1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2009 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/sort.h> 9 #include "ctree.h" 10 #include "delayed-ref.h" 11 #include "transaction.h" 12 #include "qgroup.h" 13 14 struct kmem_cache *btrfs_delayed_ref_head_cachep; 15 struct kmem_cache *btrfs_delayed_tree_ref_cachep; 16 struct kmem_cache *btrfs_delayed_data_ref_cachep; 17 struct kmem_cache *btrfs_delayed_extent_op_cachep; 18 /* 19 * delayed back reference update tracking. For subvolume trees 20 * we queue up extent allocations and backref maintenance for 21 * delayed processing. This avoids deep call chains where we 22 * add extents in the middle of btrfs_search_slot, and it allows 23 * us to buffer up frequently modified backrefs in an rb tree instead 24 * of hammering updates on the extent allocation tree. 25 */ 26 27 /* 28 * compare two delayed tree backrefs with same bytenr and type 29 */ 30 static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1, 31 struct btrfs_delayed_tree_ref *ref2) 32 { 33 if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) { 34 if (ref1->root < ref2->root) 35 return -1; 36 if (ref1->root > ref2->root) 37 return 1; 38 } else { 39 if (ref1->parent < ref2->parent) 40 return -1; 41 if (ref1->parent > ref2->parent) 42 return 1; 43 } 44 return 0; 45 } 46 47 /* 48 * compare two delayed data backrefs with same bytenr and type 49 */ 50 static int comp_data_refs(struct btrfs_delayed_data_ref *ref1, 51 struct btrfs_delayed_data_ref *ref2) 52 { 53 if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) { 54 if (ref1->root < ref2->root) 55 return -1; 56 if (ref1->root > ref2->root) 57 return 1; 58 if (ref1->objectid < ref2->objectid) 59 return -1; 60 if (ref1->objectid > ref2->objectid) 61 return 1; 62 if (ref1->offset < ref2->offset) 63 return -1; 64 if (ref1->offset > ref2->offset) 65 return 1; 66 } else { 67 if (ref1->parent < ref2->parent) 68 return -1; 69 if (ref1->parent > ref2->parent) 70 return 1; 71 } 72 return 0; 73 } 74 75 static int comp_refs(struct btrfs_delayed_ref_node *ref1, 76 struct btrfs_delayed_ref_node *ref2, 77 bool check_seq) 78 { 79 int ret = 0; 80 81 if (ref1->type < ref2->type) 82 return -1; 83 if (ref1->type > ref2->type) 84 return 1; 85 if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY || 86 ref1->type == BTRFS_SHARED_BLOCK_REF_KEY) 87 ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1), 88 btrfs_delayed_node_to_tree_ref(ref2)); 89 else 90 ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1), 91 btrfs_delayed_node_to_data_ref(ref2)); 92 if (ret) 93 return ret; 94 if (check_seq) { 95 if (ref1->seq < ref2->seq) 96 return -1; 97 if (ref1->seq > ref2->seq) 98 return 1; 99 } 100 return 0; 101 } 102 103 /* insert a new ref to head ref rbtree */ 104 static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root, 105 struct rb_node *node) 106 { 107 struct rb_node **p = &root->rb_root.rb_node; 108 struct rb_node *parent_node = NULL; 109 struct btrfs_delayed_ref_head *entry; 110 struct btrfs_delayed_ref_head *ins; 111 u64 bytenr; 112 bool leftmost = true; 113 114 ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node); 115 bytenr = ins->bytenr; 116 while (*p) { 117 parent_node = *p; 118 entry = rb_entry(parent_node, struct btrfs_delayed_ref_head, 119 href_node); 120 121 if (bytenr < entry->bytenr) { 122 p = &(*p)->rb_left; 123 } else if (bytenr > entry->bytenr) { 124 p = &(*p)->rb_right; 125 leftmost = false; 126 } else { 127 return entry; 128 } 129 } 130 131 