1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2009 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/sort.h> 9 #include "ctree.h" 10 #include "delayed-ref.h" 11 #include "transaction.h" 12 #include "qgroup.h" 13 #include "space-info.h" 14 #include "tree-mod-log.h" 15 16 struct kmem_cache *btrfs_delayed_ref_head_cachep; 17 struct kmem_cache *btrfs_delayed_tree_ref_cachep; 18 struct kmem_cache *btrfs_delayed_data_ref_cachep; 19 struct kmem_cache *btrfs_delayed_extent_op_cachep; 20 /* 21 * delayed back reference update tracking. For subvolume trees 22 * we queue up extent allocations and backref maintenance for 23 * delayed processing. This avoids deep call chains where we 24 * add extents in the middle of btrfs_search_slot, and it allows 25 * us to buffer up frequently modified backrefs in an rb tree instead 26 * of hammering updates on the extent allocation tree. 27 */ 28 29 bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info) 30 { 31 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 32 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 33 bool ret = false; 34 u64 reserved; 35 36 spin_lock(&global_rsv->lock); 37 reserved = global_rsv->reserved; 38 spin_unlock(&global_rsv->lock); 39 40 /* 41 * Since the global reserve is just kind of magic we don't really want 42 * to rely on it to save our bacon, so if our size is more than the 43 * delayed_refs_rsv and the global rsv then it's time to think about 44 * bailing. 45 */ 46 spin_lock(&delayed_refs_rsv->lock); 47 reserved += delayed_refs_rsv->reserved; 48 if (delayed_refs_rsv->size >= reserved) 49 ret = true; 50 spin_unlock(&delayed_refs_rsv->lock); 51 return ret; 52 } 53 54 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans) 55 { 56 u64 num_entries = 57 atomic_read(&trans->transaction->delayed_refs.num_entries); 58 u64 avg_runtime; 59 u64 val; 60 61 smp_mb(); 62 avg_runtime = trans->fs_info->avg_delayed_ref_runtime; 63 val = num_entries * avg_runtime; 64 if (val >= NSEC_PER_SEC) 65 return 1; 66 if (val >= NSEC_PER_SEC / 2) 67 return 2; 68 69 return btrfs_check_space_for_delayed_refs(trans->fs_info); 70 } 71 72 /** 73 * Release a ref head's reservation 74 * 75 * @fs_info: the filesystem 76 * @nr: number of items to drop 77 * 78 * This drops the delayed ref head's count from the delayed refs rsv and frees 79 * any excess reservation we had. 80 */ 81 void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr) 82 { 83 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv; 84 u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, nr); 85 u64 released = 0; 86 87 released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL); 88 if (released) 89 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 90 0, released, 0); 91 } 92 93 /* 94 * btrfs_update_delayed_refs_rsv - adjust the size of the delayed refs rsv 95 * @trans - the trans that may have generated delayed refs 96 * 97 * This is to be called anytime we may have adjusted trans->delayed_ref_updates, 98 * it'll calculate the additional size and add it to the delayed_refs_rsv. 99 */ 100 void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans) 101 { 102 struct btrfs_fs_info *fs_info = trans->fs_info; 103 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv; 104 u64 num_bytes; 105 106 if (!trans->delayed_ref_updates) 107 return; 108 109 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 110 trans->delayed_ref_updates); 111 spin_lock(&delayed_rsv->lock); 112 delayed_rsv->size += num_bytes; 113 delayed_rsv->full = 0; 114 spin_unlock(&delayed_rsv->lock); 115 trans->delayed_ref_updates = 0; 116 } 117 118 /** 119 * Transfer bytes to our delayed refs rsv 120 * 121 * @fs_info: the filesystem 122 * @src: source block rsv to transfer from 123 * @num_bytes: number of bytes to transfer 124 * 125 * This transfers up to the num_bytes amount from the src rsv to the 126 * delayed_refs_rsv. Any extra bytes are returned to the space info. 127 */ 128 void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info, 129 struct btrfs_block_rsv *src, 130 u64 num_bytes) 131 { 132 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 133 u64 to_free = 0; 134 135 spin_lock(&src->lock); 136 src->reserved -= num_bytes; 137 src->size -= num_bytes; 138 spin_unlock(&src->lock); 139 140 spin_lock(&delayed_refs_rsv->lock); 