SSD);
2524 	}
2525 
2526 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2527 	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2528 		ret = btrfsic_mount(tree_root, fs_devices,
2529 				    btrfs_test_opt(tree_root,
2530 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2531 				    1 : 0,
2532 				    fs_info->check_integrity_print_mask);
2533 		if (ret)
2534 			printk(KERN_WARNING "btrfs: failed to initialize"
2535 			       " integrity check module %s\n", sb->s_id);
2536 	}
2537 #endif
2538 	ret = btrfs_read_qgroup_config(fs_info);
2539 	if (ret)
2540 		goto fail_trans_kthread;
2541 
2542 	/* do not make disk changes in broken FS */
2543 	if (btrfs_super_log_root(disk_super) != 0) {
2544 		u64 bytenr = btrfs_super_log_root(disk_super);
2545 
2546 		if (fs_devices->rw_devices == 0) {
2547 			printk(KERN_WARNING "Btrfs log replay required "
2548 			       "on RO media\n");
2549 			err = -EIO;
2550 			goto fail_qgroup;
2551 		}
2552 		blocksize =
2553 		     btrfs_level_size(tree_root,
2554 				      btrfs_super_log_root_level(disk_super));
2555 
2556 		log_tree_root = btrfs_alloc_root(fs_info);
2557 		if (!log_tree_root) {
2558 			err = -ENOMEM;
2559 			goto fail_qgroup;
2560 		}
2561 
2562 		__setup_root(nodesize, leafsize, sectorsize, stripesize,
2563 			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2564 
2565 		log_tree_root->node = read_tree_block(tree_root, bytenr,
2566 						      blocksize,
2567 						      generation + 1);
2568 		/* returns with log_tree_root freed on success */
2569 		ret = btrfs_recover_log_trees(log_tree_root);
2570 		if (ret) {
2571 			btrfs_error(tree_root->fs_info, ret,
2572 				    "Failed to recover log tree");
2573 			free_extent_buffer(log_tree_root->node);
2574 			kfree(log_tree_root);
2575 			goto fail_trans_kthread;
2576 		}
2577 
2578 		if (sb->s_flags & MS_RDONLY) {
2579 			ret = btrfs_commit_super(tree_root);
2580 			if (ret)
2581 				goto fail_trans_kthread;
2582 		}
2583 	}
2584 
2585 	ret = btrfs_find_orphan_roots(tree_root);
2586 	if (ret)
2587 		goto fail_trans_kthread;
2588 
2589 	if (!(sb->s_flags & MS_RDONLY)) {
2590 		ret = btrfs_cleanup_fs_roots(fs_info);
2591 		if (ret)
2592 			goto fail_trans_kthread;
2593 
2594 		ret = btrfs_recover_relocation(tree_root);
2595 		if (ret < 0) {
2596 			printk(KERN_WARNING
2597 			       "btrfs: failed to recover relocation\n");
2598 			err = -EINVAL;
2599 			goto fail_qgroup;
2600 		}
2601 	}
2602 
2603 	location.objectid = BTRFS_FS_TREE_OBJECTID;
2604 	location.type = BTRFS_ROOT_ITEM_KEY;
2605 	location.offset = (u64)-1;
2606 
2607 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2608 	if (!fs_info->fs_root)
2609 		goto fail_qgroup;
2610 	if (IS_ERR(fs_info->fs_root)) {
2611 		err = PTR_ERR(fs_info->fs_root);
2612 		goto fail_qgroup;
2613 	}
2614 
2615 	if (sb->s_flags & MS_RDONLY)
2616 		return 0;
2617 
2618 	down_read(&fs_info->cleanup_work_sem);
2619 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2620 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2621 		up_read(&fs_info->cleanup_work_sem);
2622 		close_ctree(tree_root);
2623 		return ret;
2624 	}
2625 	up_read(&fs_info->cleanup_work_sem);
2626 
2627 	ret = btrfs_resume_balance_async(fs_info);
2628 	if (ret) {
2629 		printk(KERN_WARNING "btrfs: failed to resume balance\n");
2630 		close_ctree(tree_root);
2631 		return ret;
2632 	}
2633 
2634 	return 0;
2635 
2636 fail_qgroup:
2637 	btrfs_free_qgroup_config(fs_info);
2638 fail_trans_kthread:
2639 	kthread_stop(fs_info->transaction_kthread);
2640 fail_cleaner:
2641 	kthread_stop(fs_info->cleaner_kthread);
2642 
2643 	/*
2644 	 * make sure we're done with the btree inode before we stop our
2645 	 * kthreads
2646 	 */
2647 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2648 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2649 
2650 fail_block_groups:
2651 	btrfs_free_block_groups(fs_info);
2652 
2653 fail_tree_roots:
2654 	free_root_pointers(fs_info, 1);
2655 
2656 fail_sb_buffer:
2657 	btrfs_stop_workers(&fs_info->generic_worker);
2658 	btrfs_stop_workers(&fs_info->readahead_workers);
2659 	btrfs_stop_workers(&fs_info->fixup_workers);
2660 	btrfs_stop_workers(&fs_info->delalloc_workers);
2661 	btrfs_stop_workers(&fs_info->workers);
2662 	btrfs_stop_workers(&fs_info->endio_workers);
2663 	btrfs_stop_workers(&fs_info->endio_meta_workers);
2664 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2665 	btrfs_stop_workers(&fs_info->endio_write_workers);
2666 	btrfs_stop_workers(&fs_info->endio_freespace_worker);
2667 	btrfs_stop_workers(&fs_info->submit_workers);
2668 	btrfs_stop_workers(&fs_info->delayed_workers);
2669 	btrfs_stop_workers(&fs_info->caching_workers);
2670 fail_alloc:
2671 fail_iput:
2672 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2673 
2674 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2675 	iput(fs_info->btree_inode);
