xref: /openbmc/linux/fs/btrfs/discard.c (revision 9df839a711aee437390b16ee39cf0b5c1620be6a)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/jiffies.h>
4 #include <linux/kernel.h>
5 #include <linux/ktime.h>
6 #include <linux/list.h>
7 #include <linux/math64.h>
8 #include <linux/sizes.h>
9 #include <linux/workqueue.h>
10 #include "ctree.h"
11 #include "block-group.h"
12 #include "discard.h"
13 #include "free-space-cache.h"
14 #include "fs.h"
15 
16 /*
17  * This contains the logic to handle async discard.
18  *
19  * Async discard manages trimming of free space outside of transaction commit.
20  * Discarding is done by managing the block_groups on a LRU list based on free
21  * space recency.  Two passes are used to first prioritize discarding extents
22  * and then allow for trimming in the bitmap the best opportunity to coalesce.
23  * The block_groups are maintained on multiple lists to allow for multiple
24  * passes with different discard filter requirements.  A delayed work item is
25  * used to manage discarding with timeout determined by a max of the delay
26  * incurred by the iops rate limit, the byte rate limit, and the max delay of
27  * BTRFS_DISCARD_MAX_DELAY.
28  *
29  * Note, this only keeps track of block_groups that are explicitly for data.
30  * Mixed block_groups are not supported.
31  *
32  * The first list is special to manage discarding of fully free block groups.
33  * This is necessary because we issue a final trim for a full free block group
34  * after forgetting it.  When a block group becomes unused, instead of directly
35  * being added to the unused_bgs list, we add it to this first list.  Then
36  * from there, if it becomes fully discarded, we place it onto the unused_bgs
37  * list.
38  *
39  * The in-memory free space cache serves as the backing state for discard.
40  * Consequently this means there is no persistence.  We opt to load all the
41  * block groups in as not discarded, so the mount case degenerates to the
42  * crashing case.
43  *
44  * As the free space cache uses bitmaps, there exists a tradeoff between
45  * ease/efficiency for find_free_extent() and the accuracy of discard state.
46  * Here we opt to let untrimmed regions merge with everything while only letting
47  * trimmed regions merge with other trimmed regions.  This can cause
48  * overtrimming, but the coalescing benefit seems to be worth it.  Additionally,
49  * bitmap state is tracked as a whole.  If we're able to fully trim a bitmap,
50  * the trimmed flag is set on the bitmap.  Otherwise, if an allocation comes in,
51  * this resets the state and we will retry trimming the whole bitmap.  This is a
52  * tradeoff between discard state accuracy and the cost of accounting.
53  */
54 
55 /* This is an initial delay to give some chance for block reuse */
56 #define BTRFS_DISCARD_DELAY		(120ULL * NSEC_PER_SEC)
57 #define BTRFS_DISCARD_UNUSED_DELAY	(10ULL * NSEC_PER_SEC)
58 
59 /* Target completion latency of discarding all discardable extents */
60 #define BTRFS_DISCARD_TARGET_MSEC	(6 * 60 * 60UL * MSEC_PER_SEC)
61 #define BTRFS_DISCARD_MIN_DELAY_MSEC	(1UL)
62 #define BTRFS_DISCARD_MAX_DELAY_MSEC	(1000UL)
63 #define BTRFS_DISCARD_MAX_IOPS		(10U)
64 
65 /* Monotonically decreasing minimum length filters after index 0 */
66 static int discard_minlen[BTRFS_NR_DISCARD_LISTS] = {
67 	0,
68 	BTRFS_ASYNC_DISCARD_MAX_FILTER,
69 	BTRFS_ASYNC_DISCARD_MIN_FILTER
70 };
71 
72 static struct list_head *get_discard_list(struct btrfs_discard_ctl *discard_ctl,
73 					  struct btrfs_block_group *block_group)
74 {
75 	return &discard_ctl->discard_list[block_group->discard_index];
76 }
77 
78 static void __add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
79 				  struct btrfs_block_group *block_group)
80 {
81 	lockdep_assert_held(&discard_ctl->lock);
82 	if (!btrfs_run_discard_work(discard_ctl))
83 		return;
84 
85 	if (list_empty(&block_group->discard_list) ||
86 	    block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) {
87 		if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED)
88 			block_group->discard_index = BTRFS_DISCARD_INDEX_START;
