xref: /openbmc/linux/fs/btrfs/delayed-inode.c (revision b9ccfda2)
1 /*
2  * Copyright (C) 2011 Fujitsu.  All rights reserved.
3  * Written by Miao Xie <miaox@cn.fujitsu.com>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19 
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 
25 #define BTRFS_DELAYED_WRITEBACK		400
26 #define BTRFS_DELAYED_BACKGROUND	100
27 
28 static struct kmem_cache *delayed_node_cache;
29 
30 int __init btrfs_delayed_inode_init(void)
31 {
32 	delayed_node_cache = kmem_cache_create("delayed_node",
33 					sizeof(struct btrfs_delayed_node),
34 					0,
35 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
36 					NULL);
37 	if (!delayed_node_cache)
38 		return -ENOMEM;
39 	return 0;
40 }
41 
42 void btrfs_delayed_inode_exit(void)
43 {
44 	if (delayed_node_cache)
45 		kmem_cache_destroy(delayed_node_cache);
46 }
47 
48 static inline void btrfs_init_delayed_node(
49 				struct btrfs_delayed_node *delayed_node,
50 				struct btrfs_root *root, u64 inode_id)
51 {
52 	delayed_node->root = root;
53 	delayed_node->inode_id = inode_id;
54 	atomic_set(&delayed_node->refs, 0);
55 	delayed_node->count = 0;
56 	delayed_node->in_list = 0;
57 	delayed_node->inode_dirty = 0;
58 	delayed_node->ins_root = RB_ROOT;
59 	delayed_node->del_root = RB_ROOT;
60 	mutex_init(&delayed_node->mutex);
61 	delayed_node->index_cnt = 0;
62 	INIT_LIST_HEAD(&delayed_node->n_list);
63 	INIT_LIST_HEAD(&delayed_node->p_list);
64 	delayed_node->bytes_reserved = 0;
65 }
66 
67 static inline int btrfs_is_continuous_delayed_item(
68 					struct btrfs_delayed_item *item1,
69 					struct btrfs_delayed_item *item2)
70 {
71 	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
72 	    item1->key.objectid == item2->key.objectid &&
73 	    item1->key.type == item2->key.type &&
74 	    item1->key.offset + 1 == item2->key.offset)
75 		return 1;
76 	return 0;
77 }
78 
79 static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
80 							struct btrfs_root *root)
81 {
82 	return root->fs_info->delayed_root;
83 }
84 
85 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
86 {
87 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
88 	struct btrfs_root *root = btrfs_inode->root;
89 	u64 ino = btrfs_ino(inode);
90 	struct btrfs_delayed_node *node;
91 
92 	node = ACCESS_ONCE(btrfs_inode->delayed_node);
93 	if (node) {
94 		atomic_inc(&node->refs);
95 		return node;
96 	}
97 
98 	spin_lock(&root->inode_lock);
99 	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
100 	if (node) {
101 		if (btrfs_inode->delayed_node) {
102 			atomic_inc(&node->refs);	/* can be accessed */
103 			BUG_ON(btrfs_inode->delayed_node != node);
104 			spin_unlock(&root->inode_lock);
105 			return node;
106 		}
107 		btrfs_inode->delayed_node = node;
108 		atomic_inc(&node->refs);	/* can be accessed */
109 		atomic_inc(&node->refs);	/* cached in the inode */
110 		spin_unlock(&root->inode_lock);
111 		return node;
112 	}
113 	spin_unlock(&root->inode_lock);
114 
115 	return NULL;
116 }
117 
118 /* Will return either the node or PTR_ERR(-ENOMEM) */
119 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
120 							struct inode *inode)
121 {
122 	struct btrfs_delayed_node *node;
123 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
124 	struct btrfs_root *root = btrfs_inode->root;
125 	u64 ino = btrfs_ino(inode);
126 	int ret;
127 
128 again:
129 	node = btrfs_get_delayed_node(inode);
130 	if (node)
131 		return node;
132 
133 	node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
134 	if (!node)
135 		return ERR_PTR(-ENOMEM);
136 	btrfs_init_delayed_node(node, root, ino);
137 
138 	atomic_inc(&node->refs);	/* cached in the btrfs inode */
139 	atomic_inc(&node->refs);	/* can be accessed */
140 
141 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
142 	if (ret) {
143 		kmem_cache_free(delayed_node_cache, node);
144 		return ERR_PTR(ret);
145 	}
146 
147 	spin_lock(&root->inode_lock);
148 	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
149 	if (ret == -EEXIST) {
150 		kmem_cache_free(delayed_node_cache, node);
151 		spin_unlock(&root->inode_lock);
152 		radix_tree_preload_end();
153 		goto again;
154 	}
155 	btrfs_inode->delayed_node = node;
156 	spin_unlock(&root->inode_lock);
157 	radix_tree_preload_end();
158 
159 	return node;
160 }
161 
162 /*
163  * Call it when holding delayed_node->mutex
164  *
165  * If mod = 1, add this node into the prepared list.
166  */
167 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
168 				     struct btrfs_delayed_node *node,
169 				     int mod)
170 {
171 	spin_lock(&root->lock);
172 	if (node->in_list) {
173 		if (!list_empty(&node->p_list))
174 			list_move_tail(&node->p_list, &root->prepare_list);
175 		else if (mod)
176 			list_add_tail(&node->p_list, &root->prepare_list);
177 	} else {
178 		list_add_tail(&node->n_list, &root->node_list);
179 		list_add_tail(&node->p_list, &root->prepare_list);
180 		atomic_inc(&node->refs);	/* inserted into list */
181 		root->nodes++;
182 		node->in_list = 1;
183 	}
184 	spin_unlock(&root->lock);
185 }
186 
187 /* Call it when holding delayed_node->mutex */
188 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
189 				       struct btrfs_delayed_node *node)
190 {
191 	spin_lock(&root->lock);
192 	if (node->in_list) {
193 		root->nodes--;
194 		atomic_dec(&node->refs);	/* not in the list */
195 		list_del_init(&node->n_list);
196 		if (!list_empty(&node->p_list))
197 			list_del_init(&node->p_list);
198 		node->in_list = 0;
199 	}
200 	spin_unlock(&root->lock);
201 }
202 
203 struct btrfs_delayed_node *btrfs_first_delayed_node(
204 			struct btrfs_delayed_root *delayed_root)
205 {
206 	struct list_head *p;
207 	struct btrfs_delayed_node *node = NULL;
208 
209 	spin_lock(&delayed_root->lock);
210 	if (list_empty(&delayed_root->node_list))
211 		goto out;
212 
213 	p = delayed_root->node_list.next;
214 	node = list_entry(p, struct btrfs_delayed_node, n_list);
215 	atomic_inc(&node->refs);
216 out:
217 	spin_unlock(&delayed_root->lock);
218 
219 	return node;
220 }
221 
222 struct btrfs_delayed_node *btrfs_next_delayed_node(
223 						struct btrfs_delayed_node *node)
224 {
225 	struct btrfs_delayed_root *delayed_root;
226 	struct list_head *p;
227 	struct btrfs_delayed_node *next = NULL;
228 
229 	delayed_root = node->root->fs_info->delayed_root;
230 	spin_lock(&delayed_root->lock);
231 	if (!node->in_list) {	/* not in the list */
232 		if (list_empty(&delayed_root->node_list))
233 			goto out;
234 		p = delayed_root->node_list.next;
235 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
236 		goto out;
237 	else
238 		p = node->n_list.next;
239 
240 	next = list_entry(p, struct btrfs_delayed_node, n_list);
241 	atomic_inc(&next->refs);
242 out:
243 	spin_unlock(&delayed_root->lock);
244 
245 	return next;
246 }
247 
248 static void __btrfs_release_delayed_node(
249 				struct btrfs_delayed_node *delayed_node,
250 				int mod)
251 {
252 	struct btrfs_delayed_root *delayed_root;
253 
254 	if (!delayed_node)
255 		return;
256 