2676 fail_bdi:
2677 	bdi_destroy(&fs_info->bdi);
2678 fail_srcu:
2679 	cleanup_srcu_struct(&fs_info->subvol_srcu);
2680 fail:
2681 	btrfs_close_devices(fs_info->fs_devices);
2682 	return err;
2683 
2684 recovery_tree_root:
2685 	if (!btrfs_test_opt(tree_root, RECOVERY))
2686 		goto fail_tree_roots;
2687 
2688 	free_root_pointers(fs_info, 0);
2689 
2690 	/* don't use the log in recovery mode, it won't be valid */
2691 	btrfs_set_super_log_root(disk_super, 0);
2692 
2693 	/* we can't trust the free space cache either */
2694 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2695 
2696 	ret = next_root_backup(fs_info, fs_info->super_copy,
2697 			       &num_backups_tried, &backup_index);
2698 	if (ret == -1)
2699 		goto fail_block_groups;
2700 	goto retry_root_backup;
2701 }
2702 
2703 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2704 {
2705 	if (uptodate) {
2706 		set_buffer_uptodate(bh);
2707 	} else {
2708 		struct btrfs_device *device = (struct btrfs_device *)
2709 			bh->b_private;
2710 
2711 		printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2712 					  "I/O error on %s\n",
2713 					  rcu_str_deref(device->name));
2714 		/* note, we dont' set_buffer_write_io_error because we have
2715 		 * our own ways of dealing with the IO errors
2716 		 */
2717 		clear_buffer_uptodate(bh);
2718 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2719 	}
2720 	unlock_buffer(bh);
2721 	put_bh(bh);
2722 }
2723 
2724 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2725 {
2726 	struct buffer_head *bh;
2727 	struct buffer_head *latest = NULL;
2728 	struct btrfs_super_block *super;
2729 	int i;
2730 	u64 transid = 0;
2731 	u64 bytenr;
2732 
2733 	/* we would like to check all the supers, but that would make
2734 	 * a btrfs mount succeed after a mkfs from a different FS.
2735 	 * So, we need to add a special mount option to scan for
2736 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2737 	 */
2738 	for (i = 0; i < 1; i++) {
2739 		bytenr = btrfs_sb_offset(i);
2740 		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2741 			break;
2742 		bh = __bread(bdev, bytenr / 4096, 4096);
2743 		if (!bh)
2744 			continue;
2745 
2746 		super = (struct btrfs_super_block *)bh->b_data;
2747 		if (btrfs_super_bytenr(super) != bytenr ||
2748 		    strncmp((char *)(&super->magic), BTRFS_MAGIC,
2749 			    sizeof(super->magic))) {
2750 			brelse(bh);
2751 			continue;
2752 		}
2753 
2754 		if (!latest || btrfs_super_generation(super) > transid) {
2755 			brelse(latest);
2756 			latest = bh;
2757 			transid = btrfs_super_generation(super);
2758 		} else {
2759 			brelse(bh);
2760 		}
2761 	}
2762 	return latest;
2763 }
2764 
2765 /*
2766  * this should be called twice, once with wait == 0 and
2767  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2768  * we write are pinned.
2769  *
2770  * They are released when wait == 1 is done.
2771  * max_mirrors must be the same for both runs, and it indicates how
2772  * many supers on this one device should be written.
2773  *
2774  * max_mirrors == 0 means to write them all.
2775  */
2776 static int write_dev_supers(struct btrfs_device *device,
2777 			    struct btrfs_super_block *sb,
2778 			    int do_barriers, int wait, int max_mirrors)
2779 {
2780 	struct buffer_head *bh;
2781 	int i;
2782 	int ret;
2783 	int errors = 0;
2784 	u32 crc;
2785 	u64 bytenr;
2786 
2787 	if (max_mirrors == 0)
2788 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2789 
2790 	for (i = 0; i < max_mirrors; i++) {
2791 		bytenr = btrfs_sb_offset(i);
2792 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2793 			break;
2794 
2795 		if (wait) {
2796 			bh = __find_get_block(device->bdev, bytenr / 4096,
2797 					      BTRFS_SUPER_INFO_SIZE);
2798 			BUG_ON(!bh);
2799 			wait_on_buffer(bh);
2800 			if (!buffer_uptodate(bh))
2801 				errors++;
2802 
2803 			/* drop our reference */
2804 			brelse(bh);
2805 
2806 			/* drop the reference from the wait == 0 run */
2807 			brelse(bh);
2808 			continue;
2809 		} else {
2810 			btrfs_set_super_bytenr(sb, bytenr);
2811 
2812 			crc = ~(u32)0;
2813 			crc = btrfs_csum_data(NULL, (char *)sb +
2814 					      BTRFS_CSUM_SIZE, crc,
2815 					      BTRFS_SUPER_INFO_SIZE -
2816 					      BTRFS_CSUM_SIZE);
2817 			btrfs_csum_final(crc, sb->csum);
2818 
2819 			/*
2820 			 * one reference for us, and we leave it for the
2821 			 * caller
2822 			 */
2823 			bh = __getblk(device->bdev, bytenr / 4096,
2824 				      BTRFS_SUPER_INFO_SIZE);
2825 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2826 
2827 			/* one reference for submit_bh */
2828 			get_bh(bh);
2829 
2830 			set_buffer_uptodate(bh);
2831 			lock_buffer(bh);
2832 			bh->b_end_io = btrfs_end_buffer_write_sync;
2833 			bh->b_private = device;
2834 		}
2835 
2836 		/*
2837 		 * we fua the first super.  The others we allow
2838 		 * to go down lazy.