89 		block_group->discard_eligible_time = (ktime_get_ns() +
90 						      BTRFS_DISCARD_DELAY);
91 		block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
92 	}
93 	if (list_empty(&block_group->discard_list))
94 		btrfs_get_block_group(block_group);
95 
96 	list_move_tail(&block_group->discard_list,
97 		       get_discard_list(discard_ctl, block_group));
98 }
99 
100 static void add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
101 				struct btrfs_block_group *block_group)
102 {
103 	if (!btrfs_is_block_group_data_only(block_group))
104 		return;
105 
106 	spin_lock(&discard_ctl->lock);
107 	__add_to_discard_list(discard_ctl, block_group);
108 	spin_unlock(&discard_ctl->lock);
109 }
110 
111 static void add_to_discard_unused_list(struct btrfs_discard_ctl *discard_ctl,
112 				       struct btrfs_block_group *block_group)
113 {
114 	bool queued;
115 
116 	spin_lock(&discard_ctl->lock);
117 
118 	queued = !list_empty(&block_group->discard_list);
119 
120 	if (!btrfs_run_discard_work(discard_ctl)) {
121 		spin_unlock(&discard_ctl->lock);
122 		return;
123 	}
124 
125 	list_del_init(&block_group->discard_list);
126 
127 	block_group->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
128 	block_group->discard_eligible_time = (ktime_get_ns() +
129 					      BTRFS_DISCARD_UNUSED_DELAY);
130 	block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
131 	if (!queued)
132 		btrfs_get_block_group(block_group);
133 	list_add_tail(&block_group->discard_list,
134 		      &discard_ctl->discard_list[BTRFS_DISCARD_INDEX_UNUSED]);
135 
136 	spin_unlock(&discard_ctl->lock);
137 }
138 
139 static bool remove_from_discard_list(struct btrfs_discard_ctl *discard_ctl,
140 				     struct btrfs_block_group *block_group)
141 {
142 	bool running = false;
143 	bool queued = false;
144 
145 	spin_lock(&discard_ctl->lock);
146 
147 	if (block_group == discard_ctl->block_group) {
148 		running = true;
149 		discard_ctl->block_group = NULL;
150 	}
151 
152 	block_group->discard_eligible_time = 0;
153 	queued = !list_empty(&block_group->discard_list);
154 	list_del_init(&block_group->discard_list);
155 	/*
156 	 * If the block group is currently running in the discard workfn, we
157 	 * don't want to deref it, since it's still being used by the workfn.
158 	 * The workfn will notice this case and deref the block group when it is
159 	 * finished.
160 	 */
161 	if (queued && !running)
162 		btrfs_put_block_group(block_group);
163 
164 	spin_unlock(&discard_ctl->lock);
165 
166 	return running;
167 }
168 
169 /*
170  * Find block_group that's up next for discarding.
171  *
172  * @discard_ctl:  discard control
173  * @now:          current time
174  *
175  * Iterate over the discard lists to find the next block_group up for
176  * discarding checking the discard_eligible_time of block_group.
177  */
178 static struct btrfs_block_group *find_next_block_group(
179 					struct btrfs_discard_ctl *discard_ctl,
180 					u64 now)
181 {
182 	struct btrfs_block_group *ret_block_group = NULL, *block_group;
183 	int i;
184 
185 	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
186 		struct list_head *discard_list = &discard_ctl->discard_list[i];
187 
188 		if (!list_empty(discard_list)) {
189 			block_group = list_first_entry(discard_list,
190 						       struct btrfs_block_group,
191 						       discard_list);
192 
193 			if (!ret_block_group)
194 				ret_block_group = block_group;
195 
196 			if (ret_block_group->discard_eligible_time < now)
197 				break;
198 
199 			if (ret_block_group->discard_eligible_time >
200 			    block_group->discard_eligible_time)
201 				ret_block_group = block_group;
202 		}
203 	}
204 
205 	return ret_block_group;
206 }
207 
208 /*
209  * Look up next block group and set it for use.
210  *
211  * @discard_ctl:   discard control
212  * @discard_state: the discard_state of the block_group after state management
213  * @discard_index: the discard_index of the block_group after state management
214  * @now:           time when discard was invoked, in ns
215  *
216  * Wrap find_next_block_group() and set the block_group to be in use.
