xref: /openbmc/linux/fs/btrfs/delayed-ref.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * Copyright (C) 2009 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/sort.h>
22 #include "ctree.h"
23 #include "delayed-ref.h"
24 #include "transaction.h"
25 
26 /*
27  * delayed back reference update tracking.  For subvolume trees
28  * we queue up extent allocations and backref maintenance for
29  * delayed processing.   This avoids deep call chains where we
30  * add extents in the middle of btrfs_search_slot, and it allows
31  * us to buffer up frequently modified backrefs in an rb tree instead
32  * of hammering updates on the extent allocation tree.
33  */
34 
35 /*
36  * compare two delayed tree backrefs with same bytenr and type
37  */
38 static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref2,
39 			  struct btrfs_delayed_tree_ref *ref1)
40 {
41 	if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
42 		if (ref1->root < ref2->root)
43 			return -1;
44 		if (ref1->root > ref2->root)
45 			return 1;
46 	} else {
47 		if (ref1->parent < ref2->parent)
48 			return -1;
49 		if (ref1->parent > ref2->parent)
50 			return 1;
51 	}
52 	return 0;
53 }
54 
55 /*
56  * compare two delayed data backrefs with same bytenr and type
57  */
58 static int comp_data_refs(struct btrfs_delayed_data_ref *ref2,
59 			  struct btrfs_delayed_data_ref *ref1)
60 {
61 	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
62 		if (ref1->root < ref2->root)
63 			return -1;
64 		if (ref1->root > ref2->root)
65 			return 1;
66 		if (ref1->objectid < ref2->objectid)
67 			return -1;
68 		if (ref1->objectid > ref2->objectid)
69 			return 1;
70 		if (ref1->offset < ref2->offset)
71 			return -1;
72 		if (ref1->offset > ref2->offset)
73 			return 1;
74 	} else {
75 		if (ref1->parent < ref2->parent)
76 			return -1;
77 		if (ref1->parent > ref2->parent)
78 			return 1;
79 	}
80 	return 0;
81 }
82 
83 /*
84  * entries in the rb tree are ordered by the byte number of the extent,
85  * type of the delayed backrefs and content of delayed backrefs.
86  */
87 static int comp_entry(struct btrfs_delayed_ref_node *ref2,
88 		      struct btrfs_delayed_ref_node *ref1)
89 {
90 	if (ref1->bytenr < ref2->bytenr)
91 		return -1;
92 	if (ref1->bytenr > ref2->bytenr)
93 		return 1;
94 	if (ref1->is_head && ref2->is_head)
95 		return 0;
96 	if (ref2->is_head)
97 		return -1;
98 	if (ref1->is_head)
99 		return 1;
100 	if (ref1->type < ref2->type)
101 		return -1;
102 	if (ref1->type > ref2->type)
103 		return 1;
104 	if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
105 	    ref1->type == BTRFS_SHARED_BLOCK_REF_KEY) {
106 		return comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref2),
107 				      btrfs_delayed_node_to_tree_ref(ref1));
108 	} else if (ref1->type == BTRFS_EXTENT_DATA_REF_KEY ||
109 		   ref1->type == BTRFS_SHARED_DATA_REF_KEY) {
110 		return comp_data_refs(btrfs_delayed_node_to_data_ref(ref2),
111 				      btrfs_delayed_node_to_data_ref(ref1));
112 	}
113 	BUG();
114 	return 0;
115 }
116 
117 /*
118  * insert a new ref into the rbtree.  This returns any existing refs
119  * for the same (bytenr,parent) tuple, or NULL if the new node was properly
120  * inserted.
