xref: /openbmc/linux/fs/btrfs/delayed-inode.c (revision f6723b56)
1 /*
2  * Copyright (C) 2011 Fujitsu.  All rights reserved.
3  * Written by Miao Xie <miaox@cn.fujitsu.com>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19 
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "ctree.h"
25 
26 #define BTRFS_DELAYED_WRITEBACK		512
27 #define BTRFS_DELAYED_BACKGROUND	128
28 #define BTRFS_DELAYED_BATCH		16
29 
30 static struct kmem_cache *delayed_node_cache;
31 
32 int __init btrfs_delayed_inode_init(void)
33 {
34 	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
35 					sizeof(struct btrfs_delayed_node),
36 					0,
37 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
38 					NULL);
39 	if (!delayed_node_cache)
40 		return -ENOMEM;
41 	return 0;
42 }
43 
44 void btrfs_delayed_inode_exit(void)
45 {
46 	if (delayed_node_cache)
47 		kmem_cache_destroy(delayed_node_cache);
48 }
49 
50 static inline void btrfs_init_delayed_node(
51 				struct btrfs_delayed_node *delayed_node,
52 				struct btrfs_root *root, u64 inode_id)
53 {
54 	delayed_node->root = root;
55 	delayed_node->inode_id = inode_id;
56 	atomic_set(&delayed_node->refs, 0);
57 	delayed_node->count = 0;
58 	delayed_node->flags = 0;
59 	delayed_node->ins_root = RB_ROOT;
60 	delayed_node->del_root = RB_ROOT;
61 	mutex_init(&delayed_node->mutex);
62 	delayed_node->index_cnt = 0;
63 	INIT_LIST_HEAD(&delayed_node->n_list);
64 	INIT_LIST_HEAD(&delayed_node->p_list);
65 	delayed_node->bytes_reserved = 0;
66 	memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item));
67 }
68 
69 static inline int btrfs_is_continuous_delayed_item(
70 					struct btrfs_delayed_item *item1,
71 					struct btrfs_delayed_item *item2)
72 {
73 	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
74 	    item1->key.objectid == item2->key.objectid &&
75 	    item1->key.type == item2->key.type &&
76 	    item1->key.offset + 1 == item2->key.offset)
77 		return 1;
78 	return 0;
79 }
80 
81 static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
82 							struct btrfs_root *root)
83 {
84 	return root->fs_info->delayed_root;
85 }
86 
87 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
88 {
89 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
90 	struct btrfs_root *root = btrfs_inode->root;
91 	u64 ino = btrfs_ino(inode);
92 	struct btrfs_delayed_node *node;
93 
94 	node = ACCESS_ONCE(btrfs_inode->delayed_node);
95 	if (node) {
96 		atomic_inc(&node->refs);
97 		return node;
98 	}
99 
100 	spin_lock(&root->inode_lock);
101 	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
102 	if (node) {
103 		if (btrfs_inode->delayed_node) {
104 			atomic_inc(&node->refs);	/* can be accessed */
105 			BUG_ON(btrfs_inode->delayed_node != node);
106 			spin_unlock(&root->inode_lock);
107 			return node;
108 		}
109 		btrfs_inode->delayed_node = node;
110 		/* can be accessed and cached in the inode */
111 		atomic_add(2, &node->refs);
112 		spin_unlock(&root->inode_lock);
113 		return node;
114 	}
115 	spin_unlock(&root->inode_lock);
116 
117 	return NULL;
118 }
119 
120 /* Will return either the node or PTR_ERR(-ENOMEM) */
121 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
122 							struct inode *inode)
123 {
124 	struct btrfs_delayed_node *node;
125 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
126 	struct btrfs_root *root = btrfs_inode->root;
127 	u64 ino = btrfs_ino(inode);
128 	int ret;
129 
130 again:
131 	node = btrfs_get_delayed_node(inode);
132 	if (node)
133 		return node;
134 
135 	node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
136 	if (!node)
137 		return ERR_PTR(-ENOMEM);
138 	btrfs_init_delayed_node(node, root, ino);
139 
140 	/* cached in the btrfs inode and can be accessed */
141 	atomic_add(2, &node->refs);
142 
143 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
144 	if (ret) {
145 		kmem_cache_free(delayed_node_cache, node);
146 		return ERR_PTR(ret);
147 	}
148 
149 	spin_lock(&root->inode_lock);
150 	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
151 	if (ret == -EEXIST) {
152 		kmem_cache_free(delayed_node_cache, node);
153 		spin_unlock(&root->inode_lock);
154 		radix_tree_preload_end();
155 		goto again;
156 	}
157 	btrfs_inode->delayed_node = node;
158 	spin_unlock(&root->inode_lock);
159 	radix_tree_preload_end();
160 
161 	return node;
162 }
163 
164 /*
165  * Call it when holding delayed_node->mutex
166  *
167  * If mod = 1, add this node into the prepared list.
168  */
169 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
170 				     struct btrfs_delayed_node *node,
171 				     int mod)
172 {
173 	spin_lock(&root->lock);
174 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
175 		if (!list_empty(&node->p_list))
176 			list_move_tail(&node->p_list, &root->prepare_list);
177 		else if (mod)
178 			list_add_tail(&node->p_list, &root->prepare_list);
179 	} else {
180 		list_add_tail(&node->n_list, &root->node_list);
181 		list_add_tail(&node->p_list, &root->prepare_list);
182 		atomic_inc(&node->refs);	/* inserted into list */
183 		root->nodes++;
184 		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
185 	}
186 	spin_unlock(&root->lock);
187 }
188 
189 /* Call it when holding delayed_node->mutex */
190 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
191 				       struct btrfs_delayed_node *node)
192 {
193 	spin_lock(&root->lock);
194 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
195 		root->nodes--;
196 		atomic_dec(&node->refs);	/* not in the list */
197 		list_del_init(&node->n_list);
198 		if (!list_empty(&node->p_list))
199 			list_del_init(&node->p_list);
200 		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
201 	}
202 	spin_unlock(&root->lock);
203 }
204 
205 static struct btrfs_delayed_node *btrfs_first_delayed_node(
206 			struct btrfs_delayed_root *delayed_root)
207 {
208 	struct list_head *p;
209 	struct btrfs_delayed_node *node = NULL;
210 
211 	spin_lock(&delayed_root->lock);
212 	if (list_empty(&delayed_root->node_list))
213 		goto out;
214 
215 	p = delayed_root->node_list.next;
216 	node = list_entry(p, struct btrfs_delayed_node, n_list);
217 	atomic_inc(&node->refs);
218 out:
219 	spin_unlock(&delayed_root->lock);
220 
221 	return node;
222 }
223 
224 static struct btrfs_delayed_node *btrfs_next_delayed_node(
225 						struct btrfs_delayed_node *node)
226 {
227 	struct btrfs_delayed_root *delayed_root;
228 	struct list_head *p;
229 	struct btrfs_delayed_node *next = NULL;
230 
231 	delayed_root = node->root->fs_info->delayed_root;
232 	spin_lock(&delayed_root->lock);
233 	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
234 		/* not in the list */
235 		if (list_empty(&delayed_root->node_list))
236 			goto out;
237 		p = delayed_root->node_list.next;
238 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
239 		goto out;
240 	else
241 		p = node->n_list.next;
242 
243 	next = list_entry(p, struct btrfs_delayed_node, n_list);
244 	atomic_inc(&next->refs);
245 out:
246 	spin_unlock(&delayed_root->lock);
247 
248 	return next;
249 }
250 
251 static void __btrfs_release_delayed_node(
252 				struct btrfs_delayed_node *delayed_node,
253 				int mod)
254 {
255 	struct btrfs_delayed_root *delayed_root;
256 
257 	if (!delayed_node)
258 		return;
259 
260 	delayed_root = delayed_node->root->fs_info->delayed_root;
261 
262 	mutex_lock(&delayed_node->mutex);
263 	if (delayed_node->count)
264 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
265 	else
266 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
267 	mutex_unlock(&delayed_node->mutex);