2839 		 */
2840 		ret = btrfsic_submit_bh(WRITE_FUA, bh);
2841 		if (ret)
2842 			errors++;
2843 	}
2844 	return errors < i ? 0 : -1;
2845 }
2846 
2847 /*
2848  * endio for the write_dev_flush, this will wake anyone waiting
2849  * for the barrier when it is done
2850  */
2851 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2852 {
2853 	if (err) {
2854 		if (err == -EOPNOTSUPP)
2855 			set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2856 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
2857 	}
2858 	if (bio->bi_private)
2859 		complete(bio->bi_private);
2860 	bio_put(bio);
2861 }
2862 
2863 /*
2864  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
2865  * sent down.  With wait == 1, it waits for the previous flush.
2866  *
2867  * any device where the flush fails with eopnotsupp are flagged as not-barrier
2868  * capable
2869  */
2870 static int write_dev_flush(struct btrfs_device *device, int wait)
2871 {
2872 	struct bio *bio;
2873 	int ret = 0;
2874 
2875 	if (device->nobarriers)
2876 		return 0;
2877 
2878 	if (wait) {
2879 		bio = device->flush_bio;
2880 		if (!bio)
2881 			return 0;
2882 
2883 		wait_for_completion(&device->flush_wait);
2884 
2885 		if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2886 			printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2887 				      rcu_str_deref(device->name));
2888 			device->nobarriers = 1;
2889 		} else if (!bio_flagged(bio, BIO_UPTODATE)) {
2890 			ret = -EIO;
2891 			btrfs_dev_stat_inc_and_print(device,
2892 				BTRFS_DEV_STAT_FLUSH_ERRS);
2893 		}
2894 
2895 		/* drop the reference from the wait == 0 run */
2896 		bio_put(bio);
2897 		device->flush_bio = NULL;
2898 
2899 		return ret;
2900 	}
2901 
2902 	/*
2903 	 * one reference for us, and we leave it for the
2904 	 * caller
2905 	 */
2906 	device->flush_bio = NULL;
2907 	bio = bio_alloc(GFP_NOFS, 0);
2908 	if (!bio)
2909 		return -ENOMEM;
2910 
2911 	bio->bi_end_io = btrfs_end_empty_barrier;
2912 	bio->bi_bdev = device->bdev;
2913 	init_completion(&device->flush_wait);
2914 	bio->bi_private = &device->flush_wait;
2915 	device->flush_bio = bio;
2916 
2917 	bio_get(bio);
2918 	btrfsic_submit_bio(WRITE_FLUSH, bio);
2919 
2920 	return 0;
2921 }
2922 
2923 /*
2924  * send an empty flush down to each device in parallel,
2925  * then wait for them
2926  */
2927 static int barrier_all_devices(struct btrfs_fs_info *info)
2928 {
2929 	struct list_head *head;
2930 	struct btrfs_device *dev;
2931 	int errors_send = 0;
2932 	int errors_wait = 0;
2933 	int ret;
2934 
2935 	/* send down all the barriers */
2936 	head = &info->fs_devices->devices;
2937 	list_for_each_entry_rcu(dev, head, dev_list) {
2938 		if (!dev->bdev) {
2939 			errors_send++;
2940 			continue;
2941 		}
2942 		if (!dev->in_fs_metadata || !dev->writeable)
2943 			continue;
2944 
2945 		ret = write_dev_flush(dev, 0);
2946 		if (ret)
2947 			errors_send++;
2948 	}
2949 
2950 	/* wait for all the barriers */
2951 	list_for_each_entry_rcu(dev, head, dev_list) {
2952 		if (!dev->bdev) {
2953 			errors_wait++;
2954 			continue;
2955 		}
2956 		if (!dev->in_fs_metadata || !dev->writeable)
2957 			continue;
2958 
2959 		ret = write_dev_flush(dev, 1);
2960 		if (ret)
2961 			errors_wait++;
2962 	}
2963 	if (errors_send > info->num_tolerated_disk_barrier_failures ||
2964 	    errors_wait > info->num_tolerated_disk_barrier_failures)
2965 		return -EIO;
2966 	return 0;
2967 }
2968 
2969 int btrfs_calc_num_tolerated_disk_barrier_failures(
2970 	struct btrfs_fs_info *fs_info)
2971 {
2972 	struct btrfs_ioctl_space_info space;
2973 	struct btrfs_space_info *sinfo;
2974 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
2975 		       BTRFS_BLOCK_GROUP_SYSTEM,
2976 		       BTRFS_BLOCK_GROUP_METADATA,
2977 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
2978 	int num_types = 4;
2979 	int i;
2980 	int c;
2981 	int num_tolerated_disk_barrier_failures =
2982 		(int)fs_info->fs_devices->num_devices;
2983 
2984 	for (i = 0; i < num_types; i++) {
2985 		struct btrfs_space_info *tmp;
2986 
2987 		sinfo = NULL;
2988 		rcu_read_lock();
2989 		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
2990 			if (tmp->flags == types[i]) {
2991 				sinfo = tmp;
2992 				break;
2993 			}
2994 		}
2995 		rcu_read_unlock();
2996 
2997 		if (!sinfo)
2998 			continue;
2999 
3000 		down_read(&sinfo->groups_sem);
3001 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3002 			if (!list_empty(&sinfo->block_groups[c])) {
3003 				u64 flags;
3004 
3005 				btrfs_get_block_group_info(
3006 					&sinfo->block_groups[c], &space);
3007 				if (space.total_bytes == 0 ||
3008 				    space.used_bytes == 0)
3009 					continue;
3010 				flags = space.flags;
3011 				/*
3012 				 * return
3013 				 * 0: if dup, single or RAID0 is configured for
3014 				 *    any of metadata, system or data, else
3015 				 * 1: if RAID5 is configured, or if RAID1 or
3016 				 *    RAID10 is configured and only two mirrors
3017 				 *    are used, else
3018 				 * 2: if RAID6 is configured, else
3019 				 * num_mirrors - 1: if RAID1 or RAID10 is
3020 				 *                  configured and more than
3021 				 *                  2 mirrors are used.
