xref: /openbmc/linux/fs/btrfs/delayed-inode.c (revision f5b06569)
1 /*
2  * Copyright (C) 2011 Fujitsu.  All rights reserved.
3  * Written by Miao Xie <miaox@cn.fujitsu.com>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19 
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "ctree.h"
25 
26 #define BTRFS_DELAYED_WRITEBACK		512
27 #define BTRFS_DELAYED_BACKGROUND	128
28 #define BTRFS_DELAYED_BATCH		16
29 
30 static struct kmem_cache *delayed_node_cache;
31 
32 int __init btrfs_delayed_inode_init(void)
33 {
34 	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
35 					sizeof(struct btrfs_delayed_node),
36 					0,
37 					SLAB_MEM_SPREAD,
38 					NULL);
39 	if (!delayed_node_cache)
40 		return -ENOMEM;
41 	return 0;
42 }
43 
44 void btrfs_delayed_inode_exit(void)
45 {
46 	kmem_cache_destroy(delayed_node_cache);
47 }
48 
49 static inline void btrfs_init_delayed_node(
50 				struct btrfs_delayed_node *delayed_node,
51 				struct btrfs_root *root, u64 inode_id)
52 {
53 	delayed_node->root = root;
54 	delayed_node->inode_id = inode_id;
55 	atomic_set(&delayed_node->refs, 0);
56 	delayed_node->ins_root = RB_ROOT;
57 	delayed_node->del_root = RB_ROOT;
58 	mutex_init(&delayed_node->mutex);
59 	INIT_LIST_HEAD(&delayed_node->n_list);
60 	INIT_LIST_HEAD(&delayed_node->p_list);
61 }
62 
63 static inline int btrfs_is_continuous_delayed_item(
64 					struct btrfs_delayed_item *item1,
65 					struct btrfs_delayed_item *item2)
66 {
67 	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
68 	    item1->key.objectid == item2->key.objectid &&
69 	    item1->key.type == item2->key.type &&
70 	    item1->key.offset + 1 == item2->key.offset)
71 		return 1;
72 	return 0;
73 }
74 
75 static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
76 							struct btrfs_root *root)
77 {
78 	return root->fs_info->delayed_root;
79 }
80 
81 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
82 {
83 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
84 	struct btrfs_root *root = btrfs_inode->root;
85 	u64 ino = btrfs_ino(inode);
86 	struct btrfs_delayed_node *node;
87 
88 	node = ACCESS_ONCE(btrfs_inode->delayed_node);
89 	if (node) {
90 		atomic_inc(&node->refs);
91 		return node;
92 	}
93 
94 	spin_lock(&root->inode_lock);
95 	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
96 	if (node) {
97 		if (btrfs_inode->delayed_node) {
98 			atomic_inc(&node->refs);	/* can be accessed */
99 			BUG_ON(btrfs_inode->delayed_node != node);
100 			spin_unlock(&root->inode_lock);
101 			return node;
102 		}
103 		btrfs_inode->delayed_node = node;
104 		/* can be accessed and cached in the inode */
105 		atomic_add(2, &node->refs);
106 		spin_unlock(&root->inode_lock);
107 		return node;
108 	}
109 	spin_unlock(&root->inode_lock);
110 
111 	return NULL;
112 }
113 
114 /* Will return either the node or PTR_ERR(-ENOMEM) */
115 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
116 							struct inode *inode)
117 {
118 	struct btrfs_delayed_node *node;
119 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
120 	struct btrfs_root *root = btrfs_inode->root;
121 	u64 ino = btrfs_ino(inode);
122 	int ret;
123 
124 again:
125 	node = btrfs_get_delayed_node(inode);
126 	if (node)
127 		return node;
128 
129 	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
130 	if (!node)
131 		return ERR_PTR(-ENOMEM);
132 	btrfs_init_delayed_node(node, root, ino);
133 
134 	/* cached in the btrfs inode and can be accessed */
135 	atomic_add(2, &node->refs);
136 
137 	ret = radix_tree_preload(GFP_NOFS);
138 	if (ret) {
139 		kmem_cache_free(delayed_node_cache, node);
140 		return ERR_PTR(ret);
141 	}
142 
143 	spin_lock(&root->inode_lock);
144 	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
145 	if (ret == -EEXIST) {
146 		spin_unlock(&root->inode_lock);
147 		kmem_cache_free(delayed_node_cache, node);
148 		radix_tree_preload_end();
149 		goto again;
150 	}
151 	btrfs_inode->delayed_node = node;
152 	spin_unlock(&root->inode_lock);
153 	radix_tree_preload_end();
154 
155 	return node;
156 }
157 
158 /*
159  * Call it when holding delayed_node->mutex
160  *
161  * If mod = 1, add this node into the prepared list.
162  */
163 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
164 				     struct btrfs_delayed_node *node,
165 				     int mod)
166 {
167 	spin_lock(&root->lock);
168 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
169 		if (!list_empty(&node->p_list))
170 			list_move_tail(&node->p_list, &root->prepare_list);
171 		else if (mod)
172 			list_add_tail(&node->p_list, &root->prepare_list);
173 	} else {
174 		list_add_tail(&node->n_list, &root->node_list);
175 		list_add_tail(&node->p_list, &root->prepare_list);
176 		atomic_inc(&node->refs);	/* inserted into list */
177 		root->nodes++;
178 		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
179 	}
180 	spin_unlock(&root->lock);
181 }
182 
183 /* Call it when holding delayed_node->mutex */
184 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
185 				       struct btrfs_delayed_node *node)
186 {
187 	spin_lock(&root->lock);
188 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
189 		root->nodes--;
190 		atomic_dec(&node->refs);	/* not in the list */
191 		list_del_init(&node->n_list);
192 		if (!list_empty(&node->p_list))
193 			list_del_init(&node->p_list);
194 		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
195 	}
196 	spin_unlock(&root->lock);
197 }
198 
199 static struct btrfs_delayed_node *btrfs_first_delayed_node(
200 			struct btrfs_delayed_root *delayed_root)
201 {
202 	struct list_head *p;
203 	struct btrfs_delayed_node *node = NULL;
204 
205 	spin_lock(&delayed_root->lock);
206 	if (list_empty(&delayed_root->node_list))
207 		goto out;
208 
209 	p = delayed_root->node_list.next;
210 	node = list_entry(p, struct btrfs_delayed_node, n_list);
211 	atomic_inc(&node->refs);
212 out:
213 	spin_unlock(&delayed_root->lock);
214 
215 	return node;
216 }
217 
218 static struct btrfs_delayed_node *btrfs_next_delayed_node(
219 						struct btrfs_delayed_node *node)
220 {
221 	struct btrfs_delayed_root *delayed_root;
222 	struct list_head *p;
223 	struct btrfs_delayed_node *next = NULL;
224 
225 	delayed_root = node->root->fs_info->delayed_root;
226 	spin_lock(&delayed_root->lock);
227 	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
228 		/* not in the list */
229 		if (list_empty(&delayed_root->node_list))
230 			goto out;
231 		p = delayed_root->node_list.next;
232 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
233 		goto out;
234 	else
235 		p = node->n_list.next;
236 
237 	next = list_entry(p, struct btrfs_delayed_node, n_list);
238 	atomic_inc(&next->refs);
239 out:
240 	spin_unlock(&delayed_root->lock);
241 
242 	return next;
243 }
244 
245 static void __btrfs_release_delayed_node(
246 				struct btrfs_delayed_node *delayed_node,
247 				int mod)
248 {
249 	struct btrfs_delayed_root *delayed_root;
250 
251 	if (!delayed_node)
252 		return;
253 
254 	delayed_root = delayed_node->root->fs_info->delayed_root;
255 
256 	mutex_lock(&delayed_node->mutex);
257 	if (delayed_node->count)
258 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
259 	else
260 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
261 	mutex_unlock(&delayed_node->mutex);
262 
263 	if (atomic_dec_and_test(&delayed_node->refs)) {
264 		bool free = false;
265 		struct btrfs_root *root = delayed_node->root;
