1 /* 2 * Copyright (C) 2011 Fujitsu. All rights reserved. 3 * Written by Miao Xie <miaox@cn.fujitsu.com> 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public 7 * License v2 as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public 15 * License along with this program; if not, write to the 16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 17 * Boston, MA 021110-1307, USA. 18 */ 19 20 #include <linux/slab.h> 21 #include "delayed-inode.h" 22 #include "disk-io.h" 23 #include "transaction.h" 24 25 #define BTRFS_DELAYED_WRITEBACK 400 26 #define BTRFS_DELAYED_BACKGROUND 100 27 28 static struct kmem_cache *delayed_node_cache; 29 30 int __init btrfs_delayed_inode_init(void) 31 { 32 delayed_node_cache = kmem_cache_create("delayed_node", 33 sizeof(struct btrfs_delayed_node), 34 0, 35 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 36 NULL); 37 if (!delayed_node_cache) 38 return -ENOMEM; 39 return 0; 40 } 41 42 void btrfs_delayed_inode_exit(void) 43 { 44 if (delayed_node_cache) 45 kmem_cache_destroy(delayed_node_cache); 46 } 47 48 static inline void btrfs_init_delayed_node( 49 struct btrfs_delayed_node *delayed_node, 50 struct btrfs_root *root, u64 inode_id) 51 { 52 delayed_node->root = root; 53 delayed_node->inode_id = inode_id; 54 atomic_set(&delayed_node->refs, 0); 55 delayed_node->count = 0; 56 delayed_node->in_list = 0; 57 delayed_node->inode_dirty = 0; 58 delayed_node->ins_root = RB_ROOT; 59 delayed_node->del_root = RB_ROOT; 60 mutex_init(&delayed_node->mutex); 61 delayed_node->index_cnt = 0; 62 INIT_LIST_HEAD(&delayed_node->n_list); 63 INIT_LIST_HEAD(&delayed_node->p_list); 64 delayed_node->bytes_reserved = 0; 65 } 66 67 static inline int btrfs_is_continuous_delayed_item( 68 struct btrfs_delayed_item *item1, 69 struct btrfs_delayed_item *item2) 70 { 71 if (item1->key.type == BTRFS_DIR_INDEX_KEY && 72 item1->key.objectid == item2->key.objectid && 73 item1->key.type == item2->key.type && 74 item1->key.offset + 1 == item2->key.offset) 75 return 1; 76 return 0; 77 } 78 79 static inline struct btrfs_delayed_root *btrfs_get_delayed_root( 80 struct btrfs_root *root) 81 { 82 return root->fs_info->delayed_root; 83 } 84 85 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode) 86 { 87 struct btrfs_inode *btrfs_inode = BTRFS_I(inode); 88 struct btrfs_root *root = btrfs_inode->root; 89 u64 ino = btrfs_ino(inode); 90 struct btrfs_delayed_node *node; 91 92 node = ACCESS_ONCE(btrfs_inode->delayed_node); 93 if (node) { 94 atomic_inc(&node->refs); 95 return node; 96 } 97 98 spin_lock(&root->inode_lock); 99 node = radix_tree_lookup(&root->delayed_nodes_tree, ino); 100 if (node) { 101 if (btrfs_inode->delayed_node) { 102 atomic_inc(&node->refs); /* can be accessed */ 103 BUG_ON(btrfs_inode->delayed_node != node); 104 spin_unlock(&root->inode_lock); 105 return node; 106 } 107 btrfs_inode->delayed_node = node; 108 atomic_inc(&node->refs); /* can be accessed */ 109 atomic_inc(&node->refs); /* cached in the inode */ 110 spin_unlock(&root->inode_lock); 111 return node; 112 } 113 spin_unlock(&root->inode_lock); 114 115 return NULL; 116 } 117 118 /* Will return either the node or PTR_ERR(-ENOMEM) */ 119 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( 120 struct inode *inode) 121 { 122 struct btrfs_delayed_node *node; 123 struct btrfs_inode *btrfs_inode = BTRFS_I(inode); 124 struct btrfs_root *root = btrfs_inode->root; 125 u64 ino = btrfs_ino(inode); 126 int ret; 127 128 again: 129 node = btrfs_get_delayed_node(inode); 130 if (node) 131 return node; 132 133 node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS); 134 if (!node) 135 return ERR_PTR(-ENOMEM); 136 btrfs_init_delayed_node(node, root, ino); 137 138 atomic_inc(&node->refs); /* cached in the btrfs inode */ 139 atomic_inc(&node->refs); /* can be accessed */ 140 141 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 142 if (ret) { 143 kmem_cache_free(delayed_node_cache, node); 144 return ERR_PTR(ret); 145 } 146 147 spin_lock(&root->inode_lock); 148 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node); 149 if (ret == -EEXIST) { 150 kmem_cache_free(delayed_node_cache, node); 151 spin_unlock(&root->inode_lock); 152 radix_tree_preload_end(); 153 goto again; 154 } 155 btrfs_inode->delayed_node = node; 156 spin_unlock(&root->inode_lock); 157 radix_tree_preload_end(); 158 159 return node; 160 } 161 162 /* 163 * Call it when holding delayed_node->mutex 164 * 165 * If mod = 1, add this node into the prepared list. 166 */ 167 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, 168 struct btrfs_delayed_node *node, 169 int mod) 170 { 171 spin_lock(&root->lock); 172 if (node->in_list) { 173 if (!list_empty(&node->p_list)) 174 list_move_tail(&node->p_list, &root->prepare_list); 175 else if (mod) 176 list_add_tail(&node->p_list, &root->prepare_list); 177 } else { 178 list_add_tail(&node->n_list, &root->node_list); 179 list_add_tail(&node->p_list, &root->prepare_list); 180 atomic_inc(&node->refs); /* inserted into list */ 181 root->nodes++; 182 node->in_list = 1; 183 } 184 spin_unlock(&root->lock); 185 } 186 187 /* Call it when holding delayed_node->mutex */ 188 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, 189 struct btrfs_delayed_node *node) 190 { 191 spin_lock(&root->lock); 192 if (node->in_list) { 193 root->nodes--; 194 atomic_dec(&node->refs); /* not in the list */ 195 list_del_init(&node->n_list); 196 if (!list_empty(&node->p_list)) 197 list_del_init(&node->p_list); 198 node->in_list = 0; 199 } 200 spin_unlock(&root->lock); 201 } 202 203 struct btrfs_delayed_node *btrfs_first_delayed_node( 204 struct btrfs_delayed_root *delayed_root) 205 { 206 struct list_head *p; 207 struct btrfs_delayed_node *node = NULL; 208 209 spin_lock(&delayed_root->lock); 210 if (list_empty(&delayed_root->node_list)) 211 goto out; 212 213 p = delayed_root->node_list.next; 214 node = list_entry(p, struct btrfs_delayed_node, n_list); 215 atomic_inc(&node->refs); 216 out: 217 spin_unlock(&delayed_root->lock); 218 219 return node; 220 } 221 222 struct btrfs_delayed_node *btrfs_next_delayed_node( 223 struct btrfs_delayed_node *node) 224 { 225 struct btrfs_delayed_root *delayed_root; 226 struct list_head *p; 227 struct btrfs_delayed_node *next = NULL; 228 229 delayed_root = node->root->fs_info->delayed_root; 230 spin_lock(&delayed_root->lock); 231 if (!node->in_list) { /* not in the list */ 232 if (list_empty(&delayed_root->node_list)) 233 goto out; 234 p = delayed_root->node_list.next; 235 } else if (list_is_last(&node->n_list, &delayed_root->node_list)) 236 goto out; 237 else 238 p = node->n_list.next; 239 240 next = list_entry(p, struct btrfs_delayed_node, n_list); 241 atomic_inc(&next->refs); 242 out: 243 spin_unlock(&delayed_root->lock); 244 245 return next; 246 } 247 248 static void __btrfs_release_delayed_node( 