1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2009 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/sort.h> 9 #include "messages.h" 10 #include "ctree.h" 11 #include "delayed-ref.h" 12 #include "transaction.h" 13 #include "qgroup.h" 14 #include "space-info.h" 15 #include "tree-mod-log.h" 16 #include "fs.h" 17 18 struct kmem_cache *btrfs_delayed_ref_head_cachep; 19 struct kmem_cache *btrfs_delayed_tree_ref_cachep; 20 struct kmem_cache *btrfs_delayed_data_ref_cachep; 21 struct kmem_cache *btrfs_delayed_extent_op_cachep; 22 /* 23 * delayed back reference update tracking. For subvolume trees 24 * we queue up extent allocations and backref maintenance for 25 * delayed processing. This avoids deep call chains where we 26 * add extents in the middle of btrfs_search_slot, and it allows 27 * us to buffer up frequently modified backrefs in an rb tree instead 28 * of hammering updates on the extent allocation tree. 29 */ 30 31 bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info) 32 { 33 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 34 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 35 bool ret = false; 36 u64 reserved; 37 38 spin_lock(&global_rsv->lock); 39 reserved = global_rsv->reserved; 40 spin_unlock(&global_rsv->lock); 41 42 /* 43 * Since the global reserve is just kind of magic we don't really want 44 * to rely on it to save our bacon, so if our size is more than the 45 * delayed_refs_rsv and the global rsv then it's time to think about 46 * bailing. 47 */ 48 spin_lock(&delayed_refs_rsv->lock); 49 reserved += delayed_refs_rsv->reserved; 50 if (delayed_refs_rsv->size >= reserved) 51 ret = true; 52 spin_unlock(&delayed_refs_rsv->lock); 53 return ret; 54 } 55 56 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans) 57 { 58 u64 num_entries = 59 atomic_read(&trans->transaction->delayed_refs.num_entries); 60 u64 avg_runtime; 61 u64 val; 62 63 smp_mb(); 64 avg_runtime = trans->fs_info->avg_delayed_ref_runtime; 65 val = num_entries * avg_runtime; 66 if (val >= NSEC_PER_SEC) 67 return 1; 68 if (val >= NSEC_PER_SEC / 2) 69 return 2; 70 71 return btrfs_check_space_for_delayed_refs(trans->fs_info); 72 } 73 74 /* 75 * Release a ref head's reservation. 76 * 77 * @fs_info: the filesystem 78 * @nr: number of items to drop 79 * 80 * Drops the delayed ref head's count from the delayed refs rsv and free any 81 * excess reservation we had. 82 */ 83 void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr) 84 { 85 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv; 86 u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, nr); 87 u64 released = 0; 88 89 /* 90 * We have to check the mount option here because we could be enabling 91 * the free space tree for the first time and don't have the compat_ro 92 * option set yet. 93 * 94 * We need extra reservations if we have the free space tree because 95 * we'll have to modify that tree as well. 96 */ 97 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE)) 98 num_bytes *= 2; 99 100 released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL); 101 if (released) 102 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 103 0, released, 0); 104 } 105 106 /* 107 * Adjust the size of the delayed refs rsv. 108 * 109 * This is to be called anytime we may have adjusted trans->delayed_ref_updates, 110 * it'll calculate the additional size and add it to the delayed_refs_rsv. 111 */ 112 void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans) 113 { 114 struct btrfs_fs_info *fs_info = trans->fs_info; 115 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv; 116 u64 num_bytes; 117 118 if (!trans->delayed_ref_updates) 119 return; 120 121 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 122 trans->delayed_ref_updates); 123 /* 124 * We have to check the mount option here because we could be enabling 125 * the free space tree for the first time and don't have the compat_ro 126 * option set yet. 127 * 128 * We need extra reservations if we have the free space tree because 129 * we'll have to modify that tree as well. 130 */ 131 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE)) 132 num_bytes *= 2; 133 134 spin_lock(&delayed_rsv->lock); 135 delayed_rsv->size += num_bytes; 136 delayed_rsv->full = false; 137 spin_unlock(&delayed_rsv->lock); 138 trans->delayed_ref_updates = 0; 139 } 140 141 /* 142 * Transfer bytes to our