266 		spin_lock(&root->inode_lock);
267 		if (atomic_read(&delayed_node->refs) == 0) {
268 			radix_tree_delete(&root->delayed_nodes_tree,
269 					  delayed_node->inode_id);
270 			free = true;
271 		}
272 		spin_unlock(&root->inode_lock);
273 		if (free)
274 			kmem_cache_free(delayed_node_cache, delayed_node);
275 	}
276 }
277 
278 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
279 {
280 	__btrfs_release_delayed_node(node, 0);
281 }
282 
283 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
284 					struct btrfs_delayed_root *delayed_root)
285 {
286 	struct list_head *p;
287 	struct btrfs_delayed_node *node = NULL;
288 
289 	spin_lock(&delayed_root->lock);
290 	if (list_empty(&delayed_root->prepare_list))
291 		goto out;
292 
293 	p = delayed_root->prepare_list.next;
294 	list_del_init(p);
295 	node = list_entry(p, struct btrfs_delayed_node, p_list);
296 	atomic_inc(&node->refs);
297 out:
298 	spin_unlock(&delayed_root->lock);
299 
300 	return node;
301 }
302 
303 static inline void btrfs_release_prepared_delayed_node(
304 					struct btrfs_delayed_node *node)
305 {
306 	__btrfs_release_delayed_node(node, 1);
307 }
308 
309 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
310 {
311 	struct btrfs_delayed_item *item;
312 	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
313 	if (item) {
314 		item->data_len = data_len;
315 		item->ins_or_del = 0;
316 		item->bytes_reserved = 0;
317 		item->delayed_node = NULL;
318 		atomic_set(&item->refs, 1);
319 	}
320 	return item;
321 }
322 
323 /*
324  * __btrfs_lookup_delayed_item - look up the delayed item by key
325  * @delayed_node: pointer to the delayed node
326  * @key:	  the key to look up
327  * @prev:	  used to store the prev item if the right item isn't found
328  * @next:	  used to store the next item if the right item isn't found
329  *
330  * Note: if we don't find the right item, we will return the prev item and
331  * the next item.
332  */
333 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
334 				struct rb_root *root,
335 				struct btrfs_key *key,
336 				struct btrfs_delayed_item **prev,
337 				struct btrfs_delayed_item **next)
338 {
339 	struct rb_node *node, *prev_node = NULL;
340 	struct btrfs_delayed_item *delayed_item = NULL;
341 	int ret = 0;
342 
343 	node = root->rb_node;
344 
345 	while (node) {
346 		delayed_item = rb_entry(node, struct btrfs_delayed_item,
347 					rb_node);
348 		prev_node = node;
349 		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
350 		if (ret < 0)
351 			node = node->rb_right;
352 		else if (ret > 0)
353 			node = node->rb_left;
354 		else
355 			return delayed_item;
356 	}
357 
358 	if (prev) {
359 		if (!prev_node)
360 			*prev = NULL;
361 		else if (ret < 0)
362 			*prev = delayed_item;
363 		else if ((node = rb_prev(prev_node)) != NULL) {
364 			*prev = rb_entry(node, struct btrfs_delayed_item,
365 					 rb_node);
366 		} else
367 			*prev = NULL;
368 	}
369 
370 	if (next) {
371 		if (!prev_node)
372 			*next = NULL;
373 		else if (ret > 0)
374 			*next = delayed_item;
375 		else if ((node = rb_next(prev_node)) != NULL) {
376 			*next = rb_entry(node, struct btrfs_delayed_item,
377 					 rb_node);
378 		} else
379 			*next = NULL;
380 	}
381 	return NULL;
382 }
383 
384 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
385 					struct btrfs_delayed_node *delayed_node,
386 					struct btrfs_key *key)
387 {
388 	struct btrfs_delayed_item *item;
389 
390 	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
391 					   NULL, NULL);
392 	return item;
393 }
394 
395 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
396 				    struct btrfs_delayed_item *ins,
397 				    int action)
398 {
399 	struct rb_node **p, *node;
400 	struct rb_node *parent_node = NULL;
401 	struct rb_root *root;
402 	struct btrfs_delayed_item *item;
403 	int cmp;
404 
405 	if (action == BTRFS_DELAYED_INSERTION_ITEM)
406 		root = &delayed_node->ins_root;
407 	else if (action == BTRFS_DELAYED_DELETION_ITEM)
408 		root = &delayed_node->del_root;
409 	else
410 		BUG();
411 	p = &root->rb_node;
412 	node = &ins->rb_node;
413 
414 	while (*p) {
415 		parent_node = *p;
416 		item = rb_entry(parent_node, struct btrfs_delayed_item,
417 				 rb_node);
418 
419 		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
420 		if (cmp < 0)
421 			p = &(*p)->rb_right;
422 		else if (cmp > 0)
423 			p = &(*p)->rb_left;
424 		else
425 			return -EEXIST;
426 	}
427 
428 	rb_link_node(node, parent_node, p);
429 	rb_insert_color(node, root);
430 	ins->delayed_node = delayed_node;
431 	ins->ins_or_del = action;
432 
433 	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
434 	    action == BTRFS_DELAYED_INSERTION_ITEM &&
435 	    ins->key.offset >= delayed_node->index_cnt)
436 			delayed_node->index_cnt = ins->key.offset + 1;
437 
438 	delayed_node->count++;
439 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
440 	return 0;
441 }
442 
443 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
444 					      struct btrfs_delayed_item *item)
445 {
446 	return __btrfs_add_delayed_item(node, item,
447 					BTRFS_DELAYED_INSERTION_ITEM);
448 }
449 
450 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
451 					     struct btrfs_delayed_item *item)
452 {
453 	return __btrfs_add_delayed_item(node, item,
454 					BTRFS_DELAYED_DELETION_ITEM);
455 }
456 
457 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
458 {
459 	int seq = atomic_inc_return(&delayed_root->items_seq);
460 
461 	/*
462 	 * atomic_dec_return implies a barrier for waitqueue_active
463 	 */
464 	if ((atomic_dec_return(&delayed_root->items) <
465 	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
466 	    waitqueue_active(&delayed_root->wait))
467 		wake_up(&delayed_root->wait);
468 }
469 
470 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
471 {
472 	struct rb_root *root;
473 	struct btrfs_delayed_root *delayed_root;
474 
475 	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
476 
477 	BUG_ON(!delayed_root);
478 	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
479 	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
480 
481 	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
482 		root = &delayed_item->delayed_node->ins_root;
483 	else
484 		root = &delayed_item->delayed_node->del_root;
485 
486 	rb_erase(&delayed_item->rb_node, root);
487 	delayed_item->delayed_node->count--;
488 
489 	finish_one_item(delayed_root);
490 }
491 
492 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
493 {
494 	if (item) {
495 		__btrfs_remove_delayed_item(item);
496 		if (atomic_dec_and_test(&item->refs))
497 			kfree(item);
498 	}
499 }
500 
501 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
502 					struct btrfs_delayed_node *delayed_node)
503 {
504 	struct rb_node *p;
505 	struct btrfs_delayed_item *item = NULL;
506 
507 	p = rb_first(&delayed_node->ins_root);
508 	if (p)
509 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
510 
511 	return item;
512 }
513 
514 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
515 					struct btrfs_delayed_node *delayed_node)
516 {
517 	struct rb_node *p;
518 	struct btrfs_delayed_item *item = NULL;
519 
520 	p = rb_first(&delayed_node->del_root);
521 	if (p)
522 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
523 
524 	return item;
525 }
526 
527 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
528 						struct btrfs_delayed_item *item)
