xref: /openbmc/linux/fs/btrfs/delayed-inode.c (revision b802fb99ae964681d1754428f67970911e0476e9)
1 /*
2  * Copyright (C) 2011 Fujitsu.  All rights reserved.
3  * Written by Miao Xie <miaox@cn.fujitsu.com>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19 
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "ctree.h"
25 
26 #define BTRFS_DELAYED_WRITEBACK		512
27 #define BTRFS_DELAYED_BACKGROUND	128
28 #define BTRFS_DELAYED_BATCH		16
29 
30 static struct kmem_cache *delayed_node_cache;
31 
32 int __init btrfs_delayed_inode_init(void)
33 {
34 	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
35 					sizeof(struct btrfs_delayed_node),
36 					0,
37 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
38 					NULL);
39 	if (!delayed_node_cache)
40 		return -ENOMEM;
41 	return 0;
42 }
43 
44 void btrfs_delayed_inode_exit(void)
45 {
46 	if (delayed_node_cache)
47 		kmem_cache_destroy(delayed_node_cache);
48 }
49 
50 static inline void btrfs_init_delayed_node(
51 				struct btrfs_delayed_node *delayed_node,
52 				struct btrfs_root *root, u64 inode_id)
53 {
54 	delayed_node->root = root;
55 	delayed_node->inode_id = inode_id;
56 	atomic_set(&delayed_node->refs, 0);
57 	delayed_node->ins_root = RB_ROOT;
58 	delayed_node->del_root = RB_ROOT;
59 	mutex_init(&delayed_node->mutex);
60 	INIT_LIST_HEAD(&delayed_node->n_list);
61 	INIT_LIST_HEAD(&delayed_node->p_list);
62 }
63 
64 static inline int btrfs_is_continuous_delayed_item(
65 					struct btrfs_delayed_item *item1,
66 					struct btrfs_delayed_item *item2)
67 {
68 	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
69 	    item1->key.objectid == item2->key.objectid &&
70 	    item1->key.type == item2->key.type &&
71 	    item1->key.offset + 1 == item2->key.offset)
72 		return 1;
73 	return 0;
74 }
75 
76 static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
77 							struct btrfs_root *root)
78 {
79 	return root->fs_info->delayed_root;
80 }
81 
82 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
83 {
84 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
85 	struct btrfs_root *root = btrfs_inode->root;
86 	u64 ino = btrfs_ino(inode);
87 	struct btrfs_delayed_node *node;
88 
89 	node = ACCESS_ONCE(btrfs_inode->delayed_node);
90 	if (node) {
91 		atomic_inc(&node->refs);
92 		return node;
93 	}
94 
95 	spin_lock(&root->inode_lock);
96 	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
97 	if (node) {
98 		if (btrfs_inode->delayed_node) {
99 			atomic_inc(&node->refs);	/* can be accessed */
100 			BUG_ON(btrfs_inode->delayed_node != node);
101 			spin_unlock(&root->inode_lock);
102 			return node;
103 		}
104 		btrfs_inode->delayed_node = node;
105 		/* can be accessed and cached in the inode */
106 		atomic_add(2, &node->refs);
107 		spin_unlock(&root->inode_lock);
108 		return node;
109 	}
110 	spin_unlock(&root->inode_lock);
111 
112 	return NULL;
113 }
114 
115 /* Will return either the node or PTR_ERR(-ENOMEM) */
116 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
117 							struct inode *inode)
118 {
119 	struct btrfs_delayed_node *node;
120 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
121 	struct btrfs_root *root = btrfs_inode->root;
122 	u64 ino = btrfs_ino(inode);
123 	int ret;
124 
125 again:
126 	node = btrfs_get_delayed_node(inode);
127 	if (node)
128 		return node;
129 
130 	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
131 	if (!node)
132 		return ERR_PTR(-ENOMEM);
133 	btrfs_init_delayed_node(node, root, ino);
134 
135 	/* cached in the btrfs inode and can be accessed */
136 	atomic_add(2, &node->refs);
137 
138 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
139 	if (ret) {
140 		kmem_cache_free(delayed_node_cache, node);
141 		return ERR_PTR(ret);
142 	}
143 
144 	spin_lock(&root->inode_lock);
145 	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
146 	if (ret == -EEXIST) {
147 		spin_unlock(&root->inode_lock);
148 		kmem_cache_free(delayed_node_cache, node);
149 		radix_tree_preload_end();
150 		goto again;
151 	}
152 	btrfs_inode->delayed_node = node;
153 	spin_unlock(&root->inode_lock);
154 	radix_tree_preload_end();
155 
156 	return node;
157 }
158 
159 /*
160  * Call it when holding delayed_node->mutex
161  *
162  * If mod = 1, add this node into the prepared list.
163  */
164 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
165 				     struct btrfs_delayed_node *node,
166 				     int mod)
167 {
168 	spin_lock(&root->lock);
169 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
170 		if (!list_empty(&node->p_list))
171 			list_move_tail(&node->p_list, &root->prepare_list);
172 		else if (mod)
173 			list_add_tail(&node->p_list, &root->prepare_list);
174 	} else {
175 		list_add_tail(&node->n_list, &root->node_list);
176 		list_add_tail(&node->p_list, &root->prepare_list);
177 		atomic_inc(&node->refs);	/* inserted into list */
178 		root->nodes++;
179 		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
180 	}
181 	spin_unlock(&root->lock);
182 }
183 
184 /* Call it when holding delayed_node->mutex */
185 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
186 				       struct btrfs_delayed_node *node)
187 {
188 	spin_lock(&root->lock);
189 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
190 		root->nodes--;
191 		atomic_dec(&node->refs);	/* not in the list */
192 		list_del_init(&node->n_list);
193 		if (!list_empty(&node->p_list))
194 			list_del_init(&node->p_list);
195 		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
196 	}
197 	spin_unlock(&root->lock);
198 }
199 
200 static struct btrfs_delayed_node *btrfs_first_delayed_node(
201 			struct btrfs_delayed_root *delayed_root)
202 {
203 	struct list_head *p;
204 	struct btrfs_delayed_node *node = NULL;
205 
206 	spin_lock(&delayed_root->lock);
207 	if (list_empty(&delayed_root->node_list))
208 		goto out;
209 
210 	p = delayed_root->node_list.next;
211 	node = list_entry(p, struct btrfs_delayed_node, n_list);
212 	atomic_inc(&node->refs);
213 out:
214 	spin_unlock(&delayed_root->lock);
215 
216 	return node;
217 }
218 
219 static struct btrfs_delayed_node *btrfs_next_delayed_node(
220 						struct btrfs_delayed_node *node)
221 {
222 	struct btrfs_delayed_root *delayed_root;
223 	struct list_head *p;
224 	struct btrfs_delayed_node *next = NULL;
225 
226 	delayed_root = node->root->fs_info->delayed_root;
227 	spin_lock(&delayed_root->lock);
228 	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
229 		/* not in the list */
230 		if (list_empty(&delayed_root->node_list))
231 			goto out;
232 		p = delayed_root->node_list.next;
233 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
234 		goto out;
235 	else
236 		p = node->n_list.next;
237 
238 	next = list_entry(p, struct btrfs_delayed_node, n_list);
239 	atomic_inc(&next->refs);
240 out:
241 	spin_unlock(&delayed_root->lock);
242 
243 	return next;
244 }
245 
246 static void __btrfs_release_delayed_node(
247 				struct btrfs_delayed_node *delayed_node,
248 				int mod)
249 {
250 	struct btrfs_delayed_root *delayed_root;
251 
252 	if (!delayed_node)
253 		return;
