xref: /openbmc/linux/fs/btrfs/delayed-ref.c (revision 8e9356c6)
1 /*
2  * Copyright (C) 2009 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/sort.h>
22 #include "ctree.h"
23 #include "delayed-ref.h"
24 #include "transaction.h"
25 
26 struct kmem_cache *btrfs_delayed_ref_head_cachep;
27 struct kmem_cache *btrfs_delayed_tree_ref_cachep;
28 struct kmem_cache *btrfs_delayed_data_ref_cachep;
29 struct kmem_cache *btrfs_delayed_extent_op_cachep;
30 /*
31  * delayed back reference update tracking.  For subvolume trees
32  * we queue up extent allocations and backref maintenance for
33  * delayed processing.   This avoids deep call chains where we
34  * add extents in the middle of btrfs_search_slot, and it allows
35  * us to buffer up frequently modified backrefs in an rb tree instead
36  * of hammering updates on the extent allocation tree.
37  */
38 
39 /*
40  * compare two delayed tree backrefs with same bytenr and type
41  */
42 static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref2,
43 			  struct btrfs_delayed_tree_ref *ref1, int type)
44 {
45 	if (type == BTRFS_TREE_BLOCK_REF_KEY) {
46 		if (ref1->root < ref2->root)
47 			return -1;
48 		if (ref1->root > ref2->root)
49 			return 1;
50 	} else {
51 		if (ref1->parent < ref2->parent)
52 			return -1;
53 		if (ref1->parent > ref2->parent)
54 			return 1;
55 	}
56 	return 0;
57 }
58 
59 /*
60  * compare two delayed data backrefs with same bytenr and type
61  */
62 static int comp_data_refs(struct btrfs_delayed_data_ref *ref2,
63 			  struct btrfs_delayed_data_ref *ref1)
64 {
65 	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
66 		if (ref1->root < ref2->root)
67 			return -1;
68 		if (ref1->root > ref2->root)
69 			return 1;
70 		if (ref1->objectid < ref2->objectid)
71 			return -1;
72 		if (ref1->objectid > ref2->objectid)
73 			return 1;
74 		if (ref1->offset < ref2->offset)
75 			return -1;
76 		if (ref1->offset > ref2->offset)
77 			return 1;
78 	} else {
79 		if (ref1->parent < ref2->parent)
80 			return -1;
81 		if (ref1->parent > ref2->parent)
82 			return 1;
83 	}
84 	return 0;
85 }
86 
87 /*
88  * entries in the rb tree are ordered by the byte number of the extent,
89  * type of the delayed backrefs and content of delayed backrefs.
90  */
91 static int comp_entry(struct btrfs_delayed_ref_node *ref2,
92 		      struct btrfs_delayed_ref_node *ref1,
93 		      bool compare_seq)
94 {
95 	if (ref1->bytenr < ref2->bytenr)
96 		return -1;
97 	if (ref1->bytenr > ref2->bytenr)
98 		return 1;
99 	if (ref1->is_head && ref2->is_head)
100 		return 0;
101 	if (ref2->is_head)
102 		return -1;
103 	if (ref1->is_head)
104 		return 1;
105 	if (ref1->type < ref2->type)
106 		return -1;
107 	if (ref1->type > ref2->type)
108 		return 1;
109 	/* merging of sequenced refs is not allowed */
110 	if (compare_seq) {
111 		if (ref1->seq < ref2->seq)
112 			return -1;
113 		if (ref1->seq > ref2->seq)
114 			return 1;
115 	}
116 	if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
117 	    ref1->type == BTRFS_SHARED_BLOCK_REF_KEY) {
118 		return comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref2),
119 				      btrfs_delayed_node_to_tree_ref(ref1),
120 				      ref1->type);
121 	} else if (ref1->type == BTRFS_EXTENT_DATA_REF_KEY ||
122 		   ref1->type == BTRFS_SHARED_DATA_REF_KEY) {
123 		return comp_data_refs(btrfs_delayed_node_to_data_ref(ref2),
124 				      btrfs_delayed_node_to_data_ref(ref1));
125 	}
126 	BUG();
127 	return 0;
128 }
129 
130 /*
131  * insert a new ref into the rbtree.  This returns any existing refs
132  * for the same (bytenr,parent) tuple, or NULL if the new node was properly
133  * inserted.
