1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/crc32c.h> 30 #include <linux/slab.h> 31 #include <linux/migrate.h> 32 #include <linux/ratelimit.h> 33 #include <asm/unaligned.h> 34 #include "compat.h" 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "volumes.h" 40 #include "print-tree.h" 41 #include "async-thread.h" 42 #include "locking.h" 43 #include "tree-log.h" 44 #include "free-space-cache.h" 45 #include "inode-map.h" 46 #include "check-integrity.h" 47 #include "rcu-string.h" 48 49 #ifdef CONFIG_X86 50 #include <asm/cpufeature.h> 51 #endif 52 53 static struct extent_io_ops btree_extent_io_ops; 54 static void end_workqueue_fn(struct btrfs_work *work); 55 static void free_fs_root(struct btrfs_root *root); 56 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 57 int read_only); 58 static void btrfs_destroy_ordered_operations(struct btrfs_root *root); 59 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 60 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 61 struct btrfs_root *root); 62 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t); 63 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 64 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 65 struct extent_io_tree *dirty_pages, 66 int mark); 67 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 68 struct extent_io_tree *pinned_extents); 69 70 /* 71 * end_io_wq structs are used to do processing in task context when an IO is 72 * complete. This is used during reads to verify checksums, and it is used 73 * by writes to insert metadata for new file extents after IO is complete. 74 */ 75 struct end_io_wq { 76 struct bio *bio; 77 bio_end_io_t *end_io; 78 void *private; 79 struct btrfs_fs_info *info; 80 int error; 81 int metadata; 82 struct list_head list; 83 struct btrfs_work work; 84 }; 85 86 /* 87 * async submit bios are used to offload expensive checksumming 88 * onto the worker threads. They checksum file and metadata bios 89 * just before they are sent down the IO stack. 90 */ 91 struct async_submit_bio { 92 struct inode *inode; 93 struct bio *bio; 94 struct list_head list; 95 extent_submit_bio_hook_t *submit_bio_start; 96 extent_submit_bio_hook_t *submit_bio_done; 97 int rw; 98 int mirror_num; 99 unsigned long bio_flags; 100 /* 101 * bio_offset is optional, can be used if the pages in the bio 102 * can't tell us where in the file the bio should go 103 */ 104 u64 bio_offset; 105 struct btrfs_work work; 106 int error; 107 }; 108 109 /* 110 * Lockdep class keys for extent_buffer->lock's in this root. For a given 111 * eb, the lockdep key is determined by the btrfs_root it belongs to and 112 * the level the eb occupies in the tree. 113 * 114 * Different roots are used for different purposes and may nest inside each 115 * other and they require separate keysets. As lockdep keys should be 116 * static, assign keysets according to the purpose of the root as indicated 117 * by btrfs_root->objectid. This ensures that all special purpose roots 118 * have separate keysets. 119 * 120 * Lock-nesting across peer nodes is always done with the immediate parent 121 * node locked thus preventing deadlock. As lockdep doesn't know this, use 122 * subclass to avoid triggering lockdep warning in such cases. 123 * 124 * The key is set by the readpage_end_io_hook after the buffer has passed 125 * csum validation but before the pages are unlocked. It is also set by 126 * btrfs_init_new_buffer on freshly allocated blocks. 127 * 128 * We also add a check to make sure the highest level of the tree is the 129 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 130 * needs update as well. 131 */ 132 #ifdef CONFIG_DEBUG_LOCK_ALLOC 133 # if BTRFS_MAX_LEVEL != 8 134 # error 135 # endif 136 137 static struct btrfs_lockdep_keyset { 138 u64 id; /* root objectid */ 139 const char *name_stem; /* lock name stem */ 140 char names[BTRFS_MAX_LEVEL + 1][20]; 141 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 142 } btrfs_lockdep_keysets[] = { 143 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 144 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 145 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 146 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 147 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 148 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 149 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" }, 150 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 151 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 152 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 153 { .id = 0, .name_stem = "tree" }, 154 }; 155 156 void __init btrfs_init_lockdep(void) 157 { 158 int i, j; 159 160 /* initialize lockdep class names */ 161 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 162 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 163 164 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 165 snprintf(ks->names[j], sizeof(ks->names[j]), 166 "btrfs-%s-%02d", ks->name_stem, j); 167 } 168 } 169 170 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 171 int level) 172 { 173 struct btrfs_lockdep_keyset *ks; 174 175 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 176 177 /* find the matching keyset, id 0 is the default entry */ 178 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 179 if (ks->id == objectid) 180 break; 181 182 lockdep_set_class_and_name(&eb->lock, 183 &ks->keys[level], ks->names[level]); 184 } 185 186 #endif 187 188 /* 189 * extents on the btree inode are pretty simple, there's one extent 190 * that covers the entire device 191 */ 192 static struct extent_map *btree_get_extent(struct inode *inode, 193 struct page *page, size_t pg_offset, u64 start, u64 len, 194 int create) 195 { 196 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 197 struct extent_map *em; 198 int ret; 199 200 read_lock(&em_tree->lock); 201 em = lookup_extent_mapping(em_tree, start, len); 202 if (em) { 203 em->bdev = 204 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 205 read_unlock(&em_tree->lock); 206 goto out; 207 } 208 read_unlock(&em_tree->lock); 209 210 em = alloc_extent_map(); 211 if (!em) { 212 em = ERR_PTR(-ENOMEM); 213 goto out; 214 } 215 em->start = 0; 216 em->len = (u64)-1; 217 em->block_len = (u64)-1; 218 em->block_start = 0; 219 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 220 221 write_lock(&em_tree->lock); 222 ret = add_extent_mapping(em_tree, em); 223 if (ret == -EEXIST) { 224 free_extent_map(em); 225 em = lookup_extent_mapping(em_tree, start, len); 226 if (!em) 227 em = ERR_PTR(-EIO); 228 } else if (ret) { 229 free_extent_map(em); 230 em = ERR_PTR(ret); 231 } 232 write_unlock(&em_tree->lock); 233 234 out: 235 return em; 236 } 237 238 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) 239 { 240 return crc32c(seed, data, len); 241 } 242 243 void btrfs_csum_final(u32 crc, char *result) 244 { 245 put_unaligned_le32(~crc, result); 246 } 247 248 /* 249 * compute the csum for a btree block, and either verify it or write it 250 * into the csum field of the block. 251 */ 252 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 253 int verify) 254 { 255 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 256 char *result = NULL; 257 unsigned long len; 258 unsigned long cur_len; 259 unsigned long offset = BTRFS_CSUM_SIZE; 260 char *kaddr; 261 unsigned long map_start; 262 unsigned long map_len; 263 int err; 264 u32 crc = ~(u32)0; 265 unsigned long inline_result; 266 267 len = buf->len - offset; 268 while (len > 0) { 269 err = map_private_extent_buffer(buf, offset, 32, 270 &kaddr, &map_start, &map_len); 271 if (err) 272 return 1; 273 cur_len = min(len, map_len - (offset - map_start)); 274 crc = btrfs_csum_data(root, kaddr + offset - map_start, 275 crc, cur_len); 276 len -= cur_len; 277 offset += cur_len; 278 } 279 if (csum_size > sizeof(inline_result)) { 280 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 281 if (!result) 282 return 1; 283 } else { 284 result = (char *)&inline_result; 285 } 286 287 btrfs_csum_final(crc, result); 288 289 if (verify) { 290 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 291 u32 val; 292 u32 found = 0; 293 memcpy(&found, result, csum_size); 294 295 read_extent_buffer(buf, &val, 0, csum_size); 296 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify " 297 "failed on %llu wanted %X found %X " 298 "level %d\n", 299 root->fs_info->sb->s_id, 300 (unsigned long long)buf->start, val, found, 301 btrfs_header_level(buf)); 302 if (result != (char *)&inline_result) 303 kfree(result); 304 return 1; 305 } 306 } else { 307 write_extent_buffer(buf, result, 0, csum_size); 308 } 309 if (result != (char *)&inline_result) 310 kfree(result); 311 return 0; 312 } 313 314 /* 315 * we can't consider a given block up to date unless the transid of the 316 * block matches the transid in the parent node's pointer. This is how we 317 * detect blocks that either didn't get written at all or got written 318 * in the wrong place. 319 */ 320 static int verify_parent_transid(struct extent_io_tree *io_tree, 321 struct extent_buffer *eb, u64 parent_transid, 322 int atomic) 323 { 324 struct extent_state *cached_state = NULL; 325 int ret; 326 327 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 328 return 0; 329 330 if (atomic) 331 return -EAGAIN; 332 333 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 334 0, &cached_state); 335 if (extent_buffer_uptodate(eb) && 336 btrfs_header_generation(eb) == parent_transid) { 337 ret = 0; 338 goto out; 339 } 340 printk_ratelimited("parent transid verify failed on %llu wanted %llu " 341 "found %llu\n", 342 (unsigned long long)eb->start, 343 (unsigned long long)parent_transid, 344 (unsigned long long)btrfs_header_generation(eb)); 345 ret = 1; 346 clear_extent_buffer_uptodate(eb); 347 out: 348 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 349 &cached_state, GFP_NOFS); 350 return ret; 351 } 352 353 /* 354 * helper to read a given tree block, doing retries as required when 355 * the checksums don't match and we have alternate mirrors to try. 356 */ 357 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 358 struct extent_buffer *eb, 359 u64 start, u64 parent_transid) 360 { 361 struct extent_io_tree *io_tree; 362 int failed = 0; 363 int ret; 364 int num_copies = 0; 365 int mirror_num = 0; 366 int failed_mirror = 0; 367 368 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 369 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 370 while (1) { 371 ret = read_extent_buffer_pages(io_tree, eb, start, 372 WAIT_COMPLETE, 373 btree_get_extent, mirror_num); 374 if (!ret) { 375 if (!verify_parent_transid(io_tree, eb, 376 parent_transid, 0)) 377 break; 378 else 379 ret = -EIO; 380 } 381 382 /* 383 * This buffer's crc is fine, but its contents are corrupted, so 384 * there is no reason to read the other copies, they won't be 385 * any less wrong. 386 */ 387 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 388 break; 389 390 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, 391 eb->start, eb->len); 392 if (num_copies == 1) 393 break; 394 395 if (!failed_mirror) { 396 failed = 1; 397 failed_mirror = eb->read_mirror; 398 } 399 400 mirror_num++; 401 if (mirror_num == failed_mirror) 402 mirror_num++; 403 404 if (mirror_num > num_copies) 405 break; 406 } 407 408 if (failed && !ret && failed_mirror) 409 repair_eb_io_failure(root, eb, failed_mirror); 410 411 return ret; 412 } 413 414 /* 415 * checksum a dirty tree block before IO. This has extra checks to make sure 416 * we only fill in the checksum field in the first page of a multi-page block 417 */ 418 419 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 420 { 421 struct extent_io_tree *tree; 422 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 423 u64 found_start; 424 struct extent_buffer *eb; 425 426 tree = &BTRFS_I(page->mapping->host)->io_tree; 427 428 eb = (struct extent_buffer *)page->private; 429 if (page != eb->pages[0]) 430 return 0; 431 found_start = btrfs_header_bytenr(eb); 432 if (found_start != start) { 433 WARN_ON(1); 434 return 0; 435 } 436 if (!PageUptodate(page)) { 437 WARN_ON(1); 438 return 0; 439 } 440 csum_tree_block(root, eb, 0); 441 return 0; 442 } 443 444 static int check_tree_block_fsid(struct btrfs_root *root, 445 struct extent_buffer *eb) 446 { 447 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 448 u8 fsid[BTRFS_UUID_SIZE]; 449 int ret = 1; 450 451 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb), 452 BTRFS_FSID_SIZE); 453 while (fs_devices) { 454 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 455 ret = 0; 456 break; 457 } 458 fs_devices = fs_devices->seed; 459 } 460 return ret; 461 } 462 463 #define CORRUPT(reason, eb, root, slot) \ 464 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \ 465 "root=%llu, slot=%d\n", reason, \ 466 (unsigned long long)btrfs_header_bytenr(eb), \ 467 (unsigned long long)root->objectid, slot) 468 469 static noinline int check_leaf(struct btrfs_root *root, 470 struct extent_buffer *leaf) 471 { 472 struct btrfs_key key; 473 struct btrfs_key leaf_key; 474 u32 nritems = btrfs_header_nritems(leaf); 475 int slot; 476 477 if (nritems == 0) 478 return 0; 479 480 /* Check the 0 item */ 481 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 482 BTRFS_LEAF_DATA_SIZE(root)) { 483 CORRUPT("invalid item offset size pair", leaf, root, 0); 484 return -EIO; 485 } 486 487 /* 488 * Check to make sure each items keys are in the correct order and their 489 * offsets make sense. We only have to loop through nritems-1 because 490 * we check the current slot against the next slot, which verifies the 491 * next slot's offset+size makes sense and that the current's slot 492 * offset is correct. 493 */ 494 for (slot = 0; slot < nritems - 1; slot++) { 495 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 496 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 497 498 /* Make sure the keys are in the right order */ 499 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 500 CORRUPT("bad key order", leaf, root, slot); 501 return -EIO; 502 } 503 504 /* 505 * Make sure the offset and ends are right, remember that the 506 * item data starts at the end of the leaf and grows towards the 507 * front. 