1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 Fujitsu. All rights reserved. 4 * Written by Miao Xie <miaox@cn.fujitsu.com> 5 */ 6 7 #include <linux/slab.h> 8 #include <linux/iversion.h> 9 #include <linux/sched/mm.h> 10 #include "misc.h" 11 #include "delayed-inode.h" 12 #include "disk-io.h" 13 #include "transaction.h" 14 #include "ctree.h" 15 #include "qgroup.h" 16 #include "locking.h" 17 18 #define BTRFS_DELAYED_WRITEBACK 512 19 #define BTRFS_DELAYED_BACKGROUND 128 20 #define BTRFS_DELAYED_BATCH 16 21 22 static struct kmem_cache *delayed_node_cache; 23 24 int __init btrfs_delayed_inode_init(void) 25 { 26 delayed_node_cache = kmem_cache_create("btrfs_delayed_node", 27 sizeof(struct btrfs_delayed_node), 28 0, 29 SLAB_MEM_SPREAD, 30 NULL); 31 if (!delayed_node_cache) 32 return -ENOMEM; 33 return 0; 34 } 35 36 void __cold btrfs_delayed_inode_exit(void) 37 { 38 kmem_cache_destroy(delayed_node_cache); 39 } 40 41 static inline void btrfs_init_delayed_node( 42 struct btrfs_delayed_node *delayed_node, 43 struct btrfs_root *root, u64 inode_id) 44 { 45 delayed_node->root = root; 46 delayed_node->inode_id = inode_id; 47 refcount_set(&delayed_node->refs, 0); 48 delayed_node->ins_root = RB_ROOT_CACHED; 49 delayed_node->del_root = RB_ROOT_CACHED; 50 mutex_init(&delayed_node->mutex); 51 INIT_LIST_HEAD(&delayed_node->n_list); 52 INIT_LIST_HEAD(&delayed_node->p_list); 53 } 54 55 static inline int btrfs_is_continuous_delayed_item( 56 struct btrfs_delayed_item *item1, 57 struct btrfs_delayed_item *item2) 58 { 59 if (item1->key.type == BTRFS_DIR_INDEX_KEY && 60 item1->key.objectid == item2->key.objectid && 61 item1->key.type == item2->key.type && 62 item1->key.offset + 1 == item2->key.offset) 63 return 1; 64 return 0; 65 } 66 67 static struct btrfs_delayed_node *btrfs_get_delayed_node( 68 struct btrfs_inode *btrfs_inode) 69 { 70 struct btrfs_root *root = btrfs_inode->root; 71 u64 ino = btrfs_ino(btrfs_inode); 72 struct btrfs_delayed_node *node; 73 74 node = READ_ONCE(btrfs_inode->delayed_node); 75 if (node) { 76 refcount_inc(&node->refs); 77 return node; 78 } 79 80 spin_lock(&root->inode_lock); 81 node = radix_tree_lookup(&root->delayed_nodes_tree, ino); 82 83 if (node) { 84 if (btrfs_inode->delayed_node) { 85 refcount_inc(&node->refs); /* can be accessed */ 86 BUG_ON(btrfs_inode->delayed_node != node); 87 spin_unlock(&root->inode_lock); 88 return node; 89 } 90 91 /* 92 * It's possible that we're racing into the middle of removing 93 * this node from the radix tree. In this case, the refcount 94 * was zero and it should never go back to one. Just return 95 * NULL like it was never in the radix at all; our release 96 * function is in the process of removing it. 97 * 98 * Some implementations of refcount_inc refuse to bump the 99 * refcount once it has hit zero. If we don't do this dance 100 * here, refcount_inc() may decide to just WARN_ONCE() instead 101 * of actually bumping the refcount. 102 * 103 * If this node is properly in the radix, we want to bump the 104 * refcount twice, once for the inode and once for this get 105 * operation. 106 */ 107 if (refcount_inc_not_zero(&node->refs)) { 108 refcount_inc(&node->refs); 109 btrfs_inode->delayed_node = node; 110 } else { 111 node = NULL; 112 } 113 114 spin_unlock(&root->inode_lock); 115 return node; 116 } 117 spin_unlock(&root->inode_lock); 118 119 return NULL; 120 } 121 122 /* Will return either the node or PTR_ERR(-ENOMEM) */ 123 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( 124 struct btrfs_inode *btrfs_inode) 125 { 126 struct btrfs_delayed_node *node; 127 struct btrfs_root *root = btrfs_inode->root; 128 u64 ino = btrfs_ino(btrfs_inode); 129 int ret; 130 131 again: 132 node = btrfs_get_delayed_node(btrfs_inode); 133 if (node) 134 return node; 135 136 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); 137 if (!node) 138 return ERR_PTR(-ENOMEM); 139 btrfs_init_delayed_node(node, root, ino); 140 141 /* cached in the btrfs inode and can be accessed */ 142 refcount_set(&node->refs, 2); 143 144 ret = radix_tree_preload(GFP_NOFS); 145 if (ret) { 146 kmem_cache_free(delayed_node_cache, node); 147 return ERR_PTR(ret); 148 } 149 150 spin_lock(&root->inode_lock); 151 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node); 152 if (ret == -EEXIST) { 153 spin_unlock(&root->inode_lock); 154 kmem_cache_free(delayed_node_cache, node); 155 radix_tree_preload_end(); 156 goto again; 157 } 158 btrfs_inode->delayed_node = node; 159 spin_unlock(&root->inode_lock); 160 radix_tree_preload_end(); 161 162 return node; 163 } 164 165 /* 166 * Call it when holding delayed_node->mutex 167 * 168 * If mod = 1, add this node into the prepared list. 169 */ 170 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, 171 struct btrfs_delayed_node *node, 172 int mod) 173 { 174 spin_lock(&root->lock); 175 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 176 if (!list_empty(&node->p_list)) 177 list_move_tail(&node->p_list, &root->prepare_list); 178 else if (mod) 179 list_add_tail(&node->p_list, &root->prepare_list); 180 } else { 181 list_add_tail(&node->n_list, &root->node_list); 182 list_add_tail(&node->p_list, &root->prepare_list); 183 refcount_inc(&node->refs); /* inserted into list */ 184 root->nodes++; 185 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 186 } 187 spin_unlock(&root->lock); 188 } 189 190 /* Call it when holding delayed_node->mutex */ 191 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, 192 struct btrfs_delayed_node *node) 193 { 194 spin_lock(&root->lock); 195 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 196 root->nodes--; 197 refcount_dec(&node->refs); /* not in the list */ 198 list_del_init(&node->n_list); 199 if (!list_empty(&node->p_list)) 200 list_del_init(&node->p_list); 201 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 202 } 203 spin_unlock(&root->lock); 204 } 205 206 static struct btrfs_delayed_node *btrfs_first_delayed_node( 207 struct btrfs_delayed_root *delayed_root) 208 { 209 struct list_head *p; 210 struct btrfs_delayed_node *node = NULL; 211 212 spin_lock(&delayed_root->lock); 213 if (list_empty(&delayed_root->node_list)) 214 goto out; 215 216 p = delayed_root->node_list.next; 217 node = list_entry(p, struct btrfs_delayed_node, n_list); 218 refcount_inc(&node->refs); 219 out: 220 spin_unlock(&delayed_root->lock); 221 222 return node; 223 } 224 225 static struct btrfs_delayed_node *btrfs_next_delayed_node( 226 struct btrfs_delayed_node *node) 227 { 228 struct btrfs_delayed_root *delayed_root; 229 struct list_head *p; 230 struct btrfs_delayed_node *next = NULL; 231 232 delayed_root = node->root->fs_info->delayed_root; 233 spin_lock(&delayed_root->lock); 234 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 235 /* not in the list */ 236 if (list_empty(&delayed_root->node_list)) 237 goto out; 238 p = delayed_root->node_list.next; 239 } else if (list_is_last(&node->n_list, &delayed_root->node_list)) 240 goto out; 241 else 242 p = node->n_list.next; 243 244 next = list_entry(p, struct btrfs_delayed_node, n_list); 