257 	delayed_root = delayed_node->root->fs_info->delayed_root;
258 
259 	mutex_lock(&delayed_node->mutex);
260 	if (delayed_node->count)
261 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
262 	else
263 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
264 	mutex_unlock(&delayed_node->mutex);
265 
266 	if (atomic_dec_and_test(&delayed_node->refs)) {
267 		struct btrfs_root *root = delayed_node->root;
268 		spin_lock(&root->inode_lock);
269 		if (atomic_read(&delayed_node->refs) == 0) {
270 			radix_tree_delete(&root->delayed_nodes_tree,
271 					  delayed_node->inode_id);
272 			kmem_cache_free(delayed_node_cache, delayed_node);
273 		}
274 		spin_unlock(&root->inode_lock);
275 	}
276 }
277 
278 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
279 {
280 	__btrfs_release_delayed_node(node, 0);
281 }
282 
283 struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
284 					struct btrfs_delayed_root *delayed_root)
285 {
286 	struct list_head *p;
287 	struct btrfs_delayed_node *node = NULL;
288 
289 	spin_lock(&delayed_root->lock);
290 	if (list_empty(&delayed_root->prepare_list))
291 		goto out;
292 
293 	p = delayed_root->prepare_list.next;
294 	list_del_init(p);
295 	node = list_entry(p, struct btrfs_delayed_node, p_list);
296 	atomic_inc(&node->refs);
297 out:
298 	spin_unlock(&delayed_root->lock);
299 
300 	return node;
301 }
302 
303 static inline void btrfs_release_prepared_delayed_node(
304 					struct btrfs_delayed_node *node)
305 {
306 	__btrfs_release_delayed_node(node, 1);
307 }
308 
309 struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
310 {
311 	struct btrfs_delayed_item *item;
312 	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
313 	if (item) {
314 		item->data_len = data_len;
315 		item->ins_or_del = 0;
316 		item->bytes_reserved = 0;
317 		item->delayed_node = NULL;
318 		atomic_set(&item->refs, 1);
319 	}
320 	return item;
321 }
322 
323 /*
324  * __btrfs_lookup_delayed_item - look up the delayed item by key
325  * @delayed_node: pointer to the delayed node
326  * @key:	  the key to look up
327  * @prev:	  used to store the prev item if the right item isn't found
328  * @next:	  used to store the next item if the right item isn't found
329  *
330  * Note: if we don't find the right item, we will return the prev item and
331  * the next item.
332  */
333 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
334 				struct rb_root *root,
335 				struct btrfs_key *key,
336 				struct btrfs_delayed_item **prev,
337 				struct btrfs_delayed_item **next)
338 {
339 	struct rb_node *node, *prev_node = NULL;
340 	struct btrfs_delayed_item *delayed_item = NULL;
341 	int ret = 0;
342 
343 	node = root->rb_node;
344 
345 	while (node) {
346 		delayed_item = rb_entry(node, struct btrfs_delayed_item,
347 					rb_node);
348 		prev_node = node;
349 		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
350 		if (ret < 0)
351 			node = node->rb_right;
352 		else if (ret > 0)
353 			node = node->rb_left;
354 		else
355 			return delayed_item;
356 	}
357 
358 	if (prev) {
359 		if (!prev_node)
360 			*prev = NULL;
361 		else if (ret < 0)
362 			*prev = delayed_item;
363 		else if ((node = rb_prev(prev_node)) != NULL) {
364 			*prev = rb_entry(node, struct btrfs_delayed_item,
365 					 rb_node);
366 		} else
367 			*prev = NULL;
368 	}
369 
370 	if (next) {
371 		if (!prev_node)
372 			*next = NULL;
373 		else if (ret > 0)
374 			*next = delayed_item;
375 		else if ((node = rb_next(prev_node)) != NULL) {
376 			*next = rb_entry(node, struct btrfs_delayed_item,
377 					 rb_node);
378 		} else
379 			*next = NULL;
380 	}
381 	return NULL;
382 }
383 
384 struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
385 					struct btrfs_delayed_node *delayed_node,
386 					struct btrfs_key *key)
387 {
388 	struct btrfs_delayed_item *item;
389 
390 	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
391 					   NULL, NULL);
392 	return item;
393 }
394 
395 struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
396 					struct btrfs_delayed_node *delayed_node,
397 					struct btrfs_key *key)
398 {
399 	struct btrfs_delayed_item *item;
400 
401 	item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
402 					   NULL, NULL);
403 	return item;
404 }
405 
406 struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
407 					struct btrfs_delayed_node *delayed_node,
408 					struct btrfs_key *key)
409 {
410 	struct btrfs_delayed_item *item, *next;
411 
412 	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
413 					   NULL, &next);
414 	if (!item)
415 		item = next;
416 
417 	return item;
418 }
419 
420 struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
421 					struct btrfs_delayed_node *delayed_node,
422 					struct btrfs_key *key)
423 {
424 	struct btrfs_delayed_item *item, *next;
425 
426 	item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
427 					   NULL, &next);
428 	if (!item)
429 		item = next;
430 
431 	return item;
432 }
433 
434 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
435 				    struct btrfs_delayed_item *ins,
436 				    int action)
437 {
438 	struct rb_node **p, *node;
439 	struct rb_node *parent_node = NULL;
440 	struct rb_root *root;
441 	struct btrfs_delayed_item *item;
442 	int cmp;
443 
444 	if (action == BTRFS_DELAYED_INSERTION_ITEM)
445 		root = &delayed_node->ins_root;
446 	else if (action == BTRFS_DELAYED_DELETION_ITEM)
447 		root = &delayed_node->del_root;
448 	else
449 		BUG();
450 	p = &root->rb_node;
451 	node = &ins->rb_node;
452 
453 	while (*p) {
454 		parent_node = *p;
455 		item = rb_entry(parent_node, struct btrfs_delayed_item,
456 				 rb_node);
457 
458 		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
459 		if (cmp < 0)
460 			p = &(*p)->rb_right;
461 		else if (cmp > 0)
462 			p = &(*p)->rb_left;
463 		else
464 			return -EEXIST;
465 	}
466 
467 	rb_link_node(node, parent_node, p);
468 	rb_insert_color(node, root);
469 	ins->delayed_node = delayed_node;
470 	ins->ins_or_del = action;
471 
472 	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
473 	    action == BTRFS_DELAYED_INSERTION_ITEM &&
474 	    ins->key.offset >= delayed_node->index_cnt)
475 			delayed_node->index_cnt = ins->key.offset + 1;
476 
477 	delayed_node->count++;
478 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
479 	return 0;
480 }
481 
482 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
483 					      struct btrfs_delayed_item *item)
484 {
485 	return __btrfs_add_delayed_item(node, item,
486 					BTRFS_DELAYED_INSERTION_ITEM);
487 }
488 
489 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
490 					     struct btrfs_delayed_item *item)
491 {
492 	return __btrfs_add_delayed_item(node, item,
493 					BTRFS_DELAYED_DELETION_ITEM);
494 }
495 
496 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
497 {
498 	struct rb_root *root;
499 	struct btrfs_delayed_root *delayed_root;
500 
501 	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
502 
503 	BUG_ON(!delayed_root);
504 	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
