xref: /openbmc/linux/fs/btrfs/discard.c (revision 27ab1c1c)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/jiffies.h>
4 #include <linux/kernel.h>
5 #include <linux/ktime.h>
6 #include <linux/list.h>
7 #include <linux/math64.h>
8 #include <linux/sizes.h>
9 #include <linux/workqueue.h>
10 #include "ctree.h"
11 #include "block-group.h"
12 #include "discard.h"
13 #include "free-space-cache.h"
14 
15 /*
16  * This contains the logic to handle async discard.
17  *
18  * Async discard manages trimming of free space outside of transaction commit.
19  * Discarding is done by managing the block_groups on a LRU list based on free
20  * space recency.  Two passes are used to first prioritize discarding extents
21  * and then allow for trimming in the bitmap the best opportunity to coalesce.
22  * The block_groups are maintained on multiple lists to allow for multiple
23  * passes with different discard filter requirements.  A delayed work item is
24  * used to manage discarding with timeout determined by a max of the delay
25  * incurred by the iops rate limit, the byte rate limit, and the max delay of
26  * BTRFS_DISCARD_MAX_DELAY.
27  *
28  * Note, this only keeps track of block_groups that are explicitly for data.
29  * Mixed block_groups are not supported.
30  *
31  * The first list is special to manage discarding of fully free block groups.
32  * This is necessary because we issue a final trim for a full free block group
33  * after forgetting it.  When a block group becomes unused, instead of directly
34  * being added to the unused_bgs list, we add it to this first list.  Then
35  * from there, if it becomes fully discarded, we place it onto the unused_bgs
36  * list.
37  *
38  * The in-memory free space cache serves as the backing state for discard.
39  * Consequently this means there is no persistence.  We opt to load all the
40  * block groups in as not discarded, so the mount case degenerates to the
41  * crashing case.
42  *
43  * As the free space cache uses bitmaps, there exists a tradeoff between
44  * ease/efficiency for find_free_extent() and the accuracy of discard state.
45  * Here we opt to let untrimmed regions merge with everything while only letting
46  * trimmed regions merge with other trimmed regions.  This can cause
47  * overtrimming, but the coalescing benefit seems to be worth it.  Additionally,
48  * bitmap state is tracked as a whole.  If we're able to fully trim a bitmap,
49  * the trimmed flag is set on the bitmap.  Otherwise, if an allocation comes in,
50  * this resets the state and we will retry trimming the whole bitmap.  This is a
51  * tradeoff between discard state accuracy and the cost of accounting.
52  */
53 
54 /* This is an initial delay to give some chance for block reuse */
55 #define BTRFS_DISCARD_DELAY		(120ULL * NSEC_PER_SEC)
56 #define BTRFS_DISCARD_UNUSED_DELAY	(10ULL * NSEC_PER_SEC)
57 
58 /* Target completion latency of discarding all discardable extents */
59 #define BTRFS_DISCARD_TARGET_MSEC	(6 * 60 * 60UL * MSEC_PER_SEC)
60 #define BTRFS_DISCARD_MIN_DELAY_MSEC	(1UL)
61 #define BTRFS_DISCARD_MAX_DELAY_MSEC	(1000UL)
62 #define BTRFS_DISCARD_MAX_IOPS		(10U)
63 
64 /* Montonically decreasing minimum length filters after index 0 */
65 static int discard_minlen[BTRFS_NR_DISCARD_LISTS] = {
66 	0,
67 	BTRFS_ASYNC_DISCARD_MAX_FILTER,
68 	BTRFS_ASYNC_DISCARD_MIN_FILTER
69 };
70 
71 static struct list_head *get_discard_list(struct btrfs_discard_ctl *discard_ctl,
72 					  struct btrfs_block_group *block_group)
73 {
74 	return &discard_ctl->discard_list[block_group->discard_index];
75 }
76 
77 static void __add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
78 				  struct btrfs_block_group *block_group)
79 {
80 	if (!btrfs_run_discard_work(discard_ctl))
81 		return;
82 
83 	if (list_empty(&block_group->discard_list) ||
84 	    block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) {