254 
255 	delayed_root = delayed_node->root->fs_info->delayed_root;
256 
257 	mutex_lock(&delayed_node->mutex);
258 	if (delayed_node->count)
259 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
260 	else
261 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
262 	mutex_unlock(&delayed_node->mutex);
263 
264 	if (atomic_dec_and_test(&delayed_node->refs)) {
265 		bool free = false;
266 		struct btrfs_root *root = delayed_node->root;
267 		spin_lock(&root->inode_lock);
268 		if (atomic_read(&delayed_node->refs) == 0) {
269 			radix_tree_delete(&root->delayed_nodes_tree,
270 					  delayed_node->inode_id);
271 			free = true;
272 		}
273 		spin_unlock(&root->inode_lock);
274 		if (free)
275 			kmem_cache_free(delayed_node_cache, delayed_node);
276 	}
277 }
278 
279 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
280 {
281 	__btrfs_release_delayed_node(node, 0);
282 }
283 
284 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
285 					struct btrfs_delayed_root *delayed_root)
286 {
287 	struct list_head *p;
288 	struct btrfs_delayed_node *node = NULL;
289 
290 	spin_lock(&delayed_root->lock);
291 	if (list_empty(&delayed_root->prepare_list))
292 		goto out;
293 
294 	p = delayed_root->prepare_list.next;
295 	list_del_init(p);
296 	node = list_entry(p, struct btrfs_delayed_node, p_list);
297 	atomic_inc(&node->refs);
298 out:
299 	spin_unlock(&delayed_root->lock);
300 
301 	return node;
302 }
303 
304 static inline void btrfs_release_prepared_delayed_node(
305 					struct btrfs_delayed_node *node)
306 {
307 	__btrfs_release_delayed_node(node, 1);
308 }
309 
310 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
311 {
312 	struct btrfs_delayed_item *item;
313 	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
314 	if (item) {
315 		item->data_len = data_len;
316 		item->ins_or_del = 0;
317 		item->bytes_reserved = 0;
318 		item->delayed_node = NULL;
319 		atomic_set(&item->refs, 1);
320 	}
321 	return item;
322 }
323 
324 /*
325  * __btrfs_lookup_delayed_item - look up the delayed item by key
326  * @delayed_node: pointer to the delayed node
327  * @key:	  the key to look up
328  * @prev:	  used to store the prev item if the right item isn't found
329  * @next:	  used to store the next item if the right item isn't found
330  *
331  * Note: if we don't find the right item, we will return the prev item and
332  * the next item.
333  */
334 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
335 				struct rb_root *root,
336 				struct btrfs_key *key,
337 				struct btrfs_delayed_item **prev,
338 				struct btrfs_delayed_item **next)
339 {
340 	struct rb_node *node, *prev_node = NULL;
341 	struct btrfs_delayed_item *delayed_item = NULL;
342 	int ret = 0;
343 
344 	node = root->rb_node;
345 
346 	while (node) {
347 		delayed_item = rb_entry(node, struct btrfs_delayed_item,
348 					rb_node);
349 		prev_node = node;
350 		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
351 		if (ret < 0)
352 			node = node->rb_right;
353 		else if (ret > 0)
354 			node = node->rb_left;
355 		else
356 			return delayed_item;
357 	}
358 
359 	if (prev) {
360 		if (!prev_node)
361 			*prev = NULL;
362 		else if (ret < 0)
363 			*prev = delayed_item;
364 		else if ((node = rb_prev(prev_node)) != NULL) {
365 			*prev = rb_entry(node, struct btrfs_delayed_item,
366 					 rb_node);
367 		} else
368 			*prev = NULL;
369 	}
370 
371 	if (next) {
372 		if (!prev_node)
373 			*next = NULL;
374 		else if (ret > 0)
375 			*next = delayed_item;
376 		else if ((node = rb_next(prev_node)) != NULL) {
377 			*next = rb_entry(node, struct btrfs_delayed_item,
378 					 rb_node);
379 		} else
380 			*next = NULL;
381 	}
382 	return NULL;
383 }
384 
385 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
386 					struct btrfs_delayed_node *delayed_node,
387 					struct btrfs_key *key)
388 {
389 	struct btrfs_delayed_item *item;
390 
391 	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
392 					   NULL, NULL);
393 	return item;
394 }
395 
396 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
397 				    struct btrfs_delayed_item *ins,
398 				    int action)
399 {
400 	struct rb_node **p, *node;
401 	struct rb_node *parent_node = NULL;
402 	struct rb_root *root;
403 	struct btrfs_delayed_item *item;
404 	int cmp;
405 
406 	if (action == BTRFS_DELAYED_INSERTION_ITEM)
407 		root = &delayed_node->ins_root;
408 	else if (action == BTRFS_DELAYED_DELETION_ITEM)
409 		root = &delayed_node->del_root;
410 	else
411 		BUG();
412 	p = &root->rb_node;
413 	node = &ins->rb_node;
414 
415 	while (*p) {
416 		parent_node = *p;
417 		item = rb_entry(parent_node, struct btrfs_delayed_item,
418 				 rb_node);
419 
420 		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
421 		if (cmp < 0)
422 			p = &(*p)->rb_right;
423 		else if (cmp > 0)
424 			p = &(*p)->rb_left;
425 		else
426 			return -EEXIST;
427 	}
428 
429 	rb_link_node(node, parent_node, p);
430 	rb_insert_color(node, root);
431 	ins->delayed_node = delayed_node;
432 	ins->ins_or_del = action;
433 
434 	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
435 	    action == BTRFS_DELAYED_INSERTION_ITEM &&
436 	    ins->key.offset >= delayed_node->index_cnt)
437 			delayed_node->index_cnt = ins->key.offset + 1;
438 
439 	delayed_node->count++;
440 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
441 	return 0;
442 }
443 
444 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
445 					      struct btrfs_delayed_item *item)
446 {
447 	return __btrfs_add_delayed_item(node, item,
448 					BTRFS_DELAYED_INSERTION_ITEM);
449 }
450 
451 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
452 					     struct btrfs_delayed_item *item)
453 {
454 	return __btrfs_add_delayed_item(node, item,
455 					BTRFS_DELAYED_DELETION_ITEM);
456 }
457 
458 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
459 {
460 	int seq = atomic_inc_return(&delayed_root->items_seq);
461 
462 	/*
463 	 * atomic_dec_return implies a barrier for waitqueue_active
464 	 */
465 	if ((atomic_dec_return(&delayed_root->items) <
466 	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
467 	    waitqueue_active(&delayed_root->wait))
468 		wake_up(&delayed_root->wait);
469 }
470 
471 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
472 {
473 	struct rb_root *root;
474 	struct btrfs_delayed_root *delayed_root;
475 
476 	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
477 
478 	BUG_ON(!delayed_root);
479 	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
480 	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
481 
482 	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
483 		root = &delayed_item->delayed_node->ins_root;
484 	else
485 		root = &delayed_item->delayed_node->del_root;
486 
487 	rb_erase(&delayed_item->rb_node, root);
488 	delayed_item->delayed_node->count--;
489 
490 	finish_one_item(delayed_root);
491 }
492 
493 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
494 {
495 	if (item) {
496 		__btrfs_remove_delayed_item(item);
497 		if (atomic_dec_and_test(&item->refs))
