1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/jiffies.h> 4 #include <linux/kernel.h> 5 #include <linux/ktime.h> 6 #include <linux/list.h> 7 #include <linux/math64.h> 8 #include <linux/sizes.h> 9 #include <linux/workqueue.h> 10 #include "ctree.h" 11 #include "block-group.h" 12 #include "discard.h" 13 #include "free-space-cache.h" 14 #include "fs.h" 15 16 /* 17 * This contains the logic to handle async discard. 18 * 19 * Async discard manages trimming of free space outside of transaction commit. 20 * Discarding is done by managing the block_groups on a LRU list based on free 21 * space recency. Two passes are used to first prioritize discarding extents 22 * and then allow for trimming in the bitmap the best opportunity to coalesce. 23 * The block_groups are maintained on multiple lists to allow for multiple 24 * passes with different discard filter requirements. A delayed work item is 25 * used to manage discarding with timeout determined by a max of the delay 26 * incurred by the iops rate limit, the byte rate limit, and the max delay of 27 * BTRFS_DISCARD_MAX_DELAY. 28 * 29 * Note, this only keeps track of block_groups that are explicitly for data. 30 * Mixed block_groups are not supported. 31 * 32 * The first list is special to manage discarding of fully free block groups. 33 * This is necessary because we issue a final trim for a full free block group 34 * after forgetting it. When a block group becomes unused, instead of directly 35 * being added to the unused_bgs list, we add it to this first list. Then 36 * from there, if it becomes fully discarded, we place it onto the unused_bgs 37 * list. 38 * 39 * The in-memory free space cache serves as the backing state for discard. 40 * Consequently this means there is no persistence. We opt to load all the 41 * block groups in as not discarded, so the mount case degenerates to the 42 * crashing case. 43 * 44 * As the free space cache uses bitmaps, there exists a tradeoff between 45 * ease/efficiency for find_free_extent() and the accuracy of discard state. 46 * Here we opt to let untrimmed regions merge with everything while only letting 47 * trimmed regions merge with other trimmed regions. This can cause 48 * overtrimming, but the coalescing benefit seems to be worth it. Additionally, 49 * bitmap state is tracked as a whole. If we're able to fully trim a bitmap, 50 * the trimmed flag is set on the bitmap. Otherwise, if an allocation comes in, 51 * this resets the state and we will retry trimming the whole bitmap. This is a 52 * tradeoff between discard state accuracy and the cost of accounting. 53 */ 54 55 /* This is an initial delay to give some chance for block reuse */ 56 #define BTRFS_DISCARD_DELAY (120ULL * NSEC_PER_SEC) 57 #define BTRFS_DISCARD_UNUSED_DELAY (10ULL * NSEC_PER_SEC) 58 59 #define BTRFS_DISCARD_MIN_DELAY_MSEC (1UL) 60 #define BTRFS_DISCARD_MAX_DELAY_MSEC (1000UL) 61 #define BTRFS_DISCARD_MAX_IOPS (1000U) 62 63 /* Monotonically decreasing minimum length filters after index 0 */ 64 static int discard_minlen[BTRFS_NR_DISCARD_LISTS] = { 65 0, 66 BTRFS_ASYNC_DISCARD_MAX_FILTER, 67 BTRFS_ASYNC_DISCARD_MIN_FILTER 68 }; 69 70 static struct list_head *get_discard_list(struct btrfs_discard_ctl *discard_ctl, 71 struct btrfs_block_group *block_group) 72 { 73 return &discard_ctl->discard_list[block_group->discard_index]; 74 } 75 76 static void __add_to_discard_list(struct btrfs_discard_ctl *discard_ctl, 77 struct btrfs_block_group *block_group) 78 { 79 lockdep_assert_held(&discard_ctl->lock); 80 if (!btrfs_run_discard_work(discard_ctl)) 81 return; 82 83 if (list_empty(&block_group->discard_list) || 84 block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) { 85 if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) 