3022 				 */
3023 				if (num_tolerated_disk_barrier_failures > 0 &&
3024 				    ((flags & (BTRFS_BLOCK_GROUP_DUP |
3025 					       BTRFS_BLOCK_GROUP_RAID0)) ||
3026 				     ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3027 				      == 0)))
3028 					num_tolerated_disk_barrier_failures = 0;
3029 				else if (num_tolerated_disk_barrier_failures > 1
3030 					 &&
3031 					 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3032 						   BTRFS_BLOCK_GROUP_RAID10)))
3033 					num_tolerated_disk_barrier_failures = 1;
3034 			}
3035 		}
3036 		up_read(&sinfo->groups_sem);
3037 	}
3038 
3039 	return num_tolerated_disk_barrier_failures;
3040 }
3041 
3042 int write_all_supers(struct btrfs_root *root, int max_mirrors)
3043 {
3044 	struct list_head *head;
3045 	struct btrfs_device *dev;
3046 	struct btrfs_super_block *sb;
3047 	struct btrfs_dev_item *dev_item;
3048 	int ret;
3049 	int do_barriers;
3050 	int max_errors;
3051 	int total_errors = 0;
3052 	u64 flags;
3053 
3054 	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3055 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
3056 	backup_super_roots(root->fs_info);
3057 
3058 	sb = root->fs_info->super_for_commit;
3059 	dev_item = &sb->dev_item;
3060 
3061 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3062 	head = &root->fs_info->fs_devices->devices;
3063 
3064 	if (do_barriers) {
3065 		ret = barrier_all_devices(root->fs_info);
3066 		if (ret) {
3067 			mutex_unlock(
3068 				&root->fs_info->fs_devices->device_list_mutex);
3069 			btrfs_error(root->fs_info, ret,
3070 				    "errors while submitting device barriers.");
3071 			return ret;
3072 		}
3073 	}
3074 
3075 	list_for_each_entry_rcu(dev, head, dev_list) {
3076 		if (!dev->bdev) {
3077 			total_errors++;
3078 			continue;
3079 		}
3080 		if (!dev->in_fs_metadata || !dev->writeable)
3081 			continue;
3082 
3083 		btrfs_set_stack_device_generation(dev_item, 0);
3084 		btrfs_set_stack_device_type(dev_item, dev->type);
3085 		btrfs_set_stack_device_id(dev_item, dev->devid);
3086 		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3087 		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3088 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3089 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3090 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3091 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3092 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3093 
3094 		flags = btrfs_super_flags(sb);
3095 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3096 
3097 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3098 		if (ret)
3099 			total_errors++;
3100 	}
3101 	if (total_errors > max_errors) {
3102 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3103 		       total_errors);
3104 
3105 		/* This shouldn't happen. FUA is masked off if unsupported */
3106 		BUG();
3107 	}
3108 
3109 	total_errors = 0;
3110 	list_for_each_entry_rcu(dev, head, dev_list) {
3111 		if (!dev->bdev)
3112 			continue;
3113 		if (!dev->in_fs_metadata || !dev->writeable)
3114 			continue;
3115 
3116 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3117 		if (ret)
3118 			total_errors++;
3119 	}
3120 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3121 	if (total_errors > max_errors) {
3122 		btrfs_error(root->fs_info, -EIO,
3123 			    "%d errors while writing supers", total_errors);
3124 		return -EIO;
3125 	}
3126 	return 0;
3127 }
3128 
3129 int write_ctree_super(struct btrfs_trans_handle *trans,
3130 		      struct btrfs_root *root, int max_mirrors)
3131 {
3132 	int ret;
3133 
3134 	ret = write_all_supers(root, max_mirrors);
3135 	return ret;
3136 }
3137 
3138 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3139 {
3140 	spin_lock(&fs_info->fs_roots_radix_lock);
3141 	radix_tree_delete(&fs_info->fs_roots_radix,
3142 			  (unsigned long)root->root_key.objectid);
3143 	spin_unlock(&fs_info->fs_roots_radix_lock);
3144 
3145 	if (btrfs_root_refs(&root->root_item) == 0)
3146 		synchronize_srcu(&fs_info->subvol_srcu);
3147 
3148 	__btrfs_remove_free_space_cache(root->free_ino_pinned);
3149 	__btrfs_remove_free_space_cache(root->free_ino_ctl);
3150 	free_fs_root(root);
3151 }
3152 
3153 static void free_fs_root(struct btrfs_root *root)
3154 {
3155 	iput(root->cache_inode);
3156 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3157 	if (root->anon_dev)
3158 		free_anon_bdev(root->anon_dev);
3159 	free_extent_buffer(root->node);
3160 	free_extent_buffer(root->commit_root);
3161 	kfree(root->free_ino_ctl);
3162 	kfree(root->free_ino_pinned);
3163 	kfree(root->name);
3164 	kfree(root);
3165 }
3166 
3167 static void del_fs_roots(struct btrfs_fs_info *fs_info)
3168 {
3169 	int ret;
3170 	struct btrfs_root *gang[8];
3171 	int i;
3172 
3173 	while (!list_empty(&fs_info->dead_roots)) {
3174 		gang[0] = list_entry(fs_info->dead_roots.next,
3175 				     struct btrfs_root, root_list);
3176 		list_del(&gang[0]->root_list);
3177 
3178 		if (gang[0]->in_radix) {
3179 			btrfs_free_fs_root(fs_info, gang[0]);
