1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2009 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/sort.h> 9 #include "messages.h" 10 #include "ctree.h" 11 #include "delayed-ref.h" 12 #include "transaction.h" 13 #include "qgroup.h" 14 #include "space-info.h" 15 #include "tree-mod-log.h" 16 #include "fs.h" 17 18 struct kmem_cache *btrfs_delayed_ref_head_cachep; 19 struct kmem_cache *btrfs_delayed_tree_ref_cachep; 20 struct kmem_cache *btrfs_delayed_data_ref_cachep; 21 struct kmem_cache *btrfs_delayed_extent_op_cachep; 22 /* 23 * delayed back reference update tracking. For subvolume trees 24 * we queue up extent allocations and backref maintenance for 25 * delayed processing. This avoids deep call chains where we 26 * add extents in the middle of btrfs_search_slot, and it allows 27 * us to buffer up frequently modified backrefs in an rb tree instead 28 * of hammering updates on the extent allocation tree. 29 */ 30 31 bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info) 32 { 33 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 34 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 35 bool ret = false; 36 u64 reserved; 37 38 spin_lock(&global_rsv->lock); 39 reserved = global_rsv->reserved; 40 spin_unlock(&global_rsv->lock); 41 42 /* 43 * Since the global reserve is just kind of magic we don't really want 44 * to rely on it to save our bacon, so if our size is more than the 45 * delayed_refs_rsv and the global rsv then it's time to think about 46 * bailing. 47 */ 48 spin_lock(&delayed_refs_rsv->lock); 49 reserved += delayed_refs_rsv->reserved; 50 if (delayed_refs_rsv->size >= reserved) 51 ret = true; 52 spin_unlock(&delayed_refs_rsv->lock); 53 return ret; 54 } 55 56 /* 57 * Release a ref head's reservation. 58 * 59 * @fs_info: the filesystem 60 * @nr: number of items to drop 61 * 62 * Drops the delayed ref head's count from the delayed refs rsv and free any 63 * excess reservation we had. 64 */ 65 void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr) 66 { 67 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv; 68 const u64 num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, nr); 69 u64 released = 0; 70 71 released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL); 72 if (released) 73 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 74 0, released, 0); 75 } 76 77 /* 78 * Adjust the size of the delayed refs rsv. 79 * 80 * This is to be called anytime we may have adjusted trans->delayed_ref_updates, 81 * it'll calculate the additional size and add it to the delayed_refs_rsv. 82 */ 83 void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans) 84 { 85 struct btrfs_fs_info *fs_info = trans->fs_info; 86 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv; 87 u64 num_bytes; 88 89 if (!trans->delayed_ref_updates) 90 return; 91 92 num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, 93 trans->delayed_ref_updates); 94 95 spin_lock(&delayed_rsv->lock); 96 delayed_rsv->size += num_bytes; 97 delayed_rsv->full = false; 98 spin_unlock(&delayed_rsv->lock); 99 trans->delayed_ref_updates = 0; 100 } 101 102 /* 103 * Transfer bytes to our delayed refs rsv. 104 * 105 * @fs_info: the filesystem 106 * @num_bytes: number of bytes to transfer 107 * 108 * This transfers up to the num_bytes amount, previously reserved, to the 109 * delayed_refs_rsv. Any extra bytes are returned to the space info. 110 */ 111 void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info, 112 u64 num_bytes) 113 { 114 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 115 u64 to_free = 0; 116 117 spin_lock(&delayed_refs_rsv->lock); 118 if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) { 119 u64 delta = delayed_refs_rsv->size - 120 delayed_refs_rsv->reserved; 121 if (num_bytes > delta) { 122 to_free = num_bytes - delta; 123 num_bytes = delta; 124 } 125 } else { 126 to_free = num_bytes; 127 num_bytes = 0; 128 } 129 130 if (num_bytes) 131 delayed_refs_rsv->reserved += num_bytes; 132 if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size) 133 delayed_refs_rsv->full = true; 134 spin_unlock(&delayed_refs_rsv->lock); 135 136 if (num_bytes) 137 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 138 0, num_bytes, 1); 139 if (to_free) 140 btrfs_space_info_free_bytes_may_use(fs_info, 141 delayed_refs_rsv->space_info, to_free); 142 } 143 144 /* 145 * Refill based on our delayed refs usage. 