1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/jiffies.h> 4 #include <linux/kernel.h> 5 #include <linux/ktime.h> 6 #include <linux/list.h> 7 #include <linux/math64.h> 8 #include <linux/sizes.h> 9 #include <linux/workqueue.h> 10 #include "ctree.h" 11 #include "block-group.h" 12 #include "discard.h" 13 #include "free-space-cache.h" 14 15 /* 16 * This contains the logic to handle async discard. 17 * 18 * Async discard manages trimming of free space outside of transaction commit. 19 * Discarding is done by managing the block_groups on a LRU list based on free 20 * space recency. Two passes are used to first prioritize discarding extents 21 * and then allow for trimming in the bitmap the best opportunity to coalesce. 22 * The block_groups are maintained on multiple lists to allow for multiple 23 * passes with different discard filter requirements. A delayed work item is 24 * used to manage discarding with timeout determined by a max of the delay 25 * incurred by the iops rate limit, the byte rate limit, and the max delay of 26 * BTRFS_DISCARD_MAX_DELAY. 27 * 28 * Note, this only keeps track of block_groups that are explicitly for data. 29 * Mixed block_groups are not supported. 30 * 31 * The first list is special to manage discarding of fully free block groups. 32 * This is necessary because we issue a final trim for a full free block group 33 * after forgetting it. When a block group becomes unused, instead of directly 34 * being added to the unused_bgs list, we add it to this first list. Then 35 * from there, if it becomes fully discarded, we place it onto the unused_bgs 36 * list. 37 * 38 * The in-memory free space cache serves as the backing state for discard. 39 * Consequently this means there is no persistence. We opt to load all the 40 * block groups in as not discarded, so the mount case degenerates to the 41 * crashing case. 42 * 43 * As the free space cache uses bitmaps, there exists a tradeoff between 44 * ease/efficiency for find_free_extent() and the accuracy of discard state. 45 * Here we opt to let untrimmed regions merge with everything while only letting 46 * trimmed regions merge with other trimmed regions. This can cause 47 * overtrimming, but the coalescing benefit seems to be worth it. Additionally, 48 * bitmap state is tracked as a whole. If we're able to fully trim a bitmap, 49 * the trimmed flag is set on the bitmap. Otherwise, if an allocation comes in, 50 * this resets the state and we will retry trimming the whole bitmap. This is a 51 * tradeoff between discard state accuracy and the cost of accounting. 52 */ 53 54 /* This is an initial delay to give some chance for block reuse */ 55 #define BTRFS_DISCARD_DELAY (120ULL * NSEC_PER_SEC) 56 #define BTRFS_DISCARD_UNUSED_DELAY (10ULL * NSEC_PER_SEC) 57 58 /* Target completion latency of discarding all discardable extents */ 59 #define BTRFS_DISCARD_TARGET_MSEC (6 * 60 * 60UL * MSEC_PER_SEC) 60 #define BTRFS_DISCARD_MIN_DELAY_MSEC (1UL) 61 #define BTRFS_DISCARD_MAX_DELAY_MSEC (1000UL) 62 #define BTRFS_DISCARD_MAX_IOPS (10U) 63 64 /* Montonically decreasing minimum length filters after index 0 */ 65 static int discard_minlen[BTRFS_NR_DISCARD_LISTS] = { 66 0, 67 BTRFS_ASYNC_DISCARD_MAX_FILTER, 68 BTRFS_ASYNC_DISCARD_MIN_FILTER 69 }; 70 71 static struct list_head *get_discard_list(struct btrfs_discard_ctl *discard_ctl, 72 struct btrfs_block_group *block_group) 73 { 74 return &discard_ctl->discard_list[block_group->discard_index]; 75 } 76 77 static void __add_to_discard_list(struct btrfs_discard_ctl *discard_ctl, 78 struct btrfs_block_group *block_group) 79 { 80 if (!btrfs_run_discard_work(discard_ctl)) 81 return; 82 83 if (list_empty(&block_group->discard_list) || 84 block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) { 85 if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) 86 block_group->discard_index = BTRFS_DISCARD_INDEX_START; 87 block_group->discard_eligible_time = (ktime_get_ns() + 88 BTRFS_DISCARD_DELAY); 89 block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR; 90 } 91 92 list_move_tail(&block_group->discard_list, 93 get_discard_list(discard_ctl, block_group)); 94 } 95 96 static void add_to_discard_list(struct btrfs_discard_ctl *discard_ctl, 97 struct btrfs_block_group *block_group) 98 { 99 if (!btrfs_is_block_group_data_only(block_group)) 100 return; 101 102 spin_lock(&discard_ctl->lock); 103 __add_to_discard_list(discard_ctl, block_group); 104 spin_unlock(&discard_ctl->lock); 105 } 106 107 static void add_to_discard_unused_list(struct btrfs_discard_ctl *discard_ctl, 108 struct btrfs_block_group *block_group) 109 { 110 spin_lock(&discard_ctl->lock); 111 112 if (!btrfs_run_discard_work(discard_ctl)) { 113 spin_unlock(&discard_ctl->lock); 114 return; 115 } 116 117 list_del_init(&block_group->discard_list); 118 119 block_group->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 120 block_group->discard_eligible_time = (ktime_get_ns() + 121 BTRFS_DISCARD_UNUSED_DELAY); 122 block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR; 123 list_add_tail(&block_group->discard_list, 124 &discard_ctl->discard_list[BTRFS_DISCARD_INDEX_UNUSED]); 125 126 spin_unlock(&discard_ctl->lock); 127 } 128 129 static bool remove_from_discard_list(struct btrfs_discard_ctl *discard_ctl, 130 struct btrfs_block_group *block_group) 131 { 132 bool running = false; 133 134 spin_lock(&discard_ctl->lock); 135 136 if (block_group == discard_ctl->block_group) { 137 running = true; 138 discard_ctl->block_group = NULL; 139 } 140 141 block_group->discard_eligible_time = 0; 142 list_del_init(&block_group->discard_list); 143 144 spin_unlock(&discard_ctl->lock); 145 146 return running; 147 } 148 149 /** 150 * find_next_block_group - find block_group that's up next for discarding 151 * @discard_ctl: discard control 152 * @now: current time 153 * 154 * Iterate over the discard lists to find the next block_group up for 155 * discarding checking the discard_eligible_time of block_group. 156 */ 157 static struct btrfs_block_group *find_next_block_group( 158 struct btrfs_discard_ctl *discard_ctl, 159 u64 now) 160 { 161 struct btrfs_block_group *ret_block_group = NULL, *block_group; 162 int i; 163 164 for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) { 165 struct list_head *discard_list = &discard_ctl->discard_list[i]; 166 167 if (!list_empty(discard_list)) { 168 block_group = list_first_entry(discard_list, 169 struct btrfs_block_group, 170 discard_list); 171 172 if (!ret_block_group) 173 ret_block_group = block_group; 174 175 if (ret_block_group->discard_eligible_time < now) 176 break; 177 178 if (ret_block_group->discard_eligible_time > 179 block_group->discard_eligible_time) 180 ret_block_group = block_group; 181 } 182 } 183 184 return ret_block_group; 185 } 186 187 /** 188 * Wrap find_next_block_group() 189 * 190 * @discard_ctl: discard control 191 * @discard_state: the discard_state of the block_group after state management 192 * @discard_index: the discard_index of the block_group after state management 193 * @now: time when discard was invoked, in ns 194 * 195 * This wraps find_next_block_group() and sets the block_group to be in use. 196 * discard_state's control flow is managed