rb_link_node(node, parent_node, p); 132 rb_insert_color_cached(node, root, leftmost); 133 return NULL; 134 } 135 136 static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root, 137 struct btrfs_delayed_ref_node *ins) 138 { 139 struct rb_node **p = &root->rb_root.rb_node; 140 struct rb_node *node = &ins->ref_node; 141 struct rb_node *parent_node = NULL; 142 struct btrfs_delayed_ref_node *entry; 143 bool leftmost = true; 144 145 while (*p) { 146 int comp; 147 148 parent_node = *p; 149 entry = rb_entry(parent_node, struct btrfs_delayed_ref_node, 150 ref_node); 151 comp = comp_refs(ins, entry, true); 152 if (comp < 0) { 153 p = &(*p)->rb_left; 154 } else if (comp > 0) { 155 p = &(*p)->rb_right; 156 leftmost = false; 157 } else { 158 return entry; 159 } 160 } 161 162 rb_link_node(node, parent_node, p); 163 rb_insert_color_cached(node, root, leftmost); 164 return NULL; 165 } 166 167 static struct btrfs_delayed_ref_head *find_first_ref_head( 168 struct btrfs_delayed_ref_root *dr) 169 { 170 struct rb_node *n; 171 struct btrfs_delayed_ref_head *entry; 172 173 n = rb_first_cached(&dr->href_root); 174 if (!n) 175 return NULL; 176 177 entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node); 178 179 return entry; 180 } 181 182 /* 183 * Find a head entry based on bytenr. This returns the delayed ref head if it 184 * was able to find one, or NULL if nothing was in that spot. If return_bigger 185 * is given, the next bigger entry is returned if no exact match is found. 186 */ 187 static struct btrfs_delayed_ref_head *find_ref_head( 188 struct btrfs_delayed_ref_root *dr, u64 bytenr, 189 bool return_bigger) 190 { 191 struct rb_root *root = &dr->href_root.rb_root; 192 struct rb_node *n; 193 struct btrfs_delayed_ref_head *entry; 194 195 n = root->rb_node; 196 entry = NULL; 197 while (n) { 198 entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node); 199 200 if (bytenr < entry->bytenr) 201 n = n->rb_left; 202 else if (bytenr > entry->bytenr) 203 n = n->rb_right; 204 else 205 return entry; 206 } 207 if (entry && return_bigger) { 208 if (bytenr > entry->bytenr) { 209 n = rb_next(&entry->href_node); 210 if (!n) 211 return NULL; 212 entry = rb_entry(n, struct btrfs_delayed_ref_head, 213 href_node); 214 } 215 return entry; 216 } 217 return NULL; 218 } 219 220 int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs, 221 struct btrfs_delayed_ref_head *head) 222 { 223 lockdep_assert_held(&delayed_refs->lock); 224 if (mutex_trylock(&head->mutex)) 225 return 0; 226 227 refcount_inc(&head->refs); 228 spin_unlock(&delayed_refs->lock); 229 230 mutex_lock(&head->mutex); 231 spin_lock(&delayed_refs->lock); 232 if (RB_EMPTY_NODE(&head->href_node)) { 233 mutex_unlock(&head->mutex); 234 btrfs_put_delayed_ref_head(head); 235 return -EAGAIN; 236 } 237 btrfs_put_delayed_ref_head(head); 238 return 0; 239 } 240 241 static inline void drop_delayed_ref(struct btrfs_trans_handle *trans, 242 struct btrfs_delayed_ref_root *delayed_refs, 243 struct btrfs_delayed_ref_head *head, 244 struct btrfs_delayed_ref_node *ref) 245 { 246 lockdep_assert_held(&head->lock); 247 rb_erase_cached(&ref->ref_node, &head->ref_tree); 248 RB_CLEAR_NODE(&ref->ref_node); 249 if (!list_empty(&ref->add_list)) 250 list_del(&ref->add_list); 251 ref->in_tree = 0; 252 btrfs_put_delayed_ref(ref); 253 atomic_dec(&delayed_refs->num_entries); 254 if (trans->delayed_ref_updates) 255 trans->delayed_ref_updates--; 256 } 257 258 static bool merge_ref(struct btrfs_trans_handle *trans, 259 struct btrfs_delayed_ref_root *delayed_refs, 