xref: /openbmc/linux/fs/btrfs/delayed-ref.c (revision 4bce6fce)
1 /*
2  * Copyright (C) 2009 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/sort.h>
22 #include "ctree.h"
23 #include "delayed-ref.h"
24 #include "transaction.h"
25 
26 struct kmem_cache *btrfs_delayed_ref_head_cachep;
27 struct kmem_cache *btrfs_delayed_tree_ref_cachep;
28 struct kmem_cache *btrfs_delayed_data_ref_cachep;
29 struct kmem_cache *btrfs_delayed_extent_op_cachep;
30 /*
31  * delayed back reference update tracking.  For subvolume trees
32  * we queue up extent allocations and backref maintenance for
33  * delayed processing.   This avoids deep call chains where we
34  * add extents in the middle of btrfs_search_slot, and it allows
35  * us to buffer up frequently modified backrefs in an rb tree instead
36  * of hammering updates on the extent allocation tree.
37  */
38 
39 /*
40  * compare two delayed tree backrefs with same bytenr and type
41  */
42 static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref2,
43 			  struct btrfs_delayed_tree_ref *ref1, int type)
44 {
45 	if (type == BTRFS_TREE_BLOCK_REF_KEY) {
46 		if (ref1->root < ref2->root)
47 			return -1;
48 		if (ref1->root > ref2->root)
49 			return 1;
50 	} else {
51 		if (ref1->parent < ref2->parent)
52 			return -1;
53 		if (ref1->parent > ref2->parent)
54 			return 1;
55 	}
56 	return 0;
57 }
58 
59 /*
60  * compare two delayed data backrefs with same bytenr and type
61  */
62 static int comp_data_refs(struct btrfs_delayed_data_ref *ref2,
63 			  struct btrfs_delayed_data_ref *ref1)
64 {
65 	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
66 		if (ref1->root < ref2->root)
67 			return -1;
68 		if (ref1->root > ref2->root)
69 			return 1;
70 		if (ref1->objectid < ref2->objectid)
71 			return -1;
72 		if (ref1->objectid > ref2->objectid)
73 			return 1;
74 		if (ref1->offset < ref2->offset)
75 			return -1;
76 		if (ref1->offset > ref2->offset)
77 			return 1;
78 	} else {
79 		if (ref1->parent < ref2->parent)
80 			return -1;
81 		if (ref1->parent > ref2->parent)
82 			return 1;
83 	}
84 	return 0;
85 }
86 
87 /*
88  * entries in the rb tree are ordered by the byte number of the extent,
89  * type of the delayed backrefs and content of delayed backrefs.
90  */
91 static int comp_entry(struct btrfs_delayed_ref_node *ref2,
92 		      struct btrfs_delayed_ref_node *ref1,
93 		      bool compare_seq)
94 {
95 	if (ref1->bytenr < ref2->bytenr)
96 		return -1;
97 	if (ref1->bytenr > ref2->bytenr)
98 		return 1;
99 	if (ref1->is_head && ref2->is_head)
100 		return 0;
101 	if (ref2->is_head)
102 		return -1;
103 	if (ref1->is_head)
104 		return 1;
105 	if (ref1->type < ref2->type)
106 		return -1;
107 	if (ref1->type > ref2->type)
108 		return 1;
109 	if (ref1->no_quota > ref2->no_quota)
110 		return 1;
111 	if (ref1->no_quota < ref2->no_quota)
112 		return -1;
113 	/* merging of sequenced refs is not allowed */
114 	if (compare_seq) {
115 		if (ref1->seq < ref2->seq)
116 			return -1;
117 		if (ref1->seq > ref2->seq)
118 			return 1;
119 	}
120 	if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
121 	    ref1->type == BTRFS_SHARED_BLOCK_REF_KEY) {
122 		return comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref2),
123 				      btrfs_delayed_node_to_tree_ref(ref1),
124 				      ref1->type);
125 	} else if (ref1->type == BTRFS_EXTENT_DATA_REF_KEY ||
126 		   ref1->type == BTRFS_SHARED_DATA_REF_KEY) {
127 		return comp_data_refs(btrfs_delayed_node_to_data_ref(ref2),
128 				      btrfs_delayed_node_to_data_ref(ref1));
129 	}
130 	BUG();
131 	return 0;
132 }
133 
134 /*
135  * insert a new ref into the rbtree.  This returns any existing refs
136  * for the same (bytenr,parent) tuple, or NULL if the new node was properly
137  * inserted.