134  */
135 static struct btrfs_delayed_ref_node *tree_insert(struct rb_root *root,
136 						  struct rb_node *node)
137 {
138 	struct rb_node **p = &root->rb_node;
139 	struct rb_node *parent_node = NULL;
140 	struct btrfs_delayed_ref_node *entry;
141 	struct btrfs_delayed_ref_node *ins;
142 	int cmp;
143 
144 	ins = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
145 	while (*p) {
146 		parent_node = *p;
147 		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
148 				 rb_node);
149 
150 		cmp = comp_entry(entry, ins, 1);
151 		if (cmp < 0)
152 			p = &(*p)->rb_left;
153 		else if (cmp > 0)
154 			p = &(*p)->rb_right;
155 		else
156 			return entry;
157 	}
158 
159 	rb_link_node(node, parent_node, p);
160 	rb_insert_color(node, root);
161 	return NULL;
162 }
163 
164 /* insert a new ref to head ref rbtree */
165 static struct btrfs_delayed_ref_head *htree_insert(struct rb_root *root,
166 						   struct rb_node *node)
167 {
168 	struct rb_node **p = &root->rb_node;
169 	struct rb_node *parent_node = NULL;
170 	struct btrfs_delayed_ref_head *entry;
171 	struct btrfs_delayed_ref_head *ins;
172 	u64 bytenr;
173 
174 	ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
175 	bytenr = ins->node.bytenr;
176 	while (*p) {
177 		parent_node = *p;
178 		entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
179 				 href_node);
180 
181 		if (bytenr < entry->node.bytenr)
182 			p = &(*p)->rb_left;
183 		else if (bytenr > entry->node.bytenr)
184 			p = &(*p)->rb_right;
185 		else
186 			return entry;
187 	}
188 
189 	rb_link_node(node, parent_node, p);
190 	rb_insert_color(node, root);
191 	return NULL;
192 }
193 
194 /*
195  * find an head entry based on bytenr. This returns the delayed ref
196  * head if it was able to find one, or NULL if nothing was in that spot.
197  * If return_bigger is given, the next bigger entry is returned if no exact
198  * match is found.
199  */
200 static struct btrfs_delayed_ref_head *
201 find_ref_head(struct rb_root *root, u64 bytenr,
202 	      struct btrfs_delayed_ref_head **last, int return_bigger)
203 {
204 	struct rb_node *n;
205 	struct btrfs_delayed_ref_head *entry;
206 	int cmp = 0;
207 
208 again:
209 	n = root->rb_node;
210 	entry = NULL;
211 	while (n) {
212 		entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
213 		if (last)
214 			*last = entry;
215 
216 		if (bytenr < entry->node.bytenr)
217 			cmp = -1;
218 		else if (bytenr > entry->node.bytenr)
219 			cmp = 1;
220 		else
221 			cmp = 0;
222 
223 		if (cmp < 0)
224 			n = n->rb_left;
225 		else if (cmp > 0)
226 			n = n->rb_right;
227 		else
228 			return entry;
229 	}
230 	if (entry && return_bigger) {
231 		if (cmp > 0) {
232 			n = rb_next(&entry->href_node);
233 			if (!n)
234 				n = rb_first(root);
235 			entry = rb_entry(n, struct btrfs_delayed_ref_head,
236 					 href_node);
237 			bytenr = entry->node.bytenr;
238 			return_bigger = 0;
239 			goto again;
240 		}
241 		return entry;
242 	}
243 	return NULL;
244 }
245 
246 int btrfs_delayed_ref_lock(struct btrfs_trans_handle *trans,
247 			   struct btrfs_delayed_ref_head *head)
248 {
249 	struct btrfs_delayed_ref_root *delayed_refs;
250 
251 	delayed_refs = &trans->transaction->delayed_refs;
252 	assert_spin_locked(&delayed_refs->lock);
253 	if (mutex_trylock(&head->mutex))
254 		return 0;
255 
256 	atomic_inc(&head->node.refs);
257 	spin_unlock(&delayed_refs->lock);
258 
259 	mutex_lock(&head->mutex);
260 	spin_lock(&delayed_refs->lock);
261 	if (!head->node.in_tree) {
262 		mutex_unlock(&head->mutex);
263 		btrfs_put_delayed_ref(&head->node);
264 		return -EAGAIN;
265 	}
266 	btrfs_put_delayed_ref(&head->node);
267 	return 0;
268 }
269 
270 static inline void drop_delayed_ref(struct btrfs_trans_handle *trans,