here. Variables related to 197 * discard_state are reset here as needed (eg discard_cursor). @discard_state 198 * and @discard_index are remembered as it may change while we're discarding, 199 * but we want the discard to execute in the context determined here. 200 */ 201 static struct btrfs_block_group *peek_discard_list( 202 struct btrfs_discard_ctl *discard_ctl, 203 enum btrfs_discard_state *discard_state, 204 int *discard_index, u64 now) 205 { 206 struct btrfs_block_group *block_group; 207 208 spin_lock(&discard_ctl->lock); 209 again: 210 block_group = find_next_block_group(discard_ctl, now); 211 212 if (block_group && now >= block_group->discard_eligible_time) { 213 if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED && 214 block_group->used != 0) { 215 if (btrfs_is_block_group_data_only(block_group)) 216 __add_to_discard_list(discard_ctl, block_group); 217 else 218 list_del_init(&block_group->discard_list); 219 goto again; 220 } 221 if (block_group->discard_state == BTRFS_DISCARD_RESET_CURSOR) { 222 block_group->discard_cursor = block_group->start; 223 block_group->discard_state = BTRFS_DISCARD_EXTENTS; 224 } 225 discard_ctl->block_group = block_group; 226 } 227 if (block_group) { 228 *discard_state = block_group->discard_state; 229 *discard_index = block_group->discard_index; 230 } 231 spin_unlock(&discard_ctl->lock); 232 233 return block_group; 234 } 235 236 /** 237 * btrfs_discard_check_filter - updates a block groups filters 238 * @block_group: block group of interest 239 * @bytes: recently freed region size after coalescing 240 * 241 * Async discard maintains multiple lists with progressively smaller filters 242 * to prioritize discarding based on size. Should a free space that matches 243 * a larger filter be returned to the free_space_cache, prioritize that discard 244 * by moving @block_group to the proper filter. 245 */ 246 void btrfs_discard_check_filter(struct btrfs_block_group *block_group, 247 u64 bytes) 248 { 249 struct btrfs_discard_ctl *discard_ctl; 250 251 if (!block_group || 252 !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC)) 253 return; 254 255 discard_ctl = &block_group->fs_info->discard_ctl; 256 257 if (block_group->discard_index > BTRFS_DISCARD_INDEX_START && 258 bytes >= discard_minlen[block_group->discard_index - 1]) { 259 int i; 260 261 remove_from_discard_list(discard_ctl, block_group); 262 263 for (i = BTRFS_DISCARD_INDEX_START; i < BTRFS_NR_DISCARD_LISTS; 264 i++) { 265 if (bytes >= discard_minlen[i]) { 266 block_group->discard_index = i; 267 add_to_discard_list(discard_ctl, block_group); 268 break; 269 } 270 } 271 } 272 } 273 274 /** 275 * btrfs_update_discard_index - moves a block group along the discard lists 276 * @discard_ctl: discard control 277 * @block_group: block_group of interest 278 * 279 * Increment @block_group's discard_index. If it falls of the list, let it be. 280 * Otherwise add it back to the appropriate list. 281 */ 282 static void btrfs_update_discard_index(struct btrfs_discard_ctl *discard_ctl, 283 struct btrfs_block_group *block_group) 284 { 285 block_group->discard_index++; 286 if (block_group->discard_index == BTRFS_NR_DISCARD_LISTS) { 287 block_group->discard_index = 1; 288 return; 289 } 290 291 add_to_discard_list(discard_ctl, block_group); 292 } 293 294 /** 295 * btrfs_discard_cancel_work - remove a block_group from the discard lists 296 * @discard_ctl: discard control 297 * @block_group: block_group of interest 298 * 299 * This removes @block_group from the discard lists. If necessary, it waits on 300 * the current work and then reschedules the