249 struct btrfs_delayed_node *delayed_node, 250 int mod) 251 { 252 struct btrfs_delayed_root *delayed_root; 253 254 if (!delayed_node) 255 return; 256 257 delayed_root = delayed_node->root->fs_info->delayed_root; 258 259 mutex_lock(&delayed_node->mutex); 260 if (delayed_node->count) 261 btrfs_queue_delayed_node(delayed_root, delayed_node, mod); 262 else 263 btrfs_dequeue_delayed_node(delayed_root, delayed_node); 264 mutex_unlock(&delayed_node->mutex); 265 266 if (atomic_dec_and_test(&delayed_node->refs)) { 267 struct btrfs_root *root = delayed_node->root; 268 spin_lock(&root->inode_lock); 269 if (atomic_read(&delayed_node->refs) == 0) { 270 radix_tree_delete(&root->delayed_nodes_tree, 271 delayed_node->inode_id); 272 kmem_cache_free(delayed_node_cache, delayed_node); 273 } 274 spin_unlock(&root->inode_lock); 275 } 276 } 277 278 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) 279 { 280 __btrfs_release_delayed_node(node, 0); 281 } 282 283 struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( 284 struct btrfs_delayed_root *delayed_root) 285 { 286 struct list_head *p; 287 struct btrfs_delayed_node *node = NULL; 288 289 spin_lock(&delayed_root->lock); 290 if (list_empty(&delayed_root->prepare_list)) 291 goto out; 292 293 p = delayed_root->prepare_list.next; 294 list_del_init(p); 295 node = list_entry(p, struct btrfs_delayed_node, p_list); 296 atomic_inc(&node->refs); 297 out: 298 spin_unlock(&delayed_root->lock); 299 300 return node; 301 } 302 303 static inline void btrfs_release_prepared_delayed_node( 304 struct btrfs_delayed_node *node) 305 { 306 __btrfs_release_delayed_node(node, 1); 307 } 308 309 struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len) 310 { 311 struct btrfs_delayed_item *item; 312 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS); 313 if (item) { 314 item->data_len = data_len; 315 item->ins_or_del = 0; 316 item->bytes_reserved = 0; 317 item->delayed_node = NULL; 318 atomic_set(&item->refs, 1); 319 } 320 return item; 321 } 322 323 /* 324 * __btrfs_lookup_delayed_item - look up the delayed item by key 325 * @delayed_node: pointer to the delayed node 326 * @key: the key to look up 327 * @prev: used to store the prev item if the right item isn't found 328 * @next: used to store the next item if the right item isn't found 329 * 330 * Note: if we don't find the right item, we will return the prev item and 331 * the next item. 332 */ 333 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( 334 struct rb_root *root, 335 struct btrfs_key *key, 336 struct btrfs_delayed_item **prev, 337 struct btrfs_delayed_item **next) 338 { 339 struct rb_node *node, *prev_node = NULL; 340 struct btrfs_delayed_item *delayed_item = NULL; 341 int ret = 0; 342 343 node = root->rb_node; 344 345 while (node) { 346 delayed_item = rb_entry(node, struct btrfs_delayed_item, 347 rb_node); 348 prev_node = node; 349 ret = btrfs_comp_cpu_keys(&delayed_item->key, key); 350 if (ret < 0) 351 node = node->rb_right; 352 else if (ret > 0) 353 node = node->rb_left; 354 else 355 return delayed_item; 356 } 357 358 if (prev) { 359 if (!prev_node) 360 *prev = NULL; 361 else if (ret < 0) 362 *prev = delayed_item; 363 else if ((node = rb_prev(prev_node)) != NULL) { 364 *prev = rb_entry(node, struct btrfs_delayed_item, 365 rb_node); 366 } else 367 *prev = NULL; 368 } 369 370 if (next) { 371 if (!prev_node) 372 *next = NULL; 373 else if (ret > 0) 374 *next = delayed_item; 375 else if ((node = rb_next(prev_node)) != NULL) { 376 *next = rb_entry(node, struct btrfs_delayed_item, 377 rb_node); 378 } else 379 *next = NULL; 380 } 381 return NULL; 382 } 383 384 struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item( 385 struct btrfs_delayed_node *delayed_node, 386 struct btrfs_key *key) 387 { 388 struct btrfs_delayed_item *item; 389 390 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key, 391 NULL, NULL); 392 return item; 393 } 394 395 struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item( 396 struct btrfs_delayed_node *delayed_node, 397 struct btrfs_key *key) 398 { 399 struct btrfs_delayed_item *item; 400 401 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key, 402 NULL, NULL); 403 return item; 404 } 405 406 struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item( 407 struct btrfs_delayed_node *delayed_node, 408 struct btrfs_key *key) 409 { 410 struct btrfs_delayed_item *item, *next; 411 412 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key, 413 NULL, &next); 414 if (!item) 415 item = next; 416 417 return item; 418 } 419 420 struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item( 421 struct btrfs_delayed_node *delayed_node, 422 struct btrfs_key *key) 423 { 424 struct btrfs_delayed_item *item, *next; 425 426 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key, 427 NULL, &next); 428 if (!item) 429 item = next; 430 431 return item; 432 } 433 434 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, 435 struct btrfs_delayed_item *ins, 436 int action) 437 { 438 struct rb_node **p, *node; 439 struct rb_node *parent_node = NULL; 440 struct rb_root *root; 441 struct btrfs_delayed_item *item; 442 int cmp; 443 444 if (action == BTRFS_DELAYED_INSERTION_ITEM) 445 root = &delayed_node->ins_root; 446 else if (action == BTRFS_DELAYED_DELETION_ITEM) 447 root = &delayed_node->del_root; 448 else 449 BUG(); 450 p = &root->rb_node; 451 node = &ins->rb_node; 452 453 while (*p) { 454 parent_node = *p; 455 item = rb_entry(parent_node, struct btrfs_delayed_item, 456 rb_node); 457 458 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key); 459 if (cmp < 0) 460 p = &(*p)->rb_right; 461 else if (cmp > 0) 462 p = &(*p)->rb_left; 463 else 464 return -EEXIST; 465 } 466 467 rb_link_node(node, parent_node, p); 468 rb_insert_color(node, root); 469 ins->delayed_node = delayed_node; 470 ins->ins_or_del = action; 471 472 if (ins->key.type == BTRFS_DIR_INDEX_KEY && 473 action == BTRFS_DELAYED_INSERTION_ITEM && 474 ins->key.offset >= delayed_node->index_cnt) 475 delayed_node->index_cnt = ins->key.offset + 1; 476 477 delayed_node->count++; 478 atomic_inc(&delayed_node->root->fs_info->delayed_root->items); 479 return 0; 480 } 481 482 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node, 483 struct btrfs_delayed_item *item) 484 { 485 return __btrfs_add_delayed_item(node, item, 486 BTRFS_DELAYED_INSERTION_ITEM); 487 } 488 489 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node, 490 struct btrfs_delayed_item *item) 491 { 492 return __btrfs_add_delayed_item(node, item, 493 BTRFS_DELAYED_DELETION_ITEM); 494 } 495 496 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) 497 { 498 struct rb_root *root; 499 struct btrfs_delayed_root *delayed_root; 500 501 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root; 502 503 BUG_ON(!delayed_root); 504 