260 struct btrfs_delayed_ref_head *head, 261 struct btrfs_delayed_ref_node *ref, 262 u64 seq) 263 { 264 struct btrfs_delayed_ref_node *next; 265 struct rb_node *node = rb_next(&ref->ref_node); 266 bool done = false; 267 268 while (!done && node) { 269 int mod; 270 271 next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 272 node = rb_next(node); 273 if (seq && next->seq >= seq) 274 break; 275 if (comp_refs(ref, next, false)) 276 break; 277 278 if (ref->action == next->action) { 279 mod = next->ref_mod; 280 } else { 281 if (ref->ref_mod < next->ref_mod) { 282 swap(ref, next); 283 done = true; 284 } 285 mod = -next->ref_mod; 286 } 287 288 drop_delayed_ref(trans, delayed_refs, head, next); 289 ref->ref_mod += mod; 290 if (ref->ref_mod == 0) { 291 drop_delayed_ref(trans, delayed_refs, head, ref); 292 done = true; 293 } else { 294 /* 295 * Can't have multiples of the same ref on a tree block. 296 */ 297 WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY || 298 ref->type == BTRFS_SHARED_BLOCK_REF_KEY); 299 } 300 } 301 302 return done; 303 } 304 305 void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans, 306 struct btrfs_delayed_ref_root *delayed_refs, 307 struct btrfs_delayed_ref_head *head) 308 { 309 struct btrfs_fs_info *fs_info = trans->fs_info; 310 struct btrfs_delayed_ref_node *ref; 311 struct rb_node *node; 312 u64 seq = 0; 313 314 lockdep_assert_held(&head->lock); 315 316 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 317 return; 318 319 /* We don't have too many refs to merge for data. */ 320 if (head->is_data) 321 return; 322 323 spin_lock(&fs_info->tree_mod_seq_lock); 324 if (!list_empty(&fs_info->tree_mod_seq_list)) { 325 struct seq_list *elem; 326 327 elem = list_first_entry(&fs_info->tree_mod_seq_list, 328 struct seq_list, list); 329 seq = elem->seq; 330 } 331 spin_unlock(&fs_info->tree_mod_seq_lock); 332 333 again: 334 for (node = rb_first_cached(&head->ref_tree); node; 335 node = rb_next(node)) { 336 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 337 if (seq && ref->seq >= seq) 338 continue; 339 if (merge_ref(trans, delayed_refs, head, ref, seq)) 340 goto again; 341 } 342 } 343 344 int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq) 345 { 346 struct seq_list *elem; 347 int ret = 0; 348 349 spin_lock(&fs_info->tree_mod_seq_lock); 350 if (!list_empty(&fs_info->tree_mod_seq_list)) { 351 elem = list_first_entry(&fs_info->tree_mod_seq_list, 352 struct seq_list, list); 353 if (seq >= elem->seq) { 354 btrfs_debug(fs_info, 355 "holding back delayed_ref %#x.%x, lowest is %#x.%x", 356 (u32)(seq >> 32), (u32)seq, 357 (u32)(elem->seq >> 32), (u32)elem->seq); 358 ret = 1; 359 } 360 } 361 362 spin_unlock(&fs_info->tree_mod_seq_lock); 363 return ret; 364 } 365 366 struct btrfs_delayed_ref_head *btrfs_select_ref_head( 367 struct btrfs_delayed_ref_root *delayed_refs) 368 { 369 struct btrfs_delayed_ref_head *head; 370 371 again: 372 head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start, 373 true); 374 if (!head && delayed_refs->run_delayed_start != 0) { 375 delayed_refs->run_delayed_start = 0; 376 head = find_first_ref_head(delayed_refs); 377 } 378 if (!head) 379 return NULL; 380 381 while (head->processing) { 382 struct rb_node *node; 383 384 node = rb_next(&head->href_node); 385 if (!node) { 386 if (delayed_refs->run_delayed_start == 0) 387 return NULL; 388 delayed_refs->run_delayed_start = 0; 389 goto again; 390 } 391 head = rb_entry(node, struct btrfs_delayed_ref_head, 392 href_node); 393 } 394 395 head->processing = 1; 396 WARN_ON(delayed_refs->num_heads_ready == 0); 397 delayed_refs->num_heads_ready--; 398 delayed_refs->run_delayed_start = head->bytenr + 399 head->num_bytes; 400 return head; 401 } 402 403 /* 404 * Helper to insert the ref_node to the tail or merge with tail. 405 * 406 * Return 0 for insert. 