268 
269 	if (atomic_dec_and_test(&delayed_node->refs)) {
270 		struct btrfs_root *root = delayed_node->root;
271 		spin_lock(&root->inode_lock);
272 		if (atomic_read(&delayed_node->refs) == 0) {
273 			radix_tree_delete(&root->delayed_nodes_tree,
274 					  delayed_node->inode_id);
275 			kmem_cache_free(delayed_node_cache, delayed_node);
276 		}
277 		spin_unlock(&root->inode_lock);
278 	}
279 }
280 
281 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
282 {
283 	__btrfs_release_delayed_node(node, 0);
284 }
285 
286 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
287 					struct btrfs_delayed_root *delayed_root)
288 {
289 	struct list_head *p;
290 	struct btrfs_delayed_node *node = NULL;
291 
292 	spin_lock(&delayed_root->lock);
293 	if (list_empty(&delayed_root->prepare_list))
294 		goto out;
295 
296 	p = delayed_root->prepare_list.next;
297 	list_del_init(p);
298 	node = list_entry(p, struct btrfs_delayed_node, p_list);
299 	atomic_inc(&node->refs);
300 out:
301 	spin_unlock(&delayed_root->lock);
302 
303 	return node;
304 }
305 
306 static inline void btrfs_release_prepared_delayed_node(
307 					struct btrfs_delayed_node *node)
308 {
309 	__btrfs_release_delayed_node(node, 1);
310 }
311 
312 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
313 {
314 	struct btrfs_delayed_item *item;
315 	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
316 	if (item) {
317 		item->data_len = data_len;
318 		item->ins_or_del = 0;
319 		item->bytes_reserved = 0;
320 		item->delayed_node = NULL;
321 		atomic_set(&item->refs, 1);
322 	}
323 	return item;
324 }
325 
326 /*
327  * __btrfs_lookup_delayed_item - look up the delayed item by key
328  * @delayed_node: pointer to the delayed node
329  * @key:	  the key to look up
330  * @prev:	  used to store the prev item if the right item isn't found
331  * @next:	  used to store the next item if the right item isn't found
332  *
333  * Note: if we don't find the right item, we will return the prev item and
334  * the next item.
335  */
336 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
337 				struct rb_root *root,
338 				struct btrfs_key *key,
339 				struct btrfs_delayed_item **prev,
340 				struct btrfs_delayed_item **next)
341 {
342 	struct rb_node *node, *prev_node = NULL;
343 	struct btrfs_delayed_item *delayed_item = NULL;
344 	int ret = 0;
345 
346 	node = root->rb_node;
347 
348 	while (node) {
349 		delayed_item = rb_entry(node, struct btrfs_delayed_item,
350 					rb_node);
351 		prev_node = node;
352 		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
353 		if (ret < 0)
354 			node = node->rb_right;
355 		else if (ret > 0)
356 			node = node->rb_left;
357 		else
358 			return delayed_item;
359 	}
360 
361 	if (prev) {
362 		if (!prev_node)
363 			*prev = NULL;
364 		else if (ret < 0)
365 			*prev = delayed_item;
366 		else if ((node = rb_prev(prev_node)) != NULL) {
367 			*prev = rb_entry(node, struct btrfs_delayed_item,
368 					 rb_node);
369 		} else
370 			*prev = NULL;
371 	}
372 
373 	if (next) {
374 		if (!prev_node)
375 			*next = NULL;
376 		else if (ret > 0)
377 			*next = delayed_item;
378 		else if ((node = rb_next(prev_node)) != NULL) {
379 			*next = rb_entry(node, struct btrfs_delayed_item,
380 					 rb_node);
381 		} else
382 			*next = NULL;
383 	}
384 	return NULL;
385 }
386 
387 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
388 					struct btrfs_delayed_node *delayed_node,
389 					struct btrfs_key *key)
390 {
391 	struct btrfs_delayed_item *item;
392 
393 	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
394 					   NULL, NULL);
395 	return item;
396 }
397 
398 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
399 				    struct btrfs_delayed_item *ins,
400 				    int action)
401 {
402 	struct rb_node **p, *node;
403 	struct rb_node *parent_node = NULL;
404 	struct rb_root *root;
405 	struct btrfs_delayed_item *item;
406 	int cmp;
407 
408 	if (action == BTRFS_DELAYED_INSERTION_ITEM)
409 		root = &delayed_node->ins_root;
410 	else if (action == BTRFS_DELAYED_DELETION_ITEM)
411 		root = &delayed_node->del_root;
412 	else
413 		BUG();
414 	p = &root->rb_node;
415 	node = &ins->rb_node;
416 
417 	while (*p) {
418 		parent_node = *p;
419 		item = rb_entry(parent_node, struct btrfs_delayed_item,
420 				 rb_node);
421 
422 		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
423 		if (cmp < 0)
424 			p = &(*p)->rb_right;
425 		else if (cmp > 0)
426 			p = &(*p)->rb_left;
427 		else
428 			return -EEXIST;
429 	}
430 
431 	rb_link_node(node, parent_node, p);
432 	rb_insert_color(node, root);
433 	ins->delayed_node = delayed_node;
434 	ins->ins_or_del = action;
435 
436 	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
437 	    action == BTRFS_DELAYED_INSERTION_ITEM &&
438 	    ins->key.offset >= delayed_node->index_cnt)
439 			delayed_node->index_cnt = ins->key.offset + 1;
440 
441 	delayed_node->count++;
442 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
443 	return 0;
444 }
445 
446 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
447 					      struct btrfs_delayed_item *item)
448 {
449 	return __btrfs_add_delayed_item(node, item,
450 					BTRFS_DELAYED_INSERTION_ITEM);
451 }
452 
453 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
454 					     struct btrfs_delayed_item *item)
455 {
456 	return __btrfs_add_delayed_item(node, item,
457 					BTRFS_DELAYED_DELETION_ITEM);
458 }
459 
460 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
461 {
462 	int seq = atomic_inc_return(&delayed_root->items_seq);
463 	if ((atomic_dec_return(&delayed_root->items) <
464 	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
465 	    waitqueue_active(&delayed_root->wait))
466 		wake_up(&delayed_root->wait);
467 }
468 
469 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
470 {
471 	struct rb_root *root;
472 	struct btrfs_delayed_root *delayed_root;
473 
474 	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
475 
476 	BUG_ON(!delayed_root);
477 	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
478 	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
479 
480 	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
481 		root = &delayed_item->delayed_node->ins_root;
482 	else
483 		root = &delayed_item->delayed_node->del_root;
484 
485 	rb_erase(&delayed_item->rb_node, root);
486 	delayed_item->delayed_node->count--;
487 
488 	finish_one_item(delayed_root);
489 }
490 
491 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
492 {
493 	if (item) {
494 		__btrfs_remove_delayed_item(item);
495 		if (atomic_dec_and_test(&item->refs))
496 			kfree(item);
497 	}
498 }
499 
500 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
501 					struct btrfs_delayed_node *delayed_node)
502 {
503 	struct rb_node *p;
504 	struct btrfs_delayed_item *item = NULL;
505 
506 	p = rb_first(&delayed_node->ins_root);
507 	if (p)
508 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
509 
510 	return item;
511 }
512 
513 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
514 					struct btrfs_delayed_node *delayed_node)
515 {
516 	struct rb_node *p;
517 	struct btrfs_delayed_item *item = NULL;
518 
519 	p = rb_first(&delayed_node->del_root);
520 	if (p)
521 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
522 
523 	return item;
524 }
525 
526 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
527 						struct btrfs_delayed_item *item)
528 {
529 	struct rb_node *p;
530 	struct btrfs_delayed_item *next = NULL;
531 
532 	p = rb_next(&item->rb_node);
533 	if (p)
