1 /* 2 * Copyright (C) 2009 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/sort.h> 22 #include "ctree.h" 23 #include "delayed-ref.h" 24 #include "transaction.h" 25 #include "qgroup.h" 26 27 struct kmem_cache *btrfs_delayed_ref_head_cachep; 28 struct kmem_cache *btrfs_delayed_tree_ref_cachep; 29 struct kmem_cache *btrfs_delayed_data_ref_cachep; 30 struct kmem_cache *btrfs_delayed_extent_op_cachep; 31 /* 32 * delayed back reference update tracking. For subvolume trees 33 * we queue up extent allocations and backref maintenance for 34 * delayed processing. This avoids deep call chains where we 35 * add extents in the middle of btrfs_search_slot, and it allows 36 * us to buffer up frequently modified backrefs in an rb tree instead 37 * of hammering updates on the extent allocation tree. 38 */ 39 40 /* 41 * compare two delayed tree backrefs with same bytenr and type 42 */ 43 static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref2, 44 struct btrfs_delayed_tree_ref *ref1, int type) 45 { 46 if (type == BTRFS_TREE_BLOCK_REF_KEY) { 47 if (ref1->root < ref2->root) 48 return -1; 49 if (ref1->root > ref2->root) 50 return 1; 51 } else { 52 if (ref1->parent < ref2->parent) 53 return -1; 54 if (ref1->parent > ref2->parent) 55 return 1; 56 } 57 return 0; 58 } 59 60 /* 61 * compare two delayed data backrefs with same bytenr and type 62 */ 63 static int comp_data_refs(struct btrfs_delayed_data_ref *ref2, 64 struct btrfs_delayed_data_ref *ref1) 65 { 66 if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) { 67 if (ref1->root < ref2->root) 68 return -1; 69 if (ref1->root > ref2->root) 70 return 1; 71 if (ref1->objectid < ref2->objectid) 72 return -1; 73 if (ref1->objectid > ref2->objectid) 74 return 1; 75 if (ref1->offset < ref2->offset) 76 return -1; 77 if (ref1->offset > ref2->offset) 78 return 1; 79 } else { 80 if (ref1->parent < ref2->parent) 81 return -1; 82 if (ref1->parent > ref2->parent) 83 return 1; 84 } 85 return 0; 86 } 87 88 /* insert a new ref to head ref rbtree */ 89 static struct btrfs_delayed_ref_head *htree_insert(struct rb_root *root, 90 struct rb_node *node) 91 { 92 struct rb_node **p = &root->rb_node; 93 struct rb_node *parent_node = NULL; 94 struct btrfs_delayed_ref_head *entry; 95 struct btrfs_delayed_ref_head *ins; 96 u64 bytenr; 97 98 ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node); 99 bytenr = ins->node.bytenr; 100 while (*p) { 101 parent_node = *p; 102 entry = rb_entry(parent_node, struct btrfs_delayed_ref_head, 103 href_node); 104 105 if (bytenr < entry->node.bytenr) 106 p = &(*p)->rb_left; 107 else if (bytenr > entry->node.bytenr) 108 p = &(*p)->rb_right; 109 else 110 return entry; 111 } 112 113 rb_link_node(node, parent_node, p); 114 rb_insert_color(node, root); 115 return NULL; 116 } 117 118 /* 119 * find an head entry based on bytenr. This returns the delayed ref 120 * head if it was able to find one, or NULL if nothing was in that spot. 121 * If return_bigger is given, the next bigger entry is returned if no exact 122 * match is found. 