407 * Return >0 for merge. 408 */ 409 static int insert_delayed_ref(struct btrfs_trans_handle *trans, 410 struct btrfs_delayed_ref_root *root, 411 struct btrfs_delayed_ref_head *href, 412 struct btrfs_delayed_ref_node *ref) 413 { 414 struct btrfs_delayed_ref_node *exist; 415 int mod; 416 int ret = 0; 417 418 spin_lock(&href->lock); 419 exist = tree_insert(&href->ref_tree, ref); 420 if (!exist) 421 goto inserted; 422 423 /* Now we are sure we can merge */ 424 ret = 1; 425 if (exist->action == ref->action) { 426 mod = ref->ref_mod; 427 } else { 428 /* Need to change action */ 429 if (exist->ref_mod < ref->ref_mod) { 430 exist->action = ref->action; 431 mod = -exist->ref_mod; 432 exist->ref_mod = ref->ref_mod; 433 if (ref->action == BTRFS_ADD_DELAYED_REF) 434 list_add_tail(&exist->add_list, 435 &href->ref_add_list); 436 else if (ref->action == BTRFS_DROP_DELAYED_REF) { 437 ASSERT(!list_empty(&exist->add_list)); 438 list_del(&exist->add_list); 439 } else { 440 ASSERT(0); 441 } 442 } else 443 mod = -ref->ref_mod; 444 } 445 exist->ref_mod += mod; 446 447 /* remove existing tail if its ref_mod is zero */ 448 if (exist->ref_mod == 0) 449 drop_delayed_ref(trans, root, href, exist); 450 spin_unlock(&href->lock); 451 return ret; 452 inserted: 453 if (ref->action == BTRFS_ADD_DELAYED_REF) 454 list_add_tail(&ref->add_list, &href->ref_add_list); 455 atomic_inc(&root->num_entries); 456 trans->delayed_ref_updates++; 457 spin_unlock(&href->lock); 458 return ret; 459 } 460 461 /* 462 * helper function to update the accounting in the head ref 463 * existing and update must have the same bytenr 464 */ 465 static noinline void 466 update_existing_head_ref(struct btrfs_delayed_ref_root *delayed_refs, 467 struct btrfs_delayed_ref_head *existing, 468 struct btrfs_delayed_ref_head *update, 469 int *old_ref_mod_ret) 470 { 471 int old_ref_mod; 472 473 BUG_ON(existing->is_data != update->is_data); 474 475 spin_lock(&existing->lock); 476 if (update->must_insert_reserved) { 477 /* if the extent was freed and then 478 * reallocated before the delayed ref 479 * entries were processed, we can end up 480 * with an existing head ref without 481 * the must_insert_reserved flag set. 482 * Set it again here 483 */ 484 existing->must_insert_reserved = update->must_insert_reserved; 485 486 /* 487 * update the num_bytes so we make sure the accounting 488 * is done correctly 489 */ 490 existing->num_bytes = update->num_bytes; 491 492 } 493 494 if (update->extent_op) { 495 if (!existing->extent_op) { 496 existing->extent_op = update->extent_op; 497 } else { 498 if (update->extent_op->update_key) { 499 memcpy(&existing->extent_op->key, 500 &update->extent_op->key, 501 sizeof(update->extent_op->key)); 502 existing->extent_op->update_key = true; 503 } 504 if (update->extent_op->update_flags) { 505 existing->extent_op->flags_to_set |= 506 update->extent_op->flags_to_set; 507 existing->extent_op->update_flags = true; 508 } 509 btrfs_free_delayed_extent_op(update->extent_op); 510 } 511 } 512 /* 513 * update the reference mod on the head to reflect this new operation, 514 * only need the lock for this case cause we could be processing it 515 * currently, for refs we just added we know we're a-ok. 516 */ 517 old_ref_mod = existing->total_ref_mod; 518 if (old_ref_mod_ret) 519 *old_ref_mod_ret = old_ref_mod; 520 existing->ref_mod += update->ref_mod; 521 existing->total_ref_mod += update->ref_mod; 522 523 /* 524 * If we are going to from a positive ref mod to a negative or vice 525 * versa we need to make sure to adjust pending_csums accordingly. 