217  * @discard_state's control flow is managed here.  Variables related to
218  * @discard_state are reset here as needed (eg. @discard_cursor).  @discard_state
219  * and @discard_index are remembered as it may change while we're discarding,
220  * but we want the discard to execute in the context determined here.
221  */
222 static struct btrfs_block_group *peek_discard_list(
223 					struct btrfs_discard_ctl *discard_ctl,
224 					enum btrfs_discard_state *discard_state,
225 					int *discard_index, u64 now)
226 {
227 	struct btrfs_block_group *block_group;
228 
229 	spin_lock(&discard_ctl->lock);
230 again:
231 	block_group = find_next_block_group(discard_ctl, now);
232 
233 	if (block_group && now >= block_group->discard_eligible_time) {
234 		if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED &&
235 		    block_group->used != 0) {
236 			if (btrfs_is_block_group_data_only(block_group)) {
237 				__add_to_discard_list(discard_ctl, block_group);
238 			} else {
239 				list_del_init(&block_group->discard_list);
240 				btrfs_put_block_group(block_group);
241 			}
242 			goto again;
243 		}
244 		if (block_group->discard_state == BTRFS_DISCARD_RESET_CURSOR) {
245 			block_group->discard_cursor = block_group->start;
246 			block_group->discard_state = BTRFS_DISCARD_EXTENTS;
247 		}
248 		discard_ctl->block_group = block_group;
249 	}
250 	if (block_group) {
251 		*discard_state = block_group->discard_state;
252 		*discard_index = block_group->discard_index;
253 	}
254 	spin_unlock(&discard_ctl->lock);
255 
256 	return block_group;
257 }
258 
259 /*
260  * Update a block group's filters.
261  *
262  * @block_group:  block group of interest
263  * @bytes:        recently freed region size after coalescing
264  *
265  * Async discard maintains multiple lists with progressively smaller filters
266  * to prioritize discarding based on size.  Should a free space that matches
267  * a larger filter be returned to the free_space_cache, prioritize that discard
268  * by moving @block_group to the proper filter.
269  */
270 void btrfs_discard_check_filter(struct btrfs_block_group *block_group,
271 				u64 bytes)
272 {
273 	struct btrfs_discard_ctl *discard_ctl;
274 
275 	if (!block_group ||
276 	    !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
277 		return;
278 
279 	discard_ctl = &block_group->fs_info->discard_ctl;
280 
281 	if (block_group->discard_index > BTRFS_DISCARD_INDEX_START &&
282 	    bytes >= discard_minlen[block_group->discard_index - 1]) {
283 		int i;
284 
285 		remove_from_discard_list(discard_ctl, block_group);
286 
287 		for (i = BTRFS_DISCARD_INDEX_START; i < BTRFS_NR_DISCARD_LISTS;
288 		     i++) {
289 			if (bytes >= discard_minlen[i]) {
290 				block_group->discard_index = i;
291 				add_to_discard_list(discard_ctl, block_group);
292 				break;
293 			}
294 		}
295 	}
296 }
297 
298 /*
299  * Move a block group along the discard lists.
300  *
301  * @discard_ctl: discard control
302  * @block_group: block_group of interest
303  *
304  * Increment @block_group's discard_index.  If it falls of the list, let it be.
305  * Otherwise add it back to the appropriate list.
306  */
307 static void btrfs_update_discard_index(struct btrfs_discard_ctl *discard_ctl,
308 				       struct btrfs_block_group *block_group)
309 {
310 	block_group->discard_index++;
311 	if (block_group->discard_index == BTRFS_NR_DISCARD_LISTS) {
312 		block_group->discard_index = 1;
313 		return;
314 	}
315 
316 	add_to_discard_list(discard_ctl, block_group);
317 }
318 
319 /*
320  * Remove a block_group from the discard lists.
321  *
322  * @discard_ctl: discard control
323  * @block_group: block_group of interest
324  *
325  * Remove @block_group from the discard lists.  If necessary, wait on the
326  * current work and then reschedule the delayed work.
327  */
328 void btrfs_discard_cancel_work(struct btrfs_discard_ctl *discard_ctl,
329 			       struct btrfs_block_group *block_group)
330 {
331 	if (remove_from_discard_list(discard_ctl, block_group)) {
332 		cancel_delayed_work_sync(&discard_ctl->work);
333 		btrfs_discard_schedule_work(discard_ctl, true);
334 	}
335 }
336 
337 /*
338  * Handles queuing the block_groups.