498 			kfree(item);
499 	}
500 }
501 
502 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
503 					struct btrfs_delayed_node *delayed_node)
504 {
505 	struct rb_node *p;
506 	struct btrfs_delayed_item *item = NULL;
507 
508 	p = rb_first(&delayed_node->ins_root);
509 	if (p)
510 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
511 
512 	return item;
513 }
514 
515 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
516 					struct btrfs_delayed_node *delayed_node)
517 {
518 	struct rb_node *p;
519 	struct btrfs_delayed_item *item = NULL;
520 
521 	p = rb_first(&delayed_node->del_root);
522 	if (p)
523 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
524 
525 	return item;
526 }
527 
528 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
529 						struct btrfs_delayed_item *item)
530 {
531 	struct rb_node *p;
532 	struct btrfs_delayed_item *next = NULL;
533 
534 	p = rb_next(&item->rb_node);
535 	if (p)
536 		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
537 
538 	return next;
539 }
540 
541 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
542 					       struct btrfs_root *root,
543 					       struct btrfs_delayed_item *item)
544 {
545 	struct btrfs_block_rsv *src_rsv;
546 	struct btrfs_block_rsv *dst_rsv;
547 	u64 num_bytes;
548 	int ret;
549 
550 	if (!trans->bytes_reserved)
551 		return 0;
552 
553 	src_rsv = trans->block_rsv;
554 	dst_rsv = &root->fs_info->delayed_block_rsv;
555 
556 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
557 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
558 	if (!ret) {
559 		trace_btrfs_space_reservation(root->fs_info, "delayed_item",
560 					      item->key.objectid,
561 					      num_bytes, 1);
562 		item->bytes_reserved = num_bytes;
563 	}
564 
565 	return ret;
566 }
567 
568 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
569 						struct btrfs_delayed_item *item)
570 {
571 	struct btrfs_block_rsv *rsv;
572 
573 	if (!item->bytes_reserved)
574 		return;
575 
576 	rsv = &root->fs_info->delayed_block_rsv;
577 	trace_btrfs_space_reservation(root->fs_info, "delayed_item",
578 				      item->key.objectid, item->bytes_reserved,
579 				      0);
580 	btrfs_block_rsv_release(root, rsv,
581 				item->bytes_reserved);
582 }
583 
584 static int btrfs_delayed_inode_reserve_metadata(
585 					struct btrfs_trans_handle *trans,
586 					struct btrfs_root *root,
587 					struct inode *inode,
588 					struct btrfs_delayed_node *node)
589 {
590 	struct btrfs_block_rsv *src_rsv;
591 	struct btrfs_block_rsv *dst_rsv;
592 	u64 num_bytes;
593 	int ret;
594 	bool release = false;
595 
596 	src_rsv = trans->block_rsv;
597 	dst_rsv = &root->fs_info->delayed_block_rsv;
598 
599 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
600 
601 	/*
602 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
603 	 * which doesn't reserve space for speed.  This is a problem since we
604 	 * still need to reserve space for this update, so try to reserve the
605 	 * space.
606 	 *
607 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
608 	 * we're accounted for.
609 	 */
610 	if (!src_rsv || (!trans->bytes_reserved &&
611 			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
612 		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
613 					  BTRFS_RESERVE_NO_FLUSH);
614 		/*
615 		 * Since we're under a transaction reserve_metadata_bytes could
616 		 * try to commit the transaction which will make it return
617 		 * EAGAIN to make us stop the transaction we have, so return
618 		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
619 		 */
620 		if (ret == -EAGAIN)
621 			ret = -ENOSPC;
622 		if (!ret) {
623 			node->bytes_reserved = num_bytes;
624 			trace_btrfs_space_reservation(root->fs_info,
625 						      "delayed_inode",
626 						      btrfs_ino(inode),
627 						      num_bytes, 1);
628 		}
629 		return ret;
630 	} else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
631 		spin_lock(&BTRFS_I(inode)->lock);
632 		if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
633 				       &BTRFS_I(inode)->runtime_flags)) {
634 			spin_unlock(&BTRFS_I(inode)->lock);
635 			release = true;
636 			goto migrate;
637 		}
638 		spin_unlock(&BTRFS_I(inode)->lock);
639 
640 		/* Ok we didn't have space pre-reserved.  This shouldn't happen
641 		 * too often but it can happen if we do delalloc to an existing
642 		 * inode which gets dirtied because of the time update, and then
643 		 * isn't touched again until after the transaction commits and
644 		 * then we try to write out the data.  First try to be nice and
645 		 * reserve something strictly for us.  If not be a pain and try
646 		 * to steal from the delalloc block rsv.
647 		 */
648 		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
649 					  BTRFS_RESERVE_NO_FLUSH);
650 		if (!ret)
651 			goto out;
652 
653 		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
654 		if (!WARN_ON(ret))
655 			goto out;
656 
657 		/*
658 		 * Ok this is a problem, let's just steal from the global rsv
659 		 * since this really shouldn't happen that often.
660 		 */
661 		ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
662 					      dst_rsv, num_bytes);
663 		goto out;
664 	}
665 
666 migrate:
667 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
668 
669 out:
670 	/*
671 	 * Migrate only takes a reservation, it doesn't touch the size of the
672 	 * block_rsv.  This is to simplify people who don't normally have things
673 	 * migrated from their block rsv.  If they go to release their
674 	 * reservation, that will decrease the size as well, so if migrate
675 	 * reduced size we'd end up with a negative size.  But for the
676 	 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
677 	 * but we could in fact do this reserve/migrate dance several times
678 	 * between the time we did the original reservation and we'd clean it
679 	 * up.  So to take care of this, release the space for the meta
680 	 * reservation here.  I think it may be time for a documentation page on
681 	 * how block rsvs. work.
682 	 */
683 	if (!ret) {
684 		trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
685 					      btrfs_ino(inode), num_bytes, 1);
686 		node->bytes_reserved = num_bytes;
687 	}
688 
689 	if (release) {
690 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
691 					      btrfs_ino(inode), num_bytes, 0);
692 		btrfs_block_rsv_release(root, src_rsv, num_bytes);
693 	}
694 
695 	return ret;
696 }
697 
698 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
699 						struct btrfs_delayed_node *node)
700 {
701 	struct btrfs_block_rsv *rsv;
702 
703 	if (!node->bytes_reserved)
704 		return;
705 
706 	rsv = &root->fs_info->delayed_block_rsv;
707 	trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
708 				      node->inode_id, node->bytes_reserved, 0);
709 	btrfs_block_rsv_release(root, rsv,
710 				node->bytes_reserved);
711 	node->bytes_reserved = 0;
712 }
713 
714 /*
715  * This helper will insert some continuous items into the same leaf according
716  * to the free space of the leaf.
