xref: /openbmc/linux/fs/btrfs/delayed-ref.c (revision a266ef69b890f099069cf51bb40572611c435a54)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/sort.h>
9 #include "messages.h"
10 #include "ctree.h"
11 #include "delayed-ref.h"
12 #include "transaction.h"
13 #include "qgroup.h"
14 #include "space-info.h"
15 #include "tree-mod-log.h"
16 #include "fs.h"
17 
18 struct kmem_cache *btrfs_delayed_ref_head_cachep;
19 struct kmem_cache *btrfs_delayed_tree_ref_cachep;
20 struct kmem_cache *btrfs_delayed_data_ref_cachep;
21 struct kmem_cache *btrfs_delayed_extent_op_cachep;
22 /*
23  * delayed back reference update tracking.  For subvolume trees
24  * we queue up extent allocations and backref maintenance for
25  * delayed processing.   This avoids deep call chains where we
26  * add extents in the middle of btrfs_search_slot, and it allows
27  * us to buffer up frequently modified backrefs in an rb tree instead
28  * of hammering updates on the extent allocation tree.
29  */
30 
31 bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
32 {
33 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
34 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
35 	bool ret = false;
36 	u64 reserved;
37 
38 	spin_lock(&global_rsv->lock);
39 	reserved = global_rsv->reserved;
40 	spin_unlock(&global_rsv->lock);
41 
42 	/*
43 	 * Since the global reserve is just kind of magic we don't really want
44 	 * to rely on it to save our bacon, so if our size is more than the
45 	 * delayed_refs_rsv and the global rsv then it's time to think about
46 	 * bailing.
47 	 */
48 	spin_lock(&delayed_refs_rsv->lock);
49 	reserved += delayed_refs_rsv->reserved;
50 	if (delayed_refs_rsv->size >= reserved)
51 		ret = true;
52 	spin_unlock(&delayed_refs_rsv->lock);
53 	return ret;
54 }
55 
56 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
57 {
58 	u64 num_entries =
59 		atomic_read(&trans->transaction->delayed_refs.num_entries);
60 	u64 avg_runtime;
61 	u64 val;
62 
63 	smp_mb();
64 	avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
65 	val = num_entries * avg_runtime;
66 	if (val >= NSEC_PER_SEC)
67 		return 1;
68 	if (val >= NSEC_PER_SEC / 2)
69 		return 2;
70 
71 	return btrfs_check_space_for_delayed_refs(trans->fs_info);
72 }
73 
74 /*
75  * Release a ref head's reservation.
76  *
77  * @fs_info:  the filesystem
78  * @nr:       number of items to drop
79  *
80  * Drops the delayed ref head's count from the delayed refs rsv and free any
81  * excess reservation we had.
82  */
83 void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr)
84 {
85 	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
86 	u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, nr);
87 	u64 released = 0;
88 
89 	/*
90 	 * We have to check the mount option here because we could be enabling
91 	 * the free space tree for the first time and don't have the compat_ro
92 	 * option set yet.
93 	 *
94 	 * We need extra reservations if we have the free space tree because
95 	 * we'll have to modify that tree as well.
96 	 */
97 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
98 		num_bytes *= 2;
99 
100 	released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
101 	if (released)
102 		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
103 					      0, released, 0);
104 }
105 
106 /*
107  * Adjust the size of the delayed refs rsv.
108  *
109  * This is to be called anytime we may have adjusted trans->delayed_ref_updates,
110  * it'll calculate the additional size and add it to the delayed_refs_rsv.
111  */
112 void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
113 {
114 	struct btrfs_fs_info *fs_info = trans->fs_info;
115 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
116 	u64 num_bytes;
117 
118 	if (!trans->delayed_ref_updates)
119 		return;
120 
121 	num_bytes = btrfs_calc_insert_metadata_size(fs_info,
122 						    trans->delayed_ref_updates);
123 	/*
124 	 * We have to check the mount option here because we could be enabling
125 	 * the free space tree for the first time and don't have the compat_ro
126 	 * option set yet.
127 	 *
128 	 * We need extra reservations if we have the free space tree because
129 	 * we'll have to modify that tree as well.
130 	 */
131 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
132 		num_bytes *= 2;
133 
134 	spin_lock(&delayed_rsv->lock);
135 	delayed_rsv->size += num_bytes;
136 	delayed_rsv->full = false;
137 	spin_unlock(&delayed_rsv->lock);
138 	trans->delayed_ref_updates = 0;
139 }
140 
141 /*
142  * Transfer bytes to our delayed refs rsv.
143  *
144  * @fs_info:   the filesystem
145  * @src:       source block rsv to transfer from
146  * @num_bytes: number of bytes to transfer
147  *
148  * This transfers up to the num_bytes amount from the src rsv to the
149  * delayed_refs_rsv.  Any extra bytes are returned to the space info.