138  */
139 static struct btrfs_delayed_ref_node *tree_insert(struct rb_root *root,
140 						  struct rb_node *node)
141 {
142 	struct rb_node **p = &root->rb_node;
143 	struct rb_node *parent_node = NULL;
144 	struct btrfs_delayed_ref_node *entry;
145 	struct btrfs_delayed_ref_node *ins;
146 	int cmp;
147 
148 	ins = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
149 	while (*p) {
150 		parent_node = *p;
151 		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
152 				 rb_node);
153 
154 		cmp = comp_entry(entry, ins, 1);
155 		if (cmp < 0)
156 			p = &(*p)->rb_left;
157 		else if (cmp > 0)
158 			p = &(*p)->rb_right;
159 		else
160 			return entry;
161 	}
162 
163 	rb_link_node(node, parent_node, p);
164 	rb_insert_color(node, root);
165 	return NULL;
166 }
167 
168 /* insert a new ref to head ref rbtree */
169 static struct btrfs_delayed_ref_head *htree_insert(struct rb_root *root,
170 						   struct rb_node *node)
171 {
172 	struct rb_node **p = &root->rb_node;
173 	struct rb_node *parent_node = NULL;
174 	struct btrfs_delayed_ref_head *entry;
175 	struct btrfs_delayed_ref_head *ins;
176 	u64 bytenr;
177 
178 	ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
179 	bytenr = ins->node.bytenr;
180 	while (*p) {
181 		parent_node = *p;
182 		entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
183 				 href_node);
184 
185 		if (bytenr < entry->node.bytenr)
186 			p = &(*p)->rb_left;
187 		else if (bytenr > entry->node.bytenr)
188 			p = &(*p)->rb_right;
189 		else
190 			return entry;
191 	}
192 
193 	rb_link_node(node, parent_node, p);
194 	rb_insert_color(node, root);
195 	return NULL;
196 }
197 
198 /*
199  * find an head entry based on bytenr. This returns the delayed ref
200  * head if it was able to find one, or NULL if nothing was in that spot.
201  * If return_bigger is given, the next bigger entry is returned if no exact
202  * match is found.
203  */
204 static struct btrfs_delayed_ref_head *
205 find_ref_head(struct rb_root *root, u64 bytenr,
206 	      int return_bigger)
207 {
208 	struct rb_node *n;
209 	struct btrfs_delayed_ref_head *entry;
210 
211 	n = root->rb_node;
212 	entry = NULL;
213 	while (n) {
214 		entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
215 
216 		if (bytenr < entry->node.bytenr)
217 			n = n->rb_left;
218 		else if (bytenr > entry->node.bytenr)
219 			n = n->rb_right;
220 		else
221 			return entry;
222 	}
223 	if (entry && return_bigger) {
224 		if (bytenr > entry->node.bytenr) {
225 			n = rb_next(&entry->href_node);
226 			if (!n)
227 				n = rb_first(root);
228 			entry = rb_entry(n, struct btrfs_delayed_ref_head,
229 					 href_node);
230 			return entry;
231 		}
232 		return entry;
233 	}
234 	return NULL;
235 }
236 
237 int btrfs_delayed_ref_lock(struct btrfs_trans_handle *trans,
238 			   struct btrfs_delayed_ref_head *head)
239 {
240 	struct btrfs_delayed_ref_root *delayed_refs;
241 
242 	delayed_refs = &trans->transaction->delayed_refs;
243 	assert_spin_locked(&delayed_refs->lock);
244 	if (mutex_trylock(&head->mutex))
245 		return 0;
246 
247 	atomic_inc(&head->node.refs);
248 	spin_unlock(&delayed_refs->lock);
249 
250 	mutex_lock(&head->mutex);
251 	spin_lock(&delayed_refs->lock);
252 	if (!head->node.in_tree) {
253 		mutex_unlock(&head->mutex);
254 		btrfs_put_delayed_ref(&head->node);
255 		return -EAGAIN;
256 	}
257 	btrfs_put_delayed_ref(&head->node);
258 	return 0;
259 }
260 
261 static inline void drop_delayed_ref(struct btrfs_trans_handle *trans,
262 				    struct btrfs_delayed_ref_root *delayed_refs,
263 				    struct btrfs_delayed_ref_head *head,
264 				    struct btrfs_delayed_ref_node *ref)
265 {
266 	if (btrfs_delayed_ref_is_head(ref)) {
