xref: /openbmc/linux/fs/btrfs/delayed-inode.c (revision d0b73b48)
1 /*
2  * Copyright (C) 2011 Fujitsu.  All rights reserved.
3  * Written by Miao Xie <miaox@cn.fujitsu.com>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19 
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 
25 #define BTRFS_DELAYED_WRITEBACK		400
26 #define BTRFS_DELAYED_BACKGROUND	100
27 
28 static struct kmem_cache *delayed_node_cache;
29 
30 int __init btrfs_delayed_inode_init(void)
31 {
32 	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
33 					sizeof(struct btrfs_delayed_node),
34 					0,
35 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
36 					NULL);
37 	if (!delayed_node_cache)
38 		return -ENOMEM;
39 	return 0;
40 }
41 
42 void btrfs_delayed_inode_exit(void)
43 {
44 	if (delayed_node_cache)
45 		kmem_cache_destroy(delayed_node_cache);
46 }
47 
48 static inline void btrfs_init_delayed_node(
49 				struct btrfs_delayed_node *delayed_node,
50 				struct btrfs_root *root, u64 inode_id)
51 {
52 	delayed_node->root = root;
53 	delayed_node->inode_id = inode_id;
54 	atomic_set(&delayed_node->refs, 0);
55 	delayed_node->count = 0;
56 	delayed_node->in_list = 0;
57 	delayed_node->inode_dirty = 0;
58 	delayed_node->ins_root = RB_ROOT;
59 	delayed_node->del_root = RB_ROOT;
60 	mutex_init(&delayed_node->mutex);
61 	delayed_node->index_cnt = 0;
62 	INIT_LIST_HEAD(&delayed_node->n_list);
63 	INIT_LIST_HEAD(&delayed_node->p_list);
64 	delayed_node->bytes_reserved = 0;
65 	memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item));
66 }
67 
68 static inline int btrfs_is_continuous_delayed_item(
69 					struct btrfs_delayed_item *item1,
70 					struct btrfs_delayed_item *item2)
71 {
72 	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
73 	    item1->key.objectid == item2->key.objectid &&
74 	    item1->key.type == item2->key.type &&
75 	    item1->key.offset + 1 == item2->key.offset)
76 		return 1;
77 	return 0;
78 }
79 
80 static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
81 							struct btrfs_root *root)
82 {
83 	return root->fs_info->delayed_root;
84 }
85 
86 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
87 {
88 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
89 	struct btrfs_root *root = btrfs_inode->root;
90 	u64 ino = btrfs_ino(inode);
91 	struct btrfs_delayed_node *node;
92 
93 	node = ACCESS_ONCE(btrfs_inode->delayed_node);
94 	if (node) {
95 		atomic_inc(&node->refs);
96 		return node;
97 	}
98 
99 	spin_lock(&root->inode_lock);
100 	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
101 	if (node) {
102 		if (btrfs_inode->delayed_node) {
103 			atomic_inc(&node->refs);	/* can be accessed */
104 			BUG_ON(btrfs_inode->delayed_node != node);
105 			spin_unlock(&root->inode_lock);
106 			return node;
107 		}
108 		btrfs_inode->delayed_node = node;
109 		atomic_inc(&node->refs);	/* can be accessed */
110 		atomic_inc(&node->refs);	/* cached in the inode */
111 		spin_unlock(&root->inode_lock);
112 		return node;
113 	}
114 	spin_unlock(&root->inode_lock);
115 
116 	return NULL;
117 }
118 
119 /* Will return either the node or PTR_ERR(-ENOMEM) */
120 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
121 							struct inode *inode)
122 {
123 	struct btrfs_delayed_node *node;
124 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
125 	struct btrfs_root *root = btrfs_inode->root;
126 	u64 ino = btrfs_ino(inode);
127 	int ret;
128 
129 again:
130 	node = btrfs_get_delayed_node(inode);
131 	if (node)
132 		return node;
133 
134 	node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
135 	if (!node)
136 		return ERR_PTR(-ENOMEM);
137 	btrfs_init_delayed_node(node, root, ino);
138 
139 	atomic_inc(&node->refs);	/* cached in the btrfs inode */
140 	atomic_inc(&node->refs);	/* can be accessed */
141 
142 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
143 	if (ret) {
144 		kmem_cache_free(delayed_node_cache, node);
145 		return ERR_PTR(ret);
146 	}
147 
148 	spin_lock(&root->inode_lock);
149 	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
150 	if (ret == -EEXIST) {
151 		kmem_cache_free(delayed_node_cache, node);
152 		spin_unlock(&root->inode_lock);
153 		radix_tree_preload_end();
154 		goto again;
155 	}
156 	btrfs_inode->delayed_node = node;
157 	spin_unlock(&root->inode_lock);
158 	radix_tree_preload_end();
159 
160 	return node;
161 }
162 
163 /*
164  * Call it when holding delayed_node->mutex
165  *
166  * If mod = 1, add this node into the prepared list.
167  */
168 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
169 				     struct btrfs_delayed_node *node,
170 				     int mod)
171 {
172 	spin_lock(&root->lock);
173 	if (node->in_list) {
174 		if (!list_empty(&node->p_list))
175 			list_move_tail(&node->p_list, &root->prepare_list);
176 		else if (mod)
177 			list_add_tail(&node->p_list, &root->prepare_list);
178 	} else {
179 		list_add_tail(&node->n_list, &root->node_list);
180 		list_add_tail(&node->p_list, &root->prepare_list);
181 		atomic_inc(&node->refs);	/* inserted into list */
182 		root->nodes++;
183 		node->in_list = 1;
184 	}
185 	spin_unlock(&root->lock);
186 }
187 
188 /* Call it when holding delayed_node->mutex */
189 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
190 				       struct btrfs_delayed_node *node)
191 {
192 	spin_lock(&root->lock);
193 	if (node->in_list) {
194 		root->nodes--;
195 		atomic_dec(&node->refs);	/* not in the list */
196 		list_del_init(&node->n_list);
197 		if (!list_empty(&node->p_list))
198 			list_del_init(&node->p_list);
199 		node->in_list = 0;
200 	}
201 	spin_unlock(&root->lock);
202 }
203 
204 struct btrfs_delayed_node *btrfs_first_delayed_node(
205 			struct btrfs_delayed_root *delayed_root)
206 {
207 	struct list_head *p;
208 	struct btrfs_delayed_node *node = NULL;
209 
210 	spin_lock(&delayed_root->lock);
211 	if (list_empty(&delayed_root->node_list))
212 		goto out;
213 
214 	p = delayed_root->node_list.next;
215 	node = list_entry(p, struct btrfs_delayed_node, n_list);
216 	atomic_inc(&node->refs);
217 out:
218 	spin_unlock(&delayed_root->lock);
219 
220 	return node;
221 }
222 
223 struct btrfs_delayed_node *btrfs_next_delayed_node(
224 						struct btrfs_delayed_node *node)
225 {
226 	struct btrfs_delayed_root *delayed_root;
227 	struct list_head *p;
228 	struct btrfs_delayed_node *next = NULL;
229 
230 	delayed_root = node->root->fs_info->delayed_root;
231 	spin_lock(&delayed_root->lock);
232 	if (!node->in_list) {	/* not in the list */
233 		if (list_empty(&delayed_root->node_list))
234 			goto out;
235 		p = delayed_root->node_list.next;
236 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
237 		goto out;
238 	else
239 		p = node->n_list.next;
240 
241 	next = list_entry(p, struct btrfs_delayed_node, n_list);
242 	atomic_inc(&next->refs);
243 out:
244 	spin_unlock(&delayed_root->lock);
245 
246 	return next;
247 }
248 
249 static void __btrfs_release_delayed_node(
250 				struct btrfs_delayed_node *delayed_node,
251 				int mod)
252 {
253 	struct btrfs_delayed_root *delayed_root;
254 
255 	if (!delayed_node)
256 		return;