529 {
530 	struct rb_node *p;
531 	struct btrfs_delayed_item *next = NULL;
532 
533 	p = rb_next(&item->rb_node);
534 	if (p)
535 		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
536 
537 	return next;
538 }
539 
540 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
541 					       struct btrfs_root *root,
542 					       struct btrfs_delayed_item *item)
543 {
544 	struct btrfs_block_rsv *src_rsv;
545 	struct btrfs_block_rsv *dst_rsv;
546 	u64 num_bytes;
547 	int ret;
548 
549 	if (!trans->bytes_reserved)
550 		return 0;
551 
552 	src_rsv = trans->block_rsv;
553 	dst_rsv = &root->fs_info->delayed_block_rsv;
554 
555 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
556 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
557 	if (!ret) {
558 		trace_btrfs_space_reservation(root->fs_info, "delayed_item",
559 					      item->key.objectid,
560 					      num_bytes, 1);
561 		item->bytes_reserved = num_bytes;
562 	}
563 
564 	return ret;
565 }
566 
567 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
568 						struct btrfs_delayed_item *item)
569 {
570 	struct btrfs_block_rsv *rsv;
571 
572 	if (!item->bytes_reserved)
573 		return;
574 
575 	rsv = &root->fs_info->delayed_block_rsv;
576 	trace_btrfs_space_reservation(root->fs_info, "delayed_item",
577 				      item->key.objectid, item->bytes_reserved,
578 				      0);
579 	btrfs_block_rsv_release(root, rsv,
580 				item->bytes_reserved);
581 }
582 
583 static int btrfs_delayed_inode_reserve_metadata(
584 					struct btrfs_trans_handle *trans,
585 					struct btrfs_root *root,
586 					struct inode *inode,
587 					struct btrfs_delayed_node *node)
588 {
589 	struct btrfs_block_rsv *src_rsv;
590 	struct btrfs_block_rsv *dst_rsv;
591 	u64 num_bytes;
592 	int ret;
593 	bool release = false;
594 
595 	src_rsv = trans->block_rsv;
596 	dst_rsv = &root->fs_info->delayed_block_rsv;
597 
598 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
599 
600 	/*
601 	 * If our block_rsv is the delalloc block reserve then check and see if
602 	 * we have our extra reservation for updating the inode.  If not fall
603 	 * through and try to reserve space quickly.
604 	 *
605 	 * We used to try and steal from the delalloc block rsv or the global
606 	 * reserve, but we'd steal a full reservation, which isn't kind.  We are
607 	 * here through delalloc which means we've likely just cowed down close
608 	 * to the leaf that contains the inode, so we would steal less just
609 	 * doing the fallback inode update, so if we do end up having to steal
610 	 * from the global block rsv we hopefully only steal one or two blocks
611 	 * worth which is less likely to hurt us.
612 	 */
613 	if (src_rsv && src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
614 		spin_lock(&BTRFS_I(inode)->lock);
615 		if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
616 				       &BTRFS_I(inode)->runtime_flags))
617 			release = true;
618 		else
619 			src_rsv = NULL;
620 		spin_unlock(&BTRFS_I(inode)->lock);
621 	}
622 
623 	/*
624 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
625 	 * which doesn't reserve space for speed.  This is a problem since we
626 	 * still need to reserve space for this update, so try to reserve the
627 	 * space.
628 	 *
629 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
630 	 * we're accounted for.
631 	 */
632 	if (!src_rsv || (!trans->bytes_reserved &&
633 			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
634 		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
635 					  BTRFS_RESERVE_NO_FLUSH);
636 		/*
637 		 * Since we're under a transaction reserve_metadata_bytes could
638 		 * try to commit the transaction which will make it return
639 		 * EAGAIN to make us stop the transaction we have, so return
640 		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
641 		 */
642 		if (ret == -EAGAIN)
643 			ret = -ENOSPC;
644 		if (!ret) {
645 			node->bytes_reserved = num_bytes;
646 			trace_btrfs_space_reservation(root->fs_info,
647 						      "delayed_inode",
648 						      btrfs_ino(inode),
649 						      num_bytes, 1);
650 		}
651 		return ret;
652 	}
653 
654 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
655 
656 	/*
657 	 * Migrate only takes a reservation, it doesn't touch the size of the
658 	 * block_rsv.  This is to simplify people who don't normally have things
659 	 * migrated from their block rsv.  If they go to release their
660 	 * reservation, that will decrease the size as well, so if migrate
661 	 * reduced size we'd end up with a negative size.  But for the
662 	 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
663 	 * but we could in fact do this reserve/migrate dance several times
664 	 * between the time we did the original reservation and we'd clean it
665 	 * up.  So to take care of this, release the space for the meta
666 	 * reservation here.  I think it may be time for a documentation page on
667 	 * how block rsvs. work.
668 	 */
669 	if (!ret) {
670 		trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
671 					      btrfs_ino(inode), num_bytes, 1);
672 		node->bytes_reserved = num_bytes;
673 	}
674 
675 	if (release) {
676 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
677 					      btrfs_ino(inode), num_bytes, 0);
678 		btrfs_block_rsv_release(root, src_rsv, num_bytes);
679 	}
680 
681 	return ret;
682 }
683 
684 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
685 						struct btrfs_delayed_node *node)
686 {
687 	struct btrfs_block_rsv *rsv;
688 
689 	if (!node->bytes_reserved)
690 		return;
691 
692 	rsv = &root->fs_info->delayed_block_rsv;
693 	trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
694 				      node->inode_id, node->bytes_reserved, 0);
695 	btrfs_block_rsv_release(root, rsv,
696 				node->bytes_reserved);
697 	node->bytes_reserved = 0;
698 }
699 
700 /*
701  * This helper will insert some continuous items into the same leaf according
702  * to the free space of the leaf.
703  */
704 static int btrfs_batch_insert_items(struct btrfs_root *root,
705 				    struct btrfs_path *path,
706 				    struct btrfs_delayed_item *item)
707 {
708 	struct btrfs_delayed_item *curr, *next;
709 	int free_space;
710 	int total_data_size = 0, total_size = 0;
711 	struct extent_buffer *leaf;
712 	char *data_ptr;
713 	struct btrfs_key *keys;
714 	u32 *data_size;
715 	struct list_head head;
716 	int slot;
717 	int nitems;
718 	int i;
719 	int ret = 0;
720 
721 	BUG_ON(!path->nodes[0]);
722 
723 	leaf = path->nodes[0];
724 	free_space = btrfs_leaf_free_space(root, leaf);
725 	INIT_LIST_HEAD(&head);
726 
727 	next = item;
728 	nitems = 0;
729 
730 	/*
731 	 * count the number of the continuous items that we can insert in batch
732 	 */
733 	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
734 	       free_space) {
735 		total_data_size += next->data_len;
736 		total_size += next->data_len + sizeof(struct btrfs_item);
737 		list_add_tail(&next->tree_list, &head);
738 		nitems++;
739 
740 		curr = next;
741 		next = __btrfs_next_delayed_item(curr);
742 		if (!next)
743 			break;
744 
745 		if (!btrfs_is_continuous_delayed_item(curr, next))
746 			break;
747 	}
748 
749 	if (!nitems) {
750 		ret = 0;
751 		goto out;
752 	}
753 
754 	/*
755 	 * we need allocate some memory space, but it might cause the task
756 	 * to sleep, so we set all locked nodes in the path to blocking locks
757 	 * first.
