1 /* 2 * Copyright (C) 2011 Fujitsu. All rights reserved. 3 * Written by Miao Xie <miaox@cn.fujitsu.com> 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public 7 * License v2 as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public 15 * License along with this program; if not, write to the 16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 17 * Boston, MA 021110-1307, USA. 18 */ 19 20 #include <linux/slab.h> 21 #include "delayed-inode.h" 22 #include "disk-io.h" 23 #include "transaction.h" 24 25 #define BTRFS_DELAYED_WRITEBACK 512 26 #define BTRFS_DELAYED_BACKGROUND 128 27 #define BTRFS_DELAYED_BATCH 16 28 29 static struct kmem_cache *delayed_node_cache; 30 31 int __init btrfs_delayed_inode_init(void) 32 { 33 delayed_node_cache = kmem_cache_create("btrfs_delayed_node", 34 sizeof(struct btrfs_delayed_node), 35 0, 36 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 37 NULL); 38 if (!delayed_node_cache) 39 return -ENOMEM; 40 return 0; 41 } 42 43 void btrfs_delayed_inode_exit(void) 44 { 45 if (delayed_node_cache) 46 kmem_cache_destroy(delayed_node_cache); 47 } 48 49 static inline void btrfs_init_delayed_node( 50 struct btrfs_delayed_node *delayed_node, 51 struct btrfs_root *root, u64 inode_id) 52 { 53 delayed_node->root = root; 54 delayed_node->inode_id = inode_id; 55 atomic_set(&delayed_node->refs, 0); 56 delayed_node->count = 0; 57 delayed_node->in_list = 0; 58 delayed_node->inode_dirty = 0; 59 delayed_node->ins_root = RB_ROOT; 60 delayed_node->del_root = RB_ROOT; 61 mutex_init(&delayed_node->mutex); 62 delayed_node->index_cnt = 0; 63 INIT_LIST_HEAD(&delayed_node->n_list); 64 INIT_LIST_HEAD(&delayed_node->p_list); 65 delayed_node->bytes_reserved = 0; 66 memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item)); 67 } 68 69 static inline int btrfs_is_continuous_delayed_item( 70 struct btrfs_delayed_item *item1, 71 struct btrfs_delayed_item *item2) 72 { 73 if (item1->key.type == BTRFS_DIR_INDEX_KEY && 74 item1->key.objectid == item2->key.objectid && 75 item1->key.type == item2->key.type && 76 item1->key.offset + 1 == item2->key.offset) 77 return 1; 78 return 0; 79 } 80 81 static inline struct btrfs_delayed_root *btrfs_get_delayed_root( 82 struct btrfs_root *root) 83 { 84 return root->fs_info->delayed_root; 85 } 86 87 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode) 88 { 89 struct btrfs_inode *btrfs_inode = BTRFS_I(inode); 90 struct btrfs_root *root = btrfs_inode->root; 91 u64 ino = btrfs_ino(inode); 92 struct btrfs_delayed_node *node; 93 94 node = ACCESS_ONCE(btrfs_inode->delayed_node); 95 if (node) { 96 atomic_inc(&node->refs); 97 return node; 98 } 99 100 spin_lock(&root->inode_lock); 101 node = radix_tree_lookup(&root->delayed_nodes_tree, ino); 102 if (node) { 103 if (btrfs_inode->delayed_node) { 104 atomic_inc(&node->refs); /* can be accessed */ 105 BUG_ON(btrfs_inode->delayed_node != node); 106 spin_unlock(&root->inode_lock); 107 return node; 108 } 109 btrfs_inode->delayed_node = node; 110 atomic_inc(&node->refs); /* can be accessed */ 111 atomic_inc(&node->refs); /* cached in the inode */ 112 spin_unlock(&root->inode_lock); 113 return node; 114 } 115 spin_unlock(&root->inode_lock); 116 117 return NULL; 118 } 119 120 /* Will return either the node or PTR_ERR(-ENOMEM) */ 121 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( 122 struct inode *inode) 123 { 124 struct btrfs_delayed_node *node; 125 struct btrfs_inode *btrfs_inode = BTRFS_I(inode); 126 struct btrfs_root *root = btrfs_inode->root; 127 u64 ino = btrfs_ino(inode); 128 int ret; 129 130 again: 131 node = btrfs_get_delayed_node(inode); 132 if (node) 133 return node; 134 135 node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS); 136 if (!node) 137 return ERR_PTR(-ENOMEM); 138 btrfs_init_delayed_node(node, root, ino); 139 140 atomic_inc(&node->refs); /* cached in the btrfs inode */ 141 atomic_inc(&node->refs); /* can be accessed */ 142 143 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 144 if (ret) { 145 kmem_cache_free(delayed_node_cache, node); 146 return ERR_PTR(ret); 147 } 148 149 spin_lock(&root->inode_lock); 150 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node); 151 if (ret == -EEXIST) { 152 kmem_cache_free(delayed_node_cache, node); 153 spin_unlock(&root->inode_lock); 154 radix_tree_preload_end(); 155 goto again; 156 } 157 btrfs_inode->delayed_node = node; 158 spin_unlock(&root->inode_lock); 159 radix_tree_preload_end(); 160 161 return node; 162 } 163 164 /* 165 * Call it when holding delayed_node->mutex 166 * 167 * If mod = 1, add this node into the prepared list. 168 */ 169 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, 170 struct btrfs_delayed_node *node, 171 int mod) 172 { 173 spin_lock(&root->lock); 174 if (node->in_list) { 175 if (!list_empty(&node->p_list)) 176 list_move_tail(&node->p_list, &root->prepare_list); 177 else if (mod) 178 list_add_tail(&node->p_list, &root->prepare_list); 179 } else { 180 list_add_tail(&node->n_list, &root->node_list); 181 list_add_tail(&node->p_list, &root->prepare_list); 182 atomic_inc(&node->refs); /* inserted into list */ 183 root->nodes++; 184 node->in_list = 1; 185 } 186 spin_unlock(&root->lock); 187 } 188 189 /* Call it when holding delayed_node->mutex */ 190 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, 191 struct btrfs_delayed_node *node) 192 { 193 spin_lock(&root->lock); 194 if (node->in_list) { 195 root->nodes--; 196 atomic_dec(&node->refs); /* not in the list */ 197 list_del_init(&node->n_list); 198 if (!list_empty(&node->p_list)) 199 list_del_init(&node->p_list); 200 node->in_list = 0; 201 } 202 spin_unlock(&root->lock); 203 } 204 205 static struct btrfs_delayed_node *btrfs_first_delayed_node( 206 struct btrfs_delayed_root *delayed_root) 207 { 208 struct list_head *p; 209 struct btrfs_delayed_node *node = NULL; 210 211 spin_lock(&delayed_root->lock); 212 if (list_empty(&delayed_root->node_list)) 213 goto out; 214 215 p = delayed_root->node_list.next; 216 node = list_entry(p, struct btrfs_delayed_node, n_list); 217 atomic_inc(&node->refs); 218 out: 219 spin_unlock(&delayed_root->lock); 220 221 return node; 222 } 223 224 static struct btrfs_delayed_node *btrfs_next_delayed_node( 225 struct btrfs_delayed_node *node) 226 { 227 struct btrfs_delayed_root *delayed_root; 228 struct list_head *p; 229 struct btrfs_delayed_node *next = NULL; 230 231 delayed_root = node->root->fs_info->delayed_root; 232 spin_lock(&delayed_root->lock); 233 if (!node->in_list) { /* not in the list */ 234 if (list_empty(&delayed_root->node_list)) 235 goto out; 236 p = delayed_root->node_list.next; 237 } else if (list_is_last(&node->n_list, &delayed_root->node_list)) 238 goto out; 239 else 240 p = node->n_list.next; 241 242 next = list_entry(p, struct btrfs_delayed_node, n_list); 243 atomic_inc(&next->refs); 244 out: 245 spin_unlock(&delayed_root->lock); 246 247 return next; 248 } 249 250 static void __btrfs_release_delayed_node( 251 struct btrfs_delayed_node *delayed_node, 252 int mod) 253 { 