146 * 147 * @fs_info: the filesystem 148 * @flush: control how we can flush for this reservation. 149 * 150 * This will refill the delayed block_rsv up to 1 items size worth of space and 151 * will return -ENOSPC if we can't make the reservation. 152 */ 153 int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info, 154 enum btrfs_reserve_flush_enum flush) 155 { 156 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv; 157 u64 limit = btrfs_calc_delayed_ref_bytes(fs_info, 1); 158 u64 num_bytes = 0; 159 u64 refilled_bytes; 160 u64 to_free; 161 int ret = -ENOSPC; 162 163 spin_lock(&block_rsv->lock); 164 if (block_rsv->reserved < block_rsv->size) { 165 num_bytes = block_rsv->size - block_rsv->reserved; 166 num_bytes = min(num_bytes, limit); 167 } 168 spin_unlock(&block_rsv->lock); 169 170 if (!num_bytes) 171 return 0; 172 173 ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush); 174 if (ret) 175 return ret; 176 177 /* 178 * We may have raced with someone else, so check again if we the block 179 * reserve is still not full and release any excess space. 180 */ 181 spin_lock(&block_rsv->lock); 182 if (block_rsv->reserved < block_rsv->size) { 183 u64 needed = block_rsv->size - block_rsv->reserved; 184 185 if (num_bytes >= needed) { 186 block_rsv->reserved += needed; 187 block_rsv->full = true; 188 to_free = num_bytes - needed; 189 refilled_bytes = needed; 190 } else { 191 block_rsv->reserved += num_bytes; 192 to_free = 0; 193 refilled_bytes = num_bytes; 194 } 195 } else { 196 to_free = num_bytes; 197 refilled_bytes = 0; 198 } 199 spin_unlock(&block_rsv->lock); 200 201 if (to_free > 0) 202 btrfs_space_info_free_bytes_may_use(fs_info, block_rsv->space_info, 203 to_free); 204 205 if (refilled_bytes > 0) 206 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 0, 207 refilled_bytes, 1); 208 return 0; 209 } 210 211 /* 212 * compare two delayed tree backrefs with same bytenr and type 213 */ 214 static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1, 215 struct btrfs_delayed_tree_ref *ref2) 216 { 217 if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) { 218 if (ref1->root < ref2->root) 219 return -1; 220 if (ref1->root > ref2->root) 221 return 1; 222 } else { 223 if (ref1->parent < ref2->parent) 224 return -1; 225 if (ref1->parent > ref2->parent) 226 return 1; 227 } 228 return 0; 229 } 230 231 /* 232 * compare two delayed data backrefs with same bytenr and type 233 */ 234 static int comp_data_refs(struct btrfs_delayed_data_ref *ref1, 235 struct btrfs_delayed_data_ref *ref2) 236 { 237 if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) { 238 if (ref1->root < ref2->root) 239 return -1; 240 if (ref1->root > ref2->root) 241 return 1; 242 if (ref1->objectid < ref2->objectid) 243 return -1; 244 if (ref1->objectid > ref2->objectid) 245 return 1; 246 if (ref1->offset < ref2->offset) 247 return -1; 248 if (ref1->offset > ref2->offset) 249 return 1; 250 } else { 251 if (ref1->parent < ref2->parent) 252 return -1; 253 if (ref1->parent > ref2->parent) 254 return 1; 255 } 256 return 0; 257 } 258 259 static int comp_refs(struct btrfs_delayed_ref_node *ref1, 260 struct btrfs_delayed_ref_node *ref2, 261 bool check_seq) 262 { 263 int ret = 0; 264 265 if (ref1->type < ref2->type) 266 return -1; 267 if (ref1->type > ref2->type) 268 return 1; 269 if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY || 270 ref1->type == BTRFS_SHARED_BLOCK_REF_KEY) 271 ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1), 272 btrfs_delayed_node_to_tree_ref(ref2)); 273 else 274 ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1), 275 btrfs_delayed_node_to_data_ref(ref2)); 276 if (ret) 277 return ret; 278 if (check_seq) { 279 if (ref1->seq < ref2->seq) 280 return -1; 281 if (ref1->seq > ref2->seq) 282 return 1; 283 } 284 return 0; 285 } 286 287 /* insert a new ref to head ref rbtree */ 288 static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root, 289 struct rb_node *node) 290 { 291 struct rb_node **p = &root->rb_root.rb_node; 292 struct rb_node *parent_node = NULL; 293 struct btrfs_delayed_ref_head *entry; 294 struct btrfs_delayed_ref_head *ins; 295 u64 bytenr; 296 bool leftmost = true; 297 