1 /* 2 * Copyright (C) 2009 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/sort.h> 22 #include "ctree.h" 23 #include "delayed-ref.h" 24 #include "transaction.h" 25 26 /* 27 * delayed back reference update tracking. For subvolume trees 28 * we queue up extent allocations and backref maintenance for 29 * delayed processing. This avoids deep call chains where we 30 * add extents in the middle of btrfs_search_slot, and it allows 31 * us to buffer up frequently modified backrefs in an rb tree instead 32 * of hammering updates on the extent allocation tree. 33 */ 34 35 /* 36 * compare two delayed tree backrefs with same bytenr and type 37 */ 38 static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref2, 39 struct btrfs_delayed_tree_ref *ref1) 40 { 41 if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) { 42 if (ref1->root < ref2->root) 43 return -1; 44 if (ref1->root > ref2->root) 45 return 1; 46 } else { 47 if (ref1->parent < ref2->parent) 48 return -1; 49 if (ref1->parent > ref2->parent) 50 return 1; 51 } 52 return 0; 53 } 54 55 /* 56 * compare two delayed data backrefs with same bytenr and type 57 */ 58 static int comp_data_refs(struct btrfs_delayed_data_ref *ref2, 59 struct btrfs_delayed_data_ref *ref1) 60 { 61 if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) { 62 if (ref1->root < ref2->root) 63 return -1; 64 if (ref1->root > ref2->root) 65 return 1; 66 if (ref1->objectid < ref2->objectid) 67 return -1; 68 if (ref1->objectid > ref2->objectid) 69 return 1; 70 if (ref1->offset < ref2->offset) 71 return -1; 72 if (ref1->offset > ref2->offset) 73 return 1; 74 } else { 75 if (ref1->parent < ref2->parent) 76 return -1; 77 if (ref1->parent > ref2->parent) 78 return 1; 79 } 80 return 0; 81 } 82 83 /* 84 * entries in the rb tree are ordered by the byte number of the extent, 85 * type of the delayed backrefs and content of delayed backrefs. 86 */ 87 static int comp_entry(struct btrfs_delayed_ref_node *ref2, 88 struct btrfs_delayed_ref_node *ref1) 89 { 90 if (ref1->bytenr < ref2->bytenr) 91 return -1; 92 if (ref1->bytenr > ref2->bytenr) 93 return 1; 94 if (ref1->is_head && ref2->is_head) 95 return 0; 96 if (ref2->is_head) 97 return -1; 98 if (ref1->is_head) 99 return 1; 100 if (ref1->type < ref2->type) 101 return -1; 102 if (ref1->type > ref2->type) 103 return 1; 104 if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY || 105 ref1->type == BTRFS_SHARED_BLOCK_REF_KEY) { 106 return comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref2), 107 btrfs_delayed_node_to_tree_ref(ref1)); 108 } else if (ref1->type == BTRFS_EXTENT_DATA_REF_KEY || 109 ref1->type == BTRFS_SHARED_DATA_REF_KEY) { 110 return comp_data_refs(btrfs_delayed_node_to_data_ref(ref2), 111 btrfs_delayed_node_to_data_ref(ref1)); 112 } 113 BUG(); 114 return 0; 115 } 116 117 /* 118 * insert a new ref into the rbtree. This returns any existing refs 119 * for the same (bytenr,parent) tuple, or NULL if the new node was properly 120 * inserted. 