85 		if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED)
86 			block_group->discard_index = BTRFS_DISCARD_INDEX_START;
87 		block_group->discard_eligible_time = (ktime_get_ns() +
88 						      BTRFS_DISCARD_DELAY);
89 		block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
90 	}
91 
92 	list_move_tail(&block_group->discard_list,
93 		       get_discard_list(discard_ctl, block_group));
94 }
95 
96 static void add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
97 				struct btrfs_block_group *block_group)
98 {
99 	if (!btrfs_is_block_group_data_only(block_group))
100 		return;
101 
102 	spin_lock(&discard_ctl->lock);
103 	__add_to_discard_list(discard_ctl, block_group);
104 	spin_unlock(&discard_ctl->lock);
105 }
106 
107 static void add_to_discard_unused_list(struct btrfs_discard_ctl *discard_ctl,
108 				       struct btrfs_block_group *block_group)
109 {
110 	spin_lock(&discard_ctl->lock);
111 
112 	if (!btrfs_run_discard_work(discard_ctl)) {
113 		spin_unlock(&discard_ctl->lock);
114 		return;
115 	}
116 
117 	list_del_init(&block_group->discard_list);
118 
119 	block_group->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
120 	block_group->discard_eligible_time = (ktime_get_ns() +
121 					      BTRFS_DISCARD_UNUSED_DELAY);
122 	block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
123 	list_add_tail(&block_group->discard_list,
124 		      &discard_ctl->discard_list[BTRFS_DISCARD_INDEX_UNUSED]);
125 
126 	spin_unlock(&discard_ctl->lock);
127 }
128 
129 static bool remove_from_discard_list(struct btrfs_discard_ctl *discard_ctl,
130 				     struct btrfs_block_group *block_group)
131 {
132 	bool running = false;
133 
134 	spin_lock(&discard_ctl->lock);
135 
136 	if (block_group == discard_ctl->block_group) {
137 		running = true;
138 		discard_ctl->block_group = NULL;
139 	}
140 
141 	block_group->discard_eligible_time = 0;
142 	list_del_init(&block_group->discard_list);
143 
144 	spin_unlock(&discard_ctl->lock);
145 
146 	return running;
147 }
148 
149 /**
150  * find_next_block_group - find block_group that's up next for discarding
151  * @discard_ctl: discard control
152  * @now: current time
153  *
154  * Iterate over the discard lists to find the next block_group up for
155  * discarding checking the discard_eligible_time of block_group.
156  */
157 static struct btrfs_block_group *find_next_block_group(
158 					struct btrfs_discard_ctl *discard_ctl,
159 					u64 now)
160 {
161 	struct btrfs_block_group *ret_block_group = NULL, *block_group;
162 	int i;
163 
164 	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
165 		struct list_head *discard_list = &discard_ctl->discard_list[i];
166 
167 		if (!list_empty(discard_list)) {
168 			block_group = list_first_entry(discard_list,
169 						       struct btrfs_block_group,
170 						       discard_list);
171 
172 			if (!ret_block_group)
173 				ret_block_group = block_group;
174 
175 			if (ret_block_group->discard_eligible_time < now)
176 				break;
177 
178 			if (ret_block_group->discard_eligible_time >
179 			    block_group->discard_eligible_time)
180 				ret_block_group = block_group;
181 		}
182 	}
183 
184 	return ret_block_group;
185 }
186 
187 /**
188  * peek_discard_list - wrap find_next_block_group()
189  * @discard_ctl: discard control
190  * @discard_state: the discard_state of the block_group after state management
191  * @discard_index: the discard_index of the block_group after state management
192  *
193  * This wraps find_next_block_group() and sets the block_group to be in use.
194  * discard_state's control flow is managed here.  Variables related to
195  * discard_state are reset here as needed (eg discard_cursor).  @discard_state
196  * and @discard_index are remembered as it may change while we're discarding,
197  * but we want the discard to execute in the context determined here.