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM && 505 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM); 506 507 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM) 508 root = &delayed_item->delayed_node->ins_root; 509 else 510 root = &delayed_item->delayed_node->del_root; 511 512 rb_erase(&delayed_item->rb_node, root); 513 delayed_item->delayed_node->count--; 514 atomic_dec(&delayed_root->items); 515 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND && 516 waitqueue_active(&delayed_root->wait)) 517 wake_up(&delayed_root->wait); 518 } 519 520 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) 521 { 522 if (item) { 523 __btrfs_remove_delayed_item(item); 524 if (atomic_dec_and_test(&item->refs)) 525 kfree(item); 526 } 527 } 528 529 struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( 530 struct btrfs_delayed_node *delayed_node) 531 { 532 struct rb_node *p; 533 struct btrfs_delayed_item *item = NULL; 534 535 p = rb_first(&delayed_node->ins_root); 536 if (p) 537 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 538 539 return item; 540 } 541 542 struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( 543 struct btrfs_delayed_node *delayed_node) 544 { 545 struct rb_node *p; 546 struct btrfs_delayed_item *item = NULL; 547 548 p = rb_first(&delayed_node->del_root); 549 if (p) 550 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 551 552 return item; 553 } 554 555 struct btrfs_delayed_item *__btrfs_next_delayed_item( 556 struct btrfs_delayed_item *item) 557 { 558 struct rb_node *p; 559 struct btrfs_delayed_item *next = NULL; 560 561 p = rb_next(&item->rb_node); 562 if (p) 563 next = rb_entry(p, struct btrfs_delayed_item, rb_node); 564 565 return next; 566 } 567 568 static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root, 569 u64 root_id) 570 { 571 struct btrfs_key root_key; 572 573 if (root->objectid == root_id) 574 return root; 575 576 root_key.objectid = root_id; 577 root_key.type = BTRFS_ROOT_ITEM_KEY; 578 root_key.offset = (u64)-1; 579 return btrfs_read_fs_root_no_name(root->fs_info, &root_key); 580 } 581 582 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, 583 struct btrfs_root *root, 584 struct btrfs_delayed_item *item) 585 { 586 struct btrfs_block_rsv *src_rsv; 587 struct btrfs_block_rsv *dst_rsv; 588 u64 num_bytes; 589 int ret; 590 591 if (!trans->bytes_reserved) 592 return 0; 593 594 src_rsv = trans->block_rsv; 595 dst_rsv = &root->fs_info->delayed_block_rsv; 596 597 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 598 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes); 599 if (!ret) { 600 trace_btrfs_space_reservation(root->fs_info, "delayed_item", 601 item->key.objectid, 602 num_bytes, 1); 603 item->bytes_reserved = num_bytes; 604 } 605 606 return ret; 607 } 608 609 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, 610 struct btrfs_delayed_item *item) 611 { 612 struct btrfs_block_rsv *rsv; 613 614 if (!item->bytes_reserved) 615 return; 616 617 rsv = &root->fs_info->delayed_block_rsv; 618 trace_btrfs_space_reservation(root->fs_info, "delayed_item", 619 item->key.objectid, item->bytes_reserved, 620 0); 621 btrfs_block_rsv_release(root, rsv, 622 item->bytes_reserved); 623 } 624 625 static int btrfs_delayed_inode_reserve_metadata( 626 struct btrfs_trans_handle *trans, 627 struct btrfs_root *root, 628 struct inode *inode, 629 struct btrfs_delayed_node *node) 630 { 631 struct btrfs_block_rsv *src_rsv; 632 struct btrfs_block_rsv *dst_rsv; 633 u64 num_bytes; 634 int ret; 635 bool release = false; 636 637 src_rsv = trans->block_rsv; 638 dst_rsv = &root->fs_info->delayed_block_rsv; 639 640 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 641 642 /* 643 * btrfs_dirty_inode will update the inode under btrfs_join_transaction 644 * which doesn't reserve space for speed. This is a problem since we 645 * still need to reserve space for this update, so try to reserve the 646 * space. 647 * 648 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since 649 * we're accounted for. 650 */ 651 if (!src_rsv || (!trans->bytes_reserved && 652 src_rsv != &root->fs_info->delalloc_block_rsv)) { 653 ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes); 654 /* 655 * Since we're under a transaction reserve_metadata_bytes could 656 * try to commit the transaction which will make it return 657 * EAGAIN to make us stop the transaction we have, so return 658 * ENOSPC instead so that btrfs_dirty_inode knows what to do. 659 */ 660 if (ret == -EAGAIN) 661 ret = -ENOSPC; 662 if (!ret) { 663 node->bytes_reserved = num_bytes; 664 trace_btrfs_space_reservation(root->fs_info, 665 "delayed_inode", 666 btrfs_ino(inode), 667 num_bytes, 1); 668 } 669 return ret; 670 } else if (src_rsv == &root->fs_info->delalloc_block_rsv) { 671 spin_lock(&BTRFS_I(inode)->lock); 672 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 673 &BTRFS_I(inode)->runtime_flags)) { 674 spin_unlock(&BTRFS_I(inode)->lock); 675 release = true; 676 goto migrate; 677 } 678 spin_unlock(&BTRFS_I(inode)->lock); 679 680 /* Ok we didn't have space pre-reserved. This shouldn't happen 681 * too often but it can happen if we do delalloc to an existing 682 * inode which gets dirtied because of the time update, and then 683 * isn't touched again until after the transaction commits and 684 * then we try to write out the data. First try to be nice and 685 * reserve something strictly for us. If not be a pain and try 686 * to steal from the delalloc block rsv. 687 */ 688 ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes); 689 if (!ret) 690 goto out; 691 692 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes); 693 if (!ret) 694 goto out; 695 696 /* 697 * Ok this is a problem, let's just steal from the global rsv 698 * since this really shouldn't happen that often. 699 */ 700 WARN_ON(1); 701 ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv, 702 dst_rsv, num_bytes); 703 goto out; 704 } 705 706 migrate: 707 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes); 708 709 out: 710 /* 711 * Migrate only takes a reservation, it doesn't touch the size of the 712 * block_rsv. This is to simplify people who don't normally have things 713 * migrated from their block rsv. If they go to release their 714 * reservation, that will decrease the size as well, so if migrate 715 * reduced size we'd end up with a negative size. But for the 716 * delalloc_meta_reserved stuff we will only know to drop 1 reservation, 717 * but we could in fact do this reserve/migrate dance several times 718 * between the time we did the original reservation and we'd clean it 719 * up. So to take care of this, release the space for the meta 720 * reservation here. I think it may be time for a documentation page on 721 * how block rsvs. work. 722 */ 723 if (!ret) { 724 