xref: /openbmc/linux/fs/btrfs/delayed-inode.c (revision ee89bd6b)
1 /*
2  * Copyright (C) 2011 Fujitsu.  All rights reserved.
3  * Written by Miao Xie <miaox@cn.fujitsu.com>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19 
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 
25 #define BTRFS_DELAYED_WRITEBACK		512
26 #define BTRFS_DELAYED_BACKGROUND	128
27 #define BTRFS_DELAYED_BATCH		16
28 
29 static struct kmem_cache *delayed_node_cache;
30 
31 int __init btrfs_delayed_inode_init(void)
32 {
33 	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
34 					sizeof(struct btrfs_delayed_node),
35 					0,
36 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
37 					NULL);
38 	if (!delayed_node_cache)
39 		return -ENOMEM;
40 	return 0;
41 }
42 
43 void btrfs_delayed_inode_exit(void)
44 {
45 	if (delayed_node_cache)
46 		kmem_cache_destroy(delayed_node_cache);
47 }
48 
49 static inline void btrfs_init_delayed_node(
50 				struct btrfs_delayed_node *delayed_node,
51 				struct btrfs_root *root, u64 inode_id)
52 {
53 	delayed_node->root = root;
54 	delayed_node->inode_id = inode_id;
55 	atomic_set(&delayed_node->refs, 0);
56 	delayed_node->count = 0;
57 	delayed_node->in_list = 0;
58 	delayed_node->inode_dirty = 0;
59 	delayed_node->ins_root = RB_ROOT;
60 	delayed_node->del_root = RB_ROOT;
61 	mutex_init(&delayed_node->mutex);
62 	delayed_node->index_cnt = 0;
63 	INIT_LIST_HEAD(&delayed_node->n_list);
64 	INIT_LIST_HEAD(&delayed_node->p_list);
65 	delayed_node->bytes_reserved = 0;
66 	memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item));
67 }
68 
69 static inline int btrfs_is_continuous_delayed_item(
70 					struct btrfs_delayed_item *item1,
71 					struct btrfs_delayed_item *item2)
72 {
73 	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
74 	    item1->key.objectid == item2->key.objectid &&
75 	    item1->key.type == item2->key.type &&
76 	    item1->key.offset + 1 == item2->key.offset)
77 		return 1;
78 	return 0;
79 }
80 
81 static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
82 							struct btrfs_root *root)
83 {
84 	return root->fs_info->delayed_root;
85 }
86 
87 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
88 {
89 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
90 	struct btrfs_root *root = btrfs_inode->root;
91 	u64 ino = btrfs_ino(inode);
92 	struct btrfs_delayed_node *node;
93 
94 	node = ACCESS_ONCE(btrfs_inode->delayed_node);
95 	if (node) {
96 		atomic_inc(&node->refs);
97 		return node;
98 	}
99 
100 	spin_lock(&root->inode_lock);
101 	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
102 	if (node) {
103 		if (btrfs_inode->delayed_node) {
104 			atomic_inc(&node->refs);	/* can be accessed */
105 			BUG_ON(btrfs_inode->delayed_node != node);
106 			spin_unlock(&root->inode_lock);
107 			return node;
108 		}
109 		btrfs_inode->delayed_node = node;
110 		atomic_inc(&node->refs);	/* can be accessed */
111 		atomic_inc(&node->refs);	/* cached in the inode */
112 		spin_unlock(&root->inode_lock);
113 		return node;
114 	}
115 	spin_unlock(&root->inode_lock);
116 
117 	return NULL;
118 }
119 
120 /* Will return either the node or PTR_ERR(-ENOMEM) */
121 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
122 							struct inode *inode)
123 {
124 	struct btrfs_delayed_node *node;
125 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
126 	struct btrfs_root *root = btrfs_inode->root;
127 	u64 ino = btrfs_ino(inode);
128 	int ret;
129 
130 again:
131 	node = btrfs_get_delayed_node(inode);
132 	if (node)
133 		return node;
134 
135 	node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
136 	if (!node)
137 		return ERR_PTR(-ENOMEM);
138 	btrfs_init_delayed_node(node, root, ino);
139 
140 	atomic_inc(&node->refs);	/* cached in the btrfs inode */
141 	atomic_inc(&node->refs);	/* can be accessed */
142 
143 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
144 	if (ret) {
145 		kmem_cache_free(delayed_node_cache, node);
146 		return ERR_PTR(ret);
147 	}
148 
149 	spin_lock(&root->inode_lock);
150 	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
151 	if (ret == -EEXIST) {
152 		kmem_cache_free(delayed_node_cache, node);
153 		spin_unlock(&root->inode_lock);
154 		radix_tree_preload_end();
155 		goto again;
156 	}
157 	btrfs_inode->delayed_node = node;
158 	spin_unlock(&root->inode_lock);
159 	radix_tree_preload_end();
160 
161 	return node;
162 }
163 
164 /*
165  * Call it when holding delayed_node->mutex
166  *
167  * If mod = 1, add this node into the prepared list.
168  */
169 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
170 				     struct btrfs_delayed_node *node,
171 				     int mod)
172 {
173 	spin_lock(&root->lock);
174 	if (node->in_list) {
175 		if (!list_empty(&node->p_list))
176 			list_move_tail(&node->p_list, &root->prepare_list);
177 		else if (mod)
178 			list_add_tail(&node->p_list, &root->prepare_list);
179 	} else {
180 		list_add_tail(&node->n_list, &root->node_list);
181 		list_add_tail(&node->p_list, &root->prepare_list);
182 		atomic_inc(&node->refs);	/* inserted into list */
183 		root->nodes++;
184 		node->in_list = 1;
185 	}
186 	spin_unlock(&root->lock);
187 }
188 
189 /* Call it when holding delayed_node->mutex */
190 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
191 				       struct btrfs_delayed_node *node)
192 {
193 	spin_lock(&root->lock);
194 	if (node->in_list) {
195 		root->nodes--;
196 		atomic_dec(&node->refs);	/* not in the list */
197 		list_del_init(&node->n_list);
198 		if (!list_empty(&node->p_list))
199 			list_del_init(&node->p_list);
200 		node->in_list = 0;
201 	}
202 	spin_unlock(&root->lock);
203 }
204 
205 static struct btrfs_delayed_node *btrfs_first_delayed_node(
206 			struct btrfs_delayed_root *delayed_root)
207 {
208 	struct list_head *p;
209 	struct btrfs_delayed_node *node = NULL;
210 
211 	spin_lock(&delayed_root->lock);
212 	if (list_empty(&delayed_root->node_list))
213 		goto out;
214 
215 	p = delayed_root->node_list.next;
216 	node = list_entry(p, struct btrfs_delayed_node, n_list);
217 	atomic_inc(&node->refs);
218 out:
219 	spin_unlock(&delayed_root->lock);
220 
221 	return node;
222 }
223 
224 static struct btrfs_delayed_node *btrfs_next_delayed_node(
225 						struct btrfs_delayed_node *node)
226 {
227 	struct btrfs_delayed_root *delayed_root;
228 	struct list_head *p;
229 	struct btrfs_delayed_node *next = NULL;
230 
231 	delayed_root = node->root->fs_info->delayed_root;
232 	spin_lock(&delayed_root->lock);
233 	if (!node->in_list) {	/* not in the list */
234 		if (list_empty(&delayed_root->node_list))
235 			goto out;
236 		p = delayed_root->node_list.next;
237 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
238 		goto out;
239 	else
240 		p = node->n_list.next;
241 
242 	next = list_entry(p, struct btrfs_delayed_node, n_list);
243 	atomic_inc(&next->refs);
244 out:
245 	spin_unlock(&delayed_root->lock);
246 
247 	return next;
248 }
249 
250 static void __btrfs_release_delayed_node(
251 				struct btrfs_delayed_node *delayed_node,
252 				int mod)
253 {
254 	struct btrfs_delayed_root *delayed_root;
255 
256 	if (!delayed_node)
257 		return;
258 