198  */
199 static struct btrfs_block_group *peek_discard_list(
200 					struct btrfs_discard_ctl *discard_ctl,
201 					enum btrfs_discard_state *discard_state,
202 					int *discard_index, u64 now)
203 {
204 	struct btrfs_block_group *block_group;
205 
206 	spin_lock(&discard_ctl->lock);
207 again:
208 	block_group = find_next_block_group(discard_ctl, now);
209 
210 	if (block_group && now >= block_group->discard_eligible_time) {
211 		if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED &&
212 		    block_group->used != 0) {
213 			if (btrfs_is_block_group_data_only(block_group))
214 				__add_to_discard_list(discard_ctl, block_group);
215 			else
216 				list_del_init(&block_group->discard_list);
217 			goto again;
218 		}
219 		if (block_group->discard_state == BTRFS_DISCARD_RESET_CURSOR) {
220 			block_group->discard_cursor = block_group->start;
221 			block_group->discard_state = BTRFS_DISCARD_EXTENTS;
222 		}
223 		discard_ctl->block_group = block_group;
224 	}
225 	if (block_group) {
226 		*discard_state = block_group->discard_state;
227 		*discard_index = block_group->discard_index;
228 	}
229 	spin_unlock(&discard_ctl->lock);
230 
231 	return block_group;
232 }
233 
234 /**
235  * btrfs_discard_check_filter - updates a block groups filters
236  * @block_group: block group of interest
237  * @bytes: recently freed region size after coalescing
238  *
239  * Async discard maintains multiple lists with progressively smaller filters
240  * to prioritize discarding based on size.  Should a free space that matches
241  * a larger filter be returned to the free_space_cache, prioritize that discard
242  * by moving @block_group to the proper filter.
243  */
244 void btrfs_discard_check_filter(struct btrfs_block_group *block_group,
245 				u64 bytes)
246 {
247 	struct btrfs_discard_ctl *discard_ctl;
248 
249 	if (!block_group ||
250 	    !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
251 		return;
252 
253 	discard_ctl = &block_group->fs_info->discard_ctl;
254 
255 	if (block_group->discard_index > BTRFS_DISCARD_INDEX_START &&
256 	    bytes >= discard_minlen[block_group->discard_index - 1]) {
257 		int i;
258 
259 		remove_from_discard_list(discard_ctl, block_group);
260 
261 		for (i = BTRFS_DISCARD_INDEX_START; i < BTRFS_NR_DISCARD_LISTS;
262 		     i++) {
263 			if (bytes >= discard_minlen[i]) {
264 				block_group->discard_index = i;
265 				add_to_discard_list(discard_ctl, block_group);
266 				break;
267 			}
268 		}
269 	}
270 }
271 
272 /**
273  * btrfs_update_discard_index - moves a block group along the discard lists
274  * @discard_ctl: discard control
275  * @block_group: block_group of interest
276  *
277  * Increment @block_group's discard_index.  If it falls of the list, let it be.
278  * Otherwise add it back to the appropriate list.
279  */
280 static void btrfs_update_discard_index(struct btrfs_discard_ctl *discard_ctl,
281 				       struct btrfs_block_group *block_group)
282 {
283 	block_group->discard_index++;
284 	if (block_group->discard_index == BTRFS_NR_DISCARD_LISTS) {
285 		block_group->discard_index = 1;
286 		return;
287 	}
288 
289 	add_to_discard_list(discard_ctl, block_group);
290 }
291 
292 /**
293  * btrfs_discard_cancel_work - remove a block_group from the discard lists
294  * @discard_ctl: discard control
295  * @block_group: block_group of interest
296  *
297  * This removes @block_group from the discard lists.  If necessary, it waits on
298  * the current work and then reschedules the delayed work.
299  */
300 void btrfs_discard_cancel_work(struct btrfs_discard_ctl *discard_ctl,
301 			       struct btrfs_block_group *block_group)
302 {
303 	if (remove_from_discard_list(discard_ctl, block_group)) {
304 		cancel_delayed_work_sync(&discard_ctl->work);
305 		btrfs_discard_schedule_work(discard_ctl, true);
306 	}
307 }
308 
309 /**
310  * btrfs_discard_queue_work - handles queuing the block_groups
311  * @discard_ctl: discard control
312  * @block_group: block_group of interest
313  *
314  * This maintains the LRU order of the discard lists.