trace_btrfs_space_reservation(root->fs_info, "delayed_inode", 725 btrfs_ino(inode), num_bytes, 1); 726 node->bytes_reserved = num_bytes; 727 } 728 729 if (release) { 730 trace_btrfs_space_reservation(root->fs_info, "delalloc", 731 btrfs_ino(inode), num_bytes, 0); 732 btrfs_block_rsv_release(root, src_rsv, num_bytes); 733 } 734 735 return ret; 736 } 737 738 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root, 739 struct btrfs_delayed_node *node) 740 { 741 struct btrfs_block_rsv *rsv; 742 743 if (!node->bytes_reserved) 744 return; 745 746 rsv = &root->fs_info->delayed_block_rsv; 747 trace_btrfs_space_reservation(root->fs_info, "delayed_inode", 748 node->inode_id, node->bytes_reserved, 0); 749 btrfs_block_rsv_release(root, rsv, 750 node->bytes_reserved); 751 node->bytes_reserved = 0; 752 } 753 754 /* 755 * This helper will insert some continuous items into the same leaf according 756 * to the free space of the leaf. 757 */ 758 static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans, 759 struct btrfs_root *root, 760 struct btrfs_path *path, 761 struct btrfs_delayed_item *item) 762 { 763 struct btrfs_delayed_item *curr, *next; 764 int free_space; 765 int total_data_size = 0, total_size = 0; 766 struct extent_buffer *leaf; 767 char *data_ptr; 768 struct btrfs_key *keys; 769 u32 *data_size; 770 struct list_head head; 771 int slot; 772 int nitems; 773 int i; 774 int ret = 0; 775 776 BUG_ON(!path->nodes[0]); 777 778 leaf = path->nodes[0]; 779 free_space = btrfs_leaf_free_space(root, leaf); 780 INIT_LIST_HEAD(&head); 781 782 next = item; 783 nitems = 0; 784 785 /* 786 * count the number of the continuous items that we can insert in batch 787 */ 788 while (total_size + next->data_len + sizeof(struct btrfs_item) <= 789 free_space) { 790 total_data_size += next->data_len; 791 total_size += next->data_len + sizeof(struct btrfs_item); 792 list_add_tail(&next->tree_list, &head); 793 nitems++; 794 795 curr = next; 796 next = __btrfs_next_delayed_item(curr); 797 if (!next) 798 break; 799 800 if (!btrfs_is_continuous_delayed_item(curr, next)) 801 break; 802 } 803 804 if (!nitems) { 805 ret = 0; 806 goto out; 807 } 808 809 /* 810 * we need allocate some memory space, but it might cause the task 811 * to sleep, so we set all locked nodes in the path to blocking locks 812 * first. 813 */ 814 btrfs_set_path_blocking(path); 815 816 keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS); 817 if (!keys) { 818 ret = -ENOMEM; 819 goto out; 820 } 821 822 data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS); 823 if (!data_size) { 824 ret = -ENOMEM; 825 goto error; 826 } 827 828 /* get keys of all the delayed items */ 829 i = 0; 830 list_for_each_entry(next, &head, tree_list) { 831 keys[i] = next->key; 832 data_size[i] = next->data_len; 833 i++; 834 } 835 836 /* reset all the locked nodes in the patch to spinning locks. */ 837 btrfs_clear_path_blocking(path, NULL, 0); 838 839 /* insert the keys of the items */ 840 setup_items_for_insert(trans, root, path, keys, data_size, 841 total_data_size, total_size, nitems); 842 843 /* insert the dir index items */ 844 slot = path->slots[0]; 845 list_for_each_entry_safe(curr, next, &head, tree_list) { 846 data_ptr = btrfs_item_ptr(leaf, slot, char); 847 write_extent_buffer(leaf, &curr->data, 848 (unsigned long)data_ptr, 849 curr->data_len); 850 slot++; 851 852 btrfs_delayed_item_release_metadata(root, curr); 853 854 list_del(&curr->tree_list); 855 btrfs_release_delayed_item(curr); 856 } 857 858 error: 859 kfree(data_size); 860 kfree(keys); 861 out: 862 return ret; 863 } 864 865 /* 866 * This helper can just do simple insertion that needn't extend item for new 867 * data, such as directory name index insertion, inode insertion. 868 */ 869 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, 870 struct btrfs_root *root, 871 struct btrfs_path *path, 872 struct btrfs_delayed_item *delayed_item) 873 { 874 struct extent_buffer *leaf; 875 struct btrfs_item *item; 876 char *ptr; 877 int ret; 878 879 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key, 880 delayed_item->data_len); 881 if (ret < 0 && ret != -EEXIST) 882 return ret; 883 884 leaf = path->nodes[0]; 885 886 item = btrfs_item_nr(leaf, path->slots[0]); 887 ptr = btrfs_item_ptr(leaf, path->slots[0], char); 888 889 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr, 890 delayed_item->data_len); 891 btrfs_mark_buffer_dirty(leaf); 892 893 btrfs_delayed_item_release_metadata(root, delayed_item); 894 return 0; 895 } 896 897 /* 898 * we insert an item first, then if there are some continuous items, we try 899 * to insert those items into the same leaf. 900 */ 901 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, 902 struct btrfs_path *path, 903 struct btrfs_root *root, 904 struct btrfs_delayed_node *node) 905 { 906 struct btrfs_delayed_item *curr, *prev; 907 int ret = 0; 908 909 do_again: 910 mutex_lock(&node->mutex); 911 curr = __btrfs_first_delayed_insertion_item(node); 912 if (!curr) 913 goto insert_end; 914 915 ret = btrfs_insert_delayed_item(trans, root, path, curr); 916 if (ret < 0) { 917 btrfs_release_path(path); 918 goto insert_end; 919 } 920 921 prev = curr; 922 curr = __btrfs_next_delayed_item(prev); 923 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) { 924 /* insert the continuous items into the same leaf */ 925 path->slots[0]++; 926 btrfs_batch_insert_items(trans, root, path, curr); 927 } 928 btrfs_release_delayed_item(prev); 929 btrfs_mark_buffer_dirty(path->nodes[0]); 930 931 btrfs_release_path(path); 932 mutex_unlock(&node->mutex); 933 goto do_again; 934 935 insert_end: 936 mutex_unlock(&node->mutex); 937 return ret; 938 } 939 940 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, 941 struct btrfs_root *root, 942 struct btrfs_path *path, 943 struct btrfs_delayed_item *item) 944 { 945 struct btrfs_delayed_item *curr, *next; 946 struct extent_buffer *leaf; 947 struct btrfs_key key; 948 struct list_head head; 949 int nitems, i, last_item; 950 int ret = 0; 951 952 BUG_ON(!path->nodes[0]); 953 954 leaf = path->nodes[0]; 955 956 i = path->slots[0]; 957 last_item = btrfs_header_nritems(leaf) - 1; 958 if (i > last_item) 959 return -ENOENT; /* FIXME: Is errno suitable? */ 960 961 next = item; 962 INIT_LIST_HEAD(&head); 963 btrfs_item_key_to_cpu(leaf, &key, i); 964 nitems = 0; 965 /* 966 * count the number of the dir index items that we can delete in batch 967 */ 968 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) { 969 list_add_tail(&next->tree_list, &head); 970 nitems++; 971 972 curr = next; 973 next = __btrfs_next_delayed_item(curr); 974 if (!next) 975 break; 976 977 if (!btrfs_is_continuous_delayed_item(curr, next)) 978 break; 979 980 i++; 981 if (i > last_item) 982 break; 983 btrfs_item_key_to_cpu(leaf, &key, i); 984 } 985 986 if (!nitems) 987 return 0; 988 989 