xref: /openbmc/linux/fs/btrfs/delayed-inode.c (revision f8a11425075ff11b4b5784f077cb84f3d2dfb3f0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 Fujitsu.  All rights reserved.
4  * Written by Miao Xie <miaox@cn.fujitsu.com>
5  */
6 
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include <linux/sched/mm.h>
10 #include "misc.h"
11 #include "delayed-inode.h"
12 #include "disk-io.h"
13 #include "transaction.h"
14 #include "ctree.h"
15 #include "qgroup.h"
16 #include "locking.h"
17 
18 #define BTRFS_DELAYED_WRITEBACK		512
19 #define BTRFS_DELAYED_BACKGROUND	128
20 #define BTRFS_DELAYED_BATCH		16
21 
22 static struct kmem_cache *delayed_node_cache;
23 
24 int __init btrfs_delayed_inode_init(void)
25 {
26 	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
27 					sizeof(struct btrfs_delayed_node),
28 					0,
29 					SLAB_MEM_SPREAD,
30 					NULL);
31 	if (!delayed_node_cache)
32 		return -ENOMEM;
33 	return 0;
34 }
35 
36 void __cold btrfs_delayed_inode_exit(void)
37 {
38 	kmem_cache_destroy(delayed_node_cache);
39 }
40 
41 static inline void btrfs_init_delayed_node(
42 				struct btrfs_delayed_node *delayed_node,
43 				struct btrfs_root *root, u64 inode_id)
44 {
45 	delayed_node->root = root;
46 	delayed_node->inode_id = inode_id;
47 	refcount_set(&delayed_node->refs, 0);
48 	delayed_node->ins_root = RB_ROOT_CACHED;
49 	delayed_node->del_root = RB_ROOT_CACHED;
50 	mutex_init(&delayed_node->mutex);
51 	INIT_LIST_HEAD(&delayed_node->n_list);
52 	INIT_LIST_HEAD(&delayed_node->p_list);
53 }
54 
55 static inline int btrfs_is_continuous_delayed_item(
56 					struct btrfs_delayed_item *item1,
57 					struct btrfs_delayed_item *item2)
58 {
59 	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
60 	    item1->key.objectid == item2->key.objectid &&
61 	    item1->key.type == item2->key.type &&
62 	    item1->key.offset + 1 == item2->key.offset)
63 		return 1;
64 	return 0;
65 }
66 
67 static struct btrfs_delayed_node *btrfs_get_delayed_node(
68 		struct btrfs_inode *btrfs_inode)
69 {
70 	struct btrfs_root *root = btrfs_inode->root;
71 	u64 ino = btrfs_ino(btrfs_inode);
72 	struct btrfs_delayed_node *node;
73 
74 	node = READ_ONCE(btrfs_inode->delayed_node);
75 	if (node) {
76 		refcount_inc(&node->refs);
77 		return node;
78 	}
79 
80 	spin_lock(&root->inode_lock);
81 	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
82 
83 	if (node) {
84 		if (btrfs_inode->delayed_node) {
85 			refcount_inc(&node->refs);	/* can be accessed */
86 			BUG_ON(btrfs_inode->delayed_node != node);
87 			spin_unlock(&root->inode_lock);
88 			return node;
89 		}
90 
91 		/*
92 		 * It's possible that we're racing into the middle of removing
93 		 * this node from the radix tree.  In this case, the refcount
94 		 * was zero and it should never go back to one.  Just return
95 		 * NULL like it was never in the radix at all; our release
96 		 * function is in the process of removing it.
97 		 *
98 		 * Some implementations of refcount_inc refuse to bump the
99 		 * refcount once it has hit zero.  If we don't do this dance
100 		 * here, refcount_inc() may decide to just WARN_ONCE() instead
101 		 * of actually bumping the refcount.
102 		 *
103 		 * If this node is properly in the radix, we want to bump the
104 		 * refcount twice, once for the inode and once for this get
105 		 * operation.
106 		 */
107 		if (refcount_inc_not_zero(&node->refs)) {
108 			refcount_inc(&node->refs);
109 			btrfs_inode->delayed_node = node;
110 		} else {
111 			node = NULL;
112 		}
113 
114 		spin_unlock(&root->inode_lock);
115 		return node;
116 	}
117 	spin_unlock(&root->inode_lock);
118 
119 	return NULL;
120 }
121 
122 /* Will return either the node or PTR_ERR(-ENOMEM) */
123 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
124 		struct btrfs_inode *btrfs_inode)
125 {
126 	struct btrfs_delayed_node *node;
127 	struct btrfs_root *root = btrfs_inode->root;
128 	u64 ino = btrfs_ino(btrfs_inode);
129 	int ret;
130 
131 again:
132 	node = btrfs_get_delayed_node(btrfs_inode);
133 	if (node)
134 		return node;
135 
136 	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
137 	if (!node)
138 		return ERR_PTR(-ENOMEM);
139 	btrfs_init_delayed_node(node, root, ino);
140 
141 	/* cached in the btrfs inode and can be accessed */
142 	refcount_set(&node->refs, 2);
143 
144 	ret = radix_tree_preload(GFP_NOFS);
145 	if (ret) {
146 		kmem_cache_free(delayed_node_cache, node);
147 		return ERR_PTR(ret);
148 	}
149 
150 	spin_lock(&root->inode_lock);
151 	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
152 	if (ret == -EEXIST) {
153 		spin_unlock(&root->inode_lock);
154 		kmem_cache_free(delayed_node_cache, node);
155 		radix_tree_preload_end();
156 		goto again;
157 	}
158 	btrfs_inode->delayed_node = node;
159 	spin_unlock(&root->inode_lock);
160 	radix_tree_preload_end();
161 
162 	return node;
163 }
164 
165 /*
166  * Call it when holding delayed_node->mutex
167  *
168  * If mod = 1, add this node into the prepared list.
169  */
170 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
171 				     struct btrfs_delayed_node *node,
172 				     int mod)
173 {
174 	spin_lock(&root->lock);
175 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
176 		if (!list_empty(&node->p_list))
177 			list_move_tail(&node->p_list, &root->prepare_list);
178 		else if (mod)
179 			list_add_tail(&node->p_list, &root->prepare_list);
180 	} else {
181 		list_add_tail(&node->n_list, &root->node_list);
182 		list_add_tail(&node->p_list, &root->prepare_list);
183 		refcount_inc(&node->refs);	/* inserted into list */
184 		root->nodes++;
185 		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
186 	}
187 	spin_unlock(&root->lock);
188 }
189 
190 /* Call it when holding delayed_node->mutex */
191 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
192 				       struct btrfs_delayed_node *node)
193 {
194 	spin_lock(&root->lock);
195 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
196 		root->nodes--;
197 		refcount_dec(&node->refs);	/* not in the list */
198 		list_del_init(&node->n_list);
199 		if (!list_empty(&node->p_list))
200 			list_del_init(&node->p_list);
201 		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
202 	}
203 	spin_unlock(&root->lock);
204 }
205 
206 static struct btrfs_delayed_node *btrfs_first_delayed_node(
207 			struct btrfs_delayed_root *delayed_root)
208 {
209 	struct list_head *p;
210 	struct btrfs_delayed_node *node = NULL;
211 
212 	spin_lock(&delayed_root->lock);
213 	if (list_empty(&delayed_root->node_list))
214 		goto out;
215 
216 	p = delayed_root->node_list.next;
217 	node = list_entry(p, struct btrfs_delayed_node, n_list);
218 	refcount_inc(&node->refs);
219 out:
220 	spin_unlock(&delayed_root->lock);
221 
222 	return node;
223 }
224 
225 static struct btrfs_delayed_node *btrfs_next_delayed_node(
226 						struct btrfs_delayed_node *node)
227 {
228 	struct btrfs_delayed_root *delayed_root;
229 	struct list_head *p;
230 	struct btrfs_delayed_node *next = NULL;
231 
232 	delayed_root = node->root->fs_info->delayed_root;
233 	spin_lock(&delayed_root->lock);
234 	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
235 		/* not in the list */
236 		if (list_empty(&delayed_root->node_list))
237 			goto out;
238 		p = delayed_root->node_list.next;
239 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
240 		goto out;
241 	else
242 		p = node->n_list.next;
243 
244 	next = list_entry(p, struct btrfs_delayed_node, n_list);
245 	refcount_inc(&next->refs);
246 out:
247 	spin_unlock(&delayed_root->lock);
248 
249 	return next;
250 }
251 
252 static void __btrfs_release_delayed_node(
253 				struct btrfs_delayed_node *delayed_node,
254 				int mod)
255 {
256 	struct btrfs_delayed_root *delayed_root;
257 
258 	if (!delayed_node)
259 		return;
260 
261 	delayed_root = delayed_node->root->fs_info->delayed_root;
262 
263 	mutex_lock(&delayed_node->mutex);
264 	if (delayed_node->count)
265 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
266 	else
267 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
268 	mutex_unlock(&delayed_node->mutex);
269 
270 	if (refcount_dec_and_test(&delayed_node->refs)) {
271 		struct btrfs_root *root = delayed_node->root;
272 
273 		spin_lock(&root->inode_lock);
274 		/*
275 		 * Once our refcount goes to zero, nobody is allowed to bump it
276 		 * back up.  We can delete it now.
