xref: /openbmc/linux/fs/btrfs/delayed-ref.c (revision 5085e036)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/sort.h>
9 #include "ctree.h"
10 #include "delayed-ref.h"
11 #include "transaction.h"
12 #include "qgroup.h"
13 #include "space-info.h"
14 #include "tree-mod-log.h"
15 
16 struct kmem_cache *btrfs_delayed_ref_head_cachep;
17 struct kmem_cache *btrfs_delayed_tree_ref_cachep;
18 struct kmem_cache *btrfs_delayed_data_ref_cachep;
19 struct kmem_cache *btrfs_delayed_extent_op_cachep;
20 /*
21  * delayed back reference update tracking.  For subvolume trees
22  * we queue up extent allocations and backref maintenance for
23  * delayed processing.   This avoids deep call chains where we
24  * add extents in the middle of btrfs_search_slot, and it allows
25  * us to buffer up frequently modified backrefs in an rb tree instead
26  * of hammering updates on the extent allocation tree.
27  */
28 
29 bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
30 {
31 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
32 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
33 	bool ret = false;
34 	u64 reserved;
35 
36 	spin_lock(&global_rsv->lock);
37 	reserved = global_rsv->reserved;
38 	spin_unlock(&global_rsv->lock);
39 
40 	/*
41 	 * Since the global reserve is just kind of magic we don't really want
42 	 * to rely on it to save our bacon, so if our size is more than the
43 	 * delayed_refs_rsv and the global rsv then it's time to think about
44 	 * bailing.
45 	 */
46 	spin_lock(&delayed_refs_rsv->lock);
47 	reserved += delayed_refs_rsv->reserved;
48 	if (delayed_refs_rsv->size >= reserved)
49 		ret = true;
50 	spin_unlock(&delayed_refs_rsv->lock);
51 	return ret;
52 }
53 
54 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
55 {
56 	u64 num_entries =
57 		atomic_read(&trans->transaction->delayed_refs.num_entries);
58 	u64 avg_runtime;
59 	u64 val;
60 
61 	smp_mb();
62 	avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
63 	val = num_entries * avg_runtime;
64 	if (val >= NSEC_PER_SEC)
65 		return 1;
66 	if (val >= NSEC_PER_SEC / 2)
67 		return 2;
68 
69 	return btrfs_check_space_for_delayed_refs(trans->fs_info);
70 }
71 
72 /**
73  * Release a ref head's reservation
74  *
75  * @fs_info:  the filesystem
76  * @nr:       number of items to drop
77  *
78  * This drops the delayed ref head's count from the delayed refs rsv and frees
79  * any excess reservation we had.
80  */
81 void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr)
82 {
83 	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
84 	u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, nr);
85 	u64 released = 0;
86 
87 	/*
88 	 * We have to check the mount option here because we could be enabling
89 	 * the free space tree for the first time and don't have the compat_ro
90 	 * option set yet.
91 	 *
92 	 * We need extra reservations if we have the free space tree because
93 	 * we'll have to modify that tree as well.
94 	 */
95 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
96 		num_bytes *= 2;
97 
98 	released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
99 	if (released)
100 		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
101 					      0, released, 0);
102 }
103 
104 /*
105  * btrfs_update_delayed_refs_rsv - adjust the size of the delayed refs rsv
106  * @trans - the trans that may have generated delayed refs
107  *
108  * This is to be called anytime we may have adjusted trans->delayed_ref_updates,
109  * it'll calculate the additional size and add it to the delayed_refs_rsv.
110  */
111 void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
112 {
113 	struct btrfs_fs_info *fs_info = trans->fs_info;
114 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
115 	u64 num_bytes;
116 
117 	if (!trans->delayed_ref_updates)
118 		return;
119 
120 	num_bytes = btrfs_calc_insert_metadata_size(fs_info,
121 						    trans->delayed_ref_updates);
122 	/*
123 	 * We have to check the mount option here because we could be enabling
124 	 * the free space tree for the first time and don't have the compat_ro
125 	 * option set yet.
126 	 *
127 	 * We need extra reservations if we have the free space tree because
128 	 * we'll have to modify that tree as well.
129 	 */
130 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
131 		num_bytes *= 2;
132 
133 	spin_lock(&delayed_rsv->lock);
134 	delayed_rsv->size += num_bytes;
135 	delayed_rsv->full = 0;
136 	spin_unlock(&delayed_rsv->lock);
137 	trans->delayed_ref_updates = 0;
138 }
139 
140 /**
141  * Transfer bytes to our delayed refs rsv
142  *
143  * @fs_info:   the filesystem
144  * @src:       source block rsv to transfer from
145  * @num_bytes: number of bytes to transfer
146  *
147  * This transfers up to the num_bytes amount from the src rsv to the
148  * delayed_refs_rsv.  Any extra bytes are returned to the space info.