298 ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node); 299 bytenr = ins->bytenr; 300 while (*p) { 301 parent_node = *p; 302 entry = rb_entry(parent_node, struct btrfs_delayed_ref_head, 303 href_node); 304 305 if (bytenr < entry->bytenr) { 306 p = &(*p)->rb_left; 307 } else if (bytenr > entry->bytenr) { 308 p = &(*p)->rb_right; 309 leftmost = false; 310 } else { 311 return entry; 312 } 313 } 314 315 rb_link_node(node, parent_node, p); 316 rb_insert_color_cached(node, root, leftmost); 317 return NULL; 318 } 319 320 static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root, 321 struct btrfs_delayed_ref_node *ins) 322 { 323 struct rb_node **p = &root->rb_root.rb_node; 324 struct rb_node *node = &ins->ref_node; 325 struct rb_node *parent_node = NULL; 326 struct btrfs_delayed_ref_node *entry; 327 bool leftmost = true; 328 329 while (*p) { 330 int comp; 331 332 parent_node = *p; 333 entry = rb_entry(parent_node, struct btrfs_delayed_ref_node, 334 ref_node); 335 comp = comp_refs(ins, entry, true); 336 if (comp < 0) { 337 p = &(*p)->rb_left; 338 } else if (comp > 0) { 339 p = &(*p)->rb_right; 340 leftmost = false; 341 } else { 342 return entry; 343 } 344 } 345 346 rb_link_node(node, parent_node, p); 347 rb_insert_color_cached(node, root, leftmost); 348 return NULL; 349 } 350 351 static struct btrfs_delayed_ref_head *find_first_ref_head( 352 struct btrfs_delayed_ref_root *dr) 353 { 354 struct rb_node *n; 355 struct btrfs_delayed_ref_head *entry; 356 357 n = rb_first_cached(&dr->href_root); 358 if (!n) 359 return NULL; 360 361 entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node); 362 363 return entry; 364 } 365 366 /* 367 * Find a head entry based on bytenr. This returns the delayed ref head if it 368 * was able to find one, or NULL if nothing was in that spot. If return_bigger 369 * is given, the next bigger entry is returned if no exact match is found. 370 */ 371 static struct btrfs_delayed_ref_head *find_ref_head( 372 struct btrfs_delayed_ref_root *dr, u64 bytenr, 373 bool return_bigger) 374 { 375 struct rb_root *root = &dr->href_root.rb_root; 376 struct rb_node *n; 377 struct btrfs_delayed_ref_head *entry; 378 379 n = root->rb_node; 380 entry = NULL; 381 while (n) { 382 entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node); 383 384 if (bytenr < entry->bytenr) 385 n = n->rb_left; 386 else if (bytenr > entry->bytenr) 387 n = n->rb_right; 388 else 389 return entry; 390 } 391 if (entry && return_bigger) { 392 if (bytenr > entry->bytenr) { 393 n = rb_next(&entry->href_node); 394 if (!n) 395 return NULL; 396 entry = rb_entry(n, struct btrfs_delayed_ref_head, 397 href_node); 398 } 399 return entry; 400 } 401 return NULL; 402 } 403 404 int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs, 405 struct btrfs_delayed_ref_head *head) 406 { 407 lockdep_assert_held(&delayed_refs->lock); 408 if (mutex_trylock(&head->mutex)) 409 return 0; 410 411 refcount_inc(&head->refs); 412 spin_unlock(&delayed_refs->lock); 413 414 mutex_lock(&head->mutex); 415 spin_lock(&delayed_refs->lock); 416 if (RB_EMPTY_NODE(&head->href_node)) { 417 mutex_unlock(&head->mutex); 418 btrfs_put_delayed_ref_head(head); 419 return -EAGAIN; 420 } 421 btrfs_put_delayed_ref_head(head); 422 return 0; 423 } 424 425 static inline void drop_delayed_ref(struct btrfs_delayed_ref_root *delayed_refs, 426 struct btrfs_delayed_ref_head *head, 427 struct btrfs_delayed_ref_node *ref) 428 { 429 lockdep_assert_held(&head->lock); 430 rb_erase_cached(&ref->ref_node, &head->ref_tree); 431 RB_CLEAR_NODE(&ref->ref_node); 432 if (!list_empty(&ref->add_list)) 433 list_del(&ref->add_list); 434 btrfs_put_delayed_ref(ref); 435 atomic_dec(&delayed_refs->num_entries); 436 } 437 438 static bool merge_ref(struct btrfs_delayed_ref_root *delayed_refs, 439 struct btrfs_delayed_ref_head *head, 440 struct btrfs_delayed_ref_node *ref, 441 u64 seq) 442 { 443 struct btrfs_delayed_ref_node *next; 444 struct rb_node *node = rb_next(&ref->ref_node); 445 bool done = false; 446 447 while (!done && node) { 448 int mod; 449 450 next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 451 node = rb_next(node); 452 if (seq && next->seq >= seq) 453 break; 454 if (comp_refs(ref, next, false)) 455 break; 456 457 if (ref->action == next->action) { 458 mod = next->ref_mod; 459 } else { 460 if (ref->ref_mod < next->ref_mod) { 461 swap(ref, next); 462 done = true; 463 } 464 mod = -next->ref_mod; 465 } 466 467 drop_delayed_ref(delayed_refs, head, next); 468 ref->ref_mod += mod; 469 if (ref->ref_mod == 0) { 470 drop_delayed_ref(delayed_refs, head, ref); 471 done = true; 472 } else { 473 /* 474 * Can't have multiples of the same ref on a tree block. 