277 		 */
278 		ASSERT(refcount_read(&delayed_node->refs) == 0);
279 		radix_tree_delete(&root->delayed_nodes_tree,
280 				  delayed_node->inode_id);
281 		spin_unlock(&root->inode_lock);
282 		kmem_cache_free(delayed_node_cache, delayed_node);
283 	}
284 }
285 
286 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
287 {
288 	__btrfs_release_delayed_node(node, 0);
289 }
290 
291 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
292 					struct btrfs_delayed_root *delayed_root)
293 {
294 	struct list_head *p;
295 	struct btrfs_delayed_node *node = NULL;
296 
297 	spin_lock(&delayed_root->lock);
298 	if (list_empty(&delayed_root->prepare_list))
299 		goto out;
300 
301 	p = delayed_root->prepare_list.next;
302 	list_del_init(p);
303 	node = list_entry(p, struct btrfs_delayed_node, p_list);
304 	refcount_inc(&node->refs);
305 out:
306 	spin_unlock(&delayed_root->lock);
307 
308 	return node;
309 }
310 
311 static inline void btrfs_release_prepared_delayed_node(
312 					struct btrfs_delayed_node *node)
313 {
314 	__btrfs_release_delayed_node(node, 1);
315 }
316 
317 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
318 {
319 	struct btrfs_delayed_item *item;
320 	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
321 	if (item) {
322 		item->data_len = data_len;
323 		item->ins_or_del = 0;
324 		item->bytes_reserved = 0;
325 		item->delayed_node = NULL;
326 		refcount_set(&item->refs, 1);
327 	}
328 	return item;
329 }
330 
331 /*
332  * __btrfs_lookup_delayed_item - look up the delayed item by key
333  * @delayed_node: pointer to the delayed node
334  * @key:	  the key to look up
335  * @prev:	  used to store the prev item if the right item isn't found
336  * @next:	  used to store the next item if the right item isn't found
337  *
338  * Note: if we don't find the right item, we will return the prev item and
339  * the next item.
340  */
341 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
342 				struct rb_root *root,
343 				struct btrfs_key *key,
344 				struct btrfs_delayed_item **prev,
345 				struct btrfs_delayed_item **next)
346 {
347 	struct rb_node *node, *prev_node = NULL;
348 	struct btrfs_delayed_item *delayed_item = NULL;
349 	int ret = 0;
350 
351 	node = root->rb_node;
352 
353 	while (node) {
354 		delayed_item = rb_entry(node, struct btrfs_delayed_item,
355 					rb_node);
356 		prev_node = node;
357 		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
358 		if (ret < 0)
359 			node = node->rb_right;
360 		else if (ret > 0)
361 			node = node->rb_left;
362 		else
363 			return delayed_item;
364 	}
365 
366 	if (prev) {
367 		if (!prev_node)
368 			*prev = NULL;
369 		else if (ret < 0)
370 			*prev = delayed_item;
371 		else if ((node = rb_prev(prev_node)) != NULL) {
372 			*prev = rb_entry(node, struct btrfs_delayed_item,
373 					 rb_node);
374 		} else
375 			*prev = NULL;
376 	}
377 
378 	if (next) {
379 		if (!prev_node)
380 			*next = NULL;
381 		else if (ret > 0)
382 			*next = delayed_item;
383 		else if ((node = rb_next(prev_node)) != NULL) {
384 			*next = rb_entry(node, struct btrfs_delayed_item,
385 					 rb_node);
386 		} else
387 			*next = NULL;
388 	}
389 	return NULL;
390 }
391 
392 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
393 					struct btrfs_delayed_node *delayed_node,
394 					struct btrfs_key *key)
395 {
396 	return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
397 					   NULL, NULL);
398 }
399 
400 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
401 				    struct btrfs_delayed_item *ins,
402 				    int action)
403 {
404 	struct rb_node **p, *node;
405 	struct rb_node *parent_node = NULL;
406 	struct rb_root_cached *root;
407 	struct btrfs_delayed_item *item;
408 	int cmp;
409 	bool leftmost = true;
410 
411 	if (action == BTRFS_DELAYED_INSERTION_ITEM)
412 		root = &delayed_node->ins_root;
413 	else if (action == BTRFS_DELAYED_DELETION_ITEM)
414 		root = &delayed_node->del_root;
415 	else
416 		BUG();
417 	p = &root->rb_root.rb_node;
418 	node = &ins->rb_node;
419 
420 	while (*p) {
421 		parent_node = *p;
422 		item = rb_entry(parent_node, struct btrfs_delayed_item,
423 				 rb_node);
424 
425 		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
426 		if (cmp < 0) {
427 			p = &(*p)->rb_right;
428 			leftmost = false;
429 		} else if (cmp > 0) {
430 			p = &(*p)->rb_left;
431 		} else {
432 			return -EEXIST;
433 		}
434 	}
435 
436 	rb_link_node(node, parent_node, p);
437 	rb_insert_color_cached(node, root, leftmost);
438 	ins->delayed_node = delayed_node;
439 	ins->ins_or_del = action;
440 
441 	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
442 	    action == BTRFS_DELAYED_INSERTION_ITEM &&
443 	    ins->key.offset >= delayed_node->index_cnt)
444 			delayed_node->index_cnt = ins->key.offset + 1;
445 
446 	delayed_node->count++;
447 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
448 	return 0;
449 }
450 
451 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
452 					      struct btrfs_delayed_item *item)
453 {
454 	return __btrfs_add_delayed_item(node, item,
455 					BTRFS_DELAYED_INSERTION_ITEM);
456 }
457 
458 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
459 					     struct btrfs_delayed_item *item)
460 {
461 	return __btrfs_add_delayed_item(node, item,
462 					BTRFS_DELAYED_DELETION_ITEM);
463 }
464 
465 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
466 {
467 	int seq = atomic_inc_return(&delayed_root->items_seq);
468 
469 	/* atomic_dec_return implies a barrier */
470 	if ((atomic_dec_return(&delayed_root->items) <
471 	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
472 		cond_wake_up_nomb(&delayed_root->wait);
473 }
474 
475 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
476 {
477 	struct rb_root_cached *root;
478 	struct btrfs_delayed_root *delayed_root;
479 
480 	/* Not associated with any delayed_node */
481 	if (!delayed_item->delayed_node)
482 		return;
483 	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
484 
485 	BUG_ON(!delayed_root);
486 	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
487 	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
488 
489 	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
490 		root = &delayed_item->delayed_node->ins_root;
491 	else
492 		root = &delayed_item->delayed_node->del_root;
493 
494 	rb_erase_cached(&delayed_item->rb_node, root);
495 	delayed_item->delayed_node->count--;
496 
497 	finish_one_item(delayed_root);
498 }
499 
500 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
501 {
502 	if (item) {
503 		__btrfs_remove_delayed_item(item);
504 		if (refcount_dec_and_test(&item->refs))
505 			kfree(item);
506 	}
507 }
508 
509 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
510 					struct btrfs_delayed_node *delayed_node)
511 {
512 	struct rb_node *p;
513 	struct btrfs_delayed_item *item = NULL;
514 
515 	p = rb_first_cached(&delayed_node->ins_root);
516 	if (p)
517 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
518 
519 	return item;
520 }
521 
522 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
523 					struct btrfs_delayed_node *delayed_node)
524 {
525 	struct rb_node *p;