257 
258 	delayed_root = delayed_node->root->fs_info->delayed_root;
259 
260 	mutex_lock(&delayed_node->mutex);
261 	if (delayed_node->count)
262 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
263 	else
264 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
265 	mutex_unlock(&delayed_node->mutex);
266 
267 	if (atomic_dec_and_test(&delayed_node->refs)) {
268 		struct btrfs_root *root = delayed_node->root;
269 		spin_lock(&root->inode_lock);
270 		if (atomic_read(&delayed_node->refs) == 0) {
271 			radix_tree_delete(&root->delayed_nodes_tree,
272 					  delayed_node->inode_id);
273 			kmem_cache_free(delayed_node_cache, delayed_node);
274 		}
275 		spin_unlock(&root->inode_lock);
276 	}
277 }
278 
279 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
280 {
281 	__btrfs_release_delayed_node(node, 0);
282 }
283 
284 struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
285 					struct btrfs_delayed_root *delayed_root)
286 {
287 	struct list_head *p;
288 	struct btrfs_delayed_node *node = NULL;
289 
290 	spin_lock(&delayed_root->lock);
291 	if (list_empty(&delayed_root->prepare_list))
292 		goto out;
293 
294 	p = delayed_root->prepare_list.next;
295 	list_del_init(p);
296 	node = list_entry(p, struct btrfs_delayed_node, p_list);
297 	atomic_inc(&node->refs);
298 out:
299 	spin_unlock(&delayed_root->lock);
300 
301 	return node;
302 }
303 
304 static inline void btrfs_release_prepared_delayed_node(
305 					struct btrfs_delayed_node *node)
306 {
307 	__btrfs_release_delayed_node(node, 1);
308 }
309 
310 struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
311 {
312 	struct btrfs_delayed_item *item;
313 	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
314 	if (item) {
315 		item->data_len = data_len;
316 		item->ins_or_del = 0;
317 		item->bytes_reserved = 0;
318 		item->delayed_node = NULL;
319 		atomic_set(&item->refs, 1);
320 	}
321 	return item;
322 }
323 
324 /*
325  * __btrfs_lookup_delayed_item - look up the delayed item by key
326  * @delayed_node: pointer to the delayed node
327  * @key:	  the key to look up
328  * @prev:	  used to store the prev item if the right item isn't found
329  * @next:	  used to store the next item if the right item isn't found
330  *
331  * Note: if we don't find the right item, we will return the prev item and
332  * the next item.
333  */
334 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
335 				struct rb_root *root,
336 				struct btrfs_key *key,
337 				struct btrfs_delayed_item **prev,
338 				struct btrfs_delayed_item **next)
339 {
340 	struct rb_node *node, *prev_node = NULL;
341 	struct btrfs_delayed_item *delayed_item = NULL;
342 	int ret = 0;
343 
344 	node = root->rb_node;
345 
346 	while (node) {
347 		delayed_item = rb_entry(node, struct btrfs_delayed_item,
348 					rb_node);
349 		prev_node = node;
350 		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
351 		if (ret < 0)
352 			node = node->rb_right;
353 		else if (ret > 0)
354 			node = node->rb_left;
355 		else
356 			return delayed_item;
357 	}
358 
359 	if (prev) {
360 		if (!prev_node)
361 			*prev = NULL;
362 		else if (ret < 0)
363 			*prev = delayed_item;
364 		else if ((node = rb_prev(prev_node)) != NULL) {
365 			*prev = rb_entry(node, struct btrfs_delayed_item,
366 					 rb_node);
367 		} else
368 			*prev = NULL;
369 	}
370 
371 	if (next) {
372 		if (!prev_node)
373 			*next = NULL;
374 		else if (ret > 0)
375 			*next = delayed_item;
376 		else if ((node = rb_next(prev_node)) != NULL) {
377 			*next = rb_entry(node, struct btrfs_delayed_item,
378 					 rb_node);
379 		} else
380 			*next = NULL;
381 	}
382 	return NULL;
383 }
384 
385 struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
386 					struct btrfs_delayed_node *delayed_node,
387 					struct btrfs_key *key)
388 {
389 	struct btrfs_delayed_item *item;
390 
391 	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
392 					   NULL, NULL);
393 	return item;
394 }
395 
396 struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
397 					struct btrfs_delayed_node *delayed_node,
398 					struct btrfs_key *key)
399 {
400 	struct btrfs_delayed_item *item;
401 
402 	item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
403 					   NULL, NULL);
404 	return item;
405 }
406 
407 struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
408 					struct btrfs_delayed_node *delayed_node,
409 					struct btrfs_key *key)
410 {
411 	struct btrfs_delayed_item *item, *next;
412 
413 	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
414 					   NULL, &next);
415 	if (!item)
416 		item = next;
417 
418 	return item;
419 }
420 
421 struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
422 					struct btrfs_delayed_node *delayed_node,
423 					struct btrfs_key *key)
424 {
425 	struct btrfs_delayed_item *item, *next;
426 
427 	item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
428 					   NULL, &next);
429 	if (!item)
430 		item = next;
431 
432 	return item;
433 }
434 
435 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
436 				    struct btrfs_delayed_item *ins,
437 				    int action)
438 {
439 	struct rb_node **p, *node;
440 	struct rb_node *parent_node = NULL;
441 	struct rb_root *root;
442 	struct btrfs_delayed_item *item;
443 	int cmp;
444 
445 	if (action == BTRFS_DELAYED_INSERTION_ITEM)
446 		root = &delayed_node->ins_root;
447 	else if (action == BTRFS_DELAYED_DELETION_ITEM)
448 		root = &delayed_node->del_root;
449 	else
450 		BUG();
451 	p = &root->rb_node;
452 	node = &ins->rb_node;
453 
454 	while (*p) {
455 		parent_node = *p;
456 		item = rb_entry(parent_node, struct btrfs_delayed_item,
457 				 rb_node);
458 
459 		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
460 		if (cmp < 0)
461 			p = &(*p)->rb_right;
462 		else if (cmp > 0)
463 			p = &(*p)->rb_left;
464 		else
465 			return -EEXIST;
466 	}
467 
468 	rb_link_node(node, parent_node, p);
469 	rb_insert_color(node, root);
470 	ins->delayed_node = delayed_node;
471 	ins->ins_or_del = action;
472 
473 	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
474 	    action == BTRFS_DELAYED_INSERTION_ITEM &&
475 	    ins->key.offset >= delayed_node->index_cnt)
476 			delayed_node->index_cnt = ins->key.offset + 1;
477 
478 	delayed_node->count++;
479 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
480 	return 0;
481 }
482 
483 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
484 					      struct btrfs_delayed_item *item)
485 {
486 	return __btrfs_add_delayed_item(node, item,
487 					BTRFS_DELAYED_INSERTION_ITEM);
488 }
489 
490 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
491 					     struct btrfs_delayed_item *item)
492 {
493 	return __btrfs_add_delayed_item(node, item,
494 					BTRFS_DELAYED_DELETION_ITEM);
495 }
496 
497 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
498 {
499 	struct rb_root *root;
500 	struct btrfs_delayed_root *delayed_root;
501 
502 	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
503 
504 	BUG_ON(!delayed_root);
505 	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
506 	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