339  *
340  * @discard_ctl: discard control
341  * @block_group: block_group of interest
342  *
343  * Maintain the LRU order of the discard lists.
344  */
345 void btrfs_discard_queue_work(struct btrfs_discard_ctl *discard_ctl,
346 			      struct btrfs_block_group *block_group)
347 {
348 	if (!block_group || !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
349 		return;
350 
351 	if (block_group->used == 0)
352 		add_to_discard_unused_list(discard_ctl, block_group);
353 	else
354 		add_to_discard_list(discard_ctl, block_group);
355 
356 	if (!delayed_work_pending(&discard_ctl->work))
357 		btrfs_discard_schedule_work(discard_ctl, false);
358 }
359 
360 static void __btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl,
361 					  u64 now, bool override)
362 {
363 	struct btrfs_block_group *block_group;
364 
365 	if (!btrfs_run_discard_work(discard_ctl))
366 		return;
367 	if (!override && delayed_work_pending(&discard_ctl->work))
368 		return;
369 
370 	block_group = find_next_block_group(discard_ctl, now);
371 	if (block_group) {
372 		u64 delay = discard_ctl->delay_ms * NSEC_PER_MSEC;
373 		u32 kbps_limit = READ_ONCE(discard_ctl->kbps_limit);
374 
375 		/*
376 		 * A single delayed workqueue item is responsible for
377 		 * discarding, so we can manage the bytes rate limit by keeping
378 		 * track of the previous discard.
379 		 */
380 		if (kbps_limit && discard_ctl->prev_discard) {
381 			u64 bps_limit = ((u64)kbps_limit) * SZ_1K;
382 			u64 bps_delay = div64_u64(discard_ctl->prev_discard *
383 						  NSEC_PER_SEC, bps_limit);
384 
385 			delay = max(delay, bps_delay);
386 		}
387 
388 		/*
389 		 * This timeout is to hopefully prevent immediate discarding
390 		 * in a recently allocated block group.
391 		 */
392 		if (now < block_group->discard_eligible_time) {
393 			u64 bg_timeout = block_group->discard_eligible_time - now;
394 
395 			delay = max(delay, bg_timeout);
396 		}
397 
398 		if (override && discard_ctl->prev_discard) {
399 			u64 elapsed = now - discard_ctl->prev_discard_time;
400 
401 			if (delay > elapsed)
402 				delay -= elapsed;
403 			else
404 				delay = 0;
405 		}
406 
407 		mod_delayed_work(discard_ctl->discard_workers,
408 				 &discard_ctl->work, nsecs_to_jiffies(delay));
409 	}
410 }
411 
412 /*
413  * Responsible for scheduling the discard work.
414  *
415  * @discard_ctl:  discard control
416  * @override:     override the current timer
417  *
418  * Discards are issued by a delayed workqueue item.  @override is used to
419  * update the current delay as the baseline delay interval is reevaluated on
420  * transaction commit.  This is also maxed with any other rate limit.
421  */
422 void btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl,
423 				 bool override)
424 {
425 	const u64 now = ktime_get_ns();
426 
427 	spin_lock(&discard_ctl->lock);
428 	__btrfs_discard_schedule_work(discard_ctl, now, override);
429 	spin_unlock(&discard_ctl->lock);
430 }
431 
432 /*
433  * Determine next step of a block_group.
434  *
435  * @discard_ctl: discard control
436  * @block_group: block_group of interest
437  *
438  * Determine the next step for a block group after it's finished going through
439  * a pass on a discard list.  If it is unused and fully trimmed, we can mark it
440  * unused and send it to the unused_bgs path.  Otherwise, pass it onto the
441  * appropriate filter list or let it fall off.
442  */
443 static void btrfs_finish_discard_pass(struct btrfs_discard_ctl *discard_ctl,
444 				      struct btrfs_block_group *block_group)
445 {
446 	remove_from_discard_list(discard_ctl, block_group);
447 
448 	if (block_group->used == 0) {
449 		if (btrfs_is_free_space_trimmed(block_group))
450 			btrfs_mark_bg_unused(block_group);
451 		else
452 			add_to_discard_unused_list(discard_ctl, block_group);
453 	} else {
454 		btrfs_update_discard_index(discard_ctl, block_group);
455 	}
456 }
457 
458 /*
459  * Discard work queue callback
460  *
461  * @work: work
462  *
463  * Find the next block_group to start discarding and then discard a single
464  * region.  It does this in a two-pass fashion: first extents and second
465  * bitmaps.  Completely discarded block groups are sent to the unused_bgs path.