delayed refs rsv. 143 * 144 * @fs_info: the filesystem 145 * @src: source block rsv to transfer from 146 * @num_bytes: number of bytes to transfer 147 * 148 * This transfers up to the num_bytes amount from the src rsv to the 149 * delayed_refs_rsv. Any extra bytes are returned to the space info. 150 */ 151 void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info, 152 struct btrfs_block_rsv *src, 153 u64 num_bytes) 154 { 155 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 156 u64 to_free = 0; 157 158 spin_lock(&src->lock); 159 src->reserved -= num_bytes; 160 src->size -= num_bytes; 161 spin_unlock(&src->lock); 162 163 spin_lock(&delayed_refs_rsv->lock); 164 if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) { 165 u64 delta = delayed_refs_rsv->size - 166 delayed_refs_rsv->reserved; 167 if (num_bytes > delta) { 168 to_free = num_bytes - delta; 169 num_bytes = delta; 170 } 171 } else { 172 to_free = num_bytes; 173 num_bytes = 0; 174 } 175 176 if (num_bytes) 177 delayed_refs_rsv->reserved += num_bytes; 178 if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size) 179 delayed_refs_rsv->full = true; 180 spin_unlock(&delayed_refs_rsv->lock); 181 182 if (num_bytes) 183 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 184 0, num_bytes, 1); 185 if (to_free) 186 btrfs_space_info_free_bytes_may_use(fs_info, 187 delayed_refs_rsv->space_info, to_free); 188 } 189 190 /* 191 * Refill based on our delayed refs usage. 192 * 193 * @fs_info: the filesystem 194 * @flush: control how we can flush for this reservation. 195 * 196 * This will refill the delayed block_rsv up to 1 items size worth of space and 197 * will return -ENOSPC if we can't make the reservation. 198 */ 199 int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info, 200 enum btrfs_reserve_flush_enum flush) 201 { 202 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv; 203 u64 limit = btrfs_calc_insert_metadata_size(fs_info, 1); 204 u64 num_bytes = 0; 205 int ret = -ENOSPC; 206 207 spin_lock(&block_rsv->lock); 208 if (block_rsv->reserved < block_rsv->size) { 209 num_bytes = block_rsv->size - block_rsv->reserved; 210 num_bytes = min(num_bytes, limit); 211 } 212 spin_unlock(&block_rsv->lock); 213 214 if (!num_bytes) 215 return 0; 216 217 ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush); 218 if (ret) 219 return ret; 220 btrfs_block_rsv_add_bytes(block_rsv, num_bytes, 0); 221 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 222 0, num_bytes, 1); 223 return 0; 224 } 225 226 /* 227 * compare two delayed tree backrefs with same bytenr and type 228 */ 229 static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1, 230 struct btrfs_delayed_tree_ref *ref2) 231 { 232 if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) { 233 if (ref1->root < ref2->root) 234 return -1; 235 if (ref1->root > ref2->root) 236 return 1; 237 } else { 238 if (ref1->parent < ref2->parent) 239 return -1; 240 if (ref1->parent > ref2->parent) 241 return 1; 242 } 243 return 0; 244 } 245 246 /* 247 * compare two delayed data backrefs with same bytenr and type 248 */ 249 static int comp_data_refs(struct btrfs_delayed_data_ref *ref1, 250 struct btrfs_delayed_data_ref *ref2) 251 { 252 if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) { 253 if (ref1->root < ref2->root) 254 return -1; 255 if (ref1->root > ref2->root) 256 return 1; 257 if (ref1->objectid < ref2->objectid) 258 return -1; 259 if (ref1->objectid > ref2->objectid) 260 return 1; 261 if (ref1->offset < ref2->offset) 262 return -1; 263 if (ref1->offset > ref2->offset) 264 return 1; 265 } else { 266 if (ref1->parent < ref2->parent) 267 return -1; 268 if (ref1->parent > ref2->parent) 269 return 1; 270 } 271 return 0; 272 } 273 274 static int comp_refs(struct btrfs_delayed_ref_node *ref1, 275 struct btrfs_delayed_ref_node *ref2, 276 bool check_seq) 277 { 278 int ret = 0; 279 280 if (ref1->type < ref2->type) 281 return -1; 282 if (ref1->type > ref2->type) 283 return 1; 284 if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY || 285 ref1->type == BTRFS_SHARED_BLOCK_REF_KEY) 286 ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1), 287 btrfs_delayed_node_to_tree_ref(ref2)); 288 else 289 ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1), 290 btrfs_delayed_node_to_data_ref(ref2)); 291 if (ret) 292 return ret; 293 if (check_seq) { 294 if (ref1->seq < ref2->seq) 295 return -1; 296 if (ref1->seq > ref2->seq) 297 return 1; 298 } 299 return 0; 300 } 301 302 /* insert a new ref to head ref rbtree */ 303 static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root, 304 struct rb_node *node) 305 { 306 struct rb_node **p = &root->rb_root.rb_node; 307 struct rb_node *parent_node = NULL; 308 struct btrfs_delayed_ref_head *entry; 309 struct btrfs_delayed_ref_head *ins; 310 u64 bytenr; 311 bool leftmost = true; 312 313 ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node); 314 bytenr = ins->bytenr; 315 while (*p) { 316 parent_node = *p; 317 entry = rb_entry(parent_node, struct btrfs_delayed_ref_head, 318 href_node); 319 320 if (bytenr < entry->bytenr) { 321 p = &(*p)->rb_left; 322 } else if (bytenr > entry->bytenr) { 323 p = &(*p)->rb_right; 324 leftmost = false; 325 } else { 326 return entry; 327 } 328 } 329 330 rb_link_node(node, parent_node, p); 331 rb_insert_color_cached(node, root, leftmost); 332 return NULL; 333 } 334 335 static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root, 336 struct btrfs_delayed_ref_node *ins) 337 { 338 struct rb_node **p = &root->rb_root.rb_node; 339 struct rb_node *node = &ins->ref_node; 340 struct rb_node *parent_node = NULL; 341 struct btrfs_delayed_ref_node *entry; 342 bool leftmost = true; 343 344 while (*p) { 345 int comp; 346 347 parent_node = *p; 348 entry = rb_entry(parent_node, struct btrfs_delayed_ref_node, 349 ref_node); 350 comp = comp_refs(ins, entry, true); 351 if (comp < 0) { 352 p = &(*p)->rb_left; 353 } else if (comp > 0) { 354 p = &(*p)->rb_right; 355 leftmost = false; 356 } else { 357 return entry; 358 } 359 } 360 361 rb_link_node(node, parent_node, p); 362 rb_insert_color_cached(node, root, leftmost); 363 return NULL; 364 } 365 366 static struct btrfs_delayed_ref_head *find_first_ref_head( 367 struct btrfs_delayed_ref_root *dr) 368 { 369 struct rb_node *n; 370 struct btrfs_delayed_ref_head *entry; 371 372 n = rb_first_cached(&dr->href_root); 373 if (!n) 374 return NULL; 375 376 entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node); 377 378 return entry; 379 } 380 381 /* 382 * Find a head entry based on bytenr. This returns the delayed ref head if it 383 * was able to find one, or NULL if nothing was in that spot. If return_bigger 384 * is given, the next bigger entry is returned if no exact match is found. 385 */ 386 static struct btrfs_delayed_ref_head *find_ref_head( 387 struct btrfs_delayed_ref_root *dr, u64 bytenr, 388 bool return_bigger) 389 { 390 struct rb_root *root = &dr->href_root.rb_root; 391 struct rb_node *n; 392 struct btrfs_delayed_ref_head *entry; 393 394 n = root->rb_node; 395 entry = NULL; 396 while (n) { 397 entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node); 398 399 if (bytenr < entry->bytenr) 400 n = n->rb_left; 401 else if (bytenr > entry->bytenr) 402 n = n->rb_right; 403 else 404 return entry; 405 } 406 if (entry && return_bigger) { 407 if (bytenr > entry->bytenr) { 408 n = rb_next(&entry->href_node); 409 if (!n) 410 return NULL; 411 entry = rb_entry(n, struct btrfs_delayed_ref_head, 412 href_node); 413 } 414 return entry; 415 } 416 return NULL; 417 } 418 419 int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs, 420 struct btrfs_delayed_ref_head *head) 421 { 422 lockdep_assert_held(&delayed_refs->lock); 423 if (mutex_trylock(&head->mutex)) 424 return 0; 425 426 refcount_inc(&head->refs); 427 spin_unlock(&delayed_refs->lock); 428 429 mutex_lock(&head->mutex); 430 spin_lock(&delayed_refs->lock); 431 if (RB_EMPTY_NODE(&head->href_node)) { 432 mutex_unlock(&head->mutex); 433 btrfs_put_delayed_ref_head(head); 434 return -EAGAIN; 435 } 436 btrfs_put_delayed_ref_head(head); 437 return 0; 438 } 439 440 static inline void drop_delayed_ref(struct btrfs_trans_handle *trans, 441 struct btrfs_delayed_ref_root *delayed_refs, 442 struct btrfs_delayed_ref_head *head, 443 struct btrfs_delayed_ref_node *ref) 444 { 445 lockdep_assert_held(&head->lock); 446 rb_erase_cached(&ref->ref_node, &head->ref_tree); 447 RB_CLEAR_NODE(&ref->ref_node); 448 if (!list_empty(&ref->add_list)) 449 list_del(&ref->add_list); 450 ref->in_tree = 0; 451 btrfs_put_delayed_ref(ref); 452 atomic_dec(&delayed_refs->num_entries); 453 } 454 455 static bool merge_ref(struct btrfs_trans_handle *trans, 456 struct btrfs_delayed_ref_root *delayed_refs, 457 struct btrfs_delayed_ref_head *head, 458 struct