758 	 */
759 	btrfs_set_path_blocking(path);
760 
761 	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
762 	if (!keys) {
763 		ret = -ENOMEM;
764 		goto out;
765 	}
766 
767 	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
768 	if (!data_size) {
769 		ret = -ENOMEM;
770 		goto error;
771 	}
772 
773 	/* get keys of all the delayed items */
774 	i = 0;
775 	list_for_each_entry(next, &head, tree_list) {
776 		keys[i] = next->key;
777 		data_size[i] = next->data_len;
778 		i++;
779 	}
780 
781 	/* reset all the locked nodes in the patch to spinning locks. */
782 	btrfs_clear_path_blocking(path, NULL, 0);
783 
784 	/* insert the keys of the items */
785 	setup_items_for_insert(root, path, keys, data_size,
786 			       total_data_size, total_size, nitems);
787 
788 	/* insert the dir index items */
789 	slot = path->slots[0];
790 	list_for_each_entry_safe(curr, next, &head, tree_list) {
791 		data_ptr = btrfs_item_ptr(leaf, slot, char);
792 		write_extent_buffer(leaf, &curr->data,
793 				    (unsigned long)data_ptr,
794 				    curr->data_len);
795 		slot++;
796 
797 		btrfs_delayed_item_release_metadata(root, curr);
798 
799 		list_del(&curr->tree_list);
800 		btrfs_release_delayed_item(curr);
801 	}
802 
803 error:
804 	kfree(data_size);
805 	kfree(keys);
806 out:
807 	return ret;
808 }
809 
810 /*
811  * This helper can just do simple insertion that needn't extend item for new
812  * data, such as directory name index insertion, inode insertion.
813  */
814 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
815 				     struct btrfs_root *root,
816 				     struct btrfs_path *path,
817 				     struct btrfs_delayed_item *delayed_item)
818 {
819 	struct extent_buffer *leaf;
820 	char *ptr;
821 	int ret;
822 
823 	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
824 				      delayed_item->data_len);
825 	if (ret < 0 && ret != -EEXIST)
826 		return ret;
827 
828 	leaf = path->nodes[0];
829 
830 	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
831 
832 	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
833 			    delayed_item->data_len);
834 	btrfs_mark_buffer_dirty(leaf);
835 
836 	btrfs_delayed_item_release_metadata(root, delayed_item);
837 	return 0;
838 }
839 
840 /*
841  * we insert an item first, then if there are some continuous items, we try
842  * to insert those items into the same leaf.
843  */
844 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
845 				      struct btrfs_path *path,
846 				      struct btrfs_root *root,
847 				      struct btrfs_delayed_node *node)
848 {
849 	struct btrfs_delayed_item *curr, *prev;
850 	int ret = 0;
851 
852 do_again:
853 	mutex_lock(&node->mutex);
854 	curr = __btrfs_first_delayed_insertion_item(node);
855 	if (!curr)
856 		goto insert_end;
857 
858 	ret = btrfs_insert_delayed_item(trans, root, path, curr);
859 	if (ret < 0) {
860 		btrfs_release_path(path);
861 		goto insert_end;
862 	}
863 
864 	prev = curr;
865 	curr = __btrfs_next_delayed_item(prev);
866 	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
867 		/* insert the continuous items into the same leaf */
868 		path->slots[0]++;
869 		btrfs_batch_insert_items(root, path, curr);
870 	}
871 	btrfs_release_delayed_item(prev);
872 	btrfs_mark_buffer_dirty(path->nodes[0]);
873 
874 	btrfs_release_path(path);
875 	mutex_unlock(&node->mutex);
876 	goto do_again;
877 
878 insert_end:
879 	mutex_unlock(&node->mutex);
880 	return ret;
881 }
882 
883 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
884 				    struct btrfs_root *root,
885 				    struct btrfs_path *path,
886 				    struct btrfs_delayed_item *item)
887 {
888 	struct btrfs_delayed_item *curr, *next;
889 	struct extent_buffer *leaf;
890 	struct btrfs_key key;
891 	struct list_head head;
892 	int nitems, i, last_item;
893 	int ret = 0;
894 
895 	BUG_ON(!path->nodes[0]);
896 
897 	leaf = path->nodes[0];
898 
899 	i = path->slots[0];
900 	last_item = btrfs_header_nritems(leaf) - 1;
901 	if (i > last_item)
902 		return -ENOENT;	/* FIXME: Is errno suitable? */
903 
904 	next = item;
905 	INIT_LIST_HEAD(&head);
906 	btrfs_item_key_to_cpu(leaf, &key, i);
907 	nitems = 0;
908 	/*
909 	 * count the number of the dir index items that we can delete in batch
910 	 */
911 	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
912 		list_add_tail(&next->tree_list, &head);
913 		nitems++;
914 
915 		curr = next;
916 		next = __btrfs_next_delayed_item(curr);
917 		if (!next)
918 			break;
919 
920 		if (!btrfs_is_continuous_delayed_item(curr, next))
921 			break;
922 
923 		i++;
924 		if (i > last_item)
925 			break;
926 		btrfs_item_key_to_cpu(leaf, &key, i);
927 	}
928 
929 	if (!nitems)
930 		return 0;
931 
932 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
933 	if (ret)
934 		goto out;
935 
936 	list_for_each_entry_safe(curr, next, &head, tree_list) {
937 		btrfs_delayed_item_release_metadata(root, curr);
938 		list_del(&curr->tree_list);
939 		btrfs_release_delayed_item(curr);
940 	}
941 
942 out:
943 	return ret;
944 }
945 
946 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
947 				      struct btrfs_path *path,
948 				      struct btrfs_root *root,
949 				      struct btrfs_delayed_node *node)
950 {
951 	struct btrfs_delayed_item *curr, *prev;
952 	int ret = 0;
953 
954 do_again:
955 	mutex_lock(&node->mutex);
956 	curr = __btrfs_first_delayed_deletion_item(node);
957 	if (!curr)
958 		goto delete_fail;
959 
960 	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
961 	if (ret < 0)
962 		goto delete_fail;
963 	else if (ret > 0) {
964 		/*
965 		 * can't find the item which the node points to, so this node
966 		 * is invalid, just drop it.
967 		 */
968 		prev = curr;
969 		curr = __btrfs_next_delayed_item(prev);
970 		btrfs_release_delayed_item(prev);
971 		ret = 0;
972 		btrfs_release_path(path);
973 		if (curr) {
974 			mutex_unlock(&node->mutex);
975 			goto do_again;
976 		} else
977 			goto delete_fail;
978 	}
979 
980 	btrfs_batch_delete_items(trans, root, path, curr);
981 	btrfs_release_path(path);
982 	mutex_unlock(&node->mutex);
983 	goto do_again;
984 
985 delete_fail:
986 	btrfs_release_path(path);
987 	mutex_unlock(&node->mutex);
988 	return ret;
989 }
990 
991 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
992 {
993 	struct btrfs_delayed_root *delayed_root;
994 
995 	if (delayed_node &&
996 	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
997 		BUG_ON(!delayed_node->root);
998 		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
999 		delayed_node->count--;
1000 
1001 		delayed_root = delayed_node->root->fs_info->delayed_root;
1002 		finish_one_item(delayed_root);
1003 	}
1004 }
1005 
1006 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1007 {
1008 	struct btrfs_delayed_root *delayed_root;
1009 
1010 	ASSERT(delayed_node->root);
1011 	clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1012 	delayed_node->count--;
1013 
1014 	delayed_root = delayed_node->root->fs_info->delayed_root;
1015 	finish_one_item(delayed_root);
1016 }
1017 
1018 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1019 					struct btrfs_root *root,
1020 					struct btrfs_path *path,
1021 					struct btrfs_delayed_node *node)
1022 {
1023 	struct btrfs_key key;
1024 	struct btrfs_inode_item *inode_item;
1025 	struct extent_buffer *leaf;
1026 	int mod;
1027 	int ret;
1028 
1029 	key.objectid = node->inode_id;
1030 	key.type = BTRFS_INODE_ITEM_KEY;
1031 	key.offset = 0;
1032 
1033 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1034 		mod = -1;
1035 	else
1036 		mod = 1;
1037 
1038 	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1039 	if (ret > 0) {
1040 		btrfs_release_path(path);
1041 		return -ENOENT;
1042 	} else if (ret < 0) {
1043 		return ret;
1044 	}
1045 
1046 	leaf = path->nodes[0];
1047 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1048 				    struct btrfs_inode_item);
1049 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1050 			    sizeof(struct btrfs_inode_item));
1051 	btrfs_mark_buffer_dirty(leaf);
1052 
1053 	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1054 		goto no_iref;
1055 
1056 	path->slots[0]++;
1057 	if (path->slots[0] >= btrfs_header_nritems(leaf))
1058 		goto search;
1059 again:
1060 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1061 	if (key.objectid != node->inode_id)
1062 		goto out;
1063 
1064 	if (key.type != BTRFS_INODE_REF_KEY &&
1065 	    key.type != BTRFS_INODE_EXTREF_KEY)
1066 		goto out;
1067 
1068 	/*
1069 	 * Delayed iref deletion is for the inode who has only one link,
1070 	 * so there is only one iref. The case that several irefs are
1071 	 * in the same item doesn't exist.