717  */
718 static int btrfs_batch_insert_items(struct btrfs_root *root,
719 				    struct btrfs_path *path,
720 				    struct btrfs_delayed_item *item)
721 {
722 	struct btrfs_delayed_item *curr, *next;
723 	int free_space;
724 	int total_data_size = 0, total_size = 0;
725 	struct extent_buffer *leaf;
726 	char *data_ptr;
727 	struct btrfs_key *keys;
728 	u32 *data_size;
729 	struct list_head head;
730 	int slot;
731 	int nitems;
732 	int i;
733 	int ret = 0;
734 
735 	BUG_ON(!path->nodes[0]);
736 
737 	leaf = path->nodes[0];
738 	free_space = btrfs_leaf_free_space(root, leaf);
739 	INIT_LIST_HEAD(&head);
740 
741 	next = item;
742 	nitems = 0;
743 
744 	/*
745 	 * count the number of the continuous items that we can insert in batch
746 	 */
747 	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
748 	       free_space) {
749 		total_data_size += next->data_len;
750 		total_size += next->data_len + sizeof(struct btrfs_item);
751 		list_add_tail(&next->tree_list, &head);
752 		nitems++;
753 
754 		curr = next;
755 		next = __btrfs_next_delayed_item(curr);
756 		if (!next)
757 			break;
758 
759 		if (!btrfs_is_continuous_delayed_item(curr, next))
760 			break;
761 	}
762 
763 	if (!nitems) {
764 		ret = 0;
765 		goto out;
766 	}
767 
768 	/*
769 	 * we need allocate some memory space, but it might cause the task
770 	 * to sleep, so we set all locked nodes in the path to blocking locks
771 	 * first.
772 	 */
773 	btrfs_set_path_blocking(path);
774 
775 	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
776 	if (!keys) {
777 		ret = -ENOMEM;
778 		goto out;
779 	}
780 
781 	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
782 	if (!data_size) {
783 		ret = -ENOMEM;
784 		goto error;
785 	}
786 
787 	/* get keys of all the delayed items */
788 	i = 0;
789 	list_for_each_entry(next, &head, tree_list) {
790 		keys[i] = next->key;
791 		data_size[i] = next->data_len;
792 		i++;
793 	}
794 
795 	/* reset all the locked nodes in the patch to spinning locks. */
796 	btrfs_clear_path_blocking(path, NULL, 0);
797 
798 	/* insert the keys of the items */
799 	setup_items_for_insert(root, path, keys, data_size,
800 			       total_data_size, total_size, nitems);
801 
802 	/* insert the dir index items */
803 	slot = path->slots[0];
804 	list_for_each_entry_safe(curr, next, &head, tree_list) {
805 		data_ptr = btrfs_item_ptr(leaf, slot, char);
806 		write_extent_buffer(leaf, &curr->data,
807 				    (unsigned long)data_ptr,
808 				    curr->data_len);
809 		slot++;
810 
811 		btrfs_delayed_item_release_metadata(root, curr);
812 
813 		list_del(&curr->tree_list);
814 		btrfs_release_delayed_item(curr);
815 	}
816 
817 error:
818 	kfree(data_size);
819 	kfree(keys);
820 out:
821 	return ret;
822 }
823 
824 /*
825  * This helper can just do simple insertion that needn't extend item for new
826  * data, such as directory name index insertion, inode insertion.
827  */
828 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
829 				     struct btrfs_root *root,
830 				     struct btrfs_path *path,
831 				     struct btrfs_delayed_item *delayed_item)
832 {
833 	struct extent_buffer *leaf;
834 	char *ptr;
835 	int ret;
836 
837 	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
838 				      delayed_item->data_len);
839 	if (ret < 0 && ret != -EEXIST)
840 		return ret;
841 
842 	leaf = path->nodes[0];
843 
844 	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
845 
846 	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
847 			    delayed_item->data_len);
848 	btrfs_mark_buffer_dirty(leaf);
849 
850 	btrfs_delayed_item_release_metadata(root, delayed_item);
851 	return 0;
852 }
853 
854 /*
855  * we insert an item first, then if there are some continuous items, we try
856  * to insert those items into the same leaf.
857  */
858 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
859 				      struct btrfs_path *path,
860 				      struct btrfs_root *root,
861 				      struct btrfs_delayed_node *node)
862 {
863 	struct btrfs_delayed_item *curr, *prev;
864 	int ret = 0;
865 
866 do_again:
867 	mutex_lock(&node->mutex);
868 	curr = __btrfs_first_delayed_insertion_item(node);
869 	if (!curr)
870 		goto insert_end;
871 
872 	ret = btrfs_insert_delayed_item(trans, root, path, curr);
873 	if (ret < 0) {
874 		btrfs_release_path(path);
875 		goto insert_end;
876 	}
877 
878 	prev = curr;
879 	curr = __btrfs_next_delayed_item(prev);
880 	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
881 		/* insert the continuous items into the same leaf */
882 		path->slots[0]++;
883 		btrfs_batch_insert_items(root, path, curr);
884 	}
885 	btrfs_release_delayed_item(prev);
886 	btrfs_mark_buffer_dirty(path->nodes[0]);
887 
888 	btrfs_release_path(path);
889 	mutex_unlock(&node->mutex);
890 	goto do_again;
891 
892 insert_end:
893 	mutex_unlock(&node->mutex);
894 	return ret;
895 }
896 
897 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
898 				    struct btrfs_root *root,
899 				    struct btrfs_path *path,
900 				    struct btrfs_delayed_item *item)
901 {
902 	struct btrfs_delayed_item *curr, *next;
903 	struct extent_buffer *leaf;
904 	struct btrfs_key key;
905 	struct list_head head;
906 	int nitems, i, last_item;
907 	int ret = 0;
908 
909 	BUG_ON(!path->nodes[0]);
910 
911 	leaf = path->nodes[0];
912 
913 	i = path->slots[0];
914 	last_item = btrfs_header_nritems(leaf) - 1;
915 	if (i > last_item)
916 		return -ENOENT;	/* FIXME: Is errno suitable? */
917 
918 	next = item;
919 	INIT_LIST_HEAD(&head);
920 	btrfs_item_key_to_cpu(leaf, &key, i);
921 	nitems = 0;
922 	/*
923 	 * count the number of the dir index items that we can delete in batch
924 	 */
925 	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
926 		list_add_tail(&next->tree_list, &head);
927 		nitems++;
928 
929 		curr = next;
930 		next = __btrfs_next_delayed_item(curr);
931 		if (!next)
932 			break;
933 
934 		if (!btrfs_is_continuous_delayed_item(curr, next))
935 			break;
936 
937 		i++;
938 		if (i > last_item)
939 			break;
940 		btrfs_item_key_to_cpu(leaf, &key, i);
941 	}
942 
943 	if (!nitems)
944 		return 0;
945 
946 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
947 	if (ret)
948 		goto out;
949 
950 	list_for_each_entry_safe(curr, next, &head, tree_list) {
951 		btrfs_delayed_item_release_metadata(root, curr);
952 		list_del(&curr->tree_list);
953 		btrfs_release_delayed_item(curr);
954 	}
955 
956 out:
957 	return ret;
958 }
959 
960 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
961 				      struct btrfs_path *path,
962 				      struct btrfs_root *root,
963 				      struct btrfs_delayed_node *node)
964 {
965 	struct btrfs_delayed_item *curr, *prev;
966 	int ret = 0;
967 
968 do_again:
969 	mutex_lock(&node->mutex);
970 	curr = __btrfs_first_delayed_deletion_item(node);
971 	if (!curr)
972 		goto delete_fail;
973 
974 	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
975 	if (ret < 0)
976 		goto delete_fail;
977 	else if (ret > 0) {
978 		/*
979 		 * can't find the item which the node points to, so this node
980 		 * is invalid, just drop it.