149  */
150 void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
151 				       struct btrfs_block_rsv *src,
152 				       u64 num_bytes)
153 {
154 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
155 	u64 to_free = 0;
156 
157 	spin_lock(&src->lock);
158 	src->reserved -= num_bytes;
159 	src->size -= num_bytes;
160 	spin_unlock(&src->lock);
161 
162 	spin_lock(&delayed_refs_rsv->lock);
163 	if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
164 		u64 delta = delayed_refs_rsv->size -
165 			delayed_refs_rsv->reserved;
166 		if (num_bytes > delta) {
167 			to_free = num_bytes - delta;
168 			num_bytes = delta;
169 		}
170 	} else {
171 		to_free = num_bytes;
172 		num_bytes = 0;
173 	}
174 
175 	if (num_bytes)
176 		delayed_refs_rsv->reserved += num_bytes;
177 	if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
178 		delayed_refs_rsv->full = 1;
179 	spin_unlock(&delayed_refs_rsv->lock);
180 
181 	if (num_bytes)
182 		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
183 					      0, num_bytes, 1);
184 	if (to_free)
185 		btrfs_space_info_free_bytes_may_use(fs_info,
186 				delayed_refs_rsv->space_info, to_free);
187 }
188 
189 /**
190  * Refill based on our delayed refs usage
191  *
192  * @fs_info: the filesystem
193  * @flush:   control how we can flush for this reservation.
194  *
195  * This will refill the delayed block_rsv up to 1 items size worth of space and
196  * will return -ENOSPC if we can't make the reservation.
197  */
198 int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
199 				  enum btrfs_reserve_flush_enum flush)
200 {
201 	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
202 	u64 limit = btrfs_calc_insert_metadata_size(fs_info, 1);
203 	u64 num_bytes = 0;
204 	int ret = -ENOSPC;
205 
206 	spin_lock(&block_rsv->lock);
207 	if (block_rsv->reserved < block_rsv->size) {
208 		num_bytes = block_rsv->size - block_rsv->reserved;
209 		num_bytes = min(num_bytes, limit);
210 	}
211 	spin_unlock(&block_rsv->lock);
212 
213 	if (!num_bytes)
214 		return 0;
215 
216 	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush);
217 	if (ret)
218 		return ret;
219 	btrfs_block_rsv_add_bytes(block_rsv, num_bytes, 0);
220 	trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
221 				      0, num_bytes, 1);
222 	return 0;
223 }
224 
225 /*
226  * compare two delayed tree backrefs with same bytenr and type
227  */
228 static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1,
229 			  struct btrfs_delayed_tree_ref *ref2)
230 {
231 	if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
232 		if (ref1->root < ref2->root)
233 			return -1;
234 		if (ref1->root > ref2->root)
235 			return 1;
236 	} else {
237 		if (ref1->parent < ref2->parent)
238 			return -1;
239 		if (ref1->parent > ref2->parent)
240 			return 1;
241 	}
242 	return 0;
243 }
244 
245 /*
246  * compare two delayed data backrefs with same bytenr and type
247  */
248 static int comp_data_refs(struct btrfs_delayed_data_ref *ref1,
249 			  struct btrfs_delayed_data_ref *ref2)
250 {
251 	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
252 		if (ref1->root < ref2->root)
253 			return -1;
254 		if (ref1->root > ref2->root)
255 			return 1;
256 		if (ref1->objectid < ref2->objectid)
257 			return -1;
258 		if (ref1->objectid > ref2->objectid)
259 			return 1;
260 		if (ref1->offset < ref2->offset)
261 			return -1;
262 		if (ref1->offset > ref2->offset)
263 			return 1;
264 	} else {
265 		if (ref1->parent < ref2->parent)
266 			return -1;
267 		if (ref1->parent > ref2->parent)
268 			return 1;
269 	}
270 	return 0;
271 }
272 
273 static int comp_refs(struct btrfs_delayed_ref_node *ref1,
274 		     struct btrfs_delayed_ref_node *ref2,
275 		     bool check_seq)
276 {
277 	int ret = 0;
278 
279 	if (ref1->type < ref2->type)
280 		return -1;
281 	if (ref1->type > ref2->type)
282 		return 1;
283 	if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
284 	    ref1->type == BTRFS_SHARED_BLOCK_REF_KEY)
285 		ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1),
286 				     btrfs_delayed_node_to_tree_ref(ref2));
287 	else
288 		ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1),
289 				     btrfs_delayed_node_to_data_ref(ref2));
290 	if (ret)
291 		return ret;
292 	if (check_seq) {
293 		if (ref1->seq < ref2->seq)
294 			return -1;
295 		if (ref1->seq > ref2->seq)
296 			return 1;
297 	}
298 	return 0;
299 }
300 
301 /* insert a new ref to head ref rbtree */
302 static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
303 						   struct rb_node *node)
304 {
305 	struct rb_node **p = &root->rb_root.rb_node;
306 	struct rb_node *parent_node = NULL;
307 	struct btrfs_delayed_ref_head *entry;
308 	struct btrfs_delayed_ref_head *ins;
309 	u64 bytenr;
310 	bool leftmost = true;
311 
312 	ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
313 	bytenr = ins->bytenr;
314 	while (*p) {
315 		parent_node = *p;
