1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/jiffies.h> 4 #include <linux/kernel.h> 5 #include <linux/ktime.h> 6 #include <linux/list.h> 7 #include <linux/math64.h> 8 #include <linux/sizes.h> 9 #include <linux/workqueue.h> 10 #include "ctree.h" 11 #include "block-group.h" 12 #include "discard.h" 13 #include "free-space-cache.h" 14 #include "fs.h" 15 16 /* 17 * This contains the logic to handle async discard. 18 * 19 * Async discard manages trimming of free space outside of transaction commit. 20 * Discarding is done by managing the block_groups on a LRU list based on free 21 * space recency. Two passes are used to first prioritize discarding extents 22 * and then allow for trimming in the bitmap the best opportunity to coalesce. 23 * The block_groups are maintained on multiple lists to allow for multiple 24 * passes with different discard filter requirements. A delayed work item is 25 * used to manage discarding with timeout determined by a max of the delay 26 * incurred by the iops rate limit, the byte rate limit, and the max delay of 27 * BTRFS_DISCARD_MAX_DELAY. 28 * 29 * Note, this only keeps track of block_groups that are explicitly for data. 30 * Mixed block_groups are not supported. 31 * 32 * The first list is special to manage discarding of fully free block groups. 33 * This is necessary because we issue a final trim for a full free block group 34 * after forgetting it. When a block group becomes unused, instead of directly 35 * being added to the unused_bgs list, we add it to this first list. Then 36 * from there, if it becomes fully discarded, we place it onto the unused_bgs 37 * list. 38 * 39 * The in-memory free space cache serves as the backing state for discard. 40 * Consequently this means there is no persistence. We opt to load all the 41 * block groups in as not discarded, so the mount case degenerates to the 42 * crashing case. 43 * 44 * As the free space cache uses bitmaps, there exists a tradeoff between 45 * ease/efficiency for find_free_extent() and the accuracy of discard state. 46 * Here we opt to let untrimmed regions merge with everything while only letting 47 * trimmed regions merge with other trimmed regions. This can cause 48 * overtrimming, but the coalescing benefit seems to be worth it. Additionally, 49 * bitmap state is tracked as a whole. If we're able to fully trim a bitmap, 50 * the trimmed flag is set on the bitmap. Otherwise, if an allocation comes in, 51 * this resets the state and we will retry trimming the whole bitmap. This is a 52 * tradeoff between discard state accuracy and the cost of accounting. 53 */ 54 55 /* This is an initial delay to give some chance for block reuse */ 56 #define BTRFS_DISCARD_DELAY (120ULL * NSEC_PER_SEC) 57 #define BTRFS_DISCARD_UNUSED_DELAY (10ULL * NSEC_PER_SEC) 58 59 #define BTRFS_DISCARD_MIN_DELAY_MSEC (1UL) 60 #define BTRFS_DISCARD_MAX_DELAY_MSEC (1000UL) 61 #define BTRFS_DISCARD_MAX_IOPS (1000U) 62 63 /* Monotonically decreasing minimum length filters after index 0 */ 64 static int discard_minlen[BTRFS_NR_DISCARD_LISTS] = { 65 0, 66 BTRFS_ASYNC_DISCARD_MAX_FILTER, 67 BTRFS_ASYNC_DISCARD_MIN_FILTER 68 }; 69 70 static struct list_head *get_discard_list(struct btrfs_discard_ctl *discard_ctl, 71 struct btrfs_block_group *block_group) 72 { 73 return &discard_ctl->discard_list[block_group->discard_index]; 74 } 75 76 /* 77 * Determine if async discard should be running. 78 * 79 * @discard_ctl: discard control 80 * 81 * Check if the file system is writeable and BTRFS_FS_DISCARD_RUNNING is set. 82 */ 83 static bool btrfs_run_discard_work(struct btrfs_discard_ctl *discard_ctl) 84 { 85 struct btrfs_fs_info *fs_info = container_of(discard_ctl, 86 struct btrfs_fs_info, 87 discard_ctl); 88 89 return (!