315  */
316 void btrfs_discard_queue_work(struct btrfs_discard_ctl *discard_ctl,
317 			      struct btrfs_block_group *block_group)
318 {
319 	if (!block_group || !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
320 		return;
321 
322 	if (block_group->used == 0)
323 		add_to_discard_unused_list(discard_ctl, block_group);
324 	else
325 		add_to_discard_list(discard_ctl, block_group);
326 
327 	if (!delayed_work_pending(&discard_ctl->work))
328 		btrfs_discard_schedule_work(discard_ctl, false);
329 }
330 
331 static void __btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl,
332 					  u64 now, bool override)
333 {
334 	struct btrfs_block_group *block_group;
335 
336 	if (!btrfs_run_discard_work(discard_ctl))
337 		return;
338 	if (!override && delayed_work_pending(&discard_ctl->work))
339 		return;
340 
341 	block_group = find_next_block_group(discard_ctl, now);
342 	if (block_group) {
343 		u64 delay = discard_ctl->delay_ms * NSEC_PER_MSEC;
344 		u32 kbps_limit = READ_ONCE(discard_ctl->kbps_limit);
345 
346 		/*
347 		 * A single delayed workqueue item is responsible for
348 		 * discarding, so we can manage the bytes rate limit by keeping
349 		 * track of the previous discard.
350 		 */
351 		if (kbps_limit && discard_ctl->prev_discard) {
352 			u64 bps_limit = ((u64)kbps_limit) * SZ_1K;
353 			u64 bps_delay = div64_u64(discard_ctl->prev_discard *
354 						  NSEC_PER_SEC, bps_limit);
355 
356 			delay = max(delay, bps_delay);
357 		}
358 
359 		/*
360 		 * This timeout is to hopefully prevent immediate discarding
361 		 * in a recently allocated block group.
362 		 */
363 		if (now < block_group->discard_eligible_time) {
364 			u64 bg_timeout = block_group->discard_eligible_time - now;
365 
366 			delay = max(delay, bg_timeout);
367 		}
368 
369 		if (override && discard_ctl->prev_discard) {
370 			u64 elapsed = now - discard_ctl->prev_discard_time;
371 
372 			if (delay > elapsed)
373 				delay -= elapsed;
374 			else
375 				delay = 0;
376 		}
377 
378 		mod_delayed_work(discard_ctl->discard_workers,
379 				 &discard_ctl->work, nsecs_to_jiffies(delay));
380 	}
381 }
382 
383 /*
384  * btrfs_discard_schedule_work - responsible for scheduling the discard work
385  * @discard_ctl:  discard control
386  * @override:     override the current timer
387  *
388  * Discards are issued by a delayed workqueue item.  @override is used to
389  * update the current delay as the baseline delay interval is reevaluated on
390  * transaction commit.  This is also maxed with any other rate limit.
391  */
392 void btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl,
393 				 bool override)
394 {
395 	const u64 now = ktime_get_ns();
396 
397 	spin_lock(&discard_ctl->lock);
398 	__btrfs_discard_schedule_work(discard_ctl, now, override);
399 	spin_unlock(&discard_ctl->lock);
400 }
401 
402 /**
403  * btrfs_finish_discard_pass - determine next step of a block_group
404  * @discard_ctl: discard control
405  * @block_group: block_group of interest
406  *
407  * This determines the next step for a block group after it's finished going
408  * through a pass on a discard list.  If it is unused and fully trimmed, we can
409  * mark it unused and send it to the unused_bgs path.  Otherwise, pass it onto
410  * the appropriate filter list or let it fall off.
411  */
412 static void btrfs_finish_discard_pass(struct btrfs_discard_ctl *discard_ctl,
413 				      struct btrfs_block_group *block_group)
414 {
415 	remove_from_discard_list(discard_ctl, block_group);
416 
417 	if (block_group->used == 0) {
418 		if (btrfs_is_free_space_trimmed(block_group))
419 			btrfs_mark_bg_unused(block_group);
420 		else
421 			add_to_discard_unused_list(discard_ctl, block_group);
422 	} else {
423 		btrfs_update_discard_index(discard_ctl, block_group);
424 	}
425 }
426 
427 /**
428  * btrfs_discard_workfn - discard work function
429  * @work: work
430  *
431  * This finds the next block_group to start discarding and then discards a
432  * single region.  It does this in a two-pass fashion: first extents and second
433  * bitmaps.  Completely discarded block groups are sent to the unused_bgs path.