245 refcount_inc(&next->refs); 246 out: 247 spin_unlock(&delayed_root->lock); 248 249 return next; 250 } 251 252 static void __btrfs_release_delayed_node( 253 struct btrfs_delayed_node *delayed_node, 254 int mod) 255 { 256 struct btrfs_delayed_root *delayed_root; 257 258 if (!delayed_node) 259 return; 260 261 delayed_root = delayed_node->root->fs_info->delayed_root; 262 263 mutex_lock(&delayed_node->mutex); 264 if (delayed_node->count) 265 btrfs_queue_delayed_node(delayed_root, delayed_node, mod); 266 else 267 btrfs_dequeue_delayed_node(delayed_root, delayed_node); 268 mutex_unlock(&delayed_node->mutex); 269 270 if (refcount_dec_and_test(&delayed_node->refs)) { 271 struct btrfs_root *root = delayed_node->root; 272 273 spin_lock(&root->inode_lock); 274 /* 275 * Once our refcount goes to zero, nobody is allowed to bump it 276 * back up. We can delete it now. 277 */ 278 ASSERT(refcount_read(&delayed_node->refs) == 0); 279 radix_tree_delete(&root->delayed_nodes_tree, 280 delayed_node->inode_id); 281 spin_unlock(&root->inode_lock); 282 kmem_cache_free(delayed_node_cache, delayed_node); 283 } 284 } 285 286 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) 287 { 288 __btrfs_release_delayed_node(node, 0); 289 } 290 291 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( 292 struct btrfs_delayed_root *delayed_root) 293 { 294 struct list_head *p; 295 struct btrfs_delayed_node *node = NULL; 296 297 spin_lock(&delayed_root->lock); 298 if (list_empty(&delayed_root->prepare_list)) 299 goto out; 300 301 p = delayed_root->prepare_list.next; 302 list_del_init(p); 303 node = list_entry(p, struct btrfs_delayed_node, p_list); 304 refcount_inc(&node->refs); 305 out: 306 spin_unlock(&delayed_root->lock); 307 308 return node; 309 } 310 311 static inline void btrfs_release_prepared_delayed_node( 312 struct btrfs_delayed_node *node) 313 { 314 __btrfs_release_delayed_node(node, 1); 315 } 316 317 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len) 318 { 319 struct btrfs_delayed_item *item; 320 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS); 321 if (item) { 322 item->data_len = data_len; 323 item->ins_or_del = 0; 324 item->bytes_reserved = 0; 325 item->delayed_node = NULL; 326 refcount_set(&item->refs, 1); 327 } 328 return item; 329 } 330 331 /* 332 * __btrfs_lookup_delayed_item - look up the delayed item by key 333 * @delayed_node: pointer to the delayed node 334 * @key: the key to look up 335 * @prev: used to store the prev item if the right item isn't found 336 * @next: used to store the next item if the right item isn't found 337 * 338 * Note: if we don't find the right item, we will return the prev item and 339 * the next item. 340 */ 341 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( 342 struct rb_root *root, 343 struct btrfs_key *key, 344 struct btrfs_delayed_item **prev, 345 struct btrfs_delayed_item **next) 346 { 347 struct rb_node *node, *prev_node = NULL; 348 struct btrfs_delayed_item *delayed_item = NULL; 349 int ret = 0; 350 351 node = root->rb_node; 352 353 while (node) { 354 delayed_item = rb_entry(node, struct btrfs_delayed_item, 355 rb_node); 356 prev_node = node; 357 ret = btrfs_comp_cpu_keys(&delayed_item->key, key); 358 if (ret < 0) 359 node = node->rb_right; 360 else if (ret > 0) 361 node = node->rb_left; 362 else 363 return delayed_item; 364 } 365 366 if (prev) { 367 if (!prev_node) 368 *prev = NULL; 369 else if (ret < 0) 370 *prev = delayed_item; 371 else if ((node = rb_prev(prev_node)) != NULL) { 372 *prev = rb_entry(node, struct btrfs_delayed_item, 373 rb_node); 374 } else 375 *prev = NULL; 376 } 377 378 if (next) { 379 if (!prev_node) 380 *next = NULL; 381 else if (ret > 0) 382 *next = delayed_item; 383 else if ((node = rb_next(prev_node)) != NULL) { 384 *next = rb_entry(node, struct btrfs_delayed_item, 385 rb_node); 386 } else 387 *next = NULL; 388 } 389 return NULL; 390 } 391 392 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item( 393 struct btrfs_delayed_node *delayed_node, 394 struct btrfs_key *key) 395 { 396 return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key, 397 NULL, NULL); 398 } 399 400 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, 401 struct btrfs_delayed_item *ins, 402 int action) 403 { 404 struct rb_node **p, *node; 405 struct rb_node *parent_node = NULL; 406 struct rb_root_cached *root; 407 struct btrfs_delayed_item *item; 408 int cmp; 409 bool leftmost = true; 410 411 if (action == BTRFS_DELAYED_INSERTION_ITEM) 412 root = &delayed_node->ins_root; 413 else if (action == BTRFS_DELAYED_DELETION_ITEM) 414 root = &delayed_node->del_root; 415 else 416 BUG(); 417 p = &root->rb_root.rb_node; 418 node = &ins->rb_node; 419 420 while (*p) { 421 parent_node = *p; 422 item = rb_entry(parent_node, struct btrfs_delayed_item, 423 rb_node); 424 425 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key); 426 if (cmp < 0) { 427 p = &(*p)->rb_right; 428 leftmost = false; 429 } else if (cmp > 0) { 430 p = &(*p)->rb_left; 431 } else { 432 return -EEXIST; 433 } 434 } 435 436 rb_link_node(node, parent_node, p); 437 rb_insert_color_cached(node, root, leftmost); 438 ins->delayed_node = delayed_node; 439 ins->ins_or_del = action; 440 441 if (ins->key.type == BTRFS_DIR_INDEX_KEY && 442 action == BTRFS_DELAYED_INSERTION_ITEM && 443 ins->key.offset >= delayed_node->index_cnt) 444 delayed_node->index_cnt = ins->key.offset + 1; 445 446 delayed_node->count++; 447 atomic_inc(&delayed_node->root->fs_info->delayed_root->items); 448 return 0; 449 } 450 451 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node, 452 struct btrfs_delayed_item *item) 453 { 454 return __btrfs_add_delayed_item(node, item, 455 BTRFS_DELAYED_INSERTION_ITEM); 456 } 457 458 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node, 459 struct btrfs_delayed_item *item) 460 { 461 return __btrfs_add_delayed_item(node, item, 462 BTRFS_DELAYED_DELETION_ITEM); 463 } 464 465 static void finish_one_item(struct btrfs_delayed_root *delayed_root) 466 { 467 int seq = atomic_inc_return(&delayed_root->items_seq); 468 469 /* atomic_dec_return implies a barrier */ 470 if ((atomic_dec_return(&delayed_root->items) < 471 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0)) 472 cond_wake_up_nomb(&delayed_root->wait); 473 } 474 475 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) 476 { 477 struct rb_root_cached *root; 478 struct btrfs_delayed_root *delayed_root; 479 480 /* Not associated with any delayed_node */ 481 if (!delayed_item->delayed_node) 482 return; 483 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root; 484 485 BUG_ON(!delayed_root); 486 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM && 487 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM); 488 489 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM) 490 root = &delayed_item->delayed_node->ins_root; 491 else 492 root = &delayed_item->delayed_node->del_root; 493 494 rb_erase_cached(&delayed_item->rb_node, root); 495 delayed_item->delayed_node->count--; 496 497 finish_one_item(delayed_root); 498 } 