121 */ 122 static struct btrfs_delayed_ref_node *tree_insert(struct rb_root *root, 123 struct rb_node *node) 124 { 125 struct rb_node **p = &root->rb_node; 126 struct rb_node *parent_node = NULL; 127 struct btrfs_delayed_ref_node *entry; 128 struct btrfs_delayed_ref_node *ins; 129 int cmp; 130 131 ins = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 132 while (*p) { 133 parent_node = *p; 134 entry = rb_entry(parent_node, struct btrfs_delayed_ref_node, 135 rb_node); 136 137 cmp = comp_entry(entry, ins); 138 if (cmp < 0) 139 p = &(*p)->rb_left; 140 else if (cmp > 0) 141 p = &(*p)->rb_right; 142 else 143 return entry; 144 } 145 146 rb_link_node(node, parent_node, p); 147 rb_insert_color(node, root); 148 return NULL; 149 } 150 151 /* 152 * find an head entry based on bytenr. This returns the delayed ref 153 * head if it was able to find one, or NULL if nothing was in that spot 154 */ 155 static struct btrfs_delayed_ref_node *find_ref_head(struct rb_root *root, 156 u64 bytenr, 157 struct btrfs_delayed_ref_node **last) 158 { 159 struct rb_node *n = root->rb_node; 160 struct btrfs_delayed_ref_node *entry; 161 int cmp; 162 163 while (n) { 164 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 165 WARN_ON(!entry->in_tree); 166 if (last) 167 *last = entry; 168 169 if (bytenr < entry->bytenr) 170 cmp = -1; 171 else if (bytenr > entry->bytenr) 172 cmp = 1; 173 else if (!btrfs_delayed_ref_is_head(entry)) 174 cmp = 1; 175 else 176 cmp = 0; 177 178 if (cmp < 0) 179 n = n->rb_left; 180 else if (cmp > 0) 181 n = n->rb_right; 182 else 183 return entry; 184 } 185 return NULL; 186 } 187 188 int btrfs_delayed_ref_lock(struct btrfs_trans_handle *trans, 189 struct btrfs_delayed_ref_head *head) 190 { 191 struct btrfs_delayed_ref_root *delayed_refs; 192 193 delayed_refs = &trans->transaction->delayed_refs; 194 assert_spin_locked(&delayed_refs->lock); 195 if (mutex_trylock(&head->mutex)) 196 return 0; 197 198 atomic_inc(&head->node.refs); 199 spin_unlock(&delayed_refs->lock); 200 201 mutex_lock(&head->mutex); 202 spin_lock(&delayed_refs->lock); 203 if (!head->node.in_tree) { 204 mutex_unlock(&head->mutex); 205 btrfs_put_delayed_ref(&head->node); 206 return -EAGAIN; 207 } 208 btrfs_put_delayed_ref(&head->node); 209 return 0; 210 } 211 212 int btrfs_find_ref_cluster(struct btrfs_trans_handle *trans, 213 struct list_head *cluster, u64 start) 214 { 215 int count = 0; 216 struct btrfs_delayed_ref_root *delayed_refs; 217 struct rb_node *node; 218 struct btrfs_delayed_ref_node *ref; 219 struct btrfs_delayed_ref_head *head; 220 221 delayed_refs = &trans->transaction->delayed_refs; 222 if (start == 0) { 223 node = rb_first(&delayed_refs->root); 224 } else { 225 ref = NULL; 226 find_ref_head(&delayed_refs->root, start, &ref); 227 if (ref) { 228 struct btrfs_delayed_ref_node *tmp; 229 230 node = rb_prev(&ref->rb_node); 231 while (node) { 232 tmp = rb_entry(node, 233 struct btrfs_delayed_ref_node, 234 rb_node); 235 if (tmp->bytenr < start) 236 break; 237 ref = tmp; 238 node = rb_prev(&ref->rb_node); 239 } 240 node = &ref->rb_node; 241 } else 242 node = rb_first(&delayed_refs->root); 243 } 244 again: 245 while (node && count < 32) { 246 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 247 if (btrfs_delayed_ref_is_head(ref)) { 248 head = btrfs_delayed_node_to_head(ref); 249 if (list_empty(&head->cluster)) { 250 list_add_tail(&head->cluster, cluster); 251 delayed_refs->run_delayed_start = 252 head->node.bytenr; 253 count++; 254 255 WARN_ON(delayed_refs->num_heads_ready == 0); 256 delayed_refs->num_heads_ready--; 257 } else if (count) { 258 /* the goal of the clustering is to find extents 259 * that are likely