526 */ 527 if (existing->is_data) { 528 if (existing->total_ref_mod >= 0 && old_ref_mod < 0) 529 delayed_refs->pending_csums -= existing->num_bytes; 530 if (existing->total_ref_mod < 0 && old_ref_mod >= 0) 531 delayed_refs->pending_csums += existing->num_bytes; 532 } 533 spin_unlock(&existing->lock); 534 } 535 536 static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref, 537 struct btrfs_qgroup_extent_record *qrecord, 538 u64 bytenr, u64 num_bytes, u64 ref_root, 539 u64 reserved, int action, bool is_data, 540 bool is_system) 541 { 542 int count_mod = 1; 543 int must_insert_reserved = 0; 544 545 /* If reserved is provided, it must be a data extent. */ 546 BUG_ON(!is_data && reserved); 547 548 /* 549 * The head node stores the sum of all the mods, so dropping a ref 550 * should drop the sum in the head node by one. 551 */ 552 if (action == BTRFS_UPDATE_DELAYED_HEAD) 553 count_mod = 0; 554 else if (action == BTRFS_DROP_DELAYED_REF) 555 count_mod = -1; 556 557 /* 558 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the reserved 559 * accounting when the extent is finally added, or if a later 560 * modification deletes the delayed ref without ever inserting the 561 * extent into the extent allocation tree. ref->must_insert_reserved 562 * is the flag used to record that accounting mods are required. 563 * 564 * Once we record must_insert_reserved, switch the action to 565 * BTRFS_ADD_DELAYED_REF because other special casing is not required. 566 */ 567 if (action == BTRFS_ADD_DELAYED_EXTENT) 568 must_insert_reserved = 1; 569 else 570 must_insert_reserved = 0; 571 572 refcount_set(&head_ref->refs, 1); 573 head_ref->bytenr = bytenr; 574 head_ref->num_bytes = num_bytes; 575 head_ref->ref_mod = count_mod; 576 head_ref->must_insert_reserved = must_insert_reserved; 577 head_ref->is_data = is_data; 578 head_ref->is_system = is_system; 579 head_ref->ref_tree = RB_ROOT_CACHED; 580 INIT_LIST_HEAD(&head_ref->ref_add_list); 581 RB_CLEAR_NODE(&head_ref->href_node); 582 head_ref->processing = 0; 583 head_ref->total_ref_mod = count_mod; 584 head_ref->qgroup_reserved = 0; 585 head_ref->qgroup_ref_root = 0; 586 spin_lock_init(&head_ref->lock); 587 mutex_init(&head_ref->mutex); 588 589 if (qrecord) { 590 if (ref_root && reserved) { 591 head_ref->qgroup_ref_root = ref_root; 592 head_ref->qgroup_reserved = reserved; 593 } 594 595 qrecord->bytenr = bytenr; 596 qrecord->num_bytes = num_bytes; 597 qrecord->old_roots = NULL; 598 } 599 } 600 601 /* 602 * helper function to actually insert a head node into the rbtree. 603 * this does all the dirty work in terms of maintaining the correct 604 * overall modification count. 