505 	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
506 
507 	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
508 		root = &delayed_item->delayed_node->ins_root;
509 	else
510 		root = &delayed_item->delayed_node->del_root;
511 
512 	rb_erase(&delayed_item->rb_node, root);
513 	delayed_item->delayed_node->count--;
514 	atomic_dec(&delayed_root->items);
515 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND &&
516 	    waitqueue_active(&delayed_root->wait))
517 		wake_up(&delayed_root->wait);
518 }
519 
520 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
521 {
522 	if (item) {
523 		__btrfs_remove_delayed_item(item);
524 		if (atomic_dec_and_test(&item->refs))
525 			kfree(item);
526 	}
527 }
528 
529 struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
530 					struct btrfs_delayed_node *delayed_node)
531 {
532 	struct rb_node *p;
533 	struct btrfs_delayed_item *item = NULL;
534 
535 	p = rb_first(&delayed_node->ins_root);
536 	if (p)
537 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
538 
539 	return item;
540 }
541 
542 struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
543 					struct btrfs_delayed_node *delayed_node)
544 {
545 	struct rb_node *p;
546 	struct btrfs_delayed_item *item = NULL;
547 
548 	p = rb_first(&delayed_node->del_root);
549 	if (p)
550 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
551 
552 	return item;
553 }
554 
555 struct btrfs_delayed_item *__btrfs_next_delayed_item(
556 						struct btrfs_delayed_item *item)
557 {
558 	struct rb_node *p;
559 	struct btrfs_delayed_item *next = NULL;
560 
561 	p = rb_next(&item->rb_node);
562 	if (p)
563 		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
564 
565 	return next;
566 }
567 
568 static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
569 						   u64 root_id)
570 {
571 	struct btrfs_key root_key;
572 
573 	if (root->objectid == root_id)
574 		return root;
575 
576 	root_key.objectid = root_id;
577 	root_key.type = BTRFS_ROOT_ITEM_KEY;
578 	root_key.offset = (u64)-1;
579 	return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
580 }
581 
582 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
583 					       struct btrfs_root *root,
584 					       struct btrfs_delayed_item *item)
585 {
586 	struct btrfs_block_rsv *src_rsv;
587 	struct btrfs_block_rsv *dst_rsv;
588 	u64 num_bytes;
589 	int ret;
590 
591 	if (!trans->bytes_reserved)
592 		return 0;
593 
594 	src_rsv = trans->block_rsv;
595 	dst_rsv = &root->fs_info->delayed_block_rsv;
596 
597 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
598 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
599 	if (!ret) {
600 		trace_btrfs_space_reservation(root->fs_info, "delayed_item",
601 					      item->key.objectid,
602 					      num_bytes, 1);
603 		item->bytes_reserved = num_bytes;
604 	}
605 
606 	return ret;
607 }
608 
609 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
610 						struct btrfs_delayed_item *item)
611 {
612 	struct btrfs_block_rsv *rsv;
613 
614 	if (!item->bytes_reserved)
615 		return;
616 
617 	rsv = &root->fs_info->delayed_block_rsv;
618 	trace_btrfs_space_reservation(root->fs_info, "delayed_item",
619 				      item->key.objectid, item->bytes_reserved,
620 				      0);
621 	btrfs_block_rsv_release(root, rsv,
622 				item->bytes_reserved);
623 }
624 
625 static int btrfs_delayed_inode_reserve_metadata(
626 					struct btrfs_trans_handle *trans,
627 					struct btrfs_root *root,
628 					struct inode *inode,
629 					struct btrfs_delayed_node *node)
630 {
631 	struct btrfs_block_rsv *src_rsv;
632 	struct btrfs_block_rsv *dst_rsv;
633 	u64 num_bytes;
634 	int ret;
635 	bool release = false;
636 
637 	src_rsv = trans->block_rsv;
638 	dst_rsv = &root->fs_info->delayed_block_rsv;
639 
640 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
641 
642 	/*
643 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
644 	 * which doesn't reserve space for speed.  This is a problem since we
645 	 * still need to reserve space for this update, so try to reserve the
646 	 * space.
647 	 *
648 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
649 	 * we're accounted for.
650 	 */
651 	if (!src_rsv || (!trans->bytes_reserved &&
652 	    src_rsv != &root->fs_info->delalloc_block_rsv)) {
653 		ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
654 		/*
655 		 * Since we're under a transaction reserve_metadata_bytes could
656 		 * try to commit the transaction which will make it return
657 		 * EAGAIN to make us stop the transaction we have, so return
658 		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
659 		 */
660 		if (ret == -EAGAIN)
661 			ret = -ENOSPC;
662 		if (!ret) {
663 			node->bytes_reserved = num_bytes;
664 			trace_btrfs_space_reservation(root->fs_info,
665 						      "delayed_inode",
666 						      btrfs_ino(inode),
667 						      num_bytes, 1);
668 		}
669 		return ret;
670 	} else if (src_rsv == &root->fs_info->delalloc_block_rsv) {
671 		spin_lock(&BTRFS_I(inode)->lock);
672 		if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
673 				       &BTRFS_I(inode)->runtime_flags)) {
674 			spin_unlock(&BTRFS_I(inode)->lock);
675 			release = true;
676 			goto migrate;
677 		}
678 		spin_unlock(&BTRFS_I(inode)->lock);
679 
680 		/* Ok we didn't have space pre-reserved.  This shouldn't happen
681 		 * too often but it can happen if we do delalloc to an existing
682 		 * inode which gets dirtied because of the time update, and then
683 		 * isn't touched again until after the transaction commits and
684 		 * then we try to write out the data.  First try to be nice and
685 		 * reserve something strictly for us.  If not be a pain and try
686 		 * to steal from the delalloc block rsv.
687 		 */
688 		ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
689 		if (!ret)
690 			goto out;
691 
692 		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
693 		if (!ret)
694 			goto out;
695 
696 		/*
697 		 * Ok this is a problem, let's just steal from the global rsv
698 		 * since this really shouldn't happen that often.
699 		 */
700 		WARN_ON(1);
701 		ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
702 					      dst_rsv, num_bytes);
703 		goto out;
704 	}
705 
706 migrate:
707 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
708 
709 out:
710 	/*
711 	 * Migrate only takes a reservation, it doesn't touch the size of the
712 	 * block_rsv.  This is to simplify people who don't normally have things
713 	 * migrated from their block rsv.  If they go to release their
714 	 * reservation, that will decrease the size as well, so if migrate
715 	 * reduced size we'd end up with a negative size.  But for the
716 	 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
717 	 * but we could in fact do this reserve/migrate dance several times
718 	 * between the time we did the original reservation and we'd clean it
719 	 * up.  So to take care of this, release the space for the meta
720 	 * reservation here.  I think it may be time for a documentation page on
721 	 * how block rsvs. work.