526 	struct btrfs_delayed_item *item = NULL;
527 
528 	p = rb_first_cached(&delayed_node->del_root);
529 	if (p)
530 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
531 
532 	return item;
533 }
534 
535 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
536 						struct btrfs_delayed_item *item)
537 {
538 	struct rb_node *p;
539 	struct btrfs_delayed_item *next = NULL;
540 
541 	p = rb_next(&item->rb_node);
542 	if (p)
543 		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
544 
545 	return next;
546 }
547 
548 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
549 					       struct btrfs_root *root,
550 					       struct btrfs_delayed_item *item)
551 {
552 	struct btrfs_block_rsv *src_rsv;
553 	struct btrfs_block_rsv *dst_rsv;
554 	struct btrfs_fs_info *fs_info = root->fs_info;
555 	u64 num_bytes;
556 	int ret;
557 
558 	if (!trans->bytes_reserved)
559 		return 0;
560 
561 	src_rsv = trans->block_rsv;
562 	dst_rsv = &fs_info->delayed_block_rsv;
563 
564 	num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
565 
566 	/*
567 	 * Here we migrate space rsv from transaction rsv, since have already
568 	 * reserved space when starting a transaction.  So no need to reserve
569 	 * qgroup space here.
570 	 */
571 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
572 	if (!ret) {
573 		trace_btrfs_space_reservation(fs_info, "delayed_item",
574 					      item->key.objectid,
575 					      num_bytes, 1);
576 		item->bytes_reserved = num_bytes;
577 	}
578 
579 	return ret;
580 }
581 
582 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
583 						struct btrfs_delayed_item *item)
584 {
585 	struct btrfs_block_rsv *rsv;
586 	struct btrfs_fs_info *fs_info = root->fs_info;
587 
588 	if (!item->bytes_reserved)
589 		return;
590 
591 	rsv = &fs_info->delayed_block_rsv;
592 	/*
593 	 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
594 	 * to release/reserve qgroup space.
595 	 */
596 	trace_btrfs_space_reservation(fs_info, "delayed_item",
597 				      item->key.objectid, item->bytes_reserved,
598 				      0);
599 	btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
600 }
601 
602 static int btrfs_delayed_inode_reserve_metadata(
603 					struct btrfs_trans_handle *trans,
604 					struct btrfs_root *root,
605 					struct btrfs_delayed_node *node)
606 {
607 	struct btrfs_fs_info *fs_info = root->fs_info;
608 	struct btrfs_block_rsv *src_rsv;
609 	struct btrfs_block_rsv *dst_rsv;
610 	u64 num_bytes;
611 	int ret;
612 
613 	src_rsv = trans->block_rsv;
614 	dst_rsv = &fs_info->delayed_block_rsv;
615 
616 	num_bytes = btrfs_calc_metadata_size(fs_info, 1);
617 
618 	/*
619 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
620 	 * which doesn't reserve space for speed.  This is a problem since we
621 	 * still need to reserve space for this update, so try to reserve the
622 	 * space.
623 	 *
624 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
625 	 * we always reserve enough to update the inode item.
626 	 */
627 	if (!src_rsv || (!trans->bytes_reserved &&
628 			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
629 		ret = btrfs_qgroup_reserve_meta(root, num_bytes,
630 					  BTRFS_QGROUP_RSV_META_PREALLOC, true);
631 		if (ret < 0)
632 			return ret;
633 		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
634 					  BTRFS_RESERVE_NO_FLUSH);
635 		/* NO_FLUSH could only fail with -ENOSPC */
636 		ASSERT(ret == 0 || ret == -ENOSPC);
637 		if (ret)
638 			btrfs_qgroup_free_meta_prealloc(root, num_bytes);
639 	} else {
640 		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
641 	}
642 
643 	if (!ret) {
644 		trace_btrfs_space_reservation(fs_info, "delayed_inode",
645 					      node->inode_id, num_bytes, 1);
646 		node->bytes_reserved = num_bytes;
647 	}
648 
649 	return ret;
650 }
651 
652 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
653 						struct btrfs_delayed_node *node,
654 						bool qgroup_free)
655 {
656 	struct btrfs_block_rsv *rsv;
657 
658 	if (!node->bytes_reserved)
659 		return;
660 
661 	rsv = &fs_info->delayed_block_rsv;
662 	trace_btrfs_space_reservation(fs_info, "delayed_inode",
663 				      node->inode_id, node->bytes_reserved, 0);
664 	btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
665 	if (qgroup_free)
666 		btrfs_qgroup_free_meta_prealloc(node->root,
667 				node->bytes_reserved);
668 	else
669 		btrfs_qgroup_convert_reserved_meta(node->root,
670 				node->bytes_reserved);
671 	node->bytes_reserved = 0;
672 }
673 
674 /*
675  * This helper will insert some continuous items into the same leaf according
676  * to the free space of the leaf.
677  */
678 static int btrfs_batch_insert_items(struct btrfs_root *root,
679 				    struct btrfs_path *path,
680 				    struct btrfs_delayed_item *item)
681 {
682 	struct btrfs_delayed_item *curr, *next;
683 	int free_space;
684 	int total_data_size = 0, total_size = 0;
685 	struct extent_buffer *leaf;
686 	char *data_ptr;
687 	struct btrfs_key *keys;
688 	u32 *data_size;
689 	struct list_head head;
690 	int slot;
691 	int nitems;
692 	int i;
693 	int ret = 0;
694 
695 	BUG_ON(!path->nodes[0]);
696 
697 	leaf = path->nodes[0];
698 	free_space = btrfs_leaf_free_space(leaf);
699 	INIT_LIST_HEAD(&head);
700 
701 	next = item;
702 	nitems = 0;
703 
704 	/*
705 	 * count the number of the continuous items that we can insert in batch
706 	 */
707 	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
708 	       free_space) {
709 		total_data_size += next->data_len;
710 		total_size += next->data_len + sizeof(struct btrfs_item);
711 		list_add_tail(&next->tree_list, &head);
712 		nitems++;
713 
714 		curr = next;
715 		next = __btrfs_next_delayed_item(curr);
716 		if (!next)
717 			break;
718 
719 		if (!btrfs_is_continuous_delayed_item(curr, next))
720 			break;
721 	}
722 
723 	if (!nitems) {
724 		ret = 0;
725 		goto out;
726 	}
727 
728 	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
729 	if (!keys) {
730 		ret = -ENOMEM;
731 		goto out;
732 	}
733 
734 	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
735 	if (!data_size) {
736 		ret = -ENOMEM;
737 		goto error;
738 	}
739 
740 	/* get keys of all the delayed items */
741 	i = 0;
742 	list_for_each_entry(next, &head, tree_list) {
743 		keys[i] = next->key;
744 		data_size[i] = next->data_len;
745 		i++;
746 	}
747 
748 	/* insert the keys of the items */
749 	setup_items_for_insert(root, path, keys, data_size, nitems);
750 
751 	/* insert the dir index items */
752 	slot = path->slots[0];
753 	list_for_each_entry_safe(curr, next, &head, tree_list) {
754 		data_ptr = btrfs_item_ptr(leaf, slot, char);
755 		write_extent_buffer(leaf, &curr->data,
756 				    (unsigned long)data_ptr,
757 				    curr->data_len);
758 		slot++;
759 
760 		btrfs_delayed_item_release_metadata(root, curr);
761 
762 		list_del(&curr->tree_list);
763 		btrfs_release_delayed_item(curr);
764 	}
765 
766 error:
767 	kfree(data_size);
768 	kfree(keys);
769 out:
770 	return ret;
771 }
772 
773 /*
774  * This helper can just do simple insertion that needn't extend item for new
775  * data, such as directory name index insertion, inode insertion.