534 		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
535 
536 	return next;
537 }
538 
539 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
540 					       struct btrfs_root *root,
541 					       struct btrfs_delayed_item *item)
542 {
543 	struct btrfs_block_rsv *src_rsv;
544 	struct btrfs_block_rsv *dst_rsv;
545 	u64 num_bytes;
546 	int ret;
547 
548 	if (!trans->bytes_reserved)
549 		return 0;
550 
551 	src_rsv = trans->block_rsv;
552 	dst_rsv = &root->fs_info->delayed_block_rsv;
553 
554 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
555 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
556 	if (!ret) {
557 		trace_btrfs_space_reservation(root->fs_info, "delayed_item",
558 					      item->key.objectid,
559 					      num_bytes, 1);
560 		item->bytes_reserved = num_bytes;
561 	}
562 
563 	return ret;
564 }
565 
566 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
567 						struct btrfs_delayed_item *item)
568 {
569 	struct btrfs_block_rsv *rsv;
570 
571 	if (!item->bytes_reserved)
572 		return;
573 
574 	rsv = &root->fs_info->delayed_block_rsv;
575 	trace_btrfs_space_reservation(root->fs_info, "delayed_item",
576 				      item->key.objectid, item->bytes_reserved,
577 				      0);
578 	btrfs_block_rsv_release(root, rsv,
579 				item->bytes_reserved);
580 }
581 
582 static int btrfs_delayed_inode_reserve_metadata(
583 					struct btrfs_trans_handle *trans,
584 					struct btrfs_root *root,
585 					struct inode *inode,
586 					struct btrfs_delayed_node *node)
587 {
588 	struct btrfs_block_rsv *src_rsv;
589 	struct btrfs_block_rsv *dst_rsv;
590 	u64 num_bytes;
591 	int ret;
592 	bool release = false;
593 
594 	src_rsv = trans->block_rsv;
595 	dst_rsv = &root->fs_info->delayed_block_rsv;
596 
597 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
598 
599 	/*
600 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
601 	 * which doesn't reserve space for speed.  This is a problem since we
602 	 * still need to reserve space for this update, so try to reserve the
603 	 * space.
604 	 *
605 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
606 	 * we're accounted for.
607 	 */
608 	if (!src_rsv || (!trans->bytes_reserved &&
609 			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
610 		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
611 					  BTRFS_RESERVE_NO_FLUSH);
612 		/*
613 		 * Since we're under a transaction reserve_metadata_bytes could
614 		 * try to commit the transaction which will make it return
615 		 * EAGAIN to make us stop the transaction we have, so return
616 		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
617 		 */
618 		if (ret == -EAGAIN)
619 			ret = -ENOSPC;
620 		if (!ret) {
621 			node->bytes_reserved = num_bytes;
622 			trace_btrfs_space_reservation(root->fs_info,
623 						      "delayed_inode",
624 						      btrfs_ino(inode),
625 						      num_bytes, 1);
626 		}
627 		return ret;
628 	} else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
629 		spin_lock(&BTRFS_I(inode)->lock);
630 		if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
631 				       &BTRFS_I(inode)->runtime_flags)) {
632 			spin_unlock(&BTRFS_I(inode)->lock);
633 			release = true;
634 			goto migrate;
635 		}
636 		spin_unlock(&BTRFS_I(inode)->lock);
637 
638 		/* Ok we didn't have space pre-reserved.  This shouldn't happen
639 		 * too often but it can happen if we do delalloc to an existing
640 		 * inode which gets dirtied because of the time update, and then
641 		 * isn't touched again until after the transaction commits and
642 		 * then we try to write out the data.  First try to be nice and
643 		 * reserve something strictly for us.  If not be a pain and try
644 		 * to steal from the delalloc block rsv.
645 		 */
646 		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
647 					  BTRFS_RESERVE_NO_FLUSH);
648 		if (!ret)
649 			goto out;
650 
651 		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
652 		if (!WARN_ON(ret))
653 			goto out;
654 
655 		/*
656 		 * Ok this is a problem, let's just steal from the global rsv
657 		 * since this really shouldn't happen that often.
658 		 */
659 		ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
660 					      dst_rsv, num_bytes);
661 		goto out;
662 	}
663 
664 migrate:
665 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
666 
667 out:
668 	/*
669 	 * Migrate only takes a reservation, it doesn't touch the size of the
670 	 * block_rsv.  This is to simplify people who don't normally have things
671 	 * migrated from their block rsv.  If they go to release their
672 	 * reservation, that will decrease the size as well, so if migrate
673 	 * reduced size we'd end up with a negative size.  But for the
674 	 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
675 	 * but we could in fact do this reserve/migrate dance several times
676 	 * between the time we did the original reservation and we'd clean it
677 	 * up.  So to take care of this, release the space for the meta
678 	 * reservation here.  I think it may be time for a documentation page on
679 	 * how block rsvs. work.
680 	 */
681 	if (!ret) {
682 		trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
683 					      btrfs_ino(inode), num_bytes, 1);
684 		node->bytes_reserved = num_bytes;
685 	}
686 
687 	if (release) {
688 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
689 					      btrfs_ino(inode), num_bytes, 0);
690 		btrfs_block_rsv_release(root, src_rsv, num_bytes);
691 	}
692 
693 	return ret;
694 }
695 
696 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
697 						struct btrfs_delayed_node *node)
698 {
699 	struct btrfs_block_rsv *rsv;
700 
701 	if (!node->bytes_reserved)
702 		return;
703 
704 	rsv = &root->fs_info->delayed_block_rsv;
705 	trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
706 				      node->inode_id, node->bytes_reserved, 0);
707 	btrfs_block_rsv_release(root, rsv,
708 				node->bytes_reserved);
709 	node->bytes_reserved = 0;
710 }
711 
712 /*
713  * This helper will insert some continuous items into the same leaf according
714  * to the free space of the leaf.
715  */
716 static int btrfs_batch_insert_items(struct btrfs_root *root,
717 				    struct btrfs_path *path,
718 				    struct btrfs_delayed_item *item)
719 {
720 	struct btrfs_delayed_item *curr, *next;
721 	int free_space;
722 	int total_data_size = 0, total_size = 0;
723 	struct extent_buffer *leaf;
724 	char *data_ptr;
725 	struct btrfs_key *keys;
726 	u32 *data_size;
727 	struct list_head head;
728 	int slot;
729 	int nitems;
730 	int i;
731 	int ret = 0;
732 
733 	BUG_ON(!path->nodes[0]);
734 
735 	leaf = path->nodes[0];
736 	free_space = btrfs_leaf_free_space(root, leaf);
737 	INIT_LIST_HEAD(&head);
738 
739 	next = item;
740 	nitems = 0;
741 
742 	/*
743 	 * count the number of the continuous items that we can insert in batch
744 	 */
745 	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
746 	       free_space) {
747 		total_data_size += next->data_len;
748 		total_size += next->data_len + sizeof(struct btrfs_item);
749 		list_add_tail(&next->tree_list, &head);
750 		nitems++;
751 
752 		curr = next;
753 		next = __btrfs_next_delayed_item(curr);
754 		if (!next)
755 			break;
756 
757 		if (!btrfs_is_continuous_delayed_item(curr, next))
758 			break;
759 	}
760 
761 	if (!nitems) {
762 		ret = 0;
763 		goto out;
764 	}
765 
766 	/*
767 	 * we need allocate some memory space, but it might cause the task
768 	 * to sleep, so we set all locked nodes in the path to blocking locks
769 	 * first.