254 struct btrfs_delayed_root *delayed_root; 255 256 if (!delayed_node) 257 return; 258 259 delayed_root = delayed_node->root->fs_info->delayed_root; 260 261 mutex_lock(&delayed_node->mutex); 262 if (delayed_node->count) 263 btrfs_queue_delayed_node(delayed_root, delayed_node, mod); 264 else 265 btrfs_dequeue_delayed_node(delayed_root, delayed_node); 266 mutex_unlock(&delayed_node->mutex); 267 268 if (atomic_dec_and_test(&delayed_node->refs)) { 269 struct btrfs_root *root = delayed_node->root; 270 spin_lock(&root->inode_lock); 271 if (atomic_read(&delayed_node->refs) == 0) { 272 radix_tree_delete(&root->delayed_nodes_tree, 273 delayed_node->inode_id); 274 kmem_cache_free(delayed_node_cache, delayed_node); 275 } 276 spin_unlock(&root->inode_lock); 277 } 278 } 279 280 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) 281 { 282 __btrfs_release_delayed_node(node, 0); 283 } 284 285 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( 286 struct btrfs_delayed_root *delayed_root) 287 { 288 struct list_head *p; 289 struct btrfs_delayed_node *node = NULL; 290 291 spin_lock(&delayed_root->lock); 292 if (list_empty(&delayed_root->prepare_list)) 293 goto out; 294 295 p = delayed_root->prepare_list.next; 296 list_del_init(p); 297 node = list_entry(p, struct btrfs_delayed_node, p_list); 298 atomic_inc(&node->refs); 299 out: 300 spin_unlock(&delayed_root->lock); 301 302 return node; 303 } 304 305 static inline void btrfs_release_prepared_delayed_node( 306 struct btrfs_delayed_node *node) 307 { 308 __btrfs_release_delayed_node(node, 1); 309 } 310 311 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len) 312 { 313 struct btrfs_delayed_item *item; 314 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS); 315 if (item) { 316 item->data_len = data_len; 317 item->ins_or_del = 0; 318 item->bytes_reserved = 0; 319 item->delayed_node = NULL; 320 atomic_set(&item->refs, 1); 321 } 322 return item; 323 } 324 325 /* 326 * __btrfs_lookup_delayed_item - look up the delayed item by key 327 * @delayed_node: pointer to the delayed node 328 * @key: the key to look up 329 * @prev: used to store the prev item if the right item isn't found 330 * @next: used to store the next item if the right item isn't found 331 * 332 * Note: if we don't find the right item, we will return the prev item and 333 * the next item. 334 */ 335 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( 336 struct rb_root *root, 337 struct btrfs_key *key, 338 struct btrfs_delayed_item **prev, 339 struct btrfs_delayed_item **next) 340 { 341 struct rb_node *node, *prev_node = NULL; 342 struct btrfs_delayed_item *delayed_item = NULL; 343 int ret = 0; 344 345 node = root->rb_node; 346 347 while (node) { 348 delayed_item = rb_entry(node, struct btrfs_delayed_item, 349 rb_node); 350 prev_node = node; 351 ret = btrfs_comp_cpu_keys(&delayed_item->key, key); 352 if (ret < 0) 353 node = node->rb_right; 354 else if (ret > 0) 355 node = node->rb_left; 356 else 357 return delayed_item; 358 } 359 360 if (prev) { 361 if (!prev_node) 362 *prev = NULL; 363 else if (ret < 0) 364 *prev = delayed_item; 365 else if ((node = rb_prev(prev_node)) != NULL) { 366 *prev = rb_entry(node, struct btrfs_delayed_item, 367 rb_node); 368 } else 369 *prev = NULL; 370 } 371 372 if (next) { 373 if (!prev_node) 374 *next = NULL; 375 else if (ret > 0) 376 *next = delayed_item; 377 else if ((node = rb_next(prev_node)) != NULL) { 378 *next = rb_entry(node, struct btrfs_delayed_item, 379 rb_node); 380 } else 381 *next = NULL; 382 } 383 return NULL; 384 } 385 386 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item( 387 struct btrfs_delayed_node *delayed_node, 388 struct btrfs_key *key) 389 { 390 struct btrfs_delayed_item *item; 391 392 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key, 393 NULL, NULL); 394 return item; 395 } 396 397 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, 398 struct btrfs_delayed_item *ins, 399 int action) 400 { 401 struct rb_node **p, *node; 402 struct rb_node *parent_node = NULL; 403 struct rb_root *root; 404 struct btrfs_delayed_item *item; 405 int cmp; 406 407 if (action == BTRFS_DELAYED_INSERTION_ITEM) 408 root = &delayed_node->ins_root; 409 else if (action == BTRFS_DELAYED_DELETION_ITEM) 410 root = &delayed_node->del_root; 411 else 412 BUG(); 413 p = &root->rb_node; 414 node = &ins->rb_node; 415 416 while (*p) { 417 parent_node = *p; 418 item = rb_entry(parent_node, struct btrfs_delayed_item, 419 rb_node); 420 421 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key); 422 if (cmp < 0) 423 p = &(*p)->rb_right; 424 else if (cmp > 0) 425 p = &(*p)->rb_left; 426 else 427 return -EEXIST; 428 } 429 430 rb_link_node(node, parent_node, p); 431 rb_insert_color(node, root); 432 ins->delayed_node = delayed_node; 433 ins->ins_or_del = action; 434 435 if (ins->key.type == BTRFS_DIR_INDEX_KEY && 436 action == BTRFS_DELAYED_INSERTION_ITEM && 437 ins->key.offset >= delayed_node->index_cnt) 438 delayed_node->index_cnt = ins->key.offset + 1; 439 440 delayed_node->count++; 441 atomic_inc(&delayed_node->root->fs_info->delayed_root->items); 442 return 0; 443 } 444 445 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node, 446 struct btrfs_delayed_item *item) 447 { 448 return __btrfs_add_delayed_item(node, item, 449 BTRFS_DELAYED_INSERTION_ITEM); 450 } 451 452 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node, 453 struct btrfs_delayed_item *item) 454 { 455 return __btrfs_add_delayed_item(node, item, 456 BTRFS_DELAYED_DELETION_ITEM); 457 } 458 459 static void finish_one_item(struct btrfs_delayed_root *delayed_root) 460 { 461 int seq = atomic_inc_return(&delayed_root->items_seq); 462 if ((atomic_dec_return(&delayed_root->items) < 463 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) && 464 waitqueue_active(&delayed_root->wait)) 465 wake_up(&delayed_root->wait); 466 } 467 468 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) 469 { 470 struct rb_root *root; 471 struct btrfs_delayed_root *delayed_root; 472 473 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root; 474 475 BUG_ON(!delayed_root); 476 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM && 477 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM); 478 479 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM) 480 root = &delayed_item->delayed_node->ins_root; 481 else 482 root = &delayed_item->delayed_node->del_root; 483 484 rb_erase(&delayed_item->rb_node, root); 485 delayed_item->delayed_node->count--; 486 487 finish_one_item(delayed_root); 488 } 489 490 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) 491 { 492 if (item) { 493 __btrfs_remove_delayed_item(item); 494 if (atomic_dec_and_test(&item->refs)) 495 kfree(item); 496 } 497 } 498 499 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( 500 struct btrfs_delayed_node *delayed_node) 501 { 502 struct rb_node *p; 503 struct btrfs_delayed_item *item = NULL; 504 505 p = rb_first(&delayed_node->ins_root); 506 if (p) 507 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 