475 */ 476 WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY || 477 ref->type == BTRFS_SHARED_BLOCK_REF_KEY); 478 } 479 } 480 481 return done; 482 } 483 484 void btrfs_merge_delayed_refs(struct btrfs_fs_info *fs_info, 485 struct btrfs_delayed_ref_root *delayed_refs, 486 struct btrfs_delayed_ref_head *head) 487 { 488 struct btrfs_delayed_ref_node *ref; 489 struct rb_node *node; 490 u64 seq = 0; 491 492 lockdep_assert_held(&head->lock); 493 494 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 495 return; 496 497 /* We don't have too many refs to merge for data. */ 498 if (head->is_data) 499 return; 500 501 seq = btrfs_tree_mod_log_lowest_seq(fs_info); 502 again: 503 for (node = rb_first_cached(&head->ref_tree); node; 504 node = rb_next(node)) { 505 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 506 if (seq && ref->seq >= seq) 507 continue; 508 if (merge_ref(delayed_refs, head, ref, seq)) 509 goto again; 510 } 511 } 512 513 int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq) 514 { 515 int ret = 0; 516 u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info); 517 518 if (min_seq != 0 && seq >= min_seq) { 519 btrfs_debug(fs_info, 520 "holding back delayed_ref %llu, lowest is %llu", 521 seq, min_seq); 522 ret = 1; 523 } 524 525 return ret; 526 } 527 528 struct btrfs_delayed_ref_head *btrfs_select_ref_head( 529 struct btrfs_delayed_ref_root *delayed_refs) 530 { 531 struct btrfs_delayed_ref_head *head; 532 533 lockdep_assert_held(&delayed_refs->lock); 534 again: 535 head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start, 536 true); 537 if (!head && delayed_refs->run_delayed_start != 0) { 538 delayed_refs->run_delayed_start = 0; 539 head = find_first_ref_head(delayed_refs); 540 } 541 if (!head) 542 return NULL; 543 544 while (head->processing) { 545 struct rb_node *node; 546 547 node = rb_next(&head->href_node); 548 if (!node) { 549 if (delayed_refs->run_delayed_start == 0) 550 return NULL; 551 delayed_refs->run_delayed_start = 0; 552 goto again; 553 } 554 head = rb_entry(node, struct btrfs_delayed_ref_head, 555 href_node); 556 } 557 558 head->processing = true; 559 WARN_ON(delayed_refs->num_heads_ready == 0); 560 delayed_refs->num_heads_ready--; 561 delayed_refs->run_delayed_start = head->bytenr + 562 head->num_bytes; 563 return head; 564 } 565 566 void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 567 struct btrfs_delayed_ref_head *head) 568 { 569 lockdep_assert_held(&delayed_refs->lock); 570 lockdep_assert_held(&head->lock); 571 572 rb_erase_cached(&head->href_node, &delayed_refs->href_root); 573 RB_CLEAR_NODE(&head->href_node); 574 atomic_dec(&delayed_refs->num_entries); 575 delayed_refs->num_heads--; 576 if (!head->processing) 577 delayed_refs->num_heads_ready--; 578 } 579 580 /* 581 * Helper to insert the ref_node to the tail or merge with tail. 582 * 583 * Return false if the ref was inserted. 584 * Return true if the ref was merged into an existing one (and therefore can be 585 * freed by the caller). 586 */ 587 static bool insert_delayed_ref(struct btrfs_delayed_ref_root *root, 588 struct btrfs_delayed_ref_head *href, 589 struct btrfs_delayed_ref_node *ref) 590 { 591 struct btrfs_delayed_ref_node *exist; 592 int mod; 593 594 spin_lock(&href->lock); 595 exist = tree_insert(&href->ref_tree, ref); 596 if (!exist) { 597 if (ref->action == BTRFS_ADD_DELAYED_REF) 598 list_add_tail(&ref->add_list, &href->ref_add_list); 599 atomic_inc(&root->num_entries); 600 spin_unlock(&href->lock); 601 return false; 602 } 603 604 /* Now we are sure we can merge */ 605 if (exist->action == ref->action) { 606 mod = ref->ref_mod; 607 } else { 608 /* Need to change action */ 609 if (exist->ref_mod < ref->ref_mod) { 610 exist->action = ref->action; 611 mod = -exist->ref_mod; 612 exist->ref_mod = ref->ref_mod; 613 if (ref->action == BTRFS_ADD_DELAYED_REF) 614 list_add_tail(&exist->add_list, 