770 	 */
771 	btrfs_set_path_blocking(path);
772 
773 	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
774 	if (!keys) {
775 		ret = -ENOMEM;
776 		goto out;
777 	}
778 
779 	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
780 	if (!data_size) {
781 		ret = -ENOMEM;
782 		goto error;
783 	}
784 
785 	/* get keys of all the delayed items */
786 	i = 0;
787 	list_for_each_entry(next, &head, tree_list) {
788 		keys[i] = next->key;
789 		data_size[i] = next->data_len;
790 		i++;
791 	}
792 
793 	/* reset all the locked nodes in the patch to spinning locks. */
794 	btrfs_clear_path_blocking(path, NULL, 0);
795 
796 	/* insert the keys of the items */
797 	setup_items_for_insert(root, path, keys, data_size,
798 			       total_data_size, total_size, nitems);
799 
800 	/* insert the dir index items */
801 	slot = path->slots[0];
802 	list_for_each_entry_safe(curr, next, &head, tree_list) {
803 		data_ptr = btrfs_item_ptr(leaf, slot, char);
804 		write_extent_buffer(leaf, &curr->data,
805 				    (unsigned long)data_ptr,
806 				    curr->data_len);
807 		slot++;
808 
809 		btrfs_delayed_item_release_metadata(root, curr);
810 
811 		list_del(&curr->tree_list);
812 		btrfs_release_delayed_item(curr);
813 	}
814 
815 error:
816 	kfree(data_size);
817 	kfree(keys);
818 out:
819 	return ret;
820 }
821 
822 /*
823  * This helper can just do simple insertion that needn't extend item for new
824  * data, such as directory name index insertion, inode insertion.
825  */
826 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
827 				     struct btrfs_root *root,
828 				     struct btrfs_path *path,
829 				     struct btrfs_delayed_item *delayed_item)
830 {
831 	struct extent_buffer *leaf;
832 	char *ptr;
833 	int ret;
834 
835 	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
836 				      delayed_item->data_len);
837 	if (ret < 0 && ret != -EEXIST)
838 		return ret;
839 
840 	leaf = path->nodes[0];
841 
842 	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
843 
844 	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
845 			    delayed_item->data_len);
846 	btrfs_mark_buffer_dirty(leaf);
847 
848 	btrfs_delayed_item_release_metadata(root, delayed_item);
849 	return 0;
850 }
851 
852 /*
853  * we insert an item first, then if there are some continuous items, we try
854  * to insert those items into the same leaf.
855  */
856 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
857 				      struct btrfs_path *path,
858 				      struct btrfs_root *root,
859 				      struct btrfs_delayed_node *node)
860 {
861 	struct btrfs_delayed_item *curr, *prev;
862 	int ret = 0;
863 
864 do_again:
865 	mutex_lock(&node->mutex);
866 	curr = __btrfs_first_delayed_insertion_item(node);
867 	if (!curr)
868 		goto insert_end;
869 
870 	ret = btrfs_insert_delayed_item(trans, root, path, curr);
871 	if (ret < 0) {
872 		btrfs_release_path(path);
873 		goto insert_end;
874 	}
875 
876 	prev = curr;
877 	curr = __btrfs_next_delayed_item(prev);
878 	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
879 		/* insert the continuous items into the same leaf */
880 		path->slots[0]++;
881 		btrfs_batch_insert_items(root, path, curr);
882 	}
883 	btrfs_release_delayed_item(prev);
884 	btrfs_mark_buffer_dirty(path->nodes[0]);
885 
886 	btrfs_release_path(path);
887 	mutex_unlock(&node->mutex);
888 	goto do_again;
889 
890 insert_end:
891 	mutex_unlock(&node->mutex);
892 	return ret;
893 }
894 
895 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
896 				    struct btrfs_root *root,
897 				    struct btrfs_path *path,
898 				    struct btrfs_delayed_item *item)
899 {
900 	struct btrfs_delayed_item *curr, *next;
901 	struct extent_buffer *leaf;
902 	struct btrfs_key key;
903 	struct list_head head;
904 	int nitems, i, last_item;
905 	int ret = 0;
906 
907 	BUG_ON(!path->nodes[0]);
908 
909 	leaf = path->nodes[0];
910 
911 	i = path->slots[0];
912 	last_item = btrfs_header_nritems(leaf) - 1;
913 	if (i > last_item)
914 		return -ENOENT;	/* FIXME: Is errno suitable? */
915 
916 	next = item;
917 	INIT_LIST_HEAD(&head);
918 	btrfs_item_key_to_cpu(leaf, &key, i);
919 	nitems = 0;
920 	/*
921 	 * count the number of the dir index items that we can delete in batch
922 	 */
923 	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
924 		list_add_tail(&next->tree_list, &head);
925 		nitems++;
926 
927 		curr = next;
928 		next = __btrfs_next_delayed_item(curr);
929 		if (!next)
930 			break;
931 
932 		if (!btrfs_is_continuous_delayed_item(curr, next))
933 			break;
934 
935 		i++;
936 		if (i > last_item)
937 			break;
938 		btrfs_item_key_to_cpu(leaf, &key, i);
939 	}
940 
941 	if (!nitems)
942 		return 0;
943 
944 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
945 	if (ret)
946 		goto out;
947 
948 	list_for_each_entry_safe(curr, next, &head, tree_list) {
949 		btrfs_delayed_item_release_metadata(root, curr);
950 		list_del(&curr->tree_list);
951 		btrfs_release_delayed_item(curr);
952 	}
953 
954 out:
955 	return ret;
956 }
957 
958 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
959 				      struct btrfs_path *path,
960 				      struct btrfs_root *root,
961 				      struct btrfs_delayed_node *node)
962 {
963 	struct btrfs_delayed_item *curr, *prev;
964 	int ret = 0;
965 
966 do_again:
967 	mutex_lock(&node->mutex);
968 	curr = __btrfs_first_delayed_deletion_item(node);
969 	if (!curr)
970 		goto delete_fail;
971 
972 	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
973 	if (ret < 0)
974 		goto delete_fail;
975 	else if (ret > 0) {
976 		/*
977 		 * can't find the item which the node points to, so this node
978 		 * is invalid, just drop it.