508 */ 509 if (btrfs_item_offset_nr(leaf, slot) != 510 btrfs_item_end_nr(leaf, slot + 1)) { 511 CORRUPT("slot offset bad", leaf, root, slot); 512 return -EIO; 513 } 514 515 /* 516 * Check to make sure that we don't point outside of the leaf, 517 * just incase all the items are consistent to eachother, but 518 * all point outside of the leaf. 519 */ 520 if (btrfs_item_end_nr(leaf, slot) > 521 BTRFS_LEAF_DATA_SIZE(root)) { 522 CORRUPT("slot end outside of leaf", leaf, root, slot); 523 return -EIO; 524 } 525 } 526 527 return 0; 528 } 529 530 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree, 531 struct page *page, int max_walk) 532 { 533 struct extent_buffer *eb; 534 u64 start = page_offset(page); 535 u64 target = start; 536 u64 min_start; 537 538 if (start < max_walk) 539 min_start = 0; 540 else 541 min_start = start - max_walk; 542 543 while (start >= min_start) { 544 eb = find_extent_buffer(tree, start, 0); 545 if (eb) { 546 /* 547 * we found an extent buffer and it contains our page 548 * horray! 549 */ 550 if (eb->start <= target && 551 eb->start + eb->len > target) 552 return eb; 553 554 /* we found an extent buffer that wasn't for us */ 555 free_extent_buffer(eb); 556 return NULL; 557 } 558 if (start == 0) 559 break; 560 start -= PAGE_CACHE_SIZE; 561 } 562 return NULL; 563 } 564 565 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, 566 struct extent_state *state, int mirror) 567 { 568 struct extent_io_tree *tree; 569 u64 found_start; 570 int found_level; 571 struct extent_buffer *eb; 572 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 573 int ret = 0; 574 int reads_done; 575 576 if (!page->private) 577 goto out; 578 579 tree = &BTRFS_I(page->mapping->host)->io_tree; 580 eb = (struct extent_buffer *)page->private; 581 582 /* the pending IO might have been the only thing that kept this buffer 583 * in memory. Make sure we have a ref for all this other checks 584 */ 585 extent_buffer_get(eb); 586 587 reads_done = atomic_dec_and_test(&eb->io_pages); 588 if (!reads_done) 589 goto err; 590 591 eb->read_mirror = mirror; 592 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) { 593 ret = -EIO; 594 goto err; 595 } 596 597 found_start = btrfs_header_bytenr(eb); 598 if (found_start != eb->start) { 599 printk_ratelimited(KERN_INFO "btrfs bad tree block start " 600 "%llu %llu\n", 601 (unsigned long long)found_start, 602 (unsigned long long)eb->start); 603 ret = -EIO; 604 goto err; 605 } 606 if (check_tree_block_fsid(root, eb)) { 607 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n", 608 (unsigned long long)eb->start); 609 ret = -EIO; 610 goto err; 611 } 612 found_level = btrfs_header_level(eb); 613 614 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 615 eb, found_level); 616 617 ret = csum_tree_block(root, eb, 1); 618 if (ret) { 619 ret = -EIO; 620 goto err; 621 } 622 623 /* 624 * If this is a leaf block and it is corrupt, set the corrupt bit so 625 * that we don't try and read the other copies of this block, just 626 * return -EIO. 627 */ 628 if (found_level == 0 && check_leaf(root, eb)) { 629 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 630 ret = -EIO; 631 } 632 633 if (!ret) 634 set_extent_buffer_uptodate(eb); 635 err: 636 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) { 637 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags); 638 btree_readahead_hook(root, eb, eb->start, ret); 639 } 640 641 if (ret) 642 clear_extent_buffer_uptodate(eb); 643 free_extent_buffer(eb); 644 out: 645 return ret; 646 } 647 648 static int btree_io_failed_hook(struct page *page, int failed_mirror) 649 { 650 struct extent_buffer *eb; 651 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 652 653 eb = (struct extent_buffer *)page->private; 654 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 655 eb->read_mirror = failed_mirror; 656 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 657 btree_readahead_hook(root, eb, eb->start, -EIO); 658 return -EIO; /* we fixed nothing */ 659 } 660 661 static void end_workqueue_bio(struct bio *bio, int err) 662 { 663 struct end_io_wq *end_io_wq = bio->bi_private; 664 struct btrfs_fs_info *fs_info; 665 666 fs_info = end_io_wq->info; 667 end_io_wq->error = err; 668 end_io_wq->work.func = end_workqueue_fn; 669 end_io_wq->work.flags = 0; 670 671 if (bio->bi_rw & REQ_WRITE) { 672 if (end_io_wq->metadata == 1) 673 btrfs_queue_worker(&fs_info->endio_meta_write_workers, 674 &end_io_wq->work); 675 else if (end_io_wq->metadata == 2) 676 btrfs_queue_worker(&fs_info->endio_freespace_worker, 677 &end_io_wq->work); 678 else 679 btrfs_queue_worker(&fs_info->endio_write_workers, 680 &end_io_wq->work); 681 } else { 682 if (end_io_wq->metadata) 683 btrfs_queue_worker(&fs_info->endio_meta_workers, 684 &end_io_wq->work); 685 else 686 btrfs_queue_worker(&fs_info->endio_workers, 687 &end_io_wq->work); 688 } 689 } 690 691 /* 692 * For the metadata arg you want 693 * 694 * 0 - if data 695 * 1 - if normal metadta 696 * 2 - if writing to the free space cache area 697 */ 698 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 699 int metadata) 700 { 701 struct end_io_wq *end_io_wq; 702 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 703 if (!end_io_wq) 704 return -ENOMEM; 705 706 end_io_wq->private = bio->bi_private; 707 end_io_wq->end_io = bio->bi_end_io; 708 end_io_wq->info = info; 709 end_io_wq->error = 0; 710 end_io_wq->bio = bio; 711 end_io_wq->metadata = metadata; 712 713 bio->bi_private = end_io_wq; 714 bio->bi_end_io = end_workqueue_bio; 715 return 0; 716 } 717 718 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 719 { 720 unsigned long limit = min_t(unsigned long, 721 info->workers.max_workers, 722 info->fs_devices->open_devices); 723 return 256 * limit; 724 } 725 726 static void run_one_async_start(struct btrfs_work *work) 727 { 728 struct async_submit_bio *async; 729 int ret; 730 731 async = container_of(work, struct async_submit_bio, work); 732 ret = async->submit_bio_start(async->inode, async->rw, async->bio, 733 async->mirror_num, async->bio_flags, 734 async->bio_offset); 735 if (ret) 736 async->error = ret; 737 } 738 739 static void run_one_async_done(struct btrfs_work *work) 740 { 741 struct btrfs_fs_info *fs_info; 742 struct async_submit_bio *async; 743 int limit; 744 745 async = container_of(work, struct async_submit_bio, work); 746 fs_info = BTRFS_I(async->inode)->root->fs_info; 747 748 limit = btrfs_async_submit_limit(fs_info); 749 limit = limit * 2 / 3; 750 751 if (atomic_dec_return(&fs_info->nr_async_submits) < limit && 752 waitqueue_active(&fs_info->async_submit_wait)) 753 wake_up(&fs_info->async_submit_wait); 754 755 /* If an error occured we just want to clean up the bio and move on */ 756 if (async->error) { 757 bio_endio(async->bio, async->error); 758 return; 759 } 760 761 async->submit_bio_done(async->inode, async->rw, async->bio, 762 async->mirror_num, async->bio_flags, 763 async->bio_offset); 764 } 765 766 static void run_one_async_free(struct btrfs_work *work) 767 { 768 struct async_submit_bio *async; 769 770 async = container_of(work, struct async_submit_bio, work); 771 kfree(async); 772 } 773 774 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 775 int rw, struct bio *bio, int mirror_num, 776 unsigned long bio_flags, 777 u64 bio_offset, 778 extent_submit_bio_hook_t *submit_bio_start, 779 extent_submit_bio_hook_t *submit_bio_done) 780 { 781 struct async_submit_bio *async; 782 783 async = kmalloc(sizeof(*async), GFP_NOFS); 784 if (!async) 785 return -ENOMEM; 786 787 async->inode = inode; 788 async->rw = rw; 789 async->bio = bio; 790 async->mirror_num = mirror_num; 791 async->submit_bio_start = submit_bio_start; 792 async->submit_bio_done = submit_bio_done; 793 794 async->work.func = run_one_async_start; 795 async->work.ordered_func = run_one_async_done; 796 async->work.ordered_free = run_one_async_free; 797 798 async->work.flags = 0; 799 async->bio_flags = bio_flags; 800 async->bio_offset = bio_offset; 801 802 async->error = 0; 803 804 atomic_inc(&fs_info->nr_async_submits); 805 806 if (rw & REQ_SYNC) 807 btrfs_set_work_high_prio(&async->work); 808 809 btrfs_queue_worker(&fs_info->workers, &async->work); 810 811 while (atomic_read(&fs_info->async_submit_draining) && 812 atomic_read(&fs_info->nr_async_submits)) { 813 wait_event(fs_info->async_submit_wait, 814 (atomic_read(&fs_info->nr_async_submits) == 0)); 815 } 816 817 return 0; 818 } 819 820 static int btree_csum_one_bio(struct bio *bio) 821 { 822 struct bio_vec *bvec = bio->bi_io_vec; 823 int bio_index = 0; 824 struct btrfs_root *root; 825 int ret = 0; 826 827 WARN_ON(bio->bi_vcnt <= 0); 828 while (bio_index < bio->bi_vcnt) { 829 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 830 ret = csum_dirty_buffer(root, bvec->bv_page); 831 if (ret) 832 break; 833 bio_index++; 834 bvec++; 835 } 836 return ret; 837 } 838 839 static int __btree_submit_bio_start(struct inode *inode, int rw, 840 struct bio *bio, int mirror_num, 841 unsigned long bio_flags, 842 u64 bio_offset) 843 { 844 /* 845 * when we're called for a write, we're already in the async 846 * submission context. Just jump into btrfs_map_bio 847 */ 848 return btree_csum_one_bio(bio); 849 } 850 851 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 852 int mirror_num, unsigned long bio_flags, 853 u64 bio_offset) 854 { 855 /* 856 * when we're called for a write, we're already in the async 857 * submission context. Just jump into btrfs_map_bio 858 */ 859 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 860 } 861 862 static int check_async_write(struct inode *inode, unsigned long bio_flags) 863 { 864 if (bio_flags & EXTENT_BIO_TREE_LOG) 865 return 0; 866 #ifdef CONFIG_X86 867 if (cpu_has_xmm4_2) 868 return 0; 869 #endif 870 return 1; 871 } 872 873 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 874 int mirror_num, unsigned long bio_flags, 875 u64 bio_offset) 876 { 877 int async = check_async_write(inode, bio_flags); 878 int ret; 879 880 if (!(rw & REQ_WRITE)) { 881 882 /* 883 * called for a read, do the setup so that checksum validation 884 * can happen in the async kernel threads 885 */ 886 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 887 bio, 1); 888 if (ret) 889 return ret; 890 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 891 mirror_num, 0); 892 } else if (!async) { 893 ret = btree_csum_one_bio(bio); 894 if (ret) 895 return ret; 896 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 897 mirror_num, 0); 898 } 899 900 /* 901 * kthread helpers are used to submit writes so that checksumming 902 * can happen in parallel across all CPUs 903 */ 904 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 905 inode, rw, bio, mirror_num, 0, 906 bio_offset, 907 __btree_submit_bio_start, 908 __btree_submit_bio_done); 909 } 910 911 #ifdef CONFIG_MIGRATION 912 static int btree_migratepage(struct address_space *mapping, 913 struct page *newpage, struct page *page, 914 enum migrate_mode mode) 915 { 916 /* 917 * we can't safely write a btree page from here, 918 * we haven't done the locking hook 919 */ 920 if (PageDirty(page)) 921 return -EAGAIN; 922 /* 923 * Buffers may be managed in a filesystem specific way. 924 * We must have no buffers or drop them. 925 */ 926 if (page_has_private(page) && 927 !try_to_release_page(page, GFP_KERNEL)) 928 return -EAGAIN; 929 return migrate_page(mapping, newpage, page, mode); 930 } 931 #endif 932 933 934 static int btree_writepages(struct address_space *mapping, 935 struct writeback_control *wbc) 936 { 937 struct extent_io_tree *tree; 938 tree = &BTRFS_I(mapping->host)->io_tree; 939 if (wbc->sync_mode == WB_SYNC_NONE) { 940 struct btrfs_root *root = BTRFS_I(mapping->host)->root; 941 u64 num_dirty; 942 unsigned long thresh = 32 * 1024 * 1024; 943 944 if (wbc->for_kupdate) 945 return 0; 946 947 /* this is a bit racy, but that's ok */ 948 num_dirty = root->fs_info->dirty_metadata_bytes; 949 if (num_dirty < thresh) 950 return 0; 951 } 952 return btree_write_cache_pages(mapping, wbc); 953 } 954 955 static int btree_readpage(struct file *file, struct page *page) 956 { 957 struct extent_io_tree *tree; 958 tree = &BTRFS_I(page->mapping->host)->io_tree; 959 return extent_read_full_page(tree, page, btree_get_extent, 0); 960 } 961 962 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 963 { 964 if (PageWriteback(page) || PageDirty(page)) 965 return 0; 966 /* 967 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing 968 * slab allocation from alloc_extent_state down the callchain where 969 * it'd hit a BUG_ON as those flags are not allowed. 