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); 990 if (ret) 991 goto out; 992 993 list_for_each_entry_safe(curr, next, &head, tree_list) { 994 btrfs_delayed_item_release_metadata(root, curr); 995 list_del(&curr->tree_list); 996 btrfs_release_delayed_item(curr); 997 } 998 999 out: 1000 return ret; 1001 } 1002 1003 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, 1004 struct btrfs_path *path, 1005 struct btrfs_root *root, 1006 struct btrfs_delayed_node *node) 1007 { 1008 struct btrfs_delayed_item *curr, *prev; 1009 int ret = 0; 1010 1011 do_again: 1012 mutex_lock(&node->mutex); 1013 curr = __btrfs_first_delayed_deletion_item(node); 1014 if (!curr) 1015 goto delete_fail; 1016 1017 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1); 1018 if (ret < 0) 1019 goto delete_fail; 1020 else if (ret > 0) { 1021 /* 1022 * can't find the item which the node points to, so this node 1023 * is invalid, just drop it. 1024 */ 1025 prev = curr; 1026 curr = __btrfs_next_delayed_item(prev); 1027 btrfs_release_delayed_item(prev); 1028 ret = 0; 1029 btrfs_release_path(path); 1030 if (curr) 1031 goto do_again; 1032 else 1033 goto delete_fail; 1034 } 1035 1036 btrfs_batch_delete_items(trans, root, path, curr); 1037 btrfs_release_path(path); 1038 mutex_unlock(&node->mutex); 1039 goto do_again; 1040 1041 delete_fail: 1042 btrfs_release_path(path); 1043 mutex_unlock(&node->mutex); 1044 return ret; 1045 } 1046 1047 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) 1048 { 1049 struct btrfs_delayed_root *delayed_root; 1050 1051 if (delayed_node && delayed_node->inode_dirty) { 1052 BUG_ON(!delayed_node->root); 1053 delayed_node->inode_dirty = 0; 1054 delayed_node->count--; 1055 1056 delayed_root = delayed_node->root->fs_info->delayed_root; 1057 atomic_dec(&delayed_root->items); 1058 if (atomic_read(&delayed_root->items) < 1059 BTRFS_DELAYED_BACKGROUND && 1060 waitqueue_active(&delayed_root->wait)) 1061 wake_up(&delayed_root->wait); 1062 } 1063 } 1064 1065 static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1066 struct btrfs_root *root, 1067 struct btrfs_path *path, 1068 struct btrfs_delayed_node *node) 1069 { 1070 struct btrfs_key key; 1071 struct btrfs_inode_item *inode_item; 1072 struct extent_buffer *leaf; 1073 int ret; 1074 1075 mutex_lock(&node->mutex); 1076 if (!node->inode_dirty) { 1077 mutex_unlock(&node->mutex); 1078 return 0; 1079 } 1080 1081 key.objectid = node->inode_id; 1082 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 1083 key.offset = 0; 1084 ret = btrfs_lookup_inode(trans, root, path, &key, 1); 1085 if (ret > 0) { 1086 btrfs_release_path(path); 1087 mutex_unlock(&node->mutex); 1088 return -ENOENT; 1089 } else if (ret < 0) { 1090 mutex_unlock(&node->mutex); 1091 return ret; 1092 } 1093 1094 btrfs_unlock_up_safe(path, 1); 1095 leaf = path->nodes[0]; 1096 inode_item = btrfs_item_ptr(leaf, path->slots[0], 1097 struct btrfs_inode_item); 1098 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, 1099 sizeof(struct btrfs_inode_item)); 1100 btrfs_mark_buffer_dirty(leaf); 1101 btrfs_release_path(path); 1102 1103 btrfs_delayed_inode_release_metadata(root, node); 1104 btrfs_release_delayed_inode(node); 1105 mutex_unlock(&node->mutex); 1106 1107 return 0; 1108 } 1109 1110 /* 1111 * Called when committing the transaction. 1112 * Returns 0 on success. 1113 * Returns < 0 on error and returns with an aborted transaction with any 1114 * outstanding delayed items cleaned up. 1115 */ 1116 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans, 1117 struct btrfs_root *root) 1118 { 1119 struct btrfs_root *curr_root = root; 1120 struct btrfs_delayed_root *delayed_root; 1121 struct btrfs_delayed_node *curr_node, *prev_node; 1122 struct btrfs_path *path; 1123 struct btrfs_block_rsv *block_rsv; 1124 int ret = 0; 1125 1126 if (trans->aborted) 1127 return -EIO; 1128 1129 path = btrfs_alloc_path(); 1130 if (!path) 1131 return -ENOMEM; 1132 path->leave_spinning = 1; 1133 1134 block_rsv = trans->block_rsv; 1135 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1136 1137 delayed_root = btrfs_get_delayed_root(root); 1138 1139 curr_node = btrfs_first_delayed_node(delayed_root); 1140 while (curr_node) { 1141 curr_root = curr_node->root; 1142 ret = btrfs_insert_delayed_items(trans, path, curr_root, 1143 curr_node); 1144 if (!ret) 1145 ret = btrfs_delete_delayed_items(trans, path, 1146 curr_root, curr_node); 1147 if (!ret) 1148 ret = btrfs_update_delayed_inode(trans, curr_root, 1149 path, curr_node); 1150 if (ret) { 1151 btrfs_release_delayed_node(curr_node); 1152 btrfs_abort_transaction(trans, root, ret); 1153 break; 1154 } 1155 1156 prev_node = curr_node; 1157 curr_node = btrfs_next_delayed_node(curr_node); 1158 btrfs_release_delayed_node(prev_node); 1159 } 1160 1161 btrfs_free_path(path); 1162 trans->block_rsv = block_rsv; 1163 1164 return ret; 1165 } 1166 1167 static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1168 struct btrfs_delayed_node *node) 1169 { 1170 struct btrfs_path *path; 1171 struct btrfs_block_rsv *block_rsv; 1172 int ret; 1173 1174 path = btrfs_alloc_path(); 1175 if (!path) 1176 return -ENOMEM; 1177 path->leave_spinning = 1; 1178 1179 block_rsv = trans->block_rsv; 1180 trans->block_rsv = &node->root->fs_info->delayed_block_rsv; 1181 1182 ret = btrfs_insert_delayed_items(trans, path, node->root, node); 1183 if (!ret) 1184 ret = btrfs_delete_delayed_items(trans, path, node->root, node); 1185 if (!ret) 1186 ret = btrfs_update_delayed_inode(trans, node->root, path, node); 1187 btrfs_free_path(path); 1188 1189 trans->block_rsv = block_rsv; 1190 return ret; 1191 } 1192 1193 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1194 struct inode *inode) 1195 { 1196 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1197 int ret; 1198 1199 if (!delayed_node) 1200 return 0; 1201 1202 mutex_lock(&delayed_node->mutex); 1203 if (!delayed_node->count) { 1204 mutex_unlock(&delayed_node->mutex); 1205 btrfs_release_delayed_node(delayed_node); 1206 return 0; 1207 } 1208 mutex_unlock(&delayed_node->mutex); 1209 1210 ret = __btrfs_commit_inode_delayed_items(trans, delayed_node); 1211 btrfs_release_delayed_node(delayed_node); 1212 return ret; 1213 } 1214 1215 void btrfs_remove_delayed_node(struct inode *inode) 1216 { 1217 struct btrfs_delayed_node *delayed_node; 1218 1219 delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node); 1220 if (!delayed_node) 1221 return; 1222 1223 BTRFS_I(inode)->delayed_node = NULL; 1224 btrfs_release_delayed_node(delayed_node); 1225 } 1226 1227 struct btrfs_async_delayed_node { 1228 struct btrfs_root *root; 1229 struct btrfs_delayed_node *delayed_node; 1230 struct btrfs_work work; 1231 }; 1232 1233 static void btrfs_async_run_delayed_node_done(struct btrfs_work *work) 1234 { 1235 struct btrfs_async_delayed_node *async_node; 1236 struct