507 
508 	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
509 		root = &delayed_item->delayed_node->ins_root;
510 	else
511 		root = &delayed_item->delayed_node->del_root;
512 
513 	rb_erase(&delayed_item->rb_node, root);
514 	delayed_item->delayed_node->count--;
515 	if (atomic_dec_return(&delayed_root->items) <
516 	    BTRFS_DELAYED_BACKGROUND &&
517 	    waitqueue_active(&delayed_root->wait))
518 		wake_up(&delayed_root->wait);
519 }
520 
521 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
522 {
523 	if (item) {
524 		__btrfs_remove_delayed_item(item);
525 		if (atomic_dec_and_test(&item->refs))
526 			kfree(item);
527 	}
528 }
529 
530 struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
531 					struct btrfs_delayed_node *delayed_node)
532 {
533 	struct rb_node *p;
534 	struct btrfs_delayed_item *item = NULL;
535 
536 	p = rb_first(&delayed_node->ins_root);
537 	if (p)
538 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
539 
540 	return item;
541 }
542 
543 struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
544 					struct btrfs_delayed_node *delayed_node)
545 {
546 	struct rb_node *p;
547 	struct btrfs_delayed_item *item = NULL;
548 
549 	p = rb_first(&delayed_node->del_root);
550 	if (p)
551 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
552 
553 	return item;
554 }
555 
556 struct btrfs_delayed_item *__btrfs_next_delayed_item(
557 						struct btrfs_delayed_item *item)
558 {
559 	struct rb_node *p;
560 	struct btrfs_delayed_item *next = NULL;
561 
562 	p = rb_next(&item->rb_node);
563 	if (p)
564 		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
565 
566 	return next;
567 }
568 
569 static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
570 						   u64 root_id)
571 {
572 	struct btrfs_key root_key;
573 
574 	if (root->objectid == root_id)
575 		return root;
576 
577 	root_key.objectid = root_id;
578 	root_key.type = BTRFS_ROOT_ITEM_KEY;
579 	root_key.offset = (u64)-1;
580 	return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
581 }
582 
583 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
584 					       struct btrfs_root *root,
585 					       struct btrfs_delayed_item *item)
586 {
587 	struct btrfs_block_rsv *src_rsv;
588 	struct btrfs_block_rsv *dst_rsv;
589 	u64 num_bytes;
590 	int ret;
591 
592 	if (!trans->bytes_reserved)
593 		return 0;
594 
595 	src_rsv = trans->block_rsv;
596 	dst_rsv = &root->fs_info->delayed_block_rsv;
597 
598 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
599 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
600 	if (!ret) {
601 		trace_btrfs_space_reservation(root->fs_info, "delayed_item",
602 					      item->key.objectid,
603 					      num_bytes, 1);
604 		item->bytes_reserved = num_bytes;
605 	}
606 
607 	return ret;
608 }
609 
610 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
611 						struct btrfs_delayed_item *item)
612 {
613 	struct btrfs_block_rsv *rsv;
614 
615 	if (!item->bytes_reserved)
616 		return;
617 
618 	rsv = &root->fs_info->delayed_block_rsv;
619 	trace_btrfs_space_reservation(root->fs_info, "delayed_item",
620 				      item->key.objectid, item->bytes_reserved,
621 				      0);
622 	btrfs_block_rsv_release(root, rsv,
623 				item->bytes_reserved);
624 }
625 
626 static int btrfs_delayed_inode_reserve_metadata(
627 					struct btrfs_trans_handle *trans,
628 					struct btrfs_root *root,
629 					struct inode *inode,
630 					struct btrfs_delayed_node *node)
631 {
632 	struct btrfs_block_rsv *src_rsv;
633 	struct btrfs_block_rsv *dst_rsv;
634 	u64 num_bytes;
635 	int ret;
636 	bool release = false;
637 
638 	src_rsv = trans->block_rsv;
639 	dst_rsv = &root->fs_info->delayed_block_rsv;
640 
641 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
642 
643 	/*
644 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
645 	 * which doesn't reserve space for speed.  This is a problem since we
646 	 * still need to reserve space for this update, so try to reserve the
647 	 * space.
648 	 *
649 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
650 	 * we're accounted for.
651 	 */
652 	if (!src_rsv || (!trans->bytes_reserved &&
653 			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
654 		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
655 					  BTRFS_RESERVE_NO_FLUSH);
656 		/*
657 		 * Since we're under a transaction reserve_metadata_bytes could
658 		 * try to commit the transaction which will make it return
659 		 * EAGAIN to make us stop the transaction we have, so return
660 		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
661 		 */
662 		if (ret == -EAGAIN)
663 			ret = -ENOSPC;
664 		if (!ret) {
665 			node->bytes_reserved = num_bytes;
666 			trace_btrfs_space_reservation(root->fs_info,
667 						      "delayed_inode",
668 						      btrfs_ino(inode),
669 						      num_bytes, 1);
670 		}
671 		return ret;
672 	} else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
673 		spin_lock(&BTRFS_I(inode)->lock);
674 		if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
675 				       &BTRFS_I(inode)->runtime_flags)) {
676 			spin_unlock(&BTRFS_I(inode)->lock);
677 			release = true;
678 			goto migrate;
679 		}
680 		spin_unlock(&BTRFS_I(inode)->lock);
681 
682 		/* Ok we didn't have space pre-reserved.  This shouldn't happen
683 		 * too often but it can happen if we do delalloc to an existing
684 		 * inode which gets dirtied because of the time update, and then
685 		 * isn't touched again until after the transaction commits and
686 		 * then we try to write out the data.  First try to be nice and
687 		 * reserve something strictly for us.  If not be a pain and try
688 		 * to steal from the delalloc block rsv.
689 		 */
690 		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
691 					  BTRFS_RESERVE_NO_FLUSH);
692 		if (!ret)
693 			goto out;
694 
695 		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
696 		if (!ret)
697 			goto out;
698 
699 		/*
700 		 * Ok this is a problem, let's just steal from the global rsv
701 		 * since this really shouldn't happen that often.
702 		 */
703 		WARN_ON(1);
704 		ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
705 					      dst_rsv, num_bytes);
706 		goto out;
707 	}
708 
709 migrate:
710 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
711 
712 out:
713 	/*
714 	 * Migrate only takes a reservation, it doesn't touch the size of the
715 	 * block_rsv.  This is to simplify people who don't normally have things
716 	 * migrated from their block rsv.  If they go to release their
717 	 * reservation, that will decrease the size as well, so if migrate
718 	 * reduced size we'd end up with a negative size.  But for the
719 	 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
720 	 * but we could in fact do this reserve/migrate dance several times
721 	 * between the time we did the original reservation and we'd clean it
722 	 * up.  So to take care of this, release the space for the meta
723 	 * reservation here.  I think it may be time for a documentation page on
724 	 * how block rsvs. work.