150  */
151 void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
152 				       struct btrfs_block_rsv *src,
153 				       u64 num_bytes)
154 {
155 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
156 	u64 to_free = 0;
157 
158 	spin_lock(&src->lock);
159 	src->reserved -= num_bytes;
160 	src->size -= num_bytes;
161 	spin_unlock(&src->lock);
162 
163 	spin_lock(&delayed_refs_rsv->lock);
164 	if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
165 		u64 delta = delayed_refs_rsv->size -
166 			delayed_refs_rsv->reserved;
167 		if (num_bytes > delta) {
168 			to_free = num_bytes - delta;
169 			num_bytes = delta;
170 		}
171 	} else {
172 		to_free = num_bytes;
173 		num_bytes = 0;
174 	}
175 
176 	if (num_bytes)
177 		delayed_refs_rsv->reserved += num_bytes;
178 	if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
179 		delayed_refs_rsv->full = true;
180 	spin_unlock(&delayed_refs_rsv->lock);
181 
182 	if (num_bytes)
183 		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
184 					      0, num_bytes, 1);
185 	if (to_free)
186 		btrfs_space_info_free_bytes_may_use(fs_info,
187 				delayed_refs_rsv->space_info, to_free);
188 }
189 
190 /*
191  * Refill based on our delayed refs usage.
192  *
193  * @fs_info: the filesystem
194  * @flush:   control how we can flush for this reservation.
195  *
196  * This will refill the delayed block_rsv up to 1 items size worth of space and
197  * will return -ENOSPC if we can't make the reservation.
198  */
199 int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
200 				  enum btrfs_reserve_flush_enum flush)
201 {
202 	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
203 	u64 limit = btrfs_calc_insert_metadata_size(fs_info, 1);
204 	u64 num_bytes = 0;
205 	int ret = -ENOSPC;
206 
207 	spin_lock(&block_rsv->lock);
208 	if (block_rsv->reserved < block_rsv->size) {
209 		num_bytes = block_rsv->size - block_rsv->reserved;
210 		num_bytes = min(num_bytes, limit);
211 	}
212 	spin_unlock(&block_rsv->lock);
213 
214 	if (!num_bytes)
215 		return 0;
216 
217 	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush);
218 	if (ret)
219 		return ret;
220 	btrfs_block_rsv_add_bytes(block_rsv, num_bytes, 0);
221 	trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
222 				      0, num_bytes, 1);
223 	return 0;
224 }
225 
226 /*
227  * compare two delayed tree backrefs with same bytenr and type
228  */
229 static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1,
230 			  struct btrfs_delayed_tree_ref *ref2)
231 {
232 	if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
233 		if (ref1->root < ref2->root)
234 			return -1;
235 		if (ref1->root > ref2->root)
236 			return 1;
237 	} else {
238 		if (ref1->parent < ref2->parent)
239 			return -1;
240 		if (ref1->parent > ref2->parent)
241 			return 1;
242 	}
243 	return 0;
244 }
245 
246 /*
247  * compare two delayed data backrefs with same bytenr and type
248  */
249 static int comp_data_refs(struct btrfs_delayed_data_ref *ref1,
250 			  struct btrfs_delayed_data_ref *ref2)
251 {
252 	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
253 		if (ref1->root < ref2->root)
254 			return -1;
255 		if (ref1->root > ref2->root)
256 			return 1;
257 		if (ref1->objectid < ref2->objectid)
258 			return -1;
259 		if (ref1->objectid > ref2->objectid)
260 			return 1;
261 		if (ref1->offset < ref2->offset)
262 			return -1;
263 		if (ref1->offset > ref2->offset)
264 			return 1;
265 	} else {
266 		if (ref1->parent < ref2->parent)
267 			return -1;
268 		if (ref1->parent > ref2->parent)
269 			return 1;
270 	}
271 	return 0;
272 }
273 
274 static int comp_refs(struct btrfs_delayed_ref_node *ref1,
275 		     struct btrfs_delayed_ref_node *ref2,
276 		     bool check_seq)
277 {
278 	int ret = 0;
279 
280 	if (ref1->type < ref2->type)
281 		return -1;
282 	if (ref1->type > ref2->type)
283 		return 1;
284 	if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
285 	    ref1->type == BTRFS_SHARED_BLOCK_REF_KEY)
286 		ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1),
287 				     btrfs_delayed_node_to_tree_ref(ref2));
288 	else
289 		ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1),
290 				     btrfs_delayed_node_to_data_ref(ref2));
291 	if (ret)
292 		return ret;
293 	if (check_seq) {
294 		if (ref1->seq < ref2->seq)
295 			return -1;
296 		if (ref1->seq > ref2->seq)
297 			return 1;
298 	}
299 	return 0;
300 }
301 
302 /* insert a new ref to head ref rbtree */
303 static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
304 						   struct rb_node *node)
305 {
306 	struct rb_node **p = &root->rb_root.rb_node;
307 	struct rb_node *parent_node = NULL;
308 	struct btrfs_delayed_ref_head *entry;
309 	struct btrfs_delayed_ref_head *ins;
310 	u64 bytenr;
311 	bool leftmost = true;
312 
313 	ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
314 	bytenr = ins->bytenr;
315 	while (*p) {
316 		parent_node = *p;