508 509 return item; 510 } 511 512 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( 513 struct btrfs_delayed_node *delayed_node) 514 { 515 struct rb_node *p; 516 struct btrfs_delayed_item *item = NULL; 517 518 p = rb_first(&delayed_node->del_root); 519 if (p) 520 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 521 522 return item; 523 } 524 525 static struct btrfs_delayed_item *__btrfs_next_delayed_item( 526 struct btrfs_delayed_item *item) 527 { 528 struct rb_node *p; 529 struct btrfs_delayed_item *next = NULL; 530 531 p = rb_next(&item->rb_node); 532 if (p) 533 next = rb_entry(p, struct btrfs_delayed_item, rb_node); 534 535 return next; 536 } 537 538 static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root, 539 u64 root_id) 540 { 541 struct btrfs_key root_key; 542 543 if (root->objectid == root_id) 544 return root; 545 546 root_key.objectid = root_id; 547 root_key.type = BTRFS_ROOT_ITEM_KEY; 548 root_key.offset = (u64)-1; 549 return btrfs_read_fs_root_no_name(root->fs_info, &root_key); 550 } 551 552 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, 553 struct btrfs_root *root, 554 struct btrfs_delayed_item *item) 555 { 556 struct btrfs_block_rsv *src_rsv; 557 struct btrfs_block_rsv *dst_rsv; 558 u64 num_bytes; 559 int ret; 560 561 if (!trans->bytes_reserved) 562 return 0; 563 564 src_rsv = trans->block_rsv; 565 dst_rsv = &root->fs_info->delayed_block_rsv; 566 567 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 568 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes); 569 if (!ret) { 570 trace_btrfs_space_reservation(root->fs_info, "delayed_item", 571 item->key.objectid, 572 num_bytes, 1); 573 item->bytes_reserved = num_bytes; 574 } 575 576 return ret; 577 } 578 579 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, 580 struct btrfs_delayed_item *item) 581 { 582 struct btrfs_block_rsv *rsv; 583 584 if (!item->bytes_reserved) 585 return; 586 587 rsv = &root->fs_info->delayed_block_rsv; 588 trace_btrfs_space_reservation(root->fs_info, "delayed_item", 589 item->key.objectid, item->bytes_reserved, 590 0); 591 btrfs_block_rsv_release(root, rsv, 592 item->bytes_reserved); 593 } 594 595 static int btrfs_delayed_inode_reserve_metadata( 596 struct btrfs_trans_handle *trans, 597 struct btrfs_root *root, 598 struct inode *inode, 599 struct btrfs_delayed_node *node) 600 { 601 struct btrfs_block_rsv *src_rsv; 602 struct btrfs_block_rsv *dst_rsv; 603 u64 num_bytes; 604 int ret; 605 bool release = false; 606 607 src_rsv = trans->block_rsv; 608 dst_rsv = &root->fs_info->delayed_block_rsv; 609 610 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 611 612 /* 613 * btrfs_dirty_inode will update the inode under btrfs_join_transaction 614 * which doesn't reserve space for speed. This is a problem since we 615 * still need to reserve space for this update, so try to reserve the 616 * space. 617 * 618 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since 619 * we're accounted for. 620 */ 621 if (!src_rsv || (!trans->bytes_reserved && 622 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { 623 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes, 624 BTRFS_RESERVE_NO_FLUSH); 625 /* 626 * Since we're under a transaction reserve_metadata_bytes could 627 * try to commit the transaction which will make it return 628 * EAGAIN to make us stop the transaction we have, so return 629 * ENOSPC instead so that btrfs_dirty_inode knows what to do. 630 */ 631 if (ret == -EAGAIN) 632 ret = -ENOSPC; 633 if (!ret) { 634 node->bytes_reserved = num_bytes; 635 trace_btrfs_space_reservation(root->fs_info, 636 "delayed_inode", 637 btrfs_ino(inode), 638 num_bytes, 1); 639 } 640 return ret; 641 } else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) { 642 spin_lock(&BTRFS_I(inode)->lock); 643 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 644 &BTRFS_I(inode)->runtime_flags)) { 645 spin_unlock(&BTRFS_I(inode)->lock); 646 release = true; 647 goto migrate; 648 } 649 spin_unlock(&BTRFS_I(inode)->lock); 650 651 /* Ok we didn't have space pre-reserved. This shouldn't happen 652 * too often but it can happen if we do delalloc to an existing 653 * inode which gets dirtied because of the time update, and then 654 * isn't touched again until after the transaction commits and 655 * then we try to write out the data. First try to be nice and 656 * reserve something strictly for us. If not be a pain and try 657 * to steal from the delalloc block rsv. 658 */ 659 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes, 660 BTRFS_RESERVE_NO_FLUSH); 661 if (!ret) 662 goto out; 663 664 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes); 665 if (!ret) 666 goto out; 667 668 /* 669 * Ok this is a problem, let's just steal from the global rsv 670 * since this really shouldn't happen that often. 671 */ 672 WARN_ON(1); 673 ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv, 674 dst_rsv, num_bytes); 675 goto out; 676 } 677 678 migrate: 679 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes); 680 681 out: 682 /* 683 * Migrate only takes a reservation, it doesn't touch the size of the 684 * block_rsv. This is to simplify people who don't normally have things 685 * migrated from their block rsv. If they go to release their 686 * reservation, that will decrease the size as well, so if migrate 687 * reduced size we'd end up with a negative size. But for the 688 * delalloc_meta_reserved stuff we will only know to drop 1 reservation, 689 * but we could in fact do this reserve/migrate dance several times 690 * between the time we did the original reservation and we'd clean it 691 * up. So to take care of this, release the space for the meta 692 * reservation here. I think it may be time for a documentation page on 693 * how block rsvs. work. 694 */ 695 if (!ret) { 696 trace_btrfs_space_reservation(root->fs_info, "delayed_inode", 697 btrfs_ino(inode), num_bytes, 1); 698 node->bytes_reserved = num_bytes; 699 } 700 701 if (release) { 702 trace_btrfs_space_reservation(root->fs_info, "delalloc", 703 btrfs_ino(inode), num_bytes, 0); 704 btrfs_block_rsv_release(root, src_rsv, num_bytes); 705 } 706 707 return ret; 708 } 709 710 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root, 711 struct btrfs_delayed_node *node) 712 { 713 struct btrfs_block_rsv *rsv; 714 715 if (!node->bytes_reserved) 716 return; 717 718 rsv = &root->fs_info->delayed_block_rsv; 719 trace_btrfs_space_reservation(root->fs_info, "delayed_inode", 720 node->inode_id, node->bytes_reserved, 0); 721 btrfs_block_rsv_release(root, rsv, 722 node->bytes_reserved); 723 node->bytes_reserved = 0; 724 } 725 726 /* 727 * This helper will insert some continuous items into the same leaf according 728 * to the free space of the leaf. 729 */ 730 static int btrfs_batch_insert_items(struct btrfs_root *root, 731 struct btrfs_path *path, 732 struct btrfs_delayed_item *item) 733 { 734 struct btrfs_delayed_item *curr, *next; 735 int free_space; 736 int total_data_size = 0, total_size = 0; 737 struct extent_buffer *leaf; 738 char *data_ptr; 739 struct btrfs_key *keys; 740 u32 *data_size; 741 struct list_head head; 742 int slot; 743 int nitems; 744 int i; 745 int ret = 0; 746 747 BUG_ON(!path->nodes[0]); 748 749 leaf = path->nodes[0]; 750 free_space = btrfs_leaf_free_space(root, leaf); 751 INIT_LIST_HEAD(&head); 752 753 next = item; 754 nitems = 0; 755 756 /* 757 * count the number of the continuous items that we can insert in batch 758 */ 759 while (total_size + next->data_len + sizeof(struct btrfs_item) <= 760 free_space) { 761 total_data_size += next->data_len; 762 total_size += next->data_len + sizeof(struct btrfs_item); 763 list_add_tail(&next->tree_list, &head); 764 nitems++; 765 766 curr = next; 767 next = __btrfs_next_delayed_item(curr); 768 if (!next) 769 break; 770 771 if (!btrfs_is_continuous_delayed_item(curr, next)) 772 break; 773 } 774 775 if (!nitems) { 776 ret = 0; 777 goto out; 778 } 779 780 /* 781 * we need allocate some memory space, but it might cause the task 782 * to sleep, so we set all locked nodes in the path to blocking locks 783 * first. 784 */ 785 btrfs_set_path_blocking(path); 786 787 keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS); 788 if (!keys) { 789 ret = -ENOMEM; 790 goto out; 791 } 792 793 data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS); 794 if (!data_size) { 795 ret = -ENOMEM; 796 goto error; 797 } 798 799 /* get keys of all the delayed items */ 800 i = 0; 801 list_for_each_entry(next, &head, tree_list) { 802 keys[i] = next->key; 803 data_size[i] = next->data_len; 804 i++; 805 } 806 807 /* reset all the locked nodes in the patch to spinning locks. */ 808 btrfs_clear_path_blocking(path, NULL, 0); 809 810 /* insert the keys of the items */ 811 setup_items_for_insert(root, path, keys, data_size, 812 total_data_size, total_size, nitems); 813 814 /* insert the dir index items */ 815 slot = path->slots[0]; 816 list_for_each_entry_safe(curr, next, &head, tree_list) { 817 data_ptr = btrfs_item_ptr(leaf, slot, char); 818 write_extent_buffer(leaf, &curr->data, 819 (unsigned long)data_ptr, 820 curr->data_len); 821 slot++; 822 823 btrfs_delayed_item_release_metadata(root, curr); 824 825 list_del(&curr->tree_list); 826 btrfs_release_delayed_item(curr); 827 } 828 829 error: 830 kfree(data_size); 831 kfree(keys); 832 out: 833 return ret; 834 } 835 836 /* 837 * This helper can just do simple insertion that needn't extend item for new 838 * data, such as directory name index insertion, inode insertion. 839 */ 840 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, 841 struct btrfs_root *root, 842 struct btrfs_path *path, 843 struct btrfs_delayed_item *delayed_item) 844 { 845 struct extent_buffer *leaf; 846 char *ptr; 847 int ret; 848 849 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key, 850 delayed_item->data_len); 851 if (ret < 0 && ret != -EEXIST) 852 return ret; 853 854 leaf = path->nodes[0]; 855 856 ptr = btrfs_item_ptr(leaf, path->slots[0], char); 857 858 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr, 859 delayed_item->data_len); 860 btrfs_mark_buffer_dirty(leaf); 861 862 btrfs_delayed_item_release_metadata(root, delayed_item); 863 return 0; 864 } 865 866 /* 867 * we insert an item first, then if there are some continuous items, we try 868 * to insert those items into the same leaf. 869 */ 870 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, 871 struct btrfs_path *path, 872 struct btrfs_root *root, 873 struct btrfs_delayed_node *node) 874 { 875 struct btrfs_delayed_item *curr, *prev; 876 int ret = 0; 877 878 do_again: 879 mutex_lock(&node->mutex); 880 curr = __btrfs_first_delayed_insertion_item(node); 881 if (!curr) 882 goto insert_end; 883 884 ret = btrfs_insert_delayed_item(trans, root, path, curr); 885 if (ret < 0) { 886 btrfs_release_path(path); 887 goto insert_end; 888 } 889 890 prev = curr; 891 curr = __btrfs_next_delayed_item(prev); 892 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) { 893 /* insert the continuous items into the same leaf */ 894 path->slots[0]++; 895 btrfs_batch_insert_items(root, path, curr); 896 } 897 btrfs_release_delayed_item(prev); 898 btrfs_mark_buffer_dirty(path->nodes[0]); 899 900 btrfs_release_path(path); 901 mutex_unlock(&node->mutex); 902 goto do_again; 903 904 insert_end: 905 mutex_unlock(&node->mutex); 906 return ret; 907 } 908 909 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, 910 struct btrfs_root *root, 911 struct btrfs_path *path, 912 struct btrfs_delayed_item *item) 913 { 914 struct btrfs_delayed_item *curr, *next; 915 struct extent_buffer *leaf; 916 struct btrfs_key key; 917 struct list_head head; 918 int nitems, i, last_item; 919 int ret = 0; 920 921 BUG_ON(!path->nodes[0]); 922 923 leaf = path->nodes[0]; 924 925 i = path->slots[0]; 926 last_item = btrfs_header_nritems(leaf) - 1; 927 if (i > last_item) 928 return -ENOENT; /* FIXME: Is errno suitable? */ 929 930 next = item; 931 INIT_LIST_HEAD(&head); 932 btrfs_item_key_to_cpu(leaf, &key, i); 933 nitems = 0; 934 /* 935 * count the number of the dir index items that we can delete in batch 936 */ 937 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) { 938 list_add_tail(&next->tree_list, &head); 939 nitems++; 940 941 curr = next; 942 next = __btrfs_next_delayed_item(curr); 943 if (!next) 944 break; 945 946 if (!btrfs_is_continuous_delayed_item(curr, next)) 947 break; 948 949 i++; 950 if (i > last_item) 951 break; 952 btrfs_item_key_to_cpu(leaf, &key, i); 953 } 954 955 if (!nitems) 956 return 0; 957 958 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); 959 if (ret) 960 goto out; 961 962 list_for_each_entry_safe(curr, next, &head, tree_list) { 963 btrfs_delayed_item_release_metadata(root, curr); 964 list_del(&curr->tree_list); 965 btrfs_release_delayed_item(curr); 966 } 967 968 out: 969 return ret; 970 } 971 972 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, 973 struct btrfs_path *path, 974 struct btrfs_root *root, 975 struct btrfs_delayed_node *node) 976 { 977 struct btrfs_delayed_item *curr, *prev; 978 int ret = 0; 979 980 do_again: 981 mutex_lock(&node->mutex); 982 curr = __btrfs_first_delayed_deletion_item(node); 983 if (!curr) 984 goto delete_fail; 985 986 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1); 987 if (ret < 0) 988 goto delete_fail; 989 else if (ret > 0) { 990 /* 991 * can't find the item which the node points to, so this node 992 * is invalid, just drop it. 993 */ 994 prev = curr; 995 curr = __btrfs_next_delayed_item(prev); 996 btrfs_release_delayed_item(prev); 997 ret = 0; 998 btrfs_release_path(path); 999 if (curr) { 1000 mutex_unlock(&node->mutex); 1001 goto do_again; 1002 } else 1003 goto delete_fail; 1004 } 1005 1006 btrfs_batch_delete_items(trans, root, path, curr); 1007 btrfs_release_path(path); 1008 mutex_unlock(&node->mutex); 1009 goto do_again; 1010 1011 delete_fail: 1012 btrfs_release_path(path); 1013 mutex_unlock(&node->mutex); 1014 return ret; 1015 } 1016 1017 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) 