121  */
122 static struct btrfs_delayed_ref_node *tree_insert(struct rb_root *root,
123 						  struct rb_node *node)
124 {
125 	struct rb_node **p = &root->rb_node;
126 	struct rb_node *parent_node = NULL;
127 	struct btrfs_delayed_ref_node *entry;
128 	struct btrfs_delayed_ref_node *ins;
129 	int cmp;
130 
131 	ins = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
132 	while (*p) {
133 		parent_node = *p;
134 		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
135 				 rb_node);
136 
137 		cmp = comp_entry(entry, ins);
138 		if (cmp < 0)
139 			p = &(*p)->rb_left;
140 		else if (cmp > 0)
141 			p = &(*p)->rb_right;
142 		else
143 			return entry;
144 	}
145 
146 	rb_link_node(node, parent_node, p);
147 	rb_insert_color(node, root);
148 	return NULL;
149 }
150 
151 /*
152  * find an head entry based on bytenr. This returns the delayed ref
153  * head if it was able to find one, or NULL if nothing was in that spot
154  */
155 static struct btrfs_delayed_ref_node *find_ref_head(struct rb_root *root,
156 				  u64 bytenr,
157 				  struct btrfs_delayed_ref_node **last)
158 {
159 	struct rb_node *n = root->rb_node;
160 	struct btrfs_delayed_ref_node *entry;
161 	int cmp;
162 
163 	while (n) {
164 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
165 		WARN_ON(!entry->in_tree);
166 		if (last)
167 			*last = entry;
168 
169 		if (bytenr < entry->bytenr)
170 			cmp = -1;
171 		else if (bytenr > entry->bytenr)
172 			cmp = 1;
173 		else if (!btrfs_delayed_ref_is_head(entry))
174 			cmp = 1;
175 		else
176 			cmp = 0;
177 
178 		if (cmp < 0)
179 			n = n->rb_left;
180 		else if (cmp > 0)
181 			n = n->rb_right;
182 		else
183 			return entry;
184 	}
185 	return NULL;
186 }
187 
188 int btrfs_delayed_ref_lock(struct btrfs_trans_handle *trans,
189 			   struct btrfs_delayed_ref_head *head)
190 {
191 	struct btrfs_delayed_ref_root *delayed_refs;
192 
193 	delayed_refs = &trans->transaction->delayed_refs;
194 	assert_spin_locked(&delayed_refs->lock);
195 	if (mutex_trylock(&head->mutex))
196 		return 0;
197 
198 	atomic_inc(&head->node.refs);
199 	spin_unlock(&delayed_refs->lock);
200 
201 	mutex_lock(&head->mutex);
202 	spin_lock(&delayed_refs->lock);
203 	if (!head->node.in_tree) {
204 		mutex_unlock(&head->mutex);
205 		btrfs_put_delayed_ref(&head->node);
206 		return -EAGAIN;
207 	}
208 	btrfs_put_delayed_ref(&head->node);
209 	return 0;
210 }
211 
212 int btrfs_find_ref_cluster(struct btrfs_trans_handle *trans,
213 			   struct list_head *cluster, u64 start)
214 {
215 	int count = 0;
216 	struct btrfs_delayed_ref_root *delayed_refs;
217 	struct rb_node *node;
218 	struct btrfs_delayed_ref_node *ref;
219 	struct btrfs_delayed_ref_head *head;
220 
221 	delayed_refs = &trans->transaction->delayed_refs;
222 	if (start == 0) {
223 		node = rb_first(&delayed_refs->root);
224 	} else {
225 		ref = NULL;
226 		find_ref_head(&delayed_refs->root, start, &ref);
227 		if (ref) {
228 			struct btrfs_delayed_ref_node *tmp;
229 
230 			node = rb_prev(&ref->rb_node);
231 			while (node) {
232 				tmp = rb_entry(node,
233 					       struct btrfs_delayed_ref_node,
234 					       rb_node);
235 				if (tmp->bytenr < start)
236 					break;
237 				ref = tmp;
238 				node = rb_prev(&ref->rb_node);
239 			}
240 			node = &ref->rb_node;
241 		} else
242 			node = rb_first(&delayed_refs->root);
243 	}
244 again:
245 	while (node && count < 32) {
246 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
247 		if (btrfs_delayed_ref_is_head(ref)) {
248 			head = btrfs_delayed_node_to_head(ref);
249 			if (list_empty(&head->cluster)) {
250 				list_add_tail(&head->cluster, cluster);
251 				delayed_refs->run_delayed_start =
252 					head->node.bytenr;
253 				count++;
254 
255 				WARN_ON(delayed_refs->num_heads_ready == 0);
256 				delayed_refs->num_heads_ready--;
257 			} else if (count) {
258 				/* the goal of the clustering is to find extents
259 				 * that are likely to end up in the same extent
260 				 * leaf on disk.  So, we don't want them spread
261 				 * all over the tree.  Stop now if we've hit
262 				 * a head that was already in use
263 				 */
264 				break;
265 			}
266 		}
267 		node = rb_next(node);
268 	}
269 	if (count) {
270 		return 0;
271 	} else if (start) {
272 		/*
273 		 * we've gone to the end of the rbtree without finding any
274 		 * clusters.  start from the beginning and try again
275 		 */
276 		start = 0;
277 		node = rb_first(&delayed_refs->root);
278 		goto again;
279 	}
280 	return 1;
281 }
282 
283 /*
284  * This checks to see if there are any delayed refs in the
285  * btree for a given bytenr.  It returns one if it finds any
286  * and zero otherwise.