722 	 */
723 	if (!ret) {
724 		trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
725 					      btrfs_ino(inode), num_bytes, 1);
726 		node->bytes_reserved = num_bytes;
727 	}
728 
729 	if (release) {
730 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
731 					      btrfs_ino(inode), num_bytes, 0);
732 		btrfs_block_rsv_release(root, src_rsv, num_bytes);
733 	}
734 
735 	return ret;
736 }
737 
738 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
739 						struct btrfs_delayed_node *node)
740 {
741 	struct btrfs_block_rsv *rsv;
742 
743 	if (!node->bytes_reserved)
744 		return;
745 
746 	rsv = &root->fs_info->delayed_block_rsv;
747 	trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
748 				      node->inode_id, node->bytes_reserved, 0);
749 	btrfs_block_rsv_release(root, rsv,
750 				node->bytes_reserved);
751 	node->bytes_reserved = 0;
752 }
753 
754 /*
755  * This helper will insert some continuous items into the same leaf according
756  * to the free space of the leaf.
757  */
758 static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
759 				struct btrfs_root *root,
760 				struct btrfs_path *path,
761 				struct btrfs_delayed_item *item)
762 {
763 	struct btrfs_delayed_item *curr, *next;
764 	int free_space;
765 	int total_data_size = 0, total_size = 0;
766 	struct extent_buffer *leaf;
767 	char *data_ptr;
768 	struct btrfs_key *keys;
769 	u32 *data_size;
770 	struct list_head head;
771 	int slot;
772 	int nitems;
773 	int i;
774 	int ret = 0;
775 
776 	BUG_ON(!path->nodes[0]);
777 
778 	leaf = path->nodes[0];
779 	free_space = btrfs_leaf_free_space(root, leaf);
780 	INIT_LIST_HEAD(&head);
781 
782 	next = item;
783 	nitems = 0;
784 
785 	/*
786 	 * count the number of the continuous items that we can insert in batch
787 	 */
788 	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
789 	       free_space) {
790 		total_data_size += next->data_len;
791 		total_size += next->data_len + sizeof(struct btrfs_item);
792 		list_add_tail(&next->tree_list, &head);
793 		nitems++;
794 
795 		curr = next;
796 		next = __btrfs_next_delayed_item(curr);
797 		if (!next)
798 			break;
799 
800 		if (!btrfs_is_continuous_delayed_item(curr, next))
801 			break;
802 	}
803 
804 	if (!nitems) {
805 		ret = 0;
806 		goto out;
807 	}
808 
809 	/*
810 	 * we need allocate some memory space, but it might cause the task
811 	 * to sleep, so we set all locked nodes in the path to blocking locks
812 	 * first.
813 	 */
814 	btrfs_set_path_blocking(path);
815 
816 	keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
817 	if (!keys) {
818 		ret = -ENOMEM;
819 		goto out;
820 	}
821 
822 	data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
823 	if (!data_size) {
824 		ret = -ENOMEM;
825 		goto error;
826 	}
827 
828 	/* get keys of all the delayed items */
829 	i = 0;
830 	list_for_each_entry(next, &head, tree_list) {
831 		keys[i] = next->key;
832 		data_size[i] = next->data_len;
833 		i++;
834 	}
835 
836 	/* reset all the locked nodes in the patch to spinning locks. */
837 	btrfs_clear_path_blocking(path, NULL, 0);
838 
839 	/* insert the keys of the items */
840 	setup_items_for_insert(trans, root, path, keys, data_size,
841 			       total_data_size, total_size, nitems);
842 
843 	/* insert the dir index items */
844 	slot = path->slots[0];
845 	list_for_each_entry_safe(curr, next, &head, tree_list) {
846 		data_ptr = btrfs_item_ptr(leaf, slot, char);
847 		write_extent_buffer(leaf, &curr->data,
848 				    (unsigned long)data_ptr,
849 				    curr->data_len);
850 		slot++;
851 
852 		btrfs_delayed_item_release_metadata(root, curr);
853 
854 		list_del(&curr->tree_list);
855 		btrfs_release_delayed_item(curr);
856 	}
857 
858 error:
859 	kfree(data_size);
860 	kfree(keys);
861 out:
862 	return ret;
863 }
864 
865 /*
866  * This helper can just do simple insertion that needn't extend item for new
867  * data, such as directory name index insertion, inode insertion.
868  */
869 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
870 				     struct btrfs_root *root,
871 				     struct btrfs_path *path,
872 				     struct btrfs_delayed_item *delayed_item)
873 {
874 	struct extent_buffer *leaf;
875 	struct btrfs_item *item;
876 	char *ptr;
877 	int ret;
878 
879 	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
880 				      delayed_item->data_len);
881 	if (ret < 0 && ret != -EEXIST)
882 		return ret;
883 
884 	leaf = path->nodes[0];
885 
886 	item = btrfs_item_nr(leaf, path->slots[0]);
887 	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
888 
889 	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
890 			    delayed_item->data_len);
891 	btrfs_mark_buffer_dirty(leaf);
892 
893 	btrfs_delayed_item_release_metadata(root, delayed_item);
894 	return 0;
895 }
896 
897 /*
898  * we insert an item first, then if there are some continuous items, we try
899  * to insert those items into the same leaf.
900  */
901 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
902 				      struct btrfs_path *path,
903 				      struct btrfs_root *root,
904 				      struct btrfs_delayed_node *node)
905 {
906 	struct btrfs_delayed_item *curr, *prev;
907 	int ret = 0;
908 
909 do_again:
910 	mutex_lock(&node->mutex);
911 	curr = __btrfs_first_delayed_insertion_item(node);
912 	if (!curr)
913 		goto insert_end;
914 
915 	ret = btrfs_insert_delayed_item(trans, root, path, curr);
916 	if (ret < 0) {
917 		btrfs_release_path(path);
918 		goto insert_end;
919 	}
920 
921 	prev = curr;
922 	curr = __btrfs_next_delayed_item(prev);
923 	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
924 		/* insert the continuous items into the same leaf */
925 		path->slots[0]++;
926 		btrfs_batch_insert_items(trans, root, path, curr);
927 	}
928 	btrfs_release_delayed_item(prev);
929 	btrfs_mark_buffer_dirty(path->nodes[0]);
930 
931 	btrfs_release_path(path);
932 	mutex_unlock(&node->mutex);
933 	goto do_again;
934 
935 insert_end:
936 	mutex_unlock(&node->mutex);
937 	return ret;
938 }
939 
940 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
941 				    struct btrfs_root *root,
942 				    struct btrfs_path *path,
943 				    struct btrfs_delayed_item *item)
944 {
945 	struct btrfs_delayed_item *curr, *next;
946 	struct extent_buffer *leaf;
947 	struct btrfs_key key;
948 	struct list_head head;
949 	int nitems, i, last_item;
950 	int ret = 0;
951 
952 	BUG_ON(!path->nodes[0]);
953 
954 	leaf = path->nodes[0];
955 
956 	i = path->slots[0];
957 	last_item = btrfs_header_nritems(leaf) - 1;
958 	if (i > last_item)
959 		return -ENOENT;	/* FIXME: Is errno suitable? */
960 
961 	next = item;
962 	INIT_LIST_HEAD(&head);
963 	btrfs_item_key_to_cpu(leaf, &key, i);
964 	nitems = 0;
965 	/*
966 	 * count the number of the dir index items that we can delete in batch
967 	 */
968 	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
969 		list_add_tail(&next->tree_list, &head);
970 		nitems++;
971 
972 		curr = next;
973 		next = __btrfs_next_delayed_item(curr);
974 		if (!next)
975 			break;
976 
977 		if (!btrfs_is_continuous_delayed_item(curr, next))
978 			break;
979 
980 		i++;
981 		if (i > last_item)
982 			break;
983 		btrfs_item_key_to_cpu(leaf, &key, i);
984 	}
985 
986 	if (!nitems)
987 		return 0;
988 
989 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
990 	if (ret)
991 		goto out;
992 
993 	list_for_each_entry_safe(curr, next, &head, tree_list) {
994 		btrfs_delayed_item_release_metadata(root, curr);
995 		list_del(&curr->tree_list);
996 		btrfs_release_delayed_item(curr);
997 	}
998 
999 out:
1000 	return ret;
1001 }
1002 
1003 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
1004 				      struct btrfs_path *path,
1005 				      struct btrfs_root *root,
1006 				      struct btrfs_delayed_node *node)
1007 {
1008 	struct btrfs_delayed_item *curr, *prev;
1009 	int ret = 0;
1010 
1011 do_again:
1012 	mutex_lock(&node->mutex);
1013 	curr = __btrfs_first_delayed_deletion_item(node);
1014 	if (!curr)
1015 		goto delete_fail;
1016 
1017 	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
1018 	if (ret < 0)
1019 		goto delete_fail;
1020 	else if (ret > 0) {
1021 		/*
1022 		 * can't find the item which the node points to, so this node
1023 		 * is invalid, just drop it.