141 if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) { 142 u64 delta = delayed_refs_rsv->size - 143 delayed_refs_rsv->reserved; 144 if (num_bytes > delta) { 145 to_free = num_bytes - delta; 146 num_bytes = delta; 147 } 148 } else { 149 to_free = num_bytes; 150 num_bytes = 0; 151 } 152 153 if (num_bytes) 154 delayed_refs_rsv->reserved += num_bytes; 155 if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size) 156 delayed_refs_rsv->full = 1; 157 spin_unlock(&delayed_refs_rsv->lock); 158 159 if (num_bytes) 160 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 161 0, num_bytes, 1); 162 if (to_free) 163 btrfs_space_info_free_bytes_may_use(fs_info, 164 delayed_refs_rsv->space_info, to_free); 165 } 166 167 /** 168 * Refill based on our delayed refs usage 169 * 170 * @fs_info: the filesystem 171 * @flush: control how we can flush for this reservation. 172 * 173 * This will refill the delayed block_rsv up to 1 items size worth of space and 174 * will return -ENOSPC if we can't make the reservation. 175 */ 176 int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info, 177 enum btrfs_reserve_flush_enum flush) 178 { 179 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv; 180 u64 limit = btrfs_calc_insert_metadata_size(fs_info, 1); 181 u64 num_bytes = 0; 182 int ret = -ENOSPC; 183 184 spin_lock(&block_rsv->lock); 185 if (block_rsv->reserved < block_rsv->size) { 186 num_bytes = block_rsv->size - block_rsv->reserved; 187 num_bytes = min(num_bytes, limit); 188 } 189 spin_unlock(&block_rsv->lock); 190 191 if (!num_bytes) 192 return 0; 193 194 ret = btrfs_reserve_metadata_bytes(fs_info->extent_root, block_rsv, 195 num_bytes, flush); 196 if (ret) 197 return ret; 198 btrfs_block_rsv_add_bytes(block_rsv, num_bytes, 0); 199 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 200 0, num_bytes, 1); 201 return 0; 202 } 203 204 /* 205 * compare two delayed tree backrefs with same bytenr and type 206 */ 207 static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1, 208 struct btrfs_delayed_tree_ref *ref2) 209 { 210 if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) { 211 if (ref1->root < ref2->root) 212 return -1; 213 if (ref1->root > ref2->root) 214 return 1; 215 } else { 216 if (ref1->parent < ref2->parent) 217 return -1; 218 if (ref1->parent > ref2->parent) 219 return 1; 220 } 221 return 0; 222 } 223 224 /* 225 * compare two delayed data backrefs with same bytenr and type 226 */ 227 static int comp_data_refs(struct btrfs_delayed_data_ref *ref1, 228 struct btrfs_delayed_data_ref *ref2) 229 { 230 if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) { 231 if (ref1->root < ref2->root) 232 return -1; 233 if (ref1->root > ref2->root) 234 return 1; 235 if (ref1->objectid < ref2->objectid) 236 return -1; 237 if (ref1->objectid > ref2->objectid) 238 return 1; 239 if (ref1->offset < ref2->offset) 240 return -1; 241 if (ref1->offset > ref2->offset) 242 return 1; 243 } else { 244 if (ref1->parent < ref2->parent) 245 return -1; 246 if (ref1->parent > ref2->parent) 247 return 1; 248 } 249 return 0; 250 } 251 252 static int comp_refs(struct btrfs_delayed_ref_node *ref1, 253 struct btrfs_delayed_ref_node *ref2, 254 bool check_seq) 255 { 256 int ret = 0; 257 258 if (ref1->type < ref2->type) 259 return -1; 260 if (ref1->type > ref2->type) 261 return 1; 262 if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY || 263 ref1->type == BTRFS_SHARED_BLOCK_REF_KEY) 264 ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1), 265 btrfs_delayed_node_to_tree_ref(ref2)); 266 else 267 ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1), 268 btrfs_delayed_node_to_data_ref(ref2)); 269 if (ret) 270 return ret; 271 if (check_seq) { 272 if (ref1->seq < ref2->seq) 273 return -1; 274 if (ref1->seq > ref2->seq) 275 return 1; 276 } 277 return 0; 278 } 279 280 /* insert a new ref to head ref rbtree */ 281 static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root, 282 struct rb_node *node) 283 { 284 struct rb_node **p = &root->rb_root.rb_node; 285 struct rb_node *parent_node = NULL; 286 struct btrfs_delayed_ref_head *entry; 287 struct btrfs_delayed_ref_head *ins; 288 u64 bytenr; 289 bool leftmost = true; 290 291 ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node); 292 bytenr = ins->bytenr; 293 while (*p) { 294 parent_node = *p; 295 entry = rb_entry(parent_node, struct btrfs_delayed_ref_head, 296 href_node); 297 298 if (bytenr < entry->bytenr) { 299 p = &(*p)->rb_left; 300 } else if (bytenr > entry->bytenr) { 301 p = &(*p)->rb_right; 302 leftmost = false; 303 } else { 304 return entry; 305 } 306 } 307 308 rb_link_node(node, parent_node, p); 309 rb_insert_color_cached(node, root, leftmost); 310 return NULL; 311 } 312 313 static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root, 314 struct btrfs_delayed_ref_node *ins) 315 { 316 struct rb_node **p = &root->rb_root.rb_node; 317 struct rb_node *node = &ins->ref_node; 318 struct rb_node *parent_node = NULL; 319 struct btrfs_delayed_ref_node *entry; 320 bool leftmost = true; 321 322 while (*p) { 323 int comp; 324 325 parent_node = *p; 326 entry = rb_entry(parent_node, struct btrfs_delayed_ref_node, 327 ref_node); 328 comp = comp_refs(ins, entry, true); 329 if (comp < 0) { 330 p = &(*p)->rb_left; 331 } else if (comp > 0) { 332 p = &(*p)->rb_right; 333 leftmost = false; 334 } else { 335 return entry; 336 } 337 } 338 339 rb_link_node(node, parent_node, p); 340 rb_insert_color_cached(node, root, leftmost); 341 return NULL; 342 } 343 344 static struct btrfs_delayed_ref_head *find_first_ref_head( 345 struct btrfs_delayed_ref_root *dr) 346 { 347 struct rb_node *n; 348 struct btrfs_delayed_ref_head *entry; 349 350 n = rb_first_cached(&dr->href_root); 351 if (!n) 352 return NULL; 353 354 entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node); 355 356 return entry; 357 } 358 359 /* 360 * Find a head entry based on bytenr. This returns the delayed ref head if it 361 * was able to find one, or NULL if nothing was in that spot. If return_bigger 362 * is given, the next bigger entry is returned if no exact match is found. 363 */ 364 static struct btrfs_delayed_ref_head *find_ref_head( 365 struct btrfs_delayed_ref_root *dr, u64 bytenr, 366 bool return_bigger) 367 { 368 struct rb_root *root = &dr->href_root.rb_root; 369 struct rb_node *n; 370 struct btrfs_delayed_ref_head *entry; 371 372 n = root->rb_node; 373 entry = NULL; 374 while (n) { 375 entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node); 376 377 if (bytenr < entry->bytenr) 378 n = n->rb_left; 379 else if (bytenr > entry->bytenr) 380 n = n->rb_right; 381 else 382 return entry; 383 } 384 if (entry && return_bigger) { 385 if (bytenr > entry->bytenr) { 386 n = rb_next(&entry->href_node); 387 if (!n) 388 return NULL; 389 entry = rb_entry(n, struct btrfs_delayed_ref_head, 390 href_node); 391 } 392 return entry; 393 } 394 return NULL; 395 } 396 397 int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs, 398 struct btrfs_delayed_ref_head *head) 399 { 400 lockdep_assert_held(&delayed_refs->lock); 401 if (mutex_trylock(&head->mutex)) 402 return 0; 403 404 refcount_inc(&head->refs); 405 spin_unlock(&delayed_refs->lock); 406 407 mutex_lock(&head->mutex); 408 spin_lock(&delayed_refs->lock); 409 if (RB_EMPTY_NODE(&head->href_node)) { 410 mutex_unlock(&head->mutex); 411 btrfs_put_delayed_ref_head(head); 412 return -EAGAIN; 413 } 414 btrfs_put_delayed_ref_head(head); 415 return 0; 416 } 417 418 static inline void drop_delayed_ref(struct btrfs_trans_handle *trans, 419 struct btrfs_delayed_ref_root *delayed_refs, 420 struct btrfs_delayed_ref_head *head, 421 struct btrfs_delayed_ref_node *ref) 422 { 423 lockdep_assert_held(&head->lock); 424 rb_erase_cached(&ref->ref_node, &head->ref_tree); 425 RB_CLEAR_NODE(&ref->ref_node); 426 if (!list_empty(&ref->add_list)) 427 list_del(&ref->add_list); 428 ref->in_tree = 0; 429 btrfs_put_delayed_ref(ref); 430 atomic_dec(&delayed_refs->num_entries); 431 } 432 433 static bool merge_ref(struct btrfs_trans_handle *trans, 434 struct btrfs_delayed_ref_root *delayed_refs, 435 struct btrfs_delayed_ref_head *head, 436 struct btrfs_delayed_ref_node *ref, 437 u64 seq) 438 { 439 struct btrfs_delayed_ref_node *next; 440 struct rb_node *node = rb_next(&ref->ref_node); 441 bool done = false; 442 443 while (!done && node) { 444 int mod; 445 446 next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 447 node = rb_next(node); 448 if (seq && next->seq >= seq) 449 break; 450 if (comp_refs(ref, next, false)) 451 break; 452 453 if (ref->action == next->action) { 454 mod = next->ref_mod; 455 } else { 456 if (ref->ref_mod < next->ref_mod) { 457 swap(ref, next); 458 done = true; 459 } 460 mod = -next->ref_mod; 461 } 462 463 drop_delayed_ref(trans, delayed_refs, head, next); 464 ref->ref_mod += mod; 465 if (ref->ref_mod == 0) { 466 drop_delayed_ref(trans, delayed_refs, head, ref); 467 done = true; 468 } else { 469 /* 470 * Can't have multiples of the same ref on a tree block. 