1072 	 */
1073 	btrfs_del_item(trans, root, path);
1074 out:
1075 	btrfs_release_delayed_iref(node);
1076 no_iref:
1077 	btrfs_release_path(path);
1078 err_out:
1079 	btrfs_delayed_inode_release_metadata(root, node);
1080 	btrfs_release_delayed_inode(node);
1081 
1082 	return ret;
1083 
1084 search:
1085 	btrfs_release_path(path);
1086 
1087 	key.type = BTRFS_INODE_EXTREF_KEY;
1088 	key.offset = -1;
1089 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1090 	if (ret < 0)
1091 		goto err_out;
1092 	ASSERT(ret);
1093 
1094 	ret = 0;
1095 	leaf = path->nodes[0];
1096 	path->slots[0]--;
1097 	goto again;
1098 }
1099 
1100 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1101 					     struct btrfs_root *root,
1102 					     struct btrfs_path *path,
1103 					     struct btrfs_delayed_node *node)
1104 {
1105 	int ret;
1106 
1107 	mutex_lock(&node->mutex);
1108 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1109 		mutex_unlock(&node->mutex);
1110 		return 0;
1111 	}
1112 
1113 	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1114 	mutex_unlock(&node->mutex);
1115 	return ret;
1116 }
1117 
1118 static inline int
1119 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1120 				   struct btrfs_path *path,
1121 				   struct btrfs_delayed_node *node)
1122 {
1123 	int ret;
1124 
1125 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1126 	if (ret)
1127 		return ret;
1128 
1129 	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1130 	if (ret)
1131 		return ret;
1132 
1133 	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1134 	return ret;
1135 }
1136 
1137 /*
1138  * Called when committing the transaction.
1139  * Returns 0 on success.
1140  * Returns < 0 on error and returns with an aborted transaction with any
1141  * outstanding delayed items cleaned up.
1142  */
1143 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1144 				     struct btrfs_root *root, int nr)
1145 {
1146 	struct btrfs_delayed_root *delayed_root;
1147 	struct btrfs_delayed_node *curr_node, *prev_node;
1148 	struct btrfs_path *path;
1149 	struct btrfs_block_rsv *block_rsv;
1150 	int ret = 0;
1151 	bool count = (nr > 0);
1152 
1153 	if (trans->aborted)
1154 		return -EIO;
1155 
1156 	path = btrfs_alloc_path();
1157 	if (!path)
1158 		return -ENOMEM;
1159 	path->leave_spinning = 1;
1160 
1161 	block_rsv = trans->block_rsv;
1162 	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1163 
1164 	delayed_root = btrfs_get_delayed_root(root);
1165 
1166 	curr_node = btrfs_first_delayed_node(delayed_root);
1167 	while (curr_node && (!count || (count && nr--))) {
1168 		ret = __btrfs_commit_inode_delayed_items(trans, path,
1169 							 curr_node);
1170 		if (ret) {
1171 			btrfs_release_delayed_node(curr_node);
1172 			curr_node = NULL;
1173 			btrfs_abort_transaction(trans, ret);
1174 			break;
1175 		}
1176 
1177 		prev_node = curr_node;
1178 		curr_node = btrfs_next_delayed_node(curr_node);
1179 		btrfs_release_delayed_node(prev_node);
1180 	}
1181 
1182 	if (curr_node)
1183 		btrfs_release_delayed_node(curr_node);
1184 	btrfs_free_path(path);
1185 	trans->block_rsv = block_rsv;
1186 
1187 	return ret;
1188 }
1189 
1190 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1191 			    struct btrfs_root *root)
1192 {
1193 	return __btrfs_run_delayed_items(trans, root, -1);
1194 }
1195 
1196 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1197 			       struct btrfs_root *root, int nr)
1198 {
1199 	return __btrfs_run_delayed_items(trans, root, nr);
1200 }
1201 
1202 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1203 				     struct inode *inode)
1204 {
1205 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1206 	struct btrfs_path *path;
1207 	struct btrfs_block_rsv *block_rsv;
1208 	int ret;
1209 
1210 	if (!delayed_node)
1211 		return 0;
1212 
1213 	mutex_lock(&delayed_node->mutex);
1214 	if (!delayed_node->count) {
1215 		mutex_unlock(&delayed_node->mutex);
1216 		btrfs_release_delayed_node(delayed_node);
1217 		return 0;
1218 	}
1219 	mutex_unlock(&delayed_node->mutex);
1220 
1221 	path = btrfs_alloc_path();
1222 	if (!path) {
1223 		btrfs_release_delayed_node(delayed_node);
1224 		return -ENOMEM;
1225 	}
1226 	path->leave_spinning = 1;
1227 
1228 	block_rsv = trans->block_rsv;
1229 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1230 
1231 	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1232 
1233 	btrfs_release_delayed_node(delayed_node);
1234 	btrfs_free_path(path);
1235 	trans->block_rsv = block_rsv;
1236 
1237 	return ret;
1238 }
1239 
1240 int btrfs_commit_inode_delayed_inode(struct inode *inode)
1241 {
1242 	struct btrfs_trans_handle *trans;
1243 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1244 	struct btrfs_path *path;
1245 	struct btrfs_block_rsv *block_rsv;
1246 	int ret;
1247 
1248 	if (!delayed_node)
1249 		return 0;
1250 
1251 	mutex_lock(&delayed_node->mutex);
1252 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1253 		mutex_unlock(&delayed_node->mutex);
1254 		btrfs_release_delayed_node(delayed_node);
1255 		return 0;
1256 	}
1257 	mutex_unlock(&delayed_node->mutex);
1258 
1259 	trans = btrfs_join_transaction(delayed_node->root);
1260 	if (IS_ERR(trans)) {
1261 		ret = PTR_ERR(trans);
1262 		goto out;
1263 	}
1264 
1265 	path = btrfs_alloc_path();
1266 	if (!path) {
1267 		ret = -ENOMEM;
1268 		goto trans_out;
1269 	}
1270 	path->leave_spinning = 1;
1271 
1272 	block_rsv = trans->block_rsv;
1273 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1274 
1275 	mutex_lock(&delayed_node->mutex);
1276 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1277 		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1278 						   path, delayed_node);
1279 	else
1280 		ret = 0;
1281 	mutex_unlock(&delayed_node->mutex);
1282 
1283 	btrfs_free_path(path);
1284 	trans->block_rsv = block_rsv;
1285 trans_out:
1286 	btrfs_end_transaction(trans, delayed_node->root);
1287 	btrfs_btree_balance_dirty(delayed_node->root);
1288 out:
1289 	btrfs_release_delayed_node(delayed_node);
1290 
1291 	return ret;
1292 }
1293 
1294 void btrfs_remove_delayed_node(struct inode *inode)
1295 {
1296 	struct btrfs_delayed_node *delayed_node;
1297 
1298 	delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1299 	if (!delayed_node)
1300 		return;
1301 
1302 	BTRFS_I(inode)->delayed_node = NULL;
1303 	btrfs_release_delayed_node(delayed_node);
1304 }
1305 
1306 struct btrfs_async_delayed_work {
1307 	struct btrfs_delayed_root *delayed_root;
1308 	int nr;
1309 	struct btrfs_work work;
1310 };
1311 
1312 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1313 {
1314 	struct btrfs_async_delayed_work *async_work;
1315 	struct btrfs_delayed_root *delayed_root;
1316 	struct btrfs_trans_handle *trans;
1317 	struct btrfs_path *path;
1318 	struct btrfs_delayed_node *delayed_node = NULL;