776  */
777 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
778 				     struct btrfs_root *root,
779 				     struct btrfs_path *path,
780 				     struct btrfs_delayed_item *delayed_item)
781 {
782 	struct extent_buffer *leaf;
783 	unsigned int nofs_flag;
784 	char *ptr;
785 	int ret;
786 
787 	nofs_flag = memalloc_nofs_save();
788 	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
789 				      delayed_item->data_len);
790 	memalloc_nofs_restore(nofs_flag);
791 	if (ret < 0 && ret != -EEXIST)
792 		return ret;
793 
794 	leaf = path->nodes[0];
795 
796 	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
797 
798 	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
799 			    delayed_item->data_len);
800 	btrfs_mark_buffer_dirty(leaf);
801 
802 	btrfs_delayed_item_release_metadata(root, delayed_item);
803 	return 0;
804 }
805 
806 /*
807  * we insert an item first, then if there are some continuous items, we try
808  * to insert those items into the same leaf.
809  */
810 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
811 				      struct btrfs_path *path,
812 				      struct btrfs_root *root,
813 				      struct btrfs_delayed_node *node)
814 {
815 	struct btrfs_delayed_item *curr, *prev;
816 	int ret = 0;
817 
818 do_again:
819 	mutex_lock(&node->mutex);
820 	curr = __btrfs_first_delayed_insertion_item(node);
821 	if (!curr)
822 		goto insert_end;
823 
824 	ret = btrfs_insert_delayed_item(trans, root, path, curr);
825 	if (ret < 0) {
826 		btrfs_release_path(path);
827 		goto insert_end;
828 	}
829 
830 	prev = curr;
831 	curr = __btrfs_next_delayed_item(prev);
832 	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
833 		/* insert the continuous items into the same leaf */
834 		path->slots[0]++;
835 		btrfs_batch_insert_items(root, path, curr);
836 	}
837 	btrfs_release_delayed_item(prev);
838 	btrfs_mark_buffer_dirty(path->nodes[0]);
839 
840 	btrfs_release_path(path);
841 	mutex_unlock(&node->mutex);
842 	goto do_again;
843 
844 insert_end:
845 	mutex_unlock(&node->mutex);
846 	return ret;
847 }
848 
849 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
850 				    struct btrfs_root *root,
851 				    struct btrfs_path *path,
852 				    struct btrfs_delayed_item *item)
853 {
854 	struct btrfs_delayed_item *curr, *next;
855 	struct extent_buffer *leaf;
856 	struct btrfs_key key;
857 	struct list_head head;
858 	int nitems, i, last_item;
859 	int ret = 0;
860 
861 	BUG_ON(!path->nodes[0]);
862 
863 	leaf = path->nodes[0];
864 
865 	i = path->slots[0];
866 	last_item = btrfs_header_nritems(leaf) - 1;
867 	if (i > last_item)
868 		return -ENOENT;	/* FIXME: Is errno suitable? */
869 
870 	next = item;
871 	INIT_LIST_HEAD(&head);
872 	btrfs_item_key_to_cpu(leaf, &key, i);
873 	nitems = 0;
874 	/*
875 	 * count the number of the dir index items that we can delete in batch
876 	 */
877 	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
878 		list_add_tail(&next->tree_list, &head);
879 		nitems++;
880 
881 		curr = next;
882 		next = __btrfs_next_delayed_item(curr);
883 		if (!next)
884 			break;
885 
886 		if (!btrfs_is_continuous_delayed_item(curr, next))
887 			break;
888 
889 		i++;
890 		if (i > last_item)
891 			break;
892 		btrfs_item_key_to_cpu(leaf, &key, i);
893 	}
894 
895 	if (!nitems)
896 		return 0;
897 
898 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
899 	if (ret)
900 		goto out;
901 
902 	list_for_each_entry_safe(curr, next, &head, tree_list) {
903 		btrfs_delayed_item_release_metadata(root, curr);
904 		list_del(&curr->tree_list);
905 		btrfs_release_delayed_item(curr);
906 	}
907 
908 out:
909 	return ret;
910 }
911 
912 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
913 				      struct btrfs_path *path,
914 				      struct btrfs_root *root,
915 				      struct btrfs_delayed_node *node)
916 {
917 	struct btrfs_delayed_item *curr, *prev;
918 	unsigned int nofs_flag;
919 	int ret = 0;
920 
921 do_again:
922 	mutex_lock(&node->mutex);
923 	curr = __btrfs_first_delayed_deletion_item(node);
924 	if (!curr)
925 		goto delete_fail;
926 
927 	nofs_flag = memalloc_nofs_save();
928 	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
929 	memalloc_nofs_restore(nofs_flag);
930 	if (ret < 0)
931 		goto delete_fail;
932 	else if (ret > 0) {
933 		/*
934 		 * can't find the item which the node points to, so this node
935 		 * is invalid, just drop it.