725 	 */
726 	if (!ret) {
727 		trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
728 					      btrfs_ino(inode), num_bytes, 1);
729 		node->bytes_reserved = num_bytes;
730 	}
731 
732 	if (release) {
733 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
734 					      btrfs_ino(inode), num_bytes, 0);
735 		btrfs_block_rsv_release(root, src_rsv, num_bytes);
736 	}
737 
738 	return ret;
739 }
740 
741 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
742 						struct btrfs_delayed_node *node)
743 {
744 	struct btrfs_block_rsv *rsv;
745 
746 	if (!node->bytes_reserved)
747 		return;
748 
749 	rsv = &root->fs_info->delayed_block_rsv;
750 	trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
751 				      node->inode_id, node->bytes_reserved, 0);
752 	btrfs_block_rsv_release(root, rsv,
753 				node->bytes_reserved);
754 	node->bytes_reserved = 0;
755 }
756 
757 /*
758  * This helper will insert some continuous items into the same leaf according
759  * to the free space of the leaf.
760  */
761 static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
762 				struct btrfs_root *root,
763 				struct btrfs_path *path,
764 				struct btrfs_delayed_item *item)
765 {
766 	struct btrfs_delayed_item *curr, *next;
767 	int free_space;
768 	int total_data_size = 0, total_size = 0;
769 	struct extent_buffer *leaf;
770 	char *data_ptr;
771 	struct btrfs_key *keys;
772 	u32 *data_size;
773 	struct list_head head;
774 	int slot;
775 	int nitems;
776 	int i;
777 	int ret = 0;
778 
779 	BUG_ON(!path->nodes[0]);
780 
781 	leaf = path->nodes[0];
782 	free_space = btrfs_leaf_free_space(root, leaf);
783 	INIT_LIST_HEAD(&head);
784 
785 	next = item;
786 	nitems = 0;
787 
788 	/*
789 	 * count the number of the continuous items that we can insert in batch
790 	 */
791 	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
792 	       free_space) {
793 		total_data_size += next->data_len;
794 		total_size += next->data_len + sizeof(struct btrfs_item);
795 		list_add_tail(&next->tree_list, &head);
796 		nitems++;
797 
798 		curr = next;
799 		next = __btrfs_next_delayed_item(curr);
800 		if (!next)
801 			break;
802 
803 		if (!btrfs_is_continuous_delayed_item(curr, next))
804 			break;
805 	}
806 
807 	if (!nitems) {
808 		ret = 0;
809 		goto out;
810 	}
811 
812 	/*
813 	 * we need allocate some memory space, but it might cause the task
814 	 * to sleep, so we set all locked nodes in the path to blocking locks
815 	 * first.
816 	 */
817 	btrfs_set_path_blocking(path);
818 
819 	keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
820 	if (!keys) {
821 		ret = -ENOMEM;
822 		goto out;
823 	}
824 
825 	data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
826 	if (!data_size) {
827 		ret = -ENOMEM;
828 		goto error;
829 	}
830 
831 	/* get keys of all the delayed items */
832 	i = 0;
833 	list_for_each_entry(next, &head, tree_list) {
834 		keys[i] = next->key;
835 		data_size[i] = next->data_len;
836 		i++;
837 	}
838 
839 	/* reset all the locked nodes in the patch to spinning locks. */
840 	btrfs_clear_path_blocking(path, NULL, 0);
841 
842 	/* insert the keys of the items */
843 	setup_items_for_insert(trans, root, path, keys, data_size,
844 			       total_data_size, total_size, nitems);
845 
846 	/* insert the dir index items */
847 	slot = path->slots[0];
848 	list_for_each_entry_safe(curr, next, &head, tree_list) {
849 		data_ptr = btrfs_item_ptr(leaf, slot, char);
850 		write_extent_buffer(leaf, &curr->data,
851 				    (unsigned long)data_ptr,
852 				    curr->data_len);
853 		slot++;
854 
855 		btrfs_delayed_item_release_metadata(root, curr);
856 
857 		list_del(&curr->tree_list);
858 		btrfs_release_delayed_item(curr);
859 	}
860 
861 error:
862 	kfree(data_size);
863 	kfree(keys);
864 out:
865 	return ret;
866 }
867 
868 /*
869  * This helper can just do simple insertion that needn't extend item for new
870  * data, such as directory name index insertion, inode insertion.
871  */
872 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
873 				     struct btrfs_root *root,
874 				     struct btrfs_path *path,
875 				     struct btrfs_delayed_item *delayed_item)
876 {
877 	struct extent_buffer *leaf;
878 	struct btrfs_item *item;
879 	char *ptr;
880 	int ret;
881 
882 	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
883 				      delayed_item->data_len);
884 	if (ret < 0 && ret != -EEXIST)
885 		return ret;
886 
887 	leaf = path->nodes[0];
888 
889 	item = btrfs_item_nr(leaf, path->slots[0]);
890 	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
891 
892 	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
893 			    delayed_item->data_len);
894 	btrfs_mark_buffer_dirty(leaf);
895 
896 	btrfs_delayed_item_release_metadata(root, delayed_item);
897 	return 0;
898 }
899 
900 /*
901  * we insert an item first, then if there are some continuous items, we try
902  * to insert those items into the same leaf.
903  */
904 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
905 				      struct btrfs_path *path,
906 				      struct btrfs_root *root,
907 				      struct btrfs_delayed_node *node)
908 {
909 	struct btrfs_delayed_item *curr, *prev;
910 	int ret = 0;
911 
912 do_again:
913 	mutex_lock(&node->mutex);
914 	curr = __btrfs_first_delayed_insertion_item(node);
915 	if (!curr)
916 		goto insert_end;
917 
918 	ret = btrfs_insert_delayed_item(trans, root, path, curr);
919 	if (ret < 0) {
920 		btrfs_release_path(path);
921 		goto insert_end;
922 	}
923 
924 	prev = curr;
925 	curr = __btrfs_next_delayed_item(prev);
926 	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
927 		/* insert the continuous items into the same leaf */
928 		path->slots[0]++;
929 		btrfs_batch_insert_items(trans, root, path, curr);
930 	}
931 	btrfs_release_delayed_item(prev);
932 	btrfs_mark_buffer_dirty(path->nodes[0]);
933 
934 	btrfs_release_path(path);
935 	mutex_unlock(&node->mutex);
936 	goto do_again;
937 
938 insert_end:
939 	mutex_unlock(&node->mutex);
940 	return ret;
941 }
942 
943 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
944 				    struct btrfs_root *root,
945 				    struct btrfs_path *path,
946 				    struct btrfs_delayed_item *item)
947 {
948 	struct btrfs_delayed_item *curr, *next;
949 	struct extent_buffer *leaf;
950 	struct btrfs_key key;
951 	struct list_head head;
952 	int nitems, i, last_item;
953 	int ret = 0;
954 
955 	BUG_ON(!path->nodes[0]);
956 
957 	leaf = path->nodes[0];
958 
959 	i = path->slots[0];
960 	last_item = btrfs_header_nritems(leaf) - 1;
961 	if (i > last_item)
962 		return -ENOENT;	/* FIXME: Is errno suitable? */
963 
964 	next = item;
965 	INIT_LIST_HEAD(&head);
966 	btrfs_item_key_to_cpu(leaf, &key, i);
967 	nitems = 0;
968 	/*
969 	 * count the number of the dir index items that we can delete in batch
970 	 */
971 	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
972 		list_add_tail(&next->tree_list, &head);
973 		nitems++;
974 
975 		curr = next;
976 		next = __btrfs_next_delayed_item(curr);
977 		if (!next)
978 			break;
979 
980 		if (!btrfs_is_continuous_delayed_item(curr, next))
981 			break;
982 
983 		i++;
984 		if (i > last_item)
985 			break;
986 		btrfs_item_key_to_cpu(leaf, &key, i);
987 	}
988 
989 	if (!nitems)
990 		return 0;
991 
992 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
993 	if (ret)
994 		goto out;
995 
996 	list_for_each_entry_safe(curr, next, &head, tree_list) {
997 		btrfs_delayed_item_release_metadata(root, curr);
998 		list_del(&curr->tree_list);
999 		btrfs_release_delayed_item(curr);
1000 	}
1001 
1002 out:
1003 	return ret;
1004 }
1005 
1006 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
1007 				      struct btrfs_path *path,
1008 				      struct btrfs_root *root,
1009 				      struct btrfs_delayed_node *node)
1010 {
1011 	struct btrfs_delayed_item *curr, *prev;
1012 	int ret = 0;
1013 
1014 do_again:
1015 	mutex_lock(&node->mutex);
1016 	curr = __btrfs_first_delayed_deletion_item(node);
1017 	if (!curr)
1018 		goto delete_fail;
1019 
1020 	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
1021 	if (ret < 0)
1022 		goto delete_fail;
1023 	else if (ret > 0) {
1024 		/*
1025 		 * can't find the item which the node points to, so this node
1026 		 * is invalid, just drop it.