434  */
435 static void btrfs_discard_workfn(struct work_struct *work)
436 {
437 	struct btrfs_discard_ctl *discard_ctl;
438 	struct btrfs_block_group *block_group;
439 	enum btrfs_discard_state discard_state;
440 	int discard_index = 0;
441 	u64 trimmed = 0;
442 	u64 minlen = 0;
443 	u64 now = ktime_get_ns();
444 
445 	discard_ctl = container_of(work, struct btrfs_discard_ctl, work.work);
446 
447 	block_group = peek_discard_list(discard_ctl, &discard_state,
448 					&discard_index, now);
449 	if (!block_group || !btrfs_run_discard_work(discard_ctl))
450 		return;
451 	if (now < block_group->discard_eligible_time) {
452 		btrfs_discard_schedule_work(discard_ctl, false);
453 		return;
454 	}
455 
456 	/* Perform discarding */
457 	minlen = discard_minlen[discard_index];
458 
459 	if (discard_state == BTRFS_DISCARD_BITMAPS) {
460 		u64 maxlen = 0;
461 
462 		/*
463 		 * Use the previous levels minimum discard length as the max
464 		 * length filter.  In the case something is added to make a
465 		 * region go beyond the max filter, the entire bitmap is set
466 		 * back to BTRFS_TRIM_STATE_UNTRIMMED.
467 		 */
468 		if (discard_index != BTRFS_DISCARD_INDEX_UNUSED)
469 			maxlen = discard_minlen[discard_index - 1];
470 
471 		btrfs_trim_block_group_bitmaps(block_group, &trimmed,
472 				       block_group->discard_cursor,
473 				       btrfs_block_group_end(block_group),
474 				       minlen, maxlen, true);
475 		discard_ctl->discard_bitmap_bytes += trimmed;
476 	} else {
477 		btrfs_trim_block_group_extents(block_group, &trimmed,
478 				       block_group->discard_cursor,
479 				       btrfs_block_group_end(block_group),
480 				       minlen, true);
481 		discard_ctl->discard_extent_bytes += trimmed;
482 	}
483 
484 	/* Determine next steps for a block_group */
485 	if (block_group->discard_cursor >= btrfs_block_group_end(block_group)) {
486 		if (discard_state == BTRFS_DISCARD_BITMAPS) {
487 			btrfs_finish_discard_pass(discard_ctl, block_group);
488 		} else {
489 			block_group->discard_cursor = block_group->start;
490 			spin_lock(&discard_ctl->lock);
491 			if (block_group->discard_state !=
492 			    BTRFS_DISCARD_RESET_CURSOR)
493 				block_group->discard_state =
494 							BTRFS_DISCARD_BITMAPS;
495 			spin_unlock(&discard_ctl->lock);
496 		}
497 	}
498 
499 	now = ktime_get_ns();
500 	spin_lock(&discard_ctl->lock);
501 	discard_ctl->prev_discard = trimmed;
502 	discard_ctl->prev_discard_time = now;
503 	discard_ctl->block_group = NULL;
504 	__btrfs_discard_schedule_work(discard_ctl, now, false);
505 	spin_unlock(&discard_ctl->lock);
506 }
507 
508 /**
509  * btrfs_run_discard_work - determines if async discard should be running
510  * @discard_ctl: discard control
511  *
512  * Checks if the file system is writeable and BTRFS_FS_DISCARD_RUNNING is set.
513  */
514 bool btrfs_run_discard_work(struct btrfs_discard_ctl *discard_ctl)
515 {
516 	struct btrfs_fs_info *fs_info = container_of(discard_ctl,
517 						     struct btrfs_fs_info,
518 						     discard_ctl);
519 
520 	return (!(fs_info->sb->s_flags & SB_RDONLY) &&
521 		test_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags));
522 }
523 
524 /**
525  * btrfs_discard_calc_delay - recalculate the base delay
526  * @discard_ctl: discard control
527  *
528  * Recalculate the base delay which is based off the total number of
529  * discardable_extents.  Clamp this between the lower_limit (iops_limit or 1ms)
530  * and the upper_limit (BTRFS_DISCARD_MAX_DELAY_MSEC).