1018 { 1019 struct btrfs_delayed_root *delayed_root; 1020 1021 if (delayed_node && delayed_node->inode_dirty) { 1022 BUG_ON(!delayed_node->root); 1023 delayed_node->inode_dirty = 0; 1024 delayed_node->count--; 1025 1026 delayed_root = delayed_node->root->fs_info->delayed_root; 1027 finish_one_item(delayed_root); 1028 } 1029 } 1030 1031 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1032 struct btrfs_root *root, 1033 struct btrfs_path *path, 1034 struct btrfs_delayed_node *node) 1035 { 1036 struct btrfs_key key; 1037 struct btrfs_inode_item *inode_item; 1038 struct extent_buffer *leaf; 1039 int ret; 1040 1041 key.objectid = node->inode_id; 1042 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 1043 key.offset = 0; 1044 1045 ret = btrfs_lookup_inode(trans, root, path, &key, 1); 1046 if (ret > 0) { 1047 btrfs_release_path(path); 1048 return -ENOENT; 1049 } else if (ret < 0) { 1050 return ret; 1051 } 1052 1053 btrfs_unlock_up_safe(path, 1); 1054 leaf = path->nodes[0]; 1055 inode_item = btrfs_item_ptr(leaf, path->slots[0], 1056 struct btrfs_inode_item); 1057 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, 1058 sizeof(struct btrfs_inode_item)); 1059 btrfs_mark_buffer_dirty(leaf); 1060 btrfs_release_path(path); 1061 1062 btrfs_delayed_inode_release_metadata(root, node); 1063 btrfs_release_delayed_inode(node); 1064 1065 return 0; 1066 } 1067 1068 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1069 struct btrfs_root *root, 1070 struct btrfs_path *path, 1071 struct btrfs_delayed_node *node) 1072 { 1073 int ret; 1074 1075 mutex_lock(&node->mutex); 1076 if (!node->inode_dirty) { 1077 mutex_unlock(&node->mutex); 1078 return 0; 1079 } 1080 1081 ret = __btrfs_update_delayed_inode(trans, root, path, node); 1082 mutex_unlock(&node->mutex); 1083 return ret; 1084 } 1085 1086 static inline int 1087 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1088 struct btrfs_path *path, 1089 struct btrfs_delayed_node *node) 1090 { 1091 int ret; 1092 1093 ret = btrfs_insert_delayed_items(trans, path, node->root, node); 1094 if (ret) 1095 return ret; 1096 1097 ret = btrfs_delete_delayed_items(trans, path, node->root, node); 1098 if (ret) 1099 return ret; 1100 1101 ret = btrfs_update_delayed_inode(trans, node->root, path, node); 1102 return ret; 1103 } 1104 1105 /* 1106 * Called when committing the transaction. 1107 * Returns 0 on success. 1108 * Returns < 0 on error and returns with an aborted transaction with any 1109 * outstanding delayed items cleaned up. 1110 */ 1111 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, 1112 struct btrfs_root *root, int nr) 1113 { 1114 struct btrfs_delayed_root *delayed_root; 1115 struct btrfs_delayed_node *curr_node, *prev_node; 1116 struct btrfs_path *path; 1117 struct btrfs_block_rsv *block_rsv; 1118 int ret = 0; 1119 bool count = (nr > 0); 1120 1121 if (trans->aborted) 1122 return -EIO; 1123 1124 path = btrfs_alloc_path(); 1125 if (!path) 1126 return -ENOMEM; 1127 path->leave_spinning = 1; 1128 1129 block_rsv = trans->block_rsv; 1130 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1131 1132 delayed_root = btrfs_get_delayed_root(root); 1133 1134 curr_node = btrfs_first_delayed_node(delayed_root); 1135 while (curr_node && (!count || (count && nr--))) { 1136 ret = __btrfs_commit_inode_delayed_items(trans, path, 1137 curr_node); 1138 if (ret) { 1139 btrfs_release_delayed_node(curr_node); 1140 curr_node = NULL; 1141 btrfs_abort_transaction(trans, root, ret); 1142 break; 1143 } 1144 1145 prev_node = curr_node; 1146 curr_node = btrfs_next_delayed_node(curr_node); 1147 btrfs_release_delayed_node(prev_node); 1148 } 1149 1150 if (curr_node) 1151 btrfs_release_delayed_node(curr_node); 1152 btrfs_free_path(path); 1153 trans->block_rsv = block_rsv; 1154 1155 return ret; 1156 } 1157 1158 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans, 1159 struct btrfs_root *root) 1160 { 1161 return __btrfs_run_delayed_items(trans, root, -1); 1162 } 1163 1164 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, 1165 struct btrfs_root *root, int nr) 1166 { 1167 return __btrfs_run_delayed_items(trans, root, nr); 1168 } 1169 1170 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1171 struct inode *inode) 1172 { 1173 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1174 struct btrfs_path *path; 1175 struct btrfs_block_rsv *block_rsv; 1176 int ret; 1177 1178 if (!delayed_node) 1179 return 0; 1180 1181 mutex_lock(&delayed_node->mutex); 1182 if (!delayed_node->count) { 1183 mutex_unlock(&delayed_node->mutex); 1184 btrfs_release_delayed_node(delayed_node); 1185 return 0; 1186 } 1187 mutex_unlock(&delayed_node->mutex); 1188 1189 path = btrfs_alloc_path(); 1190 if (!path) 1191 return -ENOMEM; 1192 path->leave_spinning = 1; 1193 1194 block_rsv = trans->block_rsv; 1195 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; 1196 1197 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1198 1199 btrfs_release_delayed_node(delayed_node); 1200 btrfs_free_path(path); 1201 trans->block_rsv = block_rsv; 1202 1203 return ret; 1204 } 1205 1206 int btrfs_commit_inode_delayed_inode(struct inode *inode) 1207 { 1208 struct btrfs_trans_handle *trans; 1209 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1210 struct btrfs_path *path; 1211 struct btrfs_block_rsv *block_rsv; 1212 int ret; 1213 1214 if (!delayed_node) 1215 return 0; 1216 1217 mutex_lock(&delayed_node->mutex); 1218 if (!delayed_node->inode_dirty) { 1219 mutex_unlock(&delayed_node->mutex); 1220 btrfs_release_delayed_node(delayed_node); 1221 return 0; 1222 } 1223 mutex_unlock(&delayed_node->mutex); 1224 1225 trans = btrfs_join_transaction(delayed_node->root); 1226 if (IS_ERR(trans)) { 1227 ret = PTR_ERR(trans); 1228 goto out; 1229 } 1230 1231 path = btrfs_alloc_path(); 1232 if (!path) { 1233 ret = -ENOMEM; 1234 goto trans_out; 1235 } 1236 path->leave_spinning = 1; 1237 1238 block_rsv = trans->block_rsv; 1239 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; 1240 1241 mutex_lock(&delayed_node->mutex); 1242 if (delayed_node->inode_dirty) 1243 ret = __btrfs_update_delayed_inode(trans, delayed_node->root, 1244 path, delayed_node); 1245 else 1246 ret = 0; 1247 mutex_unlock(&delayed_node->mutex); 1248 1249 btrfs_free_path(path); 1250 trans->block_rsv = block_rsv; 1251 trans_out: 1252 btrfs_end_transaction(trans, delayed_node->root); 1253 btrfs_btree_balance_dirty(delayed_node->root); 1254 out: 1255 btrfs_release_delayed_node(delayed_node); 1256 1257 return ret; 1258 } 1259 1260 void btrfs_remove_delayed_node(struct inode *inode) 1261 { 1262 struct btrfs_delayed_node *delayed_node; 1263 1264 delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node); 1265 if (!delayed_node) 1266 return; 1267 1268 BTRFS_I(inode)->delayed_node = NULL; 1269 btrfs_release_delayed_node(delayed_node); 1270 } 1271 1272 struct btrfs_async_delayed_work { 1273 struct btrfs_delayed_root *delayed_root; 1274 int nr; 1275 struct btrfs_work work; 1276 }; 1277 1278 static void