btrfs_delayed_ref_node *ref, 459 u64 seq) 460 { 461 struct btrfs_delayed_ref_node *next; 462 struct rb_node *node = rb_next(&ref->ref_node); 463 bool done = false; 464 465 while (!done && node) { 466 int mod; 467 468 next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 469 node = rb_next(node); 470 if (seq && next->seq >= seq) 471 break; 472 if (comp_refs(ref, next, false)) 473 break; 474 475 if (ref->action == next->action) { 476 mod = next->ref_mod; 477 } else { 478 if (ref->ref_mod < next->ref_mod) { 479 swap(ref, next); 480 done = true; 481 } 482 mod = -next->ref_mod; 483 } 484 485 drop_delayed_ref(trans, delayed_refs, head, next); 486 ref->ref_mod += mod; 487 if (ref->ref_mod == 0) { 488 drop_delayed_ref(trans, delayed_refs, head, ref); 489 done = true; 490 } else { 491 /* 492 * Can't have multiples of the same ref on a tree block. 493 */ 494 WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY || 495 ref->type == BTRFS_SHARED_BLOCK_REF_KEY); 496 } 497 } 498 499 return done; 500 } 501 502 void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans, 503 struct btrfs_delayed_ref_root *delayed_refs, 504 struct btrfs_delayed_ref_head *head) 505 { 506 struct btrfs_fs_info *fs_info = trans->fs_info; 507 struct btrfs_delayed_ref_node *ref; 508 struct rb_node *node; 509 u64 seq = 0; 510 511 lockdep_assert_held(&head->lock); 512 513 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 514 return; 515 516 /* We don't have too many refs to merge for data. */ 517 if (head->is_data) 518 return; 519 520 seq = btrfs_tree_mod_log_lowest_seq(fs_info); 521 again: 522 for (node = rb_first_cached(&head->ref_tree); node; 523 node = rb_next(node)) { 524 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 525 if (seq && ref->seq >= seq) 526 continue; 527 if (merge_ref(trans, delayed_refs, head, ref, seq)) 528 goto again; 529 } 530 } 531 532 int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq) 533 { 534 int ret = 0; 535 u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info); 536 537 if (min_seq != 0 && seq >= min_seq) { 538 btrfs_debug(fs_info, 539 "holding back delayed_ref %llu, lowest is %llu", 540 seq, min_seq); 541 ret = 1; 542 } 543 544 return ret; 545 } 546 547 struct btrfs_delayed_ref_head *btrfs_select_ref_head( 548 struct btrfs_delayed_ref_root *delayed_refs) 549 { 550 struct btrfs_delayed_ref_head *head; 551 552 again: 553 head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start, 554 true); 555 if (!head && delayed_refs->run_delayed_start != 0) { 556 delayed_refs->run_delayed_start = 0; 557 head = find_first_ref_head(delayed_refs); 558 } 559 if (!head) 560 return NULL; 561 562 while (head->processing) { 563 struct rb_node *node; 564 565 node = rb_next(&head->href_node); 566 if (!node) { 567 if (delayed_refs->run_delayed_start == 0) 568 return NULL; 569 delayed_refs->run_delayed_start = 0; 570 goto again; 571 } 572 head = rb_entry(node, struct btrfs_delayed_ref_head, 573 href_node); 574 } 575 576 head->processing = 1; 577 WARN_ON(delayed_refs->num_heads_ready == 0); 578 delayed_refs->num_heads_ready--; 579 delayed_refs->run_delayed_start = head->bytenr + 580 head->num_bytes; 581 return head; 582 } 583 584 void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 585 struct btrfs_delayed_ref_head *head) 586 { 587 lockdep_assert_held(&delayed_refs->lock); 588 lockdep_assert_held(&head->lock); 589 590 rb_erase_cached(&head->href_node, &delayed_refs->href_root); 591 RB_CLEAR_NODE(&head->href_node); 592 atomic_dec(&delayed_refs->num_entries); 593 delayed_refs->num_heads--; 594 if (head->processing == 0) 595 delayed_refs->num_heads_ready--; 596 } 597 598 /* 599 * Helper to insert the ref_node to the tail or merge with tail. 600 * 601 * Return 0 for insert. 602 * Return >0 for merge. 