499 500 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) 501 { 502 if (item) { 503 __btrfs_remove_delayed_item(item); 504 if (refcount_dec_and_test(&item->refs)) 505 kfree(item); 506 } 507 } 508 509 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( 510 struct btrfs_delayed_node *delayed_node) 511 { 512 struct rb_node *p; 513 struct btrfs_delayed_item *item = NULL; 514 515 p = rb_first_cached(&delayed_node->ins_root); 516 if (p) 517 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 518 519 return item; 520 } 521 522 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( 523 struct btrfs_delayed_node *delayed_node) 524 { 525 struct rb_node *p; 526 struct btrfs_delayed_item *item = NULL; 527 528 p = rb_first_cached(&delayed_node->del_root); 529 if (p) 530 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 531 532 return item; 533 } 534 535 static struct btrfs_delayed_item *__btrfs_next_delayed_item( 536 struct btrfs_delayed_item *item) 537 { 538 struct rb_node *p; 539 struct btrfs_delayed_item *next = NULL; 540 541 p = rb_next(&item->rb_node); 542 if (p) 543 next = rb_entry(p, struct btrfs_delayed_item, rb_node); 544 545 return next; 546 } 547 548 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, 549 struct btrfs_root *root, 550 struct btrfs_delayed_item *item) 551 { 552 struct btrfs_block_rsv *src_rsv; 553 struct btrfs_block_rsv *dst_rsv; 554 struct btrfs_fs_info *fs_info = root->fs_info; 555 u64 num_bytes; 556 int ret; 557 558 if (!trans->bytes_reserved) 559 return 0; 560 561 src_rsv = trans->block_rsv; 562 dst_rsv = &fs_info->delayed_block_rsv; 563 564 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 565 566 /* 567 * Here we migrate space rsv from transaction rsv, since have already 568 * reserved space when starting a transaction. So no need to reserve 569 * qgroup space here. 570 */ 571 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 572 if (!ret) { 573 trace_btrfs_space_reservation(fs_info, "delayed_item", 574 item->key.objectid, 575 num_bytes, 1); 576 item->bytes_reserved = num_bytes; 577 } 578 579 return ret; 580 } 581 582 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, 583 struct btrfs_delayed_item *item) 584 { 585 struct btrfs_block_rsv *rsv; 586 struct btrfs_fs_info *fs_info = root->fs_info; 587 588 if (!item->bytes_reserved) 589 return; 590 591 rsv = &fs_info->delayed_block_rsv; 592 /* 593 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need 594 * to release/reserve qgroup space. 595 */ 596 trace_btrfs_space_reservation(fs_info, "delayed_item", 597 item->key.objectid, item->bytes_reserved, 598 0); 599 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL); 600 } 601 602 static int btrfs_delayed_inode_reserve_metadata( 603 struct btrfs_trans_handle *trans, 604 struct btrfs_root *root, 605 struct btrfs_delayed_node *node) 606 { 607 struct btrfs_fs_info *fs_info = root->fs_info; 608 struct btrfs_block_rsv *src_rsv; 609 struct btrfs_block_rsv *dst_rsv; 610 u64 num_bytes; 611 int ret; 612 613 src_rsv = trans->block_rsv; 614 dst_rsv = &fs_info->delayed_block_rsv; 615 616 num_bytes = btrfs_calc_metadata_size(fs_info, 1); 617 618 /* 619 * btrfs_dirty_inode will update the inode under btrfs_join_transaction 620 * which doesn't reserve space for speed. This is a problem since we 621 * still need to reserve space for this update, so try to reserve the 622 * space. 623 * 624 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since 625 * we always reserve enough to update the inode item. 626 */ 627 if (!src_rsv || (!trans->bytes_reserved && 628 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { 629 ret = btrfs_qgroup_reserve_meta(root, num_bytes, 630 BTRFS_QGROUP_RSV_META_PREALLOC, true); 631 if (ret < 0) 632 return ret; 633 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes, 634 BTRFS_RESERVE_NO_FLUSH); 635 /* NO_FLUSH could only fail with -ENOSPC */ 636 ASSERT(ret == 0 || ret == -ENOSPC); 637 if (ret) 638 btrfs_qgroup_free_meta_prealloc(root, num_bytes); 639 } else { 640 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 641 } 642 643 if (!ret) { 644 trace_btrfs_space_reservation(fs_info, "delayed_inode", 645 node->inode_id, num_bytes, 1); 646 node->bytes_reserved = num_bytes; 647 } 648 649 return ret; 650 } 651 652 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info, 653 struct btrfs_delayed_node *node, 654 bool qgroup_free) 655 { 656 struct btrfs_block_rsv *rsv; 657 658 if (!node->bytes_reserved) 659 return; 660 661 rsv = &fs_info->delayed_block_rsv; 662 trace_btrfs_space_reservation(fs_info, "delayed_inode", 663 node->inode_id, node->bytes_reserved, 0); 664 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL); 665 if (qgroup_free) 666 btrfs_qgroup_free_meta_prealloc(node->root, 667 node->bytes_reserved); 668 else 669 btrfs_qgroup_convert_reserved_meta(node->root, 670 node->bytes_reserved); 671 node->bytes_reserved = 0; 672 } 673 674 /* 675 * This helper will insert some continuous items into the same leaf according 676 * to the free space of the leaf. 677 */ 678 static int btrfs_batch_insert_items(struct btrfs_root *root, 679 struct btrfs_path *path, 680 struct btrfs_delayed_item *item) 681 { 682 struct btrfs_delayed_item *curr, *next; 683 int free_space; 684 int total_data_size = 0, total_size = 0; 685 struct extent_buffer *leaf; 686 char *data_ptr; 687 struct btrfs_key *keys; 688 u32 *data_size; 689 struct list_head head; 690 int slot; 691 int nitems; 692 int i; 693 int ret = 0; 694 695 BUG_ON(!path->nodes[0]); 696 697 leaf = path->nodes[0]; 698 free_space = btrfs_leaf_free_space(leaf); 699 INIT_LIST_HEAD(&head); 700 701 next = item; 702 nitems = 0; 703 704 /* 705 * count the number of the continuous items that we can insert in batch 706 */ 707 while (total_size + next->data_len + sizeof(struct btrfs_item) <= 708 free_space) { 709 total_data_size += next->data_len; 710 total_size += next->data_len + sizeof(struct btrfs_item); 711 list_add_tail(&next->tree_list, &head); 712 nitems++; 713 714 curr = next; 715 next = __btrfs_next_delayed_item(curr); 716 if (!next) 717 break; 718 719 if (!btrfs_is_continuous_delayed_item(curr, next)) 720 break; 721 } 722 723 if (!nitems) { 724 ret = 0; 725 goto out; 726 } 727 728 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS); 729 if (!keys) { 730 ret = -ENOMEM; 731 goto out; 732 } 733 734 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS); 735 if (!data_size) { 736 ret = -ENOMEM; 737 goto error; 738 } 739 740 /* get keys of all the delayed items */ 741 i = 0; 742 list_for_each_entry(next, &head, tree_list) { 743 keys[i] = next->key; 744 data_size[i] = next->data_len; 745 i++; 746 } 747 748 /* insert the keys of the items */ 749 setup_items_for_insert(root, path, keys, data_size, nitems); 750 751 /* insert the dir index items */ 752 slot = path->slots[0]; 753 list_for_each_entry_safe(curr, next, &head, tree_list) { 754 data_ptr = btrfs_item_ptr(leaf, slot, char); 755 write_extent_buffer(leaf, &curr->data, 756 (unsigned long)data_ptr, 757 curr->data_len); 758 slot++; 759 760 btrfs_delayed_item_release_metadata(root, curr); 761 762 list_del(&curr->tree_list); 763 btrfs_release_delayed_item(curr); 764 } 765 766 error: 767 kfree(data_size); 768 kfree(keys); 769 out: 770 return ret; 771 } 772 773 /* 774 * This helper can just do simple insertion that needn't extend item for new 775 * data, such as directory name index insertion, inode insertion. 