471 */ 472 WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY || 473 ref->type == BTRFS_SHARED_BLOCK_REF_KEY); 474 } 475 } 476 477 return done; 478 } 479 480 void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans, 481 struct btrfs_delayed_ref_root *delayed_refs, 482 struct btrfs_delayed_ref_head *head) 483 { 484 struct btrfs_fs_info *fs_info = trans->fs_info; 485 struct btrfs_delayed_ref_node *ref; 486 struct rb_node *node; 487 u64 seq = 0; 488 489 lockdep_assert_held(&head->lock); 490 491 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 492 return; 493 494 /* We don't have too many refs to merge for data. */ 495 if (head->is_data) 496 return; 497 498 seq = btrfs_tree_mod_log_lowest_seq(fs_info); 499 again: 500 for (node = rb_first_cached(&head->ref_tree); node; 501 node = rb_next(node)) { 502 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 503 if (seq && ref->seq >= seq) 504 continue; 505 if (merge_ref(trans, delayed_refs, head, ref, seq)) 506 goto again; 507 } 508 } 509 510 int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq) 511 { 512 int ret = 0; 513 u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info); 514 515 if (min_seq != 0 && seq >= min_seq) { 516 btrfs_debug(fs_info, 517 "holding back delayed_ref %llu, lowest is %llu", 518 seq, min_seq); 519 ret = 1; 520 } 521 522 return ret; 523 } 524 525 struct btrfs_delayed_ref_head *btrfs_select_ref_head( 526 struct btrfs_delayed_ref_root *delayed_refs) 527 { 528 struct btrfs_delayed_ref_head *head; 529 530 again: 531 head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start, 532 true); 533 if (!head && delayed_refs->run_delayed_start != 0) { 534 delayed_refs->run_delayed_start = 0; 535 head = find_first_ref_head(delayed_refs); 536 } 537 if (!head) 538 return NULL; 539 540 while (head->processing) { 541 struct rb_node *node; 542 543 node = rb_next(&head->href_node); 544 if (!node) { 545 if (delayed_refs->run_delayed_start == 0) 546 return NULL; 547 delayed_refs->run_delayed_start = 0; 548 goto again; 549 } 550 head = rb_entry(node, struct btrfs_delayed_ref_head, 551 href_node); 552 } 553 554 head->processing = 1; 555 WARN_ON(delayed_refs->num_heads_ready == 0); 556 delayed_refs->num_heads_ready--; 557 delayed_refs->run_delayed_start = head->bytenr + 558 head->num_bytes; 559 return head; 560 } 561 562 void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 563 struct btrfs_delayed_ref_head *head) 564 { 565 lockdep_assert_held(&delayed_refs->lock); 566 lockdep_assert_held(&head->lock); 567 568 rb_erase_cached(&head->href_node, &delayed_refs->href_root); 569 RB_CLEAR_NODE(&head->href_node); 570 atomic_dec(&delayed_refs->num_entries); 571 delayed_refs->num_heads--; 572 if (head->processing == 0) 573 delayed_refs->num_heads_ready--; 574 } 575 576 /* 577 * Helper to insert the ref_node to the tail or merge with tail. 578 * 579 * Return 0 for insert. 580 * Return >0 for merge. 581 */ 582 static int insert_delayed_ref(struct btrfs_trans_handle *trans, 583 struct btrfs_delayed_ref_root *root, 584 struct btrfs_delayed_ref_head *href, 585 struct btrfs_delayed_ref_node *ref) 586 { 587 struct btrfs_delayed_ref_node *exist; 588 int mod; 589 int ret = 0; 590 591 spin_lock(&href->lock); 592 exist = tree_insert(&href->ref_tree, ref); 593 if (!exist) 594 goto inserted; 595 596 /* Now we are sure we can merge */ 597 ret = 1; 598 if (exist->action == ref->action) { 599 mod = ref->ref_mod; 600 } else { 601 /* Need to change action */ 602 if (exist->ref_mod < ref->ref_mod) { 603 exist->action = ref->action; 604 mod = -exist->ref_mod; 605 exist->ref_mod = ref->ref_mod; 606 if (ref->action == BTRFS_ADD_DELAYED_REF) 607 list_add_tail(&exist->add_list, 608 &href->ref_add_list); 609 else if (ref->action == BTRFS_DROP_DELAYED_REF) { 610 ASSERT(!list_empty(&exist->add_list)); 611 list_del(&exist->add_list); 612 } else { 613 ASSERT(0); 614 } 615 } else 616 mod = -ref->ref_mod; 617 } 618 exist->ref_mod += mod; 619 620 /* remove existing tail if its ref_mod is zero */ 621 if (exist->ref_mod == 0) 622 drop_delayed_ref(trans, root, href, exist); 623 spin_unlock(&href->lock); 624 return ret; 625 inserted: 626 if (ref->action == BTRFS_ADD_DELAYED_REF) 627 list_add_tail(&ref->add_list, &href->ref_add_list); 628 atomic_inc(&root->num_entries); 629 spin_unlock(&href->lock); 630 return ret; 631 } 632 633 /* 634 * helper function to update the accounting in the head ref 635 * existing and update must have the same bytenr 636 */ 637 static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans, 638 struct btrfs_delayed_ref_head *existing, 639 struct btrfs_delayed_ref_head *update) 640 { 641 struct btrfs_delayed_ref_root *delayed_refs = 642 &trans->transaction->delayed_refs; 643 struct btrfs_fs_info *fs_info = trans->fs_info; 644 int old_ref_mod; 645 646 BUG_ON(existing->is_data != update->is_data); 647 648 spin_lock(&existing->lock); 649 if (update->must_insert_reserved) { 650 /* if the extent was freed and then 651 * reallocated before the delayed ref 652 * entries were processed, we can end up 653 * with an existing head ref without 654 * the must_insert_reserved flag set. 655 * Set it again here 656 */ 657 existing->must_insert_reserved = update->must_insert_reserved; 658 659 /* 660 * update the num_bytes so we make sure the accounting 661 * is done correctly 662 */ 663 existing->num_bytes = update->num_bytes; 664 665 } 666 667 if (update->extent_op) { 668 if (!existing->extent_op) { 669 existing->extent_op = update->extent_op; 670 } else { 671 if (update->extent_op->update_key) { 672 memcpy(&existing->extent_op->key, 673 &update->extent_op->key, 674 sizeof(update->extent_op->key)); 675 existing->extent_op->update_key = true; 676 } 677 if (update->extent_op->update_flags) { 678 existing->extent_op->flags_to_set |= 679 update->extent_op->flags_to_set; 680 existing->extent_op->update_flags = true; 681 } 682 btrfs_free_delayed_extent_op(update->extent_op); 683 } 684 } 685 /* 686 * update the reference mod on the head to reflect this new operation, 687 * only need the lock for this case cause we could be processing it 688 * currently, for refs we just added we know we're a-ok. 689 */ 690 old_ref_mod = existing->total_ref_mod; 691 existing->ref_mod += update->ref_mod; 692 existing->total_ref_mod += update->ref_mod; 693 694 /* 695 * If we are going to from a positive ref mod to a negative or vice 696 * versa we need to make sure to adjust pending_csums accordingly. 697 */ 698 if (existing->is_data) { 699 u64 csum_leaves = 700 btrfs_csum_bytes_to_leaves(fs_info, 701 existing->num_bytes); 702 703 if (existing->total_ref_mod >= 0 && old_ref_mod < 0) { 704 delayed_refs->pending_csums -= existing->num_bytes; 705 btrfs_delayed_refs_rsv_release(fs_info, csum_leaves); 706 } 707 if (existing->total_ref_mod < 0 && old_ref_mod >= 0) { 708 delayed_refs->pending_csums += existing->num_bytes; 709 trans->delayed_ref_updates += csum_leaves; 710 } 711 } 712 713 spin_unlock(&existing->lock); 714 } 715 716 static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref, 717 struct btrfs_qgroup_extent_record *qrecord, 718 u64 bytenr, u64 num_bytes, u64 ref_root, 719 u64 reserved, int action, bool is_data, 720 bool is_system) 721 { 722 int count_mod = 1; 723 int must_insert_reserved = 0; 724 725 /* If reserved is provided, it must be a data extent. */ 726 BUG_ON(!is_data && reserved); 727 728 /* 729 * The head node stores the sum of all the mods, so dropping a ref 730 * should drop the sum in the head node by one. 731 */ 732 if (action == BTRFS_UPDATE_DELAYED_HEAD) 733 count_mod = 0; 734 else if (action == BTRFS_DROP_DELAYED_REF) 735 count_mod = -1; 736 737 /* 738 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the reserved 739 * accounting when the extent is finally added, or if a later 740 * modification deletes the delayed ref without ever inserting the 741 * extent into the extent allocation tree. ref->must_insert_reserved 742 * is the flag used to record that accounting mods are required. 743 * 744 * Once we record must_insert_reserved, switch the action to 745 * BTRFS_ADD_DELAYED_REF because other special casing is not required. 