1024 		 */
1025 		prev = curr;
1026 		curr = __btrfs_next_delayed_item(prev);
1027 		btrfs_release_delayed_item(prev);
1028 		ret = 0;
1029 		btrfs_release_path(path);
1030 		if (curr)
1031 			goto do_again;
1032 		else
1033 			goto delete_fail;
1034 	}
1035 
1036 	btrfs_batch_delete_items(trans, root, path, curr);
1037 	btrfs_release_path(path);
1038 	mutex_unlock(&node->mutex);
1039 	goto do_again;
1040 
1041 delete_fail:
1042 	btrfs_release_path(path);
1043 	mutex_unlock(&node->mutex);
1044 	return ret;
1045 }
1046 
1047 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
1048 {
1049 	struct btrfs_delayed_root *delayed_root;
1050 
1051 	if (delayed_node && delayed_node->inode_dirty) {
1052 		BUG_ON(!delayed_node->root);
1053 		delayed_node->inode_dirty = 0;
1054 		delayed_node->count--;
1055 
1056 		delayed_root = delayed_node->root->fs_info->delayed_root;
1057 		atomic_dec(&delayed_root->items);
1058 		if (atomic_read(&delayed_root->items) <
1059 		    BTRFS_DELAYED_BACKGROUND &&
1060 		    waitqueue_active(&delayed_root->wait))
1061 			wake_up(&delayed_root->wait);
1062 	}
1063 }
1064 
1065 static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1066 				      struct btrfs_root *root,
1067 				      struct btrfs_path *path,
1068 				      struct btrfs_delayed_node *node)
1069 {
1070 	struct btrfs_key key;
1071 	struct btrfs_inode_item *inode_item;
1072 	struct extent_buffer *leaf;
1073 	int ret;
1074 
1075 	mutex_lock(&node->mutex);
1076 	if (!node->inode_dirty) {
1077 		mutex_unlock(&node->mutex);
1078 		return 0;
1079 	}
1080 
1081 	key.objectid = node->inode_id;
1082 	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
1083 	key.offset = 0;
1084 	ret = btrfs_lookup_inode(trans, root, path, &key, 1);
1085 	if (ret > 0) {
1086 		btrfs_release_path(path);
1087 		mutex_unlock(&node->mutex);
1088 		return -ENOENT;
1089 	} else if (ret < 0) {
1090 		mutex_unlock(&node->mutex);
1091 		return ret;
1092 	}
1093 
1094 	btrfs_unlock_up_safe(path, 1);
1095 	leaf = path->nodes[0];
1096 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1097 				    struct btrfs_inode_item);
1098 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1099 			    sizeof(struct btrfs_inode_item));
1100 	btrfs_mark_buffer_dirty(leaf);
1101 	btrfs_release_path(path);
1102 
1103 	btrfs_delayed_inode_release_metadata(root, node);
1104 	btrfs_release_delayed_inode(node);
1105 	mutex_unlock(&node->mutex);
1106 
1107 	return 0;
1108 }
1109 
1110 /*
1111  * Called when committing the transaction.
1112  * Returns 0 on success.
1113  * Returns < 0 on error and returns with an aborted transaction with any
1114  * outstanding delayed items cleaned up.
1115  */
1116 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1117 			    struct btrfs_root *root)
1118 {
1119 	struct btrfs_root *curr_root = root;
1120 	struct btrfs_delayed_root *delayed_root;
1121 	struct btrfs_delayed_node *curr_node, *prev_node;
1122 	struct btrfs_path *path;
1123 	struct btrfs_block_rsv *block_rsv;
1124 	int ret = 0;
1125 
1126 	if (trans->aborted)
1127 		return -EIO;
1128 
1129 	path = btrfs_alloc_path();
1130 	if (!path)
1131 		return -ENOMEM;
1132 	path->leave_spinning = 1;
1133 
1134 	block_rsv = trans->block_rsv;
1135 	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1136 
1137 	delayed_root = btrfs_get_delayed_root(root);
1138 
1139 	curr_node = btrfs_first_delayed_node(delayed_root);
1140 	while (curr_node) {
1141 		curr_root = curr_node->root;
1142 		ret = btrfs_insert_delayed_items(trans, path, curr_root,
1143 						 curr_node);
1144 		if (!ret)
1145 			ret = btrfs_delete_delayed_items(trans, path,
1146 						curr_root, curr_node);
1147 		if (!ret)
1148 			ret = btrfs_update_delayed_inode(trans, curr_root,
1149 						path, curr_node);
1150 		if (ret) {
1151 			btrfs_release_delayed_node(curr_node);
1152 			btrfs_abort_transaction(trans, root, ret);
1153 			break;
1154 		}
1155 
1156 		prev_node = curr_node;
1157 		curr_node = btrfs_next_delayed_node(curr_node);
1158 		btrfs_release_delayed_node(prev_node);
1159 	}
1160 
1161 	btrfs_free_path(path);
1162 	trans->block_rsv = block_rsv;
1163 
1164 	return ret;
1165 }
1166 
1167 static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1168 					      struct btrfs_delayed_node *node)
1169 {
1170 	struct btrfs_path *path;
1171 	struct btrfs_block_rsv *block_rsv;
1172 	int ret;
1173 
1174 	path = btrfs_alloc_path();
1175 	if (!path)
1176 		return -ENOMEM;
1177 	path->leave_spinning = 1;
1178 
1179 	block_rsv = trans->block_rsv;
1180 	trans->block_rsv = &node->root->fs_info->delayed_block_rsv;
1181 
1182 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1183 	if (!ret)
1184 		ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1185 	if (!ret)
1186 		ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1187 	btrfs_free_path(path);
1188 
1189 	trans->block_rsv = block_rsv;
1190 	return ret;
1191 }
1192 
1193 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1194 				     struct inode *inode)
1195 {
1196 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1197 	int ret;
1198 
1199 	if (!delayed_node)
1200 		return 0;
1201 
1202 	mutex_lock(&delayed_node->mutex);
1203 	if (!delayed_node->count) {
1204 		mutex_unlock(&delayed_node->mutex);
1205 		btrfs_release_delayed_node(delayed_node);
1206 		return 0;
1207 	}
1208 	mutex_unlock(&delayed_node->mutex);
1209 
1210 	ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
1211 	btrfs_release_delayed_node(delayed_node);
1212 	return ret;
1213 }
1214 
1215 void btrfs_remove_delayed_node(struct inode *inode)
1216 {
1217 	struct btrfs_delayed_node *delayed_node;
1218 
1219 	delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1220 	if (!delayed_node)
1221 		return;
1222 
1223 	BTRFS_I(inode)->delayed_node = NULL;
1224 	btrfs_release_delayed_node(delayed_node);
1225 }
1226 
1227 struct btrfs_async_delayed_node {
1228 	struct btrfs_root *root;
1229 	struct btrfs_delayed_node *delayed_node;
1230 	struct btrfs_work work;
1231 };
1232 
1233 static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
1234 {
1235 	struct btrfs_async_delayed_node *async_node;
1236 	struct btrfs_trans_handle *trans;
1237 	struct btrfs_path *path;
1238 	struct btrfs_delayed_node *delayed_node = NULL;
1239 	struct btrfs_root *root;
1240 	struct btrfs_block_rsv *block_rsv;
1241 	unsigned long nr = 0;
1242 	int need_requeue = 0;
1243 	int ret;
1244 
1245 	async_node = container_of(work, struct btrfs_async_delayed_node, work);
1246 
1247 	path = btrfs_alloc_path();
1248 	if (!path)
1249 		goto out;
1250 	path->leave_spinning = 1;
1251 
1252 	delayed_node = async_node->delayed_node;
1253 	root = delayed_node->root;
1254 
1255 	trans = btrfs_join_transaction(root);
1256 	if (IS_ERR(trans))
1257 		goto free_path;
1258 
1259 	block_rsv = trans->block_rsv;
1260 	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1261 
1262 	ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
1263 	if (!ret)
1264 		ret = btrfs_delete_delayed_items(trans, path, root,
1265 						 delayed_node);
1266 
1267 	if (!ret)
1268 		btrfs_update_delayed_inode(trans, root, path, delayed_node);
1269 
1270 	/*
1271 	 * Maybe new delayed items have been inserted, so we need requeue
1272 	 * the work. Besides that, we must dequeue the empty delayed nodes
1273 	 * to avoid the race between delayed items balance and the worker.