776 */ 777 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, 778 struct btrfs_root *root, 779 struct btrfs_path *path, 780 struct btrfs_delayed_item *delayed_item) 781 { 782 struct extent_buffer *leaf; 783 unsigned int nofs_flag; 784 char *ptr; 785 int ret; 786 787 nofs_flag = memalloc_nofs_save(); 788 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key, 789 delayed_item->data_len); 790 memalloc_nofs_restore(nofs_flag); 791 if (ret < 0 && ret != -EEXIST) 792 return ret; 793 794 leaf = path->nodes[0]; 795 796 ptr = btrfs_item_ptr(leaf, path->slots[0], char); 797 798 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr, 799 delayed_item->data_len); 800 btrfs_mark_buffer_dirty(leaf); 801 802 btrfs_delayed_item_release_metadata(root, delayed_item); 803 return 0; 804 } 805 806 /* 807 * we insert an item first, then if there are some continuous items, we try 808 * to insert those items into the same leaf. 809 */ 810 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, 811 struct btrfs_path *path, 812 struct btrfs_root *root, 813 struct btrfs_delayed_node *node) 814 { 815 struct btrfs_delayed_item *curr, *prev; 816 int ret = 0; 817 818 do_again: 819 mutex_lock(&node->mutex); 820 curr = __btrfs_first_delayed_insertion_item(node); 821 if (!curr) 822 goto insert_end; 823 824 ret = btrfs_insert_delayed_item(trans, root, path, curr); 825 if (ret < 0) { 826 btrfs_release_path(path); 827 goto insert_end; 828 } 829 830 prev = curr; 831 curr = __btrfs_next_delayed_item(prev); 832 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) { 833 /* insert the continuous items into the same leaf */ 834 path->slots[0]++; 835 btrfs_batch_insert_items(root, path, curr); 836 } 837 btrfs_release_delayed_item(prev); 838 btrfs_mark_buffer_dirty(path->nodes[0]); 839 840 btrfs_release_path(path); 841 mutex_unlock(&node->mutex); 842 goto do_again; 843 844 insert_end: 845 mutex_unlock(&node->mutex); 846 return ret; 847 } 848 849 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, 850 struct btrfs_root *root, 851 struct btrfs_path *path, 852 struct btrfs_delayed_item *item) 853 { 854 struct btrfs_delayed_item *curr, *next; 855 struct extent_buffer *leaf; 856 struct btrfs_key key; 857 struct list_head head; 858 int nitems, i, last_item; 859 int ret = 0; 860 861 BUG_ON(!path->nodes[0]); 862 863 leaf = path->nodes[0]; 864 865 i = path->slots[0]; 866 last_item = btrfs_header_nritems(leaf) - 1; 867 if (i > last_item) 868 return -ENOENT; /* FIXME: Is errno suitable? */ 869 870 next = item; 871 INIT_LIST_HEAD(&head); 872 btrfs_item_key_to_cpu(leaf, &key, i); 873 nitems = 0; 874 /* 875 * count the number of the dir index items that we can delete in batch 876 */ 877 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) { 878 list_add_tail(&next->tree_list, &head); 879 nitems++; 880 881 curr = next; 882 next = __btrfs_next_delayed_item(curr); 883 if (!next) 884 break; 885 886 if (!btrfs_is_continuous_delayed_item(curr, next)) 887 break; 888 889 i++; 890 if (i > last_item) 891 break; 892 btrfs_item_key_to_cpu(leaf, &key, i); 893 } 894 895 if (!nitems) 896 return 0; 897 898 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); 899 if (ret) 900 goto out; 901 902 list_for_each_entry_safe(curr, next, &head, tree_list) { 903 btrfs_delayed_item_release_metadata(root, curr); 904 list_del(&curr->tree_list); 905 btrfs_release_delayed_item(curr); 906 } 907 908 out: 909 return ret; 910 } 911 912 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, 913 struct btrfs_path *path, 914 struct btrfs_root *root, 915 struct btrfs_delayed_node *node) 916 { 917 struct btrfs_delayed_item *curr, *prev; 918 unsigned int nofs_flag; 919 int ret = 0; 920 921 do_again: 922 mutex_lock(&node->mutex); 923 curr = __btrfs_first_delayed_deletion_item(node); 924 if (!curr) 925 goto delete_fail; 926 927 nofs_flag = memalloc_nofs_save(); 928 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1); 929 memalloc_nofs_restore(nofs_flag); 930 if (ret < 0) 931 goto delete_fail; 932 else if (ret > 0) { 933 /* 934 * can't find the item which the node points to, so this node 935 * is invalid, just drop it. 936 */ 937 prev = curr; 938 curr = __btrfs_next_delayed_item(prev); 939 btrfs_release_delayed_item(prev); 940 ret = 0; 941 btrfs_release_path(path); 942 if (curr) { 943 mutex_unlock(&node->mutex); 944 goto do_again; 945 } else 946 goto delete_fail; 947 } 948 949 btrfs_batch_delete_items(trans, root, path, curr); 950 btrfs_release_path(path); 951 mutex_unlock(&node->mutex); 952 goto do_again; 953 954 delete_fail: 955 btrfs_release_path(path); 956 mutex_unlock(&node->mutex); 957 return ret; 958 } 959 960 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) 961 { 962 struct btrfs_delayed_root *delayed_root; 963 964 if (delayed_node && 965 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 966 BUG_ON(!delayed_node->root); 967 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 968 delayed_node->count--; 969 970 delayed_root = delayed_node->root->fs_info->delayed_root; 971 finish_one_item(delayed_root); 972 } 973 } 974 975 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) 976 { 977 struct btrfs_delayed_root *delayed_root; 978 979 ASSERT(delayed_node->root); 980 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 981 delayed_node->count--; 982 983 delayed_root = delayed_node->root->fs_info->delayed_root; 984 finish_one_item(delayed_root); 985 } 986 987 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 988 struct btrfs_root *root, 989 struct btrfs_path *path, 990 struct btrfs_delayed_node *node) 991 { 992 struct btrfs_fs_info *fs_info = root->fs_info; 993 struct btrfs_key key; 994 struct btrfs_inode_item *inode_item; 995 struct extent_buffer *leaf; 996 unsigned int nofs_flag; 997 int mod; 998 int ret; 999 1000 key.objectid = node->inode_id; 1001 key.type = BTRFS_INODE_ITEM_KEY; 1002 key.offset = 0; 1003 1004 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1005 mod = -1; 1006 else 1007 mod = 1; 1008 1009 nofs_flag = memalloc_nofs_save(); 1010 ret = btrfs_lookup_inode(trans, root, path, &key, mod); 1011 memalloc_nofs_restore(nofs_flag); 1012 if (ret > 0) { 1013 btrfs_release_path(path); 1014 return -ENOENT; 1015 } else if (ret < 0) { 1016 return ret; 1017 } 1018 1019 leaf = path->nodes[0]; 1020 inode_item = btrfs_item_ptr(leaf, path->slots[0], 1021 struct btrfs_inode_item); 1022 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, 1023 sizeof(struct btrfs_inode_item)); 1024 btrfs_mark_buffer_dirty(leaf); 1025 1026 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1027 goto no_iref; 1028 1029 path->slots[0]++; 1030 if (path->slots[0] >= btrfs_header_nritems(leaf)) 1031 goto search; 1032 again: 1033 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1034 if (key.objectid != node->inode_id) 1035 goto out; 1036 1037 if (key.type != BTRFS_INODE_REF_KEY && 1038 key.type != BTRFS_INODE_EXTREF_KEY) 1039 goto out; 1040 1041 /* 1042 * Delayed iref deletion is for the inode who has only one link, 1043 * so there is only one iref. The case that several irefs are 1044 * in the same item doesn't exist. 