271 				    struct btrfs_delayed_ref_root *delayed_refs,
272 				    struct btrfs_delayed_ref_head *head,
273 				    struct btrfs_delayed_ref_node *ref)
274 {
275 	if (btrfs_delayed_ref_is_head(ref)) {
276 		head = btrfs_delayed_node_to_head(ref);
277 		rb_erase(&head->href_node, &delayed_refs->href_root);
278 	} else {
279 		assert_spin_locked(&head->lock);
280 		rb_erase(&ref->rb_node, &head->ref_root);
281 	}
282 	ref->in_tree = 0;
283 	btrfs_put_delayed_ref(ref);
284 	atomic_dec(&delayed_refs->num_entries);
285 	if (trans->delayed_ref_updates)
286 		trans->delayed_ref_updates--;
287 }
288 
289 static int merge_ref(struct btrfs_trans_handle *trans,
290 		     struct btrfs_delayed_ref_root *delayed_refs,
291 		     struct btrfs_delayed_ref_head *head,
292 		     struct btrfs_delayed_ref_node *ref, u64 seq)
293 {
294 	struct rb_node *node;
295 	int mod = 0;
296 	int done = 0;
297 
298 	node = rb_next(&ref->rb_node);
299 	while (!done && node) {
300 		struct btrfs_delayed_ref_node *next;
301 
302 		next = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
303 		node = rb_next(node);
304 		if (seq && next->seq >= seq)
305 			break;
306 		if (comp_entry(ref, next, 0))
307 			continue;
308 
309 		if (ref->action == next->action) {
310 			mod = next->ref_mod;
311 		} else {
312 			if (ref->ref_mod < next->ref_mod) {
313 				struct btrfs_delayed_ref_node *tmp;
314 
315 				tmp = ref;
316 				ref = next;
317 				next = tmp;
318 				done = 1;
319 			}
320 			mod = -next->ref_mod;
321 		}
322 
323 		drop_delayed_ref(trans, delayed_refs, head, next);
324 		ref->ref_mod += mod;
325 		if (ref->ref_mod == 0) {
326 			drop_delayed_ref(trans, delayed_refs, head, ref);
327 			done = 1;
328 		} else {
329 			/*
330 			 * You can't have multiples of the same ref on a tree
331 			 * block.
332 			 */
333 			WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
334 				ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
335 		}
336 	}
337 	return done;
338 }
339 
340 void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
341 			      struct btrfs_fs_info *fs_info,
342 			      struct btrfs_delayed_ref_root *delayed_refs,
343 			      struct btrfs_delayed_ref_head *head)
344 {
345 	struct rb_node *node;
346 	u64 seq = 0;
347 
348 	assert_spin_locked(&head->lock);
349 	/*
350 	 * We don't have too much refs to merge in the case of delayed data
351 	 * refs.
352 	 */
353 	if (head->is_data)
354 		return;
355 
356 	spin_lock(&fs_info->tree_mod_seq_lock);
357 	if (!list_empty(&fs_info->tree_mod_seq_list)) {
358 		struct seq_list *elem;
359 
360 		elem = list_first_entry(&fs_info->tree_mod_seq_list,
361 					struct seq_list, list);
362 		seq = elem->seq;
363 	}
364 	spin_unlock(&fs_info->tree_mod_seq_lock);
365 
366 	node = rb_first(&head->ref_root);
367 	while (node) {
368 		struct btrfs_delayed_ref_node *ref;
369 
370 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
371 			       rb_node);
372 		/* We can't merge refs that are outside of our seq count */
373 		if (seq && ref->seq >= seq)
374 			break;
375 		if (merge_ref(trans, delayed_refs, head, ref, seq))
376 			node = rb_first(&head->ref_root);
377 		else
378 			node = rb_next(&ref->rb_node);
379 	}
380 }
381 
382 int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info,
383 			    struct btrfs_delayed_ref_root *delayed_refs,
384 			    u64 seq)
385 {
386 	struct seq_list *elem;
387 	int ret = 0;
388 
389 	spin_lock(&fs_info->tree_mod_seq_lock);
390 	if (!list_empty(&fs_info->tree_mod_seq_list)) {
391 		elem = list_first_entry(&fs_info->tree_mod_seq_list,
392 					struct seq_list, list);
393 		if (seq >= elem->seq) {
394 			pr_debug("holding back delayed_ref %#x.%x, lowest is %#x.%x (%p)\n",
395 				 (u32)(seq >> 32), (u32)seq,
396 				 (u32)(elem->seq >> 32), (u32)elem->seq,