603 */ 604 static int insert_delayed_ref(struct btrfs_trans_handle *trans, 605 struct btrfs_delayed_ref_root *root, 606 struct btrfs_delayed_ref_head *href, 607 struct btrfs_delayed_ref_node *ref) 608 { 609 struct btrfs_delayed_ref_node *exist; 610 int mod; 611 int ret = 0; 612 613 spin_lock(&href->lock); 614 exist = tree_insert(&href->ref_tree, ref); 615 if (!exist) 616 goto inserted; 617 618 /* Now we are sure we can merge */ 619 ret = 1; 620 if (exist->action == ref->action) { 621 mod = ref->ref_mod; 622 } else { 623 /* Need to change action */ 624 if (exist->ref_mod < ref->ref_mod) { 625 exist->action = ref->action; 626 mod = -exist->ref_mod; 627 exist->ref_mod = ref->ref_mod; 628 if (ref->action == BTRFS_ADD_DELAYED_REF) 629 list_add_tail(&exist->add_list, 630 &href->ref_add_list); 631 else if (ref->action == BTRFS_DROP_DELAYED_REF) { 632 ASSERT(!list_empty(&exist->add_list)); 633 list_del(&exist->add_list); 634 } else { 635 ASSERT(0); 636 } 637 } else 638 mod = -ref->ref_mod; 639 } 640 exist->ref_mod += mod; 641 642 /* remove existing tail if its ref_mod is zero */ 643 if (exist->ref_mod == 0) 644 drop_delayed_ref(trans, root, href, exist); 645 spin_unlock(&href->lock); 646 return ret; 647 inserted: 648 if (ref->action == BTRFS_ADD_DELAYED_REF) 649 list_add_tail(&ref->add_list, &href->ref_add_list); 650 atomic_inc(&root->num_entries); 651 spin_unlock(&href->lock); 652 return ret; 653 } 654 655 /* 656 * helper function to update the accounting in the head ref 657 * existing and update must have the same bytenr 658 */ 659 static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans, 660 struct btrfs_delayed_ref_head *existing, 661 struct btrfs_delayed_ref_head *update) 662 { 663 struct btrfs_delayed_ref_root *delayed_refs = 664 &trans->transaction->delayed_refs; 665 struct btrfs_fs_info *fs_info = trans->fs_info; 666 int old_ref_mod; 667 668 BUG_ON(existing->is_data != update->is_data); 669 670 spin_lock(&existing->lock); 671 if (update->must_insert_reserved) { 672 /* if the extent was freed and then 673 * reallocated before the delayed ref 674 * entries were processed, we can end up 675 * with an existing head ref without 676 * the must_insert_reserved flag set. 677 * Set it again here 678 */ 679 existing->must_insert_reserved = update->must_insert_reserved; 680 681 /* 682 * update the num_bytes so we make sure the accounting 683 * is done correctly 684 */ 685 existing->num_bytes = update->num_bytes; 686 687 } 688 689 if (update->extent_op) { 690 if (!existing->extent_op) { 691 existing->extent_op = update->extent_op; 692 } else { 693 if (update->extent_op->update_key) { 694 memcpy(&existing->extent_op->key, 695 &update->extent_op->key, 696 sizeof(update->extent_op->key)); 697 existing->extent_op->update_key = true; 698 } 699 if (update->extent_op->update_flags) { 700 existing->extent_op->flags_to_set |= 701 update->extent_op->flags_to_set; 702 existing->extent_op->update_flags = true; 703 } 704 btrfs_free_delayed_extent_op(update->extent_op); 705 } 706 } 707 /* 708 * update the reference mod on the head to reflect this new operation, 709 * only need the lock for this case cause we could be processing it 710 * currently, for refs we just added we know we're a-ok. 711 */ 712 old_ref_mod = existing->total_ref_mod; 713 existing->ref_mod += update->ref_mod; 714 existing->total_ref_mod += update->ref_mod; 715 716 /* 717 * If we are going to from a positive ref mod to a negative or vice 718 * versa we need to make sure to adjust pending_csums accordingly. 719 */ 720 if (existing->is_data) { 721 u64 csum_leaves = 722 btrfs_csum_bytes_to_leaves(fs_info, 723 existing->num_bytes); 724 725 if (existing->total_ref_mod >= 0 && old_ref_mod < 0) { 726 delayed_refs->pending_csums -= existing->num_bytes; 727 btrfs_delayed_refs_rsv_release(fs_info, csum_leaves); 728 } 729 if (existing->total_ref_mod < 0 && old_ref_mod >= 0) { 730 delayed_refs->pending_csums += existing->num_bytes; 731 trans->delayed_ref_updates += csum_leaves; 732 } 733 } 734 735 spin_unlock(&existing->lock); 736 } 737 738 static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref, 739 struct btrfs_qgroup_extent_record *qrecord, 740 u64 bytenr, u64 num_bytes, u64 ref_root, 741 u64 reserved, int action, bool is_data, 742 bool is_system) 743 { 744 int count_mod = 1; 745 int must_insert_reserved = 0; 746 747 /* If reserved is provided, it must be a data extent. */ 748 BUG_ON(!is_data && reserved); 749 750 /* 751 * The head node stores the sum of all the mods, so dropping a ref 752 * should drop the sum in the head node by one. 753 */ 754 if (action == BTRFS_UPDATE_DELAYED_HEAD) 755 count_mod = 0; 756 else if (action == BTRFS_DROP_DELAYED_REF) 757 count_mod = -1; 758 759 /* 760 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the reserved 761 * accounting when the extent is finally added, or if a later 762 * modification deletes the delayed ref without ever inserting the 763 * extent into the extent allocation tree. ref->must_insert_reserved 764 * is the flag used to record that accounting mods are required. 