3180 		} else {
3181 			free_extent_buffer(gang[0]->node);
3182 			free_extent_buffer(gang[0]->commit_root);
3183 			kfree(gang[0]);
3184 		}
3185 	}
3186 
3187 	while (1) {
3188 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3189 					     (void **)gang, 0,
3190 					     ARRAY_SIZE(gang));
3191 		if (!ret)
3192 			break;
3193 		for (i = 0; i < ret; i++)
3194 			btrfs_free_fs_root(fs_info, gang[i]);
3195 	}
3196 }
3197 
3198 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3199 {
3200 	u64 root_objectid = 0;
3201 	struct btrfs_root *gang[8];
3202 	int i;
3203 	int ret;
3204 
3205 	while (1) {
3206 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3207 					     (void **)gang, root_objectid,
3208 					     ARRAY_SIZE(gang));
3209 		if (!ret)
3210 			break;
3211 
3212 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3213 		for (i = 0; i < ret; i++) {
3214 			int err;
3215 
3216 			root_objectid = gang[i]->root_key.objectid;
3217 			err = btrfs_orphan_cleanup(gang[i]);
3218 			if (err)
3219 				return err;
3220 		}
3221 		root_objectid++;
3222 	}
3223 	return 0;
3224 }
3225 
3226 int btrfs_commit_super(struct btrfs_root *root)
3227 {
3228 	struct btrfs_trans_handle *trans;
3229 	int ret;
3230 
3231 	mutex_lock(&root->fs_info->cleaner_mutex);
3232 	btrfs_run_delayed_iputs(root);
3233 	btrfs_clean_old_snapshots(root);
3234 	mutex_unlock(&root->fs_info->cleaner_mutex);
3235 
3236 	/* wait until ongoing cleanup work done */
3237 	down_write(&root->fs_info->cleanup_work_sem);
3238 	up_write(&root->fs_info->cleanup_work_sem);
3239 
3240 	trans = btrfs_join_transaction(root);
3241 	if (IS_ERR(trans))
3242 		return PTR_ERR(trans);
3243 	ret = btrfs_commit_transaction(trans, root);
3244 	if (ret)
3245 		return ret;
3246 	/* run commit again to drop the original snapshot */
3247 	trans = btrfs_join_transaction(root);
3248 	if (IS_ERR(trans))
3249 		return PTR_ERR(trans);
3250 	ret = btrfs_commit_transaction(trans, root);
3251 	if (ret)
3252 		return ret;
3253 	ret = btrfs_write_and_wait_transaction(NULL, root);
3254 	if (ret) {
3255 		btrfs_error(root->fs_info, ret,
3256 			    "Failed to sync btree inode to disk.");
3257 		return ret;
3258 	}
3259 
3260 	ret = write_ctree_super(NULL, root, 0);
3261 	return ret;
3262 }
3263 
3264 int close_ctree(struct btrfs_root *root)
3265 {
3266 	struct btrfs_fs_info *fs_info = root->fs_info;
3267 	int ret;
3268 
3269 	fs_info->closing = 1;
3270 	smp_mb();
3271 
3272 	/* pause restriper - we want to resume on mount */
3273 	btrfs_pause_balance(root->fs_info);
3274 
3275 	btrfs_scrub_cancel(root);
3276 
3277 	/* wait for any defraggers to finish */
3278 	wait_event(fs_info->transaction_wait,
3279 		   (atomic_read(&fs_info->defrag_running) == 0));
3280 
3281 	/* clear out the rbtree of defraggable inodes */
3282 	btrfs_run_defrag_inodes(fs_info);
3283 
3284 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3285 		ret = btrfs_commit_super(root);
3286 		if (ret)
3287 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3288 	}
3289 
3290 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3291 		btrfs_error_commit_super(root);
3292 
3293 	btrfs_put_block_group_cache(fs_info);
3294 
3295 	kthread_stop(fs_info->transaction_kthread);
3296 	kthread_stop(fs_info->cleaner_kthread);
3297 
3298 	fs_info->closing = 2;
3299 	smp_mb();
3300 
3301 	btrfs_free_qgroup_config(root->fs_info);
3302 
3303 	if (fs_info->delalloc_bytes) {
3304 		printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3305 		       (unsigned long long)fs_info->delalloc_bytes);
3306 	}
3307 
3308 	free_extent_buffer(fs_info->extent_root->node);
3309 	free_extent_buffer(fs_info->extent_root->commit_root);
3310 	free_extent_buffer(fs_info->tree_root->node);
3311 	free_extent_buffer(fs_info->tree_root->commit_root);
3312 	free_extent_buffer(fs_info->chunk_root->node);
3313 	free_extent_buffer(fs_info->chunk_root->commit_root);
3314 	free_extent_buffer(fs_info->dev_root->node);
3315 	free_extent_buffer(fs_info->dev_root->commit_root);
3316 	free_extent_buffer(fs_info->csum_root->node);
3317 	free_extent_buffer(fs_info->csum_root->commit_root);
3318 	if (fs_info->quota_root) {
3319 		free_extent_buffer(fs_info->quota_root->node);
3320 		free_extent_buffer(fs_info->quota_root->commit_root);
3321 	}
3322 
3323 	btrfs_free_block_groups(fs_info);
3324 
3325 	del_fs_roots(fs_info);
3326 
3327 	iput(fs_info->btree_inode);
3328 
3329 	btrfs_stop_workers(&fs_info->generic_worker);
3330 	btrfs_stop_workers(&fs_info->fixup_workers);
3331 	btrfs_stop_workers(&fs_info->delalloc_workers);
3332 	btrfs_stop_workers(&fs_info->workers);
3333 	btrfs_stop_workers(&fs_info->endio_workers);
3334 	btrfs_stop_workers(&fs_info->endio_meta_workers);
3335 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3336 	btrfs_stop_workers(&fs_info->endio_write_workers);
3337 	btrfs_stop_workers(&fs_info->endio_freespace_worker);
3338 	btrfs_stop_workers(&fs_info->submit_workers);
3339 	btrfs_stop_workers(&fs_info->delayed_workers);