531  */
532 void btrfs_discard_calc_delay(struct btrfs_discard_ctl *discard_ctl)
533 {
534 	s32 discardable_extents;
535 	s64 discardable_bytes;
536 	u32 iops_limit;
537 	unsigned long delay;
538 
539 	discardable_extents = atomic_read(&discard_ctl->discardable_extents);
540 	if (!discardable_extents)
541 		return;
542 
543 	spin_lock(&discard_ctl->lock);
544 
545 	/*
546 	 * The following is to fix a potential -1 discrepenancy that we're not
547 	 * sure how to reproduce. But given that this is the only place that
548 	 * utilizes these numbers and this is only called by from
549 	 * btrfs_finish_extent_commit() which is synchronized, we can correct
550 	 * here.
551 	 */
552 	if (discardable_extents < 0)
553 		atomic_add(-discardable_extents,
554 			   &discard_ctl->discardable_extents);
555 
556 	discardable_bytes = atomic64_read(&discard_ctl->discardable_bytes);
557 	if (discardable_bytes < 0)
558 		atomic64_add(-discardable_bytes,
559 			     &discard_ctl->discardable_bytes);
560 
561 	if (discardable_extents <= 0) {
562 		spin_unlock(&discard_ctl->lock);
563 		return;
564 	}
565 
566 	iops_limit = READ_ONCE(discard_ctl->iops_limit);
567 	if (iops_limit)
568 		delay = MSEC_PER_SEC / iops_limit;
569 	else
570 		delay = BTRFS_DISCARD_TARGET_MSEC / discardable_extents;
571 
572 	delay = clamp(delay, BTRFS_DISCARD_MIN_DELAY_MSEC,
573 		      BTRFS_DISCARD_MAX_DELAY_MSEC);
574 	discard_ctl->delay_ms = delay;
575 
576 	spin_unlock(&discard_ctl->lock);
577 }
578 
579 /**
580  * btrfs_discard_update_discardable - propagate discard counters
581  * @block_group: block_group of interest
582  *
583  * This propagates deltas of counters up to the discard_ctl.  It maintains a
584  * current counter and a previous counter passing the delta up to the global
585  * stat.  Then the current counter value becomes the previous counter value.
586  */
587 void btrfs_discard_update_discardable(struct btrfs_block_group *block_group)
588 {
589 	struct btrfs_free_space_ctl *ctl;
590 	struct btrfs_discard_ctl *discard_ctl;
591 	s32 extents_delta;
592 	s64 bytes_delta;
593 
594 	if (!block_group ||
595 	    !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC) ||
596 	    !btrfs_is_block_group_data_only(block_group))
597 		return;
598 
599 	ctl = block_group->free_space_ctl;
600 	discard_ctl = &block_group->fs_info->discard_ctl;
601 
602 	lockdep_assert_held(&ctl->tree_lock);
603 	extents_delta = ctl->discardable_extents[BTRFS_STAT_CURR] -
604 			ctl->discardable_extents[BTRFS_STAT_PREV];
605 	if (extents_delta) {
606 		atomic_add(extents_delta, &discard_ctl->discardable_extents);
607 		ctl->discardable_extents[BTRFS_STAT_PREV] =
608 			ctl->discardable_extents[BTRFS_STAT_CURR];
609 	}
610 
611 	bytes_delta = ctl->discardable_bytes[BTRFS_STAT_CURR] -
612 		      ctl->discardable_bytes[BTRFS_STAT_PREV];
613 	if (bytes_delta) {
614 		atomic64_add(bytes_delta, &discard_ctl->discardable_bytes);
615 		ctl->discardable_bytes[BTRFS_STAT_PREV] =
616 			ctl->discardable_bytes[BTRFS_STAT_CURR];
617 	}
618 }
619 
620 /**
621  * btrfs_discard_punt_unused_bgs_list - punt unused_bgs list to discard lists
622  * @fs_info: fs_info of interest
623  *
624  * The unused_bgs list needs to be punted to the discard lists because the
625  * order of operations is changed.  In the normal sychronous discard path, the
626  * block groups are trimmed via a single large trim in transaction commit.  This
627  * is ultimately what we are trying to avoid with asynchronous discard.  Thus,
628  * it must be done before going down the unused_bgs path.