1319 	struct btrfs_root *root;
1320 	struct btrfs_block_rsv *block_rsv;
1321 	int total_done = 0;
1322 
1323 	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1324 	delayed_root = async_work->delayed_root;
1325 
1326 	path = btrfs_alloc_path();
1327 	if (!path)
1328 		goto out;
1329 
1330 again:
1331 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1332 		goto free_path;
1333 
1334 	delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1335 	if (!delayed_node)
1336 		goto free_path;
1337 
1338 	path->leave_spinning = 1;
1339 	root = delayed_node->root;
1340 
1341 	trans = btrfs_join_transaction(root);
1342 	if (IS_ERR(trans))
1343 		goto release_path;
1344 
1345 	block_rsv = trans->block_rsv;
1346 	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1347 
1348 	__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1349 
1350 	trans->block_rsv = block_rsv;
1351 	btrfs_end_transaction(trans, root);
1352 	btrfs_btree_balance_dirty_nodelay(root);
1353 
1354 release_path:
1355 	btrfs_release_path(path);
1356 	total_done++;
1357 
1358 	btrfs_release_prepared_delayed_node(delayed_node);
1359 	if (async_work->nr == 0 || total_done < async_work->nr)
1360 		goto again;
1361 
1362 free_path:
1363 	btrfs_free_path(path);
1364 out:
1365 	wake_up(&delayed_root->wait);
1366 	kfree(async_work);
1367 }
1368 
1369 
1370 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1371 				     struct btrfs_fs_info *fs_info, int nr)
1372 {
1373 	struct btrfs_async_delayed_work *async_work;
1374 
1375 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1376 		return 0;
1377 
1378 	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1379 	if (!async_work)
1380 		return -ENOMEM;
1381 
1382 	async_work->delayed_root = delayed_root;
1383 	btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1384 			btrfs_async_run_delayed_root, NULL, NULL);
1385 	async_work->nr = nr;
1386 
1387 	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1388 	return 0;
1389 }
1390 
1391 void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1392 {
1393 	struct btrfs_delayed_root *delayed_root;
1394 	delayed_root = btrfs_get_delayed_root(root);
1395 	WARN_ON(btrfs_first_delayed_node(delayed_root));
1396 }
1397 
1398 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1399 {
1400 	int val = atomic_read(&delayed_root->items_seq);
1401 
1402 	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1403 		return 1;
1404 
1405 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1406 		return 1;
1407 
1408 	return 0;
1409 }
1410 
1411 void btrfs_balance_delayed_items(struct btrfs_root *root)
1412 {
1413 	struct btrfs_delayed_root *delayed_root;
1414 	struct btrfs_fs_info *fs_info = root->fs_info;
1415 
1416 	delayed_root = btrfs_get_delayed_root(root);
1417 
1418 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1419 		return;
1420 
1421 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1422 		int seq;
1423 		int ret;
1424 
1425 		seq = atomic_read(&delayed_root->items_seq);
1426 
1427 		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1428 		if (ret)
1429 			return;
1430 
1431 		wait_event_interruptible(delayed_root->wait,
1432 					 could_end_wait(delayed_root, seq));
1433 		return;
1434 	}
1435 
1436 	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1437 }
1438 
1439 /* Will return 0 or -ENOMEM */
1440 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1441 				   struct btrfs_root *root, const char *name,
1442 				   int name_len, struct inode *dir,
1443 				   struct btrfs_disk_key *disk_key, u8 type,
1444 				   u64 index)
1445 {
1446 	struct btrfs_delayed_node *delayed_node;
1447 	struct btrfs_delayed_item *delayed_item;
1448 	struct btrfs_dir_item *dir_item;
1449 	int ret;
1450 
1451 	delayed_node = btrfs_get_or_create_delayed_node(dir);
1452 	if (IS_ERR(delayed_node))
1453 		return PTR_ERR(delayed_node);
1454 
1455 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1456 	if (!delayed_item) {
1457 		ret = -ENOMEM;
1458 		goto release_node;
1459 	}
1460 
1461 	delayed_item->key.objectid = btrfs_ino(dir);
1462 	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1463 	delayed_item->key.offset = index;
1464 
1465 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1466 	dir_item->location = *disk_key;
1467 	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1468 	btrfs_set_stack_dir_data_len(dir_item, 0);
1469 	btrfs_set_stack_dir_name_len(dir_item, name_len);
1470 	btrfs_set_stack_dir_type(dir_item, type);
1471 	memcpy((char *)(dir_item + 1), name, name_len);
1472 
1473 	ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1474 	/*
1475 	 * we have reserved enough space when we start a new transaction,
1476 	 * so reserving metadata failure is impossible
1477 	 */
1478 	BUG_ON(ret);
1479 
1480 
1481 	mutex_lock(&delayed_node->mutex);
1482 	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1483 	if (unlikely(ret)) {
1484 		btrfs_err(root->fs_info, "err add delayed dir index item(name: %.*s) "
1485 				"into the insertion tree of the delayed node"
1486 				"(root id: %llu, inode id: %llu, errno: %d)",
1487 				name_len, name, delayed_node->root->objectid,
1488 				delayed_node->inode_id, ret);
1489 		BUG();
1490 	}
1491 	mutex_unlock(&delayed_node->mutex);
1492 
1493 release_node:
1494 	btrfs_release_delayed_node(delayed_node);
1495 	return ret;
1496 }
1497 
1498 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1499 					       struct btrfs_delayed_node *node,
1500 					       struct btrfs_key *key)
1501 {
1502 	struct btrfs_delayed_item *item;
1503 
1504 	mutex_lock(&node->mutex);
1505 	item = __btrfs_lookup_delayed_insertion_item(node, key);
1506 	if (!item) {
1507 		mutex_unlock(&node->mutex);
1508 		return 1;
1509 	}
1510 
1511 	btrfs_delayed_item_release_metadata(root, item);
1512 	btrfs_release_delayed_item(item);
1513 	mutex_unlock(&node->mutex);
1514 	return 0;
1515 }
1516 
1517 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1518 				   struct btrfs_root *root, struct inode *dir,
1519 				   u64 index)
1520 {
1521 	struct btrfs_delayed_node *node;
1522 	struct btrfs_delayed_item *item;
1523 	struct btrfs_key item_key;
1524 	int ret;
1525 
1526 	node = btrfs_get_or_create_delayed_node(dir);
1527 	if (IS_ERR(node))
1528 		return PTR_ERR(node);
1529 
1530 	item_key.objectid = btrfs_ino(dir);
1531 	item_key.type = BTRFS_DIR_INDEX_KEY;
1532 	item_key.offset = index;
1533 
1534 	ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1535 	if (!ret)
1536 		goto end;
1537 
1538 	item = btrfs_alloc_delayed_item(0);
1539 	if (!item) {
1540 		ret = -ENOMEM;
1541 		goto end;
1542 	}
1543 
1544 	item->key = item_key;
1545 
1546 	ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1547 	/*
1548 	 * we have reserved enough space when we start a new transaction,
1549 	 * so reserving metadata failure is impossible.