1045 */ 1046 btrfs_del_item(trans, root, path); 1047 out: 1048 btrfs_release_delayed_iref(node); 1049 no_iref: 1050 btrfs_release_path(path); 1051 err_out: 1052 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0)); 1053 btrfs_release_delayed_inode(node); 1054 1055 return ret; 1056 1057 search: 1058 btrfs_release_path(path); 1059 1060 key.type = BTRFS_INODE_EXTREF_KEY; 1061 key.offset = -1; 1062 1063 nofs_flag = memalloc_nofs_save(); 1064 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1065 memalloc_nofs_restore(nofs_flag); 1066 if (ret < 0) 1067 goto err_out; 1068 ASSERT(ret); 1069 1070 ret = 0; 1071 leaf = path->nodes[0]; 1072 path->slots[0]--; 1073 goto again; 1074 } 1075 1076 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1077 struct btrfs_root *root, 1078 struct btrfs_path *path, 1079 struct btrfs_delayed_node *node) 1080 { 1081 int ret; 1082 1083 mutex_lock(&node->mutex); 1084 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { 1085 mutex_unlock(&node->mutex); 1086 return 0; 1087 } 1088 1089 ret = __btrfs_update_delayed_inode(trans, root, path, node); 1090 mutex_unlock(&node->mutex); 1091 return ret; 1092 } 1093 1094 static inline int 1095 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1096 struct btrfs_path *path, 1097 struct btrfs_delayed_node *node) 1098 { 1099 int ret; 1100 1101 ret = btrfs_insert_delayed_items(trans, path, node->root, node); 1102 if (ret) 1103 return ret; 1104 1105 ret = btrfs_delete_delayed_items(trans, path, node->root, node); 1106 if (ret) 1107 return ret; 1108 1109 ret = btrfs_update_delayed_inode(trans, node->root, path, node); 1110 return ret; 1111 } 1112 1113 /* 1114 * Called when committing the transaction. 1115 * Returns 0 on success. 1116 * Returns < 0 on error and returns with an aborted transaction with any 1117 * outstanding delayed items cleaned up. 1118 */ 1119 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr) 1120 { 1121 struct btrfs_fs_info *fs_info = trans->fs_info; 1122 struct btrfs_delayed_root *delayed_root; 1123 struct btrfs_delayed_node *curr_node, *prev_node; 1124 struct btrfs_path *path; 1125 struct btrfs_block_rsv *block_rsv; 1126 int ret = 0; 1127 bool count = (nr > 0); 1128 1129 if (TRANS_ABORTED(trans)) 1130 return -EIO; 1131 1132 path = btrfs_alloc_path(); 1133 if (!path) 1134 return -ENOMEM; 1135 1136 block_rsv = trans->block_rsv; 1137 trans->block_rsv = &fs_info->delayed_block_rsv; 1138 1139 delayed_root = fs_info->delayed_root; 1140 1141 curr_node = btrfs_first_delayed_node(delayed_root); 1142 while (curr_node && (!count || nr--)) { 1143 ret = __btrfs_commit_inode_delayed_items(trans, path, 1144 curr_node); 1145 if (ret) { 1146 btrfs_release_delayed_node(curr_node); 1147 curr_node = NULL; 1148 btrfs_abort_transaction(trans, ret); 1149 break; 1150 } 1151 1152 prev_node = curr_node; 1153 curr_node = btrfs_next_delayed_node(curr_node); 1154 btrfs_release_delayed_node(prev_node); 1155 } 1156 1157 if (curr_node) 1158 btrfs_release_delayed_node(curr_node); 1159 btrfs_free_path(path); 1160 trans->block_rsv = block_rsv; 1161 1162 return ret; 1163 } 1164 1165 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans) 1166 { 1167 return __btrfs_run_delayed_items(trans, -1); 1168 } 1169 1170 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr) 1171 { 1172 return __btrfs_run_delayed_items(trans, nr); 1173 } 1174 1175 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1176 struct btrfs_inode *inode) 1177 { 1178 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1179 struct btrfs_path *path; 1180 struct btrfs_block_rsv *block_rsv; 1181 int ret; 1182 1183 if (!delayed_node) 1184 return 0; 1185 1186 mutex_lock(&delayed_node->mutex); 1187 if (!delayed_node->count) { 1188 mutex_unlock(&delayed_node->mutex); 1189 btrfs_release_delayed_node(delayed_node); 1190 return 0; 1191 } 1192 mutex_unlock(&delayed_node->mutex); 1193 1194 path = btrfs_alloc_path(); 1195 if (!path) { 1196 btrfs_release_delayed_node(delayed_node); 1197 return -ENOMEM; 1198 } 1199 1200 block_rsv = trans->block_rsv; 1201 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; 1202 1203 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1204 1205 btrfs_release_delayed_node(delayed_node); 1206 btrfs_free_path(path); 1207 trans->block_rsv = block_rsv; 1208 1209 return ret; 1210 } 1211 1212 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode) 1213 { 1214 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1215 struct btrfs_trans_handle *trans; 1216 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1217 struct btrfs_path *path; 1218 struct btrfs_block_rsv *block_rsv; 1219 int ret; 1220 1221 if (!delayed_node) 1222 return 0; 1223 1224 mutex_lock(&delayed_node->mutex); 1225 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1226 mutex_unlock(&delayed_node->mutex); 1227 btrfs_release_delayed_node(delayed_node); 1228 return 0; 1229 } 1230 mutex_unlock(&delayed_node->mutex); 1231 1232 trans = btrfs_join_transaction(delayed_node->root); 1233 if (IS_ERR(trans)) { 1234 ret = PTR_ERR(trans); 1235 goto out; 1236 } 1237 1238 path = btrfs_alloc_path(); 1239 if (!path) { 1240 ret = -ENOMEM; 1241 goto trans_out; 1242 } 1243 1244 block_rsv = trans->block_rsv; 1245 trans->block_rsv = &fs_info->delayed_block_rsv; 1246 1247 mutex_lock(&delayed_node->mutex); 1248 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) 1249 ret = __btrfs_update_delayed_inode(trans, delayed_node->root, 1250 path, delayed_node); 1251 else 1252 ret = 0; 1253 mutex_unlock(&delayed_node->mutex); 1254 1255 btrfs_free_path(path); 1256 trans->block_rsv = block_rsv; 1257 trans_out: 1258 btrfs_end_transaction(trans); 1259 btrfs_btree_balance_dirty(fs_info); 1260 out: 1261 btrfs_release_delayed_node(delayed_node); 1262 1263 return ret; 1264 } 1265 1266 void btrfs_remove_delayed_node(struct btrfs_inode *inode) 1267 { 1268 struct btrfs_delayed_node *delayed_node; 1269 1270 delayed_node = READ_ONCE(inode->delayed_node); 1271 if (!delayed_node) 1272 return; 1273 1274 inode->delayed_node = NULL; 1275 btrfs_release_delayed_node(delayed_node); 1276 } 1277 1278 struct btrfs_async_delayed_work { 1279 struct btrfs_delayed_root *delayed_root; 1280 int nr; 1281 struct btrfs_work work; 1282 }; 1283 1284 static void btrfs_async_run_delayed_root(struct btrfs_work *work) 1285 { 1286 struct btrfs_async_delayed_work *async_work; 1287 struct btrfs_delayed_root *delayed_root; 1288 struct btrfs_trans_handle *trans; 1289 struct btrfs_path *path; 1290 struct btrfs_delayed_node *delayed_node = NULL; 1291 struct btrfs_root *root; 1292 struct btrfs_block_rsv *block_rsv; 1293 int total_done = 0; 