317 		entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
318 				 href_node);
319 
320 		if (bytenr < entry->bytenr) {
321 			p = &(*p)->rb_left;
322 		} else if (bytenr > entry->bytenr) {
323 			p = &(*p)->rb_right;
324 			leftmost = false;
325 		} else {
326 			return entry;
327 		}
328 	}
329 
330 	rb_link_node(node, parent_node, p);
331 	rb_insert_color_cached(node, root, leftmost);
332 	return NULL;
333 }
334 
335 static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
336 		struct btrfs_delayed_ref_node *ins)
337 {
338 	struct rb_node **p = &root->rb_root.rb_node;
339 	struct rb_node *node = &ins->ref_node;
340 	struct rb_node *parent_node = NULL;
341 	struct btrfs_delayed_ref_node *entry;
342 	bool leftmost = true;
343 
344 	while (*p) {
345 		int comp;
346 
347 		parent_node = *p;
348 		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
349 				 ref_node);
350 		comp = comp_refs(ins, entry, true);
351 		if (comp < 0) {
352 			p = &(*p)->rb_left;
353 		} else if (comp > 0) {
354 			p = &(*p)->rb_right;
355 			leftmost = false;
356 		} else {
357 			return entry;
358 		}
359 	}
360 
361 	rb_link_node(node, parent_node, p);
362 	rb_insert_color_cached(node, root, leftmost);
363 	return NULL;
364 }
365 
366 static struct btrfs_delayed_ref_head *find_first_ref_head(
367 		struct btrfs_delayed_ref_root *dr)
368 {
369 	struct rb_node *n;
370 	struct btrfs_delayed_ref_head *entry;
371 
372 	n = rb_first_cached(&dr->href_root);
373 	if (!n)
374 		return NULL;
375 
376 	entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
377 
378 	return entry;
379 }
380 
381 /*
382  * Find a head entry based on bytenr. This returns the delayed ref head if it
383  * was able to find one, or NULL if nothing was in that spot.  If return_bigger
384  * is given, the next bigger entry is returned if no exact match is found.
385  */
386 static struct btrfs_delayed_ref_head *find_ref_head(
387 		struct btrfs_delayed_ref_root *dr, u64 bytenr,
388 		bool return_bigger)
389 {
390 	struct rb_root *root = &dr->href_root.rb_root;
391 	struct rb_node *n;
392 	struct btrfs_delayed_ref_head *entry;
393 
394 	n = root->rb_node;
395 	entry = NULL;
396 	while (n) {
397 		entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
398 
399 		if (bytenr < entry->bytenr)
400 			n = n->rb_left;
401 		else if (bytenr > entry->bytenr)
402 			n = n->rb_right;
403 		else
404 			return entry;
405 	}
406 	if (entry && return_bigger) {
407 		if (bytenr > entry->bytenr) {
408 			n = rb_next(&entry->href_node);
409 			if (!n)
410 				return NULL;
411 			entry = rb_entry(n, struct btrfs_delayed_ref_head,
412 					 href_node);
413 		}
414 		return entry;
415 	}
416 	return NULL;
417 }
418 
419 int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
420 			   struct btrfs_delayed_ref_head *head)
421 {
422 	lockdep_assert_held(&delayed_refs->lock);
423 	if (mutex_trylock(&head->mutex))
424 		return 0;
425 
426 	refcount_inc(&head->refs);
427 	spin_unlock(&delayed_refs->lock);
428 
429 	mutex_lock(&head->mutex);
430 	spin_lock(&delayed_refs->lock);
431 	if (RB_EMPTY_NODE(&head->href_node)) {
432 		mutex_unlock(&head->mutex);
433 		btrfs_put_delayed_ref_head(head);
434 		return -EAGAIN;
435 	}
436 	btrfs_put_delayed_ref_head(head);
437 	return 0;
438 }
439 
440 static inline void drop_delayed_ref(struct btrfs_trans_handle *trans,
441 				    struct btrfs_delayed_ref_root *delayed_refs,
442 				    struct btrfs_delayed_ref_head *head,
443 				    struct btrfs_delayed_ref_node *ref)
444 {
445 	lockdep_assert_held(&head->lock);
446 	rb_erase_cached(&ref->ref_node, &head->ref_tree);
447 	RB_CLEAR_NODE(&ref->ref_node);
448 	if (!list_empty(&ref->add_list))
449 		list_del(&ref->add_list);
450 	ref->in_tree = 0;
451 	btrfs_put_delayed_ref(ref);
452 	atomic_dec(&delayed_refs->num_entries);
453 }
454 
455 static bool merge_ref(struct btrfs_trans_handle *trans,
456 		      struct btrfs_delayed_ref_root *delayed_refs,
457 		      struct btrfs_delayed_ref_head *head,
458 		      struct btrfs_delayed_ref_node *ref,
459 		      u64 seq)
460 {
461 	struct btrfs_delayed_ref_node *next;
462 	struct rb_node *node = rb_next(&ref->ref_node);
463 	bool done = false;
464 
465 	while (!done && node) {
466 		int mod;
467 
468 		next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
469 		node = rb_next(node);
470 		if (seq && next->seq >= seq)
471 			break;
472 		if (comp_refs(ref, next, false))
473 			break;
474 
475 		if (ref->action == next->action) {
476 			mod = next->ref_mod;
477 		} else {
478 			if (ref->ref_mod < next->ref_mod) {
479 				swap(ref, next);
480 				done = true;
481 			}
482 			mod = -next->ref_mod;
483 		}
484 
485 		drop_delayed_ref(trans, delayed_refs, head, next);
486 		ref->ref_mod += mod;
487 		if (ref->ref_mod == 0) {
488 			drop_delayed_ref(trans, delayed_refs, head, ref);
489 			done = true;
490 		} else {
491 			/*
492 			 * Can't have multiples of the same ref on a tree block.