267 		head = btrfs_delayed_node_to_head(ref);
268 		rb_erase(&head->href_node, &delayed_refs->href_root);
269 	} else {
270 		assert_spin_locked(&head->lock);
271 		rb_erase(&ref->rb_node, &head->ref_root);
272 	}
273 	ref->in_tree = 0;
274 	btrfs_put_delayed_ref(ref);
275 	atomic_dec(&delayed_refs->num_entries);
276 	if (trans->delayed_ref_updates)
277 		trans->delayed_ref_updates--;
278 }
279 
280 static int merge_ref(struct btrfs_trans_handle *trans,
281 		     struct btrfs_delayed_ref_root *delayed_refs,
282 		     struct btrfs_delayed_ref_head *head,
283 		     struct btrfs_delayed_ref_node *ref, u64 seq)
284 {
285 	struct rb_node *node;
286 	int mod = 0;
287 	int done = 0;
288 
289 	node = rb_next(&ref->rb_node);
290 	while (!done && node) {
291 		struct btrfs_delayed_ref_node *next;
292 
293 		next = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
294 		node = rb_next(node);
295 		if (seq && next->seq >= seq)
296 			break;
297 		if (comp_entry(ref, next, 0))
298 			continue;
299 
300 		if (ref->action == next->action) {
301 			mod = next->ref_mod;
302 		} else {
303 			if (ref->ref_mod < next->ref_mod) {
304 				struct btrfs_delayed_ref_node *tmp;
305 
306 				tmp = ref;
307 				ref = next;
308 				next = tmp;
309 				done = 1;
310 			}
311 			mod = -next->ref_mod;
312 		}
313 
314 		drop_delayed_ref(trans, delayed_refs, head, next);
315 		ref->ref_mod += mod;
316 		if (ref->ref_mod == 0) {
317 			drop_delayed_ref(trans, delayed_refs, head, ref);
318 			done = 1;
319 		} else {
320 			/*
321 			 * You can't have multiples of the same ref on a tree
322 			 * block.
323 			 */
324 			WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
325 				ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
326 		}
327 	}
328 	return done;
329 }
330 
331 void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
332 			      struct btrfs_fs_info *fs_info,
333 			      struct btrfs_delayed_ref_root *delayed_refs,
334 			      struct btrfs_delayed_ref_head *head)
335 {
336 	struct rb_node *node;
337 	u64 seq = 0;
338 
339 	assert_spin_locked(&head->lock);
340 	/*
341 	 * We don't have too much refs to merge in the case of delayed data
342 	 * refs.
343 	 */
344 	if (head->is_data)
345 		return;
346 
347 	spin_lock(&fs_info->tree_mod_seq_lock);
348 	if (!list_empty(&fs_info->tree_mod_seq_list)) {
349 		struct seq_list *elem;
350 
351 		elem = list_first_entry(&fs_info->tree_mod_seq_list,
352 					struct seq_list, list);
353 		seq = elem->seq;
354 	}
355 	spin_unlock(&fs_info->tree_mod_seq_lock);
356 
357 	node = rb_first(&head->ref_root);
358 	while (node) {
359 		struct btrfs_delayed_ref_node *ref;
360 
361 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
362 			       rb_node);
363 		/* We can't merge refs that are outside of our seq count */
364 		if (seq && ref->seq >= seq)
365 			break;
366 		if (merge_ref(trans, delayed_refs, head, ref, seq))
367 			node = rb_first(&head->ref_root);
368 		else
369 			node = rb_next(&ref->rb_node);
370 	}
371 }
372 
373 int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info,
374 			    struct btrfs_delayed_ref_root *delayed_refs,
375 			    u64 seq)
376 {
377 	struct seq_list *elem;
378 	int ret = 0;
379 
380 	spin_lock(&fs_info->tree_mod_seq_lock);
381 	if (!list_empty(&fs_info->tree_mod_seq_list)) {
382 		elem = list_first_entry(&fs_info->tree_mod_seq_list,
383 					struct seq_list, list);
384 		if (seq >= elem->seq) {
385 			pr_debug("holding back delayed_ref %#x.%x, lowest is %#x.%x (%p)\n",
386 				 (u32)(seq >> 32), (u32)seq,
387 				 (u32)(elem->seq >> 32), (u32)elem->seq,
388 				 delayed_refs);
389 			ret = 1;
390 		}
391 	}
392 
393 	spin_unlock(&fs_info->tree_mod_seq_lock);
394 	return ret;
395 }
396 