to end up in the same extent 260 * leaf on disk. So, we don't want them spread 261 * all over the tree. Stop now if we've hit 262 * a head that was already in use 263 */ 264 break; 265 } 266 } 267 node = rb_next(node); 268 } 269 if (count) { 270 return 0; 271 } else if (start) { 272 /* 273 * we've gone to the end of the rbtree without finding any 274 * clusters. start from the beginning and try again 275 */ 276 start = 0; 277 node = rb_first(&delayed_refs->root); 278 goto again; 279 } 280 return 1; 281 } 282 283 /* 284 * This checks to see if there are any delayed refs in the 285 * btree for a given bytenr. It returns one if it finds any 286 * and zero otherwise. 287 * 288 * If it only finds a head node, it returns 0. 289 * 290 * The idea is to use this when deciding if you can safely delete an 291 * extent from the extent allocation tree. There may be a pending 292 * ref in the rbtree that adds or removes references, so as long as this 293 * returns one you need to leave the BTRFS_EXTENT_ITEM in the extent 294 * allocation tree. 295 */ 296 int btrfs_delayed_ref_pending(struct btrfs_trans_handle *trans, u64 bytenr) 297 { 298 struct btrfs_delayed_ref_node *ref; 299 struct btrfs_delayed_ref_root *delayed_refs; 300 struct rb_node *prev_node; 301 int ret = 0; 302 303 delayed_refs = &trans->transaction->delayed_refs; 304 spin_lock(&delayed_refs->lock); 305 306 ref = find_ref_head(&delayed_refs->root, bytenr, NULL); 307 if (ref) { 308 prev_node = rb_prev(&ref->rb_node); 309 if (!prev_node) 310 goto out; 311 ref = rb_entry(prev_node, struct btrfs_delayed_ref_node, 312 rb_node); 313 if (ref->bytenr == bytenr) 314 ret = 1; 315 } 316 out: 317 spin_unlock(&delayed_refs->lock); 318 return ret; 319 } 320 321 /* 322 * helper function to update an extent delayed ref in the 323 * rbtree. existing and update must both have the same 324 * bytenr and parent 325 * 326 * This may free existing if the update cancels out whatever 327 * operation it was doing. 328 */ 329 static noinline void 330 update_existing_ref(struct btrfs_trans_handle *trans, 331 struct btrfs_delayed_ref_root *delayed_refs, 332 struct btrfs_delayed_ref_node *existing, 333 struct btrfs_delayed_ref_node *update) 334 { 335 if (update->action != existing->action) { 336 /* 337 * this is effectively undoing either an add or a 338 * drop. We decrement the ref_mod, and if it goes 339 * down to zero we just delete the entry without 340 * every changing the extent allocation tree. 341 */ 342 existing->ref_mod--; 343 if (existing->ref_mod == 0) { 344 rb_erase(&existing->rb_node, 345 &delayed_refs->root); 346 existing->in_tree = 0; 347 btrfs_put_delayed_ref(existing); 348 delayed_refs->num_entries--; 349 if (trans->delayed_ref_updates) 350 trans->delayed_ref_updates--; 351 } else { 352 WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY || 353 existing->type == BTRFS_SHARED_BLOCK_REF_KEY); 354 } 355 } else { 356 WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY || 357 existing->type == BTRFS_SHARED_BLOCK_REF_KEY); 358 /* 359 * the action on the existing ref matches 360 * the action on the ref we're trying to add. 361 * Bump the ref_mod by one so the backref that 362 * is eventually added/removed has the correct 363 * reference count 364 */ 365 existing->ref_mod += update->ref_mod; 366 } 367 } 368 