970 */ 971 gfp_flags &= ~GFP_SLAB_BUG_MASK; 972 973 return try_release_extent_buffer(page, gfp_flags); 974 } 975 976 static void btree_invalidatepage(struct page *page, unsigned long offset) 977 { 978 struct extent_io_tree *tree; 979 tree = &BTRFS_I(page->mapping->host)->io_tree; 980 extent_invalidatepage(tree, page, offset); 981 btree_releasepage(page, GFP_NOFS); 982 if (PagePrivate(page)) { 983 printk(KERN_WARNING "btrfs warning page private not zero " 984 "on page %llu\n", (unsigned long long)page_offset(page)); 985 ClearPagePrivate(page); 986 set_page_private(page, 0); 987 page_cache_release(page); 988 } 989 } 990 991 static int btree_set_page_dirty(struct page *page) 992 { 993 struct extent_buffer *eb; 994 995 BUG_ON(!PagePrivate(page)); 996 eb = (struct extent_buffer *)page->private; 997 BUG_ON(!eb); 998 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 999 BUG_ON(!atomic_read(&eb->refs)); 1000 btrfs_assert_tree_locked(eb); 1001 return __set_page_dirty_nobuffers(page); 1002 } 1003 1004 static const struct address_space_operations btree_aops = { 1005 .readpage = btree_readpage, 1006 .writepages = btree_writepages, 1007 .releasepage = btree_releasepage, 1008 .invalidatepage = btree_invalidatepage, 1009 #ifdef CONFIG_MIGRATION 1010 .migratepage = btree_migratepage, 1011 #endif 1012 .set_page_dirty = btree_set_page_dirty, 1013 }; 1014 1015 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1016 u64 parent_transid) 1017 { 1018 struct extent_buffer *buf = NULL; 1019 struct inode *btree_inode = root->fs_info->btree_inode; 1020 int ret = 0; 1021 1022 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1023 if (!buf) 1024 return 0; 1025 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1026 buf, 0, WAIT_NONE, btree_get_extent, 0); 1027 free_extent_buffer(buf); 1028 return ret; 1029 } 1030 1031 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1032 int mirror_num, struct extent_buffer **eb) 1033 { 1034 struct extent_buffer *buf = NULL; 1035 struct inode *btree_inode = root->fs_info->btree_inode; 1036 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1037 int ret; 1038 1039 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1040 if (!buf) 1041 return 0; 1042 1043 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1044 1045 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1046 btree_get_extent, mirror_num); 1047 if (ret) { 1048 free_extent_buffer(buf); 1049 return ret; 1050 } 1051 1052 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1053 free_extent_buffer(buf); 1054 return -EIO; 1055 } else if (extent_buffer_uptodate(buf)) { 1056 *eb = buf; 1057 } else { 1058 free_extent_buffer(buf); 1059 } 1060 return 0; 1061 } 1062 1063 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 1064 u64 bytenr, u32 blocksize) 1065 { 1066 struct inode *btree_inode = root->fs_info->btree_inode; 1067 struct extent_buffer *eb; 1068 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 1069 bytenr, blocksize); 1070 return eb; 1071 } 1072 1073 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1074 u64 bytenr, u32 blocksize) 1075 { 1076 struct inode *btree_inode = root->fs_info->btree_inode; 1077 struct extent_buffer *eb; 1078 1079 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 1080 bytenr, blocksize); 1081 return eb; 1082 } 1083 1084 1085 int btrfs_write_tree_block(struct extent_buffer *buf) 1086 { 1087 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1088 buf->start + buf->len - 1); 1089 } 1090 1091 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1092 { 1093 return filemap_fdatawait_range(buf->pages[0]->mapping, 1094 buf->start, buf->start + buf->len - 1); 1095 } 1096 1097 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1098 u32 blocksize, u64 parent_transid) 1099 { 1100 struct extent_buffer *buf = NULL; 1101 int ret; 1102 1103 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1104 if (!buf) 1105 return NULL; 1106 1107 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1108 return buf; 1109 1110 } 1111 1112 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1113 struct extent_buffer *buf) 1114 { 1115 if (btrfs_header_generation(buf) == 1116 root->fs_info->running_transaction->transid) { 1117 btrfs_assert_tree_locked(buf); 1118 1119 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1120 spin_lock(&root->fs_info->delalloc_lock); 1121 if (root->fs_info->dirty_metadata_bytes >= buf->len) 1122 root->fs_info->dirty_metadata_bytes -= buf->len; 1123 else { 1124 spin_unlock(&root->fs_info->delalloc_lock); 1125 btrfs_panic(root->fs_info, -EOVERFLOW, 1126 "Can't clear %lu bytes from " 1127 " dirty_mdatadata_bytes (%llu)", 1128 buf->len, 1129 root->fs_info->dirty_metadata_bytes); 1130 } 1131 spin_unlock(&root->fs_info->delalloc_lock); 1132 } 1133 1134 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1135 btrfs_set_lock_blocking(buf); 1136 clear_extent_buffer_dirty(buf); 1137 } 1138 } 1139 1140 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 1141 u32 stripesize, struct btrfs_root *root, 1142 struct btrfs_fs_info *fs_info, 1143 u64 objectid) 1144 { 1145 root->node = NULL; 1146 root->commit_root = NULL; 1147 root->sectorsize = sectorsize; 1148 root->nodesize = nodesize; 1149 root->leafsize = leafsize; 1150 root->stripesize = stripesize; 1151 root->ref_cows = 0; 1152 root->track_dirty = 0; 1153 root->in_radix = 0; 1154 root->orphan_item_inserted = 0; 1155 root->orphan_cleanup_state = 0; 1156 1157 root->objectid = objectid; 1158 root->last_trans = 0; 1159 root->highest_objectid = 0; 1160 root->name = NULL; 1161 root->inode_tree = RB_ROOT; 1162 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1163 root->block_rsv = NULL; 1164 root->orphan_block_rsv = NULL; 1165 1166 INIT_LIST_HEAD(&root->dirty_list); 1167 INIT_LIST_HEAD(&root->root_list); 1168 spin_lock_init(&root->orphan_lock); 1169 spin_lock_init(&root->inode_lock); 1170 spin_lock_init(&root->accounting_lock); 1171 mutex_init(&root->objectid_mutex); 1172 mutex_init(&root->log_mutex); 1173 init_waitqueue_head(&root->log_writer_wait); 1174 init_waitqueue_head(&root->log_commit_wait[0]); 1175 init_waitqueue_head(&root->log_commit_wait[1]); 1176 atomic_set(&root->log_commit[0], 0); 1177 atomic_set(&root->log_commit[1], 0); 1178 atomic_set(&root->log_writers, 0); 1179 atomic_set(&root->log_batch, 0); 1180 atomic_set(&root->orphan_inodes, 0); 1181 root->log_transid = 0; 1182 root->last_log_commit = 0; 1183 extent_io_tree_init(&root->dirty_log_pages, 1184 fs_info->btree_inode->i_mapping); 1185 1186 memset(&root->root_key, 0, sizeof(root->root_key)); 1187 memset(&root->root_item, 0, sizeof(root->root_item)); 1188 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1189 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 1190 root->defrag_trans_start = fs_info->generation; 1191 init_completion(&root->kobj_unregister); 1192 root->defrag_running = 0; 1193 root->root_key.objectid = objectid; 1194 root->anon_dev = 0; 1195 1196 spin_lock_init(&root->root_times_lock); 1197 } 1198 1199 static int __must_check find_and_setup_root(struct btrfs_root *tree_root, 1200 struct btrfs_fs_info *fs_info, 1201 u64 objectid, 1202 struct btrfs_root *root) 1203 { 1204 int ret; 1205 u32 blocksize; 1206 u64 generation; 1207 1208 __setup_root(tree_root->nodesize, tree_root->leafsize, 1209 tree_root->sectorsize, tree_root->stripesize, 1210 root, fs_info, objectid); 1211 ret = btrfs_find_last_root(tree_root, objectid, 1212 &root->root_item, &root->root_key); 1213 if (ret > 0) 1214 return -ENOENT; 1215 else if (ret < 0) 1216 return ret; 1217 1218 generation = btrfs_root_generation(&root->root_item); 1219 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1220 root->commit_root = NULL; 1221 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1222 blocksize, generation); 1223 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) { 1224 free_extent_buffer(root->node); 1225 root->node = NULL; 1226 return -EIO; 1227 } 1228 root->commit_root = btrfs_root_node(root); 1229 return 0; 1230 } 1231 1232 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info) 1233 { 1234 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS); 1235 if (root) 1236 root->fs_info = fs_info; 1237 return root; 1238 } 1239 1240 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1241 struct btrfs_fs_info *fs_info, 1242 u64 objectid) 1243 { 1244 struct extent_buffer *leaf; 1245 struct btrfs_root *tree_root = fs_info->tree_root; 1246 struct btrfs_root *root; 1247 struct btrfs_key key; 1248 int ret = 0; 1249 u64 bytenr; 1250 1251 root = btrfs_alloc_root(fs_info); 1252 if (!root) 1253 return ERR_PTR(-ENOMEM); 1254 1255 __setup_root(tree_root->nodesize, tree_root->leafsize, 1256 tree_root->sectorsize, tree_root->stripesize, 1257 root, fs_info, objectid); 1258 root->root_key.objectid = objectid; 1259 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1260 root->root_key.offset = 0; 1261 1262 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 1263 0, objectid, NULL, 0, 0, 0); 1264 if (IS_ERR(leaf)) { 1265 ret = PTR_ERR(leaf); 1266 goto fail; 1267 } 1268 1269 bytenr = leaf->start; 1270 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1271 btrfs_set_header_bytenr(leaf, leaf->start); 1272 btrfs_set_header_generation(leaf, trans->transid); 1273 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1274 btrfs_set_header_owner(leaf, objectid); 1275 root->node = leaf; 1276 1277 write_extent_buffer(leaf, fs_info->fsid, 1278 (unsigned long)btrfs_header_fsid(leaf), 1279 BTRFS_FSID_SIZE); 1280 write_extent_buffer(leaf, fs_info->chunk_tree_uuid, 1281 (unsigned long)btrfs_header_chunk_tree_uuid(leaf), 1282 BTRFS_UUID_SIZE); 1283 btrfs_mark_buffer_dirty(leaf); 1284 1285 root->commit_root = btrfs_root_node(root); 1286 root->track_dirty = 1; 1287 1288 1289 root->root_item.flags = 0; 1290 root->root_item.byte_limit = 0; 1291 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1292 btrfs_set_root_generation(&root->root_item, trans->transid); 1293 btrfs_set_root_level(&root->root_item, 0); 1294 btrfs_set_root_refs(&root->root_item, 1); 1295 btrfs_set_root_used(&root->root_item, leaf->len); 1296 btrfs_set_root_last_snapshot(&root->root_item, 0); 1297 btrfs_set_root_dirid(&root->root_item, 0); 1298 root->root_item.drop_level = 0; 1299 1300 key.objectid = objectid; 1301 key.type = BTRFS_ROOT_ITEM_KEY; 1302 key.offset = 0; 1303 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1304 if (ret) 1305 goto fail; 1306 1307 btrfs_tree_unlock(leaf); 1308 1309 fail: 1310 if (ret) 1311 return ERR_PTR(ret); 1312 1313 return root; 1314 } 1315 1316 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1317 struct btrfs_fs_info *fs_info) 1318 { 1319 struct btrfs_root *root; 1320 struct btrfs_root *tree_root = fs_info->tree_root; 1321 struct extent_buffer *leaf; 1322 1323 root = btrfs_alloc_root(fs_info); 1324 if (!root) 1325 return ERR_PTR(-ENOMEM); 1326 1327 __setup_root(tree_root->nodesize, tree_root->leafsize, 1328 tree_root->sectorsize, tree_root->stripesize, 1329 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1330 1331 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1332 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1333 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1334 /* 1335 * log trees do not get reference counted because they go away 1336 * before a real commit is actually done. They do store pointers 1337 * to file data extents, and those reference counts still get 1338 * updated (along with back refs to the log tree). 1339 */ 1340 root->ref_cows = 0; 1341 1342 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 1343 BTRFS_TREE_LOG_OBJECTID, NULL, 1344 0, 0, 0); 1345 if (IS_ERR(leaf)) { 1346 kfree(root); 1347 return ERR_CAST(leaf); 1348 } 1349 1350 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1351 btrfs_set_header_bytenr(leaf, leaf->start); 1352 btrfs_set_header_generation(leaf, trans->transid); 1353 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1354 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1355 root->node = leaf; 1356 1357 write_extent_buffer(root->node, root->fs_info->fsid, 1358 (unsigned long)btrfs_header_fsid(root->node), 1359 BTRFS_FSID_SIZE); 1360 btrfs_mark_buffer_dirty(root->node); 1361 btrfs_tree_unlock(root->node); 1362 return root; 1363 } 1364 1365 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1366 struct btrfs_fs_info *fs_info) 1367 { 1368 struct btrfs_root *log_root; 1369 1370 log_root = alloc_log_tree(trans, fs_info); 1371 if (IS_ERR(log_root)) 1372 return PTR_ERR(log_root); 1373 WARN_ON(fs_info->log_root_tree); 1374 fs_info->log_root_tree = log_root; 1375 return 0; 1376 } 1377 1378 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1379 struct btrfs_root *root) 1380 { 1381 struct btrfs_root *log_root; 1382 struct btrfs_inode_item *inode_item; 1383 1384 log_root = alloc_log_tree(trans, root->fs_info); 1385 if (IS_ERR(log_root)) 1386 return PTR_ERR(log_root); 1387 1388 log_root->last_trans = trans->transid; 1389 log_root->root_key.offset = root->root_key.objectid; 1390 1391 inode_item = &log_root->root_item.inode; 1392 inode_item->generation = cpu_to_le64(1); 1393 inode_item->size = cpu_to_le64(3); 1394 inode_item->nlink = cpu_to_le32(1); 1395 inode_item->nbytes = cpu_to_le64(root->leafsize); 1396 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 1397 1398 btrfs_set_root_node(&log_root->root_item, log_root->node); 1399 1400 WARN_ON(root->log_root); 1401 root->log_root = log_root; 1402 root->log_transid = 0; 1403 root->last_log_commit = 0; 1404 return 0; 1405 } 1406 1407 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root, 1408 struct btrfs_key *location) 1409 { 1410 struct btrfs_root *root; 1411 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1412 struct btrfs_path *path; 1413 struct extent_buffer *l; 1414 u64 generation; 1415 u32 blocksize; 1416 int ret = 0; 1417 int slot; 1418 1419 root = btrfs_alloc_root(fs_info); 1420 if (!root) 1421 return ERR_PTR(-ENOMEM); 1422 if (location->offset == (u64)-1) { 1423 ret = find_and_setup_root(tree_root, fs_info, 1424 location->objectid, root); 1425 if (ret) { 1426 kfree(root); 1427 return ERR_PTR(ret); 1428 } 1429 goto out; 1430 } 1431 1432 __setup_root(tree_root->nodesize, tree_root->leafsize, 1433 tree_root->sectorsize, tree_root->stripesize, 1434 root, fs_info, location->objectid); 1435 1436 path = btrfs_alloc_path(); 1437 if (!path) { 1438 kfree(root); 1439 return ERR_PTR(-ENOMEM); 1440 } 1441 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); 1442 if (ret == 0) { 1443 l = path->nodes[0]; 1444 slot = path->slots[0]; 1445 btrfs_read_root_item(tree_root, l, slot, &root->root_item); 1446 memcpy(&root->root_key, location, sizeof(*location)); 1447 } 1448 btrfs_free_path(path); 1449 if (ret) { 1450 kfree(root); 1451 if (ret > 0) 1452 ret = -ENOENT; 1453 return ERR_PTR(ret); 1454 } 1455 1456 generation = btrfs_root_generation(&root->root_item); 1457 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1458 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1459 blocksize, generation); 1460 root->commit_root = btrfs_root_node(root); 1461 BUG_ON(!root->node); /* -ENOMEM */ 1462 out: 1463 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) { 1464 root->ref_cows = 1; 1465 btrfs_check_and_init_root_item(&root->root_item); 1466 } 1467 1468 return root; 1469 } 1470 1471 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, 1472 struct btrfs_key *location) 1473 { 1474 struct btrfs_root *root; 1475 int ret; 1476 1477 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1478 return fs_info->tree_root; 1479 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1480 return fs_info->extent_root; 1481 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1482 return fs_info->chunk_root; 1483 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1484 return fs_info->dev_root; 1485 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1486 return fs_info->csum_root; 1487 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1488 return fs_info->quota_root ? fs_info->quota_root : 1489 ERR_PTR(-ENOENT); 1490 again: 1491 spin_lock(&fs_info->fs_roots_radix_lock); 1492 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1493 (unsigned long)location->objectid); 1494 spin_unlock(&fs_info->fs_roots_radix_lock); 1495 if (root) 1496 return root; 1497 1498 