1274 	 * The race like this:
1275 	 * 	Task1				Worker thread
1276 	 * 					count == 0, needn't requeue
1277 	 * 					  also needn't insert the
1278 	 * 					  delayed node into prepare
1279 	 * 					  list again.
1280 	 * 	add lots of delayed items
1281 	 * 	queue the delayed node
1282 	 * 	  already in the list,
1283 	 * 	  and not in the prepare
1284 	 * 	  list, it means the delayed
1285 	 * 	  node is being dealt with
1286 	 * 	  by the worker.
1287 	 * 	do delayed items balance
1288 	 * 	  the delayed node is being
1289 	 * 	  dealt with by the worker
1290 	 * 	  now, just wait.
1291 	 * 	  				the worker goto idle.
1292 	 * Task1 will sleep until the transaction is commited.
1293 	 */
1294 	mutex_lock(&delayed_node->mutex);
1295 	if (delayed_node->count)
1296 		need_requeue = 1;
1297 	else
1298 		btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
1299 					   delayed_node);
1300 	mutex_unlock(&delayed_node->mutex);
1301 
1302 	nr = trans->blocks_used;
1303 
1304 	trans->block_rsv = block_rsv;
1305 	btrfs_end_transaction_dmeta(trans, root);
1306 	__btrfs_btree_balance_dirty(root, nr);
1307 free_path:
1308 	btrfs_free_path(path);
1309 out:
1310 	if (need_requeue)
1311 		btrfs_requeue_work(&async_node->work);
1312 	else {
1313 		btrfs_release_prepared_delayed_node(delayed_node);
1314 		kfree(async_node);
1315 	}
1316 }
1317 
1318 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1319 				     struct btrfs_root *root, int all)
1320 {
1321 	struct btrfs_async_delayed_node *async_node;
1322 	struct btrfs_delayed_node *curr;
1323 	int count = 0;
1324 
1325 again:
1326 	curr = btrfs_first_prepared_delayed_node(delayed_root);
1327 	if (!curr)
1328 		return 0;
1329 
1330 	async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
1331 	if (!async_node) {
1332 		btrfs_release_prepared_delayed_node(curr);
1333 		return -ENOMEM;
1334 	}
1335 
1336 	async_node->root = root;
1337 	async_node->delayed_node = curr;
1338 
1339 	async_node->work.func = btrfs_async_run_delayed_node_done;
1340 	async_node->work.flags = 0;
1341 
1342 	btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
1343 	count++;
1344 
1345 	if (all || count < 4)
1346 		goto again;
1347 
1348 	return 0;
1349 }
1350 
1351 void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1352 {
1353 	struct btrfs_delayed_root *delayed_root;
1354 	delayed_root = btrfs_get_delayed_root(root);
1355 	WARN_ON(btrfs_first_delayed_node(delayed_root));
1356 }
1357 
1358 void btrfs_balance_delayed_items(struct btrfs_root *root)
1359 {
1360 	struct btrfs_delayed_root *delayed_root;
1361 
1362 	delayed_root = btrfs_get_delayed_root(root);
1363 
1364 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1365 		return;
1366 
1367 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1368 		int ret;
1369 		ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
1370 		if (ret)
1371 			return;
1372 
1373 		wait_event_interruptible_timeout(
1374 				delayed_root->wait,
1375 				(atomic_read(&delayed_root->items) <
1376 				 BTRFS_DELAYED_BACKGROUND),
1377 				HZ);
1378 		return;
1379 	}
1380 
1381 	btrfs_wq_run_delayed_node(delayed_root, root, 0);
1382 }
1383 
1384 /* Will return 0 or -ENOMEM */
1385 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1386 				   struct btrfs_root *root, const char *name,
1387 				   int name_len, struct inode *dir,
1388 				   struct btrfs_disk_key *disk_key, u8 type,
1389 				   u64 index)
1390 {
1391 	struct btrfs_delayed_node *delayed_node;
1392 	struct btrfs_delayed_item *delayed_item;
1393 	struct btrfs_dir_item *dir_item;
1394 	int ret;
1395 
1396 	delayed_node = btrfs_get_or_create_delayed_node(dir);
1397 	if (IS_ERR(delayed_node))
1398 		return PTR_ERR(delayed_node);
1399 
1400 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1401 	if (!delayed_item) {
1402 		ret = -ENOMEM;
1403 		goto release_node;
1404 	}
1405 
1406 	delayed_item->key.objectid = btrfs_ino(dir);
1407 	btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1408 	delayed_item->key.offset = index;
1409 
1410 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1411 	dir_item->location = *disk_key;
1412 	dir_item->transid = cpu_to_le64(trans->transid);
1413 	dir_item->data_len = 0;
1414 	dir_item->name_len = cpu_to_le16(name_len);
1415 	dir_item->type = type;
1416 	memcpy((char *)(dir_item + 1), name, name_len);
1417 
1418 	ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1419 	/*
1420 	 * we have reserved enough space when we start a new transaction,
1421 	 * so reserving metadata failure is impossible
1422 	 */
1423 	BUG_ON(ret);
1424 
1425 
1426 	mutex_lock(&delayed_node->mutex);
1427 	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1428 	if (unlikely(ret)) {
1429 		printk(KERN_ERR "err add delayed dir index item(name: %s) into "
1430 				"the insertion tree of the delayed node"
1431 				"(root id: %llu, inode id: %llu, errno: %d)\n",
1432 				name,
1433 				(unsigned long long)delayed_node->root->objectid,
1434 				(unsigned long long)delayed_node->inode_id,
1435 				ret);
1436 		BUG();
1437 	}
1438 	mutex_unlock(&delayed_node->mutex);
1439 
1440 release_node:
1441 	btrfs_release_delayed_node(delayed_node);
1442 	return ret;
1443 }
1444 
1445 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1446 					       struct btrfs_delayed_node *node,
1447 					       struct btrfs_key *key)
1448 {
1449 	struct btrfs_delayed_item *item;
1450 
1451 	mutex_lock(&node->mutex);
1452 	item = __btrfs_lookup_delayed_insertion_item(node, key);
1453 	if (!item) {
1454 		mutex_unlock(&node->mutex);
1455 		return 1;
1456 	}
1457 
1458 	btrfs_delayed_item_release_metadata(root, item);
1459 	btrfs_release_delayed_item(item);
1460 	mutex_unlock(&node->mutex);
1461 	return 0;
1462 }
1463 
1464 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1465 				   struct btrfs_root *root, struct inode *dir,
1466 				   u64 index)
1467 {
1468 	struct btrfs_delayed_node *node;
1469 	struct btrfs_delayed_item *item;
1470 	struct btrfs_key item_key;
1471 	int ret;
1472 
1473 	node = btrfs_get_or_create_delayed_node(dir);
1474 	if (IS_ERR(node))
1475 		return PTR_ERR(node);
1476 
1477 	item_key.objectid = btrfs_ino(dir);
1478 	btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1479 	item_key.offset = index;
1480 
1481 	ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1482 	if (!ret)
1483 		goto end;
1484 
1485 	item = btrfs_alloc_delayed_item(0);
1486 	if (!item) {
1487 		ret = -ENOMEM;
1488 		goto end;
1489 	}
1490 
1491 	item->key = item_key;
1492 
1493 	ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1494 	/*
1495 	 * we have reserved enough space when we start a new transaction,
1496 	 * so reserving metadata failure is impossible.