369 /* 370 * helper function to update the accounting in the head ref 371 * existing and update must have the same bytenr 372 */ 373 static noinline void 374 update_existing_head_ref(struct btrfs_delayed_ref_node *existing, 375 struct btrfs_delayed_ref_node *update) 376 { 377 struct btrfs_delayed_ref_head *existing_ref; 378 struct btrfs_delayed_ref_head *ref; 379 380 existing_ref = btrfs_delayed_node_to_head(existing); 381 ref = btrfs_delayed_node_to_head(update); 382 BUG_ON(existing_ref->is_data != ref->is_data); 383 384 if (ref->must_insert_reserved) { 385 /* if the extent was freed and then 386 * reallocated before the delayed ref 387 * entries were processed, we can end up 388 * with an existing head ref without 389 * the must_insert_reserved flag set. 390 * Set it again here 391 */ 392 existing_ref->must_insert_reserved = ref->must_insert_reserved; 393 394 /* 395 * update the num_bytes so we make sure the accounting 396 * is done correctly 397 */ 398 existing->num_bytes = update->num_bytes; 399 400 } 401 402 if (ref->extent_op) { 403 if (!existing_ref->extent_op) { 404 existing_ref->extent_op = ref->extent_op; 405 } else { 406 if (ref->extent_op->update_key) { 407 memcpy(&existing_ref->extent_op->key, 408 &ref->extent_op->key, 409 sizeof(ref->extent_op->key)); 410 existing_ref->extent_op->update_key = 1; 411 } 412 if (ref->extent_op->update_flags) { 413 existing_ref->extent_op->flags_to_set |= 414 ref->extent_op->flags_to_set; 415 existing_ref->extent_op->update_flags = 1; 416 } 417 kfree(ref->extent_op); 418 } 419 } 420 /* 421 * update the reference mod on the head to reflect this new operation 422 */ 423 existing->ref_mod += update->ref_mod; 424 } 425 426 /* 427 * helper function to actually insert a head node into the rbtree. 428 * this does all the dirty work in terms of maintaining the correct 429 * overall modification count. 430 */ 431 static noinline int add_delayed_ref_head(struct btrfs_trans_handle *trans, 432 struct btrfs_delayed_ref_node *ref, 433 u64 bytenr, u64 num_bytes, 434 int action, int is_data) 435 { 436 struct btrfs_delayed_ref_node *existing; 437 struct btrfs_delayed_ref_head *head_ref = NULL; 438 struct btrfs_delayed_ref_root *delayed_refs; 439 int count_mod = 1; 440 int must_insert_reserved = 0; 441 442 /* 443 * the head node stores the sum of all the mods, so dropping a ref 444 * should drop the sum in the head node by one. 445 */ 446 if (action == BTRFS_UPDATE_DELAYED_HEAD) 447 count_mod = 0; 448 else if (action == BTRFS_DROP_DELAYED_REF) 449 count_mod = -1; 450 451 /* 452 * BTRFS_ADD_DELAYED_EXTENT means that we need to update 453 * the reserved accounting when the extent is finally added, or 454 * if a later modification deletes the delayed ref without ever 455 * inserting the extent into the extent allocation tree. 456 * ref->must_insert_reserved is the flag used to record 457 * that accounting mods are required. 458 * 459 * Once we record must_insert_reserved, switch the action to 460 * BTRFS_ADD_DELAYED_REF because other special casing is not required. 