493 			 */
494 			WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
495 				ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
496 		}
497 	}
498 
499 	return done;
500 }
501 
502 void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
503 			      struct btrfs_delayed_ref_root *delayed_refs,
504 			      struct btrfs_delayed_ref_head *head)
505 {
506 	struct btrfs_fs_info *fs_info = trans->fs_info;
507 	struct btrfs_delayed_ref_node *ref;
508 	struct rb_node *node;
509 	u64 seq = 0;
510 
511 	lockdep_assert_held(&head->lock);
512 
513 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
514 		return;
515 
516 	/* We don't have too many refs to merge for data. */
517 	if (head->is_data)
518 		return;
519 
520 	seq = btrfs_tree_mod_log_lowest_seq(fs_info);
521 again:
522 	for (node = rb_first_cached(&head->ref_tree); node;
523 	     node = rb_next(node)) {
524 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
525 		if (seq && ref->seq >= seq)
526 			continue;
527 		if (merge_ref(trans, delayed_refs, head, ref, seq))
528 			goto again;
529 	}
530 }
531 
532 int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
533 {
534 	int ret = 0;
535 	u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info);
536 
537 	if (min_seq != 0 && seq >= min_seq) {
538 		btrfs_debug(fs_info,
539 			    "holding back delayed_ref %llu, lowest is %llu",
540 			    seq, min_seq);
541 		ret = 1;
542 	}
543 
544 	return ret;
545 }
546 
547 struct btrfs_delayed_ref_head *btrfs_select_ref_head(
548 		struct btrfs_delayed_ref_root *delayed_refs)
549 {
550 	struct btrfs_delayed_ref_head *head;
551 
552 again:
553 	head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
554 			     true);
555 	if (!head && delayed_refs->run_delayed_start != 0) {
556 		delayed_refs->run_delayed_start = 0;
557 		head = find_first_ref_head(delayed_refs);
558 	}
559 	if (!head)
560 		return NULL;
561 
562 	while (head->processing) {
563 		struct rb_node *node;
564 
565 		node = rb_next(&head->href_node);
566 		if (!node) {
567 			if (delayed_refs->run_delayed_start == 0)
568 				return NULL;
569 			delayed_refs->run_delayed_start = 0;
570 			goto again;
571 		}
572 		head = rb_entry(node, struct btrfs_delayed_ref_head,
573 				href_node);
574 	}
575 
576 	head->processing = 1;
577 	WARN_ON(delayed_refs->num_heads_ready == 0);
578 	delayed_refs->num_heads_ready--;
579 	delayed_refs->run_delayed_start = head->bytenr +
580 		head->num_bytes;
581 	return head;
582 }
583 
584 void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
585 			   struct btrfs_delayed_ref_head *head)
586 {
587 	lockdep_assert_held(&delayed_refs->lock);
588 	lockdep_assert_held(&head->lock);
589 
590 	rb_erase_cached(&head->href_node, &delayed_refs->href_root);
591 	RB_CLEAR_NODE(&head->href_node);
592 	atomic_dec(&delayed_refs->num_entries);
593 	delayed_refs->num_heads--;
594 	if (head->processing == 0)
595 		delayed_refs->num_heads_ready--;
596 }
597 
598 /*
599  * Helper to insert the ref_node to the tail or merge with tail.
600  *
601  * Return 0 for insert.
602  * Return >0 for merge.