979 		 */
980 		prev = curr;
981 		curr = __btrfs_next_delayed_item(prev);
982 		btrfs_release_delayed_item(prev);
983 		ret = 0;
984 		btrfs_release_path(path);
985 		if (curr) {
986 			mutex_unlock(&node->mutex);
987 			goto do_again;
988 		} else
989 			goto delete_fail;
990 	}
991 
992 	btrfs_batch_delete_items(trans, root, path, curr);
993 	btrfs_release_path(path);
994 	mutex_unlock(&node->mutex);
995 	goto do_again;
996 
997 delete_fail:
998 	btrfs_release_path(path);
999 	mutex_unlock(&node->mutex);
1000 	return ret;
1001 }
1002 
1003 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
1004 {
1005 	struct btrfs_delayed_root *delayed_root;
1006 
1007 	if (delayed_node &&
1008 	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1009 		BUG_ON(!delayed_node->root);
1010 		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1011 		delayed_node->count--;
1012 
1013 		delayed_root = delayed_node->root->fs_info->delayed_root;
1014 		finish_one_item(delayed_root);
1015 	}
1016 }
1017 
1018 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1019 {
1020 	struct btrfs_delayed_root *delayed_root;
1021 
1022 	ASSERT(delayed_node->root);
1023 	clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1024 	delayed_node->count--;
1025 
1026 	delayed_root = delayed_node->root->fs_info->delayed_root;
1027 	finish_one_item(delayed_root);
1028 }
1029 
1030 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1031 					struct btrfs_root *root,
1032 					struct btrfs_path *path,
1033 					struct btrfs_delayed_node *node)
1034 {
1035 	struct btrfs_key key;
1036 	struct btrfs_inode_item *inode_item;
1037 	struct extent_buffer *leaf;
1038 	int mod;
1039 	int ret;
1040 
1041 	key.objectid = node->inode_id;
1042 	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
1043 	key.offset = 0;
1044 
1045 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1046 		mod = -1;
1047 	else
1048 		mod = 1;
1049 
1050 	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1051 	if (ret > 0) {
1052 		btrfs_release_path(path);
1053 		return -ENOENT;
1054 	} else if (ret < 0) {
1055 		return ret;
1056 	}
1057 
1058 	leaf = path->nodes[0];
1059 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1060 				    struct btrfs_inode_item);
1061 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1062 			    sizeof(struct btrfs_inode_item));
1063 	btrfs_mark_buffer_dirty(leaf);
1064 
1065 	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1066 		goto no_iref;
1067 
1068 	path->slots[0]++;
1069 	if (path->slots[0] >= btrfs_header_nritems(leaf))
1070 		goto search;
1071 again:
1072 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1073 	if (key.objectid != node->inode_id)
1074 		goto out;
1075 
1076 	if (key.type != BTRFS_INODE_REF_KEY &&
1077 	    key.type != BTRFS_INODE_EXTREF_KEY)
1078 		goto out;
1079 
1080 	/*
1081 	 * Delayed iref deletion is for the inode who has only one link,
1082 	 * so there is only one iref. The case that several irefs are
1083 	 * in the same item doesn't exist.
1084 	 */
1085 	btrfs_del_item(trans, root, path);
1086 out:
1087 	btrfs_release_delayed_iref(node);
1088 no_iref:
1089 	btrfs_release_path(path);
1090 err_out:
1091 	btrfs_delayed_inode_release_metadata(root, node);
1092 	btrfs_release_delayed_inode(node);
1093 
1094 	return ret;
1095 
1096 search:
1097 	btrfs_release_path(path);
1098 
1099 	btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
1100 	key.offset = -1;
1101 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1102 	if (ret < 0)
1103 		goto err_out;
1104 	ASSERT(ret);
1105 
1106 	ret = 0;
1107 	leaf = path->nodes[0];
1108 	path->slots[0]--;
1109 	goto again;
1110 }
1111 
1112 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1113 					     struct btrfs_root *root,
1114 					     struct btrfs_path *path,
1115 					     struct btrfs_delayed_node *node)
1116 {
1117 	int ret;
1118 
1119 	mutex_lock(&node->mutex);
1120 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1121 		mutex_unlock(&node->mutex);
1122 		return 0;
1123 	}
1124 
1125 	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1126 	mutex_unlock(&node->mutex);
1127 	return ret;
1128 }
1129 
1130 static inline int
1131 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1132 				   struct btrfs_path *path,
1133 				   struct btrfs_delayed_node *node)
1134 {
1135 	int ret;
1136 
1137 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1138 	if (ret)
1139 		return ret;
1140 
1141 	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1142 	if (ret)
1143 		return ret;
1144 
1145 	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1146 	return ret;
1147 }
1148 
1149 /*
1150  * Called when committing the transaction.
1151  * Returns 0 on success.
1152  * Returns < 0 on error and returns with an aborted transaction with any
1153  * outstanding delayed items cleaned up.
1154  */
1155 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1156 				     struct btrfs_root *root, int nr)
1157 {
1158 	struct btrfs_delayed_root *delayed_root;
1159 	struct btrfs_delayed_node *curr_node, *prev_node;
1160 	struct btrfs_path *path;
1161 	struct btrfs_block_rsv *block_rsv;
1162 	int ret = 0;
1163 	bool count = (nr > 0);
1164 
1165 	if (trans->aborted)
1166 		return -EIO;
1167 
1168 	path = btrfs_alloc_path();
1169 	if (!path)
1170 		return -ENOMEM;
1171 	path->leave_spinning = 1;
1172 
1173 	block_rsv = trans->block_rsv;
1174 	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1175 
1176 	delayed_root = btrfs_get_delayed_root(root);
1177 
1178 	curr_node = btrfs_first_delayed_node(delayed_root);
1179 	while (curr_node && (!count || (count && nr--))) {
1180 		ret = __btrfs_commit_inode_delayed_items(trans, path,
1181 							 curr_node);
1182 		if (ret) {
1183 			btrfs_release_delayed_node(curr_node);
1184 			curr_node = NULL;
1185 			btrfs_abort_transaction(trans, root, ret);
1186 			break;
1187 		}
1188 
1189 		prev_node = curr_node;
1190 		curr_node = btrfs_next_delayed_node(curr_node);
1191 		btrfs_release_delayed_node(prev_node);
1192 	}
1193 
1194 	if (curr_node)
1195 		btrfs_release_delayed_node(curr_node);
1196 	btrfs_free_path(path);
1197 	trans->block_rsv = block_rsv;
1198 
1199 	return ret;
1200 }
1201 
1202 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1203 			    struct btrfs_root *root)
1204 {
1205 	return __btrfs_run_delayed_items(trans, root, -1);
1206 }
1207 
1208 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1209 			       struct btrfs_root *root, int nr)
1210 {
1211 	return __btrfs_run_delayed_items(trans, root, nr);
1212 }
1213 
1214 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1215 				     struct inode *inode)
1216 {
1217 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1218 	struct btrfs_path *path;
1219 	struct btrfs_block_rsv *block_rsv;
1220 	int ret;
1221 
1222 	if (!delayed_node)
1223 		return 0;
1224 
1225 	mutex_lock(&delayed_node->mutex);
1226 	if (!delayed_node->count) {
1227 		mutex_unlock(&delayed_node->mutex);
1228 		btrfs_release_delayed_node(delayed_node);
1229 		return 0;
1230 	}
1231 	mutex_unlock(&delayed_node->mutex);
1232 
1233 	path = btrfs_alloc_path();
1234 	if (!path) {
1235 		btrfs_release_delayed_node(delayed_node);
1236 		return -ENOMEM;
1237 	}
1238 	path->leave_spinning = 1;
1239 
1240 	block_rsv = trans->block_rsv;
1241 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1242 
1243 	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1244 
1245 	btrfs_release_delayed_node(delayed_node);
1246 	btrfs_free_path(path);
1247 	trans->block_rsv = block_rsv;
1248 
1249 	return ret;
1250 }
1251 
1252 int btrfs_commit_inode_delayed_inode(struct inode *inode)
1253 {
1254 	struct btrfs_trans_handle *trans;
1255 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1256 	struct btrfs_path *path;
1257 	struct btrfs_block_rsv *block_rsv;
1258 	int ret;
1259 
1260 	if (!delayed_node)
1261 		return 0;
1262 
1263 	mutex_lock(&delayed_node->mutex);
1264 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1265 		mutex_unlock(&delayed_node->mutex);
1266 		btrfs_release_delayed_node(delayed_node);
1267 		return 0;
1268 	}
1269 	mutex_unlock(&delayed_node->mutex);
1270 
1271 	trans = btrfs_join_transaction(delayed_node->root);
1272 	if (IS_ERR(trans)) {
1273 		ret = PTR_ERR(trans);
1274 		goto out;
1275 	}
1276 
1277 	path = btrfs_alloc_path();