123 */ 124 static struct btrfs_delayed_ref_head * 125 find_ref_head(struct rb_root *root, u64 bytenr, 126 int return_bigger) 127 { 128 struct rb_node *n; 129 struct btrfs_delayed_ref_head *entry; 130 131 n = root->rb_node; 132 entry = NULL; 133 while (n) { 134 entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node); 135 136 if (bytenr < entry->node.bytenr) 137 n = n->rb_left; 138 else if (bytenr > entry->node.bytenr) 139 n = n->rb_right; 140 else 141 return entry; 142 } 143 if (entry && return_bigger) { 144 if (bytenr > entry->node.bytenr) { 145 n = rb_next(&entry->href_node); 146 if (!n) 147 n = rb_first(root); 148 entry = rb_entry(n, struct btrfs_delayed_ref_head, 149 href_node); 150 return entry; 151 } 152 return entry; 153 } 154 return NULL; 155 } 156 157 int btrfs_delayed_ref_lock(struct btrfs_trans_handle *trans, 158 struct btrfs_delayed_ref_head *head) 159 { 160 struct btrfs_delayed_ref_root *delayed_refs; 161 162 delayed_refs = &trans->transaction->delayed_refs; 163 assert_spin_locked(&delayed_refs->lock); 164 if (mutex_trylock(&head->mutex)) 165 return 0; 166 167 atomic_inc(&head->node.refs); 168 spin_unlock(&delayed_refs->lock); 169 170 mutex_lock(&head->mutex); 171 spin_lock(&delayed_refs->lock); 172 if (!head->node.in_tree) { 173 mutex_unlock(&head->mutex); 174 btrfs_put_delayed_ref(&head->node); 175 return -EAGAIN; 176 } 177 btrfs_put_delayed_ref(&head->node); 178 return 0; 179 } 180 181 static inline void drop_delayed_ref(struct btrfs_trans_handle *trans, 182 struct btrfs_delayed_ref_root *delayed_refs, 183 struct btrfs_delayed_ref_head *head, 184 struct btrfs_delayed_ref_node *ref) 185 { 186 if (btrfs_delayed_ref_is_head(ref)) { 187 head = btrfs_delayed_node_to_head(ref); 188 rb_erase(&head->href_node, &delayed_refs->href_root); 189 } else { 190 assert_spin_locked(&head->lock); 191 list_del(&ref->list); 192 } 193 ref->in_tree = 0; 194 btrfs_put_delayed_ref(ref); 195 atomic_dec(&delayed_refs->num_entries); 196 if (trans->delayed_ref_updates) 197 trans->delayed_ref_updates--; 198 } 199 200 static bool merge_ref(struct btrfs_trans_handle *trans, 201 struct btrfs_delayed_ref_root *delayed_refs, 202 struct btrfs_delayed_ref_head *head, 203 struct btrfs_delayed_ref_node *ref, 204 u64 seq) 205 { 206 struct btrfs_delayed_ref_node *next; 207 bool done = false; 208 209 next = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node, 210 list); 211 while (!done && &next->list != &head->ref_list) { 212 int mod; 213 struct btrfs_delayed_ref_node *next2; 214 215 next2 = list_next_entry(next, list); 216 217 if (next == ref) 218 goto next; 219 220 if (seq && next->seq >= seq) 221 goto next; 222 223 if (next->type != ref->type) 224 goto next; 225 226 if ((ref->type == BTRFS_TREE_BLOCK_REF_KEY || 227 ref->type == BTRFS_SHARED_BLOCK_REF_KEY) && 228 comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref), 229 btrfs_delayed_node_to_tree_ref(next), 230 ref->type)) 231 goto next; 232 if ((ref->type == BTRFS_EXTENT_DATA_REF_KEY || 233 ref->type == BTRFS_SHARED_DATA_REF_KEY) && 234 comp_data_refs(btrfs_delayed_node_to_data_ref(ref), 235 btrfs_delayed_node_to_data_ref(next))) 236 goto next; 237 238 if (ref->action == next->action) { 239 mod = next->ref_mod; 240 } else { 241 if (ref->ref_mod < next->ref_mod) { 242 swap(ref, next); 243 done = true; 244 } 245 mod = -next->ref_mod; 246 } 247 248 drop_delayed_ref(trans, delayed_refs, head, next); 249 ref->ref_mod += mod; 250 if (ref->ref_mod == 0) { 251 drop_delayed_ref(trans, delayed_refs, head, ref); 252 done = true; 253 } else { 254 /* 255 * Can't have multiples of the same ref on a tree block. 