(fs_info->sb->s_flags & SB_RDONLY) && 90 test_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags)); 91 } 92 93 static void __add_to_discard_list(struct btrfs_discard_ctl *discard_ctl, 94 struct btrfs_block_group *block_group) 95 { 96 lockdep_assert_held(&discard_ctl->lock); 97 if (!btrfs_run_discard_work(discard_ctl)) 98 return; 99 100 if (list_empty(&block_group->discard_list) || 101 block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) { 102 if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) 103 block_group->discard_index = BTRFS_DISCARD_INDEX_START; 104 block_group->discard_eligible_time = (ktime_get_ns() + 105 BTRFS_DISCARD_DELAY); 106 block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR; 107 } 108 if (list_empty(&block_group->discard_list)) 109 btrfs_get_block_group(block_group); 110 111 list_move_tail(&block_group->discard_list, 112 get_discard_list(discard_ctl, block_group)); 113 } 114 115 static void add_to_discard_list(struct btrfs_discard_ctl *discard_ctl, 116 struct btrfs_block_group *block_group) 117 { 118 if (!btrfs_is_block_group_data_only(block_group)) 119 return; 120 121 spin_lock(&discard_ctl->lock); 122 __add_to_discard_list(discard_ctl, block_group); 123 spin_unlock(&discard_ctl->lock); 124 } 125 126 static void add_to_discard_unused_list(struct btrfs_discard_ctl *discard_ctl, 127 struct btrfs_block_group *block_group) 128 { 129 bool queued; 130 131 spin_lock(&discard_ctl->lock); 132 133 queued = !list_empty(&block_group->discard_list); 134 135 if (!btrfs_run_discard_work(discard_ctl)) { 136 spin_unlock(&discard_ctl->lock); 137 return; 138 } 139 140 list_del_init(&block_group->discard_list); 141 142 block_group->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 143 block_group->discard_eligible_time = (ktime_get_ns() + 144 BTRFS_DISCARD_UNUSED_DELAY); 145 block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR; 146 if (!queued) 147 btrfs_get_block_group(block_group); 148 list_add_tail(&block_group->discard_list, 149 &discard_ctl->discard_list[BTRFS_DISCARD_INDEX_UNUSED]); 150 151 spin_unlock(&discard_ctl->lock); 152 } 153 154 static bool remove_from_discard_list(struct btrfs_discard_ctl *discard_ctl, 155 struct btrfs_block_group *block_group) 156 { 157 bool running = false; 158 bool queued = false; 159 160 spin_lock(&discard_ctl->lock); 161 162 if (block_group == discard_ctl->block_group) { 163 running = true; 164 discard_ctl->block_group = NULL; 165 } 166 167 block_group->discard_eligible_time = 0; 168 queued = !list_empty(&block_group->discard_list); 169 list_del_init(&block_group->discard_list); 170 /* 171 * If the block group is currently running in the discard workfn, we 172 * don't want to deref it, since it's still being used by the workfn. 173 * The workfn will notice this case and deref the block group when it is 174 * finished. 175 */ 176 if (queued && !running) 177 btrfs_put_block_group(block_group); 178 179 spin_unlock(&discard_ctl->lock); 180 181 return running; 182 } 183 184 /* 185 * Find block_group that's up next for discarding. 186 * 187 * @discard_ctl: discard control 188 * @now: current time 189 * 190 * Iterate over the discard lists to find the next block_group up for 191 * discarding checking the discard_eligible_time of block_group. 