delayed work. 301 */ 302 void btrfs_discard_cancel_work(struct btrfs_discard_ctl *discard_ctl, 303 struct btrfs_block_group *block_group) 304 { 305 if (remove_from_discard_list(discard_ctl, block_group)) { 306 cancel_delayed_work_sync(&discard_ctl->work); 307 btrfs_discard_schedule_work(discard_ctl, true); 308 } 309 } 310 311 /** 312 * btrfs_discard_queue_work - handles queuing the block_groups 313 * @discard_ctl: discard control 314 * @block_group: block_group of interest 315 * 316 * This maintains the LRU order of the discard lists. 317 */ 318 void btrfs_discard_queue_work(struct btrfs_discard_ctl *discard_ctl, 319 struct btrfs_block_group *block_group) 320 { 321 if (!block_group || !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC)) 322 return; 323 324 if (block_group->used == 0) 325 add_to_discard_unused_list(discard_ctl, block_group); 326 else 327 add_to_discard_list(discard_ctl, block_group); 328 329 if (!delayed_work_pending(&discard_ctl->work)) 330 btrfs_discard_schedule_work(discard_ctl, false); 331 } 332 333 static void __btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl, 334 u64 now, bool override) 335 { 336 struct btrfs_block_group *block_group; 337 338 if (!btrfs_run_discard_work(discard_ctl)) 339 return; 340 if (!override && delayed_work_pending(&discard_ctl->work)) 341 return; 342 343 block_group = find_next_block_group(discard_ctl, now); 344 if (block_group) { 345 u64 delay = discard_ctl->delay_ms * NSEC_PER_MSEC; 346 u32 kbps_limit = READ_ONCE(discard_ctl->kbps_limit); 347 348 /* 349 * A single delayed workqueue item is responsible for 350 * discarding, so we can manage the bytes rate limit by keeping 351 * track of the previous discard. 352 */ 353 if (kbps_limit && discard_ctl->prev_discard) { 354 u64 bps_limit = ((u64)kbps_limit) * SZ_1K; 355 u64 bps_delay = div64_u64(discard_ctl->prev_discard * 356 NSEC_PER_SEC, bps_limit); 357 358 delay = max(delay, bps_delay); 359 } 360 361 /* 362 * This timeout is to hopefully prevent immediate discarding 363 * in a recently allocated block group. 364 */ 365 if (now < block_group->discard_eligible_time) { 366 u64 bg_timeout = block_group->discard_eligible_time - now; 367 368 delay = max(delay, bg_timeout); 369 } 370 371 if (override && discard_ctl->prev_discard) { 372 u64 elapsed = now - discard_ctl->prev_discard_time; 373 374 if (delay > elapsed) 375 delay -= elapsed; 376 else 377 delay = 0; 378 } 379 380 mod_delayed_work(discard_ctl->discard_workers, 381 &discard_ctl->work, nsecs_to_jiffies(delay)); 382 } 383 } 384 385 /* 386 * btrfs_discard_schedule_work - responsible for scheduling the discard work 387 * @discard_ctl: discard control 388 * @override: override the current timer 389 * 390 * Discards are issued by a delayed workqueue item. @override is used to 391 * update the current delay as the baseline delay interval is reevaluated on 392 * transaction commit. This is also maxed with any other rate limit. 393 */ 394 void btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl, 395 bool override) 396 { 397 const u64 now = ktime_get_ns(); 398 399 spin_lock(&discard_ctl->lock); 400 __btrfs_discard_schedule_work(discard_ctl, now, override); 401 spin_unlock(&discard_ctl->lock); 402 } 403 404 /** 405 * btrfs_finish_discard_pass - determine next step of a block_group 406 * @discard_ctl: discard control 407 * @block_group: block_group of interest 408 * 409 * This determines the next step for a block group after it's finished going 410 * through a pass on a discard list. If it is unused and fully trimmed, we can 411 * mark it unused and send it to the unused_bgs