259 	delayed_root = delayed_node->root->fs_info->delayed_root;
260 
261 	mutex_lock(&delayed_node->mutex);
262 	if (delayed_node->count)
263 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
264 	else
265 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
266 	mutex_unlock(&delayed_node->mutex);
267 
268 	if (atomic_dec_and_test(&delayed_node->refs)) {
269 		struct btrfs_root *root = delayed_node->root;
270 		spin_lock(&root->inode_lock);
271 		if (atomic_read(&delayed_node->refs) == 0) {
272 			radix_tree_delete(&root->delayed_nodes_tree,
273 					  delayed_node->inode_id);
274 			kmem_cache_free(delayed_node_cache, delayed_node);
275 		}
276 		spin_unlock(&root->inode_lock);
277 	}
278 }
279 
280 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
281 {
282 	__btrfs_release_delayed_node(node, 0);
283 }
284 
285 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
286 					struct btrfs_delayed_root *delayed_root)
287 {
288 	struct list_head *p;
289 	struct btrfs_delayed_node *node = NULL;
290 
291 	spin_lock(&delayed_root->lock);
292 	if (list_empty(&delayed_root->prepare_list))
293 		goto out;
294 
295 	p = delayed_root->prepare_list.next;
296 	list_del_init(p);
297 	node = list_entry(p, struct btrfs_delayed_node, p_list);
298 	atomic_inc(&node->refs);
299 out:
300 	spin_unlock(&delayed_root->lock);
301 
302 	return node;
303 }
304 
305 static inline void btrfs_release_prepared_delayed_node(
306 					struct btrfs_delayed_node *node)
307 {
308 	__btrfs_release_delayed_node(node, 1);
309 }
310 
311 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
312 {
313 	struct btrfs_delayed_item *item;
314 	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
315 	if (item) {
316 		item->data_len = data_len;
317 		item->ins_or_del = 0;
318 		item->bytes_reserved = 0;
319 		item->delayed_node = NULL;
320 		atomic_set(&item->refs, 1);
321 	}
322 	return item;
323 }
324 
325 /*
326  * __btrfs_lookup_delayed_item - look up the delayed item by key
327  * @delayed_node: pointer to the delayed node
328  * @key:	  the key to look up
329  * @prev:	  used to store the prev item if the right item isn't found
330  * @next:	  used to store the next item if the right item isn't found
331  *
332  * Note: if we don't find the right item, we will return the prev item and
333  * the next item.
334  */
335 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
336 				struct rb_root *root,
337 				struct btrfs_key *key,
338 				struct btrfs_delayed_item **prev,
339 				struct btrfs_delayed_item **next)
340 {
341 	struct rb_node *node, *prev_node = NULL;
342 	struct btrfs_delayed_item *delayed_item = NULL;
343 	int ret = 0;
344 
345 	node = root->rb_node;
346 
347 	while (node) {
348 		delayed_item = rb_entry(node, struct btrfs_delayed_item,
349 					rb_node);
350 		prev_node = node;
351 		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
352 		if (ret < 0)
353 			node = node->rb_right;
354 		else if (ret > 0)
355 			node = node->rb_left;
356 		else
357 			return delayed_item;
358 	}
359 
360 	if (prev) {
361 		if (!prev_node)
362 			*prev = NULL;
363 		else if (ret < 0)
364 			*prev = delayed_item;
365 		else if ((node = rb_prev(prev_node)) != NULL) {
366 			*prev = rb_entry(node, struct btrfs_delayed_item,
367 					 rb_node);
368 		} else
369 			*prev = NULL;
370 	}
371 
372 	if (next) {
373 		if (!prev_node)
374 			*next = NULL;
375 		else if (ret > 0)
376 			*next = delayed_item;
377 		else if ((node = rb_next(prev_node)) != NULL) {
378 			*next = rb_entry(node, struct btrfs_delayed_item,
379 					 rb_node);
380 		} else
381 			*next = NULL;
382 	}
383 	return NULL;
384 }
385 
386 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
387 					struct btrfs_delayed_node *delayed_node,
388 					struct btrfs_key *key)
389 {
390 	struct btrfs_delayed_item *item;
391 
392 	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
393 					   NULL, NULL);
394 	return item;
395 }
396 
397 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
398 				    struct btrfs_delayed_item *ins,
399 				    int action)
400 {
401 	struct rb_node **p, *node;
402 	struct rb_node *parent_node = NULL;
403 	struct rb_root *root;
404 	struct btrfs_delayed_item *item;
405 	int cmp;
406 
407 	if (action == BTRFS_DELAYED_INSERTION_ITEM)
408 		root = &delayed_node->ins_root;
409 	else if (action == BTRFS_DELAYED_DELETION_ITEM)
410 		root = &delayed_node->del_root;
411 	else
412 		BUG();
413 	p = &root->rb_node;
414 	node = &ins->rb_node;
415 
416 	while (*p) {
417 		parent_node = *p;
418 		item = rb_entry(parent_node, struct btrfs_delayed_item,
419 				 rb_node);
420 
421 		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
422 		if (cmp < 0)
423 			p = &(*p)->rb_right;
424 		else if (cmp > 0)
425 			p = &(*p)->rb_left;
426 		else
427 			return -EEXIST;
428 	}
429 
430 	rb_link_node(node, parent_node, p);
431 	rb_insert_color(node, root);
432 	ins->delayed_node = delayed_node;
433 	ins->ins_or_del = action;
434 
435 	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
436 	    action == BTRFS_DELAYED_INSERTION_ITEM &&
437 	    ins->key.offset >= delayed_node->index_cnt)
438 			delayed_node->index_cnt = ins->key.offset + 1;
439 
440 	delayed_node->count++;
441 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
442 	return 0;
443 }
444 
445 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
446 					      struct btrfs_delayed_item *item)
447 {
448 	return __btrfs_add_delayed_item(node, item,
449 					BTRFS_DELAYED_INSERTION_ITEM);
450 }
451 
452 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
453 					     struct btrfs_delayed_item *item)
454 {
455 	return __btrfs_add_delayed_item(node, item,
456 					BTRFS_DELAYED_DELETION_ITEM);
457 }
458 
459 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
460 {
461 	int seq = atomic_inc_return(&delayed_root->items_seq);
462 	if ((atomic_dec_return(&delayed_root->items) <
463 	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
464 	    waitqueue_active(&delayed_root->wait))
465 		wake_up(&delayed_root->wait);
466 }
467 
468 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
469 {
470 	struct rb_root *root;
471 	struct btrfs_delayed_root *delayed_root;
472 
473 	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
474 
475 	BUG_ON(!delayed_root);
476 	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
477 	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
478 
479 	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
480 		root = &delayed_item->delayed_node->ins_root;
481 	else
482 		root = &delayed_item->delayed_node->del_root;
483 
484 	rb_erase(&delayed_item->rb_node, root);
485 	delayed_item->delayed_node->count--;
486 
487 	finish_one_item(delayed_root);
488 }
489 
490 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
491 {
492 	if (item) {
493 		__btrfs_remove_delayed_item(item);
494 		if (atomic_dec_and_test(&item->refs))
495 			kfree(item);
496 	}
497 }
498 
499 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
500 					struct btrfs_delayed_node *delayed_node)
501 {
502 	struct rb_node *p;
503 	struct btrfs_delayed_item *item = NULL;
504 
505 	p = rb_first(&delayed_node->ins_root);
506 	if (p)