86 block_group->discard_index = BTRFS_DISCARD_INDEX_START; 87 block_group->discard_eligible_time = (ktime_get_ns() + 88 BTRFS_DISCARD_DELAY); 89 block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR; 90 } 91 if (list_empty(&block_group->discard_list)) 92 btrfs_get_block_group(block_group); 93 94 list_move_tail(&block_group->discard_list, 95 get_discard_list(discard_ctl, block_group)); 96 } 97 98 static void add_to_discard_list(struct btrfs_discard_ctl *discard_ctl, 99 struct btrfs_block_group *block_group) 100 { 101 if (!btrfs_is_block_group_data_only(block_group)) 102 return; 103 104 spin_lock(&discard_ctl->lock); 105 __add_to_discard_list(discard_ctl, block_group); 106 spin_unlock(&discard_ctl->lock); 107 } 108 109 static void add_to_discard_unused_list(struct btrfs_discard_ctl *discard_ctl, 110 struct btrfs_block_group *block_group) 111 { 112 bool queued; 113 114 spin_lock(&discard_ctl->lock); 115 116 queued = !list_empty(&block_group->discard_list); 117 118 if (!btrfs_run_discard_work(discard_ctl)) { 119 spin_unlock(&discard_ctl->lock); 120 return; 121 } 122 123 list_del_init(&block_group->discard_list); 124 125 block_group->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 126 block_group->discard_eligible_time = (ktime_get_ns() + 127 BTRFS_DISCARD_UNUSED_DELAY); 128 block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR; 129 if (!queued) 130 btrfs_get_block_group(block_group); 131 list_add_tail(&block_group->discard_list, 132 &discard_ctl->discard_list[BTRFS_DISCARD_INDEX_UNUSED]); 133 134 spin_unlock(&discard_ctl->lock); 135 } 136 137 static bool remove_from_discard_list(struct btrfs_discard_ctl *discard_ctl, 138 struct btrfs_block_group *block_group) 139 { 140 bool running = false; 141 bool queued = false; 142 143 spin_lock(&discard_ctl->lock); 144 145 if (block_group == discard_ctl->block_group) { 146 running = true; 147 discard_ctl->block_group = NULL; 148 } 149 150 block_group->discard_eligible_time = 0; 151 queued = !list_empty(&block_group->discard_list); 152 list_del_init(&block_group->discard_list); 153 /* 154 * If the block group is currently running in the discard workfn, we 155 * don't want to deref it, since it's still being used by the workfn. 156 * The workfn will notice this case and deref the block group when it is 157 * finished. 158 */ 159 if (queued && !running) 160 btrfs_put_block_group(block_group); 161 162 spin_unlock(&discard_ctl->lock); 163 164 return running; 165 } 166 167 /* 168 * Find block_group that's up next for discarding. 169 * 170 * @discard_ctl: discard control 171 * @now: current time 172 * 173 * Iterate over the discard lists to find the next block_group up for 174 * discarding checking the discard_eligible_time of block_group. 175 */ 176 static struct btrfs_block_group *find_next_block_group( 177 struct btrfs_discard_ctl *discard_ctl, 178 u64 now) 179 { 180 struct btrfs_block_group *ret_block_group = NULL, *block_group; 181 int i; 182 183 for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) { 184 struct list_head *discard_list = &discard_ctl->discard_list[i]; 185 186 if (!list_empty(discard_list)) { 187 block_group = list_first_entry(discard_list, 188 struct btrfs_block_group, 189 discard_list); 190 191 if (!ret_block_group) 192 ret_block_group = block_group; 193 194 if (ret_block_group->discard_eligible_time < now) 195 break; 196 197 if (ret_block_group->discard_eligible_time > 198 block_group->discard_eligible_time) 199 ret_block_group = block_group; 200 } 201 } 202 203 return ret_block_group; 204 } 205 206 /* 207 * Look up next block group and set it for use. 208 * 209 * @discard_ctl: discard control 210 * @discard_state: the discard_state of the block_group after state management 211 * @discard_index: the discard_index of the block_group after state management 212 * @now: time when discard was invoked, in ns 213 * 214 * Wrap find_next_block_group() and set the block_group to be in use. 215 * @discard_state's control flow is managed here. Variables related to 216 * @discard_state are reset here as needed (eg. @discard_cursor). @discard_state 217 * and @discard_index are remembered as it may change while we're discarding, 218 * but we want the discard to execute in the context determined here. 219 */ 220 static struct btrfs_block_group *peek_discard_list( 221 struct btrfs_discard_ctl *discard_ctl, 222 enum btrfs_discard_state *discard_state, 223 int *discard_index, u64 now) 224 { 225 struct btrfs_block_group *block_group; 226 227 spin_lock(&discard_ctl->lock); 228 again: 229 block_group = find_next_block_group(discard_ctl, now); 230 231 if (block_group && now >= block_group->discard_eligible_time) { 232 if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED && 233 block_group->used != 0) { 234 if (btrfs_is_block_group_data_only(block_group)) { 235 __add_to_discard_list(discard_ctl, block_group); 236 } else { 237 list_del_init(&block_group->discard_list); 238 btrfs_put_block_group(block_group); 239 } 240 goto again; 241 } 242 if (block_group->discard_state == BTRFS_DISCARD_RESET_CURSOR) { 243 block_group->discard_cursor = block_group->start; 244 block_group->discard_state = BTRFS_DISCARD_EXTENTS; 245 } 246 discard_ctl->block_group = block_group; 247 } 248 if (block_group) { 249 *discard_state = block_group->discard_state; 250 *discard_index = block_group->discard_index; 251 } 252 spin_unlock(&discard_ctl->lock); 253 254 return block_group; 255 } 256 257 /* 258 * Update a block group's filters. 259 * 260 * @block_group: block group of interest 261 * @bytes: recently freed region size after coalescing 262 * 263 * Async discard maintains multiple lists with progressively smaller filters 264 * to prioritize discarding based on size. Should a free space that matches 265 * a larger filter be returned to the free_space_cache, prioritize that discard 266 * by moving @block_group to the proper filter. 267 */ 268 void btrfs_discard_check_filter(struct btrfs_block_group *block_group, 269 u64 bytes) 270 { 271 struct btrfs_discard_ctl *discard_ctl; 272 273 if (!block_group || 274 !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC)) 275 return; 276 277 discard_ctl = &block_group->fs_info->discard_ctl; 278 279 if (block_group->discard_index > BTRFS_DISCARD_INDEX_START && 280 bytes >= discard_minlen[block_group->discard_index - 1]) { 281 int i; 282 283 remove_from_discard_list(discard_ctl, block_group); 284 285 for (i = BTRFS_DISCARD_INDEX_START; i < BTRFS_NR_DISCARD_LISTS; 286 i++) { 287 if (bytes >= discard_minlen[i]) { 288 block_group->discard_index = i; 289 add_to_discard_list(discard_ctl, block_group); 290 break; 291 } 292 } 293 } 294 } 295 296 /* 297 * Move a block group along the discard lists. 298 * 299 * @discard_ctl: discard control 300 * @block_group: block_group of interest 301 * 302 * Increment @block_group's discard_index. If it falls of the list, let it be. 303 * Otherwise add it back to the appropriate list. 304 */ 305 static void btrfs_update_discard_index(struct btrfs_discard_ctl *discard_ctl, 306 struct btrfs_block_group *block_group) 307 { 308 block_group->discard_index++; 309 if (block_group->discard_index == BTRFS_NR_DISCARD_LISTS) { 310 block_group->discard_index = 1; 311 return; 312 } 313 314 add_to_discard_list(discard_ctl, block_group); 315 } 316 317 /* 318 * Remove a block_group from the discard lists. 