765 * 766 * Once we record must_insert_reserved, switch the action to 767 * BTRFS_ADD_DELAYED_REF because other special casing is not required. 768 */ 769 if (action == BTRFS_ADD_DELAYED_EXTENT) 770 must_insert_reserved = 1; 771 else 772 must_insert_reserved = 0; 773 774 refcount_set(&head_ref->refs, 1); 775 head_ref->bytenr = bytenr; 776 head_ref->num_bytes = num_bytes; 777 head_ref->ref_mod = count_mod; 778 head_ref->must_insert_reserved = must_insert_reserved; 779 head_ref->is_data = is_data; 780 head_ref->is_system = is_system; 781 head_ref->ref_tree = RB_ROOT_CACHED; 782 INIT_LIST_HEAD(&head_ref->ref_add_list); 783 RB_CLEAR_NODE(&head_ref->href_node); 784 head_ref->processing = 0; 785 head_ref->total_ref_mod = count_mod; 786 spin_lock_init(&head_ref->lock); 787 mutex_init(&head_ref->mutex); 788 789 if (qrecord) { 790 if (ref_root && reserved) { 791 qrecord->data_rsv = reserved; 792 qrecord->data_rsv_refroot = ref_root; 793 } 794 qrecord->bytenr = bytenr; 795 qrecord->num_bytes = num_bytes; 796 qrecord->old_roots = NULL; 797 } 798 } 799 800 /* 801 * helper function to actually insert a head node into the rbtree. 802 * this does all the dirty work in terms of maintaining the correct 803 * overall modification count. 804 */ 805 static noinline struct btrfs_delayed_ref_head * 806 add_delayed_ref_head(struct btrfs_trans_handle *trans, 807 struct btrfs_delayed_ref_head *head_ref, 808 struct btrfs_qgroup_extent_record *qrecord, 809 int action, int *qrecord_inserted_ret) 810 { 811 struct btrfs_delayed_ref_head *existing; 812 struct btrfs_delayed_ref_root *delayed_refs; 813 int qrecord_inserted = 0; 814 815 delayed_refs = &trans->transaction->delayed_refs; 816 817 /* Record qgroup extent info if provided */ 818 if (qrecord) { 819 if (btrfs_qgroup_trace_extent_nolock(trans->fs_info, 820 delayed_refs, qrecord)) 821 kfree(qrecord); 822 else 823 qrecord_inserted = 1; 824 } 825 826 trace_add_delayed_ref_head(trans->fs_info, head_ref, action); 827 828 existing = htree_insert(&delayed_refs->href_root, 829 &head_ref->href_node); 830 if (existing) { 831 update_existing_head_ref(trans, existing, head_ref); 832 /* 833 * we've updated the existing ref, free the newly 834 * allocated ref 835 */ 836 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref); 837 head_ref = existing; 838 } else { 839 if (head_ref->is_data && head_ref->ref_mod < 0) { 840 delayed_refs->pending_csums += head_ref->num_bytes; 841 trans->delayed_ref_updates += 842 btrfs_csum_bytes_to_leaves(trans->fs_info, 843 head_ref->num_bytes); 844 } 845 delayed_refs->num_heads++; 846 delayed_refs->num_heads_ready++; 847 atomic_inc(&delayed_refs->num_entries); 848 trans->delayed_ref_updates++; 849 } 850 if (qrecord_inserted_ret) 851 *qrecord_inserted_ret = qrecord_inserted; 852 853 return head_ref; 854 } 855 856 /* 857 * init_delayed_ref_common - Initialize the structure which represents a 858 * modification to a an extent. 859 * 860 * @fs_info: Internal to the mounted filesystem mount structure. 861 * 862 * @ref: The structure which is going to be initialized. 863 * 864 * @bytenr: The logical address of the extent for which a modification is 865 * going to be recorded. 866 * 867 * @num_bytes: Size of the extent whose modification is being recorded. 868 * 869 * @ref_root: The id of the root where this modification has originated, this 870 * can be either one of the well-known metadata trees or the 871 * subvolume id which references this extent. 872 * 873 * @action: Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or 874 * BTRFS_ADD_DELAYED_EXTENT 875 * 876 * @ref_type: Holds the type of the extent which is being recorded, can be 877 * one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY 878 * when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/ 879 * BTRFS_EXTENT_DATA_REF_KEY when recording data extent 880 */ 881 static void init_delayed_ref_common(struct btrfs_fs_info *fs_info, 882 struct btrfs_delayed_ref_node *ref, 883 u64 bytenr, u64 num_bytes, u64 ref_root, 884 int action, u8 ref_type) 885 { 886 u64 seq = 0; 887 888 if (action == BTRFS_ADD_DELAYED_EXTENT) 889 action = BTRFS_ADD_DELAYED_REF; 890 891 if (is_fstree(ref_root)) 892 seq = atomic64_read(&fs_info->tree_mod_seq); 893 894 refcount_set(&ref->refs, 1); 895 ref->bytenr = bytenr; 896 ref->num_bytes = num_bytes; 897 ref->ref_mod = 1; 898 ref->action = action; 899 ref->is_head = 0; 900 ref->in_tree = 1; 901 ref->seq = seq; 902 ref->type = ref_type; 903 RB_CLEAR_NODE(&ref->ref_node); 904 INIT_LIST_HEAD(&ref->add_list); 905 } 906 907 /* 908 * add a delayed tree ref. This does all of the accounting required 909 * to make sure the delayed ref is eventually processed before this 910 * transaction commits. 