466  */
467 static void btrfs_discard_workfn(struct work_struct *work)
468 {
469 	struct btrfs_discard_ctl *discard_ctl;
470 	struct btrfs_block_group *block_group;
471 	enum btrfs_discard_state discard_state;
472 	int discard_index = 0;
473 	u64 trimmed = 0;
474 	u64 minlen = 0;
475 	u64 now = ktime_get_ns();
476 
477 	discard_ctl = container_of(work, struct btrfs_discard_ctl, work.work);
478 
479 	block_group = peek_discard_list(discard_ctl, &discard_state,
480 					&discard_index, now);
481 	if (!block_group || !btrfs_run_discard_work(discard_ctl))
482 		return;
483 	if (now < block_group->discard_eligible_time) {
484 		btrfs_discard_schedule_work(discard_ctl, false);
485 		return;
486 	}
487 
488 	/* Perform discarding */
489 	minlen = discard_minlen[discard_index];
490 
491 	if (discard_state == BTRFS_DISCARD_BITMAPS) {
492 		u64 maxlen = 0;
493 
494 		/*
495 		 * Use the previous levels minimum discard length as the max
496 		 * length filter.  In the case something is added to make a
497 		 * region go beyond the max filter, the entire bitmap is set
498 		 * back to BTRFS_TRIM_STATE_UNTRIMMED.
499 		 */
500 		if (discard_index != BTRFS_DISCARD_INDEX_UNUSED)
501 			maxlen = discard_minlen[discard_index - 1];
502 
503 		btrfs_trim_block_group_bitmaps(block_group, &trimmed,
504 				       block_group->discard_cursor,
505 				       btrfs_block_group_end(block_group),
506 				       minlen, maxlen, true);
507 		discard_ctl->discard_bitmap_bytes += trimmed;
508 	} else {
509 		btrfs_trim_block_group_extents(block_group, &trimmed,
510 				       block_group->discard_cursor,
511 				       btrfs_block_group_end(block_group),
512 				       minlen, true);
513 		discard_ctl->discard_extent_bytes += trimmed;
514 	}
515 
516 	/* Determine next steps for a block_group */
517 	if (block_group->discard_cursor >= btrfs_block_group_end(block_group)) {
518 		if (discard_state == BTRFS_DISCARD_BITMAPS) {
519 			btrfs_finish_discard_pass(discard_ctl, block_group);
520 		} else {
521 			block_group->discard_cursor = block_group->start;
522 			spin_lock(&discard_ctl->lock);
523 			if (block_group->discard_state !=
524 			    BTRFS_DISCARD_RESET_CURSOR)
525 				block_group->discard_state =
526 							BTRFS_DISCARD_BITMAPS;
527 			spin_unlock(&discard_ctl->lock);
528 		}
529 	}
530 
531 	now = ktime_get_ns();
532 	spin_lock(&discard_ctl->lock);
533 	discard_ctl->prev_discard = trimmed;
534 	discard_ctl->prev_discard_time = now;
535 	/*
536 	 * If the block group was removed from the discard list while it was
537 	 * running in this workfn, then we didn't deref it, since this function
538 	 * still owned that reference. But we set the discard_ctl->block_group
539 	 * back to NULL, so we can use that condition to know that now we need
540 	 * to deref the block_group.
541 	 */
542 	if (discard_ctl->block_group == NULL)
543 		btrfs_put_block_group(block_group);
544 	discard_ctl->block_group = NULL;
545 	__btrfs_discard_schedule_work(discard_ctl, now, false);
546 	spin_unlock(&discard_ctl->lock);
547 }
548 
549 /*
550  * Determine if async discard should be running.
551  *
552  * @discard_ctl: discard control
553  *
554  * Check if the file system is writeable and BTRFS_FS_DISCARD_RUNNING is set.
555  */
556 bool btrfs_run_discard_work(struct btrfs_discard_ctl *discard_ctl)
557 {
558 	struct btrfs_fs_info *fs_info = container_of(discard_ctl,
559 						     struct btrfs_fs_info,
560 						     discard_ctl);
561 
562 	return (!(fs_info->sb->s_flags & SB_RDONLY) &&
563 		test_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags));
564 }
565 
566 /*
567  * Recalculate the base delay.