path. Otherwise, pass it onto 412 * the appropriate filter list or let it fall off. 413 */ 414 static void btrfs_finish_discard_pass(struct btrfs_discard_ctl *discard_ctl, 415 struct btrfs_block_group *block_group) 416 { 417 remove_from_discard_list(discard_ctl, block_group); 418 419 if (block_group->used == 0) { 420 if (btrfs_is_free_space_trimmed(block_group)) 421 btrfs_mark_bg_unused(block_group); 422 else 423 add_to_discard_unused_list(discard_ctl, block_group); 424 } else { 425 btrfs_update_discard_index(discard_ctl, block_group); 426 } 427 } 428 429 /** 430 * btrfs_discard_workfn - discard work function 431 * @work: work 432 * 433 * This finds the next block_group to start discarding and then discards a 434 * single region. It does this in a two-pass fashion: first extents and second 435 * bitmaps. Completely discarded block groups are sent to the unused_bgs path. 436 */ 437 static void btrfs_discard_workfn(struct work_struct *work) 438 { 439 struct btrfs_discard_ctl *discard_ctl; 440 struct btrfs_block_group *block_group; 441 enum btrfs_discard_state discard_state; 442 int discard_index = 0; 443 u64 trimmed = 0; 444 u64 minlen = 0; 445 u64 now = ktime_get_ns(); 446 447 discard_ctl = container_of(work, struct btrfs_discard_ctl, work.work); 448 449 block_group = peek_discard_list(discard_ctl, &discard_state, 450 &discard_index, now); 451 if (!block_group || !btrfs_run_discard_work(discard_ctl)) 452 return; 453 if (now < block_group->discard_eligible_time) { 454 btrfs_discard_schedule_work(discard_ctl, false); 455 return; 456 } 457 458 /* Perform discarding */ 459 minlen = discard_minlen[discard_index]; 460 461 if (discard_state == BTRFS_DISCARD_BITMAPS) { 462 u64 maxlen = 0; 463 464 /* 465 * Use the previous levels minimum discard length as the max 466 * length filter. In the case something is added to make a 467 * region go beyond the max filter, the entire bitmap is set 468 * back to BTRFS_TRIM_STATE_UNTRIMMED. 469 */ 470 if (discard_index != BTRFS_DISCARD_INDEX_UNUSED) 471 maxlen = discard_minlen[discard_index - 1]; 472 473 btrfs_trim_block_group_bitmaps(block_group, &trimmed, 474 block_group->discard_cursor, 475 btrfs_block_group_end(block_group), 476 minlen, maxlen, true); 477 discard_ctl->discard_bitmap_bytes += trimmed; 478 } else { 479 btrfs_trim_block_group_extents(block_group, &trimmed, 480 block_group->discard_cursor, 481 btrfs_block_group_end(block_group), 482 minlen, true); 483 discard_ctl->discard_extent_bytes += trimmed; 484 } 485 486 /* Determine next steps for a block_group */ 487 if (block_group->discard_cursor >= btrfs_block_group_end(block_group)) { 488 if (discard_state == BTRFS_DISCARD_BITMAPS) { 489 btrfs_finish_discard_pass(discard_ctl, block_group); 490 } else { 491 block_group->discard_cursor = block_group->start; 492 spin_lock(&discard_ctl->lock); 493 if (block_group->discard_state != 494 BTRFS_DISCARD_RESET_CURSOR) 495 block_group->discard_state = 496 BTRFS_DISCARD_BITMAPS; 497 spin_unlock(&discard_ctl->lock); 498 } 499 } 500 501 now = ktime_get_ns(); 502 spin_lock(&discard_ctl->lock); 503 discard_ctl->prev_discard = trimmed; 504 discard_ctl->prev_discard_time = now; 505 discard_ctl->block_group = NULL; 506 __btrfs_discard_schedule_work(discard_ctl, now, false); 507 spin_unlock(&discard_ctl->lock); 508 } 509 510 /** 511 * btrfs_run_discard_work - determines if async discard should be running 512 * @discard_ctl: discard control 513 * 514 * Checks if the file system is writeable and BTRFS_FS_DISCARD_RUNNING is set. 515 */ 516 bool btrfs_run_discard_work(struct btrfs_discard_ctl *discard_ctl) 517 { 518 struct btrfs_fs_info *fs_info = container_of(discard_ctl, 519 struct btrfs_fs_info, 520 discard_ctl); 521 522 return (!