981 		 */
982 		prev = curr;
983 		curr = __btrfs_next_delayed_item(prev);
984 		btrfs_release_delayed_item(prev);
985 		ret = 0;
986 		btrfs_release_path(path);
987 		if (curr) {
988 			mutex_unlock(&node->mutex);
989 			goto do_again;
990 		} else
991 			goto delete_fail;
992 	}
993 
994 	btrfs_batch_delete_items(trans, root, path, curr);
995 	btrfs_release_path(path);
996 	mutex_unlock(&node->mutex);
997 	goto do_again;
998 
999 delete_fail:
1000 	btrfs_release_path(path);
1001 	mutex_unlock(&node->mutex);
1002 	return ret;
1003 }
1004 
1005 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
1006 {
1007 	struct btrfs_delayed_root *delayed_root;
1008 
1009 	if (delayed_node &&
1010 	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1011 		BUG_ON(!delayed_node->root);
1012 		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1013 		delayed_node->count--;
1014 
1015 		delayed_root = delayed_node->root->fs_info->delayed_root;
1016 		finish_one_item(delayed_root);
1017 	}
1018 }
1019 
1020 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1021 {
1022 	struct btrfs_delayed_root *delayed_root;
1023 
1024 	ASSERT(delayed_node->root);
1025 	clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1026 	delayed_node->count--;
1027 
1028 	delayed_root = delayed_node->root->fs_info->delayed_root;
1029 	finish_one_item(delayed_root);
1030 }
1031 
1032 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1033 					struct btrfs_root *root,
1034 					struct btrfs_path *path,
1035 					struct btrfs_delayed_node *node)
1036 {
1037 	struct btrfs_key key;
1038 	struct btrfs_inode_item *inode_item;
1039 	struct extent_buffer *leaf;
1040 	int mod;
1041 	int ret;
1042 
1043 	key.objectid = node->inode_id;
1044 	key.type = BTRFS_INODE_ITEM_KEY;
1045 	key.offset = 0;
1046 
1047 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1048 		mod = -1;
1049 	else
1050 		mod = 1;
1051 
1052 	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1053 	if (ret > 0) {
1054 		btrfs_release_path(path);
1055 		return -ENOENT;
1056 	} else if (ret < 0) {
1057 		return ret;
1058 	}
1059 
1060 	leaf = path->nodes[0];
1061 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1062 				    struct btrfs_inode_item);
1063 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1064 			    sizeof(struct btrfs_inode_item));
1065 	btrfs_mark_buffer_dirty(leaf);
1066 
1067 	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1068 		goto no_iref;
1069 
1070 	path->slots[0]++;
1071 	if (path->slots[0] >= btrfs_header_nritems(leaf))
1072 		goto search;
1073 again:
1074 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1075 	if (key.objectid != node->inode_id)
1076 		goto out;
1077 
1078 	if (key.type != BTRFS_INODE_REF_KEY &&
1079 	    key.type != BTRFS_INODE_EXTREF_KEY)
1080 		goto out;
1081 
1082 	/*
1083 	 * Delayed iref deletion is for the inode who has only one link,
1084 	 * so there is only one iref. The case that several irefs are
1085 	 * in the same item doesn't exist.
1086 	 */
1087 	btrfs_del_item(trans, root, path);
1088 out:
1089 	btrfs_release_delayed_iref(node);
1090 no_iref:
1091 	btrfs_release_path(path);
1092 err_out:
1093 	btrfs_delayed_inode_release_metadata(root, node);
1094 	btrfs_release_delayed_inode(node);
1095 
1096 	return ret;
1097 
1098 search:
1099 	btrfs_release_path(path);
1100 
1101 	key.type = BTRFS_INODE_EXTREF_KEY;
1102 	key.offset = -1;
1103 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1104 	if (ret < 0)
1105 		goto err_out;
1106 	ASSERT(ret);
1107 
1108 	ret = 0;
1109 	leaf = path->nodes[0];
1110 	path->slots[0]--;
1111 	goto again;
1112 }
1113 
1114 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1115 					     struct btrfs_root *root,
1116 					     struct btrfs_path *path,
1117 					     struct btrfs_delayed_node *node)
1118 {
1119 	int ret;
1120 
1121 	mutex_lock(&node->mutex);
1122 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1123 		mutex_unlock(&node->mutex);
1124 		return 0;
1125 	}
1126 
1127 	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1128 	mutex_unlock(&node->mutex);
1129 	return ret;
1130 }
1131 
1132 static inline int
1133 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1134 				   struct btrfs_path *path,
1135 				   struct btrfs_delayed_node *node)
1136 {
1137 	int ret;
1138 
1139 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1140 	if (ret)
1141 		return ret;
1142 
1143 	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1144 	if (ret)
1145 		return ret;
1146 
1147 	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1148 	return ret;
1149 }
1150 
1151 /*
1152  * Called when committing the transaction.
1153  * Returns 0 on success.
1154  * Returns < 0 on error and returns with an aborted transaction with any
1155  * outstanding delayed items cleaned up.