461 */ 462 if (action == BTRFS_ADD_DELAYED_EXTENT) 463 must_insert_reserved = 1; 464 else 465 must_insert_reserved = 0; 466 467 delayed_refs = &trans->transaction->delayed_refs; 468 469 /* first set the basic ref node struct up */ 470 atomic_set(&ref->refs, 1); 471 ref->bytenr = bytenr; 472 ref->num_bytes = num_bytes; 473 ref->ref_mod = count_mod; 474 ref->type = 0; 475 ref->action = 0; 476 ref->is_head = 1; 477 ref->in_tree = 1; 478 479 head_ref = btrfs_delayed_node_to_head(ref); 480 head_ref->must_insert_reserved = must_insert_reserved; 481 head_ref->is_data = is_data; 482 483 INIT_LIST_HEAD(&head_ref->cluster); 484 mutex_init(&head_ref->mutex); 485 486 existing = tree_insert(&delayed_refs->root, &ref->rb_node); 487 488 if (existing) { 489 update_existing_head_ref(existing, ref); 490 /* 491 * we've updated the existing ref, free the newly 492 * allocated ref 493 */ 494 kfree(ref); 495 } else { 496 delayed_refs->num_heads++; 497 delayed_refs->num_heads_ready++; 498 delayed_refs->num_entries++; 499 trans->delayed_ref_updates++; 500 } 501 return 0; 502 } 503 504 /* 505 * helper to insert a delayed tree ref into the rbtree. 506 */ 507 static noinline int add_delayed_tree_ref(struct btrfs_trans_handle *trans, 508 struct btrfs_delayed_ref_node *ref, 509 u64 bytenr, u64 num_bytes, u64 parent, 510 u64 ref_root, int level, int action) 511 { 512 struct btrfs_delayed_ref_node *existing; 513 struct btrfs_delayed_tree_ref *full_ref; 514 struct btrfs_delayed_ref_root *delayed_refs; 515 516 if (action == BTRFS_ADD_DELAYED_EXTENT) 517 action = BTRFS_ADD_DELAYED_REF; 518 519 delayed_refs = &trans->transaction->delayed_refs; 520 521 /* first set the basic ref node struct up */ 522 atomic_set(&ref->refs, 1); 523 ref->bytenr = bytenr; 524 ref->num_bytes = num_bytes; 525 ref->ref_mod = 1; 526 ref->action = action; 527 ref->is_head = 0; 528 ref->in_tree = 1; 529 530 full_ref = btrfs_delayed_node_to_tree_ref(ref); 531 if (parent) { 532 full_ref->parent = parent; 533 ref->type = BTRFS_SHARED_BLOCK_REF_KEY; 534 } else { 535 full_ref->root = ref_root; 536 ref->type = BTRFS_TREE_BLOCK_REF_KEY; 537 } 538 full_ref->level = level; 539 540 existing = tree_insert(&delayed_refs->root, &ref->rb_node); 541 542 if (existing) { 543 update_existing_ref(trans, delayed_refs, existing, ref); 544 /* 545 * we've updated the existing ref, free the newly 546 * allocated ref 547 */ 548 kfree(ref); 549 } else { 550 delayed_refs->num_entries++; 551 trans->delayed_ref_updates++; 552 } 553 return 0; 554 } 555 556 /* 557 * helper to insert a delayed data ref into the rbtree. 558 */ 559 static noinline int add_delayed_data_ref(struct btrfs_trans_handle *trans, 560 struct btrfs_delayed_ref_node *ref, 561 u64 bytenr, u64 num_bytes, u64 parent, 562 u64 ref_root, u64 owner, u64 offset, 563 int action) 564 { 565 struct btrfs_delayed_ref_node *existing; 566 struct btrfs_delayed_data_ref *full_ref; 567 struct btrfs_delayed_ref_root *delayed_refs; 568 569 if (action == BTRFS_ADD_DELAYED_EXTENT) 570 action = BTRFS_ADD_DELAYED_REF; 571 572 delayed_refs = &trans->transaction->delayed_refs; 573 574 /* first set the basic ref node struct up */ 575 atomic_set(&ref->refs, 1); 576 ref->bytenr = bytenr; 577 ref->num_bytes = num_bytes; 578 ref->ref_mod = 1; 579 ref->action = action; 580 ref->is_head = 0; 581 ref->in_tree = 1; 582 583 full_ref = btrfs_delayed_node_to_data_ref(ref); 584 if (parent) { 585 full_ref->parent = parent; 586 ref->type = BTRFS_SHARED_DATA_REF_KEY; 587 } else { 588 full_ref->root = ref_root; 589 ref->type = BTRFS_EXTENT_DATA_REF_KEY; 590 } 591 