911 */ 912 int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans, 913 struct btrfs_ref *generic_ref, 914 struct btrfs_delayed_extent_op *extent_op) 915 { 916 struct btrfs_fs_info *fs_info = trans->fs_info; 917 struct btrfs_delayed_tree_ref *ref; 918 struct btrfs_delayed_ref_head *head_ref; 919 struct btrfs_delayed_ref_root *delayed_refs; 920 struct btrfs_qgroup_extent_record *record = NULL; 921 int qrecord_inserted; 922 bool is_system; 923 int action = generic_ref->action; 924 int level = generic_ref->tree_ref.level; 925 int ret; 926 u64 bytenr = generic_ref->bytenr; 927 u64 num_bytes = generic_ref->len; 928 u64 parent = generic_ref->parent; 929 u8 ref_type; 930 931 is_system = (generic_ref->tree_ref.owning_root == BTRFS_CHUNK_TREE_OBJECTID); 932 933 ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action); 934 ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS); 935 if (!ref) 936 return -ENOMEM; 937 938 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS); 939 if (!head_ref) { 940 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref); 941 return -ENOMEM; 942 } 943 944 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) && 945 !generic_ref->skip_qgroup) { 946 record = kzalloc(sizeof(*record), GFP_NOFS); 947 if (!record) { 948 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref); 949 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref); 950 return -ENOMEM; 951 } 952 } 953 954 if (parent) 955 ref_type = BTRFS_SHARED_BLOCK_REF_KEY; 956 else 957 ref_type = BTRFS_TREE_BLOCK_REF_KEY; 958 959 init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes, 960 generic_ref->tree_ref.owning_root, action, 961 ref_type); 962 ref->root = generic_ref->tree_ref.owning_root; 963 ref->parent = parent; 964 ref->level = level; 965 966 init_delayed_ref_head(head_ref, record, bytenr, num_bytes, 967 generic_ref->tree_ref.owning_root, 0, action, 968 false, is_system); 969 head_ref->extent_op = extent_op; 970 971 delayed_refs = &trans->transaction->delayed_refs; 972 spin_lock(&delayed_refs->lock); 973 974 /* 975 * insert both the head node and the new ref without dropping 976 * the spin lock 977 */ 978 head_ref = add_delayed_ref_head(trans, head_ref, record, 979 action, &qrecord_inserted); 980 981 ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node); 982 spin_unlock(&delayed_refs->lock); 983 984 /* 985 * Need to update the delayed_refs_rsv with any changes we may have 986 * made. 987 */ 988 btrfs_update_delayed_refs_rsv(trans); 989 990 trace_add_delayed_tree_ref(fs_info, &ref->node, ref, 991 action == BTRFS_ADD_DELAYED_EXTENT ? 992 BTRFS_ADD_DELAYED_REF : action); 993 if (ret > 0) 994 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref); 995 996 if (qrecord_inserted) 997 btrfs_qgroup_trace_extent_post(trans, record); 998 999 return 0; 1000 } 1001 1002 /* 1003 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref. 1004 */ 1005 int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans, 1006 struct btrfs_ref *generic_ref, 1007 u64 reserved) 1008 { 1009 struct btrfs_fs_info *fs_info = trans->fs_info; 1010 struct btrfs_delayed_data_ref *ref; 1011 struct btrfs_delayed_ref_head *head_ref; 1012 struct btrfs_delayed_ref_root *delayed_refs; 1013 struct btrfs_qgroup_extent_record *record = NULL; 1014 int qrecord_inserted; 1015 int action = generic_ref->action; 1016 int ret; 1017 u64 bytenr = generic_ref->bytenr; 1018 u64 num_bytes = generic_ref->len; 1019 u64 parent = generic_ref->parent; 1020 u64 ref_root = generic_ref->data_ref.owning_root; 1021 u64 owner = generic_ref->data_ref.ino; 1022 u64 offset = generic_ref->data_ref.offset; 1023 u8 ref_type; 1024 1025 ASSERT(generic_ref->type == BTRFS_REF_DATA && action); 1026 ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS); 1027 if (!ref) 1028 return -ENOMEM; 1029 1030 if (parent) 1031 ref_type = BTRFS_SHARED_DATA_REF_KEY; 1032 else 1033 ref_type = BTRFS_EXTENT_DATA_REF_KEY; 1034 init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes, 