192 */ 193 static struct btrfs_block_group *find_next_block_group( 194 struct btrfs_discard_ctl *discard_ctl, 195 u64 now) 196 { 197 struct btrfs_block_group *ret_block_group = NULL, *block_group; 198 int i; 199 200 for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) { 201 struct list_head *discard_list = &discard_ctl->discard_list[i]; 202 203 if (!list_empty(discard_list)) { 204 block_group = list_first_entry(discard_list, 205 struct btrfs_block_group, 206 discard_list); 207 208 if (!ret_block_group) 209 ret_block_group = block_group; 210 211 if (ret_block_group->discard_eligible_time < now) 212 break; 213 214 if (ret_block_group->discard_eligible_time > 215 block_group->discard_eligible_time) 216 ret_block_group = block_group; 217 } 218 } 219 220 return ret_block_group; 221 } 222 223 /* 224 * Look up next block group and set it for use. 225 * 226 * @discard_ctl: discard control 227 * @discard_state: the discard_state of the block_group after state management 228 * @discard_index: the discard_index of the block_group after state management 229 * @now: time when discard was invoked, in ns 230 * 231 * Wrap find_next_block_group() and set the block_group to be in use. 232 * @discard_state's control flow is managed here. Variables related to 233 * @discard_state are reset here as needed (eg. @discard_cursor). @discard_state 234 * and @discard_index are remembered as it may change while we're discarding, 235 * but we want the discard to execute in the context determined here. 236 */ 237 static struct btrfs_block_group *peek_discard_list( 238 struct btrfs_discard_ctl *discard_ctl, 239 enum btrfs_discard_state *discard_state, 240 int *discard_index, u64 now) 241 { 242 struct btrfs_block_group *block_group; 243 244 spin_lock(&discard_ctl->lock); 245 again: 246 block_group = find_next_block_group(discard_ctl, now); 247 248 if (block_group && now >= block_group->discard_eligible_time) { 249 if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED && 250 block_group->used != 0) { 251 if (btrfs_is_block_group_data_only(block_group)) { 252 __add_to_discard_list(discard_ctl, block_group); 253 } else { 254 list_del_init(&block_group->discard_list); 255 btrfs_put_block_group(block_group); 256 } 257 goto again; 258 } 259 if (block_group->discard_state == BTRFS_DISCARD_RESET_CURSOR) { 260 block_group->discard_cursor = block_group->start; 261 block_group->discard_state = BTRFS_DISCARD_EXTENTS; 262 } 263 discard_ctl->block_group = block_group; 264 } 265 if (block_group) { 266 *discard_state = block_group->discard_state; 267 *discard_index = block_group->discard_index; 268 } 269 spin_unlock(&discard_ctl->lock); 270 271 return block_group; 272 } 273 274 /* 275 * Update a block group's filters. 276 * 277 * @block_group: block group of interest 278 * @bytes: recently freed region size after coalescing 279 * 280 * Async discard maintains multiple lists with progressively smaller filters 281 * to prioritize discarding based on size. Should a free space that matches 282 * a larger filter be returned to the free_space_cache, prioritize that discard 283 * by moving @block_group to the proper filter. 284 */ 285 void btrfs_discard_check_filter(struct btrfs_block_group *block_group, 286 u64 bytes) 287 { 288 struct btrfs_discard_ctl *discard_ctl; 289 290 if (!block_group || 291 !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC)) 292 return; 293 294 discard_ctl = &block_group->fs_info->discard_ctl; 295 296 if (block_group->discard_index > BTRFS_DISCARD_INDEX_START && 297 bytes >= discard_minlen[block_group->discard_index - 1]) { 298 int i; 299 300 remove_from_discard_list(discard_ctl, block_group); 301 302 for (i = BTRFS_DISCARD_INDEX_START; i < BTRFS_NR_DISCARD_LISTS; 303 i++) { 304 if (bytes >= discard_minlen[i]) { 305 block_group->discard_index = i; 306 add_to_discard_list(discard_ctl, block_group); 307 break; 308 } 309 } 310 } 311 } 312 313 /* 314 * Move a block group along the discard lists. 