1156  */
1157 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1158 				     struct btrfs_root *root, int nr)
1159 {
1160 	struct btrfs_delayed_root *delayed_root;
1161 	struct btrfs_delayed_node *curr_node, *prev_node;
1162 	struct btrfs_path *path;
1163 	struct btrfs_block_rsv *block_rsv;
1164 	int ret = 0;
1165 	bool count = (nr > 0);
1166 
1167 	if (trans->aborted)
1168 		return -EIO;
1169 
1170 	path = btrfs_alloc_path();
1171 	if (!path)
1172 		return -ENOMEM;
1173 	path->leave_spinning = 1;
1174 
1175 	block_rsv = trans->block_rsv;
1176 	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1177 
1178 	delayed_root = btrfs_get_delayed_root(root);
1179 
1180 	curr_node = btrfs_first_delayed_node(delayed_root);
1181 	while (curr_node && (!count || (count && nr--))) {
1182 		ret = __btrfs_commit_inode_delayed_items(trans, path,
1183 							 curr_node);
1184 		if (ret) {
1185 			btrfs_release_delayed_node(curr_node);
1186 			curr_node = NULL;
1187 			btrfs_abort_transaction(trans, root, ret);
1188 			break;
1189 		}
1190 
1191 		prev_node = curr_node;
1192 		curr_node = btrfs_next_delayed_node(curr_node);
1193 		btrfs_release_delayed_node(prev_node);
1194 	}
1195 
1196 	if (curr_node)
1197 		btrfs_release_delayed_node(curr_node);
1198 	btrfs_free_path(path);
1199 	trans->block_rsv = block_rsv;
1200 
1201 	return ret;
1202 }
1203 
1204 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1205 			    struct btrfs_root *root)
1206 {
1207 	return __btrfs_run_delayed_items(trans, root, -1);
1208 }
1209 
1210 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1211 			       struct btrfs_root *root, int nr)
1212 {
1213 	return __btrfs_run_delayed_items(trans, root, nr);
1214 }
1215 
1216 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1217 				     struct inode *inode)
1218 {
1219 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1220 	struct btrfs_path *path;
1221 	struct btrfs_block_rsv *block_rsv;
1222 	int ret;
1223 
1224 	if (!delayed_node)
1225 		return 0;
1226 
1227 	mutex_lock(&delayed_node->mutex);
1228 	if (!delayed_node->count) {
1229 		mutex_unlock(&delayed_node->mutex);
1230 		btrfs_release_delayed_node(delayed_node);
1231 		return 0;
1232 	}
1233 	mutex_unlock(&delayed_node->mutex);
1234 
1235 	path = btrfs_alloc_path();
1236 	if (!path) {
1237 		btrfs_release_delayed_node(delayed_node);
1238 		return -ENOMEM;
1239 	}
1240 	path->leave_spinning = 1;
1241 
1242 	block_rsv = trans->block_rsv;
1243 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1244 
1245 	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1246 
1247 	btrfs_release_delayed_node(delayed_node);
1248 	btrfs_free_path(path);
1249 	trans->block_rsv = block_rsv;
1250 
1251 	return ret;
1252 }
1253 
1254 int btrfs_commit_inode_delayed_inode(struct inode *inode)
1255 {
1256 	struct btrfs_trans_handle *trans;
1257 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1258 	struct btrfs_path *path;
1259 	struct btrfs_block_rsv *block_rsv;
1260 	int ret;
1261 
1262 	if (!delayed_node)
1263 		return 0;
1264 
1265 	mutex_lock(&delayed_node->mutex);
1266 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1267 		mutex_unlock(&delayed_node->mutex);
1268 		btrfs_release_delayed_node(delayed_node);
1269 		return 0;
1270 	}
1271 	mutex_unlock(&delayed_node->mutex);
1272 
1273 	trans = btrfs_join_transaction(delayed_node->root);
1274 	if (IS_ERR(trans)) {
1275 		ret = PTR_ERR(trans);
1276 		goto out;
1277 	}
1278 
1279 	path = btrfs_alloc_path();
1280 	if (!path) {
1281 		ret = -ENOMEM;
1282 		goto trans_out;
1283 	}
1284 	path->leave_spinning = 1;
1285 
1286 	block_rsv = trans->block_rsv;
1287 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1288 
1289 	mutex_lock(&delayed_node->mutex);
1290 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1291 		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1292 						   path, delayed_node);
1293 	else
1294 		ret = 0;
1295 	mutex_unlock(&delayed_node->mutex);
1296 
1297 	btrfs_free_path(path);
1298 	trans->block_rsv = block_rsv;
1299 trans_out:
1300 	btrfs_end_transaction(trans, delayed_node->root);
1301 	btrfs_btree_balance_dirty(delayed_node->root);
1302 out:
1303 	btrfs_release_delayed_node(delayed_node);
1304 
1305 	return ret;
1306 }
1307 
1308 void btrfs_remove_delayed_node(struct inode *inode)
1309 {
1310 	struct btrfs_delayed_node *delayed_node;
1311 
1312 	delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1313 	if (!delayed_node)
1314 		return;
1315 
1316 	BTRFS_I(inode)->delayed_node = NULL;
1317 	btrfs_release_delayed_node(delayed_node);
1318 }
1319 
1320 struct btrfs_async_delayed_work {
1321 	struct btrfs_delayed_root *delayed_root;
1322 	int nr;
1323 	struct btrfs_work work;
1324 };
1325 
1326 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1327 {
1328 	struct btrfs_async_delayed_work *async_work;
1329 	struct btrfs_delayed_root *delayed_root;
1330 	struct btrfs_trans_handle *trans;
1331 	struct btrfs_path *path;
1332 	struct btrfs_delayed_node *delayed_node = NULL;
1333 	struct btrfs_root *root;
1334 	struct btrfs_block_rsv *block_rsv;
1335 	int total_done = 0;
1336 
1337 	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1338 	delayed_root = async_work->delayed_root;
1339 
1340 	path = btrfs_alloc_path();
1341 	if (!path)
1342 		goto out;
1343 
1344 again:
1345 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1346 		goto free_path;
1347 
1348 	delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1349 	if (!delayed_node)
1350 		goto free_path;
1351 
1352 	path->leave_spinning = 1;
1353 	root = delayed_node->root;
1354 
1355 	trans = btrfs_join_transaction(root);
1356 	if (IS_ERR(trans))
1357 		goto release_path;
1358 
1359 	block_rsv = trans->block_rsv;
1360 	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1361 
1362 	__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1363 
1364 	trans->block_rsv = block_rsv;
1365 	btrfs_end_transaction(trans, root);
1366 	btrfs_btree_balance_dirty_nodelay(root);
1367 
1368 release_path:
1369 	btrfs_release_path(path);
1370 	total_done++;
1371 
1372 	btrfs_release_prepared_delayed_node(delayed_node);
1373 	if (async_work->nr == 0 || total_done < async_work->nr)
1374 		goto again;
1375 
1376 free_path:
1377 	btrfs_free_path(path);
1378 out:
1379 	wake_up(&delayed_root->wait);
1380 	kfree(async_work);
1381 }
1382 
1383 
1384 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1385 				     struct btrfs_fs_info *fs_info, int nr)
1386 {
1387 	struct btrfs_async_delayed_work *async_work;
1388 
1389 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1390 		return 0;
1391 
1392 	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1393 	if (!async_work)
1394 		return -ENOMEM;
1395 
1396 	async_work->delayed_root = delayed_root;
1397 	btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1398 			btrfs_async_run_delayed_root, NULL, NULL);
1399 	async_work->nr = nr;
1400 
1401 	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1402 	return 0;
1403 }
1404 
1405 void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1406 {