936 		 */
937 		prev = curr;
938 		curr = __btrfs_next_delayed_item(prev);
939 		btrfs_release_delayed_item(prev);
940 		ret = 0;
941 		btrfs_release_path(path);
942 		if (curr) {
943 			mutex_unlock(&node->mutex);
944 			goto do_again;
945 		} else
946 			goto delete_fail;
947 	}
948 
949 	btrfs_batch_delete_items(trans, root, path, curr);
950 	btrfs_release_path(path);
951 	mutex_unlock(&node->mutex);
952 	goto do_again;
953 
954 delete_fail:
955 	btrfs_release_path(path);
956 	mutex_unlock(&node->mutex);
957 	return ret;
958 }
959 
960 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
961 {
962 	struct btrfs_delayed_root *delayed_root;
963 
964 	if (delayed_node &&
965 	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
966 		BUG_ON(!delayed_node->root);
967 		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
968 		delayed_node->count--;
969 
970 		delayed_root = delayed_node->root->fs_info->delayed_root;
971 		finish_one_item(delayed_root);
972 	}
973 }
974 
975 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
976 {
977 	struct btrfs_delayed_root *delayed_root;
978 
979 	ASSERT(delayed_node->root);
980 	clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
981 	delayed_node->count--;
982 
983 	delayed_root = delayed_node->root->fs_info->delayed_root;
984 	finish_one_item(delayed_root);
985 }
986 
987 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
988 					struct btrfs_root *root,
989 					struct btrfs_path *path,
990 					struct btrfs_delayed_node *node)
991 {
992 	struct btrfs_fs_info *fs_info = root->fs_info;
993 	struct btrfs_key key;
994 	struct btrfs_inode_item *inode_item;
995 	struct extent_buffer *leaf;
996 	unsigned int nofs_flag;
997 	int mod;
998 	int ret;
999 
1000 	key.objectid = node->inode_id;
1001 	key.type = BTRFS_INODE_ITEM_KEY;
1002 	key.offset = 0;
1003 
1004 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1005 		mod = -1;
1006 	else
1007 		mod = 1;
1008 
1009 	nofs_flag = memalloc_nofs_save();
1010 	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1011 	memalloc_nofs_restore(nofs_flag);
1012 	if (ret > 0) {
1013 		btrfs_release_path(path);
1014 		return -ENOENT;
1015 	} else if (ret < 0) {
1016 		return ret;
1017 	}
1018 
1019 	leaf = path->nodes[0];
1020 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1021 				    struct btrfs_inode_item);
1022 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1023 			    sizeof(struct btrfs_inode_item));
1024 	btrfs_mark_buffer_dirty(leaf);
1025 
1026 	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1027 		goto no_iref;
1028 
1029 	path->slots[0]++;
1030 	if (path->slots[0] >= btrfs_header_nritems(leaf))
1031 		goto search;
1032 again:
1033 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1034 	if (key.objectid != node->inode_id)
1035 		goto out;
1036 
1037 	if (key.type != BTRFS_INODE_REF_KEY &&
1038 	    key.type != BTRFS_INODE_EXTREF_KEY)
1039 		goto out;
1040 
1041 	/*
1042 	 * Delayed iref deletion is for the inode who has only one link,
1043 	 * so there is only one iref. The case that several irefs are
1044 	 * in the same item doesn't exist.
1045 	 */
1046 	btrfs_del_item(trans, root, path);
1047 out:
1048 	btrfs_release_delayed_iref(node);
1049 no_iref:
1050 	btrfs_release_path(path);
1051 err_out:
1052 	btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1053 	btrfs_release_delayed_inode(node);
1054 
1055 	return ret;
1056 
1057 search:
1058 	btrfs_release_path(path);
1059 
1060 	key.type = BTRFS_INODE_EXTREF_KEY;
1061 	key.offset = -1;
1062 
1063 	nofs_flag = memalloc_nofs_save();
1064 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1065 	memalloc_nofs_restore(nofs_flag);
1066 	if (ret < 0)
1067 		goto err_out;
1068 	ASSERT(ret);
1069 
1070 	ret = 0;
1071 	leaf = path->nodes[0];
1072 	path->slots[0]--;
1073 	goto again;
1074 }
1075 
1076 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1077 					     struct btrfs_root *root,
1078 					     struct btrfs_path *path,
1079 					     struct btrfs_delayed_node *node)
1080 {
1081 	int ret;
1082 
1083 	mutex_lock(&node->mutex);
1084 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1085 		mutex_unlock(&node->mutex);
1086 		return 0;
1087 	}
1088 
1089 	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1090 	mutex_unlock(&node->mutex);
1091 	return ret;
1092 }
1093 
1094 static inline int
1095 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1096 				   struct btrfs_path *path,
1097 				   struct btrfs_delayed_node *node)
1098 {
1099 	int ret;
1100 
1101 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1102 	if (ret)
1103 		return ret;
1104 
1105 	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1106 	if (ret)
1107 		return ret;
1108 
1109 	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1110 	return ret;
1111 }
1112 
1113 /*
1114  * Called when committing the transaction.
1115  * Returns 0 on success.
1116  * Returns < 0 on error and returns with an aborted transaction with any
1117  * outstanding delayed items cleaned up.
1118  */
1119 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1120 {
1121 	struct btrfs_fs_info *fs_info = trans->fs_info;
1122 	struct btrfs_delayed_root *delayed_root;
1123 	struct btrfs_delayed_node *curr_node, *prev_node;
1124 	struct btrfs_path *path;
1125 	struct btrfs_block_rsv *block_rsv;
1126 	int ret = 0;
1127 	bool count = (nr > 0);
1128 
1129 	if (TRANS_ABORTED(trans))
1130 		return -EIO;
1131 
1132 	path = btrfs_alloc_path();
1133 	if (!path)
1134 		return -ENOMEM;
1135 
1136 	block_rsv = trans->block_rsv;
1137 	trans->block_rsv = &fs_info->delayed_block_rsv;
1138 
1139 	delayed_root = fs_info->delayed_root;
1140 
1141 	curr_node = btrfs_first_delayed_node(delayed_root);
1142 	while (curr_node && (!count || nr--)) {
1143 		ret = __btrfs_commit_inode_delayed_items(trans, path,
1144 							 curr_node);
1145 		if (ret) {
1146 			btrfs_release_delayed_node(curr_node);
1147 			curr_node = NULL;
1148 			btrfs_abort_transaction(trans, ret);
1149 			break;
1150 		}
1151 
1152 		prev_node = curr_node;
1153 		curr_node = btrfs_next_delayed_node(curr_node);
1154 		btrfs_release_delayed_node(prev_node);
1155 	}
1156 
1157 	if (curr_node)
1158 		btrfs_release_delayed_node(curr_node);
1159 	btrfs_free_path(path);
1160 	trans->block_rsv = block_rsv;
1161 
1162 	return ret;
1163 }
1164 
1165 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1166 {
1167 	return __btrfs_run_delayed_items(trans, -1);
1168 }
1169 
1170 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1171 {
1172 	return __btrfs_run_delayed_items(trans, nr);
1173 }
1174 
1175 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1176 				     struct btrfs_inode *inode)
1177 {
1178 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1179 	struct btrfs_path *path;
1180 	struct btrfs_block_rsv *block_rsv;
1181 	int ret;
1182 
1183 	if (!delayed_node)
1184 		return 0;
1185 
1186 	mutex_lock(&delayed_node->mutex);
1187 	if (!delayed_node->count) {
1188 		mutex_unlock(&delayed_node->mutex);
1189 		btrfs_release_delayed_node(delayed_node);
1190 		return 0;
1191 	}
1192 	mutex_unlock(&delayed_node->mutex);
1193 
1194 	path = btrfs_alloc_path();
1195 	if (!path) {
1196 		btrfs_release_delayed_node(delayed_node);
1197 		return -ENOMEM;
1198 	}
1199 
1200 	block_rsv = trans->block_rsv;
1201 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1202 
1203 	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1204 
1205 	btrfs_release_delayed_node(delayed_node);
1206 	btrfs_free_path(path);
1207 	trans->block_rsv = block_rsv;
1208 
1209 	return ret;
1210 }
1211 
1212 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1213 {
1214 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1215 	struct btrfs_trans_handle *trans;
1216 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1217 	struct btrfs_path *path;
1218 	struct btrfs_block_rsv *block_rsv;
1219 	int ret;
1220 
1221 	if (!delayed_node)
1222 		return 0;
1223 
1224 	mutex_lock(&delayed_node->mutex);
1225 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1226 		mutex_unlock(&delayed_node->mutex);
1227 		btrfs_release_delayed_node(delayed_node);
1228 		return 0;
1229 	}
1230 	mutex_unlock(&delayed_node->mutex);