btrfs_trans_handle *trans; 1237 struct btrfs_path *path; 1238 struct btrfs_delayed_node *delayed_node = NULL; 1239 struct btrfs_root *root; 1240 struct btrfs_block_rsv *block_rsv; 1241 unsigned long nr = 0; 1242 int need_requeue = 0; 1243 int ret; 1244 1245 async_node = container_of(work, struct btrfs_async_delayed_node, work); 1246 1247 path = btrfs_alloc_path(); 1248 if (!path) 1249 goto out; 1250 path->leave_spinning = 1; 1251 1252 delayed_node = async_node->delayed_node; 1253 root = delayed_node->root; 1254 1255 trans = btrfs_join_transaction(root); 1256 if (IS_ERR(trans)) 1257 goto free_path; 1258 1259 block_rsv = trans->block_rsv; 1260 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1261 1262 ret = btrfs_insert_delayed_items(trans, path, root, delayed_node); 1263 if (!ret) 1264 ret = btrfs_delete_delayed_items(trans, path, root, 1265 delayed_node); 1266 1267 if (!ret) 1268 btrfs_update_delayed_inode(trans, root, path, delayed_node); 1269 1270 /* 1271 * Maybe new delayed items have been inserted, so we need requeue 1272 * the work. Besides that, we must dequeue the empty delayed nodes 1273 * to avoid the race between delayed items balance and the worker. 1274 * The race like this: 1275 * Task1 Worker thread 1276 * count == 0, needn't requeue 1277 * also needn't insert the 1278 * delayed node into prepare 1279 * list again. 1280 * add lots of delayed items 1281 * queue the delayed node 1282 * already in the list, 1283 * and not in the prepare 1284 * list, it means the delayed 1285 * node is being dealt with 1286 * by the worker. 1287 * do delayed items balance 1288 * the delayed node is being 1289 * dealt with by the worker 1290 * now, just wait. 1291 * the worker goto idle. 1292 * Task1 will sleep until the transaction is commited. 1293 */ 1294 mutex_lock(&delayed_node->mutex); 1295 if (delayed_node->count) 1296 need_requeue = 1; 1297 else 1298 btrfs_dequeue_delayed_node(root->fs_info->delayed_root, 1299 delayed_node); 1300 mutex_unlock(&delayed_node->mutex); 1301 1302 nr = trans->blocks_used; 1303 1304 trans->block_rsv = block_rsv; 1305 btrfs_end_transaction_dmeta(trans, root); 1306 __btrfs_btree_balance_dirty(root, nr); 1307 free_path: 1308 btrfs_free_path(path); 1309 out: 1310 if (need_requeue) 1311 btrfs_requeue_work(&async_node->work); 1312 else { 1313 btrfs_release_prepared_delayed_node(delayed_node); 1314 kfree(async_node); 1315 } 1316 } 1317 1318 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, 1319 struct btrfs_root *root, int all) 1320 { 1321 struct btrfs_async_delayed_node *async_node; 1322 struct btrfs_delayed_node *curr; 1323 int count = 0; 1324 1325 again: 1326 curr = btrfs_first_prepared_delayed_node(delayed_root); 1327 if (!curr) 1328 return 0; 1329 1330 async_node = kmalloc(sizeof(*async_node), GFP_NOFS); 1331 if (!async_node) { 1332 btrfs_release_prepared_delayed_node(curr); 1333 return -ENOMEM; 1334 } 1335 1336 async_node->root = root; 1337 async_node->delayed_node = curr; 1338 1339 async_node->work.func = btrfs_async_run_delayed_node_done; 1340 async_node->work.flags = 0; 1341 1342 btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work); 1343 count++; 1344 1345 if (all || count < 4) 1346 goto again; 1347 1348 return 0; 1349 } 1350 1351 void btrfs_assert_delayed_root_empty(struct btrfs_root *root) 1352 { 1353 struct btrfs_delayed_root *delayed_root; 1354 delayed_root = btrfs_get_delayed_root(root); 1355 WARN_ON(btrfs_first_delayed_node(delayed_root)); 1356 } 1357 1358 void btrfs_balance_delayed_items(struct btrfs_root *root) 1359 { 1360 struct btrfs_delayed_root *delayed_root; 1361 1362 delayed_root = btrfs_get_delayed_root(root); 1363 1364 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1365 return; 1366 1367 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { 1368 int ret; 1369 ret = btrfs_wq_run_delayed_node(delayed_root, root, 1); 1370 if (ret) 1371 return; 1372 1373 wait_event_interruptible_timeout( 1374 delayed_root->wait, 1375 (atomic_read(&delayed_root->items) < 1376 BTRFS_DELAYED_BACKGROUND), 1377 HZ); 1378 return; 1379 } 1380 1381 btrfs_wq_run_delayed_node(delayed_root, root, 0); 1382 } 1383 1384 /* Will return 0 or -ENOMEM */ 1385 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, 1386 struct btrfs_root *root, const char *name, 1387 int name_len, struct inode *dir, 1388 struct btrfs_disk_key *disk_key, u8 type, 1389 u64 index) 1390 { 1391 struct btrfs_delayed_node *delayed_node; 1392 struct btrfs_delayed_item *delayed_item; 1393 struct btrfs_dir_item *dir_item; 1394 int ret; 1395 1396 delayed_node = btrfs_get_or_create_delayed_node(dir); 1397 if (IS_ERR(delayed_node)) 1398 return PTR_ERR(delayed_node); 1399 1400 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len); 1401 if (!delayed_item) { 1402 ret = -ENOMEM; 1403 goto release_node; 1404 } 1405 1406 delayed_item->key.objectid = btrfs_ino(dir); 1407 btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY); 1408 delayed_item->key.offset = index; 1409 1410 dir_item = (struct btrfs_dir_item *)delayed_item->data; 1411 dir_item->location = *disk_key; 1412 dir_item->transid = cpu_to_le64(trans->transid); 1413 dir_item->data_len = 0; 1414 dir_item->name_len = cpu_to_le16(name_len); 1415 dir_item->type = type; 1416 memcpy((char *)(dir_item + 1), name, name_len); 1417 1418 ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item); 1419 /* 1420 * we have reserved enough space when we start a new transaction, 1421 * so reserving metadata failure is impossible 1422 */ 1423 BUG_ON(ret); 1424 1425 1426 mutex_lock(&delayed_node->mutex); 1427 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item); 1428 if (unlikely(ret)) { 1429 printk(KERN_ERR "err add delayed dir index item(name: %s) into " 1430 "the insertion tree of the delayed node" 1431 "(root id: %llu, inode id: %llu, errno: %d)\n", 1432 name, 1433 (unsigned long long)delayed_node->root->objectid, 1434 (unsigned long long)delayed_node->inode_id, 1435 ret); 1436 BUG(); 1437 } 1438 mutex_unlock(&delayed_node->mutex); 1439 1440 release_node: 1441 btrfs_release_delayed_node(delayed_node); 1442 return ret; 1443 } 1444 1445 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root, 1446 struct btrfs_delayed_node *node, 1447 struct btrfs_key *key) 1448 { 1449 struct btrfs_delayed_item *item; 1450 1451 mutex_lock(&node->mutex); 1452 item = __btrfs_lookup_delayed_insertion_item(node, key); 1453 if (!item) { 1454 mutex_unlock(&node->mutex); 1455 return 1; 1456 } 1457 1458 btrfs_delayed_item_release_metadata(root, item); 1459 btrfs_release_delayed_item(item); 1460 mutex_unlock(&node->mutex); 1461 return 0; 1462 } 1463 1464 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, 1465 struct btrfs_root *root, struct inode *dir, 1466 u64 index) 1467 { 1468 struct btrfs_delayed_node *node; 1469 struct btrfs_delayed_item *item; 1470 struct btrfs_key item_key; 1471 int ret; 1472 1473 node = btrfs_get_or_create_delayed_node(dir); 1474 if (IS_ERR(node)) 1475 return PTR_ERR(node); 1476 1477 item_key.objectid = btrfs_ino(dir); 1478 btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY); 1479 item_key.offset = index; 1480 1481 ret = btrfs_delete_delayed_insertion_item(root, node, &item_key); 1482 if (!ret) 1483 goto end; 1484 1485 item = btrfs_alloc_delayed_item(0); 1486 if (!item) { 1487 ret = -ENOMEM; 1488 goto end; 1489 } 1490 1491 item->key = item_key; 1492 1493 ret = btrfs_delayed_item_reserve_metadata(trans, root, item); 1494 /* 1495 * we have reserved enough space when we start a new transaction, 1496 * so reserving metadata failure is impossible. 