256 */ 257 WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY || 258 ref->type == BTRFS_SHARED_BLOCK_REF_KEY); 259 } 260 next: 261 next = next2; 262 } 263 264 return done; 265 } 266 267 void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans, 268 struct btrfs_fs_info *fs_info, 269 struct btrfs_delayed_ref_root *delayed_refs, 270 struct btrfs_delayed_ref_head *head) 271 { 272 struct btrfs_delayed_ref_node *ref; 273 u64 seq = 0; 274 275 assert_spin_locked(&head->lock); 276 277 if (list_empty(&head->ref_list)) 278 return; 279 280 /* We don't have too many refs to merge for data. */ 281 if (head->is_data) 282 return; 283 284 spin_lock(&fs_info->tree_mod_seq_lock); 285 if (!list_empty(&fs_info->tree_mod_seq_list)) { 286 struct seq_list *elem; 287 288 elem = list_first_entry(&fs_info->tree_mod_seq_list, 289 struct seq_list, list); 290 seq = elem->seq; 291 } 292 spin_unlock(&fs_info->tree_mod_seq_lock); 293 294 ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node, 295 list); 296 while (&ref->list != &head->ref_list) { 297 if (seq && ref->seq >= seq) 298 goto next; 299 300 if (merge_ref(trans, delayed_refs, head, ref, seq)) { 301 if (list_empty(&head->ref_list)) 302 break; 303 ref = list_first_entry(&head->ref_list, 304 struct btrfs_delayed_ref_node, 305 list); 306 continue; 307 } 308 next: 309 ref = list_next_entry(ref, list); 310 } 311 } 312 313 int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, 314 struct btrfs_delayed_ref_root *delayed_refs, 315 u64 seq) 316 { 317 struct seq_list *elem; 318 int ret = 0; 319 320 spin_lock(&fs_info->tree_mod_seq_lock); 321 if (!list_empty(&fs_info->tree_mod_seq_list)) { 322 elem = list_first_entry(&fs_info->tree_mod_seq_list, 323 struct seq_list, list); 324 if (seq >= elem->seq) { 325 pr_debug("holding back delayed_ref %#x.%x, lowest is %#x.%x (%p)\n", 326 (u32)(seq >> 32), (u32)seq, 327 (u32)(elem->seq >> 32), (u32)elem->seq, 328 delayed_refs); 329 ret = 1; 330 } 331 } 332 333 spin_unlock(&fs_info->tree_mod_seq_lock); 334 return ret; 335 } 336 337 struct btrfs_delayed_ref_head * 338 btrfs_select_ref_head(struct btrfs_trans_handle *trans) 339 { 340 struct btrfs_delayed_ref_root *delayed_refs; 341 struct btrfs_delayed_ref_head *head; 342 u64 start; 343 bool loop = false; 344 345 delayed_refs = &trans->transaction->delayed_refs; 346 347 again: 348 start = delayed_refs->run_delayed_start; 349 head = find_ref_head(&delayed_refs->href_root, start, 1); 350 if (!head && !loop) { 351 delayed_refs->run_delayed_start = 0; 352 start = 0; 353 loop = true; 354 head = find_ref_head(&delayed_refs->href_root, start, 1); 355 if (!head) 356 return NULL; 357 } else if (!head && loop) { 358 return NULL; 359 } 360 361 while (head->processing) { 362 struct rb_node *node; 363 364 node = rb_next(&head->href_node); 365 if (!node) { 366 if (loop) 367 return NULL; 368 delayed_refs->run_delayed_start = 0; 369 start = 0; 370 loop = true; 371 goto again; 372 } 373 head = rb_entry(node, struct btrfs_delayed_ref_head, 374 href_node); 375 } 376 377 head->processing = 1; 378 WARN_ON(delayed_refs->num_heads_ready == 0); 379 delayed_refs->num_heads_ready--; 380 delayed_refs->run_delayed_start = head->node.bytenr + 381 head->node.num_bytes; 382 return head; 383 } 384 385 /* 386 * Helper to insert the ref_node to the tail or merge with tail. 387 * 388 * Return 0 for insert. 389 * Return >0 for merge. 