316 		entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
317 				 href_node);
318 
319 		if (bytenr < entry->bytenr) {
320 			p = &(*p)->rb_left;
321 		} else if (bytenr > entry->bytenr) {
322 			p = &(*p)->rb_right;
323 			leftmost = false;
324 		} else {
325 			return entry;
326 		}
327 	}
328 
329 	rb_link_node(node, parent_node, p);
330 	rb_insert_color_cached(node, root, leftmost);
331 	return NULL;
332 }
333 
334 static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
335 		struct btrfs_delayed_ref_node *ins)
336 {
337 	struct rb_node **p = &root->rb_root.rb_node;
338 	struct rb_node *node = &ins->ref_node;
339 	struct rb_node *parent_node = NULL;
340 	struct btrfs_delayed_ref_node *entry;
341 	bool leftmost = true;
342 
343 	while (*p) {
344 		int comp;
345 
346 		parent_node = *p;
347 		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
348 				 ref_node);
349 		comp = comp_refs(ins, entry, true);
350 		if (comp < 0) {
351 			p = &(*p)->rb_left;
352 		} else if (comp > 0) {
353 			p = &(*p)->rb_right;
354 			leftmost = false;
355 		} else {
356 			return entry;
357 		}
358 	}
359 
360 	rb_link_node(node, parent_node, p);
361 	rb_insert_color_cached(node, root, leftmost);
362 	return NULL;
363 }
364 
365 static struct btrfs_delayed_ref_head *find_first_ref_head(
366 		struct btrfs_delayed_ref_root *dr)
367 {
368 	struct rb_node *n;
369 	struct btrfs_delayed_ref_head *entry;
370 
371 	n = rb_first_cached(&dr->href_root);
372 	if (!n)
373 		return NULL;
374 
375 	entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
376 
377 	return entry;
378 }
379 
380 /*
381  * Find a head entry based on bytenr. This returns the delayed ref head if it
382  * was able to find one, or NULL if nothing was in that spot.  If return_bigger
383  * is given, the next bigger entry is returned if no exact match is found.
384  */
385 static struct btrfs_delayed_ref_head *find_ref_head(
386 		struct btrfs_delayed_ref_root *dr, u64 bytenr,
387 		bool return_bigger)
388 {
389 	struct rb_root *root = &dr->href_root.rb_root;
390 	struct rb_node *n;
391 	struct btrfs_delayed_ref_head *entry;
392 
393 	n = root->rb_node;
394 	entry = NULL;
395 	while (n) {
396 		entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
397 
398 		if (bytenr < entry->bytenr)
399 			n = n->rb_left;
400 		else if (bytenr > entry->bytenr)
401 			n = n->rb_right;
402 		else
403 			return entry;
404 	}
405 	if (entry && return_bigger) {
406 		if (bytenr > entry->bytenr) {
407 			n = rb_next(&entry->href_node);
408 			if (!n)
409 				return NULL;
410 			entry = rb_entry(n, struct btrfs_delayed_ref_head,
411 					 href_node);
412 		}
413 		return entry;
414 	}
415 	return NULL;
416 }
417 
418 int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
419 			   struct btrfs_delayed_ref_head *head)
420 {
421 	lockdep_assert_held(&delayed_refs->lock);
422 	if (mutex_trylock(&head->mutex))
423 		return 0;
424 
425 	refcount_inc(&head->refs);
426 	spin_unlock(&delayed_refs->lock);
427 
428 	mutex_lock(&head->mutex);
429 	spin_lock(&delayed_refs->lock);
430 	if (RB_EMPTY_NODE(&head->href_node)) {
431 		mutex_unlock(&head->mutex);
432 		btrfs_put_delayed_ref_head(head);
433 		return -EAGAIN;
434 	}
435 	btrfs_put_delayed_ref_head(head);
436 	return 0;
437 }
438 
439 static inline void drop_delayed_ref(struct btrfs_trans_handle *trans,
440 				    struct btrfs_delayed_ref_root *delayed_refs,
441 				    struct btrfs_delayed_ref_head *head,
442 				    struct btrfs_delayed_ref_node *ref)
443 {
444 	lockdep_assert_held(&head->lock);
445 	rb_erase_cached(&ref->ref_node, &head->ref_tree);
446 	RB_CLEAR_NODE(&ref->ref_node);
447 	if (!list_empty(&ref->add_list))
448 		list_del(&ref->add_list);
449 	ref->in_tree = 0;
450 	btrfs_put_delayed_ref(ref);
451 	atomic_dec(&delayed_refs->num_entries);
452 }
453 
454 static bool merge_ref(struct btrfs_trans_handle *trans,
455 		      struct btrfs_delayed_ref_root *delayed_refs,
456 		      struct btrfs_delayed_ref_head *head,
457 		      struct btrfs_delayed_ref_node *ref,
458 		      u64 seq)
459 {
460 	struct btrfs_delayed_ref_node *next;
461 	struct rb_node *node = rb_next(&ref->ref_node);
462 	bool done = false;
463 
464 	while (!done && node) {
465 		int mod;
466 
467 		next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
468 		node = rb_next(node);
469 		if (seq && next->seq >= seq)
470 			break;
471 		if (comp_refs(ref, next, false))
472 			break;
473 
474 		if (ref->action == next->action) {
475 			mod = next->ref_mod;
476 		} else {
477 			if (ref->ref_mod < next->ref_mod) {
478 				swap(ref, next);
479 				done = true;
480 			}
481 			mod = -next->ref_mod;
482 		}
483 
484 		drop_delayed_ref(trans, delayed_refs, head, next);
485 		ref->ref_mod += mod;
486 		if (ref->ref_mod == 0) {
487 			drop_delayed_ref(trans, delayed_refs, head, ref);
488 			done = true;
489 		} else {
490 			/*
491 			 * Can't have multiples of the same ref on a tree block.