1278 	if (!path) {
1279 		ret = -ENOMEM;
1280 		goto trans_out;
1281 	}
1282 	path->leave_spinning = 1;
1283 
1284 	block_rsv = trans->block_rsv;
1285 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1286 
1287 	mutex_lock(&delayed_node->mutex);
1288 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1289 		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1290 						   path, delayed_node);
1291 	else
1292 		ret = 0;
1293 	mutex_unlock(&delayed_node->mutex);
1294 
1295 	btrfs_free_path(path);
1296 	trans->block_rsv = block_rsv;
1297 trans_out:
1298 	btrfs_end_transaction(trans, delayed_node->root);
1299 	btrfs_btree_balance_dirty(delayed_node->root);
1300 out:
1301 	btrfs_release_delayed_node(delayed_node);
1302 
1303 	return ret;
1304 }
1305 
1306 void btrfs_remove_delayed_node(struct inode *inode)
1307 {
1308 	struct btrfs_delayed_node *delayed_node;
1309 
1310 	delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1311 	if (!delayed_node)
1312 		return;
1313 
1314 	BTRFS_I(inode)->delayed_node = NULL;
1315 	btrfs_release_delayed_node(delayed_node);
1316 }
1317 
1318 struct btrfs_async_delayed_work {
1319 	struct btrfs_delayed_root *delayed_root;
1320 	int nr;
1321 	struct btrfs_work work;
1322 };
1323 
1324 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1325 {
1326 	struct btrfs_async_delayed_work *async_work;
1327 	struct btrfs_delayed_root *delayed_root;
1328 	struct btrfs_trans_handle *trans;
1329 	struct btrfs_path *path;
1330 	struct btrfs_delayed_node *delayed_node = NULL;
1331 	struct btrfs_root *root;
1332 	struct btrfs_block_rsv *block_rsv;
1333 	int total_done = 0;
1334 
1335 	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1336 	delayed_root = async_work->delayed_root;
1337 
1338 	path = btrfs_alloc_path();
1339 	if (!path)
1340 		goto out;
1341 
1342 again:
1343 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1344 		goto free_path;
1345 
1346 	delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1347 	if (!delayed_node)
1348 		goto free_path;
1349 
1350 	path->leave_spinning = 1;
1351 	root = delayed_node->root;
1352 
1353 	trans = btrfs_join_transaction(root);
1354 	if (IS_ERR(trans))
1355 		goto release_path;
1356 
1357 	block_rsv = trans->block_rsv;
1358 	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1359 
1360 	__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1361 
1362 	trans->block_rsv = block_rsv;
1363 	btrfs_end_transaction(trans, root);
1364 	btrfs_btree_balance_dirty_nodelay(root);
1365 
1366 release_path:
1367 	btrfs_release_path(path);
1368 	total_done++;
1369 
1370 	btrfs_release_prepared_delayed_node(delayed_node);
1371 	if (async_work->nr == 0 || total_done < async_work->nr)
1372 		goto again;
1373 
1374 free_path:
1375 	btrfs_free_path(path);
1376 out:
1377 	wake_up(&delayed_root->wait);
1378 	kfree(async_work);
1379 }
1380 
1381 
1382 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1383 				     struct btrfs_root *root, int nr)
1384 {
1385 	struct btrfs_async_delayed_work *async_work;
1386 
1387 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1388 		return 0;
1389 
1390 	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1391 	if (!async_work)
1392 		return -ENOMEM;
1393 
1394 	async_work->delayed_root = delayed_root;
1395 	async_work->work.func = btrfs_async_run_delayed_root;
1396 	async_work->work.flags = 0;
1397 	async_work->nr = nr;
1398 
1399 	btrfs_queue_worker(&root->fs_info->delayed_workers, &async_work->work);
1400 	return 0;
1401 }
1402 
1403 void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1404 {
1405 	struct btrfs_delayed_root *delayed_root;
1406 	delayed_root = btrfs_get_delayed_root(root);
1407 	WARN_ON(btrfs_first_delayed_node(delayed_root));
1408 }
1409 
1410 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1411 {
1412 	int val = atomic_read(&delayed_root->items_seq);
1413 
1414 	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1415 		return 1;
1416 
1417 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1418 		return 1;
1419 
1420 	return 0;
1421 }
1422 
1423 void btrfs_balance_delayed_items(struct btrfs_root *root)
1424 {
1425 	struct btrfs_delayed_root *delayed_root;
1426 
1427 	delayed_root = btrfs_get_delayed_root(root);
1428 
1429 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1430 		return;
1431 
1432 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1433 		int seq;
1434 		int ret;
1435 
1436 		seq = atomic_read(&delayed_root->items_seq);
1437 
1438 		ret = btrfs_wq_run_delayed_node(delayed_root, root, 0);
1439 		if (ret)
1440 			return;
1441 
1442 		wait_event_interruptible(delayed_root->wait,
1443 					 could_end_wait(delayed_root, seq));
1444 		return;
1445 	}
1446 
1447 	btrfs_wq_run_delayed_node(delayed_root, root, BTRFS_DELAYED_BATCH);
1448 }
1449 
1450 /* Will return 0 or -ENOMEM */
1451 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1452 				   struct btrfs_root *root, const char *name,
1453 				   int name_len, struct inode *dir,
1454 				   struct btrfs_disk_key *disk_key, u8 type,
1455 				   u64 index)
1456 {
1457 	struct btrfs_delayed_node *delayed_node;
1458 	struct btrfs_delayed_item *delayed_item;
1459 	struct btrfs_dir_item *dir_item;
1460 	int ret;
1461 
1462 	delayed_node = btrfs_get_or_create_delayed_node(dir);
1463 	if (IS_ERR(delayed_node))
1464 		return PTR_ERR(delayed_node);
1465 
1466 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1467 	if (!delayed_item) {
1468 		ret = -ENOMEM;
1469 		goto release_node;
1470 	}
1471 
1472 	delayed_item->key.objectid = btrfs_ino(dir);
1473 	btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1474 	delayed_item->key.offset = index;
1475 
1476 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1477 	dir_item->location = *disk_key;
1478 	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1479 	btrfs_set_stack_dir_data_len(dir_item, 0);
1480 	btrfs_set_stack_dir_name_len(dir_item, name_len);
1481 	btrfs_set_stack_dir_type(dir_item, type);
1482 	memcpy((char *)(dir_item + 1), name, name_len);
1483 
1484 	ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1485 	/*
1486 	 * we have reserved enough space when we start a new transaction,
1487 	 * so reserving metadata failure is impossible
1488 	 */
1489 	BUG_ON(ret);
1490 
1491 
1492 	mutex_lock(&delayed_node->mutex);
1493 	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1494 	if (unlikely(ret)) {
1495 		btrfs_err(root->fs_info, "err add delayed dir index item(name: %.*s) "
1496 				"into the insertion tree of the delayed node"
1497 				"(root id: %llu, inode id: %llu, errno: %d)",
1498 				name_len, name, delayed_node->root->objectid,
1499 				delayed_node->inode_id, ret);
1500 		BUG();
1501 	}
1502 	mutex_unlock(&delayed_node->mutex);
1503 
1504 release_node:
1505 	btrfs_release_delayed_node(delayed_node);
1506 	return ret;
1507 }
1508 
1509 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1510 					       struct btrfs_delayed_node *node,
1511 					       struct btrfs_key *key)
1512 {
1513 	struct btrfs_delayed_item *item;
1514 
1515 	mutex_lock(&node->mutex);
1516 	item = __btrfs_lookup_delayed_insertion_item(node, key);
1517 	if (!item) {
1518 		mutex_unlock(&node->mutex);
1519 		return 1;
1520 	}
1521 
1522 	btrfs_delayed_item_release_metadata(root, item);
1523 	btrfs_release_delayed_item(item);
1524 	mutex_unlock(&node->mutex);
1525 	return 0;
1526 }
1527 
1528 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1529 				   struct btrfs_root *root, struct inode *dir,
1530 				   u64 index)
1531 {
1532 	struct btrfs_delayed_node *node;
1533 	struct btrfs_delayed_item *item;
1534 	struct btrfs_key item_key;
1535 	int ret;
1536 
1537 	node = btrfs_get_or_create_delayed_node(dir);
1538 	if (IS_ERR(node))
1539 		return PTR_ERR(node);
1540 
1541 	item_key.objectid = btrfs_ino(dir);
1542 	btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1543 	item_key.offset = index;
1544 
1545 	ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1546 	if (!ret)
1547 		goto end;
1548 
1549 	item = btrfs_alloc_delayed_item(0);
1550 	if (!item) {
1551 		ret = -ENOMEM;
1552 		goto end;
1553 	}
1554 
1555 	item->key = item_key;
1556 
1557 	ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1558 	/*
1559 	 * we have reserved enough space when we start a new transaction,
1560 	 * so reserving metadata failure is impossible.