1231 
1232 	trans = btrfs_join_transaction(delayed_node->root);
1233 	if (IS_ERR(trans)) {
1234 		ret = PTR_ERR(trans);
1235 		goto out;
1236 	}
1237 
1238 	path = btrfs_alloc_path();
1239 	if (!path) {
1240 		ret = -ENOMEM;
1241 		goto trans_out;
1242 	}
1243 
1244 	block_rsv = trans->block_rsv;
1245 	trans->block_rsv = &fs_info->delayed_block_rsv;
1246 
1247 	mutex_lock(&delayed_node->mutex);
1248 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1249 		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1250 						   path, delayed_node);
1251 	else
1252 		ret = 0;
1253 	mutex_unlock(&delayed_node->mutex);
1254 
1255 	btrfs_free_path(path);
1256 	trans->block_rsv = block_rsv;
1257 trans_out:
1258 	btrfs_end_transaction(trans);
1259 	btrfs_btree_balance_dirty(fs_info);
1260 out:
1261 	btrfs_release_delayed_node(delayed_node);
1262 
1263 	return ret;
1264 }
1265 
1266 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1267 {
1268 	struct btrfs_delayed_node *delayed_node;
1269 
1270 	delayed_node = READ_ONCE(inode->delayed_node);
1271 	if (!delayed_node)
1272 		return;
1273 
1274 	inode->delayed_node = NULL;
1275 	btrfs_release_delayed_node(delayed_node);
1276 }
1277 
1278 struct btrfs_async_delayed_work {
1279 	struct btrfs_delayed_root *delayed_root;
1280 	int nr;
1281 	struct btrfs_work work;
1282 };
1283 
1284 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1285 {
1286 	struct btrfs_async_delayed_work *async_work;
1287 	struct btrfs_delayed_root *delayed_root;
1288 	struct btrfs_trans_handle *trans;
1289 	struct btrfs_path *path;
1290 	struct btrfs_delayed_node *delayed_node = NULL;
1291 	struct btrfs_root *root;
1292 	struct btrfs_block_rsv *block_rsv;
1293 	int total_done = 0;
1294 
1295 	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1296 	delayed_root = async_work->delayed_root;
1297 
1298 	path = btrfs_alloc_path();
1299 	if (!path)
1300 		goto out;
1301 
1302 	do {
1303 		if (atomic_read(&delayed_root->items) <
1304 		    BTRFS_DELAYED_BACKGROUND / 2)
1305 			break;
1306 
1307 		delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1308 		if (!delayed_node)
1309 			break;
1310 
1311 		root = delayed_node->root;
1312 
1313 		trans = btrfs_join_transaction(root);
1314 		if (IS_ERR(trans)) {
1315 			btrfs_release_path(path);
1316 			btrfs_release_prepared_delayed_node(delayed_node);
1317 			total_done++;
1318 			continue;
1319 		}
1320 
1321 		block_rsv = trans->block_rsv;
1322 		trans->block_rsv = &root->fs_info->delayed_block_rsv;
1323 
1324 		__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1325 
1326 		trans->block_rsv = block_rsv;
1327 		btrfs_end_transaction(trans);
1328 		btrfs_btree_balance_dirty_nodelay(root->fs_info);
1329 
1330 		btrfs_release_path(path);
1331 		btrfs_release_prepared_delayed_node(delayed_node);
1332 		total_done++;
1333 
1334 	} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1335 		 || total_done < async_work->nr);
1336 
1337 	btrfs_free_path(path);
1338 out:
1339 	wake_up(&delayed_root->wait);
1340 	kfree(async_work);
1341 }
1342 
1343 
1344 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1345 				     struct btrfs_fs_info *fs_info, int nr)
1346 {
1347 	struct btrfs_async_delayed_work *async_work;
1348 
1349 	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1350 	if (!async_work)
1351 		return -ENOMEM;
1352 
1353 	async_work->delayed_root = delayed_root;
1354 	btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1355 			NULL);
1356 	async_work->nr = nr;
1357 
1358 	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1359 	return 0;
1360 }
1361 
1362 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1363 {
1364 	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1365 }
1366 
1367 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1368 {
1369 	int val = atomic_read(&delayed_root->items_seq);
1370 
1371 	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1372 		return 1;
1373 
1374 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1375 		return 1;
1376 
1377 	return 0;
1378 }
1379 
1380 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1381 {
1382 	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1383 
1384 	if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1385 		btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1386 		return;
1387 
1388 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1389 		int seq;
1390 		int ret;
1391 
1392 		seq = atomic_read(&delayed_root->items_seq);
1393 
1394 		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1395 		if (ret)
1396 			return;
1397 
1398 		wait_event_interruptible(delayed_root->wait,
1399 					 could_end_wait(delayed_root, seq));
1400 		return;
1401 	}
1402 
1403 	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1404 }
1405 
1406 /* Will return 0 or -ENOMEM */
1407 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1408 				   const char *name, int name_len,
1409 				   struct btrfs_inode *dir,
1410 				   struct btrfs_disk_key *disk_key, u8 type,
1411 				   u64 index)
1412 {
1413 	struct btrfs_delayed_node *delayed_node;
1414 	struct btrfs_delayed_item *delayed_item;
1415 	struct btrfs_dir_item *dir_item;
1416 	int ret;
1417 
1418 	delayed_node = btrfs_get_or_create_delayed_node(dir);
1419 	if (IS_ERR(delayed_node))
1420 		return PTR_ERR(delayed_node);
1421 
1422 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1423 	if (!delayed_item) {
1424 		ret = -ENOMEM;
1425 		goto release_node;
1426 	}
1427 
1428 	delayed_item->key.objectid = btrfs_ino(dir);
1429 	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1430 	delayed_item->key.offset = index;
1431 
1432 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1433 	dir_item->location = *disk_key;
1434 	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1435 	btrfs_set_stack_dir_data_len(dir_item, 0);
1436 	btrfs_set_stack_dir_name_len(dir_item, name_len);
1437 	btrfs_set_stack_dir_type(dir_item, type);
1438 	memcpy((char *)(dir_item + 1), name, name_len);
1439 
1440 	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1441 	/*
1442 	 * we have reserved enough space when we start a new transaction,
1443 	 * so reserving metadata failure is impossible
1444 	 */
1445 	BUG_ON(ret);
1446 
1447 	mutex_lock(&delayed_node->mutex);
1448 	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1449 	if (unlikely(ret)) {
1450 		btrfs_err(trans->fs_info,
1451 			  "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1452 			  name_len, name, delayed_node->root->root_key.objectid,
1453 			  delayed_node->inode_id, ret);
1454 		BUG();
1455 	}
1456 	mutex_unlock(&delayed_node->mutex);
1457 
1458 release_node:
1459 	btrfs_release_delayed_node(delayed_node);
1460 	return ret;
1461 }
1462 
1463 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1464 					       struct btrfs_delayed_node *node,
1465 					       struct btrfs_key *key)
1466 {
1467 	struct btrfs_delayed_item *item;
1468 
1469 	mutex_lock(&node->mutex);
1470 	item = __btrfs_lookup_delayed_insertion_item(node, key);
1471 	if (!item) {
1472 		mutex_unlock(&node->mutex);
1473 		return 1;
1474 	}
1475 
1476 	btrfs_delayed_item_release_metadata(node->root, item);
1477 	btrfs_release_delayed_item(item);
1478 	mutex_unlock(&node->mutex);
1479 	return 0;
1480 }
1481 
1482 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1483 				   struct btrfs_inode *dir, u64 index)
1484 {
1485 	struct btrfs_delayed_node *node;
1486 	struct btrfs_delayed_item *item;
1487 	struct btrfs_key item_key;
1488 	int ret;
1489 
1490 	node = btrfs_get_or_create_delayed_node(dir);
1491 	if (IS_ERR(node))
1492 		return PTR_ERR(node);
1493 
1494 	item_key.objectid = btrfs_ino(dir);
1495 	item_key.type = BTRFS_DIR_INDEX_KEY;
1496 	item_key.offset = index;
1497 
1498 	ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1499 						  &item_key);
1500 	if (!ret)
1501 		goto end;
1502 
1503 	item = btrfs_alloc_delayed_item(0);
1504 	if (!item) {
1505 		ret = -ENOMEM;
1506 		goto end;
1507 	}
1508 
1509 	item->key = item_key;
1510 
1511 	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1512 	/*
1513 	 * we have reserved enough space when we start a new transaction,
1514 	 * so reserving metadata failure is impossible.