390 */ 391 static int 392 add_delayed_ref_tail_merge(struct btrfs_trans_handle *trans, 393 struct btrfs_delayed_ref_root *root, 394 struct btrfs_delayed_ref_head *href, 395 struct btrfs_delayed_ref_node *ref) 396 { 397 struct btrfs_delayed_ref_node *exist; 398 int mod; 399 int ret = 0; 400 401 spin_lock(&href->lock); 402 /* Check whether we can merge the tail node with ref */ 403 if (list_empty(&href->ref_list)) 404 goto add_tail; 405 exist = list_entry(href->ref_list.prev, struct btrfs_delayed_ref_node, 406 list); 407 /* No need to compare bytenr nor is_head */ 408 if (exist->type != ref->type || exist->seq != ref->seq) 409 goto add_tail; 410 411 if ((exist->type == BTRFS_TREE_BLOCK_REF_KEY || 412 exist->type == BTRFS_SHARED_BLOCK_REF_KEY) && 413 comp_tree_refs(btrfs_delayed_node_to_tree_ref(exist), 414 btrfs_delayed_node_to_tree_ref(ref), 415 ref->type)) 416 goto add_tail; 417 if ((exist->type == BTRFS_EXTENT_DATA_REF_KEY || 418 exist->type == BTRFS_SHARED_DATA_REF_KEY) && 419 comp_data_refs(btrfs_delayed_node_to_data_ref(exist), 420 btrfs_delayed_node_to_data_ref(ref))) 421 goto add_tail; 422 423 /* Now we are sure we can merge */ 424 ret = 1; 425 if (exist->action == ref->action) { 426 mod = ref->ref_mod; 427 } else { 428 /* Need to change action */ 429 if (exist->ref_mod < ref->ref_mod) { 430 exist->action = ref->action; 431 mod = -exist->ref_mod; 432 exist->ref_mod = ref->ref_mod; 433 } else 434 mod = -ref->ref_mod; 435 } 436 exist->ref_mod += mod; 437 438 /* remove existing tail if its ref_mod is zero */ 439 if (exist->ref_mod == 0) 440 drop_delayed_ref(trans, root, href, exist); 441 spin_unlock(&href->lock); 442 return ret; 443 444 add_tail: 445 list_add_tail(&ref->list, &href->ref_list); 446 atomic_inc(&root->num_entries); 447 trans->delayed_ref_updates++; 448 spin_unlock(&href->lock); 449 return ret; 450 } 451 452 /* 453 * helper function to update the accounting in the head ref 454 * existing and update must have the same bytenr 455 */ 456 static noinline void 457 update_existing_head_ref(struct btrfs_delayed_ref_root *delayed_refs, 458 struct btrfs_delayed_ref_node *existing, 459 struct btrfs_delayed_ref_node *update) 460 { 461 struct btrfs_delayed_ref_head *existing_ref; 462 struct btrfs_delayed_ref_head *ref; 463 int old_ref_mod; 464 465 existing_ref = btrfs_delayed_node_to_head(existing); 466 ref = btrfs_delayed_node_to_head(update); 467 BUG_ON(existing_ref->is_data != ref->is_data); 468 469 spin_lock(&existing_ref->lock); 470 if (ref->must_insert_reserved) { 471 /* if the extent was freed and then 472 * reallocated before the delayed ref 473 * entries were processed, we can end up 474 * with an existing head ref without 475 * the must_insert_reserved flag set. 476 * Set it again here 477 */ 478 existing_ref->must_insert_reserved = ref->must_insert_reserved; 479 480 /* 481 * update the num_bytes so we make sure the accounting 482 * is done correctly 483 */ 484 existing->num_bytes = update->num_bytes; 485 486 } 487 488 if (ref->extent_op) { 489 if (!existing_ref->extent_op) { 490 existing_ref->extent_op = ref->extent_op; 491 } else { 492 if (ref->extent_op->update_key) { 493 memcpy(&existing_ref->extent_op->key, 494 &ref->extent_op->key, 495 sizeof(ref->extent_op->key)); 496 existing_ref->extent_op->update_key = true; 497 } 498 if (ref->extent_op->update_flags) { 499 existing_ref->extent_op->flags_to_set |= 500 ref->extent_op->flags_to_set; 501 existing_ref->extent_op->update_flags = true; 502 } 503 btrfs_free_delayed_extent_op(ref->extent_op); 504 } 505 } 506 /* 507 * update the reference mod on the head to reflect this new operation, 508 * only need the lock for this case cause we could be processing it 509 * currently, for refs we just added we know we're a-ok. 510 */ 511 old_ref_mod = existing_ref->total_ref_mod; 512 existing->ref_mod += update->ref_mod; 513 existing_ref->total_ref_mod += update->ref_mod; 514 515 /* 516 * If we are going to from a positive ref mod to a negative or vice 517 * versa we need to make sure to adjust pending_csums accordingly. 