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location); 1499 if (IS_ERR(root)) 1500 return root; 1501 1502 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1503 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1504 GFP_NOFS); 1505 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1506 ret = -ENOMEM; 1507 goto fail; 1508 } 1509 1510 btrfs_init_free_ino_ctl(root); 1511 mutex_init(&root->fs_commit_mutex); 1512 spin_lock_init(&root->cache_lock); 1513 init_waitqueue_head(&root->cache_wait); 1514 1515 ret = get_anon_bdev(&root->anon_dev); 1516 if (ret) 1517 goto fail; 1518 1519 if (btrfs_root_refs(&root->root_item) == 0) { 1520 ret = -ENOENT; 1521 goto fail; 1522 } 1523 1524 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid); 1525 if (ret < 0) 1526 goto fail; 1527 if (ret == 0) 1528 root->orphan_item_inserted = 1; 1529 1530 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1531 if (ret) 1532 goto fail; 1533 1534 spin_lock(&fs_info->fs_roots_radix_lock); 1535 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1536 (unsigned long)root->root_key.objectid, 1537 root); 1538 if (ret == 0) 1539 root->in_radix = 1; 1540 1541 spin_unlock(&fs_info->fs_roots_radix_lock); 1542 radix_tree_preload_end(); 1543 if (ret) { 1544 if (ret == -EEXIST) { 1545 free_fs_root(root); 1546 goto again; 1547 } 1548 goto fail; 1549 } 1550 1551 ret = btrfs_find_dead_roots(fs_info->tree_root, 1552 root->root_key.objectid); 1553 WARN_ON(ret); 1554 return root; 1555 fail: 1556 free_fs_root(root); 1557 return ERR_PTR(ret); 1558 } 1559 1560 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1561 { 1562 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1563 int ret = 0; 1564 struct btrfs_device *device; 1565 struct backing_dev_info *bdi; 1566 1567 rcu_read_lock(); 1568 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1569 if (!device->bdev) 1570 continue; 1571 bdi = blk_get_backing_dev_info(device->bdev); 1572 if (bdi && bdi_congested(bdi, bdi_bits)) { 1573 ret = 1; 1574 break; 1575 } 1576 } 1577 rcu_read_unlock(); 1578 return ret; 1579 } 1580 1581 /* 1582 * If this fails, caller must call bdi_destroy() to get rid of the 1583 * bdi again. 1584 */ 1585 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1586 { 1587 int err; 1588 1589 bdi->capabilities = BDI_CAP_MAP_COPY; 1590 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY); 1591 if (err) 1592 return err; 1593 1594 bdi->ra_pages = default_backing_dev_info.ra_pages; 1595 bdi->congested_fn = btrfs_congested_fn; 1596 bdi->congested_data = info; 1597 return 0; 1598 } 1599 1600 /* 1601 * called by the kthread helper functions to finally call the bio end_io 1602 * functions. This is where read checksum verification actually happens 1603 */ 1604 static void end_workqueue_fn(struct btrfs_work *work) 1605 { 1606 struct bio *bio; 1607 struct end_io_wq *end_io_wq; 1608 struct btrfs_fs_info *fs_info; 1609 int error; 1610 1611 end_io_wq = container_of(work, struct end_io_wq, work); 1612 bio = end_io_wq->bio; 1613 fs_info = end_io_wq->info; 1614 1615 error = end_io_wq->error; 1616 bio->bi_private = end_io_wq->private; 1617 bio->bi_end_io = end_io_wq->end_io; 1618 kfree(end_io_wq); 1619 bio_endio(bio, error); 1620 } 1621 1622 static int cleaner_kthread(void *arg) 1623 { 1624 struct btrfs_root *root = arg; 1625 1626 do { 1627 if (!(root->fs_info->sb->s_flags & MS_RDONLY) && 1628 mutex_trylock(&root->fs_info->cleaner_mutex)) { 1629 btrfs_run_delayed_iputs(root); 1630 btrfs_clean_old_snapshots(root); 1631 mutex_unlock(&root->fs_info->cleaner_mutex); 1632 btrfs_run_defrag_inodes(root->fs_info); 1633 } 1634 1635 if (!try_to_freeze()) { 1636 set_current_state(TASK_INTERRUPTIBLE); 1637 if (!kthread_should_stop()) 1638 schedule(); 1639 __set_current_state(TASK_RUNNING); 1640 } 1641 } while (!kthread_should_stop()); 1642 return 0; 1643 } 1644 1645 static int transaction_kthread(void *arg) 1646 { 1647 struct btrfs_root *root = arg; 1648 struct btrfs_trans_handle *trans; 1649 struct btrfs_transaction *cur; 1650 u64 transid; 1651 unsigned long now; 1652 unsigned long delay; 1653 bool cannot_commit; 1654 1655 do { 1656 cannot_commit = false; 1657 delay = HZ * 30; 1658 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1659 1660 spin_lock(&root->fs_info->trans_lock); 1661 cur = root->fs_info->running_transaction; 1662 if (!cur) { 1663 spin_unlock(&root->fs_info->trans_lock); 1664 goto sleep; 1665 } 1666 1667 now = get_seconds(); 1668 if (!cur->blocked && 1669 (now < cur->start_time || now - cur->start_time < 30)) { 1670 spin_unlock(&root->fs_info->trans_lock); 1671 delay = HZ * 5; 1672 goto sleep; 1673 } 1674 transid = cur->transid; 1675 spin_unlock(&root->fs_info->trans_lock); 1676 1677 /* If the file system is aborted, this will always fail. */ 1678 trans = btrfs_attach_transaction(root); 1679 if (IS_ERR(trans)) { 1680 if (PTR_ERR(trans) != -ENOENT) 1681 cannot_commit = true; 1682 goto sleep; 1683 } 1684 if (transid == trans->transid) { 1685 btrfs_commit_transaction(trans, root); 1686 } else { 1687 btrfs_end_transaction(trans, root); 1688 } 1689 sleep: 1690 wake_up_process(root->fs_info->cleaner_kthread); 1691 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1692 1693 if (!try_to_freeze()) { 1694 set_current_state(TASK_INTERRUPTIBLE); 1695 if (!kthread_should_stop() && 1696 (!btrfs_transaction_blocked(root->fs_info) || 1697 cannot_commit)) 1698 schedule_timeout(delay); 1699 __set_current_state(TASK_RUNNING); 1700 } 1701 } while (!kthread_should_stop()); 1702 return 0; 1703 } 1704 1705 /* 1706 * this will find the highest generation in the array of 1707 * root backups. The index of the highest array is returned, 1708 * or -1 if we can't find anything. 1709 * 1710 * We check to make sure the array is valid by comparing the 1711 * generation of the latest root in the array with the generation 1712 * in the super block. If they don't match we pitch it. 1713 */ 1714 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1715 { 1716 u64 cur; 1717 int newest_index = -1; 1718 struct btrfs_root_backup *root_backup; 1719 int i; 1720 1721 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1722 root_backup = info->super_copy->super_roots + i; 1723 cur = btrfs_backup_tree_root_gen(root_backup); 1724 if (cur == newest_gen) 1725 newest_index = i; 1726 } 1727 1728 /* check to see if we actually wrapped around */ 1729 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1730 root_backup = info->super_copy->super_roots; 1731 cur = btrfs_backup_tree_root_gen(root_backup); 1732 if (cur == newest_gen) 1733 newest_index = 0; 1734 } 1735 return newest_index; 1736 } 1737 1738 1739 /* 1740 * find the oldest backup so we know where to store new entries 1741 * in the backup array. This will set the backup_root_index 1742 * field in the fs_info struct 1743 */ 1744 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1745 u64 newest_gen) 1746 { 1747 int newest_index = -1; 1748 1749 newest_index = find_newest_super_backup(info, newest_gen); 1750 /* if there was garbage in there, just move along */ 1751 if (newest_index == -1) { 1752 info->backup_root_index = 0; 1753 } else { 1754 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1755 } 1756 } 1757 1758 /* 1759 * copy all the root pointers into the super backup array. 1760 * this will bump the backup pointer by one when it is 1761 * done 1762 */ 1763 static void backup_super_roots(struct btrfs_fs_info *info) 1764 { 1765 int next_backup; 1766 struct btrfs_root_backup *root_backup; 1767 int last_backup; 1768 1769 next_backup = info->backup_root_index; 1770 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1771 BTRFS_NUM_BACKUP_ROOTS; 1772 1773 /* 1774 * just overwrite the last backup if we're at the same generation 1775 * this happens only at umount 1776 */ 1777 root_backup = info->super_for_commit->super_roots + last_backup; 1778 if (btrfs_backup_tree_root_gen(root_backup) == 1779 btrfs_header_generation(info->tree_root->node)) 1780 next_backup = last_backup; 1781 1782 root_backup = info->super_for_commit->super_roots + next_backup; 1783 1784 /* 1785 * make sure all of our padding and empty slots get zero filled 1786 * regardless of which ones we use today 1787 */ 1788 memset(root_backup, 0, sizeof(*root_backup)); 1789 1790 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1791 1792 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1793 btrfs_set_backup_tree_root_gen(root_backup, 1794 btrfs_header_generation(info->tree_root->node)); 1795 1796 btrfs_set_backup_tree_root_level(root_backup, 1797 btrfs_header_level(info->tree_root->node)); 1798 1799 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1800 btrfs_set_backup_chunk_root_gen(root_backup, 1801 btrfs_header_generation(info->chunk_root->node)); 1802 btrfs_set_backup_chunk_root_level(root_backup, 1803 btrfs_header_level(info->chunk_root->node)); 1804 1805 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1806 btrfs_set_backup_extent_root_gen(root_backup, 1807 btrfs_header_generation(info->extent_root->node)); 1808 btrfs_set_backup_extent_root_level(root_backup, 1809 btrfs_header_level(info->extent_root->node)); 1810 1811 /* 1812 * we might commit during log recovery, which happens before we set 1813 * the fs_root. Make sure it is valid before we fill it in. 1814 */ 1815 if (info->fs_root && info->fs_root->node) { 1816 btrfs_set_backup_fs_root(root_backup, 1817 info->fs_root->node->start); 1818 btrfs_set_backup_fs_root_gen(root_backup, 1819 btrfs_header_generation(info->fs_root->node)); 1820 btrfs_set_backup_fs_root_level(root_backup, 1821 btrfs_header_level(info->fs_root->node)); 1822 } 1823 1824 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1825 btrfs_set_backup_dev_root_gen(root_backup, 1826 btrfs_header_generation(info->dev_root->node)); 1827 btrfs_set_backup_dev_root_level(root_backup, 1828 btrfs_header_level(info->dev_root->node)); 1829 1830 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1831 btrfs_set_backup_csum_root_gen(root_backup, 1832 btrfs_header_generation(info->csum_root->node)); 1833 btrfs_set_backup_csum_root_level(root_backup, 1834 btrfs_header_level(info->csum_root->node)); 1835 1836 btrfs_set_backup_total_bytes(root_backup, 1837 btrfs_super_total_bytes(info->super_copy)); 1838 btrfs_set_backup_bytes_used(root_backup, 1839 btrfs_super_bytes_used(info->super_copy)); 1840 btrfs_set_backup_num_devices(root_backup, 1841 btrfs_super_num_devices(info->super_copy)); 1842 1843 /* 1844 * if we don't copy this out to the super_copy, it won't get remembered 1845 * for the next commit 1846 */ 1847 memcpy(&info->super_copy->super_roots, 1848 &info->super_for_commit->super_roots, 1849 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1850 } 1851 1852 /* 1853 * this copies info out of the root backup array and back into 1854 * the in-memory super block. It is meant to help iterate through 1855 * the array, so you send it the number of backups you've already 1856 * tried and the last backup index you used. 1857 * 1858 * this returns -1 when it has tried all the backups 1859 */ 1860 static noinline int next_root_backup(struct btrfs_fs_info *info, 1861 struct btrfs_super_block *super, 1862 int *num_backups_tried, int *backup_index) 1863 { 1864 struct btrfs_root_backup *root_backup; 1865 int newest = *backup_index; 1866 1867 if (*num_backups_tried == 0) { 1868 u64 gen = btrfs_super_generation(super); 1869 1870 newest = find_newest_super_backup(info, gen); 1871 if (newest == -1) 1872 return -1; 1873 1874 *backup_index = newest; 1875 *num_backups_tried = 1; 1876 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 1877 /* we've tried all the backups, all done */ 1878 return -1; 1879 } else { 1880 /* jump to the next oldest backup */ 1881 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 1882 BTRFS_NUM_BACKUP_ROOTS; 1883 *backup_index = newest; 1884 *num_backups_tried += 1; 1885 } 1886 root_backup = super->super_roots + newest; 1887 1888 btrfs_set_super_generation(super, 1889 btrfs_backup_tree_root_gen(root_backup)); 1890 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1891 btrfs_set_super_root_level(super, 1892 btrfs_backup_tree_root_level(root_backup)); 1893 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1894 1895 /* 1896 * fixme: the total bytes and num_devices need to match or we should 1897 * need a fsck 1898 */ 1899 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1900 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1901 return 0; 1902 } 1903 1904 /* helper to cleanup tree roots */ 1905 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 1906 { 1907 free_extent_buffer(info->tree_root->node); 1908 free_extent_buffer(info->tree_root->commit_root); 1909 free_extent_buffer(info->dev_root->node); 1910 free_extent_buffer(info->dev_root->commit_root); 1911 free_extent_buffer(info->extent_root->node); 1912 free_extent_buffer(info->extent_root->commit_root); 1913 free_extent_buffer(info->csum_root->node); 1914 free_extent_buffer(info->csum_root->commit_root); 1915 if (info->quota_root) { 1916 free_extent_buffer(info->quota_root->node); 1917 free_extent_buffer(info->quota_root->commit_root); 1918 } 1919 1920 info->tree_root->node = NULL; 1921 info->tree_root->commit_root = NULL; 1922 info->dev_root->node = NULL; 1923 info->dev_root->commit_root = NULL; 1924 info->extent_root->node = NULL; 1925 info->extent_root->commit_root = NULL; 1926 info->csum_root->node = NULL; 1927 info->csum_root->commit_root = NULL; 1928 if (info->quota_root) { 1929 info->quota_root->node = NULL; 1930 info->quota_root->commit_root = NULL; 1931 } 1932 1933 if (chunk_root) { 1934 free_extent_buffer(info->chunk_root->node); 1935 free_extent_buffer(info->chunk_root->commit_root); 1936 info->chunk_root->node = NULL; 1937 info->chunk_root->commit_root = NULL; 1938 } 1939 } 1940 1941 1942 int open_ctree(struct super_block *sb, 1943 struct btrfs_fs_devices *fs_devices, 1944 char *options) 1945 { 1946 u32 sectorsize; 1947 u32 nodesize; 1948 u32 leafsize; 1949 u32 blocksize; 1950 u32 stripesize; 1951 u64 generation; 1952 u64 features; 1953 struct btrfs_key location; 1954 struct buffer_head *bh; 1955 struct btrfs_super_block *disk_super; 1956 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1957 struct btrfs_root *tree_root; 1958 struct btrfs_root *extent_root; 1959 struct btrfs_root *csum_root; 1960 struct btrfs_root *chunk_root; 1961 struct btrfs_root *dev_root; 1962 struct btrfs_root *quota_root; 1963 struct btrfs_root *log_tree_root; 1964 int ret; 1965 int err = -EINVAL; 1966 int num_backups_tried = 0; 1967 int backup_index = 0; 1968 1969 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info); 1970 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info); 1971 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info); 1972 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info); 1973 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info); 1974 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info); 1975 1976 if (!tree_root || !extent_root || !csum_root || 1977 !chunk_root || !dev_root || !quota_root) { 1978 err = -ENOMEM; 1979 goto fail; 1980 } 1981 1982 ret = init_srcu_struct(&fs_info->subvol_srcu); 1983 if (ret) { 1984 err = ret; 1985 goto fail; 1986 } 1987 1988 ret = setup_bdi(fs_info, &fs_info->bdi); 1989 if (ret) { 1990 err = ret; 1991 goto fail_srcu; 1992 } 1993 1994 fs_info->btree_inode = new_inode(sb); 1995 if (!fs_info->btree_inode) { 1996 err = -ENOMEM; 1997 goto fail_bdi; 1998 } 1999 2000 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2001 2002 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2003 INIT_LIST_HEAD(&fs_info->trans_list); 2004 INIT_LIST_HEAD(&fs_info->dead_roots); 2005 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2006 INIT_LIST_HEAD(&fs_info->delalloc_inodes); 2007 INIT_LIST_HEAD(&fs_info->ordered_operations); 2008 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2009 spin_lock_init(&fs_info->delalloc_lock); 2010 spin_lock_init(&fs_info->trans_lock); 2011 spin_lock_init(&fs_info->fs_roots_radix_lock); 2012 spin_lock_init(&fs_info->delayed_iput_lock); 2013 spin_lock_init(&fs_info->defrag_inodes_lock); 2014 spin_lock_init(&fs_info->free_chunk_lock); 2015 spin_lock_init(&fs_info->tree_mod_seq_lock); 2016 rwlock_init(&fs_info->tree_mod_log_lock); 2017 mutex_init(&fs_info->reloc_mutex); 2018 2019 init_completion(&fs_info->kobj_unregister); 2020 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2021 INIT_LIST_HEAD(&fs_info->space_info); 2022 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2023 btrfs_mapping_init(&fs_info->mapping_tree); 2024 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2025 BTRFS_BLOCK_RSV_GLOBAL); 2026 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, 2027 BTRFS_BLOCK_RSV_DELALLOC); 2028 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2029 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2030 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2031 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2032 BTRFS_BLOCK_RSV_DELOPS); 2033 atomic_set(&fs_info->nr_async_submits, 0); 2034 atomic_set(&fs_info->async_delalloc_pages, 0); 2035 atomic_set(&fs_info->async_submit_draining, 0); 2036 atomic_set(&fs_info->nr_async_bios, 0); 2037 atomic_set(&fs_info->defrag_running, 0); 2038 atomic_set(&fs_info->tree_mod_seq, 0); 2039 fs_info->sb = sb; 2040 fs_info->max_inline = 8192 * 1024; 2041 fs_info->metadata_ratio = 0; 2042 fs_info->defrag_inodes = RB_ROOT; 2043 fs_info->trans_no_join = 0; 2044 fs_info->free_chunk_space = 0; 2045 fs_info->tree_mod_log = RB_ROOT; 2046 2047 /* readahead state */ 2048 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT); 2049 spin_lock_init(&fs_info->reada_lock); 2050 2051 fs_info->thread_pool_size = min_t(unsigned long, 2052 num_online_cpus() + 2, 8); 2053 2054 INIT_LIST_HEAD(&fs_info->ordered_extents); 2055 spin_lock_init(&fs_info->ordered_extent_lock); 2056 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2057 GFP_NOFS); 2058 if (!fs_info->delayed_root) { 2059 err = -ENOMEM; 2060 goto fail_iput; 2061 } 2062 btrfs_init_delayed_root(fs_info->delayed_root); 2063 2064 mutex_init(&fs_info->scrub_lock); 2065 atomic_set(&fs_info->scrubs_running, 0); 2066 atomic_set(&fs_info->scrub_pause_req, 0); 2067 atomic_set(&fs_info->scrubs_paused, 0); 2068 atomic_set(&fs_info->scrub_cancel_req, 0); 2069 init_waitqueue_head(&fs_info->scrub_pause_wait); 2070 init_rwsem(&fs_info->scrub_super_lock); 2071 fs_info->scrub_workers_refcnt = 0; 2072 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2073 fs_info->check_integrity_print_mask = 0; 2074 #endif 2075 2076 spin_lock_init(&fs_info->balance_lock); 2077 mutex_init(&fs_info->balance_mutex); 2078 atomic_set(&fs_info->balance_running, 0); 2079 atomic_set(&fs_info->balance_pause_req, 0); 2080 atomic_set(&fs_info->balance_cancel_req, 0); 2081 fs_info->balance_ctl = NULL; 2082 init_waitqueue_head(&fs_info->balance_wait_q); 2083 2084 sb->s_blocksize = 4096; 2085 sb->s_blocksize_bits = blksize_bits(4096); 2086 sb->s_bdi = &fs_info->bdi; 2087 2088 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2089 set_nlink(fs_info->btree_inode, 1); 2090 /* 2091 * we set the i_size on the btree inode to the max possible int. 2092 * the real end of the address space is determined by all of 2093 * the devices in the system 2094 */ 2095 fs_info->btree_inode->i_size = OFFSET_MAX; 2096 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 2097 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 2098 2099 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2100 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2101 fs_info->btree_inode->i_mapping); 2102 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0; 2103 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2104 2105 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2106 2107 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2108 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2109 sizeof(struct btrfs_key)); 2110 set_bit(BTRFS_INODE_DUMMY, 2111 &BTRFS_I(fs_info->btree_inode)->runtime_flags); 2112 insert_inode_hash(fs_info->btree_inode); 2113 2114 spin_lock_init(&fs_info->block_group_cache_lock); 2115 fs_info->block_group_cache_tree = RB_ROOT; 2116 2117 extent_io_tree_init(&fs_info->freed_extents[0], 2118 fs_info->btree_inode->i_mapping); 2119 extent_io_tree_init(&fs_info->freed_extents[1], 2120 fs_info->btree_inode->i_mapping); 2121 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2122 fs_info->do_barriers = 1; 2123 2124 2125 mutex_init(&fs_info->ordered_operations_mutex); 2126 mutex_init(&fs_info->tree_log_mutex); 2127 mutex_init(&fs_info->chunk_mutex); 2128 mutex_init(&fs_info->transaction_kthread_mutex); 2129 mutex_init(&fs_info->cleaner_mutex); 2130 mutex_init(&fs_info->volume_mutex); 2131 init_rwsem(&fs_info->extent_commit_sem); 2132 init_rwsem(&fs_info->cleanup_work_sem); 2133 init_rwsem(&fs_info->subvol_sem); 2134 2135 spin_lock_init(&fs_info->qgroup_lock); 2136 fs_info->qgroup_tree = RB_ROOT; 2137 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2138 fs_info->qgroup_seq = 1; 2139 fs_info->quota_enabled = 0; 2140 fs_info->pending_quota_state = 0; 2141 2142 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2143 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2144 2145 init_waitqueue_head(&fs_info->transaction_throttle); 2146 init_waitqueue_head(&fs_info->transaction_wait); 2147 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2148 init_waitqueue_head(&fs_info->async_submit_wait); 2149 2150 __setup_root(4096, 4096, 4096, 4096, tree_root, 2151 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2152 2153 invalidate_bdev(fs_devices->latest_bdev); 2154 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2155 if (!bh) { 2156 err = -EINVAL; 2157 goto fail_alloc; 2158 } 2159 2160 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2161 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2162 sizeof(*fs_info->super_for_commit)); 2163 brelse(bh); 2164 2165 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2166 2167 disk_super = fs_info->super_copy; 2168 if (!btrfs_super_root(disk_super)) 2169 goto fail_alloc; 2170 2171 /* check FS state, whether FS is broken. */ 2172 fs_info->fs_state |= btrfs_super_flags(disk_super); 2173 2174 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2175 if (ret) { 2176 printk(KERN_ERR "btrfs: superblock contains fatal errors\n"); 2177 err = ret; 2178 goto fail_alloc; 2179 } 2180 2181 /* 2182 * run through our array of backup supers and setup 2183 * our ring pointer to the oldest one 2184 */ 2185 generation = btrfs_super_generation(disk_super); 2186 find_oldest_super_backup(fs_info, generation); 2187 2188 /* 2189 * In the long term, we'll store the compression type in the super 2190 * block, and it'll be used for per file compression control. 2191 */ 2192 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2193 2194 ret = btrfs_parse_options(tree_root, options); 2195 if (ret) { 2196 err = ret; 2197 goto fail_alloc; 2198 } 2199 2200 features = btrfs_super_incompat_flags(disk_super) & 2201 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2202 if (features) { 2203 printk(KERN_ERR "BTRFS: couldn't mount because of " 2204 "unsupported optional features (%Lx).\n", 2205 (unsigned long long)features); 2206 err = -EINVAL; 2207 goto fail_alloc; 2208 } 2209 2210 if (btrfs_super_leafsize(disk_super) != 2211 btrfs_super_nodesize(disk_super)) { 2212 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2213 "blocksizes don't match. node %d leaf %d\n", 2214 btrfs_super_nodesize(disk_super), 2215 btrfs_super_leafsize(disk_super)); 2216 err = -EINVAL; 2217 goto fail_alloc; 2218 } 2219 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) { 2220 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2221 "blocksize (%d) was too large\n", 2222 btrfs_super_leafsize(disk_super)); 2223 err = -EINVAL; 2224 goto fail_alloc; 2225 } 2226 2227 features = btrfs_super_incompat_flags(disk_super); 2228 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2229 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 2230 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2231 2232 /* 2233 * flag our filesystem as having big metadata blocks if 2234 * they are bigger than the page size 2235 */ 2236 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) { 2237 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2238 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n"); 2239 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2240 } 2241 2242 nodesize = btrfs_super_nodesize(disk_super); 2243 leafsize = btrfs_super_leafsize(disk_super); 2244 sectorsize = btrfs_super_sectorsize(disk_super); 2245 stripesize = btrfs_super_stripesize(disk_super); 2246 2247 /* 2248 * mixed block groups end up with duplicate but slightly offset 2249 * extent buffers for the same range. It leads to corruptions 2250 */ 2251 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2252 (sectorsize != leafsize)) { 2253 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes " 2254 "are not allowed for mixed block groups on %s\n", 2255 sb->s_id); 2256 goto fail_alloc; 2257 } 2258 2259 btrfs_set_super_incompat_flags(disk_super, features); 2260 2261 features = btrfs_super_compat_ro_flags(disk_super) & 2262 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2263 if (!(sb->s_flags & MS_RDONLY) && features) { 2264 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 2265 "unsupported option features (%Lx).\n", 2266 (unsigned long long)features); 2267 err = -EINVAL; 2268 goto fail_alloc; 2269 } 2270 2271 btrfs_init_workers(&fs_info->generic_worker, 2272 "genwork", 1, NULL); 2273 2274 btrfs_init_workers(&fs_info->workers, "worker", 2275 fs_info->thread_pool_size, 2276 &fs_info->generic_worker); 2277 2278 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", 2279 fs_info->thread_pool_size, 2280 &fs_info->generic_worker); 2281 2282 btrfs_init_workers(&fs_info->submit_workers, "submit", 2283 min_t(u64, fs_devices->num_devices, 2284 fs_info->thread_pool_size), 2285 &fs_info->generic_worker); 2286 2287 btrfs_init_workers(&fs_info->caching_workers, "cache", 2288 2, &fs_info->generic_worker); 2289 2290 /* a higher idle thresh on the submit workers makes it much more 2291 * likely that bios will be send down in a sane order to the 2292 * devices 2293 */ 2294 fs_info->submit_workers.idle_thresh = 64; 2295 2296 fs_info->workers.idle_thresh = 16; 2297 fs_info->workers.ordered = 1; 2298 2299 fs_info->delalloc_workers.idle_thresh = 2; 2300 fs_info->delalloc_workers.ordered = 1; 2301 2302 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1, 2303 &fs_info->generic_worker); 2304 btrfs_init_workers(&fs_info->endio_workers, "endio", 2305 fs_info->thread_pool_size, 2306 &fs_info->generic_worker); 2307 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", 2308 fs_info->thread_pool_size, 2309 &fs_info->generic_worker); 2310 btrfs_init_workers(&fs_info->endio_meta_write_workers, 2311 "endio-meta-write", fs_info->thread_pool_size, 2312 &fs_info->generic_worker); 2313 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", 2314 fs_info->thread_pool_size, 2315 &fs_info->generic_worker); 2316 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write", 2317 1, &fs_info->generic_worker); 2318 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta", 2319 fs_info->thread_pool_size, 2320 &fs_info->generic_worker); 2321 btrfs_init_workers(&fs_info->readahead_workers, "readahead", 2322 fs_info->thread_pool_size, 2323 &fs_info->generic_worker); 2324 2325 /* 2326 * endios are largely parallel and should have a very 2327 * low idle thresh 2328 */ 2329 fs_info->endio_workers.idle_thresh = 4; 2330 fs_info->endio_meta_workers.idle_thresh = 4; 2331 2332 fs_info->endio_write_workers.idle_thresh = 2; 2333 fs_info->endio_meta_write_workers.idle_thresh = 2; 2334 fs_info->readahead_workers.idle_thresh = 2; 2335 2336 /* 2337 * btrfs_start_workers can really only fail because of ENOMEM so just 2338 * return -ENOMEM if any of these fail. 2339 */ 2340 ret = btrfs_start_workers(&fs_info->workers); 2341 ret |= btrfs_start_workers(&fs_info->generic_worker); 2342 ret |= btrfs_start_workers(&fs_info->submit_workers); 2343 ret |= btrfs_start_workers(&fs_info->delalloc_workers); 2344 ret |= btrfs_start_workers(&fs_info->fixup_workers); 2345 ret |= btrfs_start_workers(&fs_info->endio_workers); 2346 ret |= btrfs_start_workers(&fs_info->endio_meta_workers); 2347 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers); 2348 ret |= btrfs_start_workers(&fs_info->endio_write_workers); 2349 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker); 2350 ret |= btrfs_start_workers(&fs_info->delayed_workers); 2351 ret |= btrfs_start_workers(&fs_info->caching_workers); 