397 				 delayed_refs);
398 			ret = 1;
399 		}
400 	}
401 
402 	spin_unlock(&fs_info->tree_mod_seq_lock);
403 	return ret;
404 }
405 
406 struct btrfs_delayed_ref_head *
407 btrfs_select_ref_head(struct btrfs_trans_handle *trans)
408 {
409 	struct btrfs_delayed_ref_root *delayed_refs;
410 	struct btrfs_delayed_ref_head *head;
411 	u64 start;
412 	bool loop = false;
413 
414 	delayed_refs = &trans->transaction->delayed_refs;
415 
416 again:
417 	start = delayed_refs->run_delayed_start;
418 	head = find_ref_head(&delayed_refs->href_root, start, NULL, 1);
419 	if (!head && !loop) {
420 		delayed_refs->run_delayed_start = 0;
421 		start = 0;
422 		loop = true;
423 		head = find_ref_head(&delayed_refs->href_root, start, NULL, 1);
424 		if (!head)
425 			return NULL;
426 	} else if (!head && loop) {
427 		return NULL;
428 	}
429 
430 	while (head->processing) {
431 		struct rb_node *node;
432 
433 		node = rb_next(&head->href_node);
434 		if (!node) {
435 			if (loop)
436 				return NULL;
437 			delayed_refs->run_delayed_start = 0;
438 			start = 0;
439 			loop = true;
440 			goto again;
441 		}
442 		head = rb_entry(node, struct btrfs_delayed_ref_head,
443 				href_node);
444 	}
445 
446 	head->processing = 1;
447 	WARN_ON(delayed_refs->num_heads_ready == 0);
448 	delayed_refs->num_heads_ready--;
449 	delayed_refs->run_delayed_start = head->node.bytenr +
450 		head->node.num_bytes;
451 	return head;
452 }
453 
454 /*
455  * helper function to update an extent delayed ref in the
456  * rbtree.  existing and update must both have the same
457  * bytenr and parent
458  *
459  * This may free existing if the update cancels out whatever
460  * operation it was doing.
461  */
462 static noinline void
463 update_existing_ref(struct btrfs_trans_handle *trans,
464 		    struct btrfs_delayed_ref_root *delayed_refs,
465 		    struct btrfs_delayed_ref_head *head,
466 		    struct btrfs_delayed_ref_node *existing,
467 		    struct btrfs_delayed_ref_node *update)
468 {
469 	if (update->action != existing->action) {
470 		/*
471 		 * this is effectively undoing either an add or a
472 		 * drop.  We decrement the ref_mod, and if it goes
473 		 * down to zero we just delete the entry without
474 		 * every changing the extent allocation tree.
475 		 */
476 		existing->ref_mod--;
477 		if (existing->ref_mod == 0)
478 			drop_delayed_ref(trans, delayed_refs, head, existing);
479 		else
480 			WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY ||
481 				existing->type == BTRFS_SHARED_BLOCK_REF_KEY);
482 	} else {
483 		WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY ||
484 			existing->type == BTRFS_SHARED_BLOCK_REF_KEY);
485 		/*
486 		 * the action on the existing ref matches
487 		 * the action on the ref we're trying to add.
488 		 * Bump the ref_mod by one so the backref that
489 		 * is eventually added/removed has the correct
490 		 * reference count
491 		 */
492 		existing->ref_mod += update->ref_mod;
493 	}
494 }
495 
496 /*
497  * helper function to update the accounting in the head ref
498  * existing and update must have the same bytenr
499  */
500 static noinline void
501 update_existing_head_ref(struct btrfs_delayed_ref_node *existing,
502 			 struct btrfs_delayed_ref_node *update)
503 {
504 	struct btrfs_delayed_ref_head *existing_ref;
505 	struct btrfs_delayed_ref_head *ref;
506 
507 	existing_ref = btrfs_delayed_node_to_head(existing);
508 	ref = btrfs_delayed_node_to_head(update);
509 	BUG_ON(existing_ref->is_data != ref->is_data);
510 
511 	if (ref->must_insert_reserved) {
512 		/* if the extent was freed and then
513 		 * reallocated before the delayed ref
514 		 * entries were processed, we can end up
515 		 * with an existing head ref without
516 		 * the must_insert_reserved flag set.