315 * 316 * @discard_ctl: discard control 317 * @block_group: block_group of interest 318 * 319 * Increment @block_group's discard_index. If it falls of the list, let it be. 320 * Otherwise add it back to the appropriate list. 321 */ 322 static void btrfs_update_discard_index(struct btrfs_discard_ctl *discard_ctl, 323 struct btrfs_block_group *block_group) 324 { 325 block_group->discard_index++; 326 if (block_group->discard_index == BTRFS_NR_DISCARD_LISTS) { 327 block_group->discard_index = 1; 328 return; 329 } 330 331 add_to_discard_list(discard_ctl, block_group); 332 } 333 334 /* 335 * Remove a block_group from the discard lists. 336 * 337 * @discard_ctl: discard control 338 * @block_group: block_group of interest 339 * 340 * Remove @block_group from the discard lists. If necessary, wait on the 341 * current work and then reschedule the delayed work. 342 */ 343 void btrfs_discard_cancel_work(struct btrfs_discard_ctl *discard_ctl, 344 struct btrfs_block_group *block_group) 345 { 346 if (remove_from_discard_list(discard_ctl, block_group)) { 347 cancel_delayed_work_sync(&discard_ctl->work); 348 btrfs_discard_schedule_work(discard_ctl, true); 349 } 350 } 351 352 /* 353 * Handles queuing the block_groups. 354 * 355 * @discard_ctl: discard control 356 * @block_group: block_group of interest 357 * 358 * Maintain the LRU order of the discard lists. 359 */ 360 void btrfs_discard_queue_work(struct btrfs_discard_ctl *discard_ctl, 361 struct btrfs_block_group *block_group) 362 { 363 if (!block_group || !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC)) 364 return; 365 366 if (block_group->used == 0) 367 add_to_discard_unused_list(discard_ctl, block_group); 368 else 369 add_to_discard_list(discard_ctl, block_group); 370 371 if (!delayed_work_pending(&discard_ctl->work)) 372 btrfs_discard_schedule_work(discard_ctl, false); 373 } 374 375 static void __btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl, 376 u64 now, bool override) 377 { 378 struct btrfs_block_group *block_group; 379 380 if (!btrfs_run_discard_work(discard_ctl)) 381 return; 382 if (!override && delayed_work_pending(&discard_ctl->work)) 383 return; 384 385 block_group = find_next_block_group(discard_ctl, now); 386 if (block_group) { 387 u64 delay = discard_ctl->delay_ms * NSEC_PER_MSEC; 388 u32 kbps_limit = READ_ONCE(discard_ctl->kbps_limit); 389 390 /* 391 * A single delayed workqueue item is responsible for 392 * discarding, so we can manage the bytes rate limit by keeping 393 * track of the previous discard. 394 */ 395 if (kbps_limit && discard_ctl->prev_discard) { 396 u64 bps_limit = ((u64)kbps_limit) * SZ_1K; 397 u64 bps_delay = div64_u64(discard_ctl->prev_discard * 398 NSEC_PER_SEC, bps_limit); 399 400 delay = max(delay, bps_delay); 401 } 402 403 /* 404 * This timeout is to hopefully prevent immediate discarding 405 * in a recently allocated block group. 406 */ 407 if (now < block_group->discard_eligible_time) { 408 u64 bg_timeout = block_group->discard_eligible_time - now; 409 410 delay = max(delay, bg_timeout); 411 } 412 413 if (override && discard_ctl->prev_discard) { 414 u64 elapsed = now - discard_ctl->prev_discard_time; 415 416 if (delay > elapsed) 417 delay -= elapsed; 418 else 419 delay = 0; 420 } 421 422 mod_delayed_work(discard_ctl->discard_workers, 423 &discard_ctl->work, nsecs_to_jiffies(delay)); 424 } 425 } 426 427 /* 428 * Responsible for scheduling the discard work. 429 * 430 * @discard_ctl: discard control 431 * @override: override the current timer 432 * 433 * Discards are issued by a delayed workqueue item. @override is used to 434 * update the current delay as the baseline delay interval is reevaluated on 435 * transaction commit. This is also maxed with any other rate limit. 436 */ 437 void btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl, 438 bool override) 439 { 440 const u64 now = ktime_get_ns(); 441 442 spin_lock(&discard_ctl->lock); 443 __btrfs_discard_schedule_work(discard_ctl, now, override); 444 spin_unlock(&discard_ctl->lock); 445 } 446 447 /* 448 * Determine next step of a block_group. 