615 &href->ref_add_list); 616 else if (ref->action == BTRFS_DROP_DELAYED_REF) { 617 ASSERT(!list_empty(&exist->add_list)); 618 list_del_init(&exist->add_list); 619 } else { 620 ASSERT(0); 621 } 622 } else 623 mod = -ref->ref_mod; 624 } 625 exist->ref_mod += mod; 626 627 /* remove existing tail if its ref_mod is zero */ 628 if (exist->ref_mod == 0) 629 drop_delayed_ref(root, href, exist); 630 spin_unlock(&href->lock); 631 return true; 632 } 633 634 /* 635 * helper function to update the accounting in the head ref 636 * existing and update must have the same bytenr 637 */ 638 static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans, 639 struct btrfs_delayed_ref_head *existing, 640 struct btrfs_delayed_ref_head *update) 641 { 642 struct btrfs_delayed_ref_root *delayed_refs = 643 &trans->transaction->delayed_refs; 644 struct btrfs_fs_info *fs_info = trans->fs_info; 645 int old_ref_mod; 646 647 BUG_ON(existing->is_data != update->is_data); 648 649 spin_lock(&existing->lock); 650 if (update->must_insert_reserved) { 651 /* if the extent was freed and then 652 * reallocated before the delayed ref 653 * entries were processed, we can end up 654 * with an existing head ref without 655 * the must_insert_reserved flag set. 656 * Set it again here 657 */ 658 existing->must_insert_reserved = update->must_insert_reserved; 659 660 /* 661 * update the num_bytes so we make sure the accounting 662 * is done correctly 663 */ 664 existing->num_bytes = update->num_bytes; 665 666 } 667 668 if (update->extent_op) { 669 if (!existing->extent_op) { 670 existing->extent_op = update->extent_op; 671 } else { 672 if (update->extent_op->update_key) { 673 memcpy(&existing->extent_op->key, 674 &update->extent_op->key, 675 sizeof(update->extent_op->key)); 676 existing->extent_op->update_key = true; 677 } 678 if (update->extent_op->update_flags) { 679 existing->extent_op->flags_to_set |= 680 update->extent_op->flags_to_set; 681 existing->extent_op->update_flags = true; 682 } 683 btrfs_free_delayed_extent_op(update->extent_op); 684 } 685 } 686 /* 687 * update the reference mod on the head to reflect this new operation, 688 * only need the lock for this case cause we could be processing it 689 * currently, for refs we just added we know we're a-ok. 690 */ 691 old_ref_mod = existing->total_ref_mod; 692 existing->ref_mod += update->ref_mod; 693 existing->total_ref_mod += update->ref_mod; 694 695 /* 696 * If we are going to from a positive ref mod to a negative or vice 697 * versa we need to make sure to adjust pending_csums accordingly. 698 */ 699 if (existing->is_data) { 700 u64 csum_leaves = 701 btrfs_csum_bytes_to_leaves(fs_info, 702 existing->num_bytes); 703 704 if (existing->total_ref_mod >= 0 && old_ref_mod < 0) { 705 delayed_refs->pending_csums -= existing->num_bytes; 706 btrfs_delayed_refs_rsv_release(fs_info, csum_leaves); 707 } 708 if (existing->total_ref_mod < 0 && old_ref_mod >= 0) { 709 delayed_refs->pending_csums += existing->num_bytes; 710 trans->delayed_ref_updates += csum_leaves; 711 } 712 } 713 714 spin_unlock(&existing->lock); 715 } 716 717 static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref, 718 struct btrfs_qgroup_extent_record *qrecord, 719 u64 bytenr, u64 num_bytes, u64 ref_root, 720 u64 reserved, int action, bool is_data, 721 bool is_system) 722 { 723 int count_mod = 1; 724 bool must_insert_reserved = false; 725 726 /* If reserved is provided, it must be a data extent. */ 727 BUG_ON(!is_data && reserved); 728 729 switch (action) { 730 case BTRFS_UPDATE_DELAYED_HEAD: 731 count_mod = 0; 732 break; 733 case BTRFS_DROP_DELAYED_REF: 734 /* 735 * The head node stores the sum of all the mods, so dropping a ref 736 * should drop the sum in the head node by one. 737 */ 738 count_mod = -1; 739 break; 740 case BTRFS_ADD_DELAYED_EXTENT: 741 /* 742 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the 743 * reserved accounting when the extent is finally added, or if a 744 * later modification deletes the delayed ref without ever 745 * inserting the extent into the extent allocation tree. 746 * ref->must_insert_reserved is the flag used to record that 747 * accounting mods are required. 748 * 749 * Once we record must_insert_reserved, switch the action to 750 * BTRFS_ADD_DELAYED_REF because other special casing is not 751 * required. 