397 struct btrfs_delayed_ref_head *
398 btrfs_select_ref_head(struct btrfs_trans_handle *trans)
399 {
400 	struct btrfs_delayed_ref_root *delayed_refs;
401 	struct btrfs_delayed_ref_head *head;
402 	u64 start;
403 	bool loop = false;
404 
405 	delayed_refs = &trans->transaction->delayed_refs;
406 
407 again:
408 	start = delayed_refs->run_delayed_start;
409 	head = find_ref_head(&delayed_refs->href_root, start, 1);
410 	if (!head && !loop) {
411 		delayed_refs->run_delayed_start = 0;
412 		start = 0;
413 		loop = true;
414 		head = find_ref_head(&delayed_refs->href_root, start, 1);
415 		if (!head)
416 			return NULL;
417 	} else if (!head && loop) {
418 		return NULL;
419 	}
420 
421 	while (head->processing) {
422 		struct rb_node *node;
423 
424 		node = rb_next(&head->href_node);
425 		if (!node) {
426 			if (loop)
427 				return NULL;
428 			delayed_refs->run_delayed_start = 0;
429 			start = 0;
430 			loop = true;
431 			goto again;
432 		}
433 		head = rb_entry(node, struct btrfs_delayed_ref_head,
434 				href_node);
435 	}
436 
437 	head->processing = 1;
438 	WARN_ON(delayed_refs->num_heads_ready == 0);
439 	delayed_refs->num_heads_ready--;
440 	delayed_refs->run_delayed_start = head->node.bytenr +
441 		head->node.num_bytes;
442 	return head;
443 }
444 
445 /*
446  * helper function to update an extent delayed ref in the
447  * rbtree.  existing and update must both have the same
448  * bytenr and parent
449  *
450  * This may free existing if the update cancels out whatever
451  * operation it was doing.
452  */
453 static noinline void
454 update_existing_ref(struct btrfs_trans_handle *trans,
455 		    struct btrfs_delayed_ref_root *delayed_refs,
456 		    struct btrfs_delayed_ref_head *head,
457 		    struct btrfs_delayed_ref_node *existing,
458 		    struct btrfs_delayed_ref_node *update)
459 {
460 	if (update->action != existing->action) {
461 		/*
462 		 * this is effectively undoing either an add or a
463 		 * drop.  We decrement the ref_mod, and if it goes
464 		 * down to zero we just delete the entry without
465 		 * every changing the extent allocation tree.
466 		 */
467 		existing->ref_mod--;
468 		if (existing->ref_mod == 0)
469 			drop_delayed_ref(trans, delayed_refs, head, existing);
470 		else
471 			WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY ||
472 				existing->type == BTRFS_SHARED_BLOCK_REF_KEY);
473 	} else {
474 		WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY ||
475 			existing->type == BTRFS_SHARED_BLOCK_REF_KEY);
476 		/*
477 		 * the action on the existing ref matches
478 		 * the action on the ref we're trying to add.
479 		 * Bump the ref_mod by one so the backref that
480 		 * is eventually added/removed has the correct
481 		 * reference count
482 		 */
483 		existing->ref_mod += update->ref_mod;
484 	}
485 }
486 
487 /*
488  * helper function to update the accounting in the head ref
489  * existing and update must have the same bytenr
490  */
491 static noinline void
492 update_existing_head_ref(struct btrfs_delayed_ref_root *delayed_refs,
493 			 struct btrfs_delayed_ref_node *existing,
494 			 struct btrfs_delayed_ref_node *update)
495 {
496 	struct btrfs_delayed_ref_head *existing_ref;
497 	struct btrfs_delayed_ref_head *ref;
498 	int old_ref_mod;
499 
500 	existing_ref = btrfs_delayed_node_to_head(existing);
501 	ref = btrfs_delayed_node_to_head(update);
502 	BUG_ON(existing_ref->is_data != ref->is_data);
503 
504 	spin_lock(&existing_ref->lock);
505 	if (ref->must_insert_reserved) {
506 		/* if the extent was freed and then
507 		 * reallocated before the delayed ref
508 		 * entries were processed, we can end up
509 		 * with an existing head ref without
510 		 * the must_insert_reserved flag set.