1294 1295 async_work = container_of(work, struct btrfs_async_delayed_work, work); 1296 delayed_root = async_work->delayed_root; 1297 1298 path = btrfs_alloc_path(); 1299 if (!path) 1300 goto out; 1301 1302 do { 1303 if (atomic_read(&delayed_root->items) < 1304 BTRFS_DELAYED_BACKGROUND / 2) 1305 break; 1306 1307 delayed_node = btrfs_first_prepared_delayed_node(delayed_root); 1308 if (!delayed_node) 1309 break; 1310 1311 root = delayed_node->root; 1312 1313 trans = btrfs_join_transaction(root); 1314 if (IS_ERR(trans)) { 1315 btrfs_release_path(path); 1316 btrfs_release_prepared_delayed_node(delayed_node); 1317 total_done++; 1318 continue; 1319 } 1320 1321 block_rsv = trans->block_rsv; 1322 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1323 1324 __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1325 1326 trans->block_rsv = block_rsv; 1327 btrfs_end_transaction(trans); 1328 btrfs_btree_balance_dirty_nodelay(root->fs_info); 1329 1330 btrfs_release_path(path); 1331 btrfs_release_prepared_delayed_node(delayed_node); 1332 total_done++; 1333 1334 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) 1335 || total_done < async_work->nr); 1336 1337 btrfs_free_path(path); 1338 out: 1339 wake_up(&delayed_root->wait); 1340 kfree(async_work); 1341 } 1342 1343 1344 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, 1345 struct btrfs_fs_info *fs_info, int nr) 1346 { 1347 struct btrfs_async_delayed_work *async_work; 1348 1349 async_work = kmalloc(sizeof(*async_work), GFP_NOFS); 1350 if (!async_work) 1351 return -ENOMEM; 1352 1353 async_work->delayed_root = delayed_root; 1354 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL, 1355 NULL); 1356 async_work->nr = nr; 1357 1358 btrfs_queue_work(fs_info->delayed_workers, &async_work->work); 1359 return 0; 1360 } 1361 1362 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info) 1363 { 1364 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root)); 1365 } 1366 1367 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) 1368 { 1369 int val = atomic_read(&delayed_root->items_seq); 1370 1371 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) 1372 return 1; 1373 1374 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1375 return 1; 1376 1377 return 0; 1378 } 1379 1380 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info) 1381 { 1382 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root; 1383 1384 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) || 1385 btrfs_workqueue_normal_congested(fs_info->delayed_workers)) 1386 return; 1387 1388 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { 1389 int seq; 1390 int ret; 1391 1392 seq = atomic_read(&delayed_root->items_seq); 1393 1394 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); 1395 if (ret) 1396 return; 1397 1398 wait_event_interruptible(delayed_root->wait, 1399 could_end_wait(delayed_root, seq)); 1400 return; 1401 } 1402 1403 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); 1404 } 1405 1406 /* Will return 0 or -ENOMEM */ 1407 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, 1408 const char *name, int name_len, 1409 struct btrfs_inode *dir, 1410 struct btrfs_disk_key *disk_key, u8 type, 1411 u64 index) 1412 { 1413 struct btrfs_delayed_node *delayed_node; 1414 struct btrfs_delayed_item *delayed_item; 1415 struct btrfs_dir_item *dir_item; 1416 int ret; 1417 1418 delayed_node = btrfs_get_or_create_delayed_node(dir); 1419 if (IS_ERR(delayed_node)) 1420 return PTR_ERR(delayed_node); 1421 1422 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len); 1423 if (!delayed_item) { 1424 ret = -ENOMEM; 1425 goto release_node; 1426 } 1427 1428 delayed_item->key.objectid = btrfs_ino(dir); 1429 delayed_item->key.type = BTRFS_DIR_INDEX_KEY; 1430 delayed_item->key.offset = index; 1431 1432 dir_item = (struct btrfs_dir_item *)delayed_item->data; 1433 dir_item->location = *disk_key; 1434 btrfs_set_stack_dir_transid(dir_item, trans->transid); 1435 btrfs_set_stack_dir_data_len(dir_item, 0); 1436 btrfs_set_stack_dir_name_len(dir_item, name_len); 1437 btrfs_set_stack_dir_type(dir_item, type); 1438 memcpy((char *)(dir_item + 1), name, name_len); 1439 1440 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item); 1441 /* 1442 * we have reserved enough space when we start a new transaction, 1443 * so reserving metadata failure is impossible 1444 */ 1445 BUG_ON(ret); 1446 1447 mutex_lock(&delayed_node->mutex); 1448 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item); 1449 if (unlikely(ret)) { 1450 btrfs_err(trans->fs_info, 1451 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1452 name_len, name, delayed_node->root->root_key.objectid, 1453 delayed_node->inode_id, ret); 1454 BUG(); 1455 } 1456 mutex_unlock(&delayed_node->mutex); 1457 1458 release_node: 1459 btrfs_release_delayed_node(delayed_node); 1460 return ret; 1461 } 1462 1463 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info, 1464 struct btrfs_delayed_node *node, 1465 struct btrfs_key *key) 1466 { 1467 struct btrfs_delayed_item *item; 1468 1469 mutex_lock(&node->mutex); 1470 item = __btrfs_lookup_delayed_insertion_item(node, key); 1471 if (!item) { 1472 mutex_unlock(&node->mutex); 1473 return 1; 1474 } 1475 1476 btrfs_delayed_item_release_metadata(node->root, item); 1477 btrfs_release_delayed_item(item); 1478 mutex_unlock(&node->mutex); 1479 return 0; 1480 } 1481 1482 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, 1483 struct btrfs_inode *dir, u64 index) 1484 { 1485 struct btrfs_delayed_node *node; 1486 struct btrfs_delayed_item *item; 1487 struct btrfs_key item_key; 1488 int ret; 1489 1490 node = btrfs_get_or_create_delayed_node(dir); 1491 if (IS_ERR(node)) 1492 return PTR_ERR(node); 1493 1494 item_key.objectid = btrfs_ino(dir); 1495 item_key.type = BTRFS_DIR_INDEX_KEY; 1496 item_key.offset = index; 1497 1498 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, 1499 &item_key); 1500 if (!ret) 1501 goto end; 1502 1503 item = btrfs_alloc_delayed_item(0); 1504 if (!item) { 1505 ret = -ENOMEM; 1506 goto end; 1507 } 1508 1509 item->key = item_key; 1510 1511 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item); 1512 /* 1513 * we have reserved enough space when we start a new transaction, 1514 * so reserving metadata failure is impossible. 