752 */ 753 must_insert_reserved = true; 754 break; 755 } 756 757 refcount_set(&head_ref->refs, 1); 758 head_ref->bytenr = bytenr; 759 head_ref->num_bytes = num_bytes; 760 head_ref->ref_mod = count_mod; 761 head_ref->must_insert_reserved = must_insert_reserved; 762 head_ref->is_data = is_data; 763 head_ref->is_system = is_system; 764 head_ref->ref_tree = RB_ROOT_CACHED; 765 INIT_LIST_HEAD(&head_ref->ref_add_list); 766 RB_CLEAR_NODE(&head_ref->href_node); 767 head_ref->processing = false; 768 head_ref->total_ref_mod = count_mod; 769 spin_lock_init(&head_ref->lock); 770 mutex_init(&head_ref->mutex); 771 772 if (qrecord) { 773 if (ref_root && reserved) { 774 qrecord->data_rsv = reserved; 775 qrecord->data_rsv_refroot = ref_root; 776 } 777 qrecord->bytenr = bytenr; 778 qrecord->num_bytes = num_bytes; 779 qrecord->old_roots = NULL; 780 } 781 } 782 783 /* 784 * helper function to actually insert a head node into the rbtree. 785 * this does all the dirty work in terms of maintaining the correct 786 * overall modification count. 787 */ 788 static noinline struct btrfs_delayed_ref_head * 789 add_delayed_ref_head(struct btrfs_trans_handle *trans, 790 struct btrfs_delayed_ref_head *head_ref, 791 struct btrfs_qgroup_extent_record *qrecord, 792 int action, bool *qrecord_inserted_ret) 793 { 794 struct btrfs_delayed_ref_head *existing; 795 struct btrfs_delayed_ref_root *delayed_refs; 796 bool qrecord_inserted = false; 797 798 delayed_refs = &trans->transaction->delayed_refs; 799 800 /* Record qgroup extent info if provided */ 801 if (qrecord) { 802 if (btrfs_qgroup_trace_extent_nolock(trans->fs_info, 803 delayed_refs, qrecord)) 804 kfree(qrecord); 805 else 806 qrecord_inserted = true; 807 } 808 809 trace_add_delayed_ref_head(trans->fs_info, head_ref, action); 810 811 existing = htree_insert(&delayed_refs->href_root, 812 &head_ref->href_node); 813 if (existing) { 814 update_existing_head_ref(trans, existing, head_ref); 815 /* 816 * we've updated the existing ref, free the newly 817 * allocated ref 818 */ 819 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref); 820 head_ref = existing; 821 } else { 822 if (head_ref->is_data && head_ref->ref_mod < 0) { 823 delayed_refs->pending_csums += head_ref->num_bytes; 824 trans->delayed_ref_updates += 825 btrfs_csum_bytes_to_leaves(trans->fs_info, 826 head_ref->num_bytes); 827 } 828 delayed_refs->num_heads++; 829 delayed_refs->num_heads_ready++; 830 atomic_inc(&delayed_refs->num_entries); 831 trans->delayed_ref_updates++; 832 } 833 if (qrecord_inserted_ret) 834 *qrecord_inserted_ret = qrecord_inserted; 835 836 return head_ref; 837 } 838 839 /* 840 * init_delayed_ref_common - Initialize the structure which represents a 841 * modification to a an extent. 842 * 843 * @fs_info: Internal to the mounted filesystem mount structure. 844 * 845 * @ref: The structure which is going to be initialized. 846 * 847 * @bytenr: The logical address of the extent for which a modification is 848 * going to be recorded. 849 * 850 * @num_bytes: Size of the extent whose modification is being recorded. 851 * 852 * @ref_root: The id of the root where this modification has originated, this 853 * can be either one of the well-known metadata trees or the 854 * subvolume id which references this extent. 855 * 856 * @action: Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or 857 * BTRFS_ADD_DELAYED_EXTENT 858 * 859 * @ref_type: Holds the type of the extent which is being recorded, can be 860 * one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY 861 * when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/ 862 * BTRFS_EXTENT_DATA_REF_KEY when recording data extent 863 */ 864 static void init_delayed_ref_common(struct btrfs_fs_info *fs_info, 865 struct btrfs_delayed_ref_node *ref, 866 u64 bytenr, u64 num_bytes, u64 ref_root, 867 int action, u8 ref_type) 868 { 869 u64 seq = 0; 870 871 if (action == BTRFS_ADD_DELAYED_EXTENT) 872 action = BTRFS_ADD_DELAYED_REF; 873 874 if (is_fstree(ref_root)) 875 seq = atomic64_read(&fs_info->tree_mod_seq); 876 877 refcount_set(&ref->refs, 1); 878 ref->bytenr = bytenr; 879 ref->num_bytes = num_bytes; 880 ref->ref_mod = 1; 881 ref->action = action; 882 ref->seq = seq; 883 ref->type = ref_type; 884 RB_CLEAR_NODE(&ref->ref_node); 885 INIT_LIST_HEAD(&ref->add_list); 886 } 887 888 /* 889 * add a delayed tree ref. This does all of the accounting required 890 * to make sure the delayed ref is eventually processed before this 891 * transaction commits. 