1550 	 */
1551 	BUG_ON(ret);
1552 
1553 	mutex_lock(&node->mutex);
1554 	ret = __btrfs_add_delayed_deletion_item(node, item);
1555 	if (unlikely(ret)) {
1556 		btrfs_err(root->fs_info, "err add delayed dir index item(index: %llu) "
1557 				"into the deletion tree of the delayed node"
1558 				"(root id: %llu, inode id: %llu, errno: %d)",
1559 				index, node->root->objectid, node->inode_id,
1560 				ret);
1561 		BUG();
1562 	}
1563 	mutex_unlock(&node->mutex);
1564 end:
1565 	btrfs_release_delayed_node(node);
1566 	return ret;
1567 }
1568 
1569 int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1570 {
1571 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1572 
1573 	if (!delayed_node)
1574 		return -ENOENT;
1575 
1576 	/*
1577 	 * Since we have held i_mutex of this directory, it is impossible that
1578 	 * a new directory index is added into the delayed node and index_cnt
1579 	 * is updated now. So we needn't lock the delayed node.
1580 	 */
1581 	if (!delayed_node->index_cnt) {
1582 		btrfs_release_delayed_node(delayed_node);
1583 		return -EINVAL;
1584 	}
1585 
1586 	BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1587 	btrfs_release_delayed_node(delayed_node);
1588 	return 0;
1589 }
1590 
1591 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1592 				     struct list_head *ins_list,
1593 				     struct list_head *del_list)
1594 {
1595 	struct btrfs_delayed_node *delayed_node;
1596 	struct btrfs_delayed_item *item;
1597 
1598 	delayed_node = btrfs_get_delayed_node(inode);
1599 	if (!delayed_node)
1600 		return false;
1601 
1602 	/*
1603 	 * We can only do one readdir with delayed items at a time because of
1604 	 * item->readdir_list.
1605 	 */
1606 	inode_unlock_shared(inode);
1607 	inode_lock(inode);
1608 
1609 	mutex_lock(&delayed_node->mutex);
1610 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1611 	while (item) {
1612 		atomic_inc(&item->refs);
1613 		list_add_tail(&item->readdir_list, ins_list);
1614 		item = __btrfs_next_delayed_item(item);
1615 	}
1616 
1617 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1618 	while (item) {
1619 		atomic_inc(&item->refs);
1620 		list_add_tail(&item->readdir_list, del_list);
1621 		item = __btrfs_next_delayed_item(item);
1622 	}
1623 	mutex_unlock(&delayed_node->mutex);
1624 	/*
1625 	 * This delayed node is still cached in the btrfs inode, so refs
1626 	 * must be > 1 now, and we needn't check it is going to be freed
1627 	 * or not.
1628 	 *
1629 	 * Besides that, this function is used to read dir, we do not
1630 	 * insert/delete delayed items in this period. So we also needn't
1631 	 * requeue or dequeue this delayed node.
1632 	 */
1633 	atomic_dec(&delayed_node->refs);
1634 
1635 	return true;
1636 }
1637 
1638 void btrfs_readdir_put_delayed_items(struct inode *inode,
1639 				     struct list_head *ins_list,
1640 				     struct list_head *del_list)
1641 {
1642 	struct btrfs_delayed_item *curr, *next;
1643 
1644 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1645 		list_del(&curr->readdir_list);
1646 		if (atomic_dec_and_test(&curr->refs))
1647 			kfree(curr);
1648 	}
1649 
1650 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1651 		list_del(&curr->readdir_list);
1652 		if (atomic_dec_and_test(&curr->refs))
1653 			kfree(curr);
1654 	}
1655 
1656 	/*
1657 	 * The VFS is going to do up_read(), so we need to downgrade back to a
1658 	 * read lock.
1659 	 */
1660 	downgrade_write(&inode->i_rwsem);
1661 }
1662 
1663 int btrfs_should_delete_dir_index(struct list_head *del_list,
1664 				  u64 index)
1665 {
1666 	struct btrfs_delayed_item *curr, *next;
1667 	int ret;
1668 
1669 	if (list_empty(del_list))
1670 		return 0;
1671 
1672 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1673 		if (curr->key.offset > index)
1674 			break;
1675 
1676 		list_del(&curr->readdir_list);
1677 		ret = (curr->key.offset == index);
1678 
1679 		if (atomic_dec_and_test(&curr->refs))
1680 			kfree(curr);
1681 
1682 		if (ret)
1683 			return 1;
1684 		else
1685 			continue;
1686 	}
1687 	return 0;
1688 }
1689 
1690 /*
1691  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1692  *
1693  */
1694 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1695 				    struct list_head *ins_list, bool *emitted)
1696 {
1697 	struct btrfs_dir_item *di;
1698 	struct btrfs_delayed_item *curr, *next;
1699 	struct btrfs_key location;
1700 	char *name;
1701 	int name_len;
1702 	int over = 0;
1703 	unsigned char d_type;
1704 
1705 	if (list_empty(ins_list))
1706 		return 0;
1707 
1708 	/*
1709 	 * Changing the data of the delayed item is impossible. So
1710 	 * we needn't lock them. And we have held i_mutex of the
1711 	 * directory, nobody can delete any directory indexes now.