2352 ret |= btrfs_start_workers(&fs_info->readahead_workers); 2353 if (ret) { 2354 err = -ENOMEM; 2355 goto fail_sb_buffer; 2356 } 2357 2358 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2359 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2360 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 2361 2362 tree_root->nodesize = nodesize; 2363 tree_root->leafsize = leafsize; 2364 tree_root->sectorsize = sectorsize; 2365 tree_root->stripesize = stripesize; 2366 2367 sb->s_blocksize = sectorsize; 2368 sb->s_blocksize_bits = blksize_bits(sectorsize); 2369 2370 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, 2371 sizeof(disk_super->magic))) { 2372 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); 2373 goto fail_sb_buffer; 2374 } 2375 2376 if (sectorsize != PAGE_SIZE) { 2377 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) " 2378 "found on %s\n", (unsigned long)sectorsize, sb->s_id); 2379 goto fail_sb_buffer; 2380 } 2381 2382 mutex_lock(&fs_info->chunk_mutex); 2383 ret = btrfs_read_sys_array(tree_root); 2384 mutex_unlock(&fs_info->chunk_mutex); 2385 if (ret) { 2386 printk(KERN_WARNING "btrfs: failed to read the system " 2387 "array on %s\n", sb->s_id); 2388 goto fail_sb_buffer; 2389 } 2390 2391 blocksize = btrfs_level_size(tree_root, 2392 btrfs_super_chunk_root_level(disk_super)); 2393 generation = btrfs_super_chunk_root_generation(disk_super); 2394 2395 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2396 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2397 2398 chunk_root->node = read_tree_block(chunk_root, 2399 btrfs_super_chunk_root(disk_super), 2400 blocksize, generation); 2401 BUG_ON(!chunk_root->node); /* -ENOMEM */ 2402 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { 2403 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n", 2404 sb->s_id); 2405 goto fail_tree_roots; 2406 } 2407 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2408 chunk_root->commit_root = btrfs_root_node(chunk_root); 2409 2410 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2411 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), 2412 BTRFS_UUID_SIZE); 2413 2414 ret = btrfs_read_chunk_tree(chunk_root); 2415 if (ret) { 2416 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", 2417 sb->s_id); 2418 goto fail_tree_roots; 2419 } 2420 2421 btrfs_close_extra_devices(fs_devices); 2422 2423 if (!fs_devices->latest_bdev) { 2424 printk(KERN_CRIT "btrfs: failed to read devices on %s\n", 2425 sb->s_id); 2426 goto fail_tree_roots; 2427 } 2428 2429 retry_root_backup: 2430 blocksize = btrfs_level_size(tree_root, 2431 btrfs_super_root_level(disk_super)); 2432 generation = btrfs_super_generation(disk_super); 2433 2434 tree_root->node = read_tree_block(tree_root, 2435 btrfs_super_root(disk_super), 2436 blocksize, generation); 2437 if (!tree_root->node || 2438 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { 2439 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n", 2440 sb->s_id); 2441 2442 goto recovery_tree_root; 2443 } 2444 2445 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2446 tree_root->commit_root = btrfs_root_node(tree_root); 2447 2448 ret = find_and_setup_root(tree_root, fs_info, 2449 BTRFS_EXTENT_TREE_OBJECTID, extent_root); 2450 if (ret) 2451 goto recovery_tree_root; 2452 extent_root->track_dirty = 1; 2453 2454 ret = find_and_setup_root(tree_root, fs_info, 2455 BTRFS_DEV_TREE_OBJECTID, dev_root); 2456 if (ret) 2457 goto recovery_tree_root; 2458 dev_root->track_dirty = 1; 2459 2460 ret = find_and_setup_root(tree_root, fs_info, 2461 BTRFS_CSUM_TREE_OBJECTID, csum_root); 2462 if (ret) 2463 goto recovery_tree_root; 2464 csum_root->track_dirty = 1; 2465 2466 ret = find_and_setup_root(tree_root, fs_info, 2467 BTRFS_QUOTA_TREE_OBJECTID, quota_root); 2468 if (ret) { 2469 kfree(quota_root); 2470 quota_root = fs_info->quota_root = NULL; 2471 } else { 2472 quota_root->track_dirty = 1; 2473 fs_info->quota_enabled = 1; 2474 fs_info->pending_quota_state = 1; 2475 } 2476 2477 fs_info->generation = generation; 2478 fs_info->last_trans_committed = generation; 2479 2480 ret = btrfs_recover_balance(fs_info); 2481 if (ret) { 2482 printk(KERN_WARNING "btrfs: failed to recover balance\n"); 2483 goto fail_block_groups; 2484 } 2485 2486 ret = btrfs_init_dev_stats(fs_info); 2487 if (ret) { 2488 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n", 2489 ret); 2490 goto fail_block_groups; 2491 } 2492 2493 ret = btrfs_init_space_info(fs_info); 2494 if (ret) { 2495 printk(KERN_ERR "Failed to initial space info: %d\n", ret); 2496 goto fail_block_groups; 2497 } 2498 2499 ret = btrfs_read_block_groups(extent_root); 2500 if (ret) { 2501 printk(KERN_ERR "Failed to read block groups: %d\n", ret); 2502 goto fail_block_groups; 2503 } 2504 fs_info->num_tolerated_disk_barrier_failures = 2505 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 2506 2507 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2508 "btrfs-cleaner"); 2509 if (IS_ERR(fs_info->cleaner_kthread)) 2510 goto fail_block_groups; 2511 2512 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2513 tree_root, 2514 "btrfs-transaction"); 2515 if (IS_ERR(fs_info->transaction_kthread)) 2516 goto fail_cleaner; 2517 2518 if (!btrfs_test_opt(tree_root, SSD) && 2519 !btrfs_test_opt(tree_root, NOSSD) && 2520 !fs_info->fs_devices->rotating) { 2521 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD " 2522 "mode\n"); 2523 btrfs_set_opt(fs_info->mount_opt, SSD); 2524 } 2525 2526 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2527 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) { 2528 ret = btrfsic_mount(tree_root, fs_devices, 2529 btrfs_test_opt(tree_root, 2530 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 2531 1 : 0, 2532 fs_info->check_integrity_print_mask); 2533 if (ret) 2534 printk(KERN_WARNING "btrfs: failed to initialize" 2535 " integrity check module %s\n", sb->s_id); 2536 } 2537 #endif 2538 ret = btrfs_read_qgroup_config(fs_info); 2539 if (ret) 2540 goto fail_trans_kthread; 2541 2542 /* do not make disk changes in broken FS */ 2543 if (btrfs_super_log_root(disk_super) != 0) { 2544 u64 bytenr = btrfs_super_log_root(disk_super); 2545 2546 if (fs_devices->rw_devices == 0) { 2547 printk(KERN_WARNING "Btrfs log replay required " 2548 "on RO media\n"); 2549 err = -EIO; 2550 goto fail_qgroup; 2551 } 2552 blocksize = 2553 btrfs_level_size(tree_root, 2554 btrfs_super_log_root_level(disk_super)); 2555 2556 log_tree_root = btrfs_alloc_root(fs_info); 2557 if (!log_tree_root) { 2558 err = -ENOMEM; 2559 goto fail_qgroup; 2560 } 2561 2562 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2563 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2564 2565 log_tree_root->node = read_tree_block(tree_root, bytenr, 2566 blocksize, 2567 generation + 1); 2568 /* returns with log_tree_root freed on success */ 2569 ret = btrfs_recover_log_trees(log_tree_root); 2570 if (ret) { 2571 btrfs_error(tree_root->fs_info, ret, 2572 "Failed to recover log tree"); 2573 free_extent_buffer(log_tree_root->node); 2574 kfree(log_tree_root); 2575 goto fail_trans_kthread; 2576 } 2577 2578 if (sb->s_flags & MS_RDONLY) { 2579 ret = btrfs_commit_super(tree_root); 2580 if (ret) 2581 goto fail_trans_kthread; 2582 } 2583 } 2584 2585 ret = btrfs_find_orphan_roots(tree_root); 2586 if (ret) 2587 goto fail_trans_kthread; 2588 2589 if (!(sb->s_flags & MS_RDONLY)) { 2590 ret = btrfs_cleanup_fs_roots(fs_info); 2591 if (ret) 2592 goto fail_trans_kthread; 2593 2594 ret = btrfs_recover_relocation(tree_root); 2595 if (ret < 0) { 2596 printk(KERN_WARNING 2597 "btrfs: failed to recover relocation\n"); 2598 err = -EINVAL; 2599 goto fail_qgroup; 2600 } 2601 } 2602 2603 location.objectid = BTRFS_FS_TREE_OBJECTID; 2604 location.type = BTRFS_ROOT_ITEM_KEY; 2605 location.offset = (u64)-1; 2606 2607 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 2608 if (!fs_info->fs_root) 2609 goto fail_qgroup; 2610 if (IS_ERR(fs_info->fs_root)) { 2611 err = PTR_ERR(fs_info->fs_root); 2612 goto fail_qgroup; 2613 } 2614 2615 if (sb->s_flags & MS_RDONLY) 2616 return 0; 2617 2618 down_read(&fs_info->cleanup_work_sem); 2619 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 2620 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 2621 up_read(&fs_info->cleanup_work_sem); 2622 close_ctree(tree_root); 2623 return ret; 2624 } 2625 up_read(&fs_info->cleanup_work_sem); 2626 2627 ret = btrfs_resume_balance_async(fs_info); 2628 if (ret) { 2629 printk(KERN_WARNING "btrfs: failed to resume balance\n"); 2630 close_ctree(tree_root); 2631 return ret; 2632 } 2633 2634 return 0; 2635 2636 fail_qgroup: 2637 btrfs_free_qgroup_config(fs_info); 2638 fail_trans_kthread: 2639 kthread_stop(fs_info->transaction_kthread); 2640 fail_cleaner: 2641 kthread_stop(fs_info->cleaner_kthread); 2642 2643 /* 2644 * make sure we're done with the btree inode before we stop our 2645 * kthreads 2646 */ 2647 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 2648 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2649 2650 fail_block_groups: 2651 btrfs_free_block_groups(fs_info); 2652 2653 fail_tree_roots: 2654 free_root_pointers(fs_info, 1); 2655 2656 fail_sb_buffer: 2657 btrfs_stop_workers(&fs_info->generic_worker); 2658 btrfs_stop_workers(&fs_info->readahead_workers); 2659 btrfs_stop_workers(&fs_info->fixup_workers); 2660 btrfs_stop_workers(&fs_info->delalloc_workers); 2661 btrfs_stop_workers(&fs_info->workers); 2662 btrfs_stop_workers(&fs_info->endio_workers); 2663 btrfs_stop_workers(&fs_info->endio_meta_workers); 2664 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2665 btrfs_stop_workers(&fs_info->endio_write_workers); 2666 btrfs_stop_workers(&fs_info->endio_freespace_worker); 2667 btrfs_stop_workers(&fs_info->submit_workers); 2668 btrfs_stop_workers(&fs_info->delayed_workers); 2669 btrfs_stop_workers(&fs_info->caching_workers); 2670 fail_alloc: 2671 fail_iput: 2672 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2673 2674 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2675 iput(fs_info->btree_inode); 2676 fail_bdi: 2677 bdi_destroy(&fs_info->bdi); 2678 fail_srcu: 2679 cleanup_srcu_struct(&fs_info->subvol_srcu); 2680 fail: 2681 btrfs_close_devices(fs_info->fs_devices); 2682 return err; 2683 2684 recovery_tree_root: 2685 if (!btrfs_test_opt(tree_root, RECOVERY)) 2686 goto fail_tree_roots; 2687 2688 free_root_pointers(fs_info, 0); 2689 2690 /* don't use the log in recovery mode, it won't be valid */ 2691 btrfs_set_super_log_root(disk_super, 0); 2692 2693 /* we can't trust the free space cache either */ 2694 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2695 2696 ret = next_root_backup(fs_info, fs_info->super_copy, 2697 &num_backups_tried, &backup_index); 2698 if (ret == -1) 2699 goto fail_block_groups; 2700 goto retry_root_backup; 2701 } 2702 2703 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 2704 { 2705 if (uptodate) { 2706 set_buffer_uptodate(bh); 2707 } else { 2708 struct btrfs_device *device = (struct btrfs_device *) 2709 bh->b_private; 2710 2711 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to " 2712 "I/O error on %s\n", 2713 rcu_str_deref(device->name)); 2714 /* note, we dont' set_buffer_write_io_error because we have 2715 * our own ways of dealing with the IO errors 2716 */ 2717 clear_buffer_uptodate(bh); 2718 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 2719 } 2720 unlock_buffer(bh); 2721 put_bh(bh); 2722 } 2723 2724 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 2725 { 2726 struct buffer_head *bh; 2727 struct buffer_head *latest = NULL; 2728 struct btrfs_super_block *super; 2729 int i; 2730 u64 transid = 0; 2731 u64 bytenr; 2732 2733 /* we would like to check all the supers, but that would make 2734 * a btrfs mount succeed after a mkfs from a different FS. 2735 * So, we need to add a special mount option to scan for 2736 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 2737 */ 2738 for (i = 0; i < 1; i++) { 2739 bytenr = btrfs_sb_offset(i); 2740 if (bytenr + 4096 >= i_size_read(bdev->bd_inode)) 2741 break; 2742 bh = __bread(bdev, bytenr / 4096, 4096); 2743 if (!bh) 2744 continue; 2745 2746 super = (struct btrfs_super_block *)bh->b_data; 2747 if (btrfs_super_bytenr(super) != bytenr || 2748 strncmp((char *)(&super->magic), BTRFS_MAGIC, 2749 sizeof(super->magic))) { 2750 brelse(bh); 2751 continue; 2752 } 2753 2754 if (!latest || btrfs_super_generation(super) > transid) { 2755 brelse(latest); 2756 latest = bh; 2757 transid = btrfs_super_generation(super); 2758 } else { 2759 brelse(bh); 2760 } 2761 } 2762 return latest; 2763 } 2764 2765 /* 2766 * this should be called twice, once with wait == 0 and 2767 * once with wait == 1. When wait == 0 is done, all the buffer heads 2768 * we write are pinned. 2769 * 2770 * They are released when wait == 1 is done. 2771 * max_mirrors must be the same for both runs, and it indicates how 2772 * many supers on this one device should be written. 2773 * 2774 * max_mirrors == 0 means to write them all. 2775 */ 2776 static int write_dev_supers(struct btrfs_device *device, 2777 struct btrfs_super_block *sb, 2778 int do_barriers, int wait, int max_mirrors) 2779 { 2780 struct buffer_head *bh; 2781 int i; 2782 int ret; 2783 int errors = 0; 2784 u32 crc; 2785 u64 bytenr; 2786 2787 if (max_mirrors == 0) 2788 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 2789 2790 for (i = 0; i < max_mirrors; i++) { 2791 bytenr = btrfs_sb_offset(i); 2792 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 2793 break; 2794 2795 if (wait) { 2796 bh = __find_get_block(device->bdev, bytenr / 4096, 2797 BTRFS_SUPER_INFO_SIZE); 2798 BUG_ON(!bh); 2799 wait_on_buffer(bh); 2800 if (!buffer_uptodate(bh)) 2801 errors++; 2802 2803 /* drop our reference */ 2804 brelse(bh); 2805 2806 /* drop the reference from the wait == 0 run */ 2807 brelse(bh); 2808 continue; 2809 } else { 2810 btrfs_set_super_bytenr(sb, bytenr); 2811 2812 crc = ~(u32)0; 2813 crc = btrfs_csum_data(NULL, (char *)sb + 2814 BTRFS_CSUM_SIZE, crc, 2815 BTRFS_SUPER_INFO_SIZE - 2816 BTRFS_CSUM_SIZE); 2817 btrfs_csum_final(crc, sb->csum); 2818 2819 /* 2820 * one reference for us, and we leave it for the 2821 * caller 2822 */ 2823 bh = __getblk(device->bdev, bytenr / 4096, 2824 BTRFS_SUPER_INFO_SIZE); 2825 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 2826 2827 /* one reference for submit_bh */ 2828 get_bh(bh); 2829 2830 set_buffer_uptodate(bh); 2831 lock_buffer(bh); 2832 bh->b_end_io = btrfs_end_buffer_write_sync; 2833 bh->b_private = device; 2834 } 2835 2836 /* 2837 * we fua the first super. The others we allow 2838 * to go down lazy. 2839 */ 2840 ret = btrfsic_submit_bh(WRITE_FUA, bh); 2841 if (ret) 2842 errors++; 2843 } 2844 return errors < i ? 