892 */ 893 int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans, 894 struct btrfs_ref *generic_ref, 895 struct btrfs_delayed_extent_op *extent_op) 896 { 897 struct btrfs_fs_info *fs_info = trans->fs_info; 898 struct btrfs_delayed_tree_ref *ref; 899 struct btrfs_delayed_ref_head *head_ref; 900 struct btrfs_delayed_ref_root *delayed_refs; 901 struct btrfs_qgroup_extent_record *record = NULL; 902 bool qrecord_inserted; 903 bool is_system; 904 bool merged; 905 int action = generic_ref->action; 906 int level = generic_ref->tree_ref.level; 907 u64 bytenr = generic_ref->bytenr; 908 u64 num_bytes = generic_ref->len; 909 u64 parent = generic_ref->parent; 910 u8 ref_type; 911 912 is_system = (generic_ref->tree_ref.owning_root == BTRFS_CHUNK_TREE_OBJECTID); 913 914 ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action); 915 ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS); 916 if (!ref) 917 return -ENOMEM; 918 919 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS); 920 if (!head_ref) { 921 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref); 922 return -ENOMEM; 923 } 924 925 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) && 926 !generic_ref->skip_qgroup) { 927 record = kzalloc(sizeof(*record), GFP_NOFS); 928 if (!record) { 929 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref); 930 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref); 931 return -ENOMEM; 932 } 933 } 934 935 if (parent) 936 ref_type = BTRFS_SHARED_BLOCK_REF_KEY; 937 else 938 ref_type = BTRFS_TREE_BLOCK_REF_KEY; 939 940 init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes, 941 generic_ref->tree_ref.owning_root, action, 942 ref_type); 943 ref->root = generic_ref->tree_ref.owning_root; 944 ref->parent = parent; 945 ref->level = level; 946 947 init_delayed_ref_head(head_ref, record, bytenr, num_bytes, 948 generic_ref->tree_ref.owning_root, 0, action, 949 false, is_system); 950 head_ref->extent_op = extent_op; 951 952 delayed_refs = &trans->transaction->delayed_refs; 953 spin_lock(&delayed_refs->lock); 954 955 /* 956 * insert both the head node and the new ref without dropping 957 * the spin lock 958 */ 959 head_ref = add_delayed_ref_head(trans, head_ref, record, 960 action, &qrecord_inserted); 961 962 merged = insert_delayed_ref(delayed_refs, head_ref, &ref->node); 963 spin_unlock(&delayed_refs->lock); 964 965 /* 966 * Need to update the delayed_refs_rsv with any changes we may have 967 * made. 968 */ 969 btrfs_update_delayed_refs_rsv(trans); 970 971 trace_add_delayed_tree_ref(fs_info, &ref->node, ref, 972 action == BTRFS_ADD_DELAYED_EXTENT ? 973 BTRFS_ADD_DELAYED_REF : action); 974 if (merged) 975 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref); 976 977 if (qrecord_inserted) 978 btrfs_qgroup_trace_extent_post(trans, record); 979 980 return 0; 981 } 982 983 /* 984 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref. 985 */ 986 int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans, 987 struct btrfs_ref *generic_ref, 988 u64 reserved) 989 { 990 struct btrfs_fs_info *fs_info = trans->fs_info; 991 struct btrfs_delayed_data_ref *ref; 992 struct btrfs_delayed_ref_head *head_ref; 993 struct btrfs_delayed_ref_root *delayed_refs; 994 struct btrfs_qgroup_extent_record *record = NULL; 995 bool qrecord_inserted; 996 int action = generic_ref->action; 997 bool merged; 998 u64 bytenr = generic_ref->bytenr; 999 u64 num_bytes = generic_ref->len; 1000 u64 parent = generic_ref->parent; 1001 u64 ref_root = generic_ref->data_ref.owning_root; 1002 u64 owner = generic_ref->data_ref.ino; 1003 u64 offset = generic_ref->data_ref.offset; 1004 u8 ref_type; 1005 1006 ASSERT(generic_ref->type == BTRFS_REF_DATA && action); 1007 ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS); 1008 if (!ref) 1009 return -ENOMEM; 1010 1011 if (parent) 1012 ref_type = BTRFS_SHARED_DATA_REF_KEY; 1013 else 1014 ref_type = BTRFS_EXTENT_DATA_REF_KEY; 1015 init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes, 1016 ref_root, action, ref_type); 1017 ref->root = ref_root; 1018 