518 */ 519 if (existing_ref->is_data) { 520 if (existing_ref->total_ref_mod >= 0 && old_ref_mod < 0) 521 delayed_refs->pending_csums -= existing->num_bytes; 522 if (existing_ref->total_ref_mod < 0 && old_ref_mod >= 0) 523 delayed_refs->pending_csums += existing->num_bytes; 524 } 525 spin_unlock(&existing_ref->lock); 526 } 527 528 /* 529 * helper function to actually insert a head node into the rbtree. 530 * this does all the dirty work in terms of maintaining the correct 531 * overall modification count. 532 */ 533 static noinline struct btrfs_delayed_ref_head * 534 add_delayed_ref_head(struct btrfs_fs_info *fs_info, 535 struct btrfs_trans_handle *trans, 536 struct btrfs_delayed_ref_node *ref, 537 struct btrfs_qgroup_extent_record *qrecord, 538 u64 bytenr, u64 num_bytes, u64 ref_root, u64 reserved, 539 int action, int is_data) 540 { 541 struct btrfs_delayed_ref_head *existing; 542 struct btrfs_delayed_ref_head *head_ref = NULL; 543 struct btrfs_delayed_ref_root *delayed_refs; 544 int count_mod = 1; 545 int must_insert_reserved = 0; 546 547 /* If reserved is provided, it must be a data extent. */ 548 BUG_ON(!is_data && reserved); 549 550 /* 551 * the head node stores the sum of all the mods, so dropping a ref 552 * should drop the sum in the head node by one. 553 */ 554 if (action == BTRFS_UPDATE_DELAYED_HEAD) 555 count_mod = 0; 556 else if (action == BTRFS_DROP_DELAYED_REF) 557 count_mod = -1; 558 559 /* 560 * BTRFS_ADD_DELAYED_EXTENT means that we need to update 561 * the reserved accounting when the extent is finally added, or 562 * if a later modification deletes the delayed ref without ever 563 * inserting the extent into the extent allocation tree. 564 * ref->must_insert_reserved is the flag used to record 565 * that accounting mods are required. 566 * 567 * Once we record must_insert_reserved, switch the action to 568 * BTRFS_ADD_DELAYED_REF because other special casing is not required. 569 */ 570 if (action == BTRFS_ADD_DELAYED_EXTENT) 571 must_insert_reserved = 1; 572 else 573 must_insert_reserved = 0; 574 575 delayed_refs = &trans->transaction->delayed_refs; 576 577 /* first set the basic ref node struct up */ 578 atomic_set(&ref->refs, 1); 579 ref->bytenr = bytenr; 580 ref->num_bytes = num_bytes; 581 ref->ref_mod = count_mod; 582 ref->type = 0; 583 ref->action = 0; 584 ref->is_head = 1; 585 ref->in_tree = 1; 586 ref->seq = 0; 587 588 head_ref = btrfs_delayed_node_to_head(ref); 589 head_ref->must_insert_reserved = must_insert_reserved; 590 head_ref->is_data = is_data; 591 INIT_LIST_HEAD(&head_ref->ref_list); 592 head_ref->processing = 0; 593 head_ref->total_ref_mod = count_mod; 594 head_ref->qgroup_reserved = 0; 595 head_ref->qgroup_ref_root = 0; 596 597 /* Record qgroup extent info if provided */ 598 if (qrecord) { 599 if (ref_root && reserved) { 600 head_ref->qgroup_ref_root = ref_root; 601 head_ref->qgroup_reserved = reserved; 602 } 603 604 