511 		 * Set it again here
512 		 */
513 		existing_ref->must_insert_reserved = ref->must_insert_reserved;
514 
515 		/*
516 		 * update the num_bytes so we make sure the accounting
517 		 * is done correctly
518 		 */
519 		existing->num_bytes = update->num_bytes;
520 
521 	}
522 
523 	if (ref->extent_op) {
524 		if (!existing_ref->extent_op) {
525 			existing_ref->extent_op = ref->extent_op;
526 		} else {
527 			if (ref->extent_op->update_key) {
528 				memcpy(&existing_ref->extent_op->key,
529 				       &ref->extent_op->key,
530 				       sizeof(ref->extent_op->key));
531 				existing_ref->extent_op->update_key = 1;
532 			}
533 			if (ref->extent_op->update_flags) {
534 				existing_ref->extent_op->flags_to_set |=
535 					ref->extent_op->flags_to_set;
536 				existing_ref->extent_op->update_flags = 1;
537 			}
538 			btrfs_free_delayed_extent_op(ref->extent_op);
539 		}
540 	}
541 	/*
542 	 * update the reference mod on the head to reflect this new operation,
543 	 * only need the lock for this case cause we could be processing it
544 	 * currently, for refs we just added we know we're a-ok.
545 	 */
546 	old_ref_mod = existing_ref->total_ref_mod;
547 	existing->ref_mod += update->ref_mod;
548 	existing_ref->total_ref_mod += update->ref_mod;
549 
550 	/*
551 	 * If we are going to from a positive ref mod to a negative or vice
552 	 * versa we need to make sure to adjust pending_csums accordingly.
553 	 */
554 	if (existing_ref->is_data) {
555 		if (existing_ref->total_ref_mod >= 0 && old_ref_mod < 0)
556 			delayed_refs->pending_csums -= existing->num_bytes;
557 		if (existing_ref->total_ref_mod < 0 && old_ref_mod >= 0)
558 			delayed_refs->pending_csums += existing->num_bytes;
559 	}
560 	spin_unlock(&existing_ref->lock);
561 }
562 
563 /*
564  * helper function to actually insert a head node into the rbtree.
565  * this does all the dirty work in terms of maintaining the correct
566  * overall modification count.
567  */
568 static noinline struct btrfs_delayed_ref_head *
569 add_delayed_ref_head(struct btrfs_fs_info *fs_info,
570 		     struct btrfs_trans_handle *trans,
571 		     struct btrfs_delayed_ref_node *ref, u64 bytenr,
572 		     u64 num_bytes, int action, int is_data)
573 {
574 	struct btrfs_delayed_ref_head *existing;
575 	struct btrfs_delayed_ref_head *head_ref = NULL;
576 	struct btrfs_delayed_ref_root *delayed_refs;
577 	int count_mod = 1;
578 	int must_insert_reserved = 0;
579 
580 	/*
581 	 * the head node stores the sum of all the mods, so dropping a ref
582 	 * should drop the sum in the head node by one.
583 	 */
584 	if (action == BTRFS_UPDATE_DELAYED_HEAD)
585 		count_mod = 0;
586 	else if (action == BTRFS_DROP_DELAYED_REF)
587 		count_mod = -1;
588 
589 	/*
590 	 * BTRFS_ADD_DELAYED_EXTENT means that we need to update
591 	 * the reserved accounting when the extent is finally added, or
592 	 * if a later modification deletes the delayed ref without ever
593 	 * inserting the extent into the extent allocation tree.
594 	 * ref->must_insert_reserved is the flag used to record
595 	 * that accounting mods are required.
596 	 *
597 	 * Once we record must_insert_reserved, switch the action to
598 	 * BTRFS_ADD_DELAYED_REF because other special casing is not required.