603  */
604 static int insert_delayed_ref(struct btrfs_trans_handle *trans,
605 			      struct btrfs_delayed_ref_root *root,
606 			      struct btrfs_delayed_ref_head *href,
607 			      struct btrfs_delayed_ref_node *ref)
608 {
609 	struct btrfs_delayed_ref_node *exist;
610 	int mod;
611 	int ret = 0;
612 
613 	spin_lock(&href->lock);
614 	exist = tree_insert(&href->ref_tree, ref);
615 	if (!exist)
616 		goto inserted;
617 
618 	/* Now we are sure we can merge */
619 	ret = 1;
620 	if (exist->action == ref->action) {
621 		mod = ref->ref_mod;
622 	} else {
623 		/* Need to change action */
624 		if (exist->ref_mod < ref->ref_mod) {
625 			exist->action = ref->action;
626 			mod = -exist->ref_mod;
627 			exist->ref_mod = ref->ref_mod;
628 			if (ref->action == BTRFS_ADD_DELAYED_REF)
629 				list_add_tail(&exist->add_list,
630 					      &href->ref_add_list);
631 			else if (ref->action == BTRFS_DROP_DELAYED_REF) {
632 				ASSERT(!list_empty(&exist->add_list));
633 				list_del(&exist->add_list);
634 			} else {
635 				ASSERT(0);
636 			}
637 		} else
638 			mod = -ref->ref_mod;
639 	}
640 	exist->ref_mod += mod;
641 
642 	/* remove existing tail if its ref_mod is zero */
643 	if (exist->ref_mod == 0)
644 		drop_delayed_ref(trans, root, href, exist);
645 	spin_unlock(&href->lock);
646 	return ret;
647 inserted:
648 	if (ref->action == BTRFS_ADD_DELAYED_REF)
649 		list_add_tail(&ref->add_list, &href->ref_add_list);
650 	atomic_inc(&root->num_entries);
651 	spin_unlock(&href->lock);
652 	return ret;
653 }
654 
655 /*
656  * helper function to update the accounting in the head ref
657  * existing and update must have the same bytenr
658  */
659 static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
660 			 struct btrfs_delayed_ref_head *existing,
661 			 struct btrfs_delayed_ref_head *update)
662 {
663 	struct btrfs_delayed_ref_root *delayed_refs =
664 		&trans->transaction->delayed_refs;
665 	struct btrfs_fs_info *fs_info = trans->fs_info;
666 	int old_ref_mod;
667 
668 	BUG_ON(existing->is_data != update->is_data);
669 
670 	spin_lock(&existing->lock);
671 	if (update->must_insert_reserved) {
672 		/* if the extent was freed and then
673 		 * reallocated before the delayed ref
674 		 * entries were processed, we can end up
675 		 * with an existing head ref without
676 		 * the must_insert_reserved flag set.
677 		 * Set it again here
678 		 */
679 		existing->must_insert_reserved = update->must_insert_reserved;
680 
681 		/*
682 		 * update the num_bytes so we make sure the accounting
683 		 * is done correctly
684 		 */
685 		existing->num_bytes = update->num_bytes;
686 
687 	}
688 
689 	if (update->extent_op) {
690 		if (!existing->extent_op) {
691 			existing->extent_op = update->extent_op;
692 		} else {
693 			if (update->extent_op->update_key) {
694 				memcpy(&existing->extent_op->key,
695 				       &update->extent_op->key,
696 				       sizeof(update->extent_op->key));
697 				existing->extent_op->update_key = true;
698 			}
699 			if (update->extent_op->update_flags) {
700 				existing->extent_op->flags_to_set |=
701 					update->extent_op->flags_to_set;
702 				existing->extent_op->update_flags = true;
703 			}
704 			btrfs_free_delayed_extent_op(update->extent_op);
705 		}
706 	}
707 	/*
708 	 * update the reference mod on the head to reflect this new operation,
709 	 * only need the lock for this case cause we could be processing it
710 	 * currently, for refs we just added we know we're a-ok.
711 	 */
712 	old_ref_mod = existing->total_ref_mod;
713 	existing->ref_mod += update->ref_mod;
714 	existing->total_ref_mod += update->ref_mod;
715 
716 	/*
717 	 * If we are going to from a positive ref mod to a negative or vice
718 	 * versa we need to make sure to adjust pending_csums accordingly.
719 	 */
720 	if (existing->is_data) {
721 		u64 csum_leaves =
722 			btrfs_csum_bytes_to_leaves(fs_info,
723 						   existing->num_bytes);
724 
725 		if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
726 			delayed_refs->pending_csums -= existing->num_bytes;
727 			btrfs_delayed_refs_rsv_release(fs_info, csum_leaves);
728 		}
729 		if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
730 			delayed_refs->pending_csums += existing->num_bytes;
731 			trans->delayed_ref_updates += csum_leaves;
732 		}
733 	}
734 
735 	spin_unlock(&existing->lock);
736 }
737 
738 static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
739 				  struct btrfs_qgroup_extent_record *qrecord,
740 				  u64 bytenr, u64 num_bytes, u64 ref_root,
741 				  u64 reserved, int action, bool is_data,
742 				  bool is_system)
743 {
744 	int count_mod = 1;
745 	int must_insert_reserved = 0;
746 
747 	/* If reserved is provided, it must be a data extent. */
748 	BUG_ON(!is_data && reserved);
749 
750 	/*
751 	 * The head node stores the sum of all the mods, so dropping a ref
752 	 * should drop the sum in the head node by one.
753 	 */
754 	if (action == BTRFS_UPDATE_DELAYED_HEAD)
755 		count_mod = 0;
756 	else if (action == BTRFS_DROP_DELAYED_REF)
757 		count_mod = -1;
758 
759 	/*
760 	 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the reserved
761 	 * accounting when the extent is finally added, or if a later
762 	 * modification deletes the delayed ref without ever inserting the
763 	 * extent into the extent allocation tree.  ref->must_insert_reserved
764 	 * is the flag used to record that accounting mods are required.
765 	 *
766 	 * Once we record must_insert_reserved, switch the action to
767 	 * BTRFS_ADD_DELAYED_REF because other special casing is not required.