1515 	 */
1516 	if (ret < 0) {
1517 		btrfs_err(trans->fs_info,
1518 "metadata reservation failed for delayed dir item deltiona, should have been reserved");
1519 		btrfs_release_delayed_item(item);
1520 		goto end;
1521 	}
1522 
1523 	mutex_lock(&node->mutex);
1524 	ret = __btrfs_add_delayed_deletion_item(node, item);
1525 	if (unlikely(ret)) {
1526 		btrfs_err(trans->fs_info,
1527 			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1528 			  index, node->root->root_key.objectid,
1529 			  node->inode_id, ret);
1530 		btrfs_delayed_item_release_metadata(dir->root, item);
1531 		btrfs_release_delayed_item(item);
1532 	}
1533 	mutex_unlock(&node->mutex);
1534 end:
1535 	btrfs_release_delayed_node(node);
1536 	return ret;
1537 }
1538 
1539 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1540 {
1541 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1542 
1543 	if (!delayed_node)
1544 		return -ENOENT;
1545 
1546 	/*
1547 	 * Since we have held i_mutex of this directory, it is impossible that
1548 	 * a new directory index is added into the delayed node and index_cnt
1549 	 * is updated now. So we needn't lock the delayed node.
1550 	 */
1551 	if (!delayed_node->index_cnt) {
1552 		btrfs_release_delayed_node(delayed_node);
1553 		return -EINVAL;
1554 	}
1555 
1556 	inode->index_cnt = delayed_node->index_cnt;
1557 	btrfs_release_delayed_node(delayed_node);
1558 	return 0;
1559 }
1560 
1561 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1562 				     struct list_head *ins_list,
1563 				     struct list_head *del_list)
1564 {
1565 	struct btrfs_delayed_node *delayed_node;
1566 	struct btrfs_delayed_item *item;
1567 
1568 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1569 	if (!delayed_node)
1570 		return false;
1571 
1572 	/*
1573 	 * We can only do one readdir with delayed items at a time because of
1574 	 * item->readdir_list.
1575 	 */
1576 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1577 	btrfs_inode_lock(inode, 0);
1578 
1579 	mutex_lock(&delayed_node->mutex);
1580 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1581 	while (item) {
1582 		refcount_inc(&item->refs);
1583 		list_add_tail(&item->readdir_list, ins_list);
1584 		item = __btrfs_next_delayed_item(item);
1585 	}
1586 
1587 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1588 	while (item) {
1589 		refcount_inc(&item->refs);
1590 		list_add_tail(&item->readdir_list, del_list);
1591 		item = __btrfs_next_delayed_item(item);
1592 	}
1593 	mutex_unlock(&delayed_node->mutex);
1594 	/*
1595 	 * This delayed node is still cached in the btrfs inode, so refs
1596 	 * must be > 1 now, and we needn't check it is going to be freed
1597 	 * or not.
1598 	 *
1599 	 * Besides that, this function is used to read dir, we do not
1600 	 * insert/delete delayed items in this period. So we also needn't
1601 	 * requeue or dequeue this delayed node.
1602 	 */
1603 	refcount_dec(&delayed_node->refs);
1604 
1605 	return true;
1606 }
1607 
1608 void btrfs_readdir_put_delayed_items(struct inode *inode,
1609 				     struct list_head *ins_list,
1610 				     struct list_head *del_list)
1611 {
1612 	struct btrfs_delayed_item *curr, *next;
1613 
1614 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1615 		list_del(&curr->readdir_list);
1616 		if (refcount_dec_and_test(&curr->refs))
1617 			kfree(curr);
1618 	}
1619 
1620 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1621 		list_del(&curr->readdir_list);
1622 		if (refcount_dec_and_test(&curr->refs))
1623 			kfree(curr);
1624 	}
1625 
1626 	/*
1627 	 * The VFS is going to do up_read(), so we need to downgrade back to a
1628 	 * read lock.
1629 	 */
1630 	downgrade_write(&inode->i_rwsem);
1631 }
1632 
1633 int btrfs_should_delete_dir_index(struct list_head *del_list,
1634 				  u64 index)
1635 {
1636 	struct btrfs_delayed_item *curr;
1637 	int ret = 0;
1638 
1639 	list_for_each_entry(curr, del_list, readdir_list) {
1640 		if (curr->key.offset > index)
1641 			break;
1642 		if (curr->key.offset == index) {
1643 			ret = 1;
1644 			break;
1645 		}
1646 	}
1647 	return ret;
1648 }
1649 
1650 /*
1651  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1652  *
1653  */
1654 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1655 				    struct list_head *ins_list)
1656 {
1657 	struct btrfs_dir_item *di;
1658 	struct btrfs_delayed_item *curr, *next;
1659 	struct btrfs_key location;
1660 	char *name;
1661 	int name_len;
1662 	int over = 0;
1663 	unsigned char d_type;
1664 
1665 	if (list_empty(ins_list))
1666 		return 0;
1667 
1668 	/*
1669 	 * Changing the data of the delayed item is impossible. So
1670 	 * we needn't lock them. And we have held i_mutex of the
1671 	 * directory, nobody can delete any directory indexes now.