517 		 * Set it again here
518 		 */
519 		existing_ref->must_insert_reserved = ref->must_insert_reserved;
520 
521 		/*
522 		 * update the num_bytes so we make sure the accounting
523 		 * is done correctly
524 		 */
525 		existing->num_bytes = update->num_bytes;
526 
527 	}
528 
529 	if (ref->extent_op) {
530 		if (!existing_ref->extent_op) {
531 			existing_ref->extent_op = ref->extent_op;
532 		} else {
533 			if (ref->extent_op->update_key) {
534 				memcpy(&existing_ref->extent_op->key,
535 				       &ref->extent_op->key,
536 				       sizeof(ref->extent_op->key));
537 				existing_ref->extent_op->update_key = 1;
538 			}
539 			if (ref->extent_op->update_flags) {
540 				existing_ref->extent_op->flags_to_set |=
541 					ref->extent_op->flags_to_set;
542 				existing_ref->extent_op->update_flags = 1;
543 			}
544 			btrfs_free_delayed_extent_op(ref->extent_op);
545 		}
546 	}
547 	/*
548 	 * update the reference mod on the head to reflect this new operation,
549 	 * only need the lock for this case cause we could be processing it
550 	 * currently, for refs we just added we know we're a-ok.
551 	 */
552 	spin_lock(&existing_ref->lock);
553 	existing->ref_mod += update->ref_mod;
554 	spin_unlock(&existing_ref->lock);
555 }
556 
557 /*
558  * helper function to actually insert a head node into the rbtree.
559  * this does all the dirty work in terms of maintaining the correct
560  * overall modification count.
561  */
562 static noinline struct btrfs_delayed_ref_head *
563 add_delayed_ref_head(struct btrfs_fs_info *fs_info,
564 		     struct btrfs_trans_handle *trans,
565 		     struct btrfs_delayed_ref_node *ref, u64 bytenr,
566 		     u64 num_bytes, int action, int is_data)
567 {
568 	struct btrfs_delayed_ref_head *existing;
569 	struct btrfs_delayed_ref_head *head_ref = NULL;
570 	struct btrfs_delayed_ref_root *delayed_refs;
571 	int count_mod = 1;
572 	int must_insert_reserved = 0;
573 
574 	/*
575 	 * the head node stores the sum of all the mods, so dropping a ref
576 	 * should drop the sum in the head node by one.
577 	 */
578 	if (action == BTRFS_UPDATE_DELAYED_HEAD)
579 		count_mod = 0;
580 	else if (action == BTRFS_DROP_DELAYED_REF)
581 		count_mod = -1;
582 
583 	/*
584 	 * BTRFS_ADD_DELAYED_EXTENT means that we need to update
585 	 * the reserved accounting when the extent is finally added, or
586 	 * if a later modification deletes the delayed ref without ever
587 	 * inserting the extent into the extent allocation tree.
588 	 * ref->must_insert_reserved is the flag used to record
589 	 * that accounting mods are required.
590 	 *
591 	 * Once we record must_insert_reserved, switch the action to
592 	 * BTRFS_ADD_DELAYED_REF because other special casing is not required.