0 : -1; 2845 } 2846 2847 /* 2848 * endio for the write_dev_flush, this will wake anyone waiting 2849 * for the barrier when it is done 2850 */ 2851 static void btrfs_end_empty_barrier(struct bio *bio, int err) 2852 { 2853 if (err) { 2854 if (err == -EOPNOTSUPP) 2855 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2856 clear_bit(BIO_UPTODATE, &bio->bi_flags); 2857 } 2858 if (bio->bi_private) 2859 complete(bio->bi_private); 2860 bio_put(bio); 2861 } 2862 2863 /* 2864 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 2865 * sent down. With wait == 1, it waits for the previous flush. 2866 * 2867 * any device where the flush fails with eopnotsupp are flagged as not-barrier 2868 * capable 2869 */ 2870 static int write_dev_flush(struct btrfs_device *device, int wait) 2871 { 2872 struct bio *bio; 2873 int ret = 0; 2874 2875 if (device->nobarriers) 2876 return 0; 2877 2878 if (wait) { 2879 bio = device->flush_bio; 2880 if (!bio) 2881 return 0; 2882 2883 wait_for_completion(&device->flush_wait); 2884 2885 if (bio_flagged(bio, BIO_EOPNOTSUPP)) { 2886 printk_in_rcu("btrfs: disabling barriers on dev %s\n", 2887 rcu_str_deref(device->name)); 2888 device->nobarriers = 1; 2889 } else if (!bio_flagged(bio, BIO_UPTODATE)) { 2890 ret = -EIO; 2891 btrfs_dev_stat_inc_and_print(device, 2892 BTRFS_DEV_STAT_FLUSH_ERRS); 2893 } 2894 2895 /* drop the reference from the wait == 0 run */ 2896 bio_put(bio); 2897 device->flush_bio = NULL; 2898 2899 return ret; 2900 } 2901 2902 /* 2903 * one reference for us, and we leave it for the 2904 * caller 2905 */ 2906 device->flush_bio = NULL; 2907 bio = bio_alloc(GFP_NOFS, 0); 2908 if (!bio) 2909 return -ENOMEM; 2910 2911 bio->bi_end_io = btrfs_end_empty_barrier; 2912 bio->bi_bdev = device->bdev; 2913 init_completion(&device->flush_wait); 2914 bio->bi_private = &device->flush_wait; 2915 device->flush_bio = bio; 2916 2917 bio_get(bio); 2918 btrfsic_submit_bio(WRITE_FLUSH, bio); 2919 2920 return 0; 2921 } 2922 2923 /* 2924 * send an empty flush down to each device in parallel, 2925 * then wait for them 2926 */ 2927 static int barrier_all_devices(struct btrfs_fs_info *info) 2928 { 2929 struct list_head *head; 2930 struct btrfs_device *dev; 2931 int errors_send = 0; 2932 int errors_wait = 0; 2933 int ret; 2934 2935 /* send down all the barriers */ 2936 head = &info->fs_devices->devices; 2937 list_for_each_entry_rcu(dev, head, dev_list) { 2938 if (!dev->bdev) { 2939 errors_send++; 2940 continue; 2941 } 2942 if (!dev->in_fs_metadata || !dev->writeable) 2943 continue; 2944 2945 ret = write_dev_flush(dev, 0); 2946 if (ret) 2947 errors_send++; 2948 } 2949 2950 /* wait for all the barriers */ 2951 list_for_each_entry_rcu(dev, head, dev_list) { 2952 if (!dev->bdev) { 2953 errors_wait++; 2954 continue; 2955 } 2956 if (!dev->in_fs_metadata || !dev->writeable) 2957 continue; 2958 2959 ret = write_dev_flush(dev, 1); 2960 if (ret) 2961 errors_wait++; 2962 } 2963 if (errors_send > info->num_tolerated_disk_barrier_failures || 2964 errors_wait > info->num_tolerated_disk_barrier_failures) 2965 return -EIO; 2966 return 0; 2967 } 2968 2969 int btrfs_calc_num_tolerated_disk_barrier_failures( 2970 struct btrfs_fs_info *fs_info) 2971 { 2972 struct btrfs_ioctl_space_info space; 2973 struct btrfs_space_info *sinfo; 2974 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 2975 BTRFS_BLOCK_GROUP_SYSTEM, 2976 BTRFS_BLOCK_GROUP_METADATA, 2977 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 2978 int num_types = 4; 2979 int i; 2980 int c; 2981 int num_tolerated_disk_barrier_failures = 2982 (int)fs_info->fs_devices->num_devices; 2983 2984 for (i = 0; i < num_types; i++) { 2985 struct btrfs_space_info *tmp; 2986 2987 sinfo = NULL; 2988 rcu_read_lock(); 2989 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) { 2990 if (tmp->flags == types[i]) { 2991 sinfo = tmp; 2992 break; 2993 } 2994 } 2995 rcu_read_unlock(); 2996 2997 if (!sinfo) 2998 continue; 2999 3000 down_read(&sinfo->groups_sem); 3001 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3002 if (!list_empty(&sinfo->block_groups[c])) { 3003 u64 flags; 3004 3005 btrfs_get_block_group_info( 3006 &sinfo->block_groups[c], &space); 3007 if (space.total_bytes == 0 || 3008 space.used_bytes == 0) 3009 continue; 3010 flags = space.flags; 3011 /* 3012 * return 3013 * 0: if dup, single or RAID0 is configured for 3014 * any of metadata, system or data, else 3015 * 1: if RAID5 is configured, or if RAID1 or 3016 * RAID10 is configured and only two mirrors 3017 * are used, else 3018 * 2: if RAID6 is configured, else 3019 * num_mirrors - 1: if RAID1 or RAID10 is 3020 * configured and more than 3021 * 2 mirrors are used. 3022 */ 3023 if (num_tolerated_disk_barrier_failures > 0 && 3024 ((flags & (BTRFS_BLOCK_GROUP_DUP | 3025 BTRFS_BLOCK_GROUP_RAID0)) || 3026 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) 3027 == 0))) 3028 num_tolerated_disk_barrier_failures = 0; 3029 else if (num_tolerated_disk_barrier_failures > 1 3030 && 3031 (flags & (BTRFS_BLOCK_GROUP_RAID1 | 3032 BTRFS_BLOCK_GROUP_RAID10))) 3033 num_tolerated_disk_barrier_failures = 1; 3034 } 3035 } 3036 up_read(&sinfo->groups_sem); 3037 } 3038 3039 return num_tolerated_disk_barrier_failures; 3040 } 3041 3042 int write_all_supers(struct btrfs_root *root, int max_mirrors) 3043 { 3044 struct list_head *head; 3045 struct btrfs_device *dev; 3046 struct btrfs_super_block *sb; 3047 struct btrfs_dev_item *dev_item; 3048 int ret; 3049 int do_barriers; 3050 int max_errors; 3051 int total_errors = 0; 3052 u64 flags; 3053 3054 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 3055 do_barriers = !btrfs_test_opt(root, NOBARRIER); 3056 backup_super_roots(root->fs_info); 3057 3058 sb = root->fs_info->super_for_commit; 3059 dev_item = &sb->dev_item; 3060 3061 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 3062 head = &root->fs_info->fs_devices->devices; 3063 3064 if (do_barriers) { 3065 ret = barrier_all_devices(root->fs_info); 3066 if (ret) { 3067 mutex_unlock( 3068 &root->fs_info->fs_devices->device_list_mutex); 3069 btrfs_error(root->fs_info, ret, 3070 "errors while submitting device barriers."); 3071 return ret; 3072 } 3073 } 3074 3075 list_for_each_entry_rcu(dev, head, dev_list) { 3076 if (!dev->bdev) { 3077 total_errors++; 3078 continue; 3079 } 3080 if (!dev->in_fs_metadata || !dev->writeable) 3081 continue; 3082 3083 btrfs_set_stack_device_generation(dev_item, 0); 3084 btrfs_set_stack_device_type(dev_item, dev->type); 3085 btrfs_set_stack_device_id(dev_item, dev->devid); 3086 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 3087 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 3088 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3089 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3090 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3091 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3092 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 3093 3094 flags = btrfs_super_flags(sb); 3095 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3096 3097 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 3098 if (ret) 3099 total_errors++; 3100 } 3101 if (total_errors > max_errors) { 3102 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 3103 total_errors); 3104 3105 /* This shouldn't happen. FUA is masked off if unsupported */ 3106 BUG(); 3107 } 3108 3109 total_errors = 0; 3110 list_for_each_entry_rcu(dev, head, dev_list) { 3111 if (!dev->bdev) 3112 continue; 3113 if (!dev->in_fs_metadata || !dev->writeable) 3114 continue; 3115 3116 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 3117 if (ret) 3118 total_errors++; 3119 } 3120 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3121 if (total_errors > max_errors) { 3122 btrfs_error(root->fs_info, -EIO, 3123 "%d errors while writing supers", total_errors); 3124 return -EIO; 3125 } 3126 return 0; 3127 } 3128 3129 int write_ctree_super(struct btrfs_trans_handle *trans, 3130 struct btrfs_root *root, int max_mirrors) 3131 { 3132 int ret; 3133 3134 ret = write_all_supers(root, max_mirrors); 3135 return ret; 3136 } 3137 3138 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 3139 { 3140 spin_lock(&fs_info->fs_roots_radix_lock); 3141 radix_tree_delete(&fs_info->fs_roots_radix, 3142 (unsigned long)root->root_key.objectid); 3143 spin_unlock(&fs_info->fs_roots_radix_lock); 3144 3145 if (btrfs_root_refs(&root->root_item) == 0) 3146 synchronize_srcu(&fs_info->subvol_srcu); 3147 3148 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3149 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3150 free_fs_root(root); 3151 } 3152 3153 static void free_fs_root(struct btrfs_root *root) 3154 { 3155 iput(root->cache_inode); 3156 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3157 if (root->anon_dev) 3158 free_anon_bdev(root->anon_dev); 3159 free_extent_buffer(root->node); 3160 free_extent_buffer(root->commit_root); 3161 kfree(root->free_ino_ctl); 3162 kfree(root->free_ino_pinned); 3163 kfree(root->name); 3164 kfree(root); 3165 } 3166 3167 static void del_fs_roots(struct btrfs_fs_info *fs_info) 3168 { 3169 int ret; 3170 struct btrfs_root *gang[8]; 3171 int i; 3172 3173 while (!list_empty(&fs_info->dead_roots)) { 3174 gang[0] = list_entry(fs_info->dead_roots.next, 3175 struct btrfs_root, root_list); 3176 list_del(&gang[0]->root_list); 3177 3178 if (gang[0]->in_radix) { 3179 btrfs_free_fs_root(fs_info, gang[0]); 3180 } else { 3181 free_extent_buffer(gang[0]->node); 3182 free_extent_buffer(gang[0]->commit_root); 3183 kfree(gang[0]); 3184 } 3185 } 3186 3187 while (1) { 3188 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3189 (void **)gang, 0, 3190 ARRAY_SIZE(gang)); 3191 if (!ret) 3192 break; 3193 for (i = 0; i < ret; i++) 3194 btrfs_free_fs_root(fs_info, gang[i]); 3195 } 3196 } 3197 3198 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3199 { 3200 u64 root_objectid = 0; 3201 struct btrfs_root *gang[8]; 3202 int i; 3203 int ret; 3204 3205 while (1) { 3206 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3207 (void **)gang, root_objectid, 3208 ARRAY_SIZE(gang)); 3209 if (!ret) 3210 break; 3211 3212 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3213 for (i = 0; i < ret; i++) { 3214 int err; 3215 3216 root_objectid = gang[i]->root_key.objectid; 3217 err = btrfs_orphan_cleanup(gang[i]); 3218 if (err) 3219 return err; 3220 } 3221 root_objectid++; 3222 } 3223 return 0; 3224 } 3225 3226 int btrfs_commit_super(struct btrfs_root *root) 3227 { 3228 struct btrfs_trans_handle *trans; 3229 int ret; 3230 3231 mutex_lock(&root->fs_info->cleaner_mutex); 3232 btrfs_run_delayed_iputs(root); 3233 btrfs_clean_old_snapshots(root); 3234 mutex_unlock(&root->fs_info->cleaner_mutex); 3235 3236 /* wait until ongoing cleanup work done */ 3237 down_write(&root->fs_info->cleanup_work_sem); 3238 up_write(&root->fs_info->cleanup_work_sem); 3239 3240 trans = btrfs_join_transaction(root); 3241 if (IS_ERR(trans)) 3242 return PTR_ERR(trans); 3243 ret = btrfs_commit_transaction(trans, root); 3244 if (ret) 3245 return ret; 3246 /* run commit again to drop the original snapshot */ 3247 trans = btrfs_join_transaction(root); 3248 if (IS_ERR(trans)) 3249 return PTR_ERR(trans); 3250 ret = btrfs_commit_transaction(trans, root); 3251 if (ret) 3252 return ret; 3253 ret = btrfs_write_and_wait_transaction(NULL, root); 3254 if (ret) { 3255 btrfs_error(root->fs_info, ret, 3256 "Failed to sync btree inode to disk."); 3257 return ret; 3258 } 3259 3260 ret = write_ctree_super(NULL, root, 0); 3261 return ret; 3262 } 3263 3264 int close_ctree(struct btrfs_root *root) 3265 { 3266 struct btrfs_fs_info *fs_info = root->fs_info; 3267 int ret; 3268 3269 fs_info->closing = 1; 3270 smp_mb(); 3271 3272 /* pause restriper - we want to resume on mount */ 3273 btrfs_pause_balance(root->fs_info); 3274 3275 btrfs_scrub_cancel(root); 3276 3277 /* wait for any defraggers to finish */ 3278 wait_event(fs_info->transaction_wait, 3279 (atomic_read(&fs_info->defrag_running) == 0)); 3280 3281 /* clear out the rbtree of defraggable inodes */ 3282 btrfs_run_defrag_inodes(fs_info); 3283 3284 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3285 ret = btrfs_commit_super(root); 3286 if (ret) 3287 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 3288 } 3289 3290 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) 3291 btrfs_error_commit_super(root); 3292 3293 btrfs_put_block_group_cache(fs_info); 3294 3295 kthread_stop(fs_info->transaction_kthread); 3296 kthread_stop(fs_info->cleaner_kthread); 3297 3298 fs_info->closing = 2; 3299 smp_mb(); 3300 3301 btrfs_free_qgroup_config(root->fs_info); 3302 3303 if (fs_info->delalloc_bytes) { 3304 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n", 3305 (unsigned long long)fs_info->delalloc_bytes); 3306 } 3307 3308 free_extent_buffer(fs_info->extent_root->node); 3309 free_extent_buffer(fs_info->extent_root->commit_root); 3310 free_extent_buffer(fs_info->tree_root->node); 3311 free_extent_buffer(fs_info->tree_root->commit_root); 3312 free_extent_buffer(fs_info->chunk_root->node); 3313 free_extent_buffer(fs_info->chunk_root->commit_root); 3314 free_extent_buffer(fs_info->dev_root->node); 3315 free_extent_buffer(fs_info->dev_root->commit_root); 3316 free_extent_buffer(fs_info->csum_root->node); 3317 free_extent_buffer(fs_info->csum_root->commit_root); 3318 if (fs_info->quota_root) { 3319 free_extent_buffer(fs_info->quota_root->node); 3320 free_extent_buffer(fs_info->quota_root->commit_root); 3321 } 3322 3323 btrfs_free_block_groups(fs_info); 3324 3325 del_fs_roots(fs_info); 3326 3327 iput(fs_info->btree_inode); 3328 3329 btrfs_stop_workers(&fs_info->generic_worker); 3330 btrfs_stop_workers(&fs_info->fixup_workers); 3331 btrfs_stop_workers(&fs_info->delalloc_workers); 3332 btrfs_stop_workers(&fs_info->workers); 3333 btrfs_stop_workers(&fs_info->endio_workers); 3334 btrfs_stop_workers(&fs_info->endio_meta_workers); 3335 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 3336 btrfs_stop_workers(&fs_info->endio_write_workers); 3337 