449 * 450 * @discard_ctl: discard control 451 * @block_group: block_group of interest 452 * 453 * Determine the next step for a block group after it's finished going through 454 * a pass on a discard list. If it is unused and fully trimmed, we can mark it 455 * unused and send it to the unused_bgs path. Otherwise, pass it onto the 456 * appropriate filter list or let it fall off. 457 */ 458 static void btrfs_finish_discard_pass(struct btrfs_discard_ctl *discard_ctl, 459 struct btrfs_block_group *block_group) 460 { 461 remove_from_discard_list(discard_ctl, block_group); 462 463 if (block_group->used == 0) { 464 if (btrfs_is_free_space_trimmed(block_group)) 465 btrfs_mark_bg_unused(block_group); 466 else 467 add_to_discard_unused_list(discard_ctl, block_group); 468 } else { 469 btrfs_update_discard_index(discard_ctl, block_group); 470 } 471 } 472 473 /* 474 * Discard work queue callback 475 * 476 * @work: work 477 * 478 * Find the next block_group to start discarding and then discard a single 479 * region. It does this in a two-pass fashion: first extents and second 480 * bitmaps. Completely discarded block groups are sent to the unused_bgs path. 481 */ 482 static void btrfs_discard_workfn(struct work_struct *work) 483 { 484 struct btrfs_discard_ctl *discard_ctl; 485 struct btrfs_block_group *block_group; 486 enum btrfs_discard_state discard_state; 487 int discard_index = 0; 488 u64 trimmed = 0; 489 u64 minlen = 0; 490 u64 now = ktime_get_ns(); 491 492 discard_ctl = container_of(work, struct btrfs_discard_ctl, work.work); 493 494 block_group = peek_discard_list(discard_ctl, &discard_state, 495 &discard_index, now); 496 if (!block_group || !btrfs_run_discard_work(discard_ctl)) 497 return; 498 if (now < block_group->discard_eligible_time) { 499 btrfs_discard_schedule_work(discard_ctl, false); 500 return; 501 } 502 503 /* Perform discarding */ 504 minlen = discard_minlen[discard_index]; 505 506 if (discard_state == BTRFS_DISCARD_BITMAPS) { 507 u64 maxlen = 0; 508 509 /* 510 * Use the previous levels minimum discard length as the max 511 * length filter. In the case something is added to make a 512 * region go beyond the max filter, the entire bitmap is set 513 * back to BTRFS_TRIM_STATE_UNTRIMMED. 514 */ 515 if (discard_index != BTRFS_DISCARD_INDEX_UNUSED) 516 maxlen = discard_minlen[discard_index - 1]; 517 518 btrfs_trim_block_group_bitmaps(block_group, &trimmed, 519 block_group->discard_cursor, 520 btrfs_block_group_end(block_group), 521 minlen, maxlen, true); 522 discard_ctl->discard_bitmap_bytes += trimmed; 523 } else { 524 btrfs_trim_block_group_extents(block_group, &trimmed, 525 block_group->discard_cursor, 526 btrfs_block_group_end(block_group), 527 minlen, true); 528 discard_ctl->discard_extent_bytes += trimmed; 529 } 530 531 /* Determine next steps for a block_group */ 532 if (block_group->discard_cursor >= btrfs_block_group_end(block_group)) { 533 if (discard_state == BTRFS_DISCARD_BITMAPS) { 534 btrfs_finish_discard_pass(discard_ctl, block_group); 535 } else { 536 block_group->discard_cursor = block_group->start; 537 spin_lock(&discard_ctl->lock); 538 if (block_group->discard_state != 539 BTRFS_DISCARD_RESET_CURSOR) 540 block_group->discard_state = 541 BTRFS_DISCARD_BITMAPS; 542 spin_unlock(&discard_ctl->lock); 543 } 544 } 545 546 now = ktime_get_ns(); 547 spin_lock(&discard_ctl->lock); 548 discard_ctl->prev_discard = trimmed; 549 discard_ctl->prev_discard_time = now; 550 /* 551 * If the block group was removed from the discard list while it was 552 * running in this workfn, then we didn't deref it, since this function 553 * still owned that reference. But we set the discard_ctl->block_group 554 * back to NULL, so we can use that condition to know that now we need 555 * to deref the block_group. 