593 	 */
594 	if (action == BTRFS_ADD_DELAYED_EXTENT)
595 		must_insert_reserved = 1;
596 	else
597 		must_insert_reserved = 0;
598 
599 	delayed_refs = &trans->transaction->delayed_refs;
600 
601 	/* first set the basic ref node struct up */
602 	atomic_set(&ref->refs, 1);
603 	ref->bytenr = bytenr;
604 	ref->num_bytes = num_bytes;
605 	ref->ref_mod = count_mod;
606 	ref->type  = 0;
607 	ref->action  = 0;
608 	ref->is_head = 1;
609 	ref->in_tree = 1;
610 	ref->seq = 0;
611 
612 	head_ref = btrfs_delayed_node_to_head(ref);
613 	head_ref->must_insert_reserved = must_insert_reserved;
614 	head_ref->is_data = is_data;
615 	head_ref->ref_root = RB_ROOT;
616 	head_ref->processing = 0;
617 
618 	spin_lock_init(&head_ref->lock);
619 	mutex_init(&head_ref->mutex);
620 
621 	trace_add_delayed_ref_head(ref, head_ref, action);
622 
623 	existing = htree_insert(&delayed_refs->href_root,
624 				&head_ref->href_node);
625 	if (existing) {
626 		update_existing_head_ref(&existing->node, ref);
627 		/*
628 		 * we've updated the existing ref, free the newly
629 		 * allocated ref
630 		 */
631 		kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
632 		head_ref = existing;
633 	} else {
634 		delayed_refs->num_heads++;
635 		delayed_refs->num_heads_ready++;
636 		atomic_inc(&delayed_refs->num_entries);
637 		trans->delayed_ref_updates++;
638 	}
639 	return head_ref;
640 }
641 
642 /*
643  * helper to insert a delayed tree ref into the rbtree.
644  */
645 static noinline void
646 add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
647 		     struct btrfs_trans_handle *trans,
648 		     struct btrfs_delayed_ref_head *head_ref,
649 		     struct btrfs_delayed_ref_node *ref, u64 bytenr,
650 		     u64 num_bytes, u64 parent, u64 ref_root, int level,
651 		     int action, int for_cow)
652 {
653 	struct btrfs_delayed_ref_node *existing;
654 	struct btrfs_delayed_tree_ref *full_ref;
655 	struct btrfs_delayed_ref_root *delayed_refs;
656 	u64 seq = 0;
657 
658 	if (action == BTRFS_ADD_DELAYED_EXTENT)
659 		action = BTRFS_ADD_DELAYED_REF;
660 
661 	delayed_refs = &trans->transaction->delayed_refs;
662 
663 	/* first set the basic ref node struct up */
664 	atomic_set(&ref->refs, 1);
665 	ref->bytenr = bytenr;
666 	ref->num_bytes = num_bytes;
667 	ref->ref_mod = 1;
668 	ref->action = action;
669 	ref->is_head = 0;
670 	ref->in_tree = 1;
671 
672 	if (need_ref_seq(for_cow, ref_root))
673 		seq = btrfs_get_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
674 	ref->seq = seq;
675 
676 	full_ref = btrfs_delayed_node_to_tree_ref(ref);
677 	full_ref->parent = parent;
678 	full_ref->root = ref_root;
679 	if (parent)
680 		ref->type = BTRFS_SHARED_BLOCK_REF_KEY;
681 	else
682 		ref->type = BTRFS_TREE_BLOCK_REF_KEY;
683 	full_ref->level = level;
684 
685 	trace_add_delayed_tree_ref(ref, full_ref, action);
686 
687 	spin_lock(&head_ref->lock);
688 	existing = tree_insert(&head_ref->ref_root, &ref->rb_node);
689 	if (existing) {
690 		update_existing_ref(trans, delayed_refs, head_ref, existing,
691 				    ref);
692 		/*
693 		 * we've updated the existing ref, free the newly
694 		 * allocated ref
695 		 */
696 		kmem_cache_free(btrfs_delayed_tree_ref_cachep, full_ref);
697 	} else {
698 		atomic_inc(&delayed_refs->num_entries);
699 		trans->delayed_ref_updates++;
700 	}
701 	spin_unlock(&head_ref->lock);
702 }
703 
704 /*
705  * helper to insert a delayed data ref into the rbtree.