319 * 320 * @discard_ctl: discard control 321 * @block_group: block_group of interest 322 * 323 * Remove @block_group from the discard lists. If necessary, wait on the 324 * current work and then reschedule the delayed work. 325 */ 326 void btrfs_discard_cancel_work(struct btrfs_discard_ctl *discard_ctl, 327 struct btrfs_block_group *block_group) 328 { 329 if (remove_from_discard_list(discard_ctl, block_group)) { 330 cancel_delayed_work_sync(&discard_ctl->work); 331 btrfs_discard_schedule_work(discard_ctl, true); 332 } 333 } 334 335 /* 336 * Handles queuing the block_groups. 337 * 338 * @discard_ctl: discard control 339 * @block_group: block_group of interest 340 * 341 * Maintain the LRU order of the discard lists. 342 */ 343 void btrfs_discard_queue_work(struct btrfs_discard_ctl *discard_ctl, 344 struct btrfs_block_group *block_group) 345 { 346 if (!block_group || !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC)) 347 return; 348 349 if (block_group->used == 0) 350 add_to_discard_unused_list(discard_ctl, block_group); 351 else 352 add_to_discard_list(discard_ctl, block_group); 353 354 if (!delayed_work_pending(&discard_ctl->work)) 355 btrfs_discard_schedule_work(discard_ctl, false); 356 } 357 358 static void __btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl, 359 u64 now, bool override) 360 { 361 struct btrfs_block_group *block_group; 362 363 if (!btrfs_run_discard_work(discard_ctl)) 364 return; 365 if (!override && delayed_work_pending(&discard_ctl->work)) 366 return; 367 368 block_group = find_next_block_group(discard_ctl, now); 369 if (block_group) { 370 u64 delay = discard_ctl->delay_ms * NSEC_PER_MSEC; 371 u32 kbps_limit = READ_ONCE(discard_ctl->kbps_limit); 372 373 /* 374 * A single delayed workqueue item is responsible for 375 * discarding, so we can manage the bytes rate limit by keeping 376 * track of the previous discard. 377 */ 378 if (kbps_limit && discard_ctl->prev_discard) { 379 u64 bps_limit = ((u64)kbps_limit) * SZ_1K; 380 u64 bps_delay = div64_u64(discard_ctl->prev_discard * 381 NSEC_PER_SEC, bps_limit); 382 383 delay = max(delay, bps_delay); 384 } 385 386 /* 387 * This timeout is to hopefully prevent immediate discarding 388 * in a recently allocated block group. 389 */ 390 if (now < block_group->discard_eligible_time) { 391 u64 bg_timeout = block_group->discard_eligible_time - now; 392 393 delay = max(delay, bg_timeout); 394 } 395 396 if (override && discard_ctl->prev_discard) { 397 u64 elapsed = now - discard_ctl->prev_discard_time; 398 399 if (delay > elapsed) 400 delay -= elapsed; 401 else 402 delay = 0; 403 } 404 405 mod_delayed_work(discard_ctl->discard_workers, 406 &discard_ctl->work, nsecs_to_jiffies(delay)); 407 } 408 } 409 410 /* 411 * Responsible for scheduling the discard work. 412 * 413 * @discard_ctl: discard control 414 * @override: override the current timer 415 * 416 * Discards are issued by a delayed workqueue item. @override is used to 417 * update the current delay as the baseline delay interval is reevaluated on 418 * transaction commit. This is also maxed with any other rate limit. 419 */ 420 void btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl, 421 bool override) 422 { 423 const u64 now = ktime_get_ns(); 424 425 spin_lock(&discard_ctl->lock); 426 __btrfs_discard_schedule_work(discard_ctl, now, override); 427 spin_unlock(&discard_ctl->lock); 428 } 429 430 /* 431 * Determine next step of a block_group. 