746 */ 747 if (action == BTRFS_ADD_DELAYED_EXTENT) 748 must_insert_reserved = 1; 749 else 750 must_insert_reserved = 0; 751 752 refcount_set(&head_ref->refs, 1); 753 head_ref->bytenr = bytenr; 754 head_ref->num_bytes = num_bytes; 755 head_ref->ref_mod = count_mod; 756 head_ref->must_insert_reserved = must_insert_reserved; 757 head_ref->is_data = is_data; 758 head_ref->is_system = is_system; 759 head_ref->ref_tree = RB_ROOT_CACHED; 760 INIT_LIST_HEAD(&head_ref->ref_add_list); 761 RB_CLEAR_NODE(&head_ref->href_node); 762 head_ref->processing = 0; 763 head_ref->total_ref_mod = count_mod; 764 spin_lock_init(&head_ref->lock); 765 mutex_init(&head_ref->mutex); 766 767 if (qrecord) { 768 if (ref_root && reserved) { 769 qrecord->data_rsv = reserved; 770 qrecord->data_rsv_refroot = ref_root; 771 } 772 qrecord->bytenr = bytenr; 773 qrecord->num_bytes = num_bytes; 774 qrecord->old_roots = NULL; 775 } 776 } 777 778 /* 779 * helper function to actually insert a head node into the rbtree. 780 * this does all the dirty work in terms of maintaining the correct 781 * overall modification count. 782 */ 783 static noinline struct btrfs_delayed_ref_head * 784 add_delayed_ref_head(struct btrfs_trans_handle *trans, 785 struct btrfs_delayed_ref_head *head_ref, 786 struct btrfs_qgroup_extent_record *qrecord, 787 int action, int *qrecord_inserted_ret) 788 { 789 struct btrfs_delayed_ref_head *existing; 790 struct btrfs_delayed_ref_root *delayed_refs; 791 int qrecord_inserted = 0; 792 793 delayed_refs = &trans->transaction->delayed_refs; 794 795 /* Record qgroup extent info if provided */ 796 if (qrecord) { 797 if (btrfs_qgroup_trace_extent_nolock(trans->fs_info, 798 delayed_refs, qrecord)) 799 kfree(qrecord); 800 else 801 qrecord_inserted = 1; 802 } 803 804 trace_add_delayed_ref_head(trans->fs_info, head_ref, action); 805 806 existing = htree_insert(&delayed_refs->href_root, 807 &head_ref->href_node); 808 if (existing) { 809 update_existing_head_ref(trans, existing, head_ref); 810 /* 811 * we've updated the existing ref, free the newly 812 * allocated ref 813 */ 814 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref); 815 head_ref = existing; 816 } else { 817 if (head_ref->is_data && head_ref->ref_mod < 0) { 818 delayed_refs->pending_csums += head_ref->num_bytes; 819 trans->delayed_ref_updates += 820 btrfs_csum_bytes_to_leaves(trans->fs_info, 821 head_ref->num_bytes); 822 } 823 delayed_refs->num_heads++; 824 delayed_refs->num_heads_ready++; 825 atomic_inc(&delayed_refs->num_entries); 826 trans->delayed_ref_updates++; 827 } 828 if (qrecord_inserted_ret) 829 *qrecord_inserted_ret = qrecord_inserted; 830 831 return head_ref; 832 } 833 834 /* 835 * init_delayed_ref_common - Initialize the structure which represents a 836 * modification to a an extent. 837 * 838 * @fs_info: Internal to the mounted filesystem mount structure. 839 * 840 * @ref: The structure which is going to be initialized. 841 * 842 * @bytenr: The logical address of the extent for which a modification is 843 * going to be recorded. 844 * 845 * @num_bytes: Size of the extent whose modification is being recorded. 846 * 847 * @ref_root: The id of the root where this modification has originated, this 848 * can be either one of the well-known metadata trees or the 849 * subvolume id which references this extent. 850 * 851 * @action: Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or 852 * BTRFS_ADD_DELAYED_EXTENT 853 * 854 * @ref_type: Holds the type of the extent which is being recorded, can be 855 * one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY 856 * when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/ 857 * BTRFS_EXTENT_DATA_REF_KEY when recording data extent 858 */ 859 static void init_delayed_ref_common(struct btrfs_fs_info *fs_info, 860 struct btrfs_delayed_ref_node *ref, 861 u64 bytenr, u64 num_bytes, u64 ref_root, 862 int action, u8 ref_type) 863 { 864 u64 seq = 0; 865 866 if (action == BTRFS_ADD_DELAYED_EXTENT) 867 action = BTRFS_ADD_DELAYED_REF; 868 869 if (is_fstree(ref_root)) 870 seq = atomic64_read(&fs_info->tree_mod_seq); 871 872 refcount_set(&ref->refs, 1); 873 ref->bytenr = bytenr; 874 ref->num_bytes = num_bytes; 875 ref->ref_mod = 1; 876 ref->action = action; 877 ref->is_head = 0; 878 ref->in_tree = 1; 879 ref->seq = seq; 880 ref->type = ref_type; 881 RB_CLEAR_NODE(&ref->ref_node); 882 INIT_LIST_HEAD(&ref->add_list); 883 } 884 885 /* 886 * add a delayed tree ref. This does all of the accounting required 887 * to make sure the delayed ref is eventually processed before this 888 * transaction commits. 