507 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
508 
509 	return item;
510 }
511 
512 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
513 					struct btrfs_delayed_node *delayed_node)
514 {
515 	struct rb_node *p;
516 	struct btrfs_delayed_item *item = NULL;
517 
518 	p = rb_first(&delayed_node->del_root);
519 	if (p)
520 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
521 
522 	return item;
523 }
524 
525 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
526 						struct btrfs_delayed_item *item)
527 {
528 	struct rb_node *p;
529 	struct btrfs_delayed_item *next = NULL;
530 
531 	p = rb_next(&item->rb_node);
532 	if (p)
533 		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
534 
535 	return next;
536 }
537 
538 static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
539 						   u64 root_id)
540 {
541 	struct btrfs_key root_key;
542 
543 	if (root->objectid == root_id)
544 		return root;
545 
546 	root_key.objectid = root_id;
547 	root_key.type = BTRFS_ROOT_ITEM_KEY;
548 	root_key.offset = (u64)-1;
549 	return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
550 }
551 
552 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
553 					       struct btrfs_root *root,
554 					       struct btrfs_delayed_item *item)
555 {
556 	struct btrfs_block_rsv *src_rsv;
557 	struct btrfs_block_rsv *dst_rsv;
558 	u64 num_bytes;
559 	int ret;
560 
561 	if (!trans->bytes_reserved)
562 		return 0;
563 
564 	src_rsv = trans->block_rsv;
565 	dst_rsv = &root->fs_info->delayed_block_rsv;
566 
567 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
568 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
569 	if (!ret) {
570 		trace_btrfs_space_reservation(root->fs_info, "delayed_item",
571 					      item->key.objectid,
572 					      num_bytes, 1);
573 		item->bytes_reserved = num_bytes;
574 	}
575 
576 	return ret;
577 }
578 
579 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
580 						struct btrfs_delayed_item *item)
581 {
582 	struct btrfs_block_rsv *rsv;
583 
584 	if (!item->bytes_reserved)
585 		return;
586 
587 	rsv = &root->fs_info->delayed_block_rsv;
588 	trace_btrfs_space_reservation(root->fs_info, "delayed_item",
589 				      item->key.objectid, item->bytes_reserved,
590 				      0);
591 	btrfs_block_rsv_release(root, rsv,
592 				item->bytes_reserved);
593 }
594 
595 static int btrfs_delayed_inode_reserve_metadata(
596 					struct btrfs_trans_handle *trans,
597 					struct btrfs_root *root,
598 					struct inode *inode,
599 					struct btrfs_delayed_node *node)
600 {
601 	struct btrfs_block_rsv *src_rsv;
602 	struct btrfs_block_rsv *dst_rsv;
603 	u64 num_bytes;
604 	int ret;
605 	bool release = false;
606 
607 	src_rsv = trans->block_rsv;
608 	dst_rsv = &root->fs_info->delayed_block_rsv;
609 
610 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
611 
612 	/*
613 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
614 	 * which doesn't reserve space for speed.  This is a problem since we
615 	 * still need to reserve space for this update, so try to reserve the
616 	 * space.
617 	 *
618 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
619 	 * we're accounted for.
620 	 */
621 	if (!src_rsv || (!trans->bytes_reserved &&
622 			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
623 		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
624 					  BTRFS_RESERVE_NO_FLUSH);
625 		/*
626 		 * Since we're under a transaction reserve_metadata_bytes could
627 		 * try to commit the transaction which will make it return
628 		 * EAGAIN to make us stop the transaction we have, so return
629 		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
630 		 */
631 		if (ret == -EAGAIN)
632 			ret = -ENOSPC;
633 		if (!ret) {
634 			node->bytes_reserved = num_bytes;
635 			trace_btrfs_space_reservation(root->fs_info,
636 						      "delayed_inode",
637 						      btrfs_ino(inode),
638 						      num_bytes, 1);
639 		}
640 		return ret;
641 	} else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
642 		spin_lock(&BTRFS_I(inode)->lock);
643 		if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
644 				       &BTRFS_I(inode)->runtime_flags)) {
645 			spin_unlock(&BTRFS_I(inode)->lock);
646 			release = true;
647 			goto migrate;
648 		}
649 		spin_unlock(&BTRFS_I(inode)->lock);
650 
651 		/* Ok we didn't have space pre-reserved.  This shouldn't happen
652 		 * too often but it can happen if we do delalloc to an existing
653 		 * inode which gets dirtied because of the time update, and then
654 		 * isn't touched again until after the transaction commits and
655 		 * then we try to write out the data.  First try to be nice and
656 		 * reserve something strictly for us.  If not be a pain and try
657 		 * to steal from the delalloc block rsv.
658 		 */
659 		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
660 					  BTRFS_RESERVE_NO_FLUSH);
661 		if (!ret)
662 			goto out;
663 
664 		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
665 		if (!ret)
666 			goto out;
667 
668 		/*
669 		 * Ok this is a problem, let's just steal from the global rsv
670 		 * since this really shouldn't happen that often.
671 		 */
672 		WARN_ON(1);
673 		ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
674 					      dst_rsv, num_bytes);
675 		goto out;
676 	}
677 
678 migrate:
679 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
680 
681 out:
682 	/*
683 	 * Migrate only takes a reservation, it doesn't touch the size of the
684 	 * block_rsv.  This is to simplify people who don't normally have things
685 	 * migrated from their block rsv.  If they go to release their
686 	 * reservation, that will decrease the size as well, so if migrate
687 	 * reduced size we'd end up with a negative size.  But for the
688 	 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
689 	 * but we could in fact do this reserve/migrate dance several times
690 	 * between the time we did the original reservation and we'd clean it
691 	 * up.  So to take care of this, release the space for the meta
692 	 * reservation here.  I think it may be time for a documentation page on
693 	 * how block rsvs. work.
694 	 */
695 	if (!ret) {
696 		trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
697 					      btrfs_ino(inode), num_bytes, 1);
698 		node->bytes_reserved = num_bytes;
699 	}
700 
701 	if (release) {
702 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
703 					      btrfs_ino(inode), num_bytes, 0);
704 		btrfs_block_rsv_release(root, src_rsv, num_bytes);
705 	}
706 
707 	return ret;
708 }
709 
710 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
711 						struct btrfs_delayed_node *node)
712 {
713 	struct btrfs_block_rsv *rsv;
714 
715 	if (!node->bytes_reserved)
716 		return;
717 
718 	rsv = &root->fs_info->delayed_block_rsv;
719 	trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
720 				      node->inode_id, node->bytes_reserved, 0);
721 	btrfs_block_rsv_release(root, rsv,
722 				node->bytes_reserved);
723 	node->bytes_reserved = 0;
724 }
725 
726 /*
727  * This helper will insert some continuous items into the same leaf according
728  * to the free space of the leaf.