full_ref->objectid = owner; 592 full_ref->offset = offset; 593 594 existing = tree_insert(&delayed_refs->root, &ref->rb_node); 595 596 if (existing) { 597 update_existing_ref(trans, delayed_refs, existing, ref); 598 /* 599 * we've updated the existing ref, free the newly 600 * allocated ref 601 */ 602 kfree(ref); 603 } else { 604 delayed_refs->num_entries++; 605 trans->delayed_ref_updates++; 606 } 607 return 0; 608 } 609 610 /* 611 * add a delayed tree ref. This does all of the accounting required 612 * to make sure the delayed ref is eventually processed before this 613 * transaction commits. 614 */ 615 int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans, 616 u64 bytenr, u64 num_bytes, u64 parent, 617 u64 ref_root, int level, int action, 618 struct btrfs_delayed_extent_op *extent_op) 619 { 620 struct btrfs_delayed_tree_ref *ref; 621 struct btrfs_delayed_ref_head *head_ref; 622 struct btrfs_delayed_ref_root *delayed_refs; 623 int ret; 624 625 BUG_ON(extent_op && extent_op->is_data); 626 ref = kmalloc(sizeof(*ref), GFP_NOFS); 627 if (!ref) 628 return -ENOMEM; 629 630 head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS); 631 if (!head_ref) { 632 kfree(ref); 633 return -ENOMEM; 634 } 635 636 head_ref->extent_op = extent_op; 637 638 delayed_refs = &trans->transaction->delayed_refs; 639 spin_lock(&delayed_refs->lock); 640 641 /* 642 * insert both the head node and the new ref without dropping 643 * the spin lock 644 */ 645 ret = add_delayed_ref_head(trans, &head_ref->node, bytenr, num_bytes, 646 action, 0); 647 BUG_ON(ret); 648 649 ret = add_delayed_tree_ref(trans, &ref->node, bytenr, num_bytes, 650 parent, ref_root, level, action); 651 BUG_ON(ret); 652 spin_unlock(&delayed_refs->lock); 653 return 0; 654 } 655 656 /* 657 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref. 658 */ 659 int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans, 660 u64 bytenr, u64 num_bytes, 661 u64 parent, u64 ref_root, 662 u64 owner, u64 offset, int action, 663 struct btrfs_delayed_extent_op *extent_op) 664 { 665 struct btrfs_delayed_data_ref *ref; 666 struct btrfs_delayed_ref_head *head_ref; 667 struct btrfs_delayed_ref_root *delayed_refs; 668 int ret; 669 670 BUG_ON(extent_op && !extent_op->is_data); 671 ref = kmalloc(sizeof(*ref), GFP_NOFS); 672 if (!ref) 673 return -ENOMEM; 674 675 head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS); 676 if (!head_ref) { 677 kfree(ref); 678 return -ENOMEM; 679 } 680 681 head_ref->extent_op = extent_op; 682 683 delayed_refs = &trans->transaction->delayed_refs; 684 spin_lock(&delayed_refs->lock); 685 686 /* 687 * insert both the head node and the new ref without dropping 688 * the spin lock 689 */ 690 ret = add_delayed_ref_head(trans, &head_ref->node, bytenr, num_bytes, 691 action, 1); 692 BUG_ON(ret); 693 694 ret = add_delayed_data_ref(trans, &ref->node, bytenr, num_bytes, 695 parent, ref_root, owner, offset, action); 696 BUG_ON(ret); 697 spin_unlock(&delayed_refs->lock); 698 return 0; 699 } 700 701 int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans, 702 u64 bytenr, u64 num_bytes, 703 struct btrfs_delayed_extent_op *extent_op) 704 { 705 struct btrfs_delayed_ref_head *head_ref; 706 struct btrfs_delayed_ref_root *delayed_refs; 707 int ret; 708 709 head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS); 710 if (!head_ref) 711 return -ENOMEM; 712 713 head_ref->extent_op = extent_op; 714 715 delayed_refs = &trans->transaction->delayed_refs; 716 spin_lock(&delayed_refs->lock); 717 718 ret = add_delayed_ref_head(trans, &head_ref->node, bytenr, 719 num_bytes, BTRFS_UPDATE_DELAYED_HEAD, 720 extent_op->is_data); 721 BUG_ON(ret); 722 723 spin_unlock(&delayed_refs->lock); 724 return 0; 725 } 726 727 /* 728 * this does a simple search for the head node for a given extent. 