qrecord->bytenr = bytenr; 605 qrecord->num_bytes = num_bytes; 606 qrecord->old_roots = NULL; 607 608 if(btrfs_qgroup_insert_dirty_extent_nolock(fs_info, 609 delayed_refs, qrecord)) 610 kfree(qrecord); 611 } 612 613 spin_lock_init(&head_ref->lock); 614 mutex_init(&head_ref->mutex); 615 616 trace_add_delayed_ref_head(fs_info, ref, head_ref, action); 617 618 existing = htree_insert(&delayed_refs->href_root, 619 &head_ref->href_node); 620 if (existing) { 621 WARN_ON(ref_root && reserved && existing->qgroup_ref_root 622 && existing->qgroup_reserved); 623 update_existing_head_ref(delayed_refs, &existing->node, ref); 624 /* 625 * we've updated the existing ref, free the newly 626 * allocated ref 627 */ 628 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref); 629 head_ref = existing; 630 } else { 631 if (is_data && count_mod < 0) 632 delayed_refs->pending_csums += num_bytes; 633 delayed_refs->num_heads++; 634 delayed_refs->num_heads_ready++; 635 atomic_inc(&delayed_refs->num_entries); 636 trans->delayed_ref_updates++; 637 } 638 return head_ref; 639 } 640 641 /* 642 * helper to insert a delayed tree ref into the rbtree. 643 */ 644 static noinline void 645 add_delayed_tree_ref(struct btrfs_fs_info *fs_info, 646 struct btrfs_trans_handle *trans, 647 struct btrfs_delayed_ref_head *head_ref, 648 struct btrfs_delayed_ref_node *ref, u64 bytenr, 649 u64 num_bytes, u64 parent, u64 ref_root, int level, 650 int action) 651 { 652 struct btrfs_delayed_tree_ref *full_ref; 653 struct btrfs_delayed_ref_root *delayed_refs; 654 u64 seq = 0; 655 int ret; 656 657 if (action == BTRFS_ADD_DELAYED_EXTENT) 658 action = BTRFS_ADD_DELAYED_REF; 659 660 if (is_fstree(ref_root)) 661 seq = atomic64_read(&fs_info->tree_mod_seq); 662 delayed_refs = &trans->transaction->delayed_refs; 663 664 /* first set the basic ref node struct up */ 665 atomic_set(&ref->refs, 1); 666 ref->bytenr = bytenr; 667 ref->num_bytes = num_bytes; 668 ref->ref_mod = 1; 669 ref->action = action; 670 ref->is_head = 0; 671 ref->in_tree = 1; 672 ref->seq = seq; 673 674 full_ref = btrfs_delayed_node_to_tree_ref(ref); 675 full_ref->parent = parent; 676 full_ref->root = ref_root; 677 if (parent) 678 ref->type = BTRFS_SHARED_BLOCK_REF_KEY; 679 else 680 ref->type = BTRFS_TREE_BLOCK_REF_KEY; 681 full_ref->level = level; 682 683 trace_add_delayed_tree_ref(fs_info, ref, full_ref, action); 684 685 ret = add_delayed_ref_tail_merge(trans, delayed_refs, head_ref, ref); 686 687 /* 688 * XXX: memory should be freed at the same level allocated. 689 * But bad practice is anywhere... Follow it now. Need cleanup. 690 */ 691 if (ret > 0) 692 kmem_cache_free(btrfs_delayed_tree_ref_cachep, full_ref); 693 } 694 695 /* 696 * helper to insert a delayed data ref into the rbtree. 697 */ 698 static noinline void 699 add_delayed_data_ref(struct btrfs_fs_info *fs_info, 700 struct btrfs_trans_handle *trans, 701 struct btrfs_delayed_ref_head *head_ref, 702 struct btrfs_delayed_ref_node *ref, u64 bytenr, 703 u64 num_bytes, u64 parent, u64 ref_root, u64 owner, 704 u64 offset, int action) 705 { 706 struct btrfs_delayed_data_ref *full_ref; 707 struct btrfs_delayed_ref_root *delayed_refs; 708 u64 seq = 0; 709 int ret; 710 711 if (action == BTRFS_ADD_DELAYED_EXTENT) 712 action = BTRFS_ADD_DELAYED_REF; 713 714 delayed_refs = &trans->transaction->delayed_refs; 715 716 if (is_fstree(ref_root)) 717 seq = atomic64_read(&fs_info->tree_mod_seq); 