729  */
730 static int btrfs_batch_insert_items(struct btrfs_root *root,
731 				    struct btrfs_path *path,
732 				    struct btrfs_delayed_item *item)
733 {
734 	struct btrfs_delayed_item *curr, *next;
735 	int free_space;
736 	int total_data_size = 0, total_size = 0;
737 	struct extent_buffer *leaf;
738 	char *data_ptr;
739 	struct btrfs_key *keys;
740 	u32 *data_size;
741 	struct list_head head;
742 	int slot;
743 	int nitems;
744 	int i;
745 	int ret = 0;
746 
747 	BUG_ON(!path->nodes[0]);
748 
749 	leaf = path->nodes[0];
750 	free_space = btrfs_leaf_free_space(root, leaf);
751 	INIT_LIST_HEAD(&head);
752 
753 	next = item;
754 	nitems = 0;
755 
756 	/*
757 	 * count the number of the continuous items that we can insert in batch
758 	 */
759 	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
760 	       free_space) {
761 		total_data_size += next->data_len;
762 		total_size += next->data_len + sizeof(struct btrfs_item);
763 		list_add_tail(&next->tree_list, &head);
764 		nitems++;
765 
766 		curr = next;
767 		next = __btrfs_next_delayed_item(curr);
768 		if (!next)
769 			break;
770 
771 		if (!btrfs_is_continuous_delayed_item(curr, next))
772 			break;
773 	}
774 
775 	if (!nitems) {
776 		ret = 0;
777 		goto out;
778 	}
779 
780 	/*
781 	 * we need allocate some memory space, but it might cause the task
782 	 * to sleep, so we set all locked nodes in the path to blocking locks
783 	 * first.
784 	 */
785 	btrfs_set_path_blocking(path);
786 
787 	keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
788 	if (!keys) {
789 		ret = -ENOMEM;
790 		goto out;
791 	}
792 
793 	data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
794 	if (!data_size) {
795 		ret = -ENOMEM;
796 		goto error;
797 	}
798 
799 	/* get keys of all the delayed items */
800 	i = 0;
801 	list_for_each_entry(next, &head, tree_list) {
802 		keys[i] = next->key;
803 		data_size[i] = next->data_len;
804 		i++;
805 	}
806 
807 	/* reset all the locked nodes in the patch to spinning locks. */
808 	btrfs_clear_path_blocking(path, NULL, 0);
809 
810 	/* insert the keys of the items */
811 	setup_items_for_insert(root, path, keys, data_size,
812 			       total_data_size, total_size, nitems);
813 
814 	/* insert the dir index items */
815 	slot = path->slots[0];
816 	list_for_each_entry_safe(curr, next, &head, tree_list) {
817 		data_ptr = btrfs_item_ptr(leaf, slot, char);
818 		write_extent_buffer(leaf, &curr->data,
819 				    (unsigned long)data_ptr,
820 				    curr->data_len);
821 		slot++;
822 
823 		btrfs_delayed_item_release_metadata(root, curr);
824 
825 		list_del(&curr->tree_list);
826 		btrfs_release_delayed_item(curr);
827 	}
828 
829 error:
830 	kfree(data_size);
831 	kfree(keys);
832 out:
833 	return ret;
834 }
835 
836 /*
837  * This helper can just do simple insertion that needn't extend item for new
838  * data, such as directory name index insertion, inode insertion.
839  */
840 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
841 				     struct btrfs_root *root,
842 				     struct btrfs_path *path,
843 				     struct btrfs_delayed_item *delayed_item)
844 {
845 	struct extent_buffer *leaf;
846 	char *ptr;
847 	int ret;
848 
849 	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
850 				      delayed_item->data_len);
851 	if (ret < 0 && ret != -EEXIST)
852 		return ret;
853 
854 	leaf = path->nodes[0];
855 
856 	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
857 
858 	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
859 			    delayed_item->data_len);
860 	btrfs_mark_buffer_dirty(leaf);
861 
862 	btrfs_delayed_item_release_metadata(root, delayed_item);
863 	return 0;
864 }
865 
866 /*
867  * we insert an item first, then if there are some continuous items, we try
868  * to insert those items into the same leaf.
869  */
870 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
871 				      struct btrfs_path *path,
872 				      struct btrfs_root *root,
873 				      struct btrfs_delayed_node *node)
874 {
875 	struct btrfs_delayed_item *curr, *prev;
876 	int ret = 0;
877 
878 do_again:
879 	mutex_lock(&node->mutex);
880 	curr = __btrfs_first_delayed_insertion_item(node);
881 	if (!curr)
882 		goto insert_end;
883 
884 	ret = btrfs_insert_delayed_item(trans, root, path, curr);
885 	if (ret < 0) {
886 		btrfs_release_path(path);
887 		goto insert_end;
888 	}
889 
890 	prev = curr;
891 	curr = __btrfs_next_delayed_item(prev);
892 	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
893 		/* insert the continuous items into the same leaf */
894 		path->slots[0]++;
895 		btrfs_batch_insert_items(root, path, curr);
896 	}
897 	btrfs_release_delayed_item(prev);
898 	btrfs_mark_buffer_dirty(path->nodes[0]);
899 
900 	btrfs_release_path(path);
901 	mutex_unlock(&node->mutex);
902 	goto do_again;
903 
904 insert_end:
905 	mutex_unlock(&node->mutex);
906 	return ret;
907 }
908 
909 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
910 				    struct btrfs_root *root,
911 				    struct btrfs_path *path,
912 				    struct btrfs_delayed_item *item)
913 {
914 	struct btrfs_delayed_item *curr, *next;
915 	struct extent_buffer *leaf;
916 	struct btrfs_key key;
917 	struct list_head head;
918 	int nitems, i, last_item;
919 	int ret = 0;
920 
921 	BUG_ON(!path->nodes[0]);
922 
923 	leaf = path->nodes[0];
924 
925 	i = path->slots[0];
926 	last_item = btrfs_header_nritems(leaf) - 1;
927 	if (i > last_item)
928 		return -ENOENT;	/* FIXME: Is errno suitable? */
929 
930 	next = item;
931 	INIT_LIST_HEAD(&head);
932 	btrfs_item_key_to_cpu(leaf, &key, i);
933 	nitems = 0;
934 	/*
935 	 * count the number of the dir index items that we can delete in batch
936 	 */
937 	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
938 		list_add_tail(&next->tree_list, &head);
939 		nitems++;
940 
941 		curr = next;
942 		next = __btrfs_next_delayed_item(curr);
943 		if (!next)
944 			break;
945 
946 		if (!btrfs_is_continuous_delayed_item(curr, next))
947 			break;
948 
949 		i++;
950 		if (i > last_item)
951 			break;
952 		btrfs_item_key_to_cpu(leaf, &key, i);
953 	}
954 
955 	if (!nitems)
956 		return 0;
957 
958 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
959 	if (ret)
960 		goto out;
961 
962 	list_for_each_entry_safe(curr, next, &head, tree_list) {
963 		btrfs_delayed_item_release_metadata(root, curr);
964 		list_del(&curr->tree_list);
965 		btrfs_release_delayed_item(curr);
966 	}
967 
968 out:
969 	return ret;
970 }
971 
972 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
973 				      struct btrfs_path *path,
974 				      struct btrfs_root *root,
975 				      struct btrfs_delayed_node *node)
976 {
977 	struct btrfs_delayed_item *curr, *prev;
978 	int ret = 0;
979 
980 do_again:
981 	mutex_lock(&node->mutex);
982 	curr = __btrfs_first_delayed_deletion_item(node);
983 	if (!curr)
984 		goto delete_fail;
985 
986 	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
987 	if (ret < 0)
988 		goto delete_fail;
989 	else if (ret > 0) {
990 		/*
991 		 * can't find the item which the node points to, so this node
992 		 * is invalid, just drop it.