599 	 */
600 	if (action == BTRFS_ADD_DELAYED_EXTENT)
601 		must_insert_reserved = 1;
602 	else
603 		must_insert_reserved = 0;
604 
605 	delayed_refs = &trans->transaction->delayed_refs;
606 
607 	/* first set the basic ref node struct up */
608 	atomic_set(&ref->refs, 1);
609 	ref->bytenr = bytenr;
610 	ref->num_bytes = num_bytes;
611 	ref->ref_mod = count_mod;
612 	ref->type  = 0;
613 	ref->action  = 0;
614 	ref->is_head = 1;
615 	ref->in_tree = 1;
616 	ref->seq = 0;
617 
618 	head_ref = btrfs_delayed_node_to_head(ref);
619 	head_ref->must_insert_reserved = must_insert_reserved;
620 	head_ref->is_data = is_data;
621 	head_ref->ref_root = RB_ROOT;
622 	head_ref->processing = 0;
623 	head_ref->total_ref_mod = count_mod;
624 
625 	spin_lock_init(&head_ref->lock);
626 	mutex_init(&head_ref->mutex);
627 
628 	trace_add_delayed_ref_head(ref, head_ref, action);
629 
630 	existing = htree_insert(&delayed_refs->href_root,
631 				&head_ref->href_node);
632 	if (existing) {
633 		update_existing_head_ref(delayed_refs, &existing->node, ref);
634 		/*
635 		 * we've updated the existing ref, free the newly
636 		 * allocated ref
637 		 */
638 		kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
639 		head_ref = existing;
640 	} else {
641 		if (is_data && count_mod < 0)
642 			delayed_refs->pending_csums += num_bytes;
643 		delayed_refs->num_heads++;
644 		delayed_refs->num_heads_ready++;
645 		atomic_inc(&delayed_refs->num_entries);
646 		trans->delayed_ref_updates++;
647 	}
648 	return head_ref;
649 }
650 
651 /*
652  * helper to insert a delayed tree ref into the rbtree.
653  */
654 static noinline void
655 add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
656 		     struct btrfs_trans_handle *trans,
657 		     struct btrfs_delayed_ref_head *head_ref,
658 		     struct btrfs_delayed_ref_node *ref, u64 bytenr,
659 		     u64 num_bytes, u64 parent, u64 ref_root, int level,
660 		     int action, int no_quota)
661 {
662 	struct btrfs_delayed_ref_node *existing;
663 	struct btrfs_delayed_tree_ref *full_ref;
664 	struct btrfs_delayed_ref_root *delayed_refs;
665 	u64 seq = 0;
666 
667 	if (action == BTRFS_ADD_DELAYED_EXTENT)
668 		action = BTRFS_ADD_DELAYED_REF;
669 
670 	if (is_fstree(ref_root))
671 		seq = atomic64_read(&fs_info->tree_mod_seq);
672 	delayed_refs = &trans->transaction->delayed_refs;
673 
674 	/* first set the basic ref node struct up */
675 	atomic_set(&ref->refs, 1);
676 	ref->bytenr = bytenr;
677 	ref->num_bytes = num_bytes;
678 	ref->ref_mod = 1;
679 	ref->action = action;
680 	ref->is_head = 0;
681 	ref->in_tree = 1;
682 	ref->no_quota = no_quota;
683 	ref->seq = seq;
684 
685 	full_ref = btrfs_delayed_node_to_tree_ref(ref);
686 	full_ref->parent = parent;
687 	full_ref->root = ref_root;
688 	if (parent)
689 		ref->type = BTRFS_SHARED_BLOCK_REF_KEY;
690 	else
691 		ref->type = BTRFS_TREE_BLOCK_REF_KEY;
692 	full_ref->level = level;
693 
694 	trace_add_delayed_tree_ref(ref, full_ref, action);
695 
696 	spin_lock(&head_ref->lock);
697 	existing = tree_insert(&head_ref->ref_root, &ref->rb_node);
698 	if (existing) {
699 		update_existing_ref(trans, delayed_refs, head_ref, existing,
700 				    ref);
701 		/*
702 		 * we've updated the existing ref, free the newly
703 		 * allocated ref
704 		 */
705 		kmem_cache_free(btrfs_delayed_tree_ref_cachep, full_ref);
706 	} else {
707 		atomic_inc(&delayed_refs->num_entries);
708 		trans->delayed_ref_updates++;
709 	}
710 	spin_unlock(&head_ref->lock);
711 }
712 
713 /*
714  * helper to insert a delayed data ref into the rbtree.