287  *
288  * If it only finds a head node, it returns 0.
289  *
290  * The idea is to use this when deciding if you can safely delete an
291  * extent from the extent allocation tree.  There may be a pending
292  * ref in the rbtree that adds or removes references, so as long as this
293  * returns one you need to leave the BTRFS_EXTENT_ITEM in the extent
294  * allocation tree.
295  */
296 int btrfs_delayed_ref_pending(struct btrfs_trans_handle *trans, u64 bytenr)
297 {
298 	struct btrfs_delayed_ref_node *ref;
299 	struct btrfs_delayed_ref_root *delayed_refs;
300 	struct rb_node *prev_node;
301 	int ret = 0;
302 
303 	delayed_refs = &trans->transaction->delayed_refs;
304 	spin_lock(&delayed_refs->lock);
305 
306 	ref = find_ref_head(&delayed_refs->root, bytenr, NULL);
307 	if (ref) {
308 		prev_node = rb_prev(&ref->rb_node);
309 		if (!prev_node)
310 			goto out;
311 		ref = rb_entry(prev_node, struct btrfs_delayed_ref_node,
312 			       rb_node);
313 		if (ref->bytenr == bytenr)
314 			ret = 1;
315 	}
316 out:
317 	spin_unlock(&delayed_refs->lock);
318 	return ret;
319 }
320 
321 /*
322  * helper function to update an extent delayed ref in the
323  * rbtree.  existing and update must both have the same
324  * bytenr and parent
325  *
326  * This may free existing if the update cancels out whatever
327  * operation it was doing.
328  */
329 static noinline void
330 update_existing_ref(struct btrfs_trans_handle *trans,
331 		    struct btrfs_delayed_ref_root *delayed_refs,
332 		    struct btrfs_delayed_ref_node *existing,
333 		    struct btrfs_delayed_ref_node *update)
334 {
335 	if (update->action != existing->action) {
336 		/*
337 		 * this is effectively undoing either an add or a
338 		 * drop.  We decrement the ref_mod, and if it goes
339 		 * down to zero we just delete the entry without
340 		 * every changing the extent allocation tree.
341 		 */
342 		existing->ref_mod--;
343 		if (existing->ref_mod == 0) {
344 			rb_erase(&existing->rb_node,
345 				 &delayed_refs->root);
346 			existing->in_tree = 0;
347 			btrfs_put_delayed_ref(existing);
348 			delayed_refs->num_entries--;
349 			if (trans->delayed_ref_updates)
350 				trans->delayed_ref_updates--;
351 		} else {
352 			WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY ||
353 				existing->type == BTRFS_SHARED_BLOCK_REF_KEY);
354 		}
355 	} else {
356 		WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY ||
357 			existing->type == BTRFS_SHARED_BLOCK_REF_KEY);
358 		/*
359 		 * the action on the existing ref matches
360 		 * the action on the ref we're trying to add.
361 		 * Bump the ref_mod by one so the backref that
362 		 * is eventually added/removed has the correct
363 		 * reference count
364 		 */
365 		existing->ref_mod += update->ref_mod;
366 	}
367 }
368 
369 /*
370  * helper function to update the accounting in the head ref
371  * existing and update must have the same bytenr
372  */
373 static noinline void
374 update_existing_head_ref(struct btrfs_delayed_ref_node *existing,
375 			 struct btrfs_delayed_ref_node *update)
376 {
377 	struct btrfs_delayed_ref_head *existing_ref;
378 	struct btrfs_delayed_ref_head *ref;
379 
380 	existing_ref = btrfs_delayed_node_to_head(existing);
381 	ref = btrfs_delayed_node_to_head(update);
382 	BUG_ON(existing_ref->is_data != ref->is_data);
383 
384 	if (ref->must_insert_reserved) {
385 		/* if the extent was freed and then
386 		 * reallocated before the delayed ref
387 		 * entries were processed, we can end up
388 		 * with an existing head ref without
389 		 * the must_insert_reserved flag set.