1561 	 */
1562 	BUG_ON(ret);
1563 
1564 	mutex_lock(&node->mutex);
1565 	ret = __btrfs_add_delayed_deletion_item(node, item);
1566 	if (unlikely(ret)) {
1567 		btrfs_err(root->fs_info, "err add delayed dir index item(index: %llu) "
1568 				"into the deletion tree of the delayed node"
1569 				"(root id: %llu, inode id: %llu, errno: %d)",
1570 				index, node->root->objectid, node->inode_id,
1571 				ret);
1572 		BUG();
1573 	}
1574 	mutex_unlock(&node->mutex);
1575 end:
1576 	btrfs_release_delayed_node(node);
1577 	return ret;
1578 }
1579 
1580 int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1581 {
1582 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1583 
1584 	if (!delayed_node)
1585 		return -ENOENT;
1586 
1587 	/*
1588 	 * Since we have held i_mutex of this directory, it is impossible that
1589 	 * a new directory index is added into the delayed node and index_cnt
1590 	 * is updated now. So we needn't lock the delayed node.
1591 	 */
1592 	if (!delayed_node->index_cnt) {
1593 		btrfs_release_delayed_node(delayed_node);
1594 		return -EINVAL;
1595 	}
1596 
1597 	BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1598 	btrfs_release_delayed_node(delayed_node);
1599 	return 0;
1600 }
1601 
1602 void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1603 			     struct list_head *del_list)
1604 {
1605 	struct btrfs_delayed_node *delayed_node;
1606 	struct btrfs_delayed_item *item;
1607 
1608 	delayed_node = btrfs_get_delayed_node(inode);
1609 	if (!delayed_node)
1610 		return;
1611 
1612 	mutex_lock(&delayed_node->mutex);
1613 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1614 	while (item) {
1615 		atomic_inc(&item->refs);
1616 		list_add_tail(&item->readdir_list, ins_list);
1617 		item = __btrfs_next_delayed_item(item);
1618 	}
1619 
1620 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1621 	while (item) {
1622 		atomic_inc(&item->refs);
1623 		list_add_tail(&item->readdir_list, del_list);
1624 		item = __btrfs_next_delayed_item(item);
1625 	}
1626 	mutex_unlock(&delayed_node->mutex);
1627 	/*
1628 	 * This delayed node is still cached in the btrfs inode, so refs
1629 	 * must be > 1 now, and we needn't check it is going to be freed
1630 	 * or not.
1631 	 *
1632 	 * Besides that, this function is used to read dir, we do not
1633 	 * insert/delete delayed items in this period. So we also needn't
1634 	 * requeue or dequeue this delayed node.
1635 	 */
1636 	atomic_dec(&delayed_node->refs);
1637 }
1638 
1639 void btrfs_put_delayed_items(struct list_head *ins_list,
1640 			     struct list_head *del_list)
1641 {
1642 	struct btrfs_delayed_item *curr, *next;
1643 
1644 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1645 		list_del(&curr->readdir_list);
1646 		if (atomic_dec_and_test(&curr->refs))
1647 			kfree(curr);
1648 	}
1649 
1650 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1651 		list_del(&curr->readdir_list);
1652 		if (atomic_dec_and_test(&curr->refs))
1653 			kfree(curr);
1654 	}
1655 }
1656 
1657 int btrfs_should_delete_dir_index(struct list_head *del_list,
1658 				  u64 index)
1659 {
1660 	struct btrfs_delayed_item *curr, *next;
1661 	int ret;
1662 
1663 	if (list_empty(del_list))
1664 		return 0;
1665 
1666 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1667 		if (curr->key.offset > index)
1668 			break;
1669 
1670 		list_del(&curr->readdir_list);
1671 		ret = (curr->key.offset == index);
1672 
1673 		if (atomic_dec_and_test(&curr->refs))
1674 			kfree(curr);
1675 
1676 		if (ret)
1677 			return 1;
1678 		else
1679 			continue;
1680 	}
1681 	return 0;
1682 }
1683 
1684 /*
1685  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1686  *
1687  */
1688 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1689 				    struct list_head *ins_list)
1690 {
1691 	struct btrfs_dir_item *di;
1692 	struct btrfs_delayed_item *curr, *next;
1693 	struct btrfs_key location;
1694 	char *name;
1695 	int name_len;
1696 	int over = 0;
1697 	unsigned char d_type;
1698 
1699 	if (list_empty(ins_list))
1700 		return 0;
1701 
1702 	/*
1703 	 * Changing the data of the delayed item is impossible. So
1704 	 * we needn't lock them. And we have held i_mutex of the
1705 	 * directory, nobody can delete any directory indexes now.