492 			 */
493 			WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
494 				ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
495 		}
496 	}
497 
498 	return done;
499 }
500 
501 void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
502 			      struct btrfs_delayed_ref_root *delayed_refs,
503 			      struct btrfs_delayed_ref_head *head)
504 {
505 	struct btrfs_fs_info *fs_info = trans->fs_info;
506 	struct btrfs_delayed_ref_node *ref;
507 	struct rb_node *node;
508 	u64 seq = 0;
509 
510 	lockdep_assert_held(&head->lock);
511 
512 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
513 		return;
514 
515 	/* We don't have too many refs to merge for data. */
516 	if (head->is_data)
517 		return;
518 
519 	seq = btrfs_tree_mod_log_lowest_seq(fs_info);
520 again:
521 	for (node = rb_first_cached(&head->ref_tree); node;
522 	     node = rb_next(node)) {
523 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
524 		if (seq && ref->seq >= seq)
525 			continue;
526 		if (merge_ref(trans, delayed_refs, head, ref, seq))
527 			goto again;
528 	}
529 }
530 
531 int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
532 {
533 	int ret = 0;
534 	u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info);
535 
536 	if (min_seq != 0 && seq >= min_seq) {
537 		btrfs_debug(fs_info,
538 			    "holding back delayed_ref %llu, lowest is %llu",
539 			    seq, min_seq);
540 		ret = 1;
541 	}
542 
543 	return ret;
544 }
545 
546 struct btrfs_delayed_ref_head *btrfs_select_ref_head(
547 		struct btrfs_delayed_ref_root *delayed_refs)
548 {
549 	struct btrfs_delayed_ref_head *head;
550 
551 again:
552 	head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
553 			     true);
554 	if (!head && delayed_refs->run_delayed_start != 0) {
555 		delayed_refs->run_delayed_start = 0;
556 		head = find_first_ref_head(delayed_refs);
557 	}
558 	if (!head)
559 		return NULL;
560 
561 	while (head->processing) {
562 		struct rb_node *node;
563 
564 		node = rb_next(&head->href_node);
565 		if (!node) {
566 			if (delayed_refs->run_delayed_start == 0)
567 				return NULL;
568 			delayed_refs->run_delayed_start = 0;
569 			goto again;
570 		}
571 		head = rb_entry(node, struct btrfs_delayed_ref_head,
572 				href_node);
573 	}
574 
575 	head->processing = 1;
576 	WARN_ON(delayed_refs->num_heads_ready == 0);
577 	delayed_refs->num_heads_ready--;
578 	delayed_refs->run_delayed_start = head->bytenr +
579 		head->num_bytes;
580 	return head;
581 }
582 
583 void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
584 			   struct btrfs_delayed_ref_head *head)
585 {
586 	lockdep_assert_held(&delayed_refs->lock);
587 	lockdep_assert_held(&head->lock);
588 
589 	rb_erase_cached(&head->href_node, &delayed_refs->href_root);
590 	RB_CLEAR_NODE(&head->href_node);
591 	atomic_dec(&delayed_refs->num_entries);
592 	delayed_refs->num_heads--;
593 	if (head->processing == 0)
594 		delayed_refs->num_heads_ready--;
595 }
596 
597 /*
598  * Helper to insert the ref_node to the tail or merge with tail.
599  *
600  * Return 0 for insert.
601  * Return >0 for merge.