993 		 */
994 		prev = curr;
995 		curr = __btrfs_next_delayed_item(prev);
996 		btrfs_release_delayed_item(prev);
997 		ret = 0;
998 		btrfs_release_path(path);
999 		if (curr) {
1000 			mutex_unlock(&node->mutex);
1001 			goto do_again;
1002 		} else
1003 			goto delete_fail;
1004 	}
1005 
1006 	btrfs_batch_delete_items(trans, root, path, curr);
1007 	btrfs_release_path(path);
1008 	mutex_unlock(&node->mutex);
1009 	goto do_again;
1010 
1011 delete_fail:
1012 	btrfs_release_path(path);
1013 	mutex_unlock(&node->mutex);
1014 	return ret;
1015 }
1016 
1017 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
1018 {
1019 	struct btrfs_delayed_root *delayed_root;
1020 
1021 	if (delayed_node && delayed_node->inode_dirty) {
1022 		BUG_ON(!delayed_node->root);
1023 		delayed_node->inode_dirty = 0;
1024 		delayed_node->count--;
1025 
1026 		delayed_root = delayed_node->root->fs_info->delayed_root;
1027 		finish_one_item(delayed_root);
1028 	}
1029 }
1030 
1031 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1032 					struct btrfs_root *root,
1033 					struct btrfs_path *path,
1034 					struct btrfs_delayed_node *node)
1035 {
1036 	struct btrfs_key key;
1037 	struct btrfs_inode_item *inode_item;
1038 	struct extent_buffer *leaf;
1039 	int ret;
1040 
1041 	key.objectid = node->inode_id;
1042 	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
1043 	key.offset = 0;
1044 
1045 	ret = btrfs_lookup_inode(trans, root, path, &key, 1);
1046 	if (ret > 0) {
1047 		btrfs_release_path(path);
1048 		return -ENOENT;
1049 	} else if (ret < 0) {
1050 		return ret;
1051 	}
1052 
1053 	btrfs_unlock_up_safe(path, 1);
1054 	leaf = path->nodes[0];
1055 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1056 				    struct btrfs_inode_item);
1057 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1058 			    sizeof(struct btrfs_inode_item));
1059 	btrfs_mark_buffer_dirty(leaf);
1060 	btrfs_release_path(path);
1061 
1062 	btrfs_delayed_inode_release_metadata(root, node);
1063 	btrfs_release_delayed_inode(node);
1064 
1065 	return 0;
1066 }
1067 
1068 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1069 					     struct btrfs_root *root,
1070 					     struct btrfs_path *path,
1071 					     struct btrfs_delayed_node *node)
1072 {
1073 	int ret;
1074 
1075 	mutex_lock(&node->mutex);
1076 	if (!node->inode_dirty) {
1077 		mutex_unlock(&node->mutex);
1078 		return 0;
1079 	}
1080 
1081 	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1082 	mutex_unlock(&node->mutex);
1083 	return ret;
1084 }
1085 
1086 static inline int
1087 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1088 				   struct btrfs_path *path,
1089 				   struct btrfs_delayed_node *node)
1090 {
1091 	int ret;
1092 
1093 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1094 	if (ret)
1095 		return ret;
1096 
1097 	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1098 	if (ret)
1099 		return ret;
1100 
1101 	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1102 	return ret;
1103 }
1104 
1105 /*
1106  * Called when committing the transaction.
1107  * Returns 0 on success.
1108  * Returns < 0 on error and returns with an aborted transaction with any
1109  * outstanding delayed items cleaned up.
1110  */
1111 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1112 				     struct btrfs_root *root, int nr)
1113 {
1114 	struct btrfs_delayed_root *delayed_root;
1115 	struct btrfs_delayed_node *curr_node, *prev_node;
1116 	struct btrfs_path *path;
1117 	struct btrfs_block_rsv *block_rsv;
1118 	int ret = 0;
1119 	bool count = (nr > 0);
1120 
1121 	if (trans->aborted)
1122 		return -EIO;
1123 
1124 	path = btrfs_alloc_path();
1125 	if (!path)
1126 		return -ENOMEM;
1127 	path->leave_spinning = 1;
1128 
1129 	block_rsv = trans->block_rsv;
1130 	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1131 
1132 	delayed_root = btrfs_get_delayed_root(root);
1133 
1134 	curr_node = btrfs_first_delayed_node(delayed_root);
1135 	while (curr_node && (!count || (count && nr--))) {
1136 		ret = __btrfs_commit_inode_delayed_items(trans, path,
1137 							 curr_node);
1138 		if (ret) {
1139 			btrfs_release_delayed_node(curr_node);
1140 			curr_node = NULL;
1141 			btrfs_abort_transaction(trans, root, ret);
1142 			break;
1143 		}
1144 
1145 		prev_node = curr_node;
1146 		curr_node = btrfs_next_delayed_node(curr_node);
1147 		btrfs_release_delayed_node(prev_node);
1148 	}
1149 
1150 	if (curr_node)
1151 		btrfs_release_delayed_node(curr_node);
1152 	btrfs_free_path(path);
1153 	trans->block_rsv = block_rsv;
1154 
1155 	return ret;
1156 }
1157 
1158 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1159 			    struct btrfs_root *root)
1160 {
1161 	return __btrfs_run_delayed_items(trans, root, -1);
1162 }
1163 
1164 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1165 			       struct btrfs_root *root, int nr)
1166 {
1167 	return __btrfs_run_delayed_items(trans, root, nr);
1168 }
1169 
1170 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1171 				     struct inode *inode)
1172 {
1173 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1174 	struct btrfs_path *path;
1175 	struct btrfs_block_rsv *block_rsv;
1176 	int ret;
1177 
1178 	if (!delayed_node)
1179 		return 0;
1180 
1181 	mutex_lock(&delayed_node->mutex);
1182 	if (!delayed_node->count) {
1183 		mutex_unlock(&delayed_node->mutex);
1184 		btrfs_release_delayed_node(delayed_node);
1185 		return 0;
1186 	}
1187 	mutex_unlock(&delayed_node->mutex);
1188 
1189 	path = btrfs_alloc_path();
1190 	if (!path)
1191 		return -ENOMEM;
1192 	path->leave_spinning = 1;
1193 
1194 	block_rsv = trans->block_rsv;
1195 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1196 
1197 	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1198 
1199 	btrfs_release_delayed_node(delayed_node);
1200 	btrfs_free_path(path);
1201 	trans->block_rsv = block_rsv;
1202 
1203 	return ret;
1204 }
1205 
1206 int btrfs_commit_inode_delayed_inode(struct inode *inode)
1207 {
1208 	struct btrfs_trans_handle *trans;
1209 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1210 	struct btrfs_path *path;
1211 	struct btrfs_block_rsv *block_rsv;
1212 	int ret;
1213 
1214 	if (!delayed_node)
1215 		return 0;
1216 
1217 	mutex_lock(&delayed_node->mutex);
1218 	if (!delayed_node->inode_dirty) {
1219 		mutex_unlock(&delayed_node->mutex);
1220 		btrfs_release_delayed_node(delayed_node);
1221 		return 0;
1222 	}
1223 	mutex_unlock(&delayed_node->mutex);
1224 
1225 	trans = btrfs_join_transaction(delayed_node->root);
1226 	if (IS_ERR(trans)) {
1227 		ret = PTR_ERR(trans);
1228 		goto out;
1229 	}
1230 
1231 	path = btrfs_alloc_path();
1232 	if (!path) {
1233 		ret = -ENOMEM;
1234 		goto trans_out;
1235 	}
1236 	path->leave_spinning = 1;
1237 
1238 	block_rsv = trans->block_rsv;
1239 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1240 
1241 	mutex_lock(&delayed_node->mutex);
1242 	if (delayed_node->inode_dirty)
1243 		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1244 						   path, delayed_node);
1245 	else
1246 		ret = 0;
1247 	mutex_unlock(&delayed_node->mutex);
1248 
1249 	btrfs_free_path(path);
1250 	trans->block_rsv = block_rsv;
1251 trans_out:
1252 	btrfs_end_transaction(trans, delayed_node->root);
1253 	btrfs_btree_balance_dirty(delayed_node->root);
1254 out:
1255 	btrfs_release_delayed_node(delayed_node);
1256 
1257 	return ret;
1258 }
1259 
1260 void btrfs_remove_delayed_node(struct inode *inode)
1261 {
1262 	struct btrfs_delayed_node *delayed_node;
1263 
1264 	delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1265 	if (!delayed_node)
1266 		return;
1267 
1268 	BTRFS_I(inode)->delayed_node = NULL;
1269 	btrfs_release_delayed_node(delayed_node);
1270 }
1271 
1272 struct btrfs_async_delayed_work {
1273 	struct btrfs_delayed_root *delayed_root;
1274 	int nr;
1275 	struct btrfs_work work;
1276 };
1277 
1278 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1279 {
1280 	struct btrfs_async_delayed_work *async_work;
1281 	struct btrfs_delayed_root *delayed_root;
1282 	struct btrfs_trans_handle *trans;
1283 	struct btrfs_path *path;
1284 	struct btrfs_delayed_node *delayed_node = NULL;
1285 	struct btrfs_root *root;
1286 	struct btrfs_block_rsv *block_rsv;
1287 	int total_done = 0;
1288 
1289 	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1290 	delayed_root = async_work->delayed_root;
1291 
1292 	path = btrfs_alloc_path();
1293 	if (!path)
1294 		goto out;
1295 
1296 again:
1297 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1298 		goto free_path;
1299 
1300 	delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1301 	if (!delayed_node)
1302 		goto free_path;
1303 
1304 	path->leave_spinning = 1;
1305 	root = delayed_node->root;
1306 
1307 	trans = btrfs_join_transaction(root);
1308 	if (IS_ERR(trans))
1309 		goto release_path;
1310 
1311 	block_rsv = trans->block_rsv;
1312 	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1313 
1314 	__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1315 	/*
1316 	 * Maybe new delayed items have been inserted, so we need requeue
1317 	 * the work. Besides that, we must dequeue the empty delayed nodes
1318 	 * to avoid the race between delayed items balance and the worker.