3340 	btrfs_stop_workers(&fs_info->caching_workers);
3341 	btrfs_stop_workers(&fs_info->readahead_workers);
3342 
3343 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3344 	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3345 		btrfsic_unmount(root, fs_info->fs_devices);
3346 #endif
3347 
3348 	btrfs_close_devices(fs_info->fs_devices);
3349 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3350 
3351 	bdi_destroy(&fs_info->bdi);
3352 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3353 
3354 	return 0;
3355 }
3356 
3357 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3358 			  int atomic)
3359 {
3360 	int ret;
3361 	struct inode *btree_inode = buf->pages[0]->mapping->host;
3362 
3363 	ret = extent_buffer_uptodate(buf);
3364 	if (!ret)
3365 		return ret;
3366 
3367 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3368 				    parent_transid, atomic);
3369 	if (ret == -EAGAIN)
3370 		return ret;
3371 	return !ret;
3372 }
3373 
3374 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3375 {
3376 	return set_extent_buffer_uptodate(buf);
3377 }
3378 
3379 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3380 {
3381 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3382 	u64 transid = btrfs_header_generation(buf);
3383 	int was_dirty;
3384 
3385 	btrfs_assert_tree_locked(buf);
3386 	if (transid != root->fs_info->generation) {
3387 		printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3388 		       "found %llu running %llu\n",
3389 			(unsigned long long)buf->start,
3390 			(unsigned long long)transid,
3391 			(unsigned long long)root->fs_info->generation);
3392 		WARN_ON(1);
3393 	}
3394 	was_dirty = set_extent_buffer_dirty(buf);
3395 	if (!was_dirty) {
3396 		spin_lock(&root->fs_info->delalloc_lock);
3397 		root->fs_info->dirty_metadata_bytes += buf->len;
3398 		spin_unlock(&root->fs_info->delalloc_lock);
3399 	}
3400 }
3401 
3402 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3403 {
3404 	/*
3405 	 * looks as though older kernels can get into trouble with
3406 	 * this code, they end up stuck in balance_dirty_pages forever
3407 	 */
3408 	u64 num_dirty;
3409 	unsigned long thresh = 32 * 1024 * 1024;
3410 
3411 	if (current->flags & PF_MEMALLOC)
3412 		return;
3413 
3414 	btrfs_balance_delayed_items(root);
3415 
3416 	num_dirty = root->fs_info->dirty_metadata_bytes;
3417 
3418 	if (num_dirty > thresh) {
3419 		balance_dirty_pages_ratelimited_nr(
3420 				   root->fs_info->btree_inode->i_mapping, 1);
3421 	}
3422 	return;
3423 }
3424 
3425 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3426 {
3427 	/*
3428 	 * looks as though older kernels can get into trouble with
3429 	 * this code, they end up stuck in balance_dirty_pages forever
3430 	 */
3431 	u64 num_dirty;
3432 	unsigned long thresh = 32 * 1024 * 1024;
3433 
3434 	if (current->flags & PF_MEMALLOC)
3435 		return;
3436 
3437 	num_dirty = root->fs_info->dirty_metadata_bytes;
3438 
3439 	if (num_dirty > thresh) {
3440 		balance_dirty_pages_ratelimited_nr(
3441 				   root->fs_info->btree_inode->i_mapping, 1);
3442 	}
3443 	return;
3444 }
3445 
3446 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3447 {
3448 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3449 	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3450 }
3451 
3452 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3453 			      int read_only)
3454 {
3455 	if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3456 		printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3457 		return -EINVAL;
3458 	}
3459 
3460 	if (read_only)
3461 		return 0;
3462 
3463 	return 0;
3464 }
3465 
3466 void btrfs_error_commit_super(struct btrfs_root *root)
3467 {
3468 	mutex_lock(&root->fs_info->cleaner_mutex);
3469 	btrfs_run_delayed_iputs(root);
3470 	mutex_unlock(&root->fs_info->cleaner_mutex);
3471 
3472 	down_write(&root->fs_info->cleanup_work_sem);
3473 	up_write(&root->fs_info->cleanup_work_sem);
3474 
3475 	/* cleanup FS via transaction */
3476 	btrfs_cleanup_transaction(root);
3477 }
3478 
3479 static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3480 {
3481 	struct btrfs_inode *btrfs_inode;
3482 	struct list_head splice;
3483 
3484 	INIT_LIST_HEAD(&splice);
3485 
3486 	mutex_lock(&root->fs_info->ordered_operations_mutex);
3487 	spin_lock(&root->fs_info->ordered_extent_lock);
3488 
3489 	list_splice_init(&root->fs_info->ordered_operations, &splice);
3490 	while (!list_empty(&splice)) {
3491 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3492 					 ordered_operations);
3493 
3494 		list_del_init(&btrfs_inode->ordered_operations);
3495 
3496 		btrfs_invalidate_inodes(btrfs_inode->root);
3497 	}
3498 
3499 	spin_unlock(&root->fs_info->ordered_extent_lock);
3500 	mutex_unlock(&root->fs_info->ordered_operations_mutex);
3501 }
3502 
3503 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3504 {
3505 	struct list_head splice;
3506 	struct btrfs_ordered_extent *ordered;
3507 	struct inode *inode;
3508 
3509 	INIT_LIST_HEAD(&splice);