602  */
603 static int insert_delayed_ref(struct btrfs_trans_handle *trans,
604 			      struct btrfs_delayed_ref_root *root,
605 			      struct btrfs_delayed_ref_head *href,
606 			      struct btrfs_delayed_ref_node *ref)
607 {
608 	struct btrfs_delayed_ref_node *exist;
609 	int mod;
610 	int ret = 0;
611 
612 	spin_lock(&href->lock);
613 	exist = tree_insert(&href->ref_tree, ref);
614 	if (!exist)
615 		goto inserted;
616 
617 	/* Now we are sure we can merge */
618 	ret = 1;
619 	if (exist->action == ref->action) {
620 		mod = ref->ref_mod;
621 	} else {
622 		/* Need to change action */
623 		if (exist->ref_mod < ref->ref_mod) {
624 			exist->action = ref->action;
625 			mod = -exist->ref_mod;
626 			exist->ref_mod = ref->ref_mod;
627 			if (ref->action == BTRFS_ADD_DELAYED_REF)
628 				list_add_tail(&exist->add_list,
629 					      &href->ref_add_list);
630 			else if (ref->action == BTRFS_DROP_DELAYED_REF) {
631 				ASSERT(!list_empty(&exist->add_list));
632 				list_del(&exist->add_list);
633 			} else {
634 				ASSERT(0);
635 			}
636 		} else
637 			mod = -ref->ref_mod;
638 	}
639 	exist->ref_mod += mod;
640 
641 	/* remove existing tail if its ref_mod is zero */
642 	if (exist->ref_mod == 0)
643 		drop_delayed_ref(trans, root, href, exist);
644 	spin_unlock(&href->lock);
645 	return ret;
646 inserted:
647 	if (ref->action == BTRFS_ADD_DELAYED_REF)
648 		list_add_tail(&ref->add_list, &href->ref_add_list);
649 	atomic_inc(&root->num_entries);
650 	spin_unlock(&href->lock);
651 	return ret;
652 }
653 
654 /*
655  * helper function to update the accounting in the head ref
656  * existing and update must have the same bytenr
657  */
658 static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
659 			 struct btrfs_delayed_ref_head *existing,
660 			 struct btrfs_delayed_ref_head *update)
661 {
662 	struct btrfs_delayed_ref_root *delayed_refs =
663 		&trans->transaction->delayed_refs;
664 	struct btrfs_fs_info *fs_info = trans->fs_info;
665 	int old_ref_mod;
666 
667 	BUG_ON(existing->is_data != update->is_data);
668 
669 	spin_lock(&existing->lock);
670 	if (update->must_insert_reserved) {
671 		/* if the extent was freed and then
672 		 * reallocated before the delayed ref
673 		 * entries were processed, we can end up
674 		 * with an existing head ref without
675 		 * the must_insert_reserved flag set.
676 		 * Set it again here
677 		 */
678 		existing->must_insert_reserved = update->must_insert_reserved;
679 
680 		/*
681 		 * update the num_bytes so we make sure the accounting
682 		 * is done correctly
683 		 */
684 		existing->num_bytes = update->num_bytes;
685 
686 	}
687 
688 	if (update->extent_op) {
689 		if (!existing->extent_op) {
690 			existing->extent_op = update->extent_op;
691 		} else {
692 			if (update->extent_op->update_key) {
693 				memcpy(&existing->extent_op->key,
694 				       &update->extent_op->key,
695 				       sizeof(update->extent_op->key));
696 				existing->extent_op->update_key = true;
697 			}
698 			if (update->extent_op->update_flags) {
699 				existing->extent_op->flags_to_set |=
700 					update->extent_op->flags_to_set;
701 				existing->extent_op->update_flags = true;
702 			}
703 			btrfs_free_delayed_extent_op(update->extent_op);
704 		}
705 	}
706 	/*
707 	 * update the reference mod on the head to reflect this new operation,
708 	 * only need the lock for this case cause we could be processing it
709 	 * currently, for refs we just added we know we're a-ok.
710 	 */
711 	old_ref_mod = existing->total_ref_mod;
712 	existing->ref_mod += update->ref_mod;
713 	existing->total_ref_mod += update->ref_mod;
714 
715 	/*
716 	 * If we are going to from a positive ref mod to a negative or vice
717 	 * versa we need to make sure to adjust pending_csums accordingly.
718 	 */
719 	if (existing->is_data) {
720 		u64 csum_leaves =
721 			btrfs_csum_bytes_to_leaves(fs_info,
722 						   existing->num_bytes);
723 
724 		if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
725 			delayed_refs->pending_csums -= existing->num_bytes;
726 			btrfs_delayed_refs_rsv_release(fs_info, csum_leaves);
727 		}
728 		if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
729 			delayed_refs->pending_csums += existing->num_bytes;
730 			trans->delayed_ref_updates += csum_leaves;
731 		}
732 	}
733 
734 	spin_unlock(&existing->lock);
735 }
736 
737 static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
738 				  struct btrfs_qgroup_extent_record *qrecord,
739 				  u64 bytenr, u64 num_bytes, u64 ref_root,
740 				  u64 reserved, int action, bool is_data,
741 				  bool is_system)
742 {
743 	int count_mod = 1;
744 	int must_insert_reserved = 0;
745 
746 	/* If reserved is provided, it must be a data extent. */
747 	BUG_ON(!is_data && reserved);
748 
749 	/*
750 	 * The head node stores the sum of all the mods, so dropping a ref
751 	 * should drop the sum in the head node by one.
752 	 */
753 	if (action == BTRFS_UPDATE_DELAYED_HEAD)
754 		count_mod = 0;
755 	else if (action == BTRFS_DROP_DELAYED_REF)
756 		count_mod = -1;
757 
758 	/*
759 	 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the reserved
760 	 * accounting when the extent is finally added, or if a later
761 	 * modification deletes the delayed ref without ever inserting the
762 	 * extent into the extent allocation tree.  ref->must_insert_reserved
763 	 * is the flag used to record that accounting mods are required.
764 	 *
765 	 * Once we record must_insert_reserved, switch the action to
766 	 * BTRFS_ADD_DELAYED_REF because other special casing is not required.