1515 */ 1516 if (ret < 0) { 1517 btrfs_err(trans->fs_info, 1518 "metadata reservation failed for delayed dir item deltiona, should have been reserved"); 1519 btrfs_release_delayed_item(item); 1520 goto end; 1521 } 1522 1523 mutex_lock(&node->mutex); 1524 ret = __btrfs_add_delayed_deletion_item(node, item); 1525 if (unlikely(ret)) { 1526 btrfs_err(trans->fs_info, 1527 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1528 index, node->root->root_key.objectid, 1529 node->inode_id, ret); 1530 btrfs_delayed_item_release_metadata(dir->root, item); 1531 btrfs_release_delayed_item(item); 1532 } 1533 mutex_unlock(&node->mutex); 1534 end: 1535 btrfs_release_delayed_node(node); 1536 return ret; 1537 } 1538 1539 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode) 1540 { 1541 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1542 1543 if (!delayed_node) 1544 return -ENOENT; 1545 1546 /* 1547 * Since we have held i_mutex of this directory, it is impossible that 1548 * a new directory index is added into the delayed node and index_cnt 1549 * is updated now. So we needn't lock the delayed node. 1550 */ 1551 if (!delayed_node->index_cnt) { 1552 btrfs_release_delayed_node(delayed_node); 1553 return -EINVAL; 1554 } 1555 1556 inode->index_cnt = delayed_node->index_cnt; 1557 btrfs_release_delayed_node(delayed_node); 1558 return 0; 1559 } 1560 1561 bool btrfs_readdir_get_delayed_items(struct inode *inode, 1562 struct list_head *ins_list, 1563 struct list_head *del_list) 1564 { 1565 struct btrfs_delayed_node *delayed_node; 1566 struct btrfs_delayed_item *item; 1567 1568 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1569 if (!delayed_node) 1570 return false; 1571 1572 /* 1573 * We can only do one readdir with delayed items at a time because of 1574 * item->readdir_list. 1575 */ 1576 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 1577 btrfs_inode_lock(inode, 0); 1578 1579 mutex_lock(&delayed_node->mutex); 1580 item = __btrfs_first_delayed_insertion_item(delayed_node); 1581 while (item) { 1582 refcount_inc(&item->refs); 1583 list_add_tail(&item->readdir_list, ins_list); 1584 item = __btrfs_next_delayed_item(item); 1585 } 1586 1587 item = __btrfs_first_delayed_deletion_item(delayed_node); 1588 while (item) { 1589 refcount_inc(&item->refs); 1590 list_add_tail(&item->readdir_list, del_list); 1591 item = __btrfs_next_delayed_item(item); 1592 } 1593 mutex_unlock(&delayed_node->mutex); 1594 /* 1595 * This delayed node is still cached in the btrfs inode, so refs 1596 * must be > 1 now, and we needn't check it is going to be freed 1597 * or not. 1598 * 1599 * Besides that, this function is used to read dir, we do not 1600 * insert/delete delayed items in this period. So we also needn't 1601 * requeue or dequeue this delayed node. 1602 */ 1603 refcount_dec(&delayed_node->refs); 1604 1605 return true; 1606 } 1607 1608 void btrfs_readdir_put_delayed_items(struct inode *inode, 1609 struct list_head *ins_list, 1610 struct list_head *del_list) 1611 { 1612 struct btrfs_delayed_item *curr, *next; 1613 1614 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1615 list_del(&curr->readdir_list); 1616 if (refcount_dec_and_test(&curr->refs)) 1617 kfree(curr); 1618 } 1619 1620 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1621 list_del(&curr->readdir_list); 1622 if (refcount_dec_and_test(&curr->refs)) 1623 kfree(curr); 1624 } 1625 1626 /* 1627 * The VFS is going to do up_read(), so we need to downgrade back to a 1628 * read lock. 1629 */ 1630 downgrade_write(&inode->i_rwsem); 1631 } 1632 1633 int btrfs_should_delete_dir_index(struct list_head *del_list, 1634 u64 index) 1635 { 1636 struct btrfs_delayed_item *curr; 1637 int ret = 0; 1638 1639 list_for_each_entry(curr, del_list, readdir_list) { 1640 if (curr->key.offset > index) 1641 break; 1642 if (curr->key.offset == index) { 1643 ret = 1; 1644 break; 1645 } 1646 } 1647 return ret; 1648 } 1649 1650 /* 1651 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree 1652 * 1653 */ 1654 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx, 1655 struct list_head *ins_list) 1656 { 1657 struct btrfs_dir_item *di; 1658 struct btrfs_delayed_item *curr, *next; 1659 struct btrfs_key location; 1660 char *name; 1661 int name_len; 1662 int over = 0; 1663 unsigned char d_type; 1664 1665 if (list_empty(ins_list)) 1666 return 0; 1667 1668 /* 1669 * Changing the data of the delayed item is impossible. So 1670 * we needn't lock them. And we have held i_mutex of the 1671 * directory, nobody can delete any directory indexes now. 1672 */ 1673 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1674 list_del(&curr->readdir_list); 1675 1676 if (curr->key.offset < ctx->pos) { 1677 if (refcount_dec_and_test(&curr->refs)) 1678 kfree(curr); 1679 continue; 1680 } 1681 1682 ctx->pos = curr->key.offset; 1683 1684 di = (struct btrfs_dir_item *)curr->data; 1685 name = (char *)(di + 1); 1686 name_len = btrfs_stack_dir_name_len(di); 1687 1688 d_type = fs_ftype_to_dtype(di->type); 1689 btrfs_disk_key_to_cpu(&location, &di->location); 1690 1691 over = !dir_emit(ctx, name, name_len, 1692 location.objectid, d_type); 1693 1694 if (refcount_dec_and_test(&curr->refs)) 1695 kfree(curr); 1696 1697 if (over) 1698 return 1; 1699 ctx->pos++; 1700 } 1701 return 0; 1702 } 1703 1704 static void fill_stack_inode_item(struct btrfs_trans_handle *trans, 1705 struct btrfs_inode_item *inode_item, 1706 struct inode *inode) 1707 { 1708 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode)); 1709 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode)); 1710 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); 1711 btrfs_set_stack_inode_mode(inode_item, inode->i_mode); 1712 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); 1713 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); 1714 btrfs_set_stack_inode_generation(inode_item, 1715 BTRFS_I(inode)->generation); 1716 btrfs_set_stack_inode_sequence(inode_item, 1717 inode_peek_iversion(inode)); 1718 btrfs_set_stack_inode_transid(inode_item, trans->transid); 1719 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); 1720 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags); 1721 btrfs_set_stack_inode_block_group(inode_item, 0); 1722 1723 btrfs_set_stack_timespec_sec(&inode_item->atime, 1724 inode->i_atime.tv_sec); 1725 btrfs_set_stack_timespec_nsec(&inode_item->atime, 1726 inode->i_atime.tv_nsec); 1727 1728 btrfs_set_stack_timespec_sec(&inode_item->mtime, 1729 inode->i_mtime.tv_sec); 1730 btrfs_set_stack_timespec_nsec(&inode_item->mtime, 1731 inode->i_mtime.tv_nsec); 1732 1733 btrfs_set_stack_timespec_sec(&inode_item->ctime, 1734 inode->i_ctime.tv_sec); 1735 btrfs_set_stack_timespec_nsec(&inode_item->ctime, 1736 inode->i_ctime.tv_nsec); 1737 1738 btrfs_set_stack_timespec_sec(&inode_item->otime, 1739 BTRFS_I(inode)->i_otime.tv_sec); 1740 btrfs_set_stack_timespec_nsec(&inode_item->otime, 1741 BTRFS_I(inode)->i_otime.tv_nsec); 1742 } 1743 1744 int btrfs_fill_inode(struct inode *inode, u32 *rdev) 1745 { 1746 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1747 struct btrfs_delayed_node *delayed_node; 1748 struct btrfs_inode_item *inode_item; 1749 1750 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1751 if (!delayed_node) 1752 return -ENOENT; 1753 1754 mutex_lock(&delayed_node->mutex); 1755 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1756 mutex_unlock(&delayed_node->mutex); 1757 btrfs_release_delayed_node(delayed_node); 1758 return -ENOENT; 1759 } 1760 1761 inode_item = &delayed_node->inode_item; 1762 1763 i_uid_write(inode, btrfs_stack_inode_uid(inode_item)); 1764 i_gid_write(inode, btrfs_stack_inode_gid(inode_item)); 1765 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item)); 1766 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 1767 round_up(i_size_read(inode), fs_info->sectorsize)); 