1027 		 */
1028 		prev = curr;
1029 		curr = __btrfs_next_delayed_item(prev);
1030 		btrfs_release_delayed_item(prev);
1031 		ret = 0;
1032 		btrfs_release_path(path);
1033 		if (curr) {
1034 			mutex_unlock(&node->mutex);
1035 			goto do_again;
1036 		} else
1037 			goto delete_fail;
1038 	}
1039 
1040 	btrfs_batch_delete_items(trans, root, path, curr);
1041 	btrfs_release_path(path);
1042 	mutex_unlock(&node->mutex);
1043 	goto do_again;
1044 
1045 delete_fail:
1046 	btrfs_release_path(path);
1047 	mutex_unlock(&node->mutex);
1048 	return ret;
1049 }
1050 
1051 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
1052 {
1053 	struct btrfs_delayed_root *delayed_root;
1054 
1055 	if (delayed_node && delayed_node->inode_dirty) {
1056 		BUG_ON(!delayed_node->root);
1057 		delayed_node->inode_dirty = 0;
1058 		delayed_node->count--;
1059 
1060 		delayed_root = delayed_node->root->fs_info->delayed_root;
1061 		if (atomic_dec_return(&delayed_root->items) <
1062 		    BTRFS_DELAYED_BACKGROUND &&
1063 		    waitqueue_active(&delayed_root->wait))
1064 			wake_up(&delayed_root->wait);
1065 	}
1066 }
1067 
1068 static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1069 				      struct btrfs_root *root,
1070 				      struct btrfs_path *path,
1071 				      struct btrfs_delayed_node *node)
1072 {
1073 	struct btrfs_key key;
1074 	struct btrfs_inode_item *inode_item;
1075 	struct extent_buffer *leaf;
1076 	int ret;
1077 
1078 	mutex_lock(&node->mutex);
1079 	if (!node->inode_dirty) {
1080 		mutex_unlock(&node->mutex);
1081 		return 0;
1082 	}
1083 
1084 	key.objectid = node->inode_id;
1085 	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
1086 	key.offset = 0;
1087 	ret = btrfs_lookup_inode(trans, root, path, &key, 1);
1088 	if (ret > 0) {
1089 		btrfs_release_path(path);
1090 		mutex_unlock(&node->mutex);
1091 		return -ENOENT;
1092 	} else if (ret < 0) {
1093 		mutex_unlock(&node->mutex);
1094 		return ret;
1095 	}
1096 
1097 	btrfs_unlock_up_safe(path, 1);
1098 	leaf = path->nodes[0];
1099 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1100 				    struct btrfs_inode_item);
1101 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1102 			    sizeof(struct btrfs_inode_item));
1103 	btrfs_mark_buffer_dirty(leaf);
1104 	btrfs_release_path(path);
1105 
1106 	btrfs_delayed_inode_release_metadata(root, node);
1107 	btrfs_release_delayed_inode(node);
1108 	mutex_unlock(&node->mutex);
1109 
1110 	return 0;
1111 }
1112 
1113 /*
1114  * Called when committing the transaction.
1115  * Returns 0 on success.
1116  * Returns < 0 on error and returns with an aborted transaction with any
1117  * outstanding delayed items cleaned up.
1118  */
1119 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1120 				     struct btrfs_root *root, int nr)
1121 {
1122 	struct btrfs_root *curr_root = root;
1123 	struct btrfs_delayed_root *delayed_root;
1124 	struct btrfs_delayed_node *curr_node, *prev_node;
1125 	struct btrfs_path *path;
1126 	struct btrfs_block_rsv *block_rsv;
1127 	int ret = 0;
1128 	bool count = (nr > 0);
1129 
1130 	if (trans->aborted)
1131 		return -EIO;
1132 
1133 	path = btrfs_alloc_path();
1134 	if (!path)
1135 		return -ENOMEM;
1136 	path->leave_spinning = 1;
1137 
1138 	block_rsv = trans->block_rsv;
1139 	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1140 
1141 	delayed_root = btrfs_get_delayed_root(root);
1142 
1143 	curr_node = btrfs_first_delayed_node(delayed_root);
1144 	while (curr_node && (!count || (count && nr--))) {
1145 		curr_root = curr_node->root;
1146 		ret = btrfs_insert_delayed_items(trans, path, curr_root,
1147 						 curr_node);
1148 		if (!ret)
1149 			ret = btrfs_delete_delayed_items(trans, path,
1150 						curr_root, curr_node);
1151 		if (!ret)
1152 			ret = btrfs_update_delayed_inode(trans, curr_root,
1153 						path, curr_node);
1154 		if (ret) {
1155 			btrfs_release_delayed_node(curr_node);
1156 			curr_node = NULL;
1157 			btrfs_abort_transaction(trans, root, ret);
1158 			break;
1159 		}
1160 
1161 		prev_node = curr_node;
1162 		curr_node = btrfs_next_delayed_node(curr_node);
1163 		btrfs_release_delayed_node(prev_node);
1164 	}
1165 
1166 	if (curr_node)
1167 		btrfs_release_delayed_node(curr_node);
1168 	btrfs_free_path(path);
1169 	trans->block_rsv = block_rsv;
1170 
1171 	return ret;
1172 }
1173 
1174 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1175 			    struct btrfs_root *root)
1176 {
1177 	return __btrfs_run_delayed_items(trans, root, -1);
1178 }
1179 
1180 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1181 			       struct btrfs_root *root, int nr)
1182 {
1183 	return __btrfs_run_delayed_items(trans, root, nr);
1184 }
1185 
1186 static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1187 					      struct btrfs_delayed_node *node)
1188 {
1189 	struct btrfs_path *path;
1190 	struct btrfs_block_rsv *block_rsv;
1191 	int ret;
1192 
1193 	path = btrfs_alloc_path();
1194 	if (!path)
1195 		return -ENOMEM;
1196 	path->leave_spinning = 1;
1197 
1198 	block_rsv = trans->block_rsv;
1199 	trans->block_rsv = &node->root->fs_info->delayed_block_rsv;
1200 
1201 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1202 	if (!ret)
1203 		ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1204 	if (!ret)
1205 		ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1206 	btrfs_free_path(path);
1207 
1208 	trans->block_rsv = block_rsv;
1209 	return ret;
1210 }
1211 
1212 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1213 				     struct inode *inode)
1214 {
1215 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1216 	int ret;
1217 
1218 	if (!delayed_node)
1219 		return 0;
1220 
1221 	mutex_lock(&delayed_node->mutex);
1222 	if (!delayed_node->count) {
1223 		mutex_unlock(&delayed_node->mutex);
1224 		btrfs_release_delayed_node(delayed_node);
1225 		return 0;
1226 	}
1227 	mutex_unlock(&delayed_node->mutex);
1228 
1229 	ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
1230 	btrfs_release_delayed_node(delayed_node);
1231 	return ret;
1232 }
1233 
1234 void btrfs_remove_delayed_node(struct inode *inode)
1235 {
1236 	struct btrfs_delayed_node *delayed_node;
1237 
1238 	delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1239 	if (!delayed_node)
1240 		return;
1241 
1242 	BTRFS_I(inode)->delayed_node = NULL;