btrfs_async_run_delayed_root(struct btrfs_work *work) 1279 { 1280 struct btrfs_async_delayed_work *async_work; 1281 struct btrfs_delayed_root *delayed_root; 1282 struct btrfs_trans_handle *trans; 1283 struct btrfs_path *path; 1284 struct btrfs_delayed_node *delayed_node = NULL; 1285 struct btrfs_root *root; 1286 struct btrfs_block_rsv *block_rsv; 1287 int total_done = 0; 1288 1289 async_work = container_of(work, struct btrfs_async_delayed_work, work); 1290 delayed_root = async_work->delayed_root; 1291 1292 path = btrfs_alloc_path(); 1293 if (!path) 1294 goto out; 1295 1296 again: 1297 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2) 1298 goto free_path; 1299 1300 delayed_node = btrfs_first_prepared_delayed_node(delayed_root); 1301 if (!delayed_node) 1302 goto free_path; 1303 1304 path->leave_spinning = 1; 1305 root = delayed_node->root; 1306 1307 trans = btrfs_join_transaction(root); 1308 if (IS_ERR(trans)) 1309 goto release_path; 1310 1311 block_rsv = trans->block_rsv; 1312 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1313 1314 __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1315 /* 1316 * Maybe new delayed items have been inserted, so we need requeue 1317 * the work. Besides that, we must dequeue the empty delayed nodes 1318 * to avoid the race between delayed items balance and the worker. 1319 * The race like this: 1320 * Task1 Worker thread 1321 * count == 0, needn't requeue 1322 * also needn't insert the 1323 * delayed node into prepare 1324 * list again. 1325 * add lots of delayed items 1326 * queue the delayed node 1327 * already in the list, 1328 * and not in the prepare 1329 * list, it means the delayed 1330 * node is being dealt with 1331 * by the worker. 1332 * do delayed items balance 1333 * the delayed node is being 1334 * dealt with by the worker 1335 * now, just wait. 1336 * the worker goto idle. 1337 * Task1 will sleep until the transaction is commited. 1338 */ 1339 mutex_lock(&delayed_node->mutex); 1340 btrfs_dequeue_delayed_node(root->fs_info->delayed_root, delayed_node); 1341 mutex_unlock(&delayed_node->mutex); 1342 1343 trans->block_rsv = block_rsv; 1344 btrfs_end_transaction_dmeta(trans, root); 1345 btrfs_btree_balance_dirty_nodelay(root); 1346 1347 release_path: 1348 btrfs_release_path(path); 1349 total_done++; 1350 1351 btrfs_release_prepared_delayed_node(delayed_node); 1352 if (async_work->nr == 0 || total_done < async_work->nr) 1353 goto again; 1354 1355 free_path: 1356 btrfs_free_path(path); 1357 out: 1358 wake_up(&delayed_root->wait); 1359 kfree(async_work); 1360 } 1361 1362 1363 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, 1364 struct btrfs_root *root, int nr) 1365 { 1366 struct btrfs_async_delayed_work *async_work; 1367 1368 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1369 return 0; 1370 1371 async_work = kmalloc(sizeof(*async_work), GFP_NOFS); 1372 if (!async_work) 1373 return -ENOMEM; 1374 1375 async_work->delayed_root = delayed_root; 1376 async_work->work.func = btrfs_async_run_delayed_root; 1377 async_work->work.flags = 0; 1378 async_work->nr = nr; 1379 1380 btrfs_queue_worker(&root->fs_info->delayed_workers, &async_work->work); 1381 return 0; 1382 } 1383 1384 void btrfs_assert_delayed_root_empty(struct btrfs_root *root) 1385 { 1386 struct btrfs_delayed_root *delayed_root; 1387 delayed_root = btrfs_get_delayed_root(root); 1388 WARN_ON(btrfs_first_delayed_node(delayed_root)); 1389 } 1390 1391 static int refs_newer(struct btrfs_delayed_root *delayed_root, 1392 int seq, int count) 1393 { 1394 int val = atomic_read(&delayed_root->items_seq); 1395 1396 if (val < seq || val >= seq + count) 1397 return 1; 1398 return 0; 1399 } 1400 1401 void btrfs_balance_delayed_items(struct btrfs_root *root) 1402 { 1403 struct btrfs_delayed_root *delayed_root; 1404 int seq; 1405 1406 delayed_root = btrfs_get_delayed_root(root); 1407 1408 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1409 return; 1410 1411 seq = atomic_read(&delayed_root->items_seq); 1412 1413 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { 1414 int ret; 1415 DEFINE_WAIT(__wait); 1416 1417 ret = btrfs_wq_run_delayed_node(delayed_root, root, 0); 1418 if (ret) 1419 return; 1420 1421 while (1) { 1422 prepare_to_wait(&delayed_root->wait, &__wait, 1423 TASK_INTERRUPTIBLE); 1424 1425 if (refs_newer(delayed_root, seq, 1426 BTRFS_DELAYED_BATCH) || 1427 atomic_read(&delayed_root->items) < 1428 BTRFS_DELAYED_BACKGROUND) { 1429 break; 1430 } 1431 if (!signal_pending(current)) 1432 schedule(); 1433 else 1434 break; 1435 } 1436 finish_wait(&delayed_root->wait, &__wait); 1437 } 1438 1439 btrfs_wq_run_delayed_node(delayed_root, root, BTRFS_DELAYED_BATCH); 1440 } 1441 1442 /* Will return 0 or -ENOMEM */ 1443 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, 1444 struct btrfs_root *root, const char *name, 1445 int name_len, struct inode *dir, 1446 struct btrfs_disk_key *disk_key, u8 type, 1447 u64 index) 1448 { 1449 struct btrfs_delayed_node *delayed_node; 1450 struct btrfs_delayed_item *delayed_item; 1451 struct btrfs_dir_item *dir_item; 1452 int ret; 1453 1454 delayed_node = btrfs_get_or_create_delayed_node(dir); 1455 if (IS_ERR(delayed_node)) 1456 return PTR_ERR(delayed_node); 1457 1458 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len); 1459 if (!delayed_item) { 1460 ret = -ENOMEM; 1461 goto release_node; 1462 } 1463 1464 delayed_item->key.objectid = btrfs_ino(dir); 1465 btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY); 1466 delayed_item->key.offset = index; 1467 1468 dir_item = (struct btrfs_dir_item *)delayed_item->data; 1469 dir_item->location = *disk_key; 1470 dir_item->transid = cpu_to_le64(trans->transid); 1471 dir_item->data_len = 0; 1472 dir_item->name_len = cpu_to_le16(name_len); 1473 dir_item->type = type; 1474 memcpy((char *)(dir_item + 1), name, name_len); 1475 1476 ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item); 1477 /* 1478 * we have reserved enough space when we start a new transaction, 1479 * so reserving metadata failure is impossible 1480 */ 1481 BUG_ON(ret); 1482 1483 1484 mutex_lock(&delayed_node->mutex); 1485 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item); 1486 if (unlikely(ret)) { 1487 printk(KERN_ERR "err add delayed dir index item(name: %s) into " 1488 "the insertion tree of the delayed node" 1489 "(root id: %llu, inode id: %llu, errno: %d)\n", 1490 name, 1491 (unsigned long long)delayed_node->root->objectid, 1492 (unsigned long long)delayed_node->inode_id, 1493 ret); 1494 BUG(); 1495 } 1496 mutex_unlock(&delayed_node->mutex); 1497 1498 release_node: 1499 btrfs_release_delayed_node(delayed_node); 1500 return ret; 1501 } 1502 1503 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root, 1504 struct btrfs_delayed_node *node, 1505 struct btrfs_key *key) 1506 { 1507 struct btrfs_delayed_item *item; 1508 1509 mutex_lock(&node->mutex); 1510 item = __btrfs_lookup_delayed_insertion_item(node, key); 1511 if (!item) { 1512 mutex_unlock(&node->mutex); 1513 return 1; 1514 } 