1497 */ 1498 BUG_ON(ret); 1499 1500 mutex_lock(&node->mutex); 1501 ret = __btrfs_add_delayed_deletion_item(node, item); 1502 if (unlikely(ret)) { 1503 printk(KERN_ERR "err add delayed dir index item(index: %llu) " 1504 "into the deletion tree of the delayed node" 1505 "(root id: %llu, inode id: %llu, errno: %d)\n", 1506 (unsigned long long)index, 1507 (unsigned long long)node->root->objectid, 1508 (unsigned long long)node->inode_id, 1509 ret); 1510 BUG(); 1511 } 1512 mutex_unlock(&node->mutex); 1513 end: 1514 btrfs_release_delayed_node(node); 1515 return ret; 1516 } 1517 1518 int btrfs_inode_delayed_dir_index_count(struct inode *inode) 1519 { 1520 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1521 1522 if (!delayed_node) 1523 return -ENOENT; 1524 1525 /* 1526 * Since we have held i_mutex of this directory, it is impossible that 1527 * a new directory index is added into the delayed node and index_cnt 1528 * is updated now. So we needn't lock the delayed node. 1529 */ 1530 if (!delayed_node->index_cnt) { 1531 btrfs_release_delayed_node(delayed_node); 1532 return -EINVAL; 1533 } 1534 1535 BTRFS_I(inode)->index_cnt = delayed_node->index_cnt; 1536 btrfs_release_delayed_node(delayed_node); 1537 return 0; 1538 } 1539 1540 void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list, 1541 struct list_head *del_list) 1542 { 1543 struct btrfs_delayed_node *delayed_node; 1544 struct btrfs_delayed_item *item; 1545 1546 delayed_node = btrfs_get_delayed_node(inode); 1547 if (!delayed_node) 1548 return; 1549 1550 mutex_lock(&delayed_node->mutex); 1551 item = __btrfs_first_delayed_insertion_item(delayed_node); 1552 while (item) { 1553 atomic_inc(&item->refs); 1554 list_add_tail(&item->readdir_list, ins_list); 1555 item = __btrfs_next_delayed_item(item); 1556 } 1557 1558 item = __btrfs_first_delayed_deletion_item(delayed_node); 1559 while (item) { 1560 atomic_inc(&item->refs); 1561 list_add_tail(&item->readdir_list, del_list); 1562 item = __btrfs_next_delayed_item(item); 1563 } 1564 mutex_unlock(&delayed_node->mutex); 1565 /* 1566 * This delayed node is still cached in the btrfs inode, so refs 1567 * must be > 1 now, and we needn't check it is going to be freed 1568 * or not. 1569 * 1570 * Besides that, this function is used to read dir, we do not 1571 * insert/delete delayed items in this period. So we also needn't 1572 * requeue or dequeue this delayed node. 1573 */ 1574 atomic_dec(&delayed_node->refs); 1575 } 1576 1577 void btrfs_put_delayed_items(struct list_head *ins_list, 1578 struct list_head *del_list) 1579 { 1580 struct btrfs_delayed_item *curr, *next; 1581 1582 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1583 list_del(&curr->readdir_list); 1584 if (atomic_dec_and_test(&curr->refs)) 1585 kfree(curr); 1586 } 1587 1588 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1589 list_del(&curr->readdir_list); 1590 if (atomic_dec_and_test(&curr->refs)) 1591 kfree(curr); 1592 } 1593 } 1594 1595 int btrfs_should_delete_dir_index(struct list_head *del_list, 1596 u64 index) 1597 { 1598 struct btrfs_delayed_item *curr, *next; 1599 int ret; 1600 1601 if (list_empty(del_list)) 1602 return 0; 1603 1604 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1605 if (curr->key.offset > index) 1606 break; 1607 1608 list_del(&curr->readdir_list); 1609 ret = (curr->key.offset == index); 1610 1611 if (atomic_dec_and_test(&curr->refs)) 1612 kfree(curr); 1613 1614 if (ret) 1615 return 1; 1616 else 1617 continue; 1618 } 1619 return 0; 1620 } 1621 1622 /* 1623 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree 1624 * 1625 */ 1626 int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent, 1627 filldir_t filldir, 1628 struct list_head *ins_list) 1629 { 1630 struct btrfs_dir_item *di; 1631 struct btrfs_delayed_item *curr, *next; 1632 struct btrfs_key location; 1633 char *name; 1634 int name_len; 1635 int over = 0; 1636 unsigned char d_type; 1637 1638 if (list_empty(ins_list)) 1639 return 0; 1640 1641 /* 1642 * Changing the data of the delayed item is impossible. So 1643 * we needn't lock them. And we have held i_mutex of the 1644 * directory, nobody can delete any directory indexes now. 1645 */ 1646 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1647 list_del(&curr->readdir_list); 1648 1649 if (curr->key.offset < filp->f_pos) { 1650 if (atomic_dec_and_test(&curr->refs)) 1651 kfree(curr); 1652 continue; 1653 } 1654 1655 filp->f_pos = curr->key.offset; 1656 1657 di = (struct btrfs_dir_item *)curr->data; 1658 name = (char *)(di + 1); 1659 name_len = le16_to_cpu(di->name_len); 1660 1661 d_type = btrfs_filetype_table[di->type]; 1662 btrfs_disk_key_to_cpu(&location, &di->location); 1663 1664 over = filldir(dirent, name, name_len, curr->key.offset, 1665 location.objectid, d_type); 1666 1667 if (atomic_dec_and_test(&curr->refs)) 1668 kfree(curr); 1669 1670 if (over) 1671 return 1; 1672 } 1673 return 0; 1674 } 1675 1676 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item, 1677 generation, 64); 1678 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item, 1679 sequence, 64); 1680 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item, 1681 transid, 64); 1682 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64); 1683 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item, 1684 nbytes, 64); 1685 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item, 1686 block_group, 64); 1687 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32); 1688 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32); 1689 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32); 1690 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32); 1691 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64); 1692 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64); 1693 1694 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64); 1695 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32); 1696 1697 static void fill_stack_inode_item(struct btrfs_trans_handle *trans, 1698 struct btrfs_inode_item *inode_item, 1699 struct inode *inode) 