1706 	 */
1707 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1708 		list_del(&curr->readdir_list);
1709 
1710 		if (curr->key.offset < ctx->pos) {
1711 			if (atomic_dec_and_test(&curr->refs))
1712 				kfree(curr);
1713 			continue;
1714 		}
1715 
1716 		ctx->pos = curr->key.offset;
1717 
1718 		di = (struct btrfs_dir_item *)curr->data;
1719 		name = (char *)(di + 1);
1720 		name_len = btrfs_stack_dir_name_len(di);
1721 
1722 		d_type = btrfs_filetype_table[di->type];
1723 		btrfs_disk_key_to_cpu(&location, &di->location);
1724 
1725 		over = !dir_emit(ctx, name, name_len,
1726 			       location.objectid, d_type);
1727 
1728 		if (atomic_dec_and_test(&curr->refs))
1729 			kfree(curr);
1730 
1731 		if (over)
1732 			return 1;
1733 	}
1734 	return 0;
1735 }
1736 
1737 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1738 				  struct btrfs_inode_item *inode_item,
1739 				  struct inode *inode)
1740 {
1741 	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1742 	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1743 	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1744 	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1745 	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1746 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1747 	btrfs_set_stack_inode_generation(inode_item,
1748 					 BTRFS_I(inode)->generation);
1749 	btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1750 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1751 	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1752 	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1753 	btrfs_set_stack_inode_block_group(inode_item, 0);
1754 
1755 	btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1756 				     inode->i_atime.tv_sec);
1757 	btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1758 				      inode->i_atime.tv_nsec);
1759 
1760 	btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1761 				     inode->i_mtime.tv_sec);
1762 	btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1763 				      inode->i_mtime.tv_nsec);
1764 
1765 	btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1766 				     inode->i_ctime.tv_sec);
1767 	btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1768 				      inode->i_ctime.tv_nsec);
1769 }
1770 
1771 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1772 {
1773 	struct btrfs_delayed_node *delayed_node;
1774 	struct btrfs_inode_item *inode_item;
1775 	struct btrfs_timespec *tspec;
1776 
1777 	delayed_node = btrfs_get_delayed_node(inode);
1778 	if (!delayed_node)
1779 		return -ENOENT;
1780 
1781 	mutex_lock(&delayed_node->mutex);
1782 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1783 		mutex_unlock(&delayed_node->mutex);
1784 		btrfs_release_delayed_node(delayed_node);
1785 		return -ENOENT;
1786 	}
1787 
1788 	inode_item = &delayed_node->inode_item;
1789 
1790 	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1791 	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1792 	btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1793 	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1794 	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1795 	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1796 	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1797 	inode->i_version = btrfs_stack_inode_sequence(inode_item);
1798 	inode->i_rdev = 0;
1799 	*rdev = btrfs_stack_inode_rdev(inode_item);
1800 	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1801 
1802 	tspec = btrfs_inode_atime(inode_item);
1803 	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
1804 	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1805 
1806 	tspec = btrfs_inode_mtime(inode_item);
1807 	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
1808 	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1809 
1810 	tspec = btrfs_inode_ctime(inode_item);
1811 	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
1812 	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1813 
1814 	inode->i_generation = BTRFS_I(inode)->generation;
1815 	BTRFS_I(inode)->index_cnt = (u64)-1;
1816 
1817 	mutex_unlock(&delayed_node->mutex);
1818 	btrfs_release_delayed_node(delayed_node);
1819 	return 0;
1820 }
1821 
1822 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1823 			       struct btrfs_root *root, struct inode *inode)
1824 {
1825 	struct btrfs_delayed_node *delayed_node;
1826 	int ret = 0;
1827 
1828 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1829 	if (IS_ERR(delayed_node))
1830 		return PTR_ERR(delayed_node);
1831 
1832 	mutex_lock(&delayed_node->mutex);
1833 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1834 		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1835 		goto release_node;
1836 	}
1837 
1838 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1839 						   delayed_node);
1840 	if (ret)
1841 		goto release_node;
1842 
1843 	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1844 	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1845 	delayed_node->count++;
1846 	atomic_inc(&root->fs_info->delayed_root->items);
1847 release_node:
1848 	mutex_unlock(&delayed_node->mutex);
1849 	btrfs_release_delayed_node(delayed_node);
1850 	return ret;
1851 }
1852 
1853 int btrfs_delayed_delete_inode_ref(struct inode *inode)
1854 {
1855 	struct btrfs_delayed_node *delayed_node;
1856 
1857 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1858 	if (IS_ERR(delayed_node))
1859 		return PTR_ERR(delayed_node);
1860 
1861 	/*
1862 	 * We don't reserve space for inode ref deletion is because:
1863 	 * - We ONLY do async inode ref deletion for the inode who has only
1864 	 *   one link(i_nlink == 1), it means there is only one inode ref.
1865 	 *   And in most case, the inode ref and the inode item are in the
1866 	 *   same leaf, and we will deal with them at the same time.
1867 	 *   Since we are sure we will reserve the space for the inode item,
1868 	 *   it is unnecessary to reserve space for inode ref deletion.
1869 	 * - If the inode ref and the inode item are not in the same leaf,
1870 	 *   We also needn't worry about enospc problem, because we reserve
1871 	 *   much more space for the inode update than it needs.
1872 	 * - At the worst, we can steal some space from the global reservation.
1873 	 *   It is very rare.
1874 	 */
1875 	mutex_lock(&delayed_node->mutex);
1876 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1877 		goto release_node;
1878 
1879 	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1880 	delayed_node->count++;
1881 	atomic_inc(&BTRFS_I(inode)->root->fs_info->delayed_root->items);
1882 release_node:
1883 	mutex_unlock(&delayed_node->mutex);
1884 	btrfs_release_delayed_node(delayed_node);
1885 	return 0;
1886 }
1887 
1888 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1889 {
1890 	struct btrfs_root *root = delayed_node->root;
1891 	struct btrfs_delayed_item *curr_item, *prev_item;
1892 
1893 	mutex_lock(&delayed_node->mutex);
1894 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1895 	while (curr_item) {
1896 		btrfs_delayed_item_release_metadata(root, curr_item);
1897 		prev_item = curr_item;
1898 		curr_item = __btrfs_next_delayed_item(prev_item);
1899 		btrfs_release_delayed_item(prev_item);
1900 	}
1901 
1902 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1903 	while (curr_item) {
1904 		btrfs_delayed_item_release_metadata(root, curr_item);
1905 		prev_item = curr_item;
1906 		curr_item = __btrfs_next_delayed_item(prev_item);
1907 		btrfs_release_delayed_item(prev_item);
1908 	}
1909 
1910 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1911 		btrfs_release_delayed_iref(delayed_node);
1912 
1913 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1914 		btrfs_delayed_inode_release_metadata(root, delayed_node);
1915 		btrfs_release_delayed_inode(delayed_node);
1916 	}
1917 	mutex_unlock(&delayed_node->mutex);
1918 }
1919 
1920 void btrfs_kill_delayed_inode_items(struct inode *inode)
1921 {
1922 	struct btrfs_delayed_node *delayed_node;
1923 
1924 	delayed_node = btrfs_get_delayed_node(inode);
1925 	if (!delayed_node)
1926 		return;
1927 
1928 	__btrfs_kill_delayed_node(delayed_node);
1929 	btrfs_release_delayed_node(delayed_node);
1930 }
1931 
1932 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1933 {
1934 	u64 inode_id = 0;
1935 	struct btrfs_delayed_node *delayed_nodes[8];
1936 	int i, n;
1937 
1938 	while (1) {
1939 		spin_lock(&root->inode_lock);
1940 		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1941 					   (void **)delayed_nodes, inode_id,
1942 					   ARRAY_SIZE(delayed_nodes));
1943 		if (!n) {
1944 			spin_unlock(&root->inode_lock);
1945 			break;
1946 		}
1947 
1948 		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1949 
1950 		for (i = 0; i < n; i++)
1951 			atomic_inc(&delayed_nodes[i]->refs);
1952 		spin_unlock(&root->inode_lock);
1953 
1954 		for (i = 0; i < n; i++) {
1955 			__btrfs_kill_delayed_node(delayed_nodes[i]);
1956 			btrfs_release_delayed_node(delayed_nodes[i]);
1957 		}
1958 	}
1959 }
1960 
1961 void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
1962 {
1963 	struct btrfs_delayed_root *delayed_root;
1964 	struct btrfs_delayed_node *curr_node, *prev_node;
1965 
1966 	delayed_root = btrfs_get_delayed_root(root);
1967 
1968 	curr_node = btrfs_first_delayed_node(delayed_root);
1969 	while (curr_node) {
1970 		__btrfs_kill_delayed_node(curr_node);
1971 
1972 		prev_node = curr_node;
1973 		curr_node = btrfs_next_delayed_node(curr_node);
1974 		btrfs_release_delayed_node(prev_node);
1975 	}
1976 }
1977 
1978