1319 	 * The race like this:
1320 	 * 	Task1				Worker thread
1321 	 * 					count == 0, needn't requeue
1322 	 * 					  also needn't insert the
1323 	 * 					  delayed node into prepare
1324 	 * 					  list again.
1325 	 * 	add lots of delayed items
1326 	 * 	queue the delayed node
1327 	 * 	  already in the list,
1328 	 * 	  and not in the prepare
1329 	 * 	  list, it means the delayed
1330 	 * 	  node is being dealt with
1331 	 * 	  by the worker.
1332 	 * 	do delayed items balance
1333 	 * 	  the delayed node is being
1334 	 * 	  dealt with by the worker
1335 	 * 	  now, just wait.
1336 	 * 	  				the worker goto idle.
1337 	 * Task1 will sleep until the transaction is commited.
1338 	 */
1339 	mutex_lock(&delayed_node->mutex);
1340 	btrfs_dequeue_delayed_node(root->fs_info->delayed_root, delayed_node);
1341 	mutex_unlock(&delayed_node->mutex);
1342 
1343 	trans->block_rsv = block_rsv;
1344 	btrfs_end_transaction_dmeta(trans, root);
1345 	btrfs_btree_balance_dirty_nodelay(root);
1346 
1347 release_path:
1348 	btrfs_release_path(path);
1349 	total_done++;
1350 
1351 	btrfs_release_prepared_delayed_node(delayed_node);
1352 	if (async_work->nr == 0 || total_done < async_work->nr)
1353 		goto again;
1354 
1355 free_path:
1356 	btrfs_free_path(path);
1357 out:
1358 	wake_up(&delayed_root->wait);
1359 	kfree(async_work);
1360 }
1361 
1362 
1363 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1364 				     struct btrfs_root *root, int nr)
1365 {
1366 	struct btrfs_async_delayed_work *async_work;
1367 
1368 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1369 		return 0;
1370 
1371 	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1372 	if (!async_work)
1373 		return -ENOMEM;
1374 
1375 	async_work->delayed_root = delayed_root;
1376 	async_work->work.func = btrfs_async_run_delayed_root;
1377 	async_work->work.flags = 0;
1378 	async_work->nr = nr;
1379 
1380 	btrfs_queue_worker(&root->fs_info->delayed_workers, &async_work->work);
1381 	return 0;
1382 }
1383 
1384 void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1385 {
1386 	struct btrfs_delayed_root *delayed_root;
1387 	delayed_root = btrfs_get_delayed_root(root);
1388 	WARN_ON(btrfs_first_delayed_node(delayed_root));
1389 }
1390 
1391 static int refs_newer(struct btrfs_delayed_root *delayed_root,
1392 		      int seq, int count)
1393 {
1394 	int val = atomic_read(&delayed_root->items_seq);
1395 
1396 	if (val < seq || val >= seq + count)
1397 		return 1;
1398 	return 0;
1399 }
1400 
1401 void btrfs_balance_delayed_items(struct btrfs_root *root)
1402 {
1403 	struct btrfs_delayed_root *delayed_root;
1404 	int seq;
1405 
1406 	delayed_root = btrfs_get_delayed_root(root);
1407 
1408 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1409 		return;
1410 
1411 	seq = atomic_read(&delayed_root->items_seq);
1412 
1413 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1414 		int ret;
1415 		DEFINE_WAIT(__wait);
1416 
1417 		ret = btrfs_wq_run_delayed_node(delayed_root, root, 0);
1418 		if (ret)
1419 			return;
1420 
1421 		while (1) {
1422 			prepare_to_wait(&delayed_root->wait, &__wait,
1423 					TASK_INTERRUPTIBLE);
1424 
1425 			if (refs_newer(delayed_root, seq,
1426 				       BTRFS_DELAYED_BATCH) ||
1427 			    atomic_read(&delayed_root->items) <
1428 			    BTRFS_DELAYED_BACKGROUND) {
1429 				break;
1430 			}
1431 			if (!signal_pending(current))
1432 				schedule();
1433 			else
1434 				break;
1435 		}
1436 		finish_wait(&delayed_root->wait, &__wait);
1437 	}
1438 
1439 	btrfs_wq_run_delayed_node(delayed_root, root, BTRFS_DELAYED_BATCH);
1440 }
1441 
1442 /* Will return 0 or -ENOMEM */
1443 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1444 				   struct btrfs_root *root, const char *name,
1445 				   int name_len, struct inode *dir,
1446 				   struct btrfs_disk_key *disk_key, u8 type,
1447 				   u64 index)
1448 {
1449 	struct btrfs_delayed_node *delayed_node;
1450 	struct btrfs_delayed_item *delayed_item;
1451 	struct btrfs_dir_item *dir_item;
1452 	int ret;
1453 
1454 	delayed_node = btrfs_get_or_create_delayed_node(dir);
1455 	if (IS_ERR(delayed_node))
1456 		return PTR_ERR(delayed_node);
1457 
1458 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1459 	if (!delayed_item) {
1460 		ret = -ENOMEM;
1461 		goto release_node;
1462 	}
1463 
1464 	delayed_item->key.objectid = btrfs_ino(dir);
1465 	btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1466 	delayed_item->key.offset = index;
1467 
1468 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1469 	dir_item->location = *disk_key;
1470 	dir_item->transid = cpu_to_le64(trans->transid);
1471 	dir_item->data_len = 0;
1472 	dir_item->name_len = cpu_to_le16(name_len);
1473 	dir_item->type = type;
1474 	memcpy((char *)(dir_item + 1), name, name_len);
1475 
1476 	ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1477 	/*
1478 	 * we have reserved enough space when we start a new transaction,
1479 	 * so reserving metadata failure is impossible
1480 	 */
1481 	BUG_ON(ret);
1482 
1483 
1484 	mutex_lock(&delayed_node->mutex);
1485 	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1486 	if (unlikely(ret)) {
1487 		printk(KERN_ERR "err add delayed dir index item(name: %s) into "
1488 				"the insertion tree of the delayed node"
1489 				"(root id: %llu, inode id: %llu, errno: %d)\n",
1490 				name,
1491 				(unsigned long long)delayed_node->root->objectid,
1492 				(unsigned long long)delayed_node->inode_id,
1493 				ret);
1494 		BUG();
1495 	}
1496 	mutex_unlock(&delayed_node->mutex);
1497 
1498 release_node:
1499 	btrfs_release_delayed_node(delayed_node);
1500 	return ret;
1501 }
1502 
1503 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1504 					       struct btrfs_delayed_node *node,