(fs_info->sb->s_flags & SB_RDONLY) && 523 test_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags)); 524 } 525 526 /** 527 * btrfs_discard_calc_delay - recalculate the base delay 528 * @discard_ctl: discard control 529 * 530 * Recalculate the base delay which is based off the total number of 531 * discardable_extents. Clamp this between the lower_limit (iops_limit or 1ms) 532 * and the upper_limit (BTRFS_DISCARD_MAX_DELAY_MSEC). 533 */ 534 void btrfs_discard_calc_delay(struct btrfs_discard_ctl *discard_ctl) 535 { 536 s32 discardable_extents; 537 s64 discardable_bytes; 538 u32 iops_limit; 539 unsigned long delay; 540 541 discardable_extents = atomic_read(&discard_ctl->discardable_extents); 542 if (!discardable_extents) 543 return; 544 545 spin_lock(&discard_ctl->lock); 546 547 /* 548 * The following is to fix a potential -1 discrepenancy that we're not 549 * sure how to reproduce. But given that this is the only place that 550 * utilizes these numbers and this is only called by from 551 * btrfs_finish_extent_commit() which is synchronized, we can correct 552 * here. 553 */ 554 if (discardable_extents < 0) 555 atomic_add(-discardable_extents, 556 &discard_ctl->discardable_extents); 557 558 discardable_bytes = atomic64_read(&discard_ctl->discardable_bytes); 559 if (discardable_bytes < 0) 560 atomic64_add(-discardable_bytes, 561 &discard_ctl->discardable_bytes); 562 563 if (discardable_extents <= 0) { 564 spin_unlock(&discard_ctl->lock); 565 return; 566 } 567 568 iops_limit = READ_ONCE(discard_ctl->iops_limit); 569 if (iops_limit) 570 delay = MSEC_PER_SEC / iops_limit; 571 else 572 delay = BTRFS_DISCARD_TARGET_MSEC / discardable_extents; 573 574 delay = clamp(delay, BTRFS_DISCARD_MIN_DELAY_MSEC, 575 BTRFS_DISCARD_MAX_DELAY_MSEC); 576 discard_ctl->delay_ms = delay; 577 578 spin_unlock(&discard_ctl->lock); 579 } 580 581 /** 582 * btrfs_discard_update_discardable - propagate discard counters 583 * @block_group: block_group of interest 584 * 585 * This propagates deltas of counters up to the discard_ctl. It maintains a 586 * current counter and a previous counter passing the delta up to the global 587 * stat. Then the current counter value becomes the previous counter value. 588 */ 589 void btrfs_discard_update_discardable(struct btrfs_block_group *block_group) 590 { 591 struct btrfs_free_space_ctl *ctl; 592 struct btrfs_discard_ctl *discard_ctl; 593 s32 extents_delta; 594 s64 bytes_delta; 595 596 if (!block_group || 597 !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC) || 598 !btrfs_is_block_group_data_only(block_group)) 599 return; 600 601 ctl = block_group->free_space_ctl; 602 discard_ctl = &block_group->fs_info->discard_ctl; 603 604 lockdep_assert_held(&ctl->tree_lock); 605 extents_delta = ctl->discardable_extents[BTRFS_STAT_CURR] - 606 ctl->discardable_extents[BTRFS_STAT_PREV]; 607 if (extents_delta) { 608 atomic_add(extents_delta, &discard_ctl->discardable_extents); 609 ctl->discardable_extents[BTRFS_STAT_PREV] = 610 ctl->discardable_extents[BTRFS_STAT_CURR]; 611 } 612 613 bytes_delta = ctl->discardable_bytes[BTRFS_STAT_CURR] - 614 ctl->discardable_bytes[BTRFS_STAT_PREV]; 615 if (bytes_delta) { 616 atomic64_add(bytes_delta, &discard_ctl->discardable_bytes); 617 ctl->discardable_bytes[BTRFS_STAT_PREV] = 618 ctl->discardable_bytes[BTRFS_STAT_CURR]; 619 } 620 } 621 622 /** 623 * btrfs_discard_punt_unused_bgs_list - punt unused_bgs list to discard lists 624 * @fs_info: fs_info of interest 625 * 