1712 	 */
1713 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1714 		list_del(&curr->readdir_list);
1715 
1716 		if (curr->key.offset < ctx->pos) {
1717 			if (atomic_dec_and_test(&curr->refs))
1718 				kfree(curr);
1719 			continue;
1720 		}
1721 
1722 		ctx->pos = curr->key.offset;
1723 
1724 		di = (struct btrfs_dir_item *)curr->data;
1725 		name = (char *)(di + 1);
1726 		name_len = btrfs_stack_dir_name_len(di);
1727 
1728 		d_type = btrfs_filetype_table[di->type];
1729 		btrfs_disk_key_to_cpu(&location, &di->location);
1730 
1731 		over = !dir_emit(ctx, name, name_len,
1732 			       location.objectid, d_type);
1733 
1734 		if (atomic_dec_and_test(&curr->refs))
1735 			kfree(curr);
1736 
1737 		if (over)
1738 			return 1;
1739 		*emitted = true;
1740 	}
1741 	return 0;
1742 }
1743 
1744 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1745 				  struct btrfs_inode_item *inode_item,
1746 				  struct inode *inode)
1747 {
1748 	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1749 	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1750 	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1751 	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1752 	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1753 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1754 	btrfs_set_stack_inode_generation(inode_item,
1755 					 BTRFS_I(inode)->generation);
1756 	btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1757 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1758 	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1759 	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1760 	btrfs_set_stack_inode_block_group(inode_item, 0);
1761 
1762 	btrfs_set_stack_timespec_sec(&inode_item->atime,
1763 				     inode->i_atime.tv_sec);
1764 	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1765 				      inode->i_atime.tv_nsec);
1766 
1767 	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1768 				     inode->i_mtime.tv_sec);
1769 	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1770 				      inode->i_mtime.tv_nsec);
1771 
1772 	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1773 				     inode->i_ctime.tv_sec);
1774 	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1775 				      inode->i_ctime.tv_nsec);
1776 
1777 	btrfs_set_stack_timespec_sec(&inode_item->otime,
1778 				     BTRFS_I(inode)->i_otime.tv_sec);
1779 	btrfs_set_stack_timespec_nsec(&inode_item->otime,
1780 				     BTRFS_I(inode)->i_otime.tv_nsec);
1781 }
1782 
1783 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1784 {
1785 	struct btrfs_delayed_node *delayed_node;
1786 	struct btrfs_inode_item *inode_item;
1787 
1788 	delayed_node = btrfs_get_delayed_node(inode);
1789 	if (!delayed_node)
1790 		return -ENOENT;
1791 
1792 	mutex_lock(&delayed_node->mutex);
1793 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1794 		mutex_unlock(&delayed_node->mutex);
1795 		btrfs_release_delayed_node(delayed_node);
1796 		return -ENOENT;
1797 	}
1798 
1799 	inode_item = &delayed_node->inode_item;
1800 
1801 	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1802 	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1803 	btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1804 	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1805 	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1806 	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1807 	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1808         BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1809 
1810 	inode->i_version = btrfs_stack_inode_sequence(inode_item);
1811 	inode->i_rdev = 0;
1812 	*rdev = btrfs_stack_inode_rdev(inode_item);
1813 	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1814 
1815 	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1816 	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1817 
1818 	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1819 	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1820 
1821 	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1822 	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1823 
1824 	BTRFS_I(inode)->i_otime.tv_sec =
1825 		btrfs_stack_timespec_sec(&inode_item->otime);
1826 	BTRFS_I(inode)->i_otime.tv_nsec =
1827 		btrfs_stack_timespec_nsec(&inode_item->otime);
1828 
1829 	inode->i_generation = BTRFS_I(inode)->generation;
1830 	BTRFS_I(inode)->index_cnt = (u64)-1;
1831 
1832 	mutex_unlock(&delayed_node->mutex);
1833 	btrfs_release_delayed_node(delayed_node);
1834 	return 0;
1835 }
1836 
1837 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1838 			       struct btrfs_root *root, struct inode *inode)
1839 {
1840 	struct btrfs_delayed_node *delayed_node;
1841 	int ret = 0;
1842 
1843 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1844 	if (IS_ERR(delayed_node))
1845 		return PTR_ERR(delayed_node);
1846 
1847 	mutex_lock(&delayed_node->mutex);
1848 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1849 		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1850 		goto release_node;
1851 	}
1852 
1853 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1854 						   delayed_node);
1855 	if (ret)
1856 		goto release_node;
1857 
1858 	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1859 	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1860 	delayed_node->count++;
1861 	atomic_inc(&root->fs_info->delayed_root->items);
1862 release_node:
1863 	mutex_unlock(&delayed_node->mutex);
1864 	btrfs_release_delayed_node(delayed_node);
1865 	return ret;
1866 }
1867 
1868 int btrfs_delayed_delete_inode_ref(struct inode *inode)
1869 {
1870 	struct btrfs_delayed_node *delayed_node;
1871 
1872 	/*
1873 	 * we don't do delayed inode updates during log recovery because it
1874 	 * leads to enospc problems.  This means we also can't do
1875 	 * delayed inode refs
1876 	 */
1877 	if (BTRFS_I(inode)->root->fs_info->log_root_recovering)
1878 		return -EAGAIN;
1879 
1880 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1881 	if (IS_ERR(delayed_node))
1882 		return PTR_ERR(delayed_node);
1883 
1884 	/*
1885 	 * We don't reserve space for inode ref deletion is because:
1886 	 * - We ONLY do async inode ref deletion for the inode who has only
1887 	 *   one link(i_nlink == 1), it means there is only one inode ref.
1888 	 *   And in most case, the inode ref and the inode item are in the
1889 	 *   same leaf, and we will deal with them at the same time.
1890 	 *   Since we are sure we will reserve the space for the inode item,
1891 	 *   it is unnecessary to reserve space for inode ref deletion.
1892 	 * - If the inode ref and the inode item are not in the same leaf,
1893 	 *   We also needn't worry about enospc problem, because we reserve
1894 	 *   much more space for the inode update than it needs.
1895 	 * - At the worst, we can steal some space from the global reservation.
1896 	 *   It is very rare.
1897 	 */
1898 	mutex_lock(&delayed_node->mutex);
1899 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1900 		goto release_node;
1901 
1902 	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1903 	delayed_node->count++;
1904 	atomic_inc(&BTRFS_I(inode)->root->fs_info->delayed_root->items);
1905 release_node:
1906 	mutex_unlock(&delayed_node->mutex);
1907 	btrfs_release_delayed_node(delayed_node);
1908 	return 0;
1909 }
1910 
1911 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1912 {
1913 	struct btrfs_root *root = delayed_node->root;
1914 	struct btrfs_delayed_item *curr_item, *prev_item;
1915 
1916 	mutex_lock(&delayed_node->mutex);
1917 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1918 	while (curr_item) {
1919 		btrfs_delayed_item_release_metadata(root, curr_item);
1920 		prev_item = curr_item;
1921 		curr_item = __btrfs_next_delayed_item(prev_item);
1922 		btrfs_release_delayed_item(prev_item);
1923 	}
1924 
1925 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1926 	while (curr_item) {
1927 		btrfs_delayed_item_release_metadata(root, curr_item);
1928 		prev_item = curr_item;
1929 		curr_item = __btrfs_next_delayed_item(prev_item);
1930 		btrfs_release_delayed_item(prev_item);
1931 	}
1932 
1933 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1934 		btrfs_release_delayed_iref(delayed_node);
1935 
1936 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1937 		btrfs_delayed_inode_release_metadata(root, delayed_node);
1938 		btrfs_release_delayed_inode(delayed_node);
1939 	}
1940 	mutex_unlock(&delayed_node->mutex);
1941 }
1942 
1943 void btrfs_kill_delayed_inode_items(struct inode *inode)
1944 {
1945 	struct btrfs_delayed_node *delayed_node;
1946 
1947 	delayed_node = btrfs_get_delayed_node(inode);
1948 	if (!delayed_node)
1949 		return;
1950 
1951 	__btrfs_kill_delayed_node(delayed_node);
1952 	btrfs_release_delayed_node(delayed_node);
1953 }
1954 
1955 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1956 {
1957 	u64 inode_id = 0;
1958 	struct btrfs_delayed_node *delayed_nodes[8];
1959 	int i, n;
1960 
1961 	while (1) {
1962 		spin_lock(&root->inode_lock);
1963 		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1964 					   (void **)delayed_nodes, inode_id,
1965 					   ARRAY_SIZE(delayed_nodes));
1966 		if (!n) {
1967 			spin_unlock(&root->inode_lock);
1968 			break;
1969 		}
1970 
1971 		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1972 
1973 		for (i = 0; i < n; i++)
1974 			atomic_inc(&delayed_nodes[i]->refs);
1975 		spin_unlock(&root->inode_lock);
1976 
1977 		for (i = 0; i < n; i++) {
1978 			__btrfs_kill_delayed_node(delayed_nodes[i]);
1979 			btrfs_release_delayed_node(delayed_nodes[i]);
1980 		}
1981 	}
1982 }
1983 
1984 void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
1985 {
1986 	struct btrfs_delayed_root *delayed_root;
1987 	struct btrfs_delayed_node *curr_node, *prev_node;
1988 
1989 	delayed_root = btrfs_get_delayed_root(root);
1990 
1991 	curr_node = btrfs_first_delayed_node(delayed_root);
1992 	while (curr_node) {
1993 		__btrfs_kill_delayed_node(curr_node);
1994 
1995 		prev_node = curr_node;
1996 		curr_node = btrfs_next_delayed_node(curr_node);
1997 		btrfs_release_delayed_node(prev_node);
1998 	}
1999 }
2000 
2001