767 	 */
768 	if (action == BTRFS_ADD_DELAYED_EXTENT)
769 		must_insert_reserved = 1;
770 	else
771 		must_insert_reserved = 0;
772 
773 	refcount_set(&head_ref->refs, 1);
774 	head_ref->bytenr = bytenr;
775 	head_ref->num_bytes = num_bytes;
776 	head_ref->ref_mod = count_mod;
777 	head_ref->must_insert_reserved = must_insert_reserved;
778 	head_ref->is_data = is_data;
779 	head_ref->is_system = is_system;
780 	head_ref->ref_tree = RB_ROOT_CACHED;
781 	INIT_LIST_HEAD(&head_ref->ref_add_list);
782 	RB_CLEAR_NODE(&head_ref->href_node);
783 	head_ref->processing = 0;
784 	head_ref->total_ref_mod = count_mod;
785 	spin_lock_init(&head_ref->lock);
786 	mutex_init(&head_ref->mutex);
787 
788 	if (qrecord) {
789 		if (ref_root && reserved) {
790 			qrecord->data_rsv = reserved;
791 			qrecord->data_rsv_refroot = ref_root;
792 		}
793 		qrecord->bytenr = bytenr;
794 		qrecord->num_bytes = num_bytes;
795 		qrecord->old_roots = NULL;
796 	}
797 }
798 
799 /*
800  * helper function to actually insert a head node into the rbtree.
801  * this does all the dirty work in terms of maintaining the correct
802  * overall modification count.
803  */
804 static noinline struct btrfs_delayed_ref_head *
805 add_delayed_ref_head(struct btrfs_trans_handle *trans,
806 		     struct btrfs_delayed_ref_head *head_ref,
807 		     struct btrfs_qgroup_extent_record *qrecord,
808 		     int action, int *qrecord_inserted_ret)
809 {
810 	struct btrfs_delayed_ref_head *existing;
811 	struct btrfs_delayed_ref_root *delayed_refs;
812 	int qrecord_inserted = 0;
813 
814 	delayed_refs = &trans->transaction->delayed_refs;
815 
816 	/* Record qgroup extent info if provided */
817 	if (qrecord) {
818 		if (btrfs_qgroup_trace_extent_nolock(trans->fs_info,
819 					delayed_refs, qrecord))
820 			kfree(qrecord);
821 		else
822 			qrecord_inserted = 1;
823 	}
824 
825 	trace_add_delayed_ref_head(trans->fs_info, head_ref, action);
826 
827 	existing = htree_insert(&delayed_refs->href_root,
828 				&head_ref->href_node);
829 	if (existing) {
830 		update_existing_head_ref(trans, existing, head_ref);
831 		/*
832 		 * we've updated the existing ref, free the newly
833 		 * allocated ref
834 		 */
835 		kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
836 		head_ref = existing;
837 	} else {
838 		if (head_ref->is_data && head_ref->ref_mod < 0) {
839 			delayed_refs->pending_csums += head_ref->num_bytes;
840 			trans->delayed_ref_updates +=
841 				btrfs_csum_bytes_to_leaves(trans->fs_info,
842 							   head_ref->num_bytes);
843 		}
844 		delayed_refs->num_heads++;
845 		delayed_refs->num_heads_ready++;
846 		atomic_inc(&delayed_refs->num_entries);
847 		trans->delayed_ref_updates++;
848 	}
849 	if (qrecord_inserted_ret)
850 		*qrecord_inserted_ret = qrecord_inserted;
851 
852 	return head_ref;
853 }
854 
855 /*
856  * init_delayed_ref_common - Initialize the structure which represents a
857  *			     modification to a an extent.
858  *
859  * @fs_info:    Internal to the mounted filesystem mount structure.
860  *
861  * @ref:	The structure which is going to be initialized.
862  *
863  * @bytenr:	The logical address of the extent for which a modification is
864  *		going to be recorded.
865  *
866  * @num_bytes:  Size of the extent whose modification is being recorded.
867  *
868  * @ref_root:	The id of the root where this modification has originated, this
869  *		can be either one of the well-known metadata trees or the
870  *		subvolume id which references this extent.
871  *
872  * @action:	Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
873  *		BTRFS_ADD_DELAYED_EXTENT
874  *
875  * @ref_type:	Holds the type of the extent which is being recorded, can be
876  *		one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
877  *		when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
878  *		BTRFS_EXTENT_DATA_REF_KEY when recording data extent
879  */
880 static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
881 				    struct btrfs_delayed_ref_node *ref,
882 				    u64 bytenr, u64 num_bytes, u64 ref_root,
883 				    int action, u8 ref_type)
884 {
885 	u64 seq = 0;
886 
887 	if (action == BTRFS_ADD_DELAYED_EXTENT)
888 		action = BTRFS_ADD_DELAYED_REF;
889 
890 	if (is_fstree(ref_root))
891 		seq = atomic64_read(&fs_info->tree_mod_seq);
892 
893 	refcount_set(&ref->refs, 1);
894 	ref->bytenr = bytenr;
895 	ref->num_bytes = num_bytes;
896 	ref->ref_mod = 1;
897 	ref->action = action;
898 	ref->is_head = 0;
899 	ref->in_tree = 1;
900 	ref->seq = seq;
901 	ref->type = ref_type;
902 	RB_CLEAR_NODE(&ref->ref_node);
903 	INIT_LIST_HEAD(&ref->add_list);
904 }
905 
906 /*
907  * add a delayed tree ref.  This does all of the accounting required
908  * to make sure the delayed ref is eventually processed before this
909  * transaction commits.