626 * The unused_bgs list needs to be punted to the discard lists because the 627 * order of operations is changed. In the normal sychronous discard path, the 628 * block groups are trimmed via a single large trim in transaction commit. This 629 * is ultimately what we are trying to avoid with asynchronous discard. Thus, 630 * it must be done before going down the unused_bgs path. 631 */ 632 void btrfs_discard_punt_unused_bgs_list(struct btrfs_fs_info *fs_info) 633 { 634 struct btrfs_block_group *block_group, *next; 635 636 spin_lock(&fs_info->unused_bgs_lock); 637 /* We enabled async discard, so punt all to the queue */ 638 list_for_each_entry_safe(block_group, next, &fs_info->unused_bgs, 639 bg_list) { 640 list_del_init(&block_group->bg_list); 641 btrfs_put_block_group(block_group); 642 btrfs_discard_queue_work(&fs_info->discard_ctl, block_group); 643 } 644 spin_unlock(&fs_info->unused_bgs_lock); 645 } 646 647 /** 648 * btrfs_discard_purge_list - purge discard lists 649 * @discard_ctl: discard control 650 * 651 * If we are disabling async discard, we may have intercepted block groups that 652 * are completely free and ready for the unused_bgs path. As discarding will 653 * now happen in transaction commit or not at all, we can safely mark the 654 * corresponding block groups as unused and they will be sent on their merry 655 * way to the unused_bgs list. 656 */ 657 static void btrfs_discard_purge_list(struct btrfs_discard_ctl *discard_ctl) 658 { 659 struct btrfs_block_group *block_group, *next; 660 int i; 661 662 spin_lock(&discard_ctl->lock); 663 for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) { 664 list_for_each_entry_safe(block_group, next, 665 &discard_ctl->discard_list[i], 666 discard_list) { 667 list_del_init(&block_group->discard_list); 668 spin_unlock(&discard_ctl->lock); 669 if (block_group->used == 0) 670 btrfs_mark_bg_unused(block_group); 671 spin_lock(&discard_ctl->lock); 672 } 673 } 674 spin_unlock(&discard_ctl->lock); 675 } 676 677 void btrfs_discard_resume(struct btrfs_fs_info *fs_info) 678 { 679 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 680 btrfs_discard_cleanup(fs_info); 681 return; 682 } 683 684 btrfs_discard_punt_unused_bgs_list(fs_info); 685 686 set_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags); 687 } 688 689 void btrfs_discard_stop(struct btrfs_fs_info *fs_info) 690 { 691 clear_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags); 692 } 693 694 void btrfs_discard_init(struct btrfs_fs_info *fs_info) 695 { 696 struct btrfs_discard_ctl *discard_ctl = &fs_info->discard_ctl; 697 int i; 698 699 spin_lock_init(&discard_ctl->lock); 700 INIT_DELAYED_WORK(&discard_ctl->work, btrfs_discard_workfn); 701 702 for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) 703 INIT_LIST_HEAD(&discard_ctl->discard_list[i]); 704 705 discard_ctl->prev_discard = 0; 706 discard_ctl->prev_discard_time = 0; 707 atomic_set(&discard_ctl->discardable_extents, 0); 708 atomic64_set(&discard_ctl->discardable_bytes, 0); 709 discard_ctl->max_discard_size = BTRFS_ASYNC_DISCARD_DEFAULT_MAX_SIZE; 710 discard_ctl->delay_ms = BTRFS_DISCARD_MAX_DELAY_MSEC; 711 discard_ctl->iops_limit = BTRFS_DISCARD_MAX_IOPS; 712 discard_ctl->kbps_limit = 0; 713 discard_ctl->discard_extent_bytes = 0; 714 discard_ctl->discard_bitmap_bytes = 0; 715 atomic64_set(&discard_ctl->discard_bytes_saved, 0); 716 } 717 718 void btrfs_discard_cleanup(struct btrfs_fs_info *fs_info) 719 { 720 btrfs_discard_stop(fs_info); 721 cancel_delayed_work_sync(&fs_info->discard_ctl.work); 722 btrfs_discard_purge_list(&fs_info->discard_ctl); 723 } 724