1497 	 */
1498 	BUG_ON(ret);
1499 
1500 	mutex_lock(&node->mutex);
1501 	ret = __btrfs_add_delayed_deletion_item(node, item);
1502 	if (unlikely(ret)) {
1503 		printk(KERN_ERR "err add delayed dir index item(index: %llu) "
1504 				"into the deletion tree of the delayed node"
1505 				"(root id: %llu, inode id: %llu, errno: %d)\n",
1506 				(unsigned long long)index,
1507 				(unsigned long long)node->root->objectid,
1508 				(unsigned long long)node->inode_id,
1509 				ret);
1510 		BUG();
1511 	}
1512 	mutex_unlock(&node->mutex);
1513 end:
1514 	btrfs_release_delayed_node(node);
1515 	return ret;
1516 }
1517 
1518 int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1519 {
1520 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1521 
1522 	if (!delayed_node)
1523 		return -ENOENT;
1524 
1525 	/*
1526 	 * Since we have held i_mutex of this directory, it is impossible that
1527 	 * a new directory index is added into the delayed node and index_cnt
1528 	 * is updated now. So we needn't lock the delayed node.
1529 	 */
1530 	if (!delayed_node->index_cnt) {
1531 		btrfs_release_delayed_node(delayed_node);
1532 		return -EINVAL;
1533 	}
1534 
1535 	BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1536 	btrfs_release_delayed_node(delayed_node);
1537 	return 0;
1538 }
1539 
1540 void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1541 			     struct list_head *del_list)
1542 {
1543 	struct btrfs_delayed_node *delayed_node;
1544 	struct btrfs_delayed_item *item;
1545 
1546 	delayed_node = btrfs_get_delayed_node(inode);
1547 	if (!delayed_node)
1548 		return;
1549 
1550 	mutex_lock(&delayed_node->mutex);
1551 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1552 	while (item) {
1553 		atomic_inc(&item->refs);
1554 		list_add_tail(&item->readdir_list, ins_list);
1555 		item = __btrfs_next_delayed_item(item);
1556 	}
1557 
1558 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1559 	while (item) {
1560 		atomic_inc(&item->refs);
1561 		list_add_tail(&item->readdir_list, del_list);
1562 		item = __btrfs_next_delayed_item(item);
1563 	}
1564 	mutex_unlock(&delayed_node->mutex);
1565 	/*
1566 	 * This delayed node is still cached in the btrfs inode, so refs
1567 	 * must be > 1 now, and we needn't check it is going to be freed
1568 	 * or not.
1569 	 *
1570 	 * Besides that, this function is used to read dir, we do not
1571 	 * insert/delete delayed items in this period. So we also needn't
1572 	 * requeue or dequeue this delayed node.
1573 	 */
1574 	atomic_dec(&delayed_node->refs);
1575 }
1576 
1577 void btrfs_put_delayed_items(struct list_head *ins_list,
1578 			     struct list_head *del_list)
1579 {
1580 	struct btrfs_delayed_item *curr, *next;
1581 
1582 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1583 		list_del(&curr->readdir_list);
1584 		if (atomic_dec_and_test(&curr->refs))
1585 			kfree(curr);
1586 	}
1587 
1588 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1589 		list_del(&curr->readdir_list);
1590 		if (atomic_dec_and_test(&curr->refs))
1591 			kfree(curr);
1592 	}
1593 }
1594 
1595 int btrfs_should_delete_dir_index(struct list_head *del_list,
1596 				  u64 index)
1597 {
1598 	struct btrfs_delayed_item *curr, *next;
1599 	int ret;
1600 
1601 	if (list_empty(del_list))
1602 		return 0;
1603 
1604 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1605 		if (curr->key.offset > index)
1606 			break;
1607 
1608 		list_del(&curr->readdir_list);
1609 		ret = (curr->key.offset == index);
1610 
1611 		if (atomic_dec_and_test(&curr->refs))
1612 			kfree(curr);
1613 
1614 		if (ret)
1615 			return 1;
1616 		else
1617 			continue;
1618 	}
1619 	return 0;
1620 }
1621 
1622 /*
1623  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1624  *
1625  */
1626 int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
1627 				    filldir_t filldir,
1628 				    struct list_head *ins_list)
1629 {
1630 	struct btrfs_dir_item *di;
1631 	struct btrfs_delayed_item *curr, *next;
1632 	struct btrfs_key location;
1633 	char *name;
1634 	int name_len;
1635 	int over = 0;
1636 	unsigned char d_type;
1637 
1638 	if (list_empty(ins_list))
1639 		return 0;
1640 
1641 	/*
1642 	 * Changing the data of the delayed item is impossible. So
1643 	 * we needn't lock them. And we have held i_mutex of the
1644 	 * directory, nobody can delete any directory indexes now.