1515 1516 btrfs_delayed_item_release_metadata(root, item); 1517 btrfs_release_delayed_item(item); 1518 mutex_unlock(&node->mutex); 1519 return 0; 1520 } 1521 1522 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, 1523 struct btrfs_root *root, struct inode *dir, 1524 u64 index) 1525 { 1526 struct btrfs_delayed_node *node; 1527 struct btrfs_delayed_item *item; 1528 struct btrfs_key item_key; 1529 int ret; 1530 1531 node = btrfs_get_or_create_delayed_node(dir); 1532 if (IS_ERR(node)) 1533 return PTR_ERR(node); 1534 1535 item_key.objectid = btrfs_ino(dir); 1536 btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY); 1537 item_key.offset = index; 1538 1539 ret = btrfs_delete_delayed_insertion_item(root, node, &item_key); 1540 if (!ret) 1541 goto end; 1542 1543 item = btrfs_alloc_delayed_item(0); 1544 if (!item) { 1545 ret = -ENOMEM; 1546 goto end; 1547 } 1548 1549 item->key = item_key; 1550 1551 ret = btrfs_delayed_item_reserve_metadata(trans, root, item); 1552 /* 1553 * we have reserved enough space when we start a new transaction, 1554 * so reserving metadata failure is impossible. 1555 */ 1556 BUG_ON(ret); 1557 1558 mutex_lock(&node->mutex); 1559 ret = __btrfs_add_delayed_deletion_item(node, item); 1560 if (unlikely(ret)) { 1561 printk(KERN_ERR "err add delayed dir index item(index: %llu) " 1562 "into the deletion tree of the delayed node" 1563 "(root id: %llu, inode id: %llu, errno: %d)\n", 1564 (unsigned long long)index, 1565 (unsigned long long)node->root->objectid, 1566 (unsigned long long)node->inode_id, 1567 ret); 1568 BUG(); 1569 } 1570 mutex_unlock(&node->mutex); 1571 end: 1572 btrfs_release_delayed_node(node); 1573 return ret; 1574 } 1575 1576 int btrfs_inode_delayed_dir_index_count(struct inode *inode) 1577 { 1578 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1579 1580 if (!delayed_node) 1581 return -ENOENT; 1582 1583 /* 1584 * Since we have held i_mutex of this directory, it is impossible that 1585 * a new directory index is added into the delayed node and index_cnt 1586 * is updated now. So we needn't lock the delayed node. 1587 */ 1588 if (!delayed_node->index_cnt) { 1589 btrfs_release_delayed_node(delayed_node); 1590 return -EINVAL; 1591 } 1592 1593 BTRFS_I(inode)->index_cnt = delayed_node->index_cnt; 1594 btrfs_release_delayed_node(delayed_node); 1595 return 0; 1596 } 1597 1598 void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list, 1599 struct list_head *del_list) 1600 { 1601 struct btrfs_delayed_node *delayed_node; 1602 struct btrfs_delayed_item *item; 1603 1604 delayed_node = btrfs_get_delayed_node(inode); 1605 if (!delayed_node) 1606 return; 1607 1608 mutex_lock(&delayed_node->mutex); 1609 item = __btrfs_first_delayed_insertion_item(delayed_node); 1610 while (item) { 1611 atomic_inc(&item->refs); 1612 list_add_tail(&item->readdir_list, ins_list); 1613 item = __btrfs_next_delayed_item(item); 1614 } 1615 1616 item = __btrfs_first_delayed_deletion_item(delayed_node); 1617 while (item) { 1618 atomic_inc(&item->refs); 1619 list_add_tail(&item->readdir_list, del_list); 1620 item = __btrfs_next_delayed_item(item); 1621 } 1622 mutex_unlock(&delayed_node->mutex); 1623 /* 1624 * This delayed node is still cached in the btrfs inode, so refs 1625 * must be > 1 now, and we needn't check it is going to be freed 1626 * or not. 1627 * 1628 * Besides that, this function is used to read dir, we do not 1629 * insert/delete delayed items in this period. So we also needn't 1630 * requeue or dequeue this delayed node. 1631 */ 1632 atomic_dec(&delayed_node->refs); 1633 } 1634 1635 void btrfs_put_delayed_items(struct list_head *ins_list, 1636 struct list_head *del_list) 1637 { 1638 struct btrfs_delayed_item *curr, *next; 1639 1640 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1641 list_del(&curr->readdir_list); 1642 if (atomic_dec_and_test(&curr->refs)) 1643 kfree(curr); 1644 } 1645 1646 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1647 list_del(&curr->readdir_list); 1648 if (atomic_dec_and_test(&curr->refs)) 1649 kfree(curr); 1650 } 1651 } 1652 1653 int btrfs_should_delete_dir_index(struct list_head *del_list, 1654 u64 index) 1655 { 1656 struct btrfs_delayed_item *curr, *next; 1657 int ret; 1658 1659 if (list_empty(del_list)) 1660 return 0; 1661 1662 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1663 if (curr->key.offset > index) 1664 break; 1665 1666 list_del(&curr->readdir_list); 1667 ret = (curr->key.offset == index); 1668 1669 if (atomic_dec_and_test(&curr->refs)) 1670 kfree(curr); 1671 1672 if (ret) 1673 return 1; 1674 else 1675 continue; 1676 } 1677 return 0; 1678 } 1679 1680 /* 1681 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree 1682 * 1683 */ 1684 int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent, 1685 filldir_t filldir, 1686 struct list_head *ins_list) 1687 { 1688 struct btrfs_dir_item *di; 1689 struct btrfs_delayed_item *curr, *next; 1690 struct btrfs_key location; 1691 char *name; 1692 int name_len; 1693 int over = 0; 1694 unsigned char d_type; 1695 1696 if (list_empty(ins_list)) 1697 return 0; 1698 1699 /* 1700 * Changing the data of the delayed item is impossible. So 1701 * we needn't lock them. And we have held i_mutex of the 1702 * directory, nobody can delete any directory indexes now. 1703 */ 1704 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1705 list_del(&curr->readdir_list); 1706 1707 if (curr->key.offset < filp->f_pos) { 1708 if (atomic_dec_and_test(&curr->refs)) 1709 kfree(curr); 1710 continue; 1711 } 1712 1713 filp->f_pos = curr->key.offset; 1714 1715 di = (struct btrfs_dir_item *)curr->data; 1716 name = (char *)(di + 1); 1717 name_len = le16_to_cpu(di->name_len); 1718 1719 d_type = btrfs_filetype_table[di->type]; 1720 btrfs_disk_key_to_cpu(&location, &di->location); 1721 1722 over = filldir(dirent, name, name_len, curr->key.offset, 1723 location.objectid, d_type); 1724 1725 if (atomic_dec_and_test(&curr->refs)) 1726 kfree(curr); 1727 1728 if (over) 1729 return 1; 1730 } 1731 return 0; 1732 } 1733 1734 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item, 1735 generation, 64); 1736 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item, 1737 sequence, 64); 1738 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item, 1739 transid, 64); 1740 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64); 1741 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item, 1742 nbytes, 64); 1743 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item, 1744 block_group, 64); 1745 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32); 1746 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32); 1747 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32); 1748 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32); 1749 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64); 1750 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64); 1751 1752 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64); 1753 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32); 