715  */
716 static noinline void
717 add_delayed_data_ref(struct btrfs_fs_info *fs_info,
718 		     struct btrfs_trans_handle *trans,
719 		     struct btrfs_delayed_ref_head *head_ref,
720 		     struct btrfs_delayed_ref_node *ref, u64 bytenr,
721 		     u64 num_bytes, u64 parent, u64 ref_root, u64 owner,
722 		     u64 offset, int action, int no_quota)
723 {
724 	struct btrfs_delayed_ref_node *existing;
725 	struct btrfs_delayed_data_ref *full_ref;
726 	struct btrfs_delayed_ref_root *delayed_refs;
727 	u64 seq = 0;
728 
729 	if (action == BTRFS_ADD_DELAYED_EXTENT)
730 		action = BTRFS_ADD_DELAYED_REF;
731 
732 	delayed_refs = &trans->transaction->delayed_refs;
733 
734 	if (is_fstree(ref_root))
735 		seq = atomic64_read(&fs_info->tree_mod_seq);
736 
737 	/* first set the basic ref node struct up */
738 	atomic_set(&ref->refs, 1);
739 	ref->bytenr = bytenr;
740 	ref->num_bytes = num_bytes;
741 	ref->ref_mod = 1;
742 	ref->action = action;
743 	ref->is_head = 0;
744 	ref->in_tree = 1;
745 	ref->no_quota = no_quota;
746 	ref->seq = seq;
747 
748 	full_ref = btrfs_delayed_node_to_data_ref(ref);
749 	full_ref->parent = parent;
750 	full_ref->root = ref_root;
751 	if (parent)
752 		ref->type = BTRFS_SHARED_DATA_REF_KEY;
753 	else
754 		ref->type = BTRFS_EXTENT_DATA_REF_KEY;
755 
756 	full_ref->objectid = owner;
757 	full_ref->offset = offset;
758 
759 	trace_add_delayed_data_ref(ref, full_ref, action);
760 
761 	spin_lock(&head_ref->lock);
762 	existing = tree_insert(&head_ref->ref_root, &ref->rb_node);
763 	if (existing) {
764 		update_existing_ref(trans, delayed_refs, head_ref, existing,
765 				    ref);
766 		/*
767 		 * we've updated the existing ref, free the newly
768 		 * allocated ref
769 		 */
770 		kmem_cache_free(btrfs_delayed_data_ref_cachep, full_ref);
771 	} else {
772 		atomic_inc(&delayed_refs->num_entries);
773 		trans->delayed_ref_updates++;
774 	}
775 	spin_unlock(&head_ref->lock);
776 }
777 
778 /*
779  * add a delayed tree ref.  This does all of the accounting required
780  * to make sure the delayed ref is eventually processed before this
781  * transaction commits.
782  */
783 int btrfs_add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
784 			       struct btrfs_trans_handle *trans,
785 			       u64 bytenr, u64 num_bytes, u64 parent,
786 			       u64 ref_root,  int level, int action,
787 			       struct btrfs_delayed_extent_op *extent_op,
788 			       int no_quota)
789 {
790 	struct btrfs_delayed_tree_ref *ref;
791 	struct btrfs_delayed_ref_head *head_ref;
792 	struct btrfs_delayed_ref_root *delayed_refs;
793 
794 	if (!is_fstree(ref_root) || !fs_info->quota_enabled)
795 		no_quota = 0;
796 
797 	BUG_ON(extent_op && extent_op->is_data);
798 	ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
799 	if (!ref)
800 		return -ENOMEM;
801 
802 	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
803 	if (!head_ref) {
804 		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
805 		return -ENOMEM;
806 	}
807 
808 	head_ref->extent_op = extent_op;
809 
810 	delayed_refs = &trans->transaction->delayed_refs;
811 	spin_lock(&delayed_refs->lock);
812 
813 	/*
814 	 * insert both the head node and the new ref without dropping
815 	 * the spin lock
816 	 */
817 	head_ref = add_delayed_ref_head(fs_info, trans, &head_ref->node,
818 					bytenr, num_bytes, action, 0);
819 
820 	add_delayed_tree_ref(fs_info, trans, head_ref, &ref->node, bytenr,
821 				   num_bytes, parent, ref_root, level, action,
822 				   no_quota);
823 	spin_unlock(&delayed_refs->lock);
824 
825 	return 0;
826 }
827 
828 /*
829  * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
830  */
831 int btrfs_add_delayed_data_ref(struct btrfs_fs_info *fs_info,
832 			       struct btrfs_trans_handle *trans,
833 			       u64 bytenr, u64 num_bytes,
834 			       u64 parent, u64 ref_root,
835 			       u64 owner, u64 offset, int action,
836 			       struct btrfs_delayed_extent_op *extent_op,
837 			       int no_quota)
838 {
839 	struct btrfs_delayed_data_ref *ref;