1700 { 1701 btrfs_set_stack_inode_uid(inode_item, inode->i_uid); 1702 btrfs_set_stack_inode_gid(inode_item, inode->i_gid); 1703 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); 1704 btrfs_set_stack_inode_mode(inode_item, inode->i_mode); 1705 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); 1706 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); 1707 btrfs_set_stack_inode_generation(inode_item, 1708 BTRFS_I(inode)->generation); 1709 btrfs_set_stack_inode_sequence(inode_item, inode->i_version); 1710 btrfs_set_stack_inode_transid(inode_item, trans->transid); 1711 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); 1712 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags); 1713 btrfs_set_stack_inode_block_group(inode_item, 0); 1714 1715 btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item), 1716 inode->i_atime.tv_sec); 1717 btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item), 1718 inode->i_atime.tv_nsec); 1719 1720 btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item), 1721 inode->i_mtime.tv_sec); 1722 btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item), 1723 inode->i_mtime.tv_nsec); 1724 1725 btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item), 1726 inode->i_ctime.tv_sec); 1727 btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item), 1728 inode->i_ctime.tv_nsec); 1729 } 1730 1731 int btrfs_fill_inode(struct inode *inode, u32 *rdev) 1732 { 1733 struct btrfs_delayed_node *delayed_node; 1734 struct btrfs_inode_item *inode_item; 1735 struct btrfs_timespec *tspec; 1736 1737 delayed_node = btrfs_get_delayed_node(inode); 1738 if (!delayed_node) 1739 return -ENOENT; 1740 1741 mutex_lock(&delayed_node->mutex); 1742 if (!delayed_node->inode_dirty) { 1743 mutex_unlock(&delayed_node->mutex); 1744 btrfs_release_delayed_node(delayed_node); 1745 return -ENOENT; 1746 } 1747 1748 inode_item = &delayed_node->inode_item; 1749 1750 inode->i_uid = btrfs_stack_inode_uid(inode_item); 1751 inode->i_gid = btrfs_stack_inode_gid(inode_item); 1752 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item)); 1753 inode->i_mode = btrfs_stack_inode_mode(inode_item); 1754 set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); 1755 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); 1756 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); 1757 inode->i_version = btrfs_stack_inode_sequence(inode_item); 1758 inode->i_rdev = 0; 1759 *rdev = btrfs_stack_inode_rdev(inode_item); 1760 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item); 1761 1762 tspec = btrfs_inode_atime(inode_item); 1763 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec); 1764 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec); 1765 1766 tspec = btrfs_inode_mtime(inode_item); 1767 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec); 1768 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec); 1769 1770 tspec = btrfs_inode_ctime(inode_item); 1771 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec); 1772 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec); 1773 1774 inode->i_generation = BTRFS_I(inode)->generation; 1775 BTRFS_I(inode)->index_cnt = (u64)-1; 1776 1777 mutex_unlock(&delayed_node->mutex); 1778 btrfs_release_delayed_node(delayed_node); 1779 return 0; 1780 } 1781 1782 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, 1783 struct btrfs_root *root, struct inode *inode) 1784 { 1785 struct btrfs_delayed_node *delayed_node; 1786 int ret = 0; 1787 1788 delayed_node = btrfs_get_or_create_delayed_node(inode); 1789 if (IS_ERR(delayed_node)) 1790 return PTR_ERR(delayed_node); 1791 1792 mutex_lock(&delayed_node->mutex); 1793 if (delayed_node->inode_dirty) { 1794 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1795 goto release_node; 1796 } 1797 1798 ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode, 1799 delayed_node); 1800 if (ret) 1801 goto release_node; 1802 1803 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1804 delayed_node->inode_dirty = 1; 1805 delayed_node->count++; 1806 atomic_inc(&root->fs_info->delayed_root->items); 1807 release_node: 1808 mutex_unlock(&delayed_node->mutex); 1809 btrfs_release_delayed_node(delayed_node); 1810 return ret; 1811 } 1812 1813 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) 1814 { 1815 struct btrfs_root *root = delayed_node->root; 1816 struct btrfs_delayed_item *curr_item, *prev_item; 1817 1818 mutex_lock(&delayed_node->mutex); 1819 curr_item = __btrfs_first_delayed_insertion_item(delayed_node); 1820 while (curr_item) { 1821 btrfs_delayed_item_release_metadata(root, curr_item); 1822 prev_item = curr_item; 1823 curr_item = __btrfs_next_delayed_item(prev_item); 1824 btrfs_release_delayed_item(prev_item); 1825 } 1826 1827 curr_item = __btrfs_first_delayed_deletion_item(delayed_node); 1828 while (curr_item) { 1829 btrfs_delayed_item_release_metadata(root, curr_item); 1830 prev_item = curr_item; 1831 curr_item = __btrfs_next_delayed_item(prev_item); 1832 btrfs_release_delayed_item(prev_item); 1833 } 1834 1835 if (delayed_node->inode_dirty) { 1836 btrfs_delayed_inode_release_metadata(root, delayed_node); 1837 btrfs_release_delayed_inode(delayed_node); 1838 } 1839 mutex_unlock(&delayed_node->mutex); 1840 } 1841 1842 void btrfs_kill_delayed_inode_items(struct inode *inode) 1843 { 1844 struct btrfs_delayed_node *delayed_node; 1845 1846 delayed_node = btrfs_get_delayed_node(inode); 1847 if (!delayed_node) 1848 return; 1849 1850 __btrfs_kill_delayed_node(delayed_node); 1851 btrfs_release_delayed_node(delayed_node); 1852 } 1853 1854 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) 1855 { 1856 u64 inode_id = 0; 1857 struct btrfs_delayed_node *delayed_nodes[8]; 1858 int i, n; 1859 1860 while (1) { 1861 spin_lock(&root->inode_lock); 1862 n = radix_tree_gang_lookup(&root->delayed_nodes_tree, 1863 (void **)delayed_nodes, inode_id, 1864 ARRAY_SIZE(delayed_nodes)); 1865 if (!n) { 1866 spin_unlock(&root->inode_lock); 1867 break; 1868 } 1869 1870 inode_id = delayed_nodes[n - 1]->inode_id + 1; 1871 1872 for (i = 0; i < n; i++) 1873 atomic_inc(&delayed_nodes[i]->refs); 1874 spin_unlock(&root->inode_lock); 1875 1876 for (i = 0; i < n; i++) { 1877 __btrfs_kill_delayed_node(delayed_nodes[i]); 1878 btrfs_release_delayed_node(delayed_nodes[i]); 1879 } 1880 } 1881 } 1882 1883 void btrfs_destroy_delayed_inodes(struct btrfs_root *root) 1884 { 1885 struct btrfs_delayed_root *delayed_root; 1886 struct btrfs_delayed_node *curr_node, *prev_node; 1887 1888 delayed_root = btrfs_get_delayed_root(root); 1889 1890 curr_node = btrfs_first_delayed_node(delayed_root); 1891 while (curr_node) { 1892 __btrfs_kill_delayed_node(curr_node); 1893 1894 prev_node = curr_node; 1895 curr_node = btrfs_next_delayed_node(curr_node); 1896 btrfs_release_delayed_node(prev_node); 1897 } 1898 } 1899 1900