768 	 */
769 	if (action == BTRFS_ADD_DELAYED_EXTENT)
770 		must_insert_reserved = 1;
771 	else
772 		must_insert_reserved = 0;
773 
774 	refcount_set(&head_ref->refs, 1);
775 	head_ref->bytenr = bytenr;
776 	head_ref->num_bytes = num_bytes;
777 	head_ref->ref_mod = count_mod;
778 	head_ref->must_insert_reserved = must_insert_reserved;
779 	head_ref->is_data = is_data;
780 	head_ref->is_system = is_system;
781 	head_ref->ref_tree = RB_ROOT_CACHED;
782 	INIT_LIST_HEAD(&head_ref->ref_add_list);
783 	RB_CLEAR_NODE(&head_ref->href_node);
784 	head_ref->processing = 0;
785 	head_ref->total_ref_mod = count_mod;
786 	spin_lock_init(&head_ref->lock);
787 	mutex_init(&head_ref->mutex);
788 
789 	if (qrecord) {
790 		if (ref_root && reserved) {
791 			qrecord->data_rsv = reserved;
792 			qrecord->data_rsv_refroot = ref_root;
793 		}
794 		qrecord->bytenr = bytenr;
795 		qrecord->num_bytes = num_bytes;
796 		qrecord->old_roots = NULL;
797 	}
798 }
799 
800 /*
801  * helper function to actually insert a head node into the rbtree.
802  * this does all the dirty work in terms of maintaining the correct
803  * overall modification count.
804  */
805 static noinline struct btrfs_delayed_ref_head *
806 add_delayed_ref_head(struct btrfs_trans_handle *trans,
807 		     struct btrfs_delayed_ref_head *head_ref,
808 		     struct btrfs_qgroup_extent_record *qrecord,
809 		     int action, int *qrecord_inserted_ret)
810 {
811 	struct btrfs_delayed_ref_head *existing;
812 	struct btrfs_delayed_ref_root *delayed_refs;
813 	int qrecord_inserted = 0;
814 
815 	delayed_refs = &trans->transaction->delayed_refs;
816 
817 	/* Record qgroup extent info if provided */
818 	if (qrecord) {
819 		if (btrfs_qgroup_trace_extent_nolock(trans->fs_info,
820 					delayed_refs, qrecord))
821 			kfree(qrecord);
822 		else
823 			qrecord_inserted = 1;
824 	}
825 
826 	trace_add_delayed_ref_head(trans->fs_info, head_ref, action);
827 
828 	existing = htree_insert(&delayed_refs->href_root,
829 				&head_ref->href_node);
830 	if (existing) {
831 		update_existing_head_ref(trans, existing, head_ref);
832 		/*
833 		 * we've updated the existing ref, free the newly
834 		 * allocated ref
835 		 */
836 		kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
837 		head_ref = existing;
838 	} else {
839 		if (head_ref->is_data && head_ref->ref_mod < 0) {
840 			delayed_refs->pending_csums += head_ref->num_bytes;
841 			trans->delayed_ref_updates +=
842 				btrfs_csum_bytes_to_leaves(trans->fs_info,
843 							   head_ref->num_bytes);
844 		}
845 		delayed_refs->num_heads++;
846 		delayed_refs->num_heads_ready++;
847 		atomic_inc(&delayed_refs->num_entries);
848 		trans->delayed_ref_updates++;
849 	}
850 	if (qrecord_inserted_ret)
851 		*qrecord_inserted_ret = qrecord_inserted;
852 
853 	return head_ref;
854 }
855 
856 /*
857  * init_delayed_ref_common - Initialize the structure which represents a
858  *			     modification to a an extent.
859  *
860  * @fs_info:    Internal to the mounted filesystem mount structure.
861  *
862  * @ref:	The structure which is going to be initialized.
863  *
864  * @bytenr:	The logical address of the extent for which a modification is
865  *		going to be recorded.
866  *
867  * @num_bytes:  Size of the extent whose modification is being recorded.
868  *
869  * @ref_root:	The id of the root where this modification has originated, this
870  *		can be either one of the well-known metadata trees or the
871  *		subvolume id which references this extent.
872  *
873  * @action:	Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
874  *		BTRFS_ADD_DELAYED_EXTENT
875  *
876  * @ref_type:	Holds the type of the extent which is being recorded, can be
877  *		one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
878  *		when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
879  *		BTRFS_EXTENT_DATA_REF_KEY when recording data extent
880  */
881 static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
882 				    struct btrfs_delayed_ref_node *ref,
883 				    u64 bytenr, u64 num_bytes, u64 ref_root,
884 				    int action, u8 ref_type)
885 {
886 	u64 seq = 0;
887 
888 	if (action == BTRFS_ADD_DELAYED_EXTENT)
889 		action = BTRFS_ADD_DELAYED_REF;
890 
891 	if (is_fstree(ref_root))
892 		seq = atomic64_read(&fs_info->tree_mod_seq);
893 
894 	refcount_set(&ref->refs, 1);
895 	ref->bytenr = bytenr;
896 	ref->num_bytes = num_bytes;
897 	ref->ref_mod = 1;
898 	ref->action = action;
899 	ref->is_head = 0;
900 	ref->in_tree = 1;
901 	ref->seq = seq;
902 	ref->type = ref_type;
903 	RB_CLEAR_NODE(&ref->ref_node);
904 	INIT_LIST_HEAD(&ref->add_list);
905 }
906 
907 /*
908  * add a delayed tree ref.  This does all of the accounting required
909  * to make sure the delayed ref is eventually processed before this
910  * transaction commits.