390 		 * Set it again here
391 		 */
392 		existing_ref->must_insert_reserved = ref->must_insert_reserved;
393 
394 		/*
395 		 * update the num_bytes so we make sure the accounting
396 		 * is done correctly
397 		 */
398 		existing->num_bytes = update->num_bytes;
399 
400 	}
401 
402 	if (ref->extent_op) {
403 		if (!existing_ref->extent_op) {
404 			existing_ref->extent_op = ref->extent_op;
405 		} else {
406 			if (ref->extent_op->update_key) {
407 				memcpy(&existing_ref->extent_op->key,
408 				       &ref->extent_op->key,
409 				       sizeof(ref->extent_op->key));
410 				existing_ref->extent_op->update_key = 1;
411 			}
412 			if (ref->extent_op->update_flags) {
413 				existing_ref->extent_op->flags_to_set |=
414 					ref->extent_op->flags_to_set;
415 				existing_ref->extent_op->update_flags = 1;
416 			}
417 			kfree(ref->extent_op);
418 		}
419 	}
420 	/*
421 	 * update the reference mod on the head to reflect this new operation
422 	 */
423 	existing->ref_mod += update->ref_mod;
424 }
425 
426 /*
427  * helper function to actually insert a head node into the rbtree.
428  * this does all the dirty work in terms of maintaining the correct
429  * overall modification count.
430  */
431 static noinline int add_delayed_ref_head(struct btrfs_trans_handle *trans,
432 					struct btrfs_delayed_ref_node *ref,
433 					u64 bytenr, u64 num_bytes,
434 					int action, int is_data)
435 {
436 	struct btrfs_delayed_ref_node *existing;
437 	struct btrfs_delayed_ref_head *head_ref = NULL;
438 	struct btrfs_delayed_ref_root *delayed_refs;
439 	int count_mod = 1;
440 	int must_insert_reserved = 0;
441 
442 	/*
443 	 * the head node stores the sum of all the mods, so dropping a ref
444 	 * should drop the sum in the head node by one.
445 	 */
446 	if (action == BTRFS_UPDATE_DELAYED_HEAD)
447 		count_mod = 0;
448 	else if (action == BTRFS_DROP_DELAYED_REF)
449 		count_mod = -1;
450 
451 	/*
452 	 * BTRFS_ADD_DELAYED_EXTENT means that we need to update
453 	 * the reserved accounting when the extent is finally added, or
454 	 * if a later modification deletes the delayed ref without ever
455 	 * inserting the extent into the extent allocation tree.
456 	 * ref->must_insert_reserved is the flag used to record
457 	 * that accounting mods are required.
458 	 *
459 	 * Once we record must_insert_reserved, switch the action to
460 	 * BTRFS_ADD_DELAYED_REF because other special casing is not required.
461 	 */
462 	if (action == BTRFS_ADD_DELAYED_EXTENT)
463 		must_insert_reserved = 1;
464 	else
465 		must_insert_reserved = 0;
466 
467 	delayed_refs = &trans->transaction->delayed_refs;
468 
469 	/* first set the basic ref node struct up */
470 	atomic_set(&ref->refs, 1);
471 	ref->bytenr = bytenr;
472 	ref->num_bytes = num_bytes;
473 	ref->ref_mod = count_mod;
474 	ref->type  = 0;
475 	ref->action  = 0;
476 	ref->is_head = 1;
477 	ref->in_tree = 1;
478 
479 	head_ref = btrfs_delayed_node_to_head(ref);
480 	head_ref->must_insert_reserved = must_insert_reserved;
481 	head_ref->is_data = is_data;
482 
483 	INIT_LIST_HEAD(&head_ref->cluster);
484 	mutex_init(&head_ref->mutex);
485 
486 	existing = tree_insert(&delayed_refs->root, &ref->rb_node);
487 
488 	if (existing) {
489 		update_existing_head_ref(existing, ref);
490 		/*
491 		 * we've updated the existing ref, free the newly
492 		 * allocated ref
493 		 */
494 		kfree(ref);
495 	} else {
496 		delayed_refs->num_heads++;
497 		delayed_refs->num_heads_ready++;
498 		delayed_refs->num_entries++;
499 		trans->delayed_ref_updates++;
500 	}
501 	return 0;
502 }
503 
504 /*
505  * helper to insert a delayed tree ref into the rbtree.