568  *
569  * @discard_ctl: discard control
570  *
571  * Recalculate the base delay which is based off the total number of
572  * discardable_extents.  Clamp this between the lower_limit (iops_limit or 1ms)
573  * and the upper_limit (BTRFS_DISCARD_MAX_DELAY_MSEC).
574  */
575 void btrfs_discard_calc_delay(struct btrfs_discard_ctl *discard_ctl)
576 {
577 	s32 discardable_extents;
578 	s64 discardable_bytes;
579 	u32 iops_limit;
580 	unsigned long delay;
581 
582 	discardable_extents = atomic_read(&discard_ctl->discardable_extents);
583 	if (!discardable_extents)
584 		return;
585 
586 	spin_lock(&discard_ctl->lock);
587 
588 	/*
589 	 * The following is to fix a potential -1 discrepancy that we're not
590 	 * sure how to reproduce. But given that this is the only place that
591 	 * utilizes these numbers and this is only called by from
592 	 * btrfs_finish_extent_commit() which is synchronized, we can correct
593 	 * here.
594 	 */
595 	if (discardable_extents < 0)
596 		atomic_add(-discardable_extents,
597 			   &discard_ctl->discardable_extents);
598 
599 	discardable_bytes = atomic64_read(&discard_ctl->discardable_bytes);
600 	if (discardable_bytes < 0)
601 		atomic64_add(-discardable_bytes,
602 			     &discard_ctl->discardable_bytes);
603 
604 	if (discardable_extents <= 0) {
605 		spin_unlock(&discard_ctl->lock);
606 		return;
607 	}
608 
609 	iops_limit = READ_ONCE(discard_ctl->iops_limit);
610 	if (iops_limit)
611 		delay = MSEC_PER_SEC / iops_limit;
612 	else
613 		delay = BTRFS_DISCARD_TARGET_MSEC / discardable_extents;
614 
615 	delay = clamp(delay, BTRFS_DISCARD_MIN_DELAY_MSEC,
616 		      BTRFS_DISCARD_MAX_DELAY_MSEC);
617 	discard_ctl->delay_ms = delay;
618 
619 	spin_unlock(&discard_ctl->lock);
620 }
621 
622 /*
623  * Propagate discard counters.
624  *
625  * @block_group: block_group of interest
626  *
627  * Propagate deltas of counters up to the discard_ctl.  It maintains a current
628  * counter and a previous counter passing the delta up to the global stat.
629  * Then the current counter value becomes the previous counter value.
630  */
631 void btrfs_discard_update_discardable(struct btrfs_block_group *block_group)
632 {
633 	struct btrfs_free_space_ctl *ctl;
634 	struct btrfs_discard_ctl *discard_ctl;
635 	s32 extents_delta;
636 	s64 bytes_delta;
637 
638 	if (!block_group ||
639 	    !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC) ||
640 	    !btrfs_is_block_group_data_only(block_group))
641 		return;
642 
643 	ctl = block_group->free_space_ctl;
644 	discard_ctl = &block_group->fs_info->discard_ctl;
645 
646 	lockdep_assert_held(&ctl->tree_lock);
647 	extents_delta = ctl->discardable_extents[BTRFS_STAT_CURR] -
648 			ctl->discardable_extents[BTRFS_STAT_PREV];
649 	if (extents_delta) {
650 		atomic_add(extents_delta, &discard_ctl->discardable_extents);
651 		ctl->discardable_extents[BTRFS_STAT_PREV] =
652 			ctl->discardable_extents[BTRFS_STAT_CURR];
653 	}
654 
655 	bytes_delta = ctl->discardable_bytes[BTRFS_STAT_CURR] -
656 		      ctl->discardable_bytes[BTRFS_STAT_PREV];
657 	if (bytes_delta) {
658 		atomic64_add(bytes_delta, &discard_ctl->discardable_bytes);
659 		ctl->discardable_bytes[BTRFS_STAT_PREV] =
660 			ctl->discardable_bytes[BTRFS_STAT_CURR];
661 	}
662 }
663 
664 /*
665  * Punt unused_bgs list to discard lists.