910  */
911 int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
912 			       struct btrfs_ref *generic_ref,
913 			       struct btrfs_delayed_extent_op *extent_op)
914 {
915 	struct btrfs_fs_info *fs_info = trans->fs_info;
916 	struct btrfs_delayed_tree_ref *ref;
917 	struct btrfs_delayed_ref_head *head_ref;
918 	struct btrfs_delayed_ref_root *delayed_refs;
919 	struct btrfs_qgroup_extent_record *record = NULL;
920 	int qrecord_inserted;
921 	bool is_system;
922 	int action = generic_ref->action;
923 	int level = generic_ref->tree_ref.level;
924 	int ret;
925 	u64 bytenr = generic_ref->bytenr;
926 	u64 num_bytes = generic_ref->len;
927 	u64 parent = generic_ref->parent;
928 	u8 ref_type;
929 
930 	is_system = (generic_ref->tree_ref.owning_root == BTRFS_CHUNK_TREE_OBJECTID);
931 
932 	ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
933 	ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
934 	if (!ref)
935 		return -ENOMEM;
936 
937 	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
938 	if (!head_ref) {
939 		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
940 		return -ENOMEM;
941 	}
942 
943 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
944 	    !generic_ref->skip_qgroup) {
945 		record = kzalloc(sizeof(*record), GFP_NOFS);
946 		if (!record) {
947 			kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
948 			kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
949 			return -ENOMEM;
950 		}
951 	}
952 
953 	if (parent)
954 		ref_type = BTRFS_SHARED_BLOCK_REF_KEY;
955 	else
956 		ref_type = BTRFS_TREE_BLOCK_REF_KEY;
957 
958 	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
959 				generic_ref->tree_ref.owning_root, action,
960 				ref_type);
961 	ref->root = generic_ref->tree_ref.owning_root;
962 	ref->parent = parent;
963 	ref->level = level;
964 
965 	init_delayed_ref_head(head_ref, record, bytenr, num_bytes,
966 			      generic_ref->tree_ref.owning_root, 0, action,
967 			      false, is_system);
968 	head_ref->extent_op = extent_op;
969 
970 	delayed_refs = &trans->transaction->delayed_refs;
971 	spin_lock(&delayed_refs->lock);
972 
973 	/*
974 	 * insert both the head node and the new ref without dropping
975 	 * the spin lock
976 	 */
977 	head_ref = add_delayed_ref_head(trans, head_ref, record,
978 					action, &qrecord_inserted);
979 
980 	ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
981 	spin_unlock(&delayed_refs->lock);
982 
983 	/*
984 	 * Need to update the delayed_refs_rsv with any changes we may have
985 	 * made.
986 	 */
987 	btrfs_update_delayed_refs_rsv(trans);
988 
989 	trace_add_delayed_tree_ref(fs_info, &ref->node, ref,
990 				   action == BTRFS_ADD_DELAYED_EXTENT ?
991 				   BTRFS_ADD_DELAYED_REF : action);
992 	if (ret > 0)
993 		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
994 
995 	if (qrecord_inserted)
996 		btrfs_qgroup_trace_extent_post(trans, record);
997 
998 	return 0;
999 }
1000 
1001 /*
1002  * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
1003  */
1004 int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
1005 			       struct btrfs_ref *generic_ref,
1006 			       u64 reserved)
1007 {
1008 	struct btrfs_fs_info *fs_info = trans->fs_info;
1009 	struct btrfs_delayed_data_ref *ref;
1010 	struct btrfs_delayed_ref_head *head_ref;
1011 	struct btrfs_delayed_ref_root *delayed_refs;
1012 	struct btrfs_qgroup_extent_record *record = NULL;
1013 	int qrecord_inserted;
1014 	int action = generic_ref->action;
1015 	int ret;
1016 	u64 bytenr = generic_ref->bytenr;
1017 	u64 num_bytes = generic_ref->len;
1018 	u64 parent = generic_ref->parent;
1019 	u64 ref_root = generic_ref->data_ref.owning_root;
1020 	u64 owner = generic_ref->data_ref.ino;
1021 	u64 offset = generic_ref->data_ref.offset;
1022 	u8 ref_type;
1023 
1024 	ASSERT(generic_ref->type == BTRFS_REF_DATA && action);
1025 	ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
1026 	if (!ref)
1027 		return -ENOMEM;
1028 
1029 	if (parent)
1030 	        ref_type = BTRFS_SHARED_DATA_REF_KEY;
1031 	else
1032 	        ref_type = BTRFS_EXTENT_DATA_REF_KEY;
1033 	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1034 				ref_root, action, ref_type);
1035 	ref->root = ref_root;
1036 	ref->parent = parent;
1037 	ref->objectid = owner;
1038 	ref->offset = offset;
1039 
1040 
1041 	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1042 	if (!head_ref) {
1043 		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1044 		return -ENOMEM;
1045 	}
1046 
1047 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
1048 	    !generic_ref->skip_qgroup) {
1049 		record = kzalloc(sizeof(*record), GFP_NOFS);
1050 		if (!record) {
1051 			kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1052 			kmem_cache_free(btrfs_delayed_ref_head_cachep,
1053 					head_ref);
1054 			return -ENOMEM;
1055 		}
1056 	}
1057 
1058 	init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root,
1059 			      reserved, action, true, false);
1060 	head_ref->extent_op = NULL;
1061 
1062 	delayed_refs = &trans->transaction->delayed_refs;
1063 	spin_lock(&delayed_refs->lock);
1064 
1065 	/*
1066 	 * insert both the head node and the new ref without dropping
1067 	 * the spin lock
1068 	 */
1069 	head_ref = add_delayed_ref_head(trans, head_ref, record,
1070 					action, &qrecord_inserted);
1071 
1072 	ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
1073 	spin_unlock(&delayed_refs->lock);
1074 
1075 	/*
1076 	 * Need to update the delayed_refs_rsv with any changes we may have
1077 	 * made.