1505 					       struct btrfs_key *key)
1506 {
1507 	struct btrfs_delayed_item *item;
1508 
1509 	mutex_lock(&node->mutex);
1510 	item = __btrfs_lookup_delayed_insertion_item(node, key);
1511 	if (!item) {
1512 		mutex_unlock(&node->mutex);
1513 		return 1;
1514 	}
1515 
1516 	btrfs_delayed_item_release_metadata(root, item);
1517 	btrfs_release_delayed_item(item);
1518 	mutex_unlock(&node->mutex);
1519 	return 0;
1520 }
1521 
1522 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1523 				   struct btrfs_root *root, struct inode *dir,
1524 				   u64 index)
1525 {
1526 	struct btrfs_delayed_node *node;
1527 	struct btrfs_delayed_item *item;
1528 	struct btrfs_key item_key;
1529 	int ret;
1530 
1531 	node = btrfs_get_or_create_delayed_node(dir);
1532 	if (IS_ERR(node))
1533 		return PTR_ERR(node);
1534 
1535 	item_key.objectid = btrfs_ino(dir);
1536 	btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1537 	item_key.offset = index;
1538 
1539 	ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1540 	if (!ret)
1541 		goto end;
1542 
1543 	item = btrfs_alloc_delayed_item(0);
1544 	if (!item) {
1545 		ret = -ENOMEM;
1546 		goto end;
1547 	}
1548 
1549 	item->key = item_key;
1550 
1551 	ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1552 	/*
1553 	 * we have reserved enough space when we start a new transaction,
1554 	 * so reserving metadata failure is impossible.
1555 	 */
1556 	BUG_ON(ret);
1557 
1558 	mutex_lock(&node->mutex);
1559 	ret = __btrfs_add_delayed_deletion_item(node, item);
1560 	if (unlikely(ret)) {
1561 		printk(KERN_ERR "err add delayed dir index item(index: %llu) "
1562 				"into the deletion tree of the delayed node"
1563 				"(root id: %llu, inode id: %llu, errno: %d)\n",
1564 				(unsigned long long)index,
1565 				(unsigned long long)node->root->objectid,
1566 				(unsigned long long)node->inode_id,
1567 				ret);
1568 		BUG();
1569 	}
1570 	mutex_unlock(&node->mutex);
1571 end:
1572 	btrfs_release_delayed_node(node);
1573 	return ret;
1574 }
1575 
1576 int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1577 {
1578 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1579 
1580 	if (!delayed_node)
1581 		return -ENOENT;
1582 
1583 	/*
1584 	 * Since we have held i_mutex of this directory, it is impossible that
1585 	 * a new directory index is added into the delayed node and index_cnt
1586 	 * is updated now. So we needn't lock the delayed node.
1587 	 */
1588 	if (!delayed_node->index_cnt) {
1589 		btrfs_release_delayed_node(delayed_node);
1590 		return -EINVAL;
1591 	}
1592 
1593 	BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1594 	btrfs_release_delayed_node(delayed_node);
1595 	return 0;
1596 }
1597 
1598 void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1599 			     struct list_head *del_list)
1600 {
1601 	struct btrfs_delayed_node *delayed_node;
1602 	struct btrfs_delayed_item *item;
1603 
1604 	delayed_node = btrfs_get_delayed_node(inode);
1605 	if (!delayed_node)
1606 		return;
1607 
1608 	mutex_lock(&delayed_node->mutex);
1609 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1610 	while (item) {
1611 		atomic_inc(&item->refs);
1612 		list_add_tail(&item->readdir_list, ins_list);
1613 		item = __btrfs_next_delayed_item(item);
1614 	}
1615 
1616 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1617 	while (item) {
1618 		atomic_inc(&item->refs);
1619 		list_add_tail(&item->readdir_list, del_list);
1620 		item = __btrfs_next_delayed_item(item);
1621 	}
1622 	mutex_unlock(&delayed_node->mutex);
1623 	/*
1624 	 * This delayed node is still cached in the btrfs inode, so refs
1625 	 * must be > 1 now, and we needn't check it is going to be freed
1626 	 * or not.
1627 	 *
1628 	 * Besides that, this function is used to read dir, we do not
1629 	 * insert/delete delayed items in this period. So we also needn't
1630 	 * requeue or dequeue this delayed node.
1631 	 */
1632 	atomic_dec(&delayed_node->refs);
1633 }
1634 
1635 void btrfs_put_delayed_items(struct list_head *ins_list,
1636 			     struct list_head *del_list)
1637 {
1638 	struct btrfs_delayed_item *curr, *next;
1639 
1640 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1641 		list_del(&curr->readdir_list);
1642 		if (atomic_dec_and_test(&curr->refs))
1643 			kfree(curr);
1644 	}
1645 
1646 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1647 		list_del(&curr->readdir_list);
1648 		if (atomic_dec_and_test(&curr->refs))
1649 			kfree(curr);
1650 	}
1651 }
1652 
1653 int btrfs_should_delete_dir_index(struct list_head *del_list,
1654 				  u64 index)
1655 {
1656 	struct btrfs_delayed_item *curr, *next;
1657 	int ret;
1658 
1659 	if (list_empty(del_list))
1660 		return 0;
1661 
1662 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1663 		if (curr->key.offset > index)
1664 			break;
1665 
1666 		list_del(&curr->readdir_list);
1667 		ret = (curr->key.offset == index);
1668 
1669 		if (atomic_dec_and_test(&curr->refs))
1670 			kfree(curr);
1671 
1672 		if (ret)
1673 			return 1;
1674 		else
1675 			continue;
1676 	}
1677 	return 0;
1678 }
1679 
1680 /*
1681  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1682  *
1683  */
1684 int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
1685 				    filldir_t filldir,
1686 				    struct list_head *ins_list)
1687 {
1688 	struct btrfs_dir_item *di;
1689 	struct btrfs_delayed_item *curr, *next;
1690 	struct btrfs_key location;
1691 	char *name;
1692 	int name_len;
1693 	int over = 0;
1694 	unsigned char d_type;
1695 
1696 	if (list_empty(ins_list))
1697 		return 0;
1698 
1699 	/*
1700 	 * Changing the data of the delayed item is impossible. So
1701 	 * we needn't lock them. And we have held i_mutex of the
1702 	 * directory, nobody can delete any directory indexes now.