1672 	 */
1673 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1674 		list_del(&curr->readdir_list);
1675 
1676 		if (curr->key.offset < ctx->pos) {
1677 			if (refcount_dec_and_test(&curr->refs))
1678 				kfree(curr);
1679 			continue;
1680 		}
1681 
1682 		ctx->pos = curr->key.offset;
1683 
1684 		di = (struct btrfs_dir_item *)curr->data;
1685 		name = (char *)(di + 1);
1686 		name_len = btrfs_stack_dir_name_len(di);
1687 
1688 		d_type = fs_ftype_to_dtype(di->type);
1689 		btrfs_disk_key_to_cpu(&location, &di->location);
1690 
1691 		over = !dir_emit(ctx, name, name_len,
1692 			       location.objectid, d_type);
1693 
1694 		if (refcount_dec_and_test(&curr->refs))
1695 			kfree(curr);
1696 
1697 		if (over)
1698 			return 1;
1699 		ctx->pos++;
1700 	}
1701 	return 0;
1702 }
1703 
1704 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1705 				  struct btrfs_inode_item *inode_item,
1706 				  struct inode *inode)
1707 {
1708 	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1709 	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1710 	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1711 	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1712 	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1713 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1714 	btrfs_set_stack_inode_generation(inode_item,
1715 					 BTRFS_I(inode)->generation);
1716 	btrfs_set_stack_inode_sequence(inode_item,
1717 				       inode_peek_iversion(inode));
1718 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1719 	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1720 	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1721 	btrfs_set_stack_inode_block_group(inode_item, 0);
1722 
1723 	btrfs_set_stack_timespec_sec(&inode_item->atime,
1724 				     inode->i_atime.tv_sec);
1725 	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1726 				      inode->i_atime.tv_nsec);
1727 
1728 	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1729 				     inode->i_mtime.tv_sec);
1730 	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1731 				      inode->i_mtime.tv_nsec);
1732 
1733 	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1734 				     inode->i_ctime.tv_sec);
1735 	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1736 				      inode->i_ctime.tv_nsec);
1737 
1738 	btrfs_set_stack_timespec_sec(&inode_item->otime,
1739 				     BTRFS_I(inode)->i_otime.tv_sec);
1740 	btrfs_set_stack_timespec_nsec(&inode_item->otime,
1741 				     BTRFS_I(inode)->i_otime.tv_nsec);
1742 }
1743 
1744 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1745 {
1746 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1747 	struct btrfs_delayed_node *delayed_node;
1748 	struct btrfs_inode_item *inode_item;
1749 
1750 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1751 	if (!delayed_node)
1752 		return -ENOENT;
1753 
1754 	mutex_lock(&delayed_node->mutex);
1755 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1756 		mutex_unlock(&delayed_node->mutex);
1757 		btrfs_release_delayed_node(delayed_node);
1758 		return -ENOENT;
1759 	}
1760 
1761 	inode_item = &delayed_node->inode_item;
1762 
1763 	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1764 	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1765 	btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1766 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1767 			round_up(i_size_read(inode), fs_info->sectorsize));
1768 	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1769 	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1770 	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1771 	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1772         BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1773 
1774 	inode_set_iversion_queried(inode,
1775 				   btrfs_stack_inode_sequence(inode_item));
1776 	inode->i_rdev = 0;
1777 	*rdev = btrfs_stack_inode_rdev(inode_item);
1778 	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1779 
1780 	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1781 	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1782 
1783 	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1784 	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1785 
1786 	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1787 	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1788 
1789 	BTRFS_I(inode)->i_otime.tv_sec =
1790 		btrfs_stack_timespec_sec(&inode_item->otime);
1791 	BTRFS_I(inode)->i_otime.tv_nsec =
1792 		btrfs_stack_timespec_nsec(&inode_item->otime);
1793 
1794 	inode->i_generation = BTRFS_I(inode)->generation;
1795 	BTRFS_I(inode)->index_cnt = (u64)-1;
1796 
1797 	mutex_unlock(&delayed_node->mutex);
1798 	btrfs_release_delayed_node(delayed_node);
1799 	return 0;
1800 }
1801 
1802 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1803 			       struct btrfs_root *root,
1804 			       struct btrfs_inode *inode)
1805 {
1806 	struct btrfs_delayed_node *delayed_node;
1807 	int ret = 0;
1808 
1809 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1810 	if (IS_ERR(delayed_node))
1811 		return PTR_ERR(delayed_node);
1812 
1813 	mutex_lock(&delayed_node->mutex);
1814 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1815 		fill_stack_inode_item(trans, &delayed_node->inode_item,
1816 				      &inode->vfs_inode);
1817 		goto release_node;
1818 	}
1819 
1820 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1821 	if (ret)
1822 		goto release_node;
1823 
1824 	fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1825 	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1826 	delayed_node->count++;
1827 	atomic_inc(&root->fs_info->delayed_root->items);
1828 release_node:
1829 	mutex_unlock(&delayed_node->mutex);
1830 	btrfs_release_delayed_node(delayed_node);
1831 	return ret;
1832 }
1833 
1834 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1835 {
1836 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1837 	struct btrfs_delayed_node *delayed_node;
1838 
1839 	/*
1840 	 * we don't do delayed inode updates during log recovery because it
1841 	 * leads to enospc problems.  This means we also can't do
1842 	 * delayed inode refs
1843 	 */
1844 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1845 		return -EAGAIN;
1846 
1847 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1848 	if (IS_ERR(delayed_node))
1849 		return PTR_ERR(delayed_node);
1850 
1851 	/*
1852 	 * We don't reserve space for inode ref deletion is because:
1853 	 * - We ONLY do async inode ref deletion for the inode who has only
1854 	 *   one link(i_nlink == 1), it means there is only one inode ref.
1855 	 *   And in most case, the inode ref and the inode item are in the
1856 	 *   same leaf, and we will deal with them at the same time.
1857 	 *   Since we are sure we will reserve the space for the inode item,
1858 	 *   it is unnecessary to reserve space for inode ref deletion.
1859 	 * - If the inode ref and the inode item are not in the same leaf,
1860 	 *   We also needn't worry about enospc problem, because we reserve
1861 	 *   much more space for the inode update than it needs.
1862 	 * - At the worst, we can steal some space from the global reservation.
1863 	 *   It is very rare.
1864 	 */
1865 	mutex_lock(&delayed_node->mutex);
1866 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1867 		goto release_node;
1868 
1869 	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1870 	delayed_node->count++;
1871 	atomic_inc(&fs_info->delayed_root->items);
1872 release_node:
1873 	mutex_unlock(&delayed_node->mutex);
1874 	btrfs_release_delayed_node(delayed_node);
1875 	return 0;
1876 }
1877 
1878 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1879 {
1880 	struct btrfs_root *root = delayed_node->root;
1881 	struct btrfs_fs_info *fs_info = root->fs_info;
1882 	struct btrfs_delayed_item *curr_item, *prev_item;
1883 
1884 	mutex_lock(&delayed_node->mutex);
1885 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1886 	while (curr_item) {
1887 		btrfs_delayed_item_release_metadata(root, curr_item);
1888 		prev_item = curr_item;
1889 		curr_item = __btrfs_next_delayed_item(prev_item);
1890 		btrfs_release_delayed_item(prev_item);
1891 	}
1892 
1893 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1894 	while (curr_item) {
1895 		btrfs_delayed_item_release_metadata(root, curr_item);
1896 		prev_item = curr_item;
1897 		curr_item = __btrfs_next_delayed_item(prev_item);
1898 		btrfs_release_delayed_item(prev_item);
1899 	}
1900 
1901 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1902 		btrfs_release_delayed_iref(delayed_node);
1903 
1904 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1905 		btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1906 		btrfs_release_delayed_inode(delayed_node);
1907 	}
1908 	mutex_unlock(&delayed_node->mutex);
1909 }
1910 
1911 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1912 {
1913 	struct btrfs_delayed_node *delayed_node;
1914 
1915 	delayed_node = btrfs_get_delayed_node(inode);
1916 	if (!delayed_node)
1917 		return;
1918 
1919 	__btrfs_kill_delayed_node(delayed_node);
1920 	btrfs_release_delayed_node(delayed_node);
1921 }
1922 
1923 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1924 {
1925 	u64 inode_id = 0;
1926 	struct btrfs_delayed_node *delayed_nodes[8];
1927 	int i, n;
1928 
1929 	while (1) {
1930 		spin_lock(&root->inode_lock);
1931 		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1932 					   (void **)delayed_nodes, inode_id,
1933 					   ARRAY_SIZE(delayed_nodes));
1934 		if (!n) {
1935 			spin_unlock(&root->inode_lock);
1936 			break;
1937 		}
1938 
1939 		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1940 		for (i = 0; i < n; i++) {
1941 			/*
1942 			 * Don't increase refs in case the node is dead and
1943 			 * about to be removed from the tree in the loop below
1944 			 */
1945 			if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
1946 				delayed_nodes[i] = NULL;
1947 		}
1948 		spin_unlock(&root->inode_lock);
1949 
1950 		for (i = 0; i < n; i++) {
1951 			if (!delayed_nodes[i])
1952 				continue;
1953 			__btrfs_kill_delayed_node(delayed_nodes[i]);
1954 			btrfs_release_delayed_node(delayed_nodes[i]);
1955 		}
1956 	}
1957 }
1958 
1959 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1960 {
1961 	struct btrfs_delayed_node *curr_node, *prev_node;
1962 
1963 	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1964 	while (curr_node) {
1965 		__btrfs_kill_delayed_node(curr_node);
1966 
1967 		prev_node = curr_node;
1968 		curr_node = btrfs_next_delayed_node(curr_node);
1969 		btrfs_release_delayed_node(prev_node);
1970 	}
1971 }
1972 
1973