911  */
912 int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
913 			       struct btrfs_ref *generic_ref,
914 			       struct btrfs_delayed_extent_op *extent_op)
915 {
916 	struct btrfs_fs_info *fs_info = trans->fs_info;
917 	struct btrfs_delayed_tree_ref *ref;
918 	struct btrfs_delayed_ref_head *head_ref;
919 	struct btrfs_delayed_ref_root *delayed_refs;
920 	struct btrfs_qgroup_extent_record *record = NULL;
921 	int qrecord_inserted;
922 	bool is_system;
923 	int action = generic_ref->action;
924 	int level = generic_ref->tree_ref.level;
925 	int ret;
926 	u64 bytenr = generic_ref->bytenr;
927 	u64 num_bytes = generic_ref->len;
928 	u64 parent = generic_ref->parent;
929 	u8 ref_type;
930 
931 	is_system = (generic_ref->tree_ref.owning_root == BTRFS_CHUNK_TREE_OBJECTID);
932 
933 	ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
934 	ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
935 	if (!ref)
936 		return -ENOMEM;
937 
938 	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
939 	if (!head_ref) {
940 		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
941 		return -ENOMEM;
942 	}
943 
944 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
945 	    !generic_ref->skip_qgroup) {
946 		record = kzalloc(sizeof(*record), GFP_NOFS);
947 		if (!record) {
948 			kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
949 			kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
950 			return -ENOMEM;
951 		}
952 	}
953 
954 	if (parent)
955 		ref_type = BTRFS_SHARED_BLOCK_REF_KEY;
956 	else
957 		ref_type = BTRFS_TREE_BLOCK_REF_KEY;
958 
959 	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
960 				generic_ref->tree_ref.owning_root, action,
961 				ref_type);
962 	ref->root = generic_ref->tree_ref.owning_root;
963 	ref->parent = parent;
964 	ref->level = level;
965 
966 	init_delayed_ref_head(head_ref, record, bytenr, num_bytes,
967 			      generic_ref->tree_ref.owning_root, 0, action,
968 			      false, is_system);
969 	head_ref->extent_op = extent_op;
970 
971 	delayed_refs = &trans->transaction->delayed_refs;
972 	spin_lock(&delayed_refs->lock);
973 
974 	/*
975 	 * insert both the head node and the new ref without dropping
976 	 * the spin lock
977 	 */
978 	head_ref = add_delayed_ref_head(trans, head_ref, record,
979 					action, &qrecord_inserted);
980 
981 	ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
982 	spin_unlock(&delayed_refs->lock);
983 
984 	/*
985 	 * Need to update the delayed_refs_rsv with any changes we may have
986 	 * made.
987 	 */
988 	btrfs_update_delayed_refs_rsv(trans);
989 
990 	trace_add_delayed_tree_ref(fs_info, &ref->node, ref,
991 				   action == BTRFS_ADD_DELAYED_EXTENT ?
992 				   BTRFS_ADD_DELAYED_REF : action);
993 	if (ret > 0)
994 		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
995 
996 	if (qrecord_inserted)
997 		btrfs_qgroup_trace_extent_post(trans, record);
998 
999 	return 0;
1000 }
1001 
1002 /*
1003  * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
1004  */
1005 int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
1006 			       struct btrfs_ref *generic_ref,
1007 			       u64 reserved)
1008 {
1009 	struct btrfs_fs_info *fs_info = trans->fs_info;
1010 	struct btrfs_delayed_data_ref *ref;
1011 	struct btrfs_delayed_ref_head *head_ref;
1012 	struct btrfs_delayed_ref_root *delayed_refs;
1013 	struct btrfs_qgroup_extent_record *record = NULL;
1014 	int qrecord_inserted;
1015 	int action = generic_ref->action;
1016 	int ret;
1017 	u64 bytenr = generic_ref->bytenr;
1018 	u64 num_bytes = generic_ref->len;
1019 	u64 parent = generic_ref->parent;
1020 	u64 ref_root = generic_ref->data_ref.owning_root;
1021 	u64 owner = generic_ref->data_ref.ino;
1022 	u64 offset = generic_ref->data_ref.offset;
1023 	u8 ref_type;
1024 
1025 	ASSERT(generic_ref->type == BTRFS_REF_DATA && action);
1026 	ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
1027 	if (!ref)
1028 		return -ENOMEM;
1029 
1030 	if (parent)
1031 	        ref_type = BTRFS_SHARED_DATA_REF_KEY;
1032 	else
1033 	        ref_type = BTRFS_EXTENT_DATA_REF_KEY;
1034 	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1035 				ref_root, action, ref_type);
1036 	ref->root = ref_root;
1037 	ref->parent = parent;
1038 	ref->objectid = owner;
1039 	ref->offset = offset;
1040 
1041 
1042 	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1043 	if (!head_ref) {
1044 		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1045 		return -ENOMEM;
1046 	}
1047 
1048 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
1049 	    !generic_ref->skip_qgroup) {
1050 		record = kzalloc(sizeof(*record), GFP_NOFS);
1051 		if (!record) {
1052 			kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1053 			kmem_cache_free(btrfs_delayed_ref_head_cachep,
1054 					head_ref);
1055 			return -ENOMEM;
1056 		}
1057 	}
1058 
1059 	init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root,
1060 			      reserved, action, true, false);
1061 	head_ref->extent_op = NULL;
1062 
1063 	delayed_refs = &trans->transaction->delayed_refs;
1064 	spin_lock(&delayed_refs->lock);
1065 
1066 	/*
1067 	 * insert both the head node and the new ref without dropping
1068 	 * the spin lock
1069 	 */
1070 	head_ref = add_delayed_ref_head(trans, head_ref, record,
1071 					action, &qrecord_inserted);
1072 
1073 	ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
1074 	spin_unlock(&delayed_refs->lock);
1075 
1076 	/*
1077 	 * Need to update the delayed_refs_rsv with any changes we may have
1078 	 * made.