718 719 /* first set the basic ref node struct up */ 720 atomic_set(&ref->refs, 1); 721 ref->bytenr = bytenr; 722 ref->num_bytes = num_bytes; 723 ref->ref_mod = 1; 724 ref->action = action; 725 ref->is_head = 0; 726 ref->in_tree = 1; 727 ref->seq = seq; 728 729 full_ref = btrfs_delayed_node_to_data_ref(ref); 730 full_ref->parent = parent; 731 full_ref->root = ref_root; 732 if (parent) 733 ref->type = BTRFS_SHARED_DATA_REF_KEY; 734 else 735 ref->type = BTRFS_EXTENT_DATA_REF_KEY; 736 737 full_ref->objectid = owner; 738 full_ref->offset = offset; 739 740 trace_add_delayed_data_ref(fs_info, ref, full_ref, action); 741 742 ret = add_delayed_ref_tail_merge(trans, delayed_refs, head_ref, ref); 743 744 if (ret > 0) 745 kmem_cache_free(btrfs_delayed_data_ref_cachep, full_ref); 746 } 747 748 /* 749 * add a delayed tree ref. This does all of the accounting required 750 * to make sure the delayed ref is eventually processed before this 751 * transaction commits. 752 */ 753 int btrfs_add_delayed_tree_ref(struct btrfs_fs_info *fs_info, 754 struct btrfs_trans_handle *trans, 755 u64 bytenr, u64 num_bytes, u64 parent, 756 u64 ref_root, int level, int action, 757 struct btrfs_delayed_extent_op *extent_op) 758 { 759 struct btrfs_delayed_tree_ref *ref; 760 struct btrfs_delayed_ref_head *head_ref; 761 struct btrfs_delayed_ref_root *delayed_refs; 762 struct btrfs_qgroup_extent_record *record = NULL; 763 764 BUG_ON(extent_op && extent_op->is_data); 765 ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS); 766 if (!ref) 767 return -ENOMEM; 768 769 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS); 770 if (!head_ref) 771 goto free_ref; 772 773 if (fs_info->quota_enabled && is_fstree(ref_root)) { 774 record = kmalloc(sizeof(*record), GFP_NOFS); 775 if (!record) 776 goto free_head_ref; 777 } 778 779 head_ref->extent_op = extent_op; 780 781 delayed_refs = &trans->transaction->delayed_refs; 782 spin_lock(&delayed_refs->lock); 783 784 /* 785 * insert both the head node and the new ref without dropping 786 * the spin lock 787 */ 788 head_ref = add_delayed_ref_head(fs_info, trans, &head_ref->node, record, 789 bytenr, num_bytes, 0, 0, action, 0); 790 791 add_delayed_tree_ref(fs_info, trans, head_ref, &ref->node, bytenr, 792 num_bytes, parent, ref_root, level, action); 793 spin_unlock(&delayed_refs->lock); 794 795 return 0; 796 797 free_head_ref: 798 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref); 799 free_ref: 800 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref); 801 802 return -ENOMEM; 803 } 804 805 /* 806 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref. 807 */ 808 int btrfs_add_delayed_data_ref(struct btrfs_fs_info *fs_info, 809 struct btrfs_trans_handle *trans, 810 u64 bytenr, u64 num_bytes, 811 u64 parent, u64 ref_root, 812 u64 owner, u64 offset, u64 reserved, int action, 813 struct btrfs_delayed_extent_op *extent_op) 814 { 815 struct btrfs_delayed_data_ref *ref; 816 struct btrfs_delayed_ref_head *head_ref; 817 struct btrfs_delayed_ref_root *delayed_refs; 818 struct btrfs_qgroup_extent_record *record = NULL; 819 820 BUG_ON(extent_op && !extent_op->is_data); 821 ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS); 822 if (!ref) 823 return -ENOMEM; 824 825 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS); 826 if (!head_ref) { 827 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref); 828 return -ENOMEM; 829 } 