605 */ 606 static noinline struct btrfs_delayed_ref_head * 607 add_delayed_ref_head(struct btrfs_trans_handle *trans, 608 struct btrfs_delayed_ref_head *head_ref, 609 struct btrfs_qgroup_extent_record *qrecord, 610 int action, int *qrecord_inserted_ret, 611 int *old_ref_mod, int *new_ref_mod) 612 { 613 struct btrfs_delayed_ref_head *existing; 614 struct btrfs_delayed_ref_root *delayed_refs; 615 int qrecord_inserted = 0; 616 617 delayed_refs = &trans->transaction->delayed_refs; 618 619 /* Record qgroup extent info if provided */ 620 if (qrecord) { 621 if (btrfs_qgroup_trace_extent_nolock(trans->fs_info, 622 delayed_refs, qrecord)) 623 kfree(qrecord); 624 else 625 qrecord_inserted = 1; 626 } 627 628 trace_add_delayed_ref_head(trans->fs_info, head_ref, action); 629 630 existing = htree_insert(&delayed_refs->href_root, 631 &head_ref->href_node); 632 if (existing) { 633 WARN_ON(qrecord && head_ref->qgroup_ref_root 634 && head_ref->qgroup_reserved 635 && existing->qgroup_ref_root 636 && existing->qgroup_reserved); 637 update_existing_head_ref(delayed_refs, existing, head_ref, 638 old_ref_mod); 639 /* 640 * we've updated the existing ref, free the newly 641 * allocated ref 642 */ 643 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref); 644 head_ref = existing; 645 } else { 646 if (old_ref_mod) 647 *old_ref_mod = 0; 648 if (head_ref->is_data && head_ref->ref_mod < 0) 649 delayed_refs->pending_csums += head_ref->num_bytes; 650 delayed_refs->num_heads++; 651 delayed_refs->num_heads_ready++; 652 atomic_inc(&delayed_refs->num_entries); 653 trans->delayed_ref_updates++; 654 } 655 if (qrecord_inserted_ret) 656 *qrecord_inserted_ret = qrecord_inserted; 657 if (new_ref_mod) 658 *new_ref_mod = head_ref->total_ref_mod; 659 660 return head_ref; 661 } 662 663 /* 664 * init_delayed_ref_common - Initialize the structure which represents a 665 * modification to a an extent. 666 * 667 * @fs_info: Internal to the mounted filesystem mount structure. 668 * 669 * @ref: The structure which is going to be initialized. 670 * 671 * @bytenr: The logical address of the extent for which a modification is 672 * going to be recorded. 673 * 674 * @num_bytes: Size of the extent whose modification is being recorded. 675 * 676 * @ref_root: The id of the root where this modification has originated, this 677 * can be either one of the well-known metadata trees or the 678 * subvolume id which references this extent. 679 * 680 * @action: Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or 681 * BTRFS_ADD_DELAYED_EXTENT 682 * 683 * @ref_type: Holds the type of the extent which is being recorded, can be 684 * one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY 685 * when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/ 686 * BTRFS_EXTENT_DATA_REF_KEY when recording data extent 687 */ 688 static void init_delayed_ref_common(struct btrfs_fs_info *fs_info, 689 struct btrfs_delayed_ref_node *ref, 690 u64 bytenr, u64 num_bytes, u64 ref_root, 691 int action, u8 ref_type) 692 { 693 u64 seq = 0; 694 695 if (action == BTRFS_ADD_DELAYED_EXTENT) 696 action = BTRFS_ADD_DELAYED_REF; 697 698 if (is_fstree(ref_root)) 699 seq = atomic64_read(&fs_info->tree_mod_seq); 700 701 refcount_set(&ref->refs, 1); 702 ref->bytenr = bytenr; 703 ref->num_bytes = num_bytes; 704 ref->ref_mod = 1; 705 ref->action = action; 706 ref->is_head = 0; 707 ref->in_tree = 1; 708 ref->seq = seq; 709 ref->type = ref_type; 710 RB_CLEAR_NODE(&ref->ref_node); 711 INIT_LIST_HEAD(&ref->add_list); 712 } 713 714 /* 715 * add a delayed tree ref. This does all of the accounting required 716 * to make sure the delayed ref is eventually processed before this 717 * transaction commits. 