1645 	 */
1646 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1647 		list_del(&curr->readdir_list);
1648 
1649 		if (curr->key.offset < filp->f_pos) {
1650 			if (atomic_dec_and_test(&curr->refs))
1651 				kfree(curr);
1652 			continue;
1653 		}
1654 
1655 		filp->f_pos = curr->key.offset;
1656 
1657 		di = (struct btrfs_dir_item *)curr->data;
1658 		name = (char *)(di + 1);
1659 		name_len = le16_to_cpu(di->name_len);
1660 
1661 		d_type = btrfs_filetype_table[di->type];
1662 		btrfs_disk_key_to_cpu(&location, &di->location);
1663 
1664 		over = filldir(dirent, name, name_len, curr->key.offset,
1665 			       location.objectid, d_type);
1666 
1667 		if (atomic_dec_and_test(&curr->refs))
1668 			kfree(curr);
1669 
1670 		if (over)
1671 			return 1;
1672 	}
1673 	return 0;
1674 }
1675 
1676 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1677 			 generation, 64);
1678 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1679 			 sequence, 64);
1680 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1681 			 transid, 64);
1682 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1683 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1684 			 nbytes, 64);
1685 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1686 			 block_group, 64);
1687 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1688 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1689 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1690 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1691 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1692 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1693 
1694 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1695 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1696 
1697 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1698 				  struct btrfs_inode_item *inode_item,
1699 				  struct inode *inode)
1700 {
1701 	btrfs_set_stack_inode_uid(inode_item, inode->i_uid);
1702 	btrfs_set_stack_inode_gid(inode_item, inode->i_gid);
1703 	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1704 	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1705 	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1706 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1707 	btrfs_set_stack_inode_generation(inode_item,
1708 					 BTRFS_I(inode)->generation);
1709 	btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1710 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1711 	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1712 	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1713 	btrfs_set_stack_inode_block_group(inode_item, 0);
1714 
1715 	btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1716 				     inode->i_atime.tv_sec);
1717 	btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1718 				      inode->i_atime.tv_nsec);
1719 
1720 	btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1721 				     inode->i_mtime.tv_sec);
1722 	btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1723 				      inode->i_mtime.tv_nsec);
1724 
1725 	btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1726 				     inode->i_ctime.tv_sec);
1727 	btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1728 				      inode->i_ctime.tv_nsec);
1729 }
1730 
1731 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1732 {
1733 	struct btrfs_delayed_node *delayed_node;
1734 	struct btrfs_inode_item *inode_item;
1735 	struct btrfs_timespec *tspec;
1736 
1737 	delayed_node = btrfs_get_delayed_node(inode);
1738 	if (!delayed_node)
1739 		return -ENOENT;
1740 
1741 	mutex_lock(&delayed_node->mutex);
1742 	if (!delayed_node->inode_dirty) {
1743 		mutex_unlock(&delayed_node->mutex);
1744 		btrfs_release_delayed_node(delayed_node);
1745 		return -ENOENT;
1746 	}
1747 
1748 	inode_item = &delayed_node->inode_item;
1749 
1750 	inode->i_uid = btrfs_stack_inode_uid(inode_item);
1751 	inode->i_gid = btrfs_stack_inode_gid(inode_item);
1752 	btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1753 	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1754 	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1755 	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1756 	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1757 	inode->i_version = btrfs_stack_inode_sequence(inode_item);
1758 	inode->i_rdev = 0;
1759 	*rdev = btrfs_stack_inode_rdev(inode_item);
1760 	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1761 
1762 	tspec = btrfs_inode_atime(inode_item);
1763 	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
1764 	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1765 
1766 	tspec = btrfs_inode_mtime(inode_item);
1767 	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
1768 	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1769 
1770 	tspec = btrfs_inode_ctime(inode_item);
1771 	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
1772 	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1773 
1774 	inode->i_generation = BTRFS_I(inode)->generation;
1775 	BTRFS_I(inode)->index_cnt = (u64)-1;
1776 
1777 	mutex_unlock(&delayed_node->mutex);
1778 	btrfs_release_delayed_node(delayed_node);
1779 	return 0;
1780 }
1781 
1782 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1783 			       struct btrfs_root *root, struct inode *inode)
1784 {
1785 	struct btrfs_delayed_node *delayed_node;
1786 	int ret = 0;
1787 
1788 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1789 	if (IS_ERR(delayed_node))
1790 		return PTR_ERR(delayed_node);
1791 
1792 	mutex_lock(&delayed_node->mutex);
1793 	if (delayed_node->inode_dirty) {
1794 		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1795 		goto release_node;
1796 	}
1797 
1798 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1799 						   delayed_node);
1800 	if (ret)
1801 		goto release_node;
1802 
1803 	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1804 	delayed_node->inode_dirty = 1;
1805 	delayed_node->count++;
1806 	atomic_inc(&root->fs_info->delayed_root->items);
1807 release_node:
1808 	mutex_unlock(&delayed_node->mutex);
1809 	btrfs_release_delayed_node(delayed_node);
1810 	return ret;
1811 }
1812 
1813 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1814 {
1815 	struct btrfs_root *root = delayed_node->root;
1816 	struct btrfs_delayed_item *curr_item, *prev_item;
1817 
1818 	mutex_lock(&delayed_node->mutex);
1819 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1820 	while (curr_item) {
1821 		btrfs_delayed_item_release_metadata(root, curr_item);
1822 		prev_item = curr_item;
1823 		curr_item = __btrfs_next_delayed_item(prev_item);
1824 		btrfs_release_delayed_item(prev_item);
1825 	}
1826 
1827 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1828 	while (curr_item) {
1829 		btrfs_delayed_item_release_metadata(root, curr_item);
1830 		prev_item = curr_item;
1831 		curr_item = __btrfs_next_delayed_item(prev_item);
1832 		btrfs_release_delayed_item(prev_item);
1833 	}
1834 
1835 	if (delayed_node->inode_dirty) {
1836 		btrfs_delayed_inode_release_metadata(root, delayed_node);
1837 		btrfs_release_delayed_inode(delayed_node);
1838 	}
1839 	mutex_unlock(&delayed_node->mutex);
1840 }
1841 
1842 void btrfs_kill_delayed_inode_items(struct inode *inode)
1843 {
1844 	struct btrfs_delayed_node *delayed_node;
1845 
1846 	delayed_node = btrfs_get_delayed_node(inode);
1847 	if (!delayed_node)
1848 		return;
1849 
1850 	__btrfs_kill_delayed_node(delayed_node);
1851 	btrfs_release_delayed_node(delayed_node);
1852 }
1853 
1854 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1855 {
1856 	u64 inode_id = 0;
1857 	struct btrfs_delayed_node *delayed_nodes[8];
1858 	int i, n;
1859 
1860 	while (1) {
1861 		spin_lock(&root->inode_lock);
1862 		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1863 					   (void **)delayed_nodes, inode_id,
1864 					   ARRAY_SIZE(delayed_nodes));
1865 		if (!n) {
1866 			spin_unlock(&root->inode_lock);
1867 			break;
1868 		}
1869 
1870 		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1871 
1872 		for (i = 0; i < n; i++)
1873 			atomic_inc(&delayed_nodes[i]->refs);
1874 		spin_unlock(&root->inode_lock);
1875 
1876 		for (i = 0; i < n; i++) {
1877 			__btrfs_kill_delayed_node(delayed_nodes[i]);
1878 			btrfs_release_delayed_node(delayed_nodes[i]);
1879 		}
1880 	}
1881 }
1882 
1883 void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
1884 {
1885 	struct btrfs_delayed_root *delayed_root;
1886 	struct btrfs_delayed_node *curr_node, *prev_node;
1887 
1888 	delayed_root = btrfs_get_delayed_root(root);
1889 
1890 	curr_node = btrfs_first_delayed_node(delayed_root);
1891 	while (curr_node) {
1892 		__btrfs_kill_delayed_node(curr_node);
1893 
1894 		prev_node = curr_node;
1895 		curr_node = btrfs_next_delayed_node(curr_node);
1896 		btrfs_release_delayed_node(prev_node);
1897 	}
1898 }
1899 
1900