1243 	btrfs_release_delayed_node(delayed_node);
1244 }
1245 
1246 struct btrfs_async_delayed_node {
1247 	struct btrfs_root *root;
1248 	struct btrfs_delayed_node *delayed_node;
1249 	struct btrfs_work work;
1250 };
1251 
1252 static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
1253 {
1254 	struct btrfs_async_delayed_node *async_node;
1255 	struct btrfs_trans_handle *trans;
1256 	struct btrfs_path *path;
1257 	struct btrfs_delayed_node *delayed_node = NULL;
1258 	struct btrfs_root *root;
1259 	struct btrfs_block_rsv *block_rsv;
1260 	int need_requeue = 0;
1261 	int ret;
1262 
1263 	async_node = container_of(work, struct btrfs_async_delayed_node, work);
1264 
1265 	path = btrfs_alloc_path();
1266 	if (!path)
1267 		goto out;
1268 	path->leave_spinning = 1;
1269 
1270 	delayed_node = async_node->delayed_node;
1271 	root = delayed_node->root;
1272 
1273 	trans = btrfs_join_transaction(root);
1274 	if (IS_ERR(trans))
1275 		goto free_path;
1276 
1277 	block_rsv = trans->block_rsv;
1278 	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1279 
1280 	ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
1281 	if (!ret)
1282 		ret = btrfs_delete_delayed_items(trans, path, root,
1283 						 delayed_node);
1284 
1285 	if (!ret)
1286 		btrfs_update_delayed_inode(trans, root, path, delayed_node);
1287 
1288 	/*
1289 	 * Maybe new delayed items have been inserted, so we need requeue
1290 	 * the work. Besides that, we must dequeue the empty delayed nodes
1291 	 * to avoid the race between delayed items balance and the worker.
1292 	 * The race like this:
1293 	 * 	Task1				Worker thread
1294 	 * 					count == 0, needn't requeue
1295 	 * 					  also needn't insert the
1296 	 * 					  delayed node into prepare
1297 	 * 					  list again.
1298 	 * 	add lots of delayed items
1299 	 * 	queue the delayed node
1300 	 * 	  already in the list,
1301 	 * 	  and not in the prepare
1302 	 * 	  list, it means the delayed
1303 	 * 	  node is being dealt with
1304 	 * 	  by the worker.
1305 	 * 	do delayed items balance
1306 	 * 	  the delayed node is being
1307 	 * 	  dealt with by the worker
1308 	 * 	  now, just wait.
1309 	 * 	  				the worker goto idle.
1310 	 * Task1 will sleep until the transaction is commited.
1311 	 */
1312 	mutex_lock(&delayed_node->mutex);
1313 	if (delayed_node->count)
1314 		need_requeue = 1;
1315 	else
1316 		btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
1317 					   delayed_node);
1318 	mutex_unlock(&delayed_node->mutex);
1319 
1320 	trans->block_rsv = block_rsv;
1321 	btrfs_end_transaction_dmeta(trans, root);
1322 	btrfs_btree_balance_dirty_nodelay(root);
1323 free_path:
1324 	btrfs_free_path(path);
1325 out:
1326 	if (need_requeue)
1327 		btrfs_requeue_work(&async_node->work);
1328 	else {
1329 		btrfs_release_prepared_delayed_node(delayed_node);
1330 		kfree(async_node);
1331 	}
1332 }
1333 
1334 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1335 				     struct btrfs_root *root, int all)
1336 {
1337 	struct btrfs_async_delayed_node *async_node;
1338 	struct btrfs_delayed_node *curr;
1339 	int count = 0;
1340 
1341 again:
1342 	curr = btrfs_first_prepared_delayed_node(delayed_root);
1343 	if (!curr)
1344 		return 0;
1345 
1346 	async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
1347 	if (!async_node) {
1348 		btrfs_release_prepared_delayed_node(curr);
1349 		return -ENOMEM;
1350 	}
1351 
1352 	async_node->root = root;
1353 	async_node->delayed_node = curr;
1354 
1355 	async_node->work.func = btrfs_async_run_delayed_node_done;
1356 	async_node->work.flags = 0;
1357 
1358 	btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
1359 	count++;
1360 
1361 	if (all || count < 4)
1362 		goto again;
1363 
1364 	return 0;
1365 }
1366 
1367 void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1368 {
1369 	struct btrfs_delayed_root *delayed_root;
1370 	delayed_root = btrfs_get_delayed_root(root);
1371 	WARN_ON(btrfs_first_delayed_node(delayed_root));
1372 }
1373 
1374 void btrfs_balance_delayed_items(struct btrfs_root *root)
1375 {
1376 	struct btrfs_delayed_root *delayed_root;
1377 
1378 	delayed_root = btrfs_get_delayed_root(root);
1379 
1380 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1381 		return;
1382 
1383 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1384 		int ret;
1385 		ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
1386 		if (ret)
1387 			return;
1388 
1389 		wait_event_interruptible_timeout(
1390 				delayed_root->wait,
1391 				(atomic_read(&delayed_root->items) <
1392 				 BTRFS_DELAYED_BACKGROUND),
1393 				HZ);
1394 		return;
1395 	}
1396 
1397 	btrfs_wq_run_delayed_node(delayed_root, root, 0);
1398 }
1399 
1400 /* Will return 0 or -ENOMEM */
1401 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1402 				   struct btrfs_root *root, const char *name,
1403 				   int name_len, struct inode *dir,
1404 				   struct btrfs_disk_key *disk_key, u8 type,
1405 				   u64 index)
1406 {
1407 	struct btrfs_delayed_node *delayed_node;
1408 	struct btrfs_delayed_item *delayed_item;
1409 	struct btrfs_dir_item *dir_item;
1410 	int ret;
1411 
1412 	delayed_node = btrfs_get_or_create_delayed_node(dir);
1413 	if (IS_ERR(delayed_node))
1414 		return PTR_ERR(delayed_node);
1415 
1416 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1417 	if (!delayed_item) {
1418 		ret = -ENOMEM;
1419 		goto release_node;
1420 	}
1421 
1422 	delayed_item->key.objectid = btrfs_ino(dir);
1423 	btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1424 	delayed_item->key.offset = index;
1425 
1426 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1427 	dir_item->location = *disk_key;
1428 	dir_item->transid = cpu_to_le64(trans->transid);
1429 	dir_item->data_len = 0;
1430 	dir_item->name_len = cpu_to_le16(name_len);
1431 	dir_item->type = type;
1432 	memcpy((char *)(dir_item + 1), name, name_len);
1433 
1434 	ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1435 	/*
1436 	 * we have reserved enough space when we start a new transaction,
1437 	 * so reserving metadata failure is impossible
1438 	 */
1439 	BUG_ON(ret);
1440 
1441 
1442 	mutex_lock(&delayed_node->mutex);
1443 	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1444 	if (unlikely(ret)) {
1445 		printk(KERN_ERR "err add delayed dir index item(name: %s) into "