506  */
507 static noinline int add_delayed_tree_ref(struct btrfs_trans_handle *trans,
508 					 struct btrfs_delayed_ref_node *ref,
509 					 u64 bytenr, u64 num_bytes, u64 parent,
510 					 u64 ref_root, int level, int action)
511 {
512 	struct btrfs_delayed_ref_node *existing;
513 	struct btrfs_delayed_tree_ref *full_ref;
514 	struct btrfs_delayed_ref_root *delayed_refs;
515 
516 	if (action == BTRFS_ADD_DELAYED_EXTENT)
517 		action = BTRFS_ADD_DELAYED_REF;
518 
519 	delayed_refs = &trans->transaction->delayed_refs;
520 
521 	/* first set the basic ref node struct up */
522 	atomic_set(&ref->refs, 1);
523 	ref->bytenr = bytenr;
524 	ref->num_bytes = num_bytes;
525 	ref->ref_mod = 1;
526 	ref->action = action;
527 	ref->is_head = 0;
528 	ref->in_tree = 1;
529 
530 	full_ref = btrfs_delayed_node_to_tree_ref(ref);
531 	if (parent) {
532 		full_ref->parent = parent;
533 		ref->type = BTRFS_SHARED_BLOCK_REF_KEY;
534 	} else {
535 		full_ref->root = ref_root;
536 		ref->type = BTRFS_TREE_BLOCK_REF_KEY;
537 	}
538 	full_ref->level = level;
539 
540 	existing = tree_insert(&delayed_refs->root, &ref->rb_node);
541 
542 	if (existing) {
543 		update_existing_ref(trans, delayed_refs, existing, ref);
544 		/*
545 		 * we've updated the existing ref, free the newly
546 		 * allocated ref
547 		 */
548 		kfree(ref);
549 	} else {
550 		delayed_refs->num_entries++;
551 		trans->delayed_ref_updates++;
552 	}
553 	return 0;
554 }
555 
556 /*
557  * helper to insert a delayed data ref into the rbtree.
558  */
559 static noinline int add_delayed_data_ref(struct btrfs_trans_handle *trans,
560 					 struct btrfs_delayed_ref_node *ref,
561 					 u64 bytenr, u64 num_bytes, u64 parent,
562 					 u64 ref_root, u64 owner, u64 offset,
563 					 int action)
564 {
565 	struct btrfs_delayed_ref_node *existing;
566 	struct btrfs_delayed_data_ref *full_ref;
567 	struct btrfs_delayed_ref_root *delayed_refs;
568 
569 	if (action == BTRFS_ADD_DELAYED_EXTENT)
570 		action = BTRFS_ADD_DELAYED_REF;
571 
572 	delayed_refs = &trans->transaction->delayed_refs;
573 
574 	/* first set the basic ref node struct up */
575 	atomic_set(&ref->refs, 1);
576 	ref->bytenr = bytenr;
577 	ref->num_bytes = num_bytes;
578 	ref->ref_mod = 1;
579 	ref->action = action;
580 	ref->is_head = 0;
581 	ref->in_tree = 1;
582 
583 	full_ref = btrfs_delayed_node_to_data_ref(ref);
584 	if (parent) {
585 		full_ref->parent = parent;
586 		ref->type = BTRFS_SHARED_DATA_REF_KEY;
587 	} else {
588 		full_ref->root = ref_root;
589 		ref->type = BTRFS_EXTENT_DATA_REF_KEY;
590 	}
591 	full_ref->objectid = owner;
592 	full_ref->offset = offset;
593 
594 	existing = tree_insert(&delayed_refs->root, &ref->rb_node);
595 
596 	if (existing) {
597 		update_existing_ref(trans, delayed_refs, existing, ref);
598 		/*
599 		 * we've updated the existing ref, free the newly
600 		 * allocated ref
601 		 */
602 		kfree(ref);
603 	} else {
604 		delayed_refs->num_entries++;
605 		trans->delayed_ref_updates++;
606 	}
607 	return 0;
608 }
609 
610 /*
611  * add a delayed tree ref.  This does all of the accounting required
612  * to make sure the delayed ref is eventually processed before this
613  * transaction commits.