718 */ 719 int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans, 720 u64 bytenr, u64 num_bytes, u64 parent, 721 u64 ref_root, int level, int action, 722 struct btrfs_delayed_extent_op *extent_op, 723 int *old_ref_mod, int *new_ref_mod) 724 { 725 struct btrfs_fs_info *fs_info = trans->fs_info; 726 struct btrfs_delayed_tree_ref *ref; 727 struct btrfs_delayed_ref_head *head_ref; 728 struct btrfs_delayed_ref_root *delayed_refs; 729 struct btrfs_qgroup_extent_record *record = NULL; 730 int qrecord_inserted; 731 bool is_system = (ref_root == BTRFS_CHUNK_TREE_OBJECTID); 732 int ret; 733 u8 ref_type; 734 735 BUG_ON(extent_op && extent_op->is_data); 736 ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS); 737 if (!ref) 738 return -ENOMEM; 739 740 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS); 741 if (!head_ref) { 742 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref); 743 return -ENOMEM; 744 } 745 746 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) && 747 is_fstree(ref_root)) { 748 record = kmalloc(sizeof(*record), GFP_NOFS); 749 if (!record) { 750 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref); 751 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref); 752 return -ENOMEM; 753 } 754 } 755 756 if (parent) 757 ref_type = BTRFS_SHARED_BLOCK_REF_KEY; 758 else 759 ref_type = BTRFS_TREE_BLOCK_REF_KEY; 760 761 init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes, 762 ref_root, action, ref_type); 763 ref->root = ref_root; 764 ref->parent = parent; 765 ref->level = level; 766 767 init_delayed_ref_head(head_ref, record, bytenr, num_bytes, 768 ref_root, 0, action, false, is_system); 769 head_ref->extent_op = extent_op; 770 771 delayed_refs = &trans->transaction->delayed_refs; 772 spin_lock(&delayed_refs->lock); 773 774 /* 775 * insert both the head node and the new ref without dropping 776 * the spin lock 777 */ 778 head_ref = add_delayed_ref_head(trans, head_ref, record, 779 action, &qrecord_inserted, 780 old_ref_mod, new_ref_mod); 781 782 ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node); 783 spin_unlock(&delayed_refs->lock); 784 785 trace_add_delayed_tree_ref(fs_info, &ref->node, ref, 786 action == BTRFS_ADD_DELAYED_EXTENT ? 787 BTRFS_ADD_DELAYED_REF : action); 788 if (ret > 0) 789 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref); 790 791 if (qrecord_inserted) 792 btrfs_qgroup_trace_extent_post(fs_info, record); 793 794 return 0; 795 } 796 797 /* 798 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref. 799 */ 800 int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans, 801 u64 bytenr, u64 num_bytes, 802 u64 parent, u64 ref_root, 803 u64 owner, u64 offset, u64 reserved, int action, 804 int *old_ref_mod, int *new_ref_mod) 805 { 806 struct btrfs_fs_info *fs_info = trans->fs_info; 807 struct btrfs_delayed_data_ref *ref; 808 struct btrfs_delayed_ref_head *head_ref; 809 struct btrfs_delayed_ref_root *delayed_refs; 810 struct btrfs_qgroup_extent_record *record = NULL; 811 int qrecord_inserted; 812 int ret; 813 u8 ref_type; 814 815 ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS); 816 if (!ref) 817 return -ENOMEM; 818 819 if (parent) 820 ref_type = BTRFS_SHARED_DATA_REF_KEY; 821 else 822 ref_type = BTRFS_EXTENT_DATA_REF_KEY; 823 init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes, 824 ref_root, action, ref_type); 825 ref->root = ref_root; 826 ref->parent = parent; 827 ref->objectid = owner; 828 ref->offset = offset; 829 830 831 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS); 832 if (!head_ref) { 833 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref); 834 return -ENOMEM; 835 } 836 837 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) && 838 is_fstree(ref_root)) { 839 record = kmalloc(sizeof(*record), GFP_NOFS); 840 if (!record) { 841 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref); 