556 */ 557 if (discard_ctl->block_group == NULL) 558 btrfs_put_block_group(block_group); 559 discard_ctl->block_group = NULL; 560 __btrfs_discard_schedule_work(discard_ctl, now, false); 561 spin_unlock(&discard_ctl->lock); 562 } 563 564 /* 565 * Recalculate the base delay. 566 * 567 * @discard_ctl: discard control 568 * 569 * Recalculate the base delay which is based off the total number of 570 * discardable_extents. Clamp this between the lower_limit (iops_limit or 1ms) 571 * and the upper_limit (BTRFS_DISCARD_MAX_DELAY_MSEC). 572 */ 573 void btrfs_discard_calc_delay(struct btrfs_discard_ctl *discard_ctl) 574 { 575 s32 discardable_extents; 576 s64 discardable_bytes; 577 u32 iops_limit; 578 unsigned long min_delay = BTRFS_DISCARD_MIN_DELAY_MSEC; 579 unsigned long delay; 580 581 discardable_extents = atomic_read(&discard_ctl->discardable_extents); 582 if (!discardable_extents) 583 return; 584 585 spin_lock(&discard_ctl->lock); 586 587 /* 588 * The following is to fix a potential -1 discrepancy that we're not 589 * sure how to reproduce. But given that this is the only place that 590 * utilizes these numbers and this is only called by from 591 * btrfs_finish_extent_commit() which is synchronized, we can correct 592 * here. 593 */ 594 if (discardable_extents < 0) 595 atomic_add(-discardable_extents, 596 &discard_ctl->discardable_extents); 597 598 discardable_bytes = atomic64_read(&discard_ctl->discardable_bytes); 599 if (discardable_bytes < 0) 600 atomic64_add(-discardable_bytes, 601 &discard_ctl->discardable_bytes); 602 603 if (discardable_extents <= 0) { 604 spin_unlock(&discard_ctl->lock); 605 return; 606 } 607 608 iops_limit = READ_ONCE(discard_ctl->iops_limit); 609 610 if (iops_limit) { 611 delay = MSEC_PER_SEC / iops_limit; 612 } else { 613 /* 614 * Unset iops_limit means go as fast as possible, so allow a 615 * delay of 0. 616 */ 617 delay = 0; 618 min_delay = 0; 619 } 620 621 delay = clamp(delay, min_delay, BTRFS_DISCARD_MAX_DELAY_MSEC); 622 discard_ctl->delay_ms = delay; 623 624 spin_unlock(&discard_ctl->lock); 625 } 626 627 /* 628 * Propagate discard counters. 629 * 630 * @block_group: block_group of interest 631 * 632 * Propagate deltas of counters up to the discard_ctl. It maintains a current 633 * counter and a previous counter passing the delta up to the global stat. 634 * Then the current counter value becomes the previous counter value. 635 */ 636 void btrfs_discard_update_discardable(struct btrfs_block_group *block_group) 637 { 638 struct btrfs_free_space_ctl *ctl; 639 struct btrfs_discard_ctl *discard_ctl; 640 s32 extents_delta; 641 s64 bytes_delta; 642 643 if (!block_group || 644 !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC) || 645 !btrfs_is_block_group_data_only(block_group)) 646 return; 647 648 ctl = block_group->free_space_ctl; 649 discard_ctl = &block_group->fs_info->discard_ctl; 650 651 lockdep_assert_held(&ctl->tree_lock); 652 extents_delta = ctl->discardable_extents[BTRFS_STAT_CURR] - 653 ctl->discardable_extents[BTRFS_STAT_PREV]; 654 if (extents_delta) { 655 atomic_add(extents_delta, &discard_ctl->discardable_extents); 656 ctl->discardable_extents[BTRFS_STAT_PREV] = 657 ctl->discardable_extents[BTRFS_STAT_CURR]; 658 } 659 660 bytes_delta = ctl->discardable_bytes[BTRFS_STAT_CURR] - 661 ctl->discardable_bytes[BTRFS_STAT_PREV]; 662 if (bytes_delta) { 663 atomic64_add(bytes_delta, &discard_ctl->discardable_bytes); 664 ctl->discardable_bytes[BTRFS_STAT_PREV] = 665 ctl->discardable_bytes[BTRFS_STAT_CURR]; 666 } 667 } 668 669 /* 670 * Punt unused_bgs list to discard lists. 