729 * It must be called with the delayed ref spinlock held, and it returns 730 * the head node if any where found, or NULL if not. 731 */ 732 struct btrfs_delayed_ref_head * 733 btrfs_find_delayed_ref_head(struct btrfs_trans_handle *trans, u64 bytenr) 734 { 735 struct btrfs_delayed_ref_node *ref; 736 struct btrfs_delayed_ref_root *delayed_refs; 737 738 delayed_refs = &trans->transaction->delayed_refs; 739 ref = find_ref_head(&delayed_refs->root, bytenr, NULL); 740 if (ref) 741 return btrfs_delayed_node_to_head(ref); 742 return NULL; 743 } 744 745 /* 746 * add a delayed ref to the tree. This does all of the accounting required 747 * to make sure the delayed ref is eventually processed before this 748 * transaction commits. 749 * 750 * The main point of this call is to add and remove a backreference in a single 751 * shot, taking the lock only once, and only searching for the head node once. 752 * 753 * It is the same as doing a ref add and delete in two separate calls. 754 */ 755 #if 0 756 int btrfs_update_delayed_ref(struct btrfs_trans_handle *trans, 757 u64 bytenr, u64 num_bytes, u64 orig_parent, 758 u64 parent, u64 orig_ref_root, u64 ref_root, 759 u64 orig_ref_generation, u64 ref_generation, 760 u64 owner_objectid, int pin) 761 { 762 struct btrfs_delayed_ref *ref; 763 struct btrfs_delayed_ref *old_ref; 764 struct btrfs_delayed_ref_head *head_ref; 765 struct btrfs_delayed_ref_root *delayed_refs; 766 int ret; 767 768 ref = kmalloc(sizeof(*ref), GFP_NOFS); 769 if (!ref) 770 return -ENOMEM; 771 772 old_ref = kmalloc(sizeof(*old_ref), GFP_NOFS); 773 if (!old_ref) { 774 kfree(ref); 775 return -ENOMEM; 776 } 777 778 /* 779 * the parent = 0 case comes from cases where we don't actually 780 * know the parent yet. It will get updated later via a add/drop 781 * pair. 782 */ 783 if (parent == 0) 784 parent = bytenr; 785 if (orig_parent == 0) 786 orig_parent = bytenr; 787 788 head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS); 789 if (!head_ref) { 790 kfree(ref); 791 kfree(old_ref); 792 return -ENOMEM; 793 } 794 delayed_refs = &trans->transaction->delayed_refs; 795 spin_lock(&delayed_refs->lock); 796 797 /* 798 * insert both the head node and the new ref without dropping 799 * the spin lock 800 */ 801 ret = __btrfs_add_delayed_ref(trans, &head_ref->node, bytenr, num_bytes, 802 (u64)-1, 0, 0, 0, 803 BTRFS_UPDATE_DELAYED_HEAD, 0); 804 BUG_ON(ret); 805 806 ret = __btrfs_add_delayed_ref(trans, &ref->node, bytenr, num_bytes, 807 parent, ref_root, ref_generation, 808 owner_objectid, BTRFS_ADD_DELAYED_REF, 0); 809 BUG_ON(ret); 810 811 ret = __btrfs_add_delayed_ref(trans, &old_ref->node, bytenr, num_bytes, 812 orig_parent, orig_ref_root, 813 orig_ref_generation, owner_objectid, 814 BTRFS_DROP_DELAYED_REF, pin); 815 BUG_ON(ret); 816 spin_unlock(&delayed_refs->lock); 817 return 0; 818 } 819 #endif 820