706  */
707 static noinline void
708 add_delayed_data_ref(struct btrfs_fs_info *fs_info,
709 		     struct btrfs_trans_handle *trans,
710 		     struct btrfs_delayed_ref_head *head_ref,
711 		     struct btrfs_delayed_ref_node *ref, u64 bytenr,
712 		     u64 num_bytes, u64 parent, u64 ref_root, u64 owner,
713 		     u64 offset, int action, int for_cow)
714 {
715 	struct btrfs_delayed_ref_node *existing;
716 	struct btrfs_delayed_data_ref *full_ref;
717 	struct btrfs_delayed_ref_root *delayed_refs;
718 	u64 seq = 0;
719 
720 	if (action == BTRFS_ADD_DELAYED_EXTENT)
721 		action = BTRFS_ADD_DELAYED_REF;
722 
723 	delayed_refs = &trans->transaction->delayed_refs;
724 
725 	/* first set the basic ref node struct up */
726 	atomic_set(&ref->refs, 1);
727 	ref->bytenr = bytenr;
728 	ref->num_bytes = num_bytes;
729 	ref->ref_mod = 1;
730 	ref->action = action;
731 	ref->is_head = 0;
732 	ref->in_tree = 1;
733 
734 	if (need_ref_seq(for_cow, ref_root))
735 		seq = btrfs_get_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
736 	ref->seq = seq;
737 
738 	full_ref = btrfs_delayed_node_to_data_ref(ref);
739 	full_ref->parent = parent;
740 	full_ref->root = ref_root;
741 	if (parent)
742 		ref->type = BTRFS_SHARED_DATA_REF_KEY;
743 	else
744 		ref->type = BTRFS_EXTENT_DATA_REF_KEY;
745 
746 	full_ref->objectid = owner;
747 	full_ref->offset = offset;
748 
749 	trace_add_delayed_data_ref(ref, full_ref, action);
750 
751 	spin_lock(&head_ref->lock);
752 	existing = tree_insert(&head_ref->ref_root, &ref->rb_node);
753 	if (existing) {
754 		update_existing_ref(trans, delayed_refs, head_ref, existing,
755 				    ref);
756 		/*
757 		 * we've updated the existing ref, free the newly
758 		 * allocated ref
759 		 */
760 		kmem_cache_free(btrfs_delayed_data_ref_cachep, full_ref);
761 	} else {
762 		atomic_inc(&delayed_refs->num_entries);
763 		trans->delayed_ref_updates++;
764 	}
765 	spin_unlock(&head_ref->lock);
766 }
767 
768 /*
769  * add a delayed tree ref.  This does all of the accounting required
770  * to make sure the delayed ref is eventually processed before this
771  * transaction commits.
772  */
773 int btrfs_add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
774 			       struct btrfs_trans_handle *trans,
775 			       u64 bytenr, u64 num_bytes, u64 parent,
776 			       u64 ref_root,  int level, int action,
777 			       struct btrfs_delayed_extent_op *extent_op,
778 			       int for_cow)
779 {
780 	struct btrfs_delayed_tree_ref *ref;
781 	struct btrfs_delayed_ref_head *head_ref;
782 	struct btrfs_delayed_ref_root *delayed_refs;
783 
784 	BUG_ON(extent_op && extent_op->is_data);
785 	ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
786 	if (!ref)
787 		return -ENOMEM;
788 
789 	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
790 	if (!head_ref) {
791 		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
792 		return -ENOMEM;
793 	}
794 
795 	head_ref->extent_op = extent_op;
796 
797 	delayed_refs = &trans->transaction->delayed_refs;
798 	spin_lock(&delayed_refs->lock);
799 
800 	/*
801 	 * insert both the head node and the new ref without dropping
802 	 * the spin lock
803 	 */
804 	head_ref = add_delayed_ref_head(fs_info, trans, &head_ref->node,
805 					bytenr, num_bytes, action, 0);
806 
807 	add_delayed_tree_ref(fs_info, trans, head_ref, &ref->node, bytenr,
808 				   num_bytes, parent, ref_root, level, action,
809 				   for_cow);
810 	spin_unlock(&delayed_refs->lock);
811 	if (need_ref_seq(for_cow, ref_root))
812 		btrfs_qgroup_record_ref(trans, &ref->node, extent_op);
813 
814 	return 0;
815 }
816 
817 /*
818  * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
819  */
820 int btrfs_add_delayed_data_ref(struct btrfs_fs_info *fs_info,
821 			       struct btrfs_trans_handle *trans,
822 			       u64 bytenr, u64 num_bytes,
823 			       u64 parent, u64 ref_root,
824 			       u64 owner, u64 offset, int action,
825 			       struct btrfs_delayed_extent_op *extent_op,
826 			       int for_cow)
827 {
828 	struct btrfs_delayed_data_ref *ref;