1768 inode->i_mode = btrfs_stack_inode_mode(inode_item); 1769 set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); 1770 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); 1771 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); 1772 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item); 1773 1774 inode_set_iversion_queried(inode, 1775 btrfs_stack_inode_sequence(inode_item)); 1776 inode->i_rdev = 0; 1777 *rdev = btrfs_stack_inode_rdev(inode_item); 1778 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item); 1779 1780 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime); 1781 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime); 1782 1783 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime); 1784 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime); 1785 1786 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime); 1787 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime); 1788 1789 BTRFS_I(inode)->i_otime.tv_sec = 1790 btrfs_stack_timespec_sec(&inode_item->otime); 1791 BTRFS_I(inode)->i_otime.tv_nsec = 1792 btrfs_stack_timespec_nsec(&inode_item->otime); 1793 1794 inode->i_generation = BTRFS_I(inode)->generation; 1795 BTRFS_I(inode)->index_cnt = (u64)-1; 1796 1797 mutex_unlock(&delayed_node->mutex); 1798 btrfs_release_delayed_node(delayed_node); 1799 return 0; 1800 } 1801 1802 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, 1803 struct btrfs_root *root, 1804 struct btrfs_inode *inode) 1805 { 1806 struct btrfs_delayed_node *delayed_node; 1807 int ret = 0; 1808 1809 delayed_node = btrfs_get_or_create_delayed_node(inode); 1810 if (IS_ERR(delayed_node)) 1811 return PTR_ERR(delayed_node); 1812 1813 mutex_lock(&delayed_node->mutex); 1814 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1815 fill_stack_inode_item(trans, &delayed_node->inode_item, 1816 &inode->vfs_inode); 1817 goto release_node; 1818 } 1819 1820 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node); 1821 if (ret) 1822 goto release_node; 1823 1824 fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode); 1825 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 1826 delayed_node->count++; 1827 atomic_inc(&root->fs_info->delayed_root->items); 1828 release_node: 1829 mutex_unlock(&delayed_node->mutex); 1830 btrfs_release_delayed_node(delayed_node); 1831 return ret; 1832 } 1833 1834 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode) 1835 { 1836 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1837 struct btrfs_delayed_node *delayed_node; 1838 1839 /* 1840 * we don't do delayed inode updates during log recovery because it 1841 * leads to enospc problems. This means we also can't do 1842 * delayed inode refs 1843 */ 1844 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1845 return -EAGAIN; 1846 1847 delayed_node = btrfs_get_or_create_delayed_node(inode); 1848 if (IS_ERR(delayed_node)) 1849 return PTR_ERR(delayed_node); 1850 1851 /* 1852 * We don't reserve space for inode ref deletion is because: 1853 * - We ONLY do async inode ref deletion for the inode who has only 1854 * one link(i_nlink == 1), it means there is only one inode ref. 1855 * And in most case, the inode ref and the inode item are in the 1856 * same leaf, and we will deal with them at the same time. 1857 * Since we are sure we will reserve the space for the inode item, 1858 * it is unnecessary to reserve space for inode ref deletion. 1859 * - If the inode ref and the inode item are not in the same leaf, 1860 * We also needn't worry about enospc problem, because we reserve 1861 * much more space for the inode update than it needs. 1862 * - At the worst, we can steal some space from the global reservation. 1863 * It is very rare. 1864 */ 1865 mutex_lock(&delayed_node->mutex); 1866 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1867 goto release_node; 1868 1869 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 1870 delayed_node->count++; 1871 atomic_inc(&fs_info->delayed_root->items); 1872 release_node: 1873 mutex_unlock(&delayed_node->mutex); 1874 btrfs_release_delayed_node(delayed_node); 1875 return 0; 1876 } 1877 1878 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) 1879 { 1880 struct btrfs_root *root = delayed_node->root; 1881 struct btrfs_fs_info *fs_info = root->fs_info; 1882 struct btrfs_delayed_item *curr_item, *prev_item; 1883 1884 mutex_lock(&delayed_node->mutex); 1885 curr_item = __btrfs_first_delayed_insertion_item(delayed_node); 1886 while (curr_item) { 1887 btrfs_delayed_item_release_metadata(root, curr_item); 1888 prev_item = curr_item; 1889 curr_item = __btrfs_next_delayed_item(prev_item); 1890 btrfs_release_delayed_item(prev_item); 1891 } 1892 1893 curr_item = __btrfs_first_delayed_deletion_item(delayed_node); 1894 while (curr_item) { 1895 btrfs_delayed_item_release_metadata(root, curr_item); 1896 prev_item = curr_item; 1897 curr_item = __btrfs_next_delayed_item(prev_item); 1898 btrfs_release_delayed_item(prev_item); 1899 } 1900 1901 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1902 btrfs_release_delayed_iref(delayed_node); 1903 1904 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1905 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false); 1906 btrfs_release_delayed_inode(delayed_node); 1907 } 1908 mutex_unlock(&delayed_node->mutex); 1909 } 1910 1911 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode) 1912 { 1913 struct btrfs_delayed_node *delayed_node; 1914 1915 delayed_node = btrfs_get_delayed_node(inode); 1916 if (!delayed_node) 1917 return; 1918 1919 __btrfs_kill_delayed_node(delayed_node); 1920 btrfs_release_delayed_node(delayed_node); 1921 } 1922 1923 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) 1924 { 1925 u64 inode_id = 0; 1926 struct btrfs_delayed_node *delayed_nodes[8]; 1927 int i, n; 1928 1929 while (1) { 1930 spin_lock(&root->inode_lock); 1931 n = radix_tree_gang_lookup(&root->delayed_nodes_tree, 1932 (void **)delayed_nodes, inode_id, 1933 ARRAY_SIZE(delayed_nodes)); 1934 if (!n) { 1935 spin_unlock(&root->inode_lock); 1936 break; 1937 } 1938 1939 inode_id = delayed_nodes[n - 1]->inode_id + 1; 1940 for (i = 0; i < n; i++) { 1941 /* 1942 * Don't increase refs in case the node is dead and 1943 * about to be removed from the tree in the loop below 1944 */ 1945 if (!refcount_inc_not_zero(&delayed_nodes[i]->refs)) 1946 delayed_nodes[i] = NULL; 1947 } 1948 spin_unlock(&root->inode_lock); 1949 1950 for (i = 0; i < n; i++) { 1951 if (!delayed_nodes[i]) 1952 continue; 1953 __btrfs_kill_delayed_node(delayed_nodes[i]); 1954 btrfs_release_delayed_node(delayed_nodes[i]); 1955 } 1956 } 1957 } 1958 1959 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info) 1960 { 1961 struct btrfs_delayed_node *curr_node, *prev_node; 1962 1963 curr_node = btrfs_first_delayed_node(fs_info->delayed_root); 1964 while (curr_node) { 1965 __btrfs_kill_delayed_node(curr_node); 1966 1967 prev_node = curr_node; 1968 curr_node = btrfs_next_delayed_node(curr_node); 1969 btrfs_release_delayed_node(prev_node); 1970 } 1971 } 1972 1973