432 * 433 * @discard_ctl: discard control 434 * @block_group: block_group of interest 435 * 436 * Determine the next step for a block group after it's finished going through 437 * a pass on a discard list. If it is unused and fully trimmed, we can mark it 438 * unused and send it to the unused_bgs path. Otherwise, pass it onto the 439 * appropriate filter list or let it fall off. 440 */ 441 static void btrfs_finish_discard_pass(struct btrfs_discard_ctl *discard_ctl, 442 struct btrfs_block_group *block_group) 443 { 444 remove_from_discard_list(discard_ctl, block_group); 445 446 if (block_group->used == 0) { 447 if (btrfs_is_free_space_trimmed(block_group)) 448 btrfs_mark_bg_unused(block_group); 449 else 450 add_to_discard_unused_list(discard_ctl, block_group); 451 } else { 452 btrfs_update_discard_index(discard_ctl, block_group); 453 } 454 } 455 456 /* 457 * Discard work queue callback 458 * 459 * @work: work 460 * 461 * Find the next block_group to start discarding and then discard a single 462 * region. It does this in a two-pass fashion: first extents and second 463 * bitmaps. Completely discarded block groups are sent to the unused_bgs path. 464 */ 465 static void btrfs_discard_workfn(struct work_struct *work) 466 { 467 struct btrfs_discard_ctl *discard_ctl; 468 struct btrfs_block_group *block_group; 469 enum btrfs_discard_state discard_state; 470 int discard_index = 0; 471 u64 trimmed = 0; 472 u64 minlen = 0; 473 u64 now = ktime_get_ns(); 474 475 discard_ctl = container_of(work, struct btrfs_discard_ctl, work.work); 476 477 block_group = peek_discard_list(discard_ctl, &discard_state, 478 &discard_index, now); 479 if (!block_group || !btrfs_run_discard_work(discard_ctl)) 480 return; 481 if (now < block_group->discard_eligible_time) { 482 btrfs_discard_schedule_work(discard_ctl, false); 483 return; 484 } 485 486 /* Perform discarding */ 487 minlen = discard_minlen[discard_index]; 488 489 if (discard_state == BTRFS_DISCARD_BITMAPS) { 490 u64 maxlen = 0; 491 492 /* 493 * Use the previous levels minimum discard length as the max 494 * length filter. In the case something is added to make a 495 * region go beyond the max filter, the entire bitmap is set 496 * back to BTRFS_TRIM_STATE_UNTRIMMED. 497 */ 498 if (discard_index != BTRFS_DISCARD_INDEX_UNUSED) 499 maxlen = discard_minlen[discard_index - 1]; 500 501 btrfs_trim_block_group_bitmaps(block_group, &trimmed, 502 block_group->discard_cursor, 503 btrfs_block_group_end(block_group), 504 minlen, maxlen, true); 505 discard_ctl->discard_bitmap_bytes += trimmed; 506 } else { 507 btrfs_trim_block_group_extents(block_group, &trimmed, 508 block_group->discard_cursor, 509 btrfs_block_group_end(block_group), 510 minlen, true); 511 discard_ctl->discard_extent_bytes += trimmed; 512 } 513 514 /* Determine next steps for a block_group */ 515 if (block_group->discard_cursor >= btrfs_block_group_end(block_group)) { 516 if (discard_state == BTRFS_DISCARD_BITMAPS) { 517 btrfs_finish_discard_pass(discard_ctl, block_group); 518 } else { 519 block_group->discard_cursor = block_group->start; 520 spin_lock(&discard_ctl->lock); 521 if (block_group->discard_state != 522 BTRFS_DISCARD_RESET_CURSOR) 523 block_group->discard_state = 524 BTRFS_DISCARD_BITMAPS; 525 spin_unlock(&discard_ctl->lock); 526 } 527 } 528 529 now = ktime_get_ns(); 530 spin_lock(&discard_ctl->lock); 531 discard_ctl->prev_discard = trimmed; 532 discard_ctl->prev_discard_time = now; 533 /* 534 * If the block group was removed from the discard list while it was 535 * running in this workfn, then we didn't deref it, since this function 536 * still owned that reference. But we set the discard_ctl->block_group 537 * back to NULL, so we can use that condition to know that now we need 538 * to deref the block_group. 539 */ 540 if (discard_ctl->block_group == NULL) 541 btrfs_put_block_group(block_group); 542 discard_ctl->block_group = NULL; 543 __btrfs_discard_schedule_work(discard_ctl, now, false); 544 spin_unlock(&discard_ctl->lock); 545 } 546 547 /* 548 * Determine if async discard should be running. 