1446 				"the insertion tree of the delayed node"
1447 				"(root id: %llu, inode id: %llu, errno: %d)\n",
1448 				name,
1449 				(unsigned long long)delayed_node->root->objectid,
1450 				(unsigned long long)delayed_node->inode_id,
1451 				ret);
1452 		BUG();
1453 	}
1454 	mutex_unlock(&delayed_node->mutex);
1455 
1456 release_node:
1457 	btrfs_release_delayed_node(delayed_node);
1458 	return ret;
1459 }
1460 
1461 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1462 					       struct btrfs_delayed_node *node,
1463 					       struct btrfs_key *key)
1464 {
1465 	struct btrfs_delayed_item *item;
1466 
1467 	mutex_lock(&node->mutex);
1468 	item = __btrfs_lookup_delayed_insertion_item(node, key);
1469 	if (!item) {
1470 		mutex_unlock(&node->mutex);
1471 		return 1;
1472 	}
1473 
1474 	btrfs_delayed_item_release_metadata(root, item);
1475 	btrfs_release_delayed_item(item);
1476 	mutex_unlock(&node->mutex);
1477 	return 0;
1478 }
1479 
1480 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1481 				   struct btrfs_root *root, struct inode *dir,
1482 				   u64 index)
1483 {
1484 	struct btrfs_delayed_node *node;
1485 	struct btrfs_delayed_item *item;
1486 	struct btrfs_key item_key;
1487 	int ret;
1488 
1489 	node = btrfs_get_or_create_delayed_node(dir);
1490 	if (IS_ERR(node))
1491 		return PTR_ERR(node);
1492 
1493 	item_key.objectid = btrfs_ino(dir);
1494 	btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1495 	item_key.offset = index;
1496 
1497 	ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1498 	if (!ret)
1499 		goto end;
1500 
1501 	item = btrfs_alloc_delayed_item(0);
1502 	if (!item) {
1503 		ret = -ENOMEM;
1504 		goto end;
1505 	}
1506 
1507 	item->key = item_key;
1508 
1509 	ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1510 	/*
1511 	 * we have reserved enough space when we start a new transaction,
1512 	 * so reserving metadata failure is impossible.
1513 	 */
1514 	BUG_ON(ret);
1515 
1516 	mutex_lock(&node->mutex);
1517 	ret = __btrfs_add_delayed_deletion_item(node, item);
1518 	if (unlikely(ret)) {
1519 		printk(KERN_ERR "err add delayed dir index item(index: %llu) "
1520 				"into the deletion tree of the delayed node"
1521 				"(root id: %llu, inode id: %llu, errno: %d)\n",
1522 				(unsigned long long)index,
1523 				(unsigned long long)node->root->objectid,
1524 				(unsigned long long)node->inode_id,
1525 				ret);
1526 		BUG();
1527 	}
1528 	mutex_unlock(&node->mutex);
1529 end:
1530 	btrfs_release_delayed_node(node);
1531 	return ret;
1532 }
1533 
1534 int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1535 {
1536 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1537 
1538 	if (!delayed_node)
1539 		return -ENOENT;
1540 
1541 	/*
1542 	 * Since we have held i_mutex of this directory, it is impossible that
1543 	 * a new directory index is added into the delayed node and index_cnt
1544 	 * is updated now. So we needn't lock the delayed node.
1545 	 */
1546 	if (!delayed_node->index_cnt) {
1547 		btrfs_release_delayed_node(delayed_node);
1548 		return -EINVAL;
1549 	}
1550 
1551 	BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1552 	btrfs_release_delayed_node(delayed_node);
1553 	return 0;
1554 }
1555 
1556 void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1557 			     struct list_head *del_list)
1558 {
1559 	struct btrfs_delayed_node *delayed_node;
1560 	struct btrfs_delayed_item *item;
1561 
1562 	delayed_node = btrfs_get_delayed_node(inode);
1563 	if (!delayed_node)
1564 		return;
1565 
1566 	mutex_lock(&delayed_node->mutex);
1567 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1568 	while (item) {
1569 		atomic_inc(&item->refs);
1570 		list_add_tail(&item->readdir_list, ins_list);
1571 		item = __btrfs_next_delayed_item(item);
1572 	}
1573 
1574 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1575 	while (item) {
1576 		atomic_inc(&item->refs);
1577 		list_add_tail(&item->readdir_list, del_list);
1578 		item = __btrfs_next_delayed_item(item);
1579 	}
1580 	mutex_unlock(&delayed_node->mutex);
1581 	/*
1582 	 * This delayed node is still cached in the btrfs inode, so refs
1583 	 * must be > 1 now, and we needn't check it is going to be freed
1584 	 * or not.
1585 	 *
1586 	 * Besides that, this function is used to read dir, we do not
1587 	 * insert/delete delayed items in this period. So we also needn't
1588 	 * requeue or dequeue this delayed node.
1589 	 */
1590 	atomic_dec(&delayed_node->refs);
1591 }
1592 
1593 void btrfs_put_delayed_items(struct list_head *ins_list,
1594 			     struct list_head *del_list)
1595 {
1596 	struct btrfs_delayed_item *curr, *next;
1597 
1598 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1599 		list_del(&curr->readdir_list);
1600 		if (atomic_dec_and_test(&curr->refs))
1601 			kfree(curr);
1602 	}
1603 
1604 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1605 		list_del(&curr->readdir_list);
1606 		if (atomic_dec_and_test(&curr->refs))
1607 			kfree(curr);
1608 	}
1609 }
1610 
1611 int btrfs_should_delete_dir_index(struct list_head *del_list,
1612 				  u64 index)
1613 {
1614 	struct btrfs_delayed_item *curr, *next;
1615 	int ret;
1616 
1617 	if (list_empty(del_list))
1618 		return 0;
1619 
1620 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1621 		if (curr->key.offset > index)
1622 			break;
1623 
1624 		list_del(&curr->readdir_list);
1625 		ret = (curr->key.offset == index);
1626 
1627 		if (atomic_dec_and_test(&curr->refs))
1628 			kfree(curr);
1629 
1630 		if (ret)
1631 			return 1;
1632 		else
1633 			continue;
1634 	}
1635 	return 0;
1636 }
1637 
1638 /*
1639  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1640  *
1641  */
1642 int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
1643 				    filldir_t filldir,
1644 				    struct list_head *ins_list)
1645 {
1646 	struct btrfs_dir_item *di;
1647 	struct btrfs_delayed_item *curr, *next;
1648 	struct btrfs_key location;
1649 	char *name;
1650 	int name_len;
1651 	int over = 0;
1652 	unsigned char d_type;
1653 
1654 	if (list_empty(ins_list))
1655 		return 0;
1656 
1657 	/*
1658 	 * Changing the data of the delayed item is impossible. So
1659 	 * we needn't lock them. And we have held i_mutex of the
1660 	 * directory, nobody can delete any directory indexes now.