1703 	 */
1704 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1705 		list_del(&curr->readdir_list);
1706 
1707 		if (curr->key.offset < filp->f_pos) {
1708 			if (atomic_dec_and_test(&curr->refs))
1709 				kfree(curr);
1710 			continue;
1711 		}
1712 
1713 		filp->f_pos = curr->key.offset;
1714 
1715 		di = (struct btrfs_dir_item *)curr->data;
1716 		name = (char *)(di + 1);
1717 		name_len = le16_to_cpu(di->name_len);
1718 
1719 		d_type = btrfs_filetype_table[di->type];
1720 		btrfs_disk_key_to_cpu(&location, &di->location);
1721 
1722 		over = filldir(dirent, name, name_len, curr->key.offset,
1723 			       location.objectid, d_type);
1724 
1725 		if (atomic_dec_and_test(&curr->refs))
1726 			kfree(curr);
1727 
1728 		if (over)
1729 			return 1;
1730 	}
1731 	return 0;
1732 }
1733 
1734 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1735 			 generation, 64);
1736 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1737 			 sequence, 64);
1738 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1739 			 transid, 64);
1740 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1741 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1742 			 nbytes, 64);
1743 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1744 			 block_group, 64);
1745 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1746 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1747 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1748 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1749 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1750 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1751 
1752 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1753 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1754 
1755 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1756 				  struct btrfs_inode_item *inode_item,
1757 				  struct inode *inode)
1758 {
1759 	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1760 	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1761 	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1762 	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1763 	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1764 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1765 	btrfs_set_stack_inode_generation(inode_item,
1766 					 BTRFS_I(inode)->generation);
1767 	btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1768 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1769 	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1770 	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1771 	btrfs_set_stack_inode_block_group(inode_item, 0);
1772 
1773 	btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1774 				     inode->i_atime.tv_sec);
1775 	btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1776 				      inode->i_atime.tv_nsec);
1777 
1778 	btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1779 				     inode->i_mtime.tv_sec);
1780 	btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1781 				      inode->i_mtime.tv_nsec);
1782 
1783 	btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1784 				     inode->i_ctime.tv_sec);
1785 	btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1786 				      inode->i_ctime.tv_nsec);
1787 }
1788 
1789 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1790 {
1791 	struct btrfs_delayed_node *delayed_node;
1792 	struct btrfs_inode_item *inode_item;
1793 	struct btrfs_timespec *tspec;
1794 
1795 	delayed_node = btrfs_get_delayed_node(inode);
1796 	if (!delayed_node)
1797 		return -ENOENT;
1798 
1799 	mutex_lock(&delayed_node->mutex);
1800 	if (!delayed_node->inode_dirty) {
1801 		mutex_unlock(&delayed_node->mutex);
1802 		btrfs_release_delayed_node(delayed_node);
1803 		return -ENOENT;
1804 	}
1805 
1806 	inode_item = &delayed_node->inode_item;
1807 
1808 	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1809 	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1810 	btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1811 	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1812 	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1813 	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1814 	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1815 	inode->i_version = btrfs_stack_inode_sequence(inode_item);
1816 	inode->i_rdev = 0;
1817 	*rdev = btrfs_stack_inode_rdev(inode_item);
1818 	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1819 
1820 	tspec = btrfs_inode_atime(inode_item);
1821 	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
1822 	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1823 
1824 	tspec = btrfs_inode_mtime(inode_item);
1825 	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
1826 	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1827 
1828 	tspec = btrfs_inode_ctime(inode_item);
1829 	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
1830 	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1831 
1832 	inode->i_generation = BTRFS_I(inode)->generation;
1833 	BTRFS_I(inode)->index_cnt = (u64)-1;
1834 
1835 	mutex_unlock(&delayed_node->mutex);
1836 	btrfs_release_delayed_node(delayed_node);
1837 	return 0;
1838 }
1839 
1840 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1841 			       struct btrfs_root *root, struct inode *inode)
1842 {
1843 	struct btrfs_delayed_node *delayed_node;
1844 	int ret = 0;
1845 
1846 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1847 	if (IS_ERR(delayed_node))
1848 		return PTR_ERR(delayed_node);
1849 
1850 	mutex_lock(&delayed_node->mutex);
1851 	if (delayed_node->inode_dirty) {
1852 		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1853 		goto release_node;
1854 	}
1855 
1856 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1857 						   delayed_node);
1858 	if (ret)
1859 		goto release_node;
1860 
1861 	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1862 	delayed_node->inode_dirty = 1;
1863 	delayed_node->count++;
1864 	atomic_inc(&root->fs_info->delayed_root->items);
1865 release_node:
1866 	mutex_unlock(&delayed_node->mutex);
1867 	btrfs_release_delayed_node(delayed_node);
1868 	return ret;
1869 }
1870 
1871 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1872 {
1873 	struct btrfs_root *root = delayed_node->root;
1874 	struct btrfs_delayed_item *curr_item, *prev_item;
1875 
1876 	mutex_lock(&delayed_node->mutex);
1877 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1878 	while (curr_item) {
1879 		btrfs_delayed_item_release_metadata(root, curr_item);
1880 		prev_item = curr_item;
1881 		curr_item = __btrfs_next_delayed_item(prev_item);
1882 		btrfs_release_delayed_item(prev_item);
1883 	}
1884 
1885 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1886 	while (curr_item) {
1887 		btrfs_delayed_item_release_metadata(root, curr_item);
1888 		prev_item = curr_item;
1889 		curr_item = __btrfs_next_delayed_item(prev_item);
1890 		btrfs_release_delayed_item(prev_item);
1891 	}
1892 
1893 	if (delayed_node->inode_dirty) {
1894 		btrfs_delayed_inode_release_metadata(root, delayed_node);
1895 		btrfs_release_delayed_inode(delayed_node);
1896 	}
1897 	mutex_unlock(&delayed_node->mutex);
1898 }
1899 
1900 void btrfs_kill_delayed_inode_items(struct inode *inode)
1901 {
1902 	struct btrfs_delayed_node *delayed_node;
1903 
1904 	delayed_node = btrfs_get_delayed_node(inode);
1905 	if (!delayed_node)
1906 		return;
1907 
1908 	__btrfs_kill_delayed_node(delayed_node);
1909 	btrfs_release_delayed_node(delayed_node);
1910 }
1911 
1912 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1913 {
1914 	u64 inode_id = 0;
1915 	struct btrfs_delayed_node *delayed_nodes[8];
1916 	int i, n;
1917 
1918 	while (1) {
1919 		spin_lock(&root->inode_lock);
1920 		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1921 					   (void **)delayed_nodes, inode_id,
1922 					   ARRAY_SIZE(delayed_nodes));
1923 		if (!n) {
1924 			spin_unlock(&root->inode_lock);
1925 			break;
1926 		}
1927 
1928 		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1929 
1930 		for (i = 0; i < n; i++)
1931 			atomic_inc(&delayed_nodes[i]->refs);
1932 		spin_unlock(&root->inode_lock);
1933 
1934 		for (i = 0; i < n; i++) {
1935 			__btrfs_kill_delayed_node(delayed_nodes[i]);
1936 			btrfs_release_delayed_node(delayed_nodes[i]);
1937 		}
1938 	}
1939 }
1940 
1941 void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
1942 {
1943 	struct btrfs_delayed_root *delayed_root;
1944 	struct btrfs_delayed_node *curr_node, *prev_node;
1945 
1946 	delayed_root = btrfs_get_delayed_root(root);
1947 
1948 	curr_node = btrfs_first_delayed_node(delayed_root);
1949 	while (curr_node) {
1950 		__btrfs_kill_delayed_node(curr_node);
1951 
1952 		prev_node = curr_node;
1953 		curr_node = btrfs_next_delayed_node(curr_node);
1954 		btrfs_release_delayed_node(prev_node);
1955 	}
1956 }
1957 
1958