ref->parent = parent; 1019 ref->objectid = owner; 1020 ref->offset = offset; 1021 1022 1023 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS); 1024 if (!head_ref) { 1025 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref); 1026 return -ENOMEM; 1027 } 1028 1029 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) && 1030 !generic_ref->skip_qgroup) { 1031 record = kzalloc(sizeof(*record), GFP_NOFS); 1032 if (!record) { 1033 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref); 1034 kmem_cache_free(btrfs_delayed_ref_head_cachep, 1035 head_ref); 1036 return -ENOMEM; 1037 } 1038 } 1039 1040 init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root, 1041 reserved, action, true, false); 1042 head_ref->extent_op = NULL; 1043 1044 delayed_refs = &trans->transaction->delayed_refs; 1045 spin_lock(&delayed_refs->lock); 1046 1047 /* 1048 * insert both the head node and the new ref without dropping 1049 * the spin lock 1050 */ 1051 head_ref = add_delayed_ref_head(trans, head_ref, record, 1052 action, &qrecord_inserted); 1053 1054 merged = insert_delayed_ref(delayed_refs, head_ref, &ref->node); 1055 spin_unlock(&delayed_refs->lock); 1056 1057 /* 1058 * Need to update the delayed_refs_rsv with any changes we may have 1059 * made. 1060 */ 1061 btrfs_update_delayed_refs_rsv(trans); 1062 1063 trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref, 1064 action == BTRFS_ADD_DELAYED_EXTENT ? 1065 BTRFS_ADD_DELAYED_REF : action); 1066 if (merged) 1067 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref); 1068 1069 1070 if (qrecord_inserted) 1071 return btrfs_qgroup_trace_extent_post(trans, record); 1072 return 0; 1073 } 1074 1075 int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans, 1076 u64 bytenr, u64 num_bytes, 1077 struct btrfs_delayed_extent_op *extent_op) 1078 { 1079 struct btrfs_delayed_ref_head *head_ref; 1080 struct btrfs_delayed_ref_root *delayed_refs; 1081 1082 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS); 1083 if (!head_ref) 1084 return -ENOMEM; 1085 1086 init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0, 1087 BTRFS_UPDATE_DELAYED_HEAD, false, false); 1088 head_ref->extent_op = extent_op; 1089 1090 delayed_refs = &trans->transaction->delayed_refs; 1091 spin_lock(&delayed_refs->lock); 1092 1093 add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD, 1094 NULL); 1095 1096 spin_unlock(&delayed_refs->lock); 1097 1098 /* 1099 * Need to update the delayed_refs_rsv with any changes we may have 1100 * made. 1101 */ 1102 btrfs_update_delayed_refs_rsv(trans); 1103 return 0; 1104 } 1105 1106 /* 1107 * This does a simple search for the head node for a given extent. Returns the 1108 * head node if found, or NULL if not. 1109 */ 1110 struct btrfs_delayed_ref_head * 1111 btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr) 1112 { 1113 lockdep_assert_held(&delayed_refs->lock); 1114 1115 return find_ref_head(delayed_refs, bytenr, false); 1116 } 1117 1118 void __cold btrfs_delayed_ref_exit(void) 1119 { 1120 kmem_cache_destroy(btrfs_delayed_ref_head_cachep); 1121 kmem_cache_destroy(btrfs_delayed_tree_ref_cachep); 1122 kmem_cache_destroy(btrfs_delayed_data_ref_cachep); 1123 kmem_cache_destroy(btrfs_delayed_extent_op_cachep); 1124 } 1125 1126 int __init btrfs_delayed_ref_init(void) 1127 { 1128 btrfs_delayed_ref_head_cachep = kmem_cache_create( 1129 "btrfs_delayed_ref_head", 1130 sizeof(struct btrfs_delayed_ref_head), 0, 1131 SLAB_MEM_SPREAD, NULL); 1132 if (!btrfs_delayed_ref_head_cachep) 1133 goto fail; 1134 1135 btrfs_delayed_tree_ref_cachep = kmem_cache_create( 1136 "btrfs_delayed_tree_ref", 1137 sizeof(struct btrfs_delayed_tree_ref), 0, 1138 SLAB_MEM_SPREAD, NULL); 1139 if (!btrfs_delayed_tree_ref_cachep) 1140 goto fail; 1141 1142 btrfs_delayed_data_ref_cachep = kmem_cache_create( 1143 "btrfs_delayed_data_ref", 1144 sizeof(struct btrfs_delayed_data_ref), 0, 1145 SLAB_MEM_SPREAD, NULL); 1146 if (!btrfs_delayed_data_ref_cachep) 1147 goto fail; 1148 1149 btrfs_delayed_extent_op_cachep = kmem_cache_create( 1150 "btrfs_delayed_extent_op", 1151 sizeof(struct btrfs_delayed_extent_op), 0, 1152 SLAB_MEM_SPREAD, NULL); 1153 if (!btrfs_delayed_extent_op_cachep) 1154 goto fail; 1155 1156 return 0; 1157 fail: 1158 btrfs_delayed_ref_exit(); 1159 return -ENOMEM; 1160 } 1161