3510 
3511 	spin_lock(&root->fs_info->ordered_extent_lock);
3512 
3513 	list_splice_init(&root->fs_info->ordered_extents, &splice);
3514 	while (!list_empty(&splice)) {
3515 		ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3516 				     root_extent_list);
3517 
3518 		list_del_init(&ordered->root_extent_list);
3519 		atomic_inc(&ordered->refs);
3520 
3521 		/* the inode may be getting freed (in sys_unlink path). */
3522 		inode = igrab(ordered->inode);
3523 
3524 		spin_unlock(&root->fs_info->ordered_extent_lock);
3525 		if (inode)
3526 			iput(inode);
3527 
3528 		atomic_set(&ordered->refs, 1);
3529 		btrfs_put_ordered_extent(ordered);
3530 
3531 		spin_lock(&root->fs_info->ordered_extent_lock);
3532 	}
3533 
3534 	spin_unlock(&root->fs_info->ordered_extent_lock);
3535 }
3536 
3537 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3538 			       struct btrfs_root *root)
3539 {
3540 	struct rb_node *node;
3541 	struct btrfs_delayed_ref_root *delayed_refs;
3542 	struct btrfs_delayed_ref_node *ref;
3543 	int ret = 0;
3544 
3545 	delayed_refs = &trans->delayed_refs;
3546 
3547 	spin_lock(&delayed_refs->lock);
3548 	if (delayed_refs->num_entries == 0) {
3549 		spin_unlock(&delayed_refs->lock);
3550 		printk(KERN_INFO "delayed_refs has NO entry\n");
3551 		return ret;
3552 	}
3553 
3554 	while ((node = rb_first(&delayed_refs->root)) != NULL) {
3555 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3556 
3557 		atomic_set(&ref->refs, 1);
3558 		if (btrfs_delayed_ref_is_head(ref)) {
3559 			struct btrfs_delayed_ref_head *head;
3560 
3561 			head = btrfs_delayed_node_to_head(ref);
3562 			if (!mutex_trylock(&head->mutex)) {
3563 				atomic_inc(&ref->refs);
3564 				spin_unlock(&delayed_refs->lock);
3565 
3566 				/* Need to wait for the delayed ref to run */
3567 				mutex_lock(&head->mutex);
3568 				mutex_unlock(&head->mutex);
3569 				btrfs_put_delayed_ref(ref);
3570 
3571 				spin_lock(&delayed_refs->lock);
3572 				continue;
3573 			}
3574 
3575 			kfree(head->extent_op);
3576 			delayed_refs->num_heads--;
3577 			if (list_empty(&head->cluster))
3578 				delayed_refs->num_heads_ready--;
3579 			list_del_init(&head->cluster);
3580 		}
3581 		ref->in_tree = 0;
3582 		rb_erase(&ref->rb_node, &delayed_refs->root);
3583 		delayed_refs->num_entries--;
3584 
3585 		spin_unlock(&delayed_refs->lock);
3586 		btrfs_put_delayed_ref(ref);
3587 
3588 		cond_resched();
3589 		spin_lock(&delayed_refs->lock);
3590 	}
3591 
3592 	spin_unlock(&delayed_refs->lock);
3593 
3594 	return ret;
3595 }
3596 
3597 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3598 {
3599 	struct btrfs_pending_snapshot *snapshot;
3600 	struct list_head splice;
3601 
3602 	INIT_LIST_HEAD(&splice);
3603 
3604 	list_splice_init(&t->pending_snapshots, &splice);
3605 
3606 	while (!list_empty(&splice)) {
3607 		snapshot = list_entry(splice.next,
3608 				      struct btrfs_pending_snapshot,
3609 				      list);
3610 
3611 		list_del_init(&snapshot->list);
3612 
3613 		kfree(snapshot);
3614 	}
3615 }
3616 
3617 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3618 {
3619 	struct btrfs_inode *btrfs_inode;
3620 	struct list_head splice;
3621 
3622 	INIT_LIST_HEAD(&splice);
3623 
3624 	spin_lock(&root->fs_info->delalloc_lock);
3625 	list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3626 
3627 	while (!list_empty(&splice)) {
3628 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3629 				    delalloc_inodes);
3630 
3631 		list_del_init(&btrfs_inode->delalloc_inodes);
3632 
3633 		btrfs_invalidate_inodes(btrfs_inode->root);
3634 	}
3635 
3636 	spin_unlock(&root->fs_info->delalloc_lock);
3637 }
3638 
3639 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3640 					struct extent_io_tree *dirty_pages,
3641 					int mark)
3642 {
3643 	int ret;
3644 	struct page *page;
3645 	struct inode *btree_inode = root->fs_info->btree_inode;
3646 	struct extent_buffer *eb;
3647 	u64 start = 0;
3648 	u64 end;
3649 	u64 offset;
3650 	unsigned long index;
3651 
3652 	while (1) {
3653 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3654 					    mark, NULL);
3655 		if (ret)
3656 			break;
3657 
3658 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3659 		while (start <= end) {
3660 			index = start >> PAGE_CACHE_SHIFT;
3661 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3662 			page = find_get_page(btree_inode->i_mapping, index);
3663 			if (!page)
3664 				continue;
3665 			offset = page_offset(page);
3666 
3667 			spin_lock(&dirty_pages->buffer_lock);
3668 			eb = radix_tree_lookup(
3669 			     &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3670 					       offset >> PAGE_CACHE_SHIFT);
3671 			spin_unlock(&dirty_pages->buffer_lock);
3672 			if (eb)
3673 				ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3674 							 &eb->bflags);
3675 			if (PageWriteback(page))
3676 				end_page_writeback(page);
3677 
3678 			lock_page(page);
3679 			if (PageDirty(page)) {
3680 				clear_page_dirty_for_io(page);
3681 				spin_lock_irq(&page->mapping->tree_lock);