1661 	 */
1662 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1663 		list_del(&curr->readdir_list);
1664 
1665 		if (curr->key.offset < filp->f_pos) {
1666 			if (atomic_dec_and_test(&curr->refs))
1667 				kfree(curr);
1668 			continue;
1669 		}
1670 
1671 		filp->f_pos = curr->key.offset;
1672 
1673 		di = (struct btrfs_dir_item *)curr->data;
1674 		name = (char *)(di + 1);
1675 		name_len = le16_to_cpu(di->name_len);
1676 
1677 		d_type = btrfs_filetype_table[di->type];
1678 		btrfs_disk_key_to_cpu(&location, &di->location);
1679 
1680 		over = filldir(dirent, name, name_len, curr->key.offset,
1681 			       location.objectid, d_type);
1682 
1683 		if (atomic_dec_and_test(&curr->refs))
1684 			kfree(curr);
1685 
1686 		if (over)
1687 			return 1;
1688 	}
1689 	return 0;
1690 }
1691 
1692 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1693 			 generation, 64);
1694 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1695 			 sequence, 64);
1696 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1697 			 transid, 64);
1698 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1699 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1700 			 nbytes, 64);
1701 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1702 			 block_group, 64);
1703 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1704 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1705 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1706 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1707 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1708 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1709 
1710 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1711 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1712 
1713 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1714 				  struct btrfs_inode_item *inode_item,
1715 				  struct inode *inode)
1716 {
1717 	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1718 	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1719 	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1720 	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1721 	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1722 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1723 	btrfs_set_stack_inode_generation(inode_item,
1724 					 BTRFS_I(inode)->generation);
1725 	btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1726 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1727 	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1728 	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1729 	btrfs_set_stack_inode_block_group(inode_item, 0);
1730 
1731 	btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1732 				     inode->i_atime.tv_sec);
1733 	btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1734 				      inode->i_atime.tv_nsec);
1735 
1736 	btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1737 				     inode->i_mtime.tv_sec);
1738 	btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1739 				      inode->i_mtime.tv_nsec);
1740 
1741 	btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1742 				     inode->i_ctime.tv_sec);
1743 	btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1744 				      inode->i_ctime.tv_nsec);
1745 }
1746 
1747 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1748 {
1749 	struct btrfs_delayed_node *delayed_node;
1750 	struct btrfs_inode_item *inode_item;
1751 	struct btrfs_timespec *tspec;
1752 
1753 	delayed_node = btrfs_get_delayed_node(inode);
1754 	if (!delayed_node)
1755 		return -ENOENT;
1756 
1757 	mutex_lock(&delayed_node->mutex);
1758 	if (!delayed_node->inode_dirty) {
1759 		mutex_unlock(&delayed_node->mutex);
1760 		btrfs_release_delayed_node(delayed_node);
1761 		return -ENOENT;
1762 	}
1763 
1764 	inode_item = &delayed_node->inode_item;
1765 
1766 	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1767 	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1768 	btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1769 	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1770 	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1771 	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1772 	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1773 	inode->i_version = btrfs_stack_inode_sequence(inode_item);
1774 	inode->i_rdev = 0;
1775 	*rdev = btrfs_stack_inode_rdev(inode_item);
1776 	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1777 
1778 	tspec = btrfs_inode_atime(inode_item);
1779 	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
1780 	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1781 
1782 	tspec = btrfs_inode_mtime(inode_item);
1783 	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
1784 	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1785 
1786 	tspec = btrfs_inode_ctime(inode_item);
1787 	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
1788 	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1789 
1790 	inode->i_generation = BTRFS_I(inode)->generation;
1791 	BTRFS_I(inode)->index_cnt = (u64)-1;
1792 
1793 	mutex_unlock(&delayed_node->mutex);
1794 	btrfs_release_delayed_node(delayed_node);
1795 	return 0;
1796 }
1797 
1798 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1799 			       struct btrfs_root *root, struct inode *inode)
1800 {
1801 	struct btrfs_delayed_node *delayed_node;
1802 	int ret = 0;
1803 
1804 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1805 	if (IS_ERR(delayed_node))
1806 		return PTR_ERR(delayed_node);
1807 
1808 	mutex_lock(&delayed_node->mutex);
1809 	if (delayed_node->inode_dirty) {
1810 		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1811 		goto release_node;
1812 	}
1813 
1814 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1815 						   delayed_node);
1816 	if (ret)
1817 		goto release_node;
1818 
1819 	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1820 	delayed_node->inode_dirty = 1;
1821 	delayed_node->count++;
1822 	atomic_inc(&root->fs_info->delayed_root->items);
1823 release_node:
1824 	mutex_unlock(&delayed_node->mutex);
1825 	btrfs_release_delayed_node(delayed_node);
1826 	return ret;
1827 }
1828 
1829 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1830 {
1831 	struct btrfs_root *root = delayed_node->root;
1832 	struct btrfs_delayed_item *curr_item, *prev_item;
1833 
1834 	mutex_lock(&delayed_node->mutex);
1835 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1836 	while (curr_item) {
1837 		btrfs_delayed_item_release_metadata(root, curr_item);
1838 		prev_item = curr_item;
1839 		curr_item = __btrfs_next_delayed_item(prev_item);
1840 		btrfs_release_delayed_item(prev_item);
1841 	}
1842 
1843 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1844 	while (curr_item) {
1845 		btrfs_delayed_item_release_metadata(root, curr_item);
1846 		prev_item = curr_item;
1847 		curr_item = __btrfs_next_delayed_item(prev_item);
1848 		btrfs_release_delayed_item(prev_item);
1849 	}
1850 
1851 	if (delayed_node->inode_dirty) {
1852 		btrfs_delayed_inode_release_metadata(root, delayed_node);
1853 		btrfs_release_delayed_inode(delayed_node);
1854 	}
1855 	mutex_unlock(&delayed_node->mutex);
1856 }
1857 
1858 void btrfs_kill_delayed_inode_items(struct inode *inode)
1859 {
1860 	struct btrfs_delayed_node *delayed_node;
1861 
1862 	delayed_node = btrfs_get_delayed_node(inode);
1863 	if (!delayed_node)
1864 		return;
1865 
1866 	__btrfs_kill_delayed_node(delayed_node);
1867 	btrfs_release_delayed_node(delayed_node);
1868 }
1869 
1870 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1871 {
1872 	u64 inode_id = 0;
1873 	struct btrfs_delayed_node *delayed_nodes[8];
1874 	int i, n;
1875 
1876 	while (1) {
1877 		spin_lock(&root->inode_lock);
1878 		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1879 					   (void **)delayed_nodes, inode_id,
1880 					   ARRAY_SIZE(delayed_nodes));
1881 		if (!n) {
1882 			spin_unlock(&root->inode_lock);
1883 			break;
1884 		}
1885 
1886 		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1887 
1888 		for (i = 0; i < n; i++)
1889 			atomic_inc(&delayed_nodes[i]->refs);
1890 		spin_unlock(&root->inode_lock);
1891 
1892 		for (i = 0; i < n; i++) {
1893 			__btrfs_kill_delayed_node(delayed_nodes[i]);
1894 			btrfs_release_delayed_node(delayed_nodes[i]);
1895 		}
1896 	}
1897 }
1898 
1899 void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
1900 {
1901 	struct btrfs_delayed_root *delayed_root;
1902 	struct btrfs_delayed_node *curr_node, *prev_node;
1903 
1904 	delayed_root = btrfs_get_delayed_root(root);
1905 
1906 	curr_node = btrfs_first_delayed_node(delayed_root);
1907 	while (curr_node) {
1908 		__btrfs_kill_delayed_node(curr_node);
1909 
1910 		prev_node = curr_node;
1911 		curr_node = btrfs_next_delayed_node(curr_node);
1912 		btrfs_release_delayed_node(prev_node);
1913 	}
1914 }
1915 
1916