1754 1755 static void fill_stack_inode_item(struct btrfs_trans_handle *trans, 1756 struct btrfs_inode_item *inode_item, 1757 struct inode *inode) 1758 { 1759 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode)); 1760 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode)); 1761 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); 1762 btrfs_set_stack_inode_mode(inode_item, inode->i_mode); 1763 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); 1764 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); 1765 btrfs_set_stack_inode_generation(inode_item, 1766 BTRFS_I(inode)->generation); 1767 btrfs_set_stack_inode_sequence(inode_item, inode->i_version); 1768 btrfs_set_stack_inode_transid(inode_item, trans->transid); 1769 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); 1770 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags); 1771 btrfs_set_stack_inode_block_group(inode_item, 0); 1772 1773 btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item), 1774 inode->i_atime.tv_sec); 1775 btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item), 1776 inode->i_atime.tv_nsec); 1777 1778 btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item), 1779 inode->i_mtime.tv_sec); 1780 btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item), 1781 inode->i_mtime.tv_nsec); 1782 1783 btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item), 1784 inode->i_ctime.tv_sec); 1785 btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item), 1786 inode->i_ctime.tv_nsec); 1787 } 1788 1789 int btrfs_fill_inode(struct inode *inode, u32 *rdev) 1790 { 1791 struct btrfs_delayed_node *delayed_node; 1792 struct btrfs_inode_item *inode_item; 1793 struct btrfs_timespec *tspec; 1794 1795 delayed_node = btrfs_get_delayed_node(inode); 1796 if (!delayed_node) 1797 return -ENOENT; 1798 1799 mutex_lock(&delayed_node->mutex); 1800 if (!delayed_node->inode_dirty) { 1801 mutex_unlock(&delayed_node->mutex); 1802 btrfs_release_delayed_node(delayed_node); 1803 return -ENOENT; 1804 } 1805 1806 inode_item = &delayed_node->inode_item; 1807 1808 i_uid_write(inode, btrfs_stack_inode_uid(inode_item)); 1809 i_gid_write(inode, btrfs_stack_inode_gid(inode_item)); 1810 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item)); 1811 inode->i_mode = btrfs_stack_inode_mode(inode_item); 1812 set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); 1813 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); 1814 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); 1815 inode->i_version = btrfs_stack_inode_sequence(inode_item); 1816 inode->i_rdev = 0; 1817 *rdev = btrfs_stack_inode_rdev(inode_item); 1818 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item); 1819 1820 tspec = btrfs_inode_atime(inode_item); 1821 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec); 1822 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec); 1823 1824 tspec = btrfs_inode_mtime(inode_item); 1825 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec); 1826 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec); 1827 1828 tspec = btrfs_inode_ctime(inode_item); 1829 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec); 1830 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec); 1831 1832 inode->i_generation = BTRFS_I(inode)->generation; 1833 BTRFS_I(inode)->index_cnt = (u64)-1; 1834 1835 mutex_unlock(&delayed_node->mutex); 1836 btrfs_release_delayed_node(delayed_node); 1837 return 0; 1838 } 1839 1840 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, 1841 struct btrfs_root *root, struct inode *inode) 1842 { 1843 struct btrfs_delayed_node *delayed_node; 1844 int ret = 0; 1845 1846 delayed_node = btrfs_get_or_create_delayed_node(inode); 1847 if (IS_ERR(delayed_node)) 1848 return PTR_ERR(delayed_node); 1849 1850 mutex_lock(&delayed_node->mutex); 1851 if (delayed_node->inode_dirty) { 1852 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1853 goto release_node; 1854 } 1855 1856 ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode, 1857 delayed_node); 1858 if (ret) 1859 goto release_node; 1860 1861 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1862 delayed_node->inode_dirty = 1; 1863 delayed_node->count++; 1864 atomic_inc(&root->fs_info->delayed_root->items); 1865 release_node: 1866 mutex_unlock(&delayed_node->mutex); 1867 btrfs_release_delayed_node(delayed_node); 1868 return ret; 1869 } 1870 1871 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) 1872 { 1873 struct btrfs_root *root = delayed_node->root; 1874 struct btrfs_delayed_item *curr_item, *prev_item; 1875 1876 mutex_lock(&delayed_node->mutex); 1877 curr_item = __btrfs_first_delayed_insertion_item(delayed_node); 1878 while (curr_item) { 1879 btrfs_delayed_item_release_metadata(root, curr_item); 1880 prev_item = curr_item; 1881 curr_item = __btrfs_next_delayed_item(prev_item); 1882 btrfs_release_delayed_item(prev_item); 1883 } 1884 1885 curr_item = __btrfs_first_delayed_deletion_item(delayed_node); 1886 while (curr_item) { 1887 btrfs_delayed_item_release_metadata(root, curr_item); 1888 prev_item = curr_item; 1889 curr_item = __btrfs_next_delayed_item(prev_item); 1890 btrfs_release_delayed_item(prev_item); 1891 } 1892 1893 if (delayed_node->inode_dirty) { 1894 btrfs_delayed_inode_release_metadata(root, delayed_node); 1895 btrfs_release_delayed_inode(delayed_node); 1896 } 1897 mutex_unlock(&delayed_node->mutex); 1898 } 1899 1900 void btrfs_kill_delayed_inode_items(struct inode *inode) 1901 { 1902 struct btrfs_delayed_node *delayed_node; 1903 1904 delayed_node = btrfs_get_delayed_node(inode); 1905 if (!delayed_node) 1906 return; 1907 1908 __btrfs_kill_delayed_node(delayed_node); 1909 btrfs_release_delayed_node(delayed_node); 1910 } 1911 1912 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) 1913 { 1914 u64 inode_id = 0; 1915 struct btrfs_delayed_node *delayed_nodes[8]; 1916 int i, n; 1917 1918 while (1) { 1919 spin_lock(&root->inode_lock); 1920 n = radix_tree_gang_lookup(&root->delayed_nodes_tree, 1921 (void **)delayed_nodes, inode_id, 1922 ARRAY_SIZE(delayed_nodes)); 1923 if (!n) { 1924 spin_unlock(&root->inode_lock); 1925 break; 1926 } 1927 1928 inode_id = delayed_nodes[n - 1]->inode_id + 1; 1929 1930 for (i = 0; i < n; i++) 1931 atomic_inc(&delayed_nodes[i]->refs); 1932 spin_unlock(&root->inode_lock); 1933 1934 for (i = 0; i < n; i++) { 1935 __btrfs_kill_delayed_node(delayed_nodes[i]); 1936 btrfs_release_delayed_node(delayed_nodes[i]); 1937 } 1938 } 1939 } 1940 1941 void btrfs_destroy_delayed_inodes(struct btrfs_root *root) 1942 { 1943 struct btrfs_delayed_root *delayed_root; 1944 struct btrfs_delayed_node *curr_node, *prev_node; 1945 1946 delayed_root = btrfs_get_delayed_root(root); 1947 1948 curr_node = btrfs_first_delayed_node(delayed_root); 1949 while (curr_node) { 1950 __btrfs_kill_delayed_node(curr_node); 1951 1952 prev_node = curr_node; 1953 curr_node = btrfs_next_delayed_node(curr_node); 1954 btrfs_release_delayed_node(prev_node); 1955 } 1956 } 1957 1958