3682 				radix_tree_tag_clear(&page->mapping->page_tree,
3683 							page_index(page),
3684 							PAGECACHE_TAG_DIRTY);
3685 				spin_unlock_irq(&page->mapping->tree_lock);
3686 			}
3687 
3688 			unlock_page(page);
3689 			page_cache_release(page);
3690 		}
3691 	}
3692 
3693 	return ret;
3694 }
3695 
3696 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3697 				       struct extent_io_tree *pinned_extents)
3698 {
3699 	struct extent_io_tree *unpin;
3700 	u64 start;
3701 	u64 end;
3702 	int ret;
3703 	bool loop = true;
3704 
3705 	unpin = pinned_extents;
3706 again:
3707 	while (1) {
3708 		ret = find_first_extent_bit(unpin, 0, &start, &end,
3709 					    EXTENT_DIRTY, NULL);
3710 		if (ret)
3711 			break;
3712 
3713 		/* opt_discard */
3714 		if (btrfs_test_opt(root, DISCARD))
3715 			ret = btrfs_error_discard_extent(root, start,
3716 							 end + 1 - start,
3717 							 NULL);
3718 
3719 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
3720 		btrfs_error_unpin_extent_range(root, start, end);
3721 		cond_resched();
3722 	}
3723 
3724 	if (loop) {
3725 		if (unpin == &root->fs_info->freed_extents[0])
3726 			unpin = &root->fs_info->freed_extents[1];
3727 		else
3728 			unpin = &root->fs_info->freed_extents[0];
3729 		loop = false;
3730 		goto again;
3731 	}
3732 
3733 	return 0;
3734 }
3735 
3736 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3737 				   struct btrfs_root *root)
3738 {
3739 	btrfs_destroy_delayed_refs(cur_trans, root);
3740 	btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3741 				cur_trans->dirty_pages.dirty_bytes);
3742 
3743 	/* FIXME: cleanup wait for commit */
3744 	cur_trans->in_commit = 1;
3745 	cur_trans->blocked = 1;
3746 	wake_up(&root->fs_info->transaction_blocked_wait);
3747 
3748 	cur_trans->blocked = 0;
3749 	wake_up(&root->fs_info->transaction_wait);
3750 
3751 	cur_trans->commit_done = 1;
3752 	wake_up(&cur_trans->commit_wait);
3753 
3754 	btrfs_destroy_delayed_inodes(root);
3755 	btrfs_assert_delayed_root_empty(root);
3756 
3757 	btrfs_destroy_pending_snapshots(cur_trans);
3758 
3759 	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3760 				     EXTENT_DIRTY);
3761 	btrfs_destroy_pinned_extent(root,
3762 				    root->fs_info->pinned_extents);
3763 
3764 	/*
3765 	memset(cur_trans, 0, sizeof(*cur_trans));
3766 	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3767 	*/
3768 }
3769 
3770 int btrfs_cleanup_transaction(struct btrfs_root *root)
3771 {
3772 	struct btrfs_transaction *t;
3773 	LIST_HEAD(list);
3774 
3775 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
3776 
3777 	spin_lock(&root->fs_info->trans_lock);
3778 	list_splice_init(&root->fs_info->trans_list, &list);
3779 	root->fs_info->trans_no_join = 1;
3780 	spin_unlock(&root->fs_info->trans_lock);
3781 
3782 	while (!list_empty(&list)) {
3783 		t = list_entry(list.next, struct btrfs_transaction, list);
3784 		if (!t)
3785 			break;
3786 
3787 		btrfs_destroy_ordered_operations(root);
3788 
3789 		btrfs_destroy_ordered_extents(root);
3790 
3791 		btrfs_destroy_delayed_refs(t, root);
3792 
3793 		btrfs_block_rsv_release(root,
3794 					&root->fs_info->trans_block_rsv,
3795 					t->dirty_pages.dirty_bytes);
3796 
3797 		/* FIXME: cleanup wait for commit */
3798 		t->in_commit = 1;
3799 		t->blocked = 1;
3800 		smp_mb();
3801 		if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3802 			wake_up(&root->fs_info->transaction_blocked_wait);
3803 
3804 		t->blocked = 0;
3805 		smp_mb();
3806 		if (waitqueue_active(&root->fs_info->transaction_wait))
3807 			wake_up(&root->fs_info->transaction_wait);
3808 
3809 		t->commit_done = 1;
3810 		smp_mb();
3811 		if (waitqueue_active(&t->commit_wait))
3812 			wake_up(&t->commit_wait);
3813 
3814 		btrfs_destroy_delayed_inodes(root);
3815 		btrfs_assert_delayed_root_empty(root);
3816 
3817 		btrfs_destroy_pending_snapshots(t);
3818 
3819 		btrfs_destroy_delalloc_inodes(root);
3820 
3821 		spin_lock(&root->fs_info->trans_lock);
3822 		root->fs_info->running_transaction = NULL;
3823 		spin_unlock(&root->fs_info->trans_lock);
3824 
3825 		btrfs_destroy_marked_extents(root, &t->dirty_pages,
3826 					     EXTENT_DIRTY);
3827 
3828 		btrfs_destroy_pinned_extent(root,
3829 					    root->fs_info->pinned_extents);
3830 
3831 		atomic_set(&t->use_count, 0);
3832 		list_del_init(&t->list);
3833 		memset(t, 0, sizeof(*t));
3834 		kmem_cache_free(btrfs_transaction_cachep, t);
3835 	}
3836 
3837 	spin_lock(&root->fs_info->trans_lock);
3838 	root->fs_info->trans_no_join = 0;
3839 	spin_unlock(&root->fs_info->trans_lock);
3840 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3841 
3842 	return 0;
3843 }
3844 
3845 static struct extent_io_ops btree_extent_io_ops = {
3846 	.readpage_end_io_hook = btree_readpage_end_io_hook,
3847 	.readpage_io_failed_hook = btree_io_failed_hook,
3848 	.submit_bio_hook = btree_submit_bio_hook,
3849 	/* note we're sharing with inode.c for the merge bio hook */
3850 	.merge_bio_hook = btrfs_merge_bio_hook,
3851 };
3852