889 */ 890 int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans, 891 struct btrfs_ref *generic_ref, 892 struct btrfs_delayed_extent_op *extent_op) 893 { 894 struct btrfs_fs_info *fs_info = trans->fs_info; 895 struct btrfs_delayed_tree_ref *ref; 896 struct btrfs_delayed_ref_head *head_ref; 897 struct btrfs_delayed_ref_root *delayed_refs; 898 struct btrfs_qgroup_extent_record *record = NULL; 899 int qrecord_inserted; 900 bool is_system; 901 int action = generic_ref->action; 902 int level = generic_ref->tree_ref.level; 903 int ret; 904 u64 bytenr = generic_ref->bytenr; 905 u64 num_bytes = generic_ref->len; 906 u64 parent = generic_ref->parent; 907 u8 ref_type; 908 909 is_system = (generic_ref->tree_ref.owning_root == BTRFS_CHUNK_TREE_OBJECTID); 910 911 ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action); 912 BUG_ON(extent_op && extent_op->is_data); 913 ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS); 914 if (!ref) 915 return -ENOMEM; 916 917 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS); 918 if (!head_ref) { 919 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref); 920 return -ENOMEM; 921 } 922 923 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) && 924 !generic_ref->skip_qgroup) { 925 record = kzalloc(sizeof(*record), GFP_NOFS); 926 if (!record) { 927 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref); 928 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref); 929 return -ENOMEM; 930 } 931 } 932 933 if (parent) 934 ref_type = BTRFS_SHARED_BLOCK_REF_KEY; 935 else 936 ref_type = BTRFS_TREE_BLOCK_REF_KEY; 937 938 init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes, 939 generic_ref->tree_ref.owning_root, action, 940 ref_type); 941 ref->root = generic_ref->tree_ref.owning_root; 942 ref->parent = parent; 943 ref->level = level; 944 945 init_delayed_ref_head(head_ref, record, bytenr, num_bytes, 946 generic_ref->tree_ref.owning_root, 0, action, 947 false, is_system); 948 head_ref->extent_op = extent_op; 949 950 delayed_refs = &trans->transaction->delayed_refs; 951 spin_lock(&delayed_refs->lock); 952 953 /* 954 * insert both the head node and the new ref without dropping 955 * the spin lock 956 */ 957 head_ref = add_delayed_ref_head(trans, head_ref, record, 958 action, &qrecord_inserted); 959 960 ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node); 961 spin_unlock(&delayed_refs->lock); 962 963 /* 964 * Need to update the delayed_refs_rsv with any changes we may have 965 * made. 966 */ 967 btrfs_update_delayed_refs_rsv(trans); 968 969 trace_add_delayed_tree_ref(fs_info, &ref->node, ref, 970 action == BTRFS_ADD_DELAYED_EXTENT ? 971 BTRFS_ADD_DELAYED_REF : action); 972 if (ret > 0) 973 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref); 974 975 if (qrecord_inserted) 976 btrfs_qgroup_trace_extent_post(trans, record); 977 978 return 0; 979 } 980 981 /* 982 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref. 983 */ 984 int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans, 985 struct btrfs_ref *generic_ref, 986 u64 reserved) 987 { 988 struct btrfs_fs_info *fs_info = trans->fs_info; 989 struct btrfs_delayed_data_ref *ref; 990 struct btrfs_delayed_ref_head *head_ref; 991 struct btrfs_delayed_ref_root *delayed_refs; 992 struct btrfs_qgroup_extent_record *record = NULL; 993 int qrecord_inserted; 994 int action = generic_ref->action; 995 int ret; 996 u64 bytenr = generic_ref->bytenr; 997 u64 num_bytes = generic_ref->len; 998 u64 parent = generic_ref->parent; 999 u64 ref_root = generic_ref->data_ref.owning_root; 1000 u64 owner = generic_ref->data_ref.ino; 1001 u64 offset = generic_ref->data_ref.offset; 1002 u8 ref_type; 1003 1004 ASSERT(generic_ref->type == BTRFS_REF_DATA && action); 1005 ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS); 1006 if (!ref) 1007 return -ENOMEM; 1008 1009 if (parent) 1010 ref_type = BTRFS_SHARED_DATA_REF_KEY; 1011 else 1012 ref_type = BTRFS_EXTENT_DATA_REF_KEY; 1013 init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes, 1014 ref_root, action, ref_type); 1015 ref->root = ref_root; 1016 