549 * 550 * @discard_ctl: discard control 551 * 552 * Check if the file system is writeable and BTRFS_FS_DISCARD_RUNNING is set. 553 */ 554 bool btrfs_run_discard_work(struct btrfs_discard_ctl *discard_ctl) 555 { 556 struct btrfs_fs_info *fs_info = container_of(discard_ctl, 557 struct btrfs_fs_info, 558 discard_ctl); 559 560 return (!(fs_info->sb->s_flags & SB_RDONLY) && 561 test_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags)); 562 } 563 564 /* 565 * Recalculate the base delay. 566 * 567 * @discard_ctl: discard control 568 * 569 * Recalculate the base delay which is based off the total number of 570 * discardable_extents. Clamp this between the lower_limit (iops_limit or 1ms) 571 * and the upper_limit (BTRFS_DISCARD_MAX_DELAY_MSEC). 572 */ 573 void btrfs_discard_calc_delay(struct btrfs_discard_ctl *discard_ctl) 574 { 575 s32 discardable_extents; 576 s64 discardable_bytes; 577 u32 iops_limit; 578 unsigned long min_delay = BTRFS_DISCARD_MIN_DELAY_MSEC; 579 unsigned long delay; 580 581 discardable_extents = atomic_read(&discard_ctl->discardable_extents); 582 if (!discardable_extents) 583 return; 584 585 spin_lock(&discard_ctl->lock); 586 587 /* 588 * The following is to fix a potential -1 discrepancy that we're not 589 * sure how to reproduce. But given that this is the only place that 590 * utilizes these numbers and this is only called by from 591 * btrfs_finish_extent_commit() which is synchronized, we can correct 592 * here. 593 */ 594 if (discardable_extents < 0) 595 atomic_add(-discardable_extents, 596 &discard_ctl->discardable_extents); 597 598 discardable_bytes = atomic64_read(&discard_ctl->discardable_bytes); 599 if (discardable_bytes < 0) 600 atomic64_add(-discardable_bytes, 601 &discard_ctl->discardable_bytes); 602 603 if (discardable_extents <= 0) { 604 spin_unlock(&discard_ctl->lock); 605 return; 606 } 607 608 iops_limit = READ_ONCE(discard_ctl->iops_limit); 609 610 if (iops_limit) { 611 delay = MSEC_PER_SEC / iops_limit; 612 } else { 613 /* 614 * Unset iops_limit means go as fast as possible, so allow a 615 * delay of 0. 616 */ 617 delay = 0; 618 min_delay = 0; 619 } 620 621 delay = clamp(delay, min_delay, BTRFS_DISCARD_MAX_DELAY_MSEC); 622 discard_ctl->delay_ms = delay; 623 624 spin_unlock(&discard_ctl->lock); 625 } 626 627 /* 628 * Propagate discard counters. 629 * 630 * @block_group: block_group of interest 631 * 632 * Propagate deltas of counters up to the discard_ctl. It maintains a current 633 * counter and a previous counter passing the delta up to the global stat. 634 * Then the current counter value becomes the previous counter value. 635 */ 636 void btrfs_discard_update_discardable(struct btrfs_block_group *block_group) 637 { 638 struct btrfs_free_space_ctl *ctl; 639 struct btrfs_discard_ctl *discard_ctl; 640 s32 extents_delta; 641 s64 bytes_delta; 642 643 if (!block_group || 644 !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC) || 645 !btrfs_is_block_group_data_only(block_group)) 646 return; 647 648 ctl = block_group->free_space_ctl; 649 discard_ctl = &block_group->fs_info->discard_ctl; 650 651 lockdep_assert_held(&ctl->tree_lock); 652 extents_delta = ctl->discardable_extents[BTRFS_STAT_CURR] - 653 ctl->discardable_extents[BTRFS_STAT_PREV]; 654 if (extents_delta) { 655 atomic_add(extents_delta, &discard_ctl->discardable_extents); 656 ctl->discardable_extents[BTRFS_STAT_PREV] = 657 ctl->discardable_extents[BTRFS_STAT_CURR]; 658 } 659 660 bytes_delta = ctl->discardable_bytes[BTRFS_STAT_CURR] - 661 ctl->discardable_bytes[BTRFS_STAT_PREV]; 662 if (bytes_delta) { 663 atomic64_add(bytes_delta, &discard_ctl->discardable_bytes); 664 ctl->discardable_bytes[BTRFS_STAT_PREV] = 665 ctl->discardable_bytes[BTRFS_STAT_CURR]; 666 } 667 } 668 669 /* 670 * Punt unused_bgs list to discard lists. 