1407 	struct btrfs_delayed_root *delayed_root;
1408 	delayed_root = btrfs_get_delayed_root(root);
1409 	WARN_ON(btrfs_first_delayed_node(delayed_root));
1410 }
1411 
1412 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1413 {
1414 	int val = atomic_read(&delayed_root->items_seq);
1415 
1416 	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1417 		return 1;
1418 
1419 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1420 		return 1;
1421 
1422 	return 0;
1423 }
1424 
1425 void btrfs_balance_delayed_items(struct btrfs_root *root)
1426 {
1427 	struct btrfs_delayed_root *delayed_root;
1428 	struct btrfs_fs_info *fs_info = root->fs_info;
1429 
1430 	delayed_root = btrfs_get_delayed_root(root);
1431 
1432 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1433 		return;
1434 
1435 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1436 		int seq;
1437 		int ret;
1438 
1439 		seq = atomic_read(&delayed_root->items_seq);
1440 
1441 		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1442 		if (ret)
1443 			return;
1444 
1445 		wait_event_interruptible(delayed_root->wait,
1446 					 could_end_wait(delayed_root, seq));
1447 		return;
1448 	}
1449 
1450 	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1451 }
1452 
1453 /* Will return 0 or -ENOMEM */
1454 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1455 				   struct btrfs_root *root, const char *name,
1456 				   int name_len, struct inode *dir,
1457 				   struct btrfs_disk_key *disk_key, u8 type,
1458 				   u64 index)
1459 {
1460 	struct btrfs_delayed_node *delayed_node;
1461 	struct btrfs_delayed_item *delayed_item;
1462 	struct btrfs_dir_item *dir_item;
1463 	int ret;
1464 
1465 	delayed_node = btrfs_get_or_create_delayed_node(dir);
1466 	if (IS_ERR(delayed_node))
1467 		return PTR_ERR(delayed_node);
1468 
1469 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1470 	if (!delayed_item) {
1471 		ret = -ENOMEM;
1472 		goto release_node;
1473 	}
1474 
1475 	delayed_item->key.objectid = btrfs_ino(dir);
1476 	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1477 	delayed_item->key.offset = index;
1478 
1479 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1480 	dir_item->location = *disk_key;
1481 	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1482 	btrfs_set_stack_dir_data_len(dir_item, 0);
1483 	btrfs_set_stack_dir_name_len(dir_item, name_len);
1484 	btrfs_set_stack_dir_type(dir_item, type);
1485 	memcpy((char *)(dir_item + 1), name, name_len);
1486 
1487 	ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1488 	/*
1489 	 * we have reserved enough space when we start a new transaction,
1490 	 * so reserving metadata failure is impossible
1491 	 */
1492 	BUG_ON(ret);
1493 
1494 
1495 	mutex_lock(&delayed_node->mutex);
1496 	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1497 	if (unlikely(ret)) {
1498 		btrfs_err(root->fs_info, "err add delayed dir index item(name: %.*s) "
1499 				"into the insertion tree of the delayed node"
1500 				"(root id: %llu, inode id: %llu, errno: %d)",
1501 				name_len, name, delayed_node->root->objectid,
1502 				delayed_node->inode_id, ret);
1503 		BUG();
1504 	}
1505 	mutex_unlock(&delayed_node->mutex);
1506 
1507 release_node:
1508 	btrfs_release_delayed_node(delayed_node);
1509 	return ret;
1510 }
1511 
1512 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1513 					       struct btrfs_delayed_node *node,
1514 					       struct btrfs_key *key)
1515 {
1516 	struct btrfs_delayed_item *item;
1517 
1518 	mutex_lock(&node->mutex);
1519 	item = __btrfs_lookup_delayed_insertion_item(node, key);
1520 	if (!item) {
1521 		mutex_unlock(&node->mutex);
1522 		return 1;
1523 	}
1524 
1525 	btrfs_delayed_item_release_metadata(root, item);
1526 	btrfs_release_delayed_item(item);
1527 	mutex_unlock(&node->mutex);
1528 	return 0;
1529 }
1530 
1531 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1532 				   struct btrfs_root *root, struct inode *dir,
1533 				   u64 index)
1534 {
1535 	struct btrfs_delayed_node *node;
1536 	struct btrfs_delayed_item *item;
1537 	struct btrfs_key item_key;
1538 	int ret;
1539 
1540 	node = btrfs_get_or_create_delayed_node(dir);
1541 	if (IS_ERR(node))
1542 		return PTR_ERR(node);
1543 
1544 	item_key.objectid = btrfs_ino(dir);
1545 	item_key.type = BTRFS_DIR_INDEX_KEY;
1546 	item_key.offset = index;
1547 
1548 	ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1549 	if (!ret)
1550 		goto end;
1551 
1552 	item = btrfs_alloc_delayed_item(0);
1553 	if (!item) {
1554 		ret = -ENOMEM;
1555 		goto end;
1556 	}
1557 
1558 	item->key = item_key;
1559 
1560 	ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1561 	/*
1562 	 * we have reserved enough space when we start a new transaction,
1563 	 * so reserving metadata failure is impossible.
1564 	 */
1565 	BUG_ON(ret);
1566 
1567 	mutex_lock(&node->mutex);
1568 	ret = __btrfs_add_delayed_deletion_item(node, item);
1569 	if (unlikely(ret)) {
1570 		btrfs_err(root->fs_info, "err add delayed dir index item(index: %llu) "
1571 				"into the deletion tree of the delayed node"
1572 				"(root id: %llu, inode id: %llu, errno: %d)",
1573 				index, node->root->objectid, node->inode_id,
1574 				ret);
1575 		BUG();
1576 	}
1577 	mutex_unlock(&node->mutex);
1578 end:
1579 	btrfs_release_delayed_node(node);
1580 	return ret;
1581 }
1582 
1583 int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1584 {
1585 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1586 
1587 	if (!delayed_node)
1588 		return -ENOENT;
1589 
1590 	/*
1591 	 * Since we have held i_mutex of this directory, it is impossible that
1592 	 * a new directory index is added into the delayed node and index_cnt
1593 	 * is updated now. So we needn't lock the delayed node.
1594 	 */
1595 	if (!delayed_node->index_cnt) {
1596 		btrfs_release_delayed_node(delayed_node);
1597 		return -EINVAL;
1598 	}
1599 
1600 	BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1601 	btrfs_release_delayed_node(delayed_node);
1602 	return 0;
1603 }
1604 
1605 void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1606 			     struct list_head *del_list)
1607 {
1608 	struct btrfs_delayed_node *delayed_node;
1609 	struct btrfs_delayed_item *item;
1610 
1611 	delayed_node = btrfs_get_delayed_node(inode);
1612 	if (!delayed_node)
1613 		return;
1614 
1615 	mutex_lock(&delayed_node->mutex);
1616 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1617 	while (item) {
1618 		atomic_inc(&item->refs);
1619 		list_add_tail(&item->readdir_list, ins_list);
1620 		item = __btrfs_next_delayed_item(item);
1621 	}
1622 
1623 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1624 	while (item) {
1625 		atomic_inc(&item->refs);
1626 		list_add_tail(&item->readdir_list, del_list);
1627 		item = __btrfs_next_delayed_item(item);
1628 	}
1629 	mutex_unlock(&delayed_node->mutex);
1630 	/*
1631 	 * This delayed node is still cached in the btrfs inode, so refs
1632 	 * must be > 1 now, and we needn't check it is going to be freed
1633 	 * or not.