629  */
630 void btrfs_discard_punt_unused_bgs_list(struct btrfs_fs_info *fs_info)
631 {
632 	struct btrfs_block_group *block_group, *next;
633 
634 	spin_lock(&fs_info->unused_bgs_lock);
635 	/* We enabled async discard, so punt all to the queue */
636 	list_for_each_entry_safe(block_group, next, &fs_info->unused_bgs,
637 				 bg_list) {
638 		list_del_init(&block_group->bg_list);
639 		btrfs_put_block_group(block_group);
640 		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
641 	}
642 	spin_unlock(&fs_info->unused_bgs_lock);
643 }
644 
645 /**
646  * btrfs_discard_purge_list - purge discard lists
647  * @discard_ctl: discard control
648  *
649  * If we are disabling async discard, we may have intercepted block groups that
650  * are completely free and ready for the unused_bgs path.  As discarding will
651  * now happen in transaction commit or not at all, we can safely mark the
652  * corresponding block groups as unused and they will be sent on their merry
653  * way to the unused_bgs list.
654  */
655 static void btrfs_discard_purge_list(struct btrfs_discard_ctl *discard_ctl)
656 {
657 	struct btrfs_block_group *block_group, *next;
658 	int i;
659 
660 	spin_lock(&discard_ctl->lock);
661 	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
662 		list_for_each_entry_safe(block_group, next,
663 					 &discard_ctl->discard_list[i],
664 					 discard_list) {
665 			list_del_init(&block_group->discard_list);
666 			spin_unlock(&discard_ctl->lock);
667 			if (block_group->used == 0)
668 				btrfs_mark_bg_unused(block_group);
669 			spin_lock(&discard_ctl->lock);
670 		}
671 	}
672 	spin_unlock(&discard_ctl->lock);
673 }
674 
675 void btrfs_discard_resume(struct btrfs_fs_info *fs_info)
676 {
677 	if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
678 		btrfs_discard_cleanup(fs_info);
679 		return;
680 	}
681 
682 	btrfs_discard_punt_unused_bgs_list(fs_info);
683 
684 	set_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
685 }
686 
687 void btrfs_discard_stop(struct btrfs_fs_info *fs_info)
688 {
689 	clear_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
690 }
691 
692 void btrfs_discard_init(struct btrfs_fs_info *fs_info)
693 {
694 	struct btrfs_discard_ctl *discard_ctl = &fs_info->discard_ctl;
695 	int i;
696 
697 	spin_lock_init(&discard_ctl->lock);
698 	INIT_DELAYED_WORK(&discard_ctl->work, btrfs_discard_workfn);
699 
700 	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++)
701 		INIT_LIST_HEAD(&discard_ctl->discard_list[i]);
702 
703 	discard_ctl->prev_discard = 0;
704 	discard_ctl->prev_discard_time = 0;
705 	atomic_set(&discard_ctl->discardable_extents, 0);
706 	atomic64_set(&discard_ctl->discardable_bytes, 0);
707 	discard_ctl->max_discard_size = BTRFS_ASYNC_DISCARD_DEFAULT_MAX_SIZE;
708 	discard_ctl->delay_ms = BTRFS_DISCARD_MAX_DELAY_MSEC;
709 	discard_ctl->iops_limit = BTRFS_DISCARD_MAX_IOPS;
710 	discard_ctl->kbps_limit = 0;
711 	discard_ctl->discard_extent_bytes = 0;
712 	discard_ctl->discard_bitmap_bytes = 0;
713 	atomic64_set(&discard_ctl->discard_bytes_saved, 0);
714 }
715 
716 void btrfs_discard_cleanup(struct btrfs_fs_info *fs_info)
717 {
718 	btrfs_discard_stop(fs_info);
719 	cancel_delayed_work_sync(&fs_info->discard_ctl.work);
720 	btrfs_discard_purge_list(&fs_info->discard_ctl);
721 }
722