1035 ref_root, action, ref_type); 1036 ref->root = ref_root; 1037 ref->parent = parent; 1038 ref->objectid = owner; 1039 ref->offset = offset; 1040 1041 1042 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS); 1043 if (!head_ref) { 1044 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref); 1045 return -ENOMEM; 1046 } 1047 1048 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) && 1049 !generic_ref->skip_qgroup) { 1050 record = kzalloc(sizeof(*record), GFP_NOFS); 1051 if (!record) { 1052 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref); 1053 kmem_cache_free(btrfs_delayed_ref_head_cachep, 1054 head_ref); 1055 return -ENOMEM; 1056 } 1057 } 1058 1059 init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root, 1060 reserved, action, true, false); 1061 head_ref->extent_op = NULL; 1062 1063 delayed_refs = &trans->transaction->delayed_refs; 1064 spin_lock(&delayed_refs->lock); 1065 1066 /* 1067 * insert both the head node and the new ref without dropping 1068 * the spin lock 1069 */ 1070 head_ref = add_delayed_ref_head(trans, head_ref, record, 1071 action, &qrecord_inserted); 1072 1073 ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node); 1074 spin_unlock(&delayed_refs->lock); 1075 1076 /* 1077 * Need to update the delayed_refs_rsv with any changes we may have 1078 * made. 1079 */ 1080 btrfs_update_delayed_refs_rsv(trans); 1081 1082 trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref, 1083 action == BTRFS_ADD_DELAYED_EXTENT ? 1084 BTRFS_ADD_DELAYED_REF : action); 1085 if (ret > 0) 1086 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref); 1087 1088 1089 if (qrecord_inserted) 1090 return btrfs_qgroup_trace_extent_post(trans, record); 1091 return 0; 1092 } 1093 1094 int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans, 1095 u64 bytenr, u64 num_bytes, 1096 struct btrfs_delayed_extent_op *extent_op) 1097 { 1098 struct btrfs_delayed_ref_head *head_ref; 1099 struct btrfs_delayed_ref_root *delayed_refs; 1100 1101 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS); 1102 if (!head_ref) 1103 return -ENOMEM; 1104 1105 init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0, 1106 BTRFS_UPDATE_DELAYED_HEAD, false, false); 1107 head_ref->extent_op = extent_op; 1108 1109 delayed_refs = &trans->transaction->delayed_refs; 1110 spin_lock(&delayed_refs->lock); 1111 1112 add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD, 1113 NULL); 1114 1115 spin_unlock(&delayed_refs->lock); 1116 1117 /* 1118 * Need to update the delayed_refs_rsv with any changes we may have 1119 * made. 1120 */ 1121 btrfs_update_delayed_refs_rsv(trans); 1122 return 0; 1123 } 1124 1125 /* 1126 * This does a simple search for the head node for a given extent. Returns the 1127 * head node if found, or NULL if not. 1128 */ 1129 struct btrfs_delayed_ref_head * 1130 btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr) 1131 { 1132 lockdep_assert_held(&delayed_refs->lock); 1133 1134 return find_ref_head(delayed_refs, bytenr, false); 1135 } 1136 1137 void __cold btrfs_delayed_ref_exit(void) 1138 { 1139 kmem_cache_destroy(btrfs_delayed_ref_head_cachep); 1140 kmem_cache_destroy(btrfs_delayed_tree_ref_cachep); 1141 kmem_cache_destroy(btrfs_delayed_data_ref_cachep); 1142 kmem_cache_destroy(btrfs_delayed_extent_op_cachep); 1143 } 1144 1145 int __init btrfs_delayed_ref_init(void) 1146 { 1147 btrfs_delayed_ref_head_cachep = kmem_cache_create( 1148 "btrfs_delayed_ref_head", 1149 sizeof(struct btrfs_delayed_ref_head), 0, 1150 SLAB_MEM_SPREAD, NULL); 1151 if (!btrfs_delayed_ref_head_cachep) 1152 goto fail; 1153 1154 btrfs_delayed_tree_ref_cachep = kmem_cache_create( 1155 "btrfs_delayed_tree_ref", 1156 sizeof(struct btrfs_delayed_tree_ref), 0, 1157 SLAB_MEM_SPREAD, NULL); 1158 if (!btrfs_delayed_tree_ref_cachep) 1159 goto fail; 1160 1161 btrfs_delayed_data_ref_cachep = kmem_cache_create( 1162 "btrfs_delayed_data_ref", 1163 sizeof(struct btrfs_delayed_data_ref), 0, 1164 SLAB_MEM_SPREAD, NULL); 1165 if (!btrfs_delayed_data_ref_cachep) 1166 goto fail; 1167 1168 btrfs_delayed_extent_op_cachep = kmem_cache_create( 1169 "btrfs_delayed_extent_op", 1170 sizeof(struct btrfs_delayed_extent_op), 0, 1171 SLAB_MEM_SPREAD, NULL); 1172 if (!btrfs_delayed_extent_op_cachep) 1173 goto fail; 1174 1175 return 0; 1176 fail: 1177 btrfs_delayed_ref_exit(); 1178 return -ENOMEM; 1179 } 1180