671 * 672 * @fs_info: fs_info of interest 673 * 674 * The unused_bgs list needs to be punted to the discard lists because the 675 * order of operations is changed. In the normal synchronous discard path, the 676 * block groups are trimmed via a single large trim in transaction commit. This 677 * is ultimately what we are trying to avoid with asynchronous discard. Thus, 678 * it must be done before going down the unused_bgs path. 679 */ 680 void btrfs_discard_punt_unused_bgs_list(struct btrfs_fs_info *fs_info) 681 { 682 struct btrfs_block_group *block_group, *next; 683 684 spin_lock(&fs_info->unused_bgs_lock); 685 /* We enabled async discard, so punt all to the queue */ 686 list_for_each_entry_safe(block_group, next, &fs_info->unused_bgs, 687 bg_list) { 688 list_del_init(&block_group->bg_list); 689 btrfs_discard_queue_work(&fs_info->discard_ctl, block_group); 690 /* 691 * This put is for the get done by btrfs_mark_bg_unused. 692 * Queueing discard incremented it for discard's reference. 693 */ 694 btrfs_put_block_group(block_group); 695 } 696 spin_unlock(&fs_info->unused_bgs_lock); 697 } 698 699 /* 700 * Purge discard lists. 701 * 702 * @discard_ctl: discard control 703 * 704 * If we are disabling async discard, we may have intercepted block groups that 705 * are completely free and ready for the unused_bgs path. As discarding will 706 * now happen in transaction commit or not at all, we can safely mark the 707 * corresponding block groups as unused and they will be sent on their merry 708 * way to the unused_bgs list. 709 */ 710 static void btrfs_discard_purge_list(struct btrfs_discard_ctl *discard_ctl) 711 { 712 struct btrfs_block_group *block_group, *next; 713 int i; 714 715 spin_lock(&discard_ctl->lock); 716 for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) { 717 list_for_each_entry_safe(block_group, next, 718 &discard_ctl->discard_list[i], 719 discard_list) { 720 list_del_init(&block_group->discard_list); 721 spin_unlock(&discard_ctl->lock); 722 if (block_group->used == 0) 723 btrfs_mark_bg_unused(block_group); 724 spin_lock(&discard_ctl->lock); 725 btrfs_put_block_group(block_group); 726 } 727 } 728 spin_unlock(&discard_ctl->lock); 729 } 730 731 void btrfs_discard_resume(struct btrfs_fs_info *fs_info) 732 { 733 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 734 btrfs_discard_cleanup(fs_info); 735 return; 736 } 737 738 btrfs_discard_punt_unused_bgs_list(fs_info); 739 740 set_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags); 741 } 742 743 void btrfs_discard_stop(struct btrfs_fs_info *fs_info) 744 { 745 clear_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags); 746 } 747 748 void btrfs_discard_init(struct btrfs_fs_info *fs_info) 749 { 750 struct btrfs_discard_ctl *discard_ctl = &fs_info->discard_ctl; 751 int i; 752 753 spin_lock_init(&discard_ctl->lock); 754 INIT_DELAYED_WORK(&discard_ctl->work, btrfs_discard_workfn); 755 756 for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) 757 INIT_LIST_HEAD(&discard_ctl->discard_list[i]); 758 759 discard_ctl->prev_discard = 0; 760 discard_ctl->prev_discard_time = 0; 761 atomic_set(&discard_ctl->discardable_extents, 0); 762 atomic64_set(&discard_ctl->discardable_bytes, 0); 763 discard_ctl->max_discard_size = BTRFS_ASYNC_DISCARD_DEFAULT_MAX_SIZE; 764 discard_ctl->delay_ms = BTRFS_DISCARD_MAX_DELAY_MSEC; 765 discard_ctl->iops_limit = BTRFS_DISCARD_MAX_IOPS; 766 discard_ctl->kbps_limit = 0; 767 discard_ctl->discard_extent_bytes = 0; 768 discard_ctl->discard_bitmap_bytes = 0; 769 atomic64_set(&discard_ctl->discard_bytes_saved, 0); 770 } 771 772 void btrfs_discard_cleanup(struct btrfs_fs_info *fs_info) 773 { 774 btrfs_discard_stop(fs_info); 775 cancel_delayed_work_sync(&fs_info->discard_ctl.work); 776 btrfs_discard_purge_list(&fs_info->discard_ctl); 777 } 778