830 831 if (fs_info->quota_enabled && is_fstree(ref_root)) { 832 record = kmalloc(sizeof(*record), GFP_NOFS); 833 if (!record) { 834 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref); 835 kmem_cache_free(btrfs_delayed_ref_head_cachep, 836 head_ref); 837 return -ENOMEM; 838 } 839 } 840 841 head_ref->extent_op = extent_op; 842 843 delayed_refs = &trans->transaction->delayed_refs; 844 spin_lock(&delayed_refs->lock); 845 846 /* 847 * insert both the head node and the new ref without dropping 848 * the spin lock 849 */ 850 head_ref = add_delayed_ref_head(fs_info, trans, &head_ref->node, record, 851 bytenr, num_bytes, ref_root, reserved, 852 action, 1); 853 854 add_delayed_data_ref(fs_info, trans, head_ref, &ref->node, bytenr, 855 num_bytes, parent, ref_root, owner, offset, 856 action); 857 spin_unlock(&delayed_refs->lock); 858 859 return 0; 860 } 861 862 int btrfs_add_delayed_extent_op(struct btrfs_fs_info *fs_info, 863 struct btrfs_trans_handle *trans, 864 u64 bytenr, u64 num_bytes, 865 struct btrfs_delayed_extent_op *extent_op) 866 { 867 struct btrfs_delayed_ref_head *head_ref; 868 struct btrfs_delayed_ref_root *delayed_refs; 869 870 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS); 871 if (!head_ref) 872 return -ENOMEM; 873 874 head_ref->extent_op = extent_op; 875 876 delayed_refs = &trans->transaction->delayed_refs; 877 spin_lock(&delayed_refs->lock); 878 879 add_delayed_ref_head(fs_info, trans, &head_ref->node, NULL, bytenr, 880 num_bytes, 0, 0, BTRFS_UPDATE_DELAYED_HEAD, 881 extent_op->is_data); 882 883 spin_unlock(&delayed_refs->lock); 884 return 0; 885 } 886 887 /* 888 * this does a simple search for the head node for a given extent. 889 * It must be called with the delayed ref spinlock held, and it returns 890 * the head node if any where found, or NULL if not. 891 */ 892 struct btrfs_delayed_ref_head * 893 btrfs_find_delayed_ref_head(struct btrfs_trans_handle *trans, u64 bytenr) 894 { 895 struct btrfs_delayed_ref_root *delayed_refs; 896 897 delayed_refs = &trans->transaction->delayed_refs; 898 return find_ref_head(&delayed_refs->href_root, bytenr, 0); 899 } 900 901 void btrfs_delayed_ref_exit(void) 902 { 903 kmem_cache_destroy(btrfs_delayed_ref_head_cachep); 904 kmem_cache_destroy(btrfs_delayed_tree_ref_cachep); 905 kmem_cache_destroy(btrfs_delayed_data_ref_cachep); 906 kmem_cache_destroy(btrfs_delayed_extent_op_cachep); 907 } 908 909 int btrfs_delayed_ref_init(void) 910 { 911 btrfs_delayed_ref_head_cachep = kmem_cache_create( 912 "btrfs_delayed_ref_head", 913 sizeof(struct btrfs_delayed_ref_head), 0, 914 SLAB_MEM_SPREAD, NULL); 915 if (!btrfs_delayed_ref_head_cachep) 916 goto fail; 917 918 btrfs_delayed_tree_ref_cachep = kmem_cache_create( 919 "btrfs_delayed_tree_ref", 920 sizeof(struct btrfs_delayed_tree_ref), 0, 921 SLAB_MEM_SPREAD, NULL); 922 if (!btrfs_delayed_tree_ref_cachep) 923 goto fail; 924 925 btrfs_delayed_data_ref_cachep = kmem_cache_create( 926 "btrfs_delayed_data_ref", 927 sizeof(struct btrfs_delayed_data_ref), 0, 928 SLAB_MEM_SPREAD, NULL); 929 if (!btrfs_delayed_data_ref_cachep) 930 goto fail; 931 932 btrfs_delayed_extent_op_cachep = kmem_cache_create( 933 "btrfs_delayed_extent_op", 934 sizeof(struct btrfs_delayed_extent_op), 0, 935 SLAB_MEM_SPREAD, NULL); 936 if (!btrfs_delayed_extent_op_cachep) 937 goto fail; 938 939 return 0; 940 fail: 941 btrfs_delayed_ref_exit(); 942 return -ENOMEM; 943 } 944