671 * 672 * @fs_info: fs_info of interest 673 * 674 * The unused_bgs list needs to be punted to the discard lists because the 675 * order of operations is changed. In the normal synchronous discard path, the 676 * block groups are trimmed via a single large trim in transaction commit. This 677 * is ultimately what we are trying to avoid with asynchronous discard. Thus, 678 * it must be done before going down the unused_bgs path. 679 */ 680 void btrfs_discard_punt_unused_bgs_list(struct btrfs_fs_info *fs_info) 681 { 682 struct btrfs_block_group *block_group, *next; 683 684 spin_lock(&fs_info->unused_bgs_lock); 685 /* We enabled async discard, so punt all to the queue */ 686 list_for_each_entry_safe(block_group, next, &fs_info->unused_bgs, 687 bg_list) { 688 list_del_init(&block_group->bg_list); 689 btrfs_discard_queue_work(&fs_info->discard_ctl, block_group); 690 /* 691 * This put is for the get done by btrfs_mark_bg_unused. 692 * Queueing discard incremented it for discard's reference. 693 */ 694 btrfs_put_block_group(block_group); 695 } 696 spin_unlock(&fs_info->unused_bgs_lock); 697 } 698 699 /* 700 * Purge discard lists. 701 * 702 * @discard_ctl: discard control 703 * 704 * If we are disabling async discard, we may have intercepted block groups that 705 * are completely free and ready for the unused_bgs path. As discarding will 706 * now happen in transaction commit or not at all, we can safely mark the 707 * corresponding block groups as unused and they will be sent on their merry 708 * way to the unused_bgs list. 709 */ 710 static void btrfs_discard_purge_list(struct btrfs_discard_ctl *discard_ctl) 711 { 712 struct btrfs_block_group *block_group, *next; 713 int i; 714 715 spin_lock(&discard_ctl->lock); 716 for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) { 717 list_for_each_entry_safe(block_group, next, 718 &discard_ctl->discard_list[i], 719 discard_list) { 720 list_del_init(&block_group->discard_list); 721 spin_unlock(&discard_ctl->lock); 722 if (block_group->used == 0) 723 btrfs_mark_bg_unused(block_group); 724 spin_lock(&discard_ctl->lock); 725 btrfs_put_block_group(block_group); 726 } 727 } 728 spin_unlock(&discard_ctl->lock); 729 } 730 731 void btrfs_discard_resume(struct btrfs_fs_info *fs_info) 732 { 733 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 734 btrfs_discard_cleanup(fs_info); 735 return; 736 } 737 738 btrfs_discard_punt_unused_bgs_list(fs_info); 739 740 set_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags); 741 } 742 743 void btrfs_discard_stop(struct btrfs_fs_info *fs_info) 744 { 745 clear_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags); 746 } 747 748 void btrfs_discard_init(struct btrfs_fs_info *fs_info) 749 { 750 struct btrfs_discard_ctl *discard_ctl = &fs_info->discard_ctl; 751 int i; 752 753 spin_lock_init(&discard_ctl->lock); 754 INIT_DELAYED_WORK(&discard_ctl->work, btrfs_discard_workfn); 755 756 for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) 757 INIT_LIST_HEAD(&discard_ctl->discard_list[i]); 758 759 discard_ctl->prev_discard = 0; 760 discard_ctl->prev_discard_time = 0; 761 atomic_set(&discard_ctl->discardable_extents, 0); 762 atomic64_set(&discard_ctl->discardable_bytes, 0); 763 discard_ctl->max_discard_size = BTRFS_ASYNC_DISCARD_DEFAULT_MAX_SIZE; 764 discard_ctl->delay_ms = BTRFS_DISCARD_MAX_DELAY_MSEC; 765 discard_ctl->iops_limit = BTRFS_DISCARD_MAX_IOPS; 766 discard_ctl->kbps_limit = 0; 767 discard_ctl->discard_extent_bytes = 0; 768 discard_ctl->discard_bitmap_bytes = 0; 769 atomic64_set(&discard_ctl->discard_bytes_saved, 0); 770 } 771 772 void btrfs_discard_cleanup(struct btrfs_fs_info *fs_info) 773 { 774 btrfs_discard_stop(fs_info); 775 cancel_delayed_work_sync(&fs_info->discard_ctl.work); 776 btrfs_discard_purge_list(&fs_info->discard_ctl); 777 } 778