614  */
615 int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
616 			       u64 bytenr, u64 num_bytes, u64 parent,
617 			       u64 ref_root,  int level, int action,
618 			       struct btrfs_delayed_extent_op *extent_op)
619 {
620 	struct btrfs_delayed_tree_ref *ref;
621 	struct btrfs_delayed_ref_head *head_ref;
622 	struct btrfs_delayed_ref_root *delayed_refs;
623 	int ret;
624 
625 	BUG_ON(extent_op && extent_op->is_data);
626 	ref = kmalloc(sizeof(*ref), GFP_NOFS);
627 	if (!ref)
628 		return -ENOMEM;
629 
630 	head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS);
631 	if (!head_ref) {
632 		kfree(ref);
633 		return -ENOMEM;
634 	}
635 
636 	head_ref->extent_op = extent_op;
637 
638 	delayed_refs = &trans->transaction->delayed_refs;
639 	spin_lock(&delayed_refs->lock);
640 
641 	/*
642 	 * insert both the head node and the new ref without dropping
643 	 * the spin lock
644 	 */
645 	ret = add_delayed_ref_head(trans, &head_ref->node, bytenr, num_bytes,
646 				   action, 0);
647 	BUG_ON(ret);
648 
649 	ret = add_delayed_tree_ref(trans, &ref->node, bytenr, num_bytes,
650 				   parent, ref_root, level, action);
651 	BUG_ON(ret);
652 	spin_unlock(&delayed_refs->lock);
653 	return 0;
654 }
655 
656 /*
657  * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
658  */
659 int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
660 			       u64 bytenr, u64 num_bytes,
661 			       u64 parent, u64 ref_root,
662 			       u64 owner, u64 offset, int action,
663 			       struct btrfs_delayed_extent_op *extent_op)
664 {
665 	struct btrfs_delayed_data_ref *ref;
666 	struct btrfs_delayed_ref_head *head_ref;
667 	struct btrfs_delayed_ref_root *delayed_refs;
668 	int ret;
669 
670 	BUG_ON(extent_op && !extent_op->is_data);
671 	ref = kmalloc(sizeof(*ref), GFP_NOFS);
672 	if (!ref)
673 		return -ENOMEM;
674 
675 	head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS);
676 	if (!head_ref) {
677 		kfree(ref);
678 		return -ENOMEM;
679 	}
680 
681 	head_ref->extent_op = extent_op;
682 
683 	delayed_refs = &trans->transaction->delayed_refs;
684 	spin_lock(&delayed_refs->lock);
685 
686 	/*
687 	 * insert both the head node and the new ref without dropping
688 	 * the spin lock
689 	 */
690 	ret = add_delayed_ref_head(trans, &head_ref->node, bytenr, num_bytes,
691 				   action, 1);
692 	BUG_ON(ret);
693 
694 	ret = add_delayed_data_ref(trans, &ref->node, bytenr, num_bytes,
695 				   parent, ref_root, owner, offset, action);
696 	BUG_ON(ret);
697 	spin_unlock(&delayed_refs->lock);
698 	return 0;
699 }
700 
701 int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
702 				u64 bytenr, u64 num_bytes,
703 				struct btrfs_delayed_extent_op *extent_op)
704 {
705 	struct btrfs_delayed_ref_head *head_ref;
706 	struct btrfs_delayed_ref_root *delayed_refs;
707 	int ret;
708 
709 	head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS);
710 	if (!head_ref)
711 		return -ENOMEM;
712 
713 	head_ref->extent_op = extent_op;
714 
715 	delayed_refs = &trans->transaction->delayed_refs;
716 	spin_lock(&delayed_refs->lock);
717 
718 	ret = add_delayed_ref_head(trans, &head_ref->node, bytenr,
719 				   num_bytes, BTRFS_UPDATE_DELAYED_HEAD,
720 				   extent_op->is_data);
721 	BUG_ON(ret);
722 
723 	spin_unlock(&delayed_refs->lock);
724 	return 0;
725 }
726 
727 /*
728  * this does a simple search for the head node for a given extent.