1079 	 */
1080 	btrfs_update_delayed_refs_rsv(trans);
1081 
1082 	trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref,
1083 				   action == BTRFS_ADD_DELAYED_EXTENT ?
1084 				   BTRFS_ADD_DELAYED_REF : action);
1085 	if (ret > 0)
1086 		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1087 
1088 
1089 	if (qrecord_inserted)
1090 		return btrfs_qgroup_trace_extent_post(trans, record);
1091 	return 0;
1092 }
1093 
1094 int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
1095 				u64 bytenr, u64 num_bytes,
1096 				struct btrfs_delayed_extent_op *extent_op)
1097 {
1098 	struct btrfs_delayed_ref_head *head_ref;
1099 	struct btrfs_delayed_ref_root *delayed_refs;
1100 
1101 	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1102 	if (!head_ref)
1103 		return -ENOMEM;
1104 
1105 	init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0,
1106 			      BTRFS_UPDATE_DELAYED_HEAD, false, false);
1107 	head_ref->extent_op = extent_op;
1108 
1109 	delayed_refs = &trans->transaction->delayed_refs;
1110 	spin_lock(&delayed_refs->lock);
1111 
1112 	add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD,
1113 			     NULL);
1114 
1115 	spin_unlock(&delayed_refs->lock);
1116 
1117 	/*
1118 	 * Need to update the delayed_refs_rsv with any changes we may have
1119 	 * made.
1120 	 */
1121 	btrfs_update_delayed_refs_rsv(trans);
1122 	return 0;
1123 }
1124 
1125 /*
1126  * This does a simple search for the head node for a given extent.  Returns the
1127  * head node if found, or NULL if not.
1128  */
1129 struct btrfs_delayed_ref_head *
1130 btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
1131 {
1132 	lockdep_assert_held(&delayed_refs->lock);
1133 
1134 	return find_ref_head(delayed_refs, bytenr, false);
1135 }
1136 
1137 void __cold btrfs_delayed_ref_exit(void)
1138 {
1139 	kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1140 	kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
1141 	kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
1142 	kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1143 }
1144 
1145 int __init btrfs_delayed_ref_init(void)
1146 {
1147 	btrfs_delayed_ref_head_cachep = kmem_cache_create(
1148 				"btrfs_delayed_ref_head",
1149 				sizeof(struct btrfs_delayed_ref_head), 0,
1150 				SLAB_MEM_SPREAD, NULL);
1151 	if (!btrfs_delayed_ref_head_cachep)
1152 		goto fail;
1153 
1154 	btrfs_delayed_tree_ref_cachep = kmem_cache_create(
1155 				"btrfs_delayed_tree_ref",
1156 				sizeof(struct btrfs_delayed_tree_ref), 0,
1157 				SLAB_MEM_SPREAD, NULL);
1158 	if (!btrfs_delayed_tree_ref_cachep)
1159 		goto fail;
1160 
1161 	btrfs_delayed_data_ref_cachep = kmem_cache_create(
1162 				"btrfs_delayed_data_ref",
1163 				sizeof(struct btrfs_delayed_data_ref), 0,
1164 				SLAB_MEM_SPREAD, NULL);
1165 	if (!btrfs_delayed_data_ref_cachep)
1166 		goto fail;
1167 
1168 	btrfs_delayed_extent_op_cachep = kmem_cache_create(
1169 				"btrfs_delayed_extent_op",
1170 				sizeof(struct btrfs_delayed_extent_op), 0,
1171 				SLAB_MEM_SPREAD, NULL);
1172 	if (!btrfs_delayed_extent_op_cachep)
1173 		goto fail;
1174 
1175 	return 0;
1176 fail:
1177 	btrfs_delayed_ref_exit();
1178 	return -ENOMEM;
1179 }
1180