btrfs_stop_workers(&fs_info->endio_freespace_worker); 3338 btrfs_stop_workers(&fs_info->submit_workers); 3339 btrfs_stop_workers(&fs_info->delayed_workers); 3340 btrfs_stop_workers(&fs_info->caching_workers); 3341 btrfs_stop_workers(&fs_info->readahead_workers); 3342 3343 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3344 if (btrfs_test_opt(root, CHECK_INTEGRITY)) 3345 btrfsic_unmount(root, fs_info->fs_devices); 3346 #endif 3347 3348 btrfs_close_devices(fs_info->fs_devices); 3349 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3350 3351 bdi_destroy(&fs_info->bdi); 3352 cleanup_srcu_struct(&fs_info->subvol_srcu); 3353 3354 return 0; 3355 } 3356 3357 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 3358 int atomic) 3359 { 3360 int ret; 3361 struct inode *btree_inode = buf->pages[0]->mapping->host; 3362 3363 ret = extent_buffer_uptodate(buf); 3364 if (!ret) 3365 return ret; 3366 3367 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3368 parent_transid, atomic); 3369 if (ret == -EAGAIN) 3370 return ret; 3371 return !ret; 3372 } 3373 3374 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 3375 { 3376 return set_extent_buffer_uptodate(buf); 3377 } 3378 3379 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3380 { 3381 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3382 u64 transid = btrfs_header_generation(buf); 3383 int was_dirty; 3384 3385 btrfs_assert_tree_locked(buf); 3386 if (transid != root->fs_info->generation) { 3387 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, " 3388 "found %llu running %llu\n", 3389 (unsigned long long)buf->start, 3390 (unsigned long long)transid, 3391 (unsigned long long)root->fs_info->generation); 3392 WARN_ON(1); 3393 } 3394 was_dirty = set_extent_buffer_dirty(buf); 3395 if (!was_dirty) { 3396 spin_lock(&root->fs_info->delalloc_lock); 3397 root->fs_info->dirty_metadata_bytes += buf->len; 3398 spin_unlock(&root->fs_info->delalloc_lock); 3399 } 3400 } 3401 3402 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 3403 { 3404 /* 3405 * looks as though older kernels can get into trouble with 3406 * this code, they end up stuck in balance_dirty_pages forever 3407 */ 3408 u64 num_dirty; 3409 unsigned long thresh = 32 * 1024 * 1024; 3410 3411 if (current->flags & PF_MEMALLOC) 3412 return; 3413 3414 btrfs_balance_delayed_items(root); 3415 3416 num_dirty = root->fs_info->dirty_metadata_bytes; 3417 3418 if (num_dirty > thresh) { 3419 balance_dirty_pages_ratelimited_nr( 3420 root->fs_info->btree_inode->i_mapping, 1); 3421 } 3422 return; 3423 } 3424 3425 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 3426 { 3427 /* 3428 * looks as though older kernels can get into trouble with 3429 * this code, they end up stuck in balance_dirty_pages forever 3430 */ 3431 u64 num_dirty; 3432 unsigned long thresh = 32 * 1024 * 1024; 3433 3434 if (current->flags & PF_MEMALLOC) 3435 return; 3436 3437 num_dirty = root->fs_info->dirty_metadata_bytes; 3438 3439 if (num_dirty > thresh) { 3440 balance_dirty_pages_ratelimited_nr( 3441 root->fs_info->btree_inode->i_mapping, 1); 3442 } 3443 return; 3444 } 3445 3446 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 3447 { 3448 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3449 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 3450 } 3451 3452 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 3453 int read_only) 3454 { 3455 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) { 3456 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n"); 3457 return -EINVAL; 3458 } 3459 3460 if (read_only) 3461 return 0; 3462 3463 return 0; 3464 } 3465 3466 void btrfs_error_commit_super(struct btrfs_root *root) 3467 { 3468 mutex_lock(&root->fs_info->cleaner_mutex); 3469 btrfs_run_delayed_iputs(root); 3470 mutex_unlock(&root->fs_info->cleaner_mutex); 3471 3472 down_write(&root->fs_info->cleanup_work_sem); 3473 up_write(&root->fs_info->cleanup_work_sem); 3474 3475 /* cleanup FS via transaction */ 3476 btrfs_cleanup_transaction(root); 3477 } 3478 3479 static void btrfs_destroy_ordered_operations(struct btrfs_root *root) 3480 { 3481 struct btrfs_inode *btrfs_inode; 3482 struct list_head splice; 3483 3484 INIT_LIST_HEAD(&splice); 3485 3486 mutex_lock(&root->fs_info->ordered_operations_mutex); 3487 spin_lock(&root->fs_info->ordered_extent_lock); 3488 3489 list_splice_init(&root->fs_info->ordered_operations, &splice); 3490 while (!list_empty(&splice)) { 3491 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 3492 ordered_operations); 3493 3494 list_del_init(&btrfs_inode->ordered_operations); 3495 3496 btrfs_invalidate_inodes(btrfs_inode->root); 3497 } 3498 3499 spin_unlock(&root->fs_info->ordered_extent_lock); 3500 mutex_unlock(&root->fs_info->ordered_operations_mutex); 3501 } 3502 3503 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 3504 { 3505 struct list_head splice; 3506 struct btrfs_ordered_extent *ordered; 3507 struct inode *inode; 3508 3509 INIT_LIST_HEAD(&splice); 3510 3511 spin_lock(&root->fs_info->ordered_extent_lock); 3512 3513 list_splice_init(&root->fs_info->ordered_extents, &splice); 3514 while (!list_empty(&splice)) { 3515 ordered = list_entry(splice.next, struct btrfs_ordered_extent, 3516 root_extent_list); 3517 3518 list_del_init(&ordered->root_extent_list); 3519 atomic_inc(&ordered->refs); 3520 3521 /* the inode may be getting freed (in sys_unlink path). */ 3522 inode = igrab(ordered->inode); 3523 3524 spin_unlock(&root->fs_info->ordered_extent_lock); 3525 if (inode) 3526 iput(inode); 3527 3528 atomic_set(&ordered->refs, 1); 3529 btrfs_put_ordered_extent(ordered); 3530 3531 spin_lock(&root->fs_info->ordered_extent_lock); 3532 } 3533 3534 spin_unlock(&root->fs_info->ordered_extent_lock); 3535 } 3536 3537 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 3538 struct btrfs_root *root) 3539 { 3540 struct rb_node *node; 3541 struct btrfs_delayed_ref_root *delayed_refs; 3542 struct btrfs_delayed_ref_node *ref; 3543 int ret = 0; 3544 3545 delayed_refs = &trans->delayed_refs; 3546 3547 spin_lock(&delayed_refs->lock); 3548 if (delayed_refs->num_entries == 0) { 3549 spin_unlock(&delayed_refs->lock); 3550 printk(KERN_INFO "delayed_refs has NO entry\n"); 3551 return ret; 3552 } 3553 3554 while ((node = rb_first(&delayed_refs->root)) != NULL) { 3555 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 3556 3557 atomic_set(&ref->refs, 1); 3558 if (btrfs_delayed_ref_is_head(ref)) { 3559 struct btrfs_delayed_ref_head *head; 3560 3561 head = btrfs_delayed_node_to_head(ref); 3562 if (!mutex_trylock(&head->mutex)) { 3563 atomic_inc(&ref->refs); 3564 spin_unlock(&delayed_refs->lock); 3565 3566 /* Need to wait for the delayed ref to run */ 3567 mutex_lock(&head->mutex); 3568 mutex_unlock(&head->mutex); 3569 btrfs_put_delayed_ref(ref); 3570 3571 spin_lock(&delayed_refs->lock); 3572 continue; 3573 } 3574 3575 kfree(head->extent_op); 3576 delayed_refs->num_heads--; 3577 if (list_empty(&head->cluster)) 3578 delayed_refs->num_heads_ready--; 3579 list_del_init(&head->cluster); 3580 } 3581 ref->in_tree = 0; 3582 rb_erase(&ref->rb_node, &delayed_refs->root); 3583 delayed_refs->num_entries--; 3584 3585 spin_unlock(&delayed_refs->lock); 3586 btrfs_put_delayed_ref(ref); 3587 3588 cond_resched(); 3589 spin_lock(&delayed_refs->lock); 3590 } 3591 3592 spin_unlock(&delayed_refs->lock); 3593 3594 return ret; 3595 } 3596 3597 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t) 3598 { 3599 struct btrfs_pending_snapshot *snapshot; 3600 struct list_head splice; 3601 3602 INIT_LIST_HEAD(&splice); 3603 3604 list_splice_init(&t->pending_snapshots, &splice); 3605 3606 while (!list_empty(&splice)) { 3607 snapshot = list_entry(splice.next, 3608 struct btrfs_pending_snapshot, 3609 list); 3610 3611 list_del_init(&snapshot->list); 3612 3613 kfree(snapshot); 3614 } 3615 } 3616 3617 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 3618 { 3619 struct btrfs_inode *btrfs_inode; 3620 struct list_head splice; 3621 3622 INIT_LIST_HEAD(&splice); 3623 3624 spin_lock(&root->fs_info->delalloc_lock); 3625 list_splice_init(&root->fs_info->delalloc_inodes, &splice); 3626 3627 while (!list_empty(&splice)) { 3628 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 3629 delalloc_inodes); 3630 3631 list_del_init(&btrfs_inode->delalloc_inodes); 3632 3633 btrfs_invalidate_inodes(btrfs_inode->root); 3634 } 3635 3636 spin_unlock(&root->fs_info->delalloc_lock); 3637 } 3638 3639 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 3640 struct extent_io_tree *dirty_pages, 3641 int mark) 3642 { 3643 int ret; 3644 struct page *page; 3645 struct inode *btree_inode = root->fs_info->btree_inode; 3646 struct extent_buffer *eb; 3647 u64 start = 0; 3648 u64 end; 3649 u64 offset; 3650 unsigned long index; 3651 3652 while (1) { 3653 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 3654 mark, NULL); 3655 if (ret) 3656 break; 3657 3658 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 3659 while (start <= end) { 3660 index = start >> PAGE_CACHE_SHIFT; 3661 start = (u64)(index + 1) << PAGE_CACHE_SHIFT; 3662 page = find_get_page(btree_inode->i_mapping, index); 3663 if (!page) 3664 continue; 3665 offset = page_offset(page); 3666 3667 spin_lock(&dirty_pages->buffer_lock); 3668 eb = radix_tree_lookup( 3669 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer, 3670 offset >> PAGE_CACHE_SHIFT); 3671 spin_unlock(&dirty_pages->buffer_lock); 3672 if (eb) 3673 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY, 3674 &eb->bflags); 3675 if (PageWriteback(page)) 3676 end_page_writeback(page); 3677 3678 lock_page(page); 3679 if (PageDirty(page)) { 3680 clear_page_dirty_for_io(page); 3681 spin_lock_irq(&page->mapping->tree_lock); 3682 radix_tree_tag_clear(&page->mapping->page_tree, 3683 page_index(page), 3684 PAGECACHE_TAG_DIRTY); 3685 spin_unlock_irq(&page->mapping->tree_lock); 3686 } 3687 3688 unlock_page(page); 3689 page_cache_release(page); 3690 } 3691 } 3692 3693 return ret; 3694 } 3695 3696 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 3697 struct extent_io_tree *pinned_extents) 3698 { 3699 struct extent_io_tree *unpin; 3700 u64 start; 3701 u64 end; 3702 int ret; 3703 bool loop = true; 3704 3705 unpin = pinned_extents; 3706 again: 3707 while (1) { 3708 ret = find_first_extent_bit(unpin, 0, &start, &end, 3709 EXTENT_DIRTY, NULL); 3710 if (ret) 3711 break; 3712 3713 /* opt_discard */ 3714 if (btrfs_test_opt(root, DISCARD)) 3715 ret = btrfs_error_discard_extent(root, start, 3716 end + 1 - start, 3717 NULL); 3718 3719 clear_extent_dirty(unpin, start, end, GFP_NOFS); 3720 btrfs_error_unpin_extent_range(root, start, end); 3721 cond_resched(); 3722 } 3723 3724 if (loop) { 3725 if (unpin == &root->fs_info->freed_extents[0]) 3726 unpin = &root->fs_info->freed_extents[1]; 3727 else 3728 unpin = &root->fs_info->freed_extents[0]; 3729 loop = false; 3730 goto again; 3731 } 3732 3733 return 0; 3734 } 3735 3736 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 3737 struct btrfs_root *root) 3738 { 3739 btrfs_destroy_delayed_refs(cur_trans, root); 3740 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, 3741 cur_trans->dirty_pages.dirty_bytes); 3742 3743 /* FIXME: cleanup wait for commit */ 3744 cur_trans->in_commit = 1; 3745 cur_trans->blocked = 1; 3746 wake_up(&root->fs_info->transaction_blocked_wait); 3747 3748 cur_trans->blocked = 0; 3749 wake_up(&root->fs_info->transaction_wait); 3750 3751 cur_trans->commit_done = 1; 3752 wake_up(&cur_trans->commit_wait); 3753 3754 btrfs_destroy_delayed_inodes(root); 3755 btrfs_assert_delayed_root_empty(root); 3756 3757 btrfs_destroy_pending_snapshots(cur_trans); 3758 3759 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages, 3760 EXTENT_DIRTY); 3761 btrfs_destroy_pinned_extent(root, 3762 root->fs_info->pinned_extents); 3763 3764 /* 3765 memset(cur_trans, 0, sizeof(*cur_trans)); 3766 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 3767 */ 3768 } 3769 3770 int btrfs_cleanup_transaction(struct btrfs_root *root) 3771 { 3772 struct btrfs_transaction *t; 3773 LIST_HEAD(list); 3774 3775 mutex_lock(&root->fs_info->transaction_kthread_mutex); 3776 3777 spin_lock(&root->fs_info->trans_lock); 3778 list_splice_init(&root->fs_info->trans_list, &list); 3779 root->fs_info->trans_no_join = 1; 3780 spin_unlock(&root->fs_info->trans_lock); 3781 3782 while (!list_empty(&list)) { 3783 t = list_entry(list.next, struct btrfs_transaction, list); 3784 if (!t) 3785 break; 3786 3787 btrfs_destroy_ordered_operations(root); 3788 3789 btrfs_destroy_ordered_extents(root); 3790 3791 btrfs_destroy_delayed_refs(t, root); 3792 3793 btrfs_block_rsv_release(root, 3794 &root->fs_info->trans_block_rsv, 3795 t->dirty_pages.dirty_bytes); 3796 3797 /* FIXME: cleanup wait for commit */ 3798 t->in_commit = 1; 3799 t->blocked = 1; 3800 smp_mb(); 3801 if (waitqueue_active(&root->fs_info->transaction_blocked_wait)) 3802 wake_up(&root->fs_info->transaction_blocked_wait); 3803 3804 t->blocked = 0; 3805 smp_mb(); 3806 if (waitqueue_active(&root->fs_info->transaction_wait)) 3807 wake_up(&root->fs_info->transaction_wait); 3808 3809 t->commit_done = 1; 3810 smp_mb(); 3811 if (waitqueue_active(&t->commit_wait)) 3812 wake_up(&t->commit_wait); 3813 3814 btrfs_destroy_delayed_inodes(root); 3815 btrfs_assert_delayed_root_empty(root); 3816 3817 btrfs_destroy_pending_snapshots(t); 3818 3819 btrfs_destroy_delalloc_inodes(root); 3820 3821 spin_lock(&root->fs_info->trans_lock); 3822 root->fs_info->running_transaction = NULL; 3823 spin_unlock(&root->fs_info->trans_lock); 3824 3825 btrfs_destroy_marked_extents(root, &t->dirty_pages, 3826 EXTENT_DIRTY); 3827 3828 btrfs_destroy_pinned_extent(root, 3829 root->fs_info->pinned_extents); 3830 3831 atomic_set(&t->use_count, 0); 3832 list_del_init(&t->list); 3833 memset(t, 0, sizeof(*t)); 3834 kmem_cache_free(btrfs_transaction_cachep, t); 3835 } 3836 3837 spin_lock(&root->fs_info->trans_lock); 3838 root->fs_info->trans_no_join = 0; 3839 spin_unlock(&root->fs_info->trans_lock); 3840 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 3841 3842 return 0; 3843 } 3844 3845 static struct extent_io_ops btree_extent_io_ops = { 3846 .readpage_end_io_hook = btree_readpage_end_io_hook, 3847 .readpage_io_failed_hook = btree_io_failed_hook, 3848 .submit_bio_hook = btree_submit_bio_hook, 3849 /* note we're sharing with inode.c for the merge bio hook */ 3850 .merge_bio_hook = btrfs_merge_bio_hook, 3851 }; 3852