ref->parent = parent; 1017 ref->objectid = owner; 1018 ref->offset = offset; 1019 1020 1021 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS); 1022 if (!head_ref) { 1023 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref); 1024 return -ENOMEM; 1025 } 1026 1027 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) && 1028 !generic_ref->skip_qgroup) { 1029 record = kzalloc(sizeof(*record), GFP_NOFS); 1030 if (!record) { 1031 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref); 1032 kmem_cache_free(btrfs_delayed_ref_head_cachep, 1033 head_ref); 1034 return -ENOMEM; 1035 } 1036 } 1037 1038 init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root, 1039 reserved, action, true, false); 1040 head_ref->extent_op = NULL; 1041 1042 delayed_refs = &trans->transaction->delayed_refs; 1043 spin_lock(&delayed_refs->lock); 1044 1045 /* 1046 * insert both the head node and the new ref without dropping 1047 * the spin lock 1048 */ 1049 head_ref = add_delayed_ref_head(trans, head_ref, record, 1050 action, &qrecord_inserted); 1051 1052 ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node); 1053 spin_unlock(&delayed_refs->lock); 1054 1055 /* 1056 * Need to update the delayed_refs_rsv with any changes we may have 1057 * made. 1058 */ 1059 btrfs_update_delayed_refs_rsv(trans); 1060 1061 trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref, 1062 action == BTRFS_ADD_DELAYED_EXTENT ? 1063 BTRFS_ADD_DELAYED_REF : action); 1064 if (ret > 0) 1065 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref); 1066 1067 1068 if (qrecord_inserted) 1069 return btrfs_qgroup_trace_extent_post(trans, record); 1070 return 0; 1071 } 1072 1073 int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans, 1074 u64 bytenr, u64 num_bytes, 1075 struct btrfs_delayed_extent_op *extent_op) 1076 { 1077 struct btrfs_delayed_ref_head *head_ref; 1078 struct btrfs_delayed_ref_root *delayed_refs; 1079 1080 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS); 1081 if (!head_ref) 1082 return -ENOMEM; 1083 1084 init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0, 1085 BTRFS_UPDATE_DELAYED_HEAD, extent_op->is_data, 1086 false); 1087 head_ref->extent_op = extent_op; 1088 1089 delayed_refs = &trans->transaction->delayed_refs; 1090 spin_lock(&delayed_refs->lock); 1091 1092 add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD, 1093 NULL); 1094 1095 spin_unlock(&delayed_refs->lock); 1096 1097 /* 1098 * Need to update the delayed_refs_rsv with any changes we may have 1099 * made. 1100 */ 1101 btrfs_update_delayed_refs_rsv(trans); 1102 return 0; 1103 } 1104 1105 /* 1106 * This does a simple search for the head node for a given extent. Returns the 1107 * head node if found, or NULL if not. 1108 */ 1109 struct btrfs_delayed_ref_head * 1110 btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr) 1111 { 1112 lockdep_assert_held(&delayed_refs->lock); 1113 1114 return find_ref_head(delayed_refs, bytenr, false); 1115 } 1116 1117 void __cold btrfs_delayed_ref_exit(void) 1118 { 1119 kmem_cache_destroy(btrfs_delayed_ref_head_cachep); 1120 kmem_cache_destroy(btrfs_delayed_tree_ref_cachep); 1121 kmem_cache_destroy(btrfs_delayed_data_ref_cachep); 1122 kmem_cache_destroy(btrfs_delayed_extent_op_cachep); 1123 } 1124 1125 int __init btrfs_delayed_ref_init(void) 1126 { 1127 btrfs_delayed_ref_head_cachep = kmem_cache_create( 1128 "btrfs_delayed_ref_head", 1129 sizeof(struct btrfs_delayed_ref_head), 0, 1130 SLAB_MEM_SPREAD, NULL); 1131 if (!btrfs_delayed_ref_head_cachep) 1132 goto fail; 1133 1134 btrfs_delayed_tree_ref_cachep = kmem_cache_create( 1135 "btrfs_delayed_tree_ref", 1136 sizeof(struct btrfs_delayed_tree_ref), 0, 1137 SLAB_MEM_SPREAD, NULL); 1138 if (!btrfs_delayed_tree_ref_cachep) 1139 goto fail; 1140 1141 btrfs_delayed_data_ref_cachep = kmem_cache_create( 1142 "btrfs_delayed_data_ref", 1143 sizeof(struct btrfs_delayed_data_ref), 0, 1144 SLAB_MEM_SPREAD, NULL); 1145 if (!btrfs_delayed_data_ref_cachep) 1146 goto fail; 1147 1148 btrfs_delayed_extent_op_cachep = kmem_cache_create( 1149 "btrfs_delayed_extent_op", 1150 sizeof(struct btrfs_delayed_extent_op), 0, 1151 SLAB_MEM_SPREAD, NULL); 1152 if (!btrfs_delayed_extent_op_cachep) 1153 goto fail; 1154 1155 return 0; 1156 fail: 1157 btrfs_delayed_ref_exit(); 1158 return -ENOMEM; 1159 } 1160