1078 	 */
1079 	btrfs_update_delayed_refs_rsv(trans);
1080 
1081 	trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref,
1082 				   action == BTRFS_ADD_DELAYED_EXTENT ?
1083 				   BTRFS_ADD_DELAYED_REF : action);
1084 	if (ret > 0)
1085 		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1086 
1087 
1088 	if (qrecord_inserted)
1089 		return btrfs_qgroup_trace_extent_post(trans, record);
1090 	return 0;
1091 }
1092 
1093 int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
1094 				u64 bytenr, u64 num_bytes,
1095 				struct btrfs_delayed_extent_op *extent_op)
1096 {
1097 	struct btrfs_delayed_ref_head *head_ref;
1098 	struct btrfs_delayed_ref_root *delayed_refs;
1099 
1100 	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1101 	if (!head_ref)
1102 		return -ENOMEM;
1103 
1104 	init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0,
1105 			      BTRFS_UPDATE_DELAYED_HEAD, false, false);
1106 	head_ref->extent_op = extent_op;
1107 
1108 	delayed_refs = &trans->transaction->delayed_refs;
1109 	spin_lock(&delayed_refs->lock);
1110 
1111 	add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD,
1112 			     NULL);
1113 
1114 	spin_unlock(&delayed_refs->lock);
1115 
1116 	/*
1117 	 * Need to update the delayed_refs_rsv with any changes we may have
1118 	 * made.
1119 	 */
1120 	btrfs_update_delayed_refs_rsv(trans);
1121 	return 0;
1122 }
1123 
1124 /*
1125  * This does a simple search for the head node for a given extent.  Returns the
1126  * head node if found, or NULL if not.
1127  */
1128 struct btrfs_delayed_ref_head *
1129 btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
1130 {
1131 	lockdep_assert_held(&delayed_refs->lock);
1132 
1133 	return find_ref_head(delayed_refs, bytenr, false);
1134 }
1135 
1136 void __cold btrfs_delayed_ref_exit(void)
1137 {
1138 	kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1139 	kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
1140 	kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
1141 	kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1142 }
1143 
1144 int __init btrfs_delayed_ref_init(void)
1145 {
1146 	btrfs_delayed_ref_head_cachep = kmem_cache_create(
1147 				"btrfs_delayed_ref_head",
1148 				sizeof(struct btrfs_delayed_ref_head), 0,
1149 				SLAB_MEM_SPREAD, NULL);
1150 	if (!btrfs_delayed_ref_head_cachep)
1151 		goto fail;
1152 
1153 	btrfs_delayed_tree_ref_cachep = kmem_cache_create(
1154 				"btrfs_delayed_tree_ref",
1155 				sizeof(struct btrfs_delayed_tree_ref), 0,
1156 				SLAB_MEM_SPREAD, NULL);
1157 	if (!btrfs_delayed_tree_ref_cachep)
1158 		goto fail;
1159 
1160 	btrfs_delayed_data_ref_cachep = kmem_cache_create(
1161 				"btrfs_delayed_data_ref",
1162 				sizeof(struct btrfs_delayed_data_ref), 0,
1163 				SLAB_MEM_SPREAD, NULL);
1164 	if (!btrfs_delayed_data_ref_cachep)
1165 		goto fail;
1166 
1167 	btrfs_delayed_extent_op_cachep = kmem_cache_create(
1168 				"btrfs_delayed_extent_op",
1169 				sizeof(struct btrfs_delayed_extent_op), 0,
1170 				SLAB_MEM_SPREAD, NULL);
1171 	if (!btrfs_delayed_extent_op_cachep)
1172 		goto fail;
1173 
1174 	return 0;
1175 fail:
1176 	btrfs_delayed_ref_exit();
1177 	return -ENOMEM;
1178 }
1179