842 kmem_cache_free(btrfs_delayed_ref_head_cachep, 843 head_ref); 844 return -ENOMEM; 845 } 846 } 847 848 init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root, 849 reserved, action, true, false); 850 head_ref->extent_op = NULL; 851 852 delayed_refs = &trans->transaction->delayed_refs; 853 spin_lock(&delayed_refs->lock); 854 855 /* 856 * insert both the head node and the new ref without dropping 857 * the spin lock 858 */ 859 head_ref = add_delayed_ref_head(trans, head_ref, record, 860 action, &qrecord_inserted, 861 old_ref_mod, new_ref_mod); 862 863 ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node); 864 spin_unlock(&delayed_refs->lock); 865 866 trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref, 867 action == BTRFS_ADD_DELAYED_EXTENT ? 868 BTRFS_ADD_DELAYED_REF : action); 869 if (ret > 0) 870 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref); 871 872 873 if (qrecord_inserted) 874 return btrfs_qgroup_trace_extent_post(fs_info, record); 875 return 0; 876 } 877 878 int btrfs_add_delayed_extent_op(struct btrfs_fs_info *fs_info, 879 struct btrfs_trans_handle *trans, 880 u64 bytenr, u64 num_bytes, 881 struct btrfs_delayed_extent_op *extent_op) 882 { 883 struct btrfs_delayed_ref_head *head_ref; 884 struct btrfs_delayed_ref_root *delayed_refs; 885 886 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS); 887 if (!head_ref) 888 return -ENOMEM; 889 890 init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0, 891 BTRFS_UPDATE_DELAYED_HEAD, extent_op->is_data, 892 false); 893 head_ref->extent_op = extent_op; 894 895 delayed_refs = &trans->transaction->delayed_refs; 896 spin_lock(&delayed_refs->lock); 897 898 add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD, 899 NULL, NULL, NULL); 900 901 spin_unlock(&delayed_refs->lock); 902 return 0; 903 } 904 905 /* 906 * this does a simple search for the head node for a given extent. 907 * It must be called with the delayed ref spinlock held, and it returns 908 * the head node if any where found, or NULL if not. 909 */ 910 struct btrfs_delayed_ref_head * 911 btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr) 912 { 913 return find_ref_head(delayed_refs, bytenr, false); 914 } 915 916 void __cold btrfs_delayed_ref_exit(void) 917 { 918 kmem_cache_destroy(btrfs_delayed_ref_head_cachep); 919 kmem_cache_destroy(btrfs_delayed_tree_ref_cachep); 920 kmem_cache_destroy(btrfs_delayed_data_ref_cachep); 921 kmem_cache_destroy(btrfs_delayed_extent_op_cachep); 922 } 923 924 int __init btrfs_delayed_ref_init(void) 925 { 926 btrfs_delayed_ref_head_cachep = kmem_cache_create( 927 "btrfs_delayed_ref_head", 928 sizeof(struct btrfs_delayed_ref_head), 0, 929 SLAB_MEM_SPREAD, NULL); 930 if (!btrfs_delayed_ref_head_cachep) 931 goto fail; 932 933 btrfs_delayed_tree_ref_cachep = kmem_cache_create( 934 "btrfs_delayed_tree_ref", 935 sizeof(struct btrfs_delayed_tree_ref), 0, 936 SLAB_MEM_SPREAD, NULL); 937 if (!btrfs_delayed_tree_ref_cachep) 938 goto fail; 939 940 btrfs_delayed_data_ref_cachep = kmem_cache_create( 941 "btrfs_delayed_data_ref", 942 sizeof(struct btrfs_delayed_data_ref), 0, 943 SLAB_MEM_SPREAD, NULL); 944 if (!btrfs_delayed_data_ref_cachep) 945 goto fail; 946 947 btrfs_delayed_extent_op_cachep = kmem_cache_create( 948 "btrfs_delayed_extent_op", 949 sizeof(struct btrfs_delayed_extent_op), 0, 950 SLAB_MEM_SPREAD, NULL); 951 if (!btrfs_delayed_extent_op_cachep) 952 goto fail; 953 954 return 0; 955 fail: 956 btrfs_delayed_ref_exit(); 957 return -ENOMEM; 958 } 959