729  * It must be called with the delayed ref spinlock held, and it returns
730  * the head node if any where found, or NULL if not.
731  */
732 struct btrfs_delayed_ref_head *
733 btrfs_find_delayed_ref_head(struct btrfs_trans_handle *trans, u64 bytenr)
734 {
735 	struct btrfs_delayed_ref_node *ref;
736 	struct btrfs_delayed_ref_root *delayed_refs;
737 
738 	delayed_refs = &trans->transaction->delayed_refs;
739 	ref = find_ref_head(&delayed_refs->root, bytenr, NULL);
740 	if (ref)
741 		return btrfs_delayed_node_to_head(ref);
742 	return NULL;
743 }
744 
745 /*
746  * add a delayed ref to the tree.  This does all of the accounting required
747  * to make sure the delayed ref is eventually processed before this
748  * transaction commits.
749  *
750  * The main point of this call is to add and remove a backreference in a single
751  * shot, taking the lock only once, and only searching for the head node once.
752  *
753  * It is the same as doing a ref add and delete in two separate calls.
754  */
755 #if 0
756 int btrfs_update_delayed_ref(struct btrfs_trans_handle *trans,
757 			  u64 bytenr, u64 num_bytes, u64 orig_parent,
758 			  u64 parent, u64 orig_ref_root, u64 ref_root,
759 			  u64 orig_ref_generation, u64 ref_generation,
760 			  u64 owner_objectid, int pin)
761 {
762 	struct btrfs_delayed_ref *ref;
763 	struct btrfs_delayed_ref *old_ref;
764 	struct btrfs_delayed_ref_head *head_ref;
765 	struct btrfs_delayed_ref_root *delayed_refs;
766 	int ret;
767 
768 	ref = kmalloc(sizeof(*ref), GFP_NOFS);
769 	if (!ref)
770 		return -ENOMEM;
771 
772 	old_ref = kmalloc(sizeof(*old_ref), GFP_NOFS);
773 	if (!old_ref) {
774 		kfree(ref);
775 		return -ENOMEM;
776 	}
777 
778 	/*
779 	 * the parent = 0 case comes from cases where we don't actually
780 	 * know the parent yet.  It will get updated later via a add/drop
781 	 * pair.
782 	 */
783 	if (parent == 0)
784 		parent = bytenr;
785 	if (orig_parent == 0)
786 		orig_parent = bytenr;
787 
788 	head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS);
789 	if (!head_ref) {
790 		kfree(ref);
791 		kfree(old_ref);
792 		return -ENOMEM;
793 	}
794 	delayed_refs = &trans->transaction->delayed_refs;
795 	spin_lock(&delayed_refs->lock);
796 
797 	/*
798 	 * insert both the head node and the new ref without dropping
799 	 * the spin lock
800 	 */
801 	ret = __btrfs_add_delayed_ref(trans, &head_ref->node, bytenr, num_bytes,
802 				      (u64)-1, 0, 0, 0,
803 				      BTRFS_UPDATE_DELAYED_HEAD, 0);
804 	BUG_ON(ret);
805 
806 	ret = __btrfs_add_delayed_ref(trans, &ref->node, bytenr, num_bytes,
807 				      parent, ref_root, ref_generation,
808 				      owner_objectid, BTRFS_ADD_DELAYED_REF, 0);
809 	BUG_ON(ret);
810 
811 	ret = __btrfs_add_delayed_ref(trans, &old_ref->node, bytenr, num_bytes,
812 				      orig_parent, orig_ref_root,
813 				      orig_ref_generation, owner_objectid,
814 				      BTRFS_DROP_DELAYED_REF, pin);
815 	BUG_ON(ret);
816 	spin_unlock(&delayed_refs->lock);
817 	return 0;
818 }
819 #endif
820