666  *
667  * @fs_info: fs_info of interest
668  *
669  * The unused_bgs list needs to be punted to the discard lists because the
670  * order of operations is changed.  In the normal synchronous discard path, the
671  * block groups are trimmed via a single large trim in transaction commit.  This
672  * is ultimately what we are trying to avoid with asynchronous discard.  Thus,
673  * it must be done before going down the unused_bgs path.
674  */
675 void btrfs_discard_punt_unused_bgs_list(struct btrfs_fs_info *fs_info)
676 {
677 	struct btrfs_block_group *block_group, *next;
678 
679 	spin_lock(&fs_info->unused_bgs_lock);
680 	/* We enabled async discard, so punt all to the queue */
681 	list_for_each_entry_safe(block_group, next, &fs_info->unused_bgs,
682 				 bg_list) {
683 		list_del_init(&block_group->bg_list);
684 		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
685 		/*
686 		 * This put is for the get done by btrfs_mark_bg_unused.
687 		 * Queueing discard incremented it for discard's reference.
688 		 */
689 		btrfs_put_block_group(block_group);
690 	}
691 	spin_unlock(&fs_info->unused_bgs_lock);
692 }
693 
694 /*
695  * Purge discard lists.
696  *
697  * @discard_ctl: discard control
698  *
699  * If we are disabling async discard, we may have intercepted block groups that
700  * are completely free and ready for the unused_bgs path.  As discarding will
701  * now happen in transaction commit or not at all, we can safely mark the
702  * corresponding block groups as unused and they will be sent on their merry
703  * way to the unused_bgs list.
704  */
705 static void btrfs_discard_purge_list(struct btrfs_discard_ctl *discard_ctl)
706 {
707 	struct btrfs_block_group *block_group, *next;
708 	int i;
709 
710 	spin_lock(&discard_ctl->lock);
711 	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
712 		list_for_each_entry_safe(block_group, next,
713 					 &discard_ctl->discard_list[i],
714 					 discard_list) {
715 			list_del_init(&block_group->discard_list);
716 			spin_unlock(&discard_ctl->lock);
717 			if (block_group->used == 0)
718 				btrfs_mark_bg_unused(block_group);
719 			spin_lock(&discard_ctl->lock);
720 			btrfs_put_block_group(block_group);
721 		}
722 	}
723 	spin_unlock(&discard_ctl->lock);
724 }
725 
726 void btrfs_discard_resume(struct btrfs_fs_info *fs_info)
727 {
728 	if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
729 		btrfs_discard_cleanup(fs_info);
730 		return;
731 	}
732 
733 	btrfs_discard_punt_unused_bgs_list(fs_info);
734 
735 	set_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
736 }
737 
738 void btrfs_discard_stop(struct btrfs_fs_info *fs_info)
739 {
740 	clear_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
741 }
742 
743 void btrfs_discard_init(struct btrfs_fs_info *fs_info)
744 {
745 	struct btrfs_discard_ctl *discard_ctl = &fs_info->discard_ctl;
746 	int i;
747 
748 	spin_lock_init(&discard_ctl->lock);
749 	INIT_DELAYED_WORK(&discard_ctl->work, btrfs_discard_workfn);
750 
751 	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++)
752 		INIT_LIST_HEAD(&discard_ctl->discard_list[i]);
753 
754 	discard_ctl->prev_discard = 0;
755 	discard_ctl->prev_discard_time = 0;
756 	atomic_set(&discard_ctl->discardable_extents, 0);
757 	atomic64_set(&discard_ctl->discardable_bytes, 0);
758 	discard_ctl->max_discard_size = BTRFS_ASYNC_DISCARD_DEFAULT_MAX_SIZE;
759 	discard_ctl->delay_ms = BTRFS_DISCARD_MAX_DELAY_MSEC;
760 	discard_ctl->iops_limit = BTRFS_DISCARD_MAX_IOPS;
761 	discard_ctl->kbps_limit = 0;
762 	discard_ctl->discard_extent_bytes = 0;
763 	discard_ctl->discard_bitmap_bytes = 0;
764 	atomic64_set(&discard_ctl->discard_bytes_saved, 0);
765 }
766 
767 void btrfs_discard_cleanup(struct btrfs_fs_info *fs_info)
768 {
769 	btrfs_discard_stop(fs_info);
770 	cancel_delayed_work_sync(&fs_info->discard_ctl.work);
771 	btrfs_discard_purge_list(&fs_info->discard_ctl);
772 }
773