829 	struct btrfs_delayed_ref_head *head_ref;
830 	struct btrfs_delayed_ref_root *delayed_refs;
831 
832 	BUG_ON(extent_op && !extent_op->is_data);
833 	ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
834 	if (!ref)
835 		return -ENOMEM;
836 
837 	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
838 	if (!head_ref) {
839 		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
840 		return -ENOMEM;
841 	}
842 
843 	head_ref->extent_op = extent_op;
844 
845 	delayed_refs = &trans->transaction->delayed_refs;
846 	spin_lock(&delayed_refs->lock);
847 
848 	/*
849 	 * insert both the head node and the new ref without dropping
850 	 * the spin lock
851 	 */
852 	head_ref = add_delayed_ref_head(fs_info, trans, &head_ref->node,
853 					bytenr, num_bytes, action, 1);
854 
855 	add_delayed_data_ref(fs_info, trans, head_ref, &ref->node, bytenr,
856 				   num_bytes, parent, ref_root, owner, offset,
857 				   action, for_cow);
858 	spin_unlock(&delayed_refs->lock);
859 	if (need_ref_seq(for_cow, ref_root))
860 		btrfs_qgroup_record_ref(trans, &ref->node, extent_op);
861 
862 	return 0;
863 }
864 
865 int btrfs_add_delayed_extent_op(struct btrfs_fs_info *fs_info,
866 				struct btrfs_trans_handle *trans,
867 				u64 bytenr, u64 num_bytes,
868 				struct btrfs_delayed_extent_op *extent_op)
869 {
870 	struct btrfs_delayed_ref_head *head_ref;
871 	struct btrfs_delayed_ref_root *delayed_refs;
872 
873 	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
874 	if (!head_ref)
875 		return -ENOMEM;
876 
877 	head_ref->extent_op = extent_op;
878 
879 	delayed_refs = &trans->transaction->delayed_refs;
880 	spin_lock(&delayed_refs->lock);
881 
882 	add_delayed_ref_head(fs_info, trans, &head_ref->node, bytenr,
883 				   num_bytes, BTRFS_UPDATE_DELAYED_HEAD,
884 				   extent_op->is_data);
885 
886 	spin_unlock(&delayed_refs->lock);
887 	return 0;
888 }
889 
890 /*
891  * this does a simple search for the head node for a given extent.
892  * It must be called with the delayed ref spinlock held, and it returns
893  * the head node if any where found, or NULL if not.
894  */
895 struct btrfs_delayed_ref_head *
896 btrfs_find_delayed_ref_head(struct btrfs_trans_handle *trans, u64 bytenr)
897 {
898 	struct btrfs_delayed_ref_root *delayed_refs;
899 
900 	delayed_refs = &trans->transaction->delayed_refs;
901 	return find_ref_head(&delayed_refs->href_root, bytenr, NULL, 0);
902 }
903 
904 void btrfs_delayed_ref_exit(void)
905 {
906 	if (btrfs_delayed_ref_head_cachep)
907 		kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
908 	if (btrfs_delayed_tree_ref_cachep)
909 		kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
910 	if (btrfs_delayed_data_ref_cachep)
911 		kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
912 	if (btrfs_delayed_extent_op_cachep)
913 		kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
914 }
915 
916 int btrfs_delayed_ref_init(void)
917 {
918 	btrfs_delayed_ref_head_cachep = kmem_cache_create(
919 				"btrfs_delayed_ref_head",
920 				sizeof(struct btrfs_delayed_ref_head), 0,
921 				SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
922 	if (!btrfs_delayed_ref_head_cachep)
923 		goto fail;
924 
925 	btrfs_delayed_tree_ref_cachep = kmem_cache_create(
926 				"btrfs_delayed_tree_ref",
927 				sizeof(struct btrfs_delayed_tree_ref), 0,
928 				SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
929 	if (!btrfs_delayed_tree_ref_cachep)
930 		goto fail;
931 
932 	btrfs_delayed_data_ref_cachep = kmem_cache_create(
933 				"btrfs_delayed_data_ref",
934 				sizeof(struct btrfs_delayed_data_ref), 0,
935 				SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
936 	if (!btrfs_delayed_data_ref_cachep)
937 		goto fail;
938 
939 	btrfs_delayed_extent_op_cachep = kmem_cache_create(
940 				"btrfs_delayed_extent_op",
941 				sizeof(struct btrfs_delayed_extent_op), 0,
942 				SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
943 	if (!btrfs_delayed_extent_op_cachep)
944 		goto fail;
945 
946 	return 0;
947 fail:
948 	btrfs_delayed_ref_exit();
949 	return -ENOMEM;
950 }
951