840 	struct btrfs_delayed_ref_head *head_ref;
841 	struct btrfs_delayed_ref_root *delayed_refs;
842 
843 	if (!is_fstree(ref_root) || !fs_info->quota_enabled)
844 		no_quota = 0;
845 
846 	BUG_ON(extent_op && !extent_op->is_data);
847 	ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
848 	if (!ref)
849 		return -ENOMEM;
850 
851 	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
852 	if (!head_ref) {
853 		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
854 		return -ENOMEM;
855 	}
856 
857 	head_ref->extent_op = extent_op;
858 
859 	delayed_refs = &trans->transaction->delayed_refs;
860 	spin_lock(&delayed_refs->lock);
861 
862 	/*
863 	 * insert both the head node and the new ref without dropping
864 	 * the spin lock
865 	 */
866 	head_ref = add_delayed_ref_head(fs_info, trans, &head_ref->node,
867 					bytenr, num_bytes, action, 1);
868 
869 	add_delayed_data_ref(fs_info, trans, head_ref, &ref->node, bytenr,
870 				   num_bytes, parent, ref_root, owner, offset,
871 				   action, no_quota);
872 	spin_unlock(&delayed_refs->lock);
873 
874 	return 0;
875 }
876 
877 int btrfs_add_delayed_extent_op(struct btrfs_fs_info *fs_info,
878 				struct btrfs_trans_handle *trans,
879 				u64 bytenr, u64 num_bytes,
880 				struct btrfs_delayed_extent_op *extent_op)
881 {
882 	struct btrfs_delayed_ref_head *head_ref;
883 	struct btrfs_delayed_ref_root *delayed_refs;
884 
885 	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
886 	if (!head_ref)
887 		return -ENOMEM;
888 
889 	head_ref->extent_op = extent_op;
890 
891 	delayed_refs = &trans->transaction->delayed_refs;
892 	spin_lock(&delayed_refs->lock);
893 
894 	add_delayed_ref_head(fs_info, trans, &head_ref->node, bytenr,
895 				   num_bytes, BTRFS_UPDATE_DELAYED_HEAD,
896 				   extent_op->is_data);
897 
898 	spin_unlock(&delayed_refs->lock);
899 	return 0;
900 }
901 
902 /*
903  * this does a simple search for the head node for a given extent.
904  * It must be called with the delayed ref spinlock held, and it returns
905  * the head node if any where found, or NULL if not.
906  */
907 struct btrfs_delayed_ref_head *
908 btrfs_find_delayed_ref_head(struct btrfs_trans_handle *trans, u64 bytenr)
909 {
910 	struct btrfs_delayed_ref_root *delayed_refs;
911 
912 	delayed_refs = &trans->transaction->delayed_refs;
913 	return find_ref_head(&delayed_refs->href_root, bytenr, 0);
914 }
915 
916 void btrfs_delayed_ref_exit(void)
917 {
918 	if (btrfs_delayed_ref_head_cachep)
919 		kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
920 	if (btrfs_delayed_tree_ref_cachep)
921 		kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
922 	if (btrfs_delayed_data_ref_cachep)
923 		kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
924 	if (btrfs_delayed_extent_op_cachep)
925 		kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
926 }
927 
928 int btrfs_delayed_ref_init(void)
929 {
930 	btrfs_delayed_ref_head_cachep = kmem_cache_create(
931 				"btrfs_delayed_ref_head",
932 				sizeof(struct btrfs_delayed_ref_head), 0,
933 				SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
934 	if (!btrfs_delayed_ref_head_cachep)
935 		goto fail;
936 
937 	btrfs_delayed_tree_ref_cachep = kmem_cache_create(
938 				"btrfs_delayed_tree_ref",
939 				sizeof(struct btrfs_delayed_tree_ref), 0,
940 				SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
941 	if (!btrfs_delayed_tree_ref_cachep)
942 		goto fail;
943 
944 	btrfs_delayed_data_ref_cachep = kmem_cache_create(
945 				"btrfs_delayed_data_ref",
946 				sizeof(struct btrfs_delayed_data_ref), 0,
947 				SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
948 	if (!btrfs_delayed_data_ref_cachep)
949 		goto fail;
950 
951 	btrfs_delayed_extent_op_cachep = kmem_cache_create(
952 				"btrfs_delayed_extent_op",
953 				sizeof(struct btrfs_delayed_extent_op), 0,
954 				SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
955 	if (!btrfs_delayed_extent_op_cachep)
956 		goto fail;
957 
958 	return 0;
959 fail:
960 	btrfs_delayed_ref_exit();
961 	return -ENOMEM;
962 }
963