1634 	 *
1635 	 * Besides that, this function is used to read dir, we do not
1636 	 * insert/delete delayed items in this period. So we also needn't
1637 	 * requeue or dequeue this delayed node.
1638 	 */
1639 	atomic_dec(&delayed_node->refs);
1640 }
1641 
1642 void btrfs_put_delayed_items(struct list_head *ins_list,
1643 			     struct list_head *del_list)
1644 {
1645 	struct btrfs_delayed_item *curr, *next;
1646 
1647 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1648 		list_del(&curr->readdir_list);
1649 		if (atomic_dec_and_test(&curr->refs))
1650 			kfree(curr);
1651 	}
1652 
1653 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1654 		list_del(&curr->readdir_list);
1655 		if (atomic_dec_and_test(&curr->refs))
1656 			kfree(curr);
1657 	}
1658 }
1659 
1660 int btrfs_should_delete_dir_index(struct list_head *del_list,
1661 				  u64 index)
1662 {
1663 	struct btrfs_delayed_item *curr, *next;
1664 	int ret;
1665 
1666 	if (list_empty(del_list))
1667 		return 0;
1668 
1669 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1670 		if (curr->key.offset > index)
1671 			break;
1672 
1673 		list_del(&curr->readdir_list);
1674 		ret = (curr->key.offset == index);
1675 
1676 		if (atomic_dec_and_test(&curr->refs))
1677 			kfree(curr);
1678 
1679 		if (ret)
1680 			return 1;
1681 		else
1682 			continue;
1683 	}
1684 	return 0;
1685 }
1686 
1687 /*
1688  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1689  *
1690  */
1691 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1692 				    struct list_head *ins_list)
1693 {
1694 	struct btrfs_dir_item *di;
1695 	struct btrfs_delayed_item *curr, *next;
1696 	struct btrfs_key location;
1697 	char *name;
1698 	int name_len;
1699 	int over = 0;
1700 	unsigned char d_type;
1701 
1702 	if (list_empty(ins_list))
1703 		return 0;
1704 
1705 	/*
1706 	 * Changing the data of the delayed item is impossible. So
1707 	 * we needn't lock them. And we have held i_mutex of the
1708 	 * directory, nobody can delete any directory indexes now.
1709 	 */
1710 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1711 		list_del(&curr->readdir_list);
1712 
1713 		if (curr->key.offset < ctx->pos) {
1714 			if (atomic_dec_and_test(&curr->refs))
1715 				kfree(curr);
1716 			continue;
1717 		}
1718 
1719 		ctx->pos = curr->key.offset;
1720 
1721 		di = (struct btrfs_dir_item *)curr->data;
1722 		name = (char *)(di + 1);
1723 		name_len = btrfs_stack_dir_name_len(di);
1724 
1725 		d_type = btrfs_filetype_table[di->type];
1726 		btrfs_disk_key_to_cpu(&location, &di->location);
1727 
1728 		over = !dir_emit(ctx, name, name_len,
1729 			       location.objectid, d_type);
1730 
1731 		if (atomic_dec_and_test(&curr->refs))
1732 			kfree(curr);
1733 
1734 		if (over)
1735 			return 1;
1736 	}
1737 	return 0;
1738 }
1739 
1740 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1741 				  struct btrfs_inode_item *inode_item,
1742 				  struct inode *inode)
1743 {
1744 	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1745 	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1746 	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1747 	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1748 	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1749 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1750 	btrfs_set_stack_inode_generation(inode_item,
1751 					 BTRFS_I(inode)->generation);
1752 	btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1753 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1754 	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1755 	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1756 	btrfs_set_stack_inode_block_group(inode_item, 0);
1757 
1758 	btrfs_set_stack_timespec_sec(&inode_item->atime,
1759 				     inode->i_atime.tv_sec);
1760 	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1761 				      inode->i_atime.tv_nsec);
1762 
1763 	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1764 				     inode->i_mtime.tv_sec);
1765 	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1766 				      inode->i_mtime.tv_nsec);
1767 
1768 	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1769 				     inode->i_ctime.tv_sec);
1770 	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1771 				      inode->i_ctime.tv_nsec);
1772 
1773 	btrfs_set_stack_timespec_sec(&inode_item->otime,
1774 				     BTRFS_I(inode)->i_otime.tv_sec);
1775 	btrfs_set_stack_timespec_nsec(&inode_item->otime,
1776 				     BTRFS_I(inode)->i_otime.tv_nsec);
1777 }
1778 
1779 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1780 {
1781 	struct btrfs_delayed_node *delayed_node;
1782 	struct btrfs_inode_item *inode_item;
1783 
1784 	delayed_node = btrfs_get_delayed_node(inode);
1785 	if (!delayed_node)
1786 		return -ENOENT;
1787 
1788 	mutex_lock(&delayed_node->mutex);
1789 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1790 		mutex_unlock(&delayed_node->mutex);
1791 		btrfs_release_delayed_node(delayed_node);
1792 		return -ENOENT;
1793 	}
1794 
1795 	inode_item = &delayed_node->inode_item;
1796 
1797 	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1798 	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1799 	btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1800 	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1801 	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1802 	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1803 	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1804         BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1805 
1806 	inode->i_version = btrfs_stack_inode_sequence(inode_item);
1807 	inode->i_rdev = 0;
1808 	*rdev = btrfs_stack_inode_rdev(inode_item);
1809 	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1810 
1811 	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1812 	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1813 
1814 	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1815 	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1816 
1817 	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1818 	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1819 
1820 	BTRFS_I(inode)->i_otime.tv_sec =
1821 		btrfs_stack_timespec_sec(&inode_item->otime);
1822 	BTRFS_I(inode)->i_otime.tv_nsec =
1823 		btrfs_stack_timespec_nsec(&inode_item->otime);
1824 
1825 	inode->i_generation = BTRFS_I(inode)->generation;
1826 	BTRFS_I(inode)->index_cnt = (u64)-1;
1827 
1828 	mutex_unlock(&delayed_node->mutex);
1829 	btrfs_release_delayed_node(delayed_node);
1830 	return 0;
1831 }
1832 
1833 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1834 			       struct btrfs_root *root, struct inode *inode)
1835 {
1836 	struct btrfs_delayed_node *delayed_node;
1837 	int ret = 0;
1838 
1839 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1840 	if (IS_ERR(delayed_node))
1841 		return PTR_ERR(delayed_node);
1842 
1843 	mutex_lock(&delayed_node->mutex);
1844 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1845 		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1846 		goto release_node;
1847 	}
1848 
1849 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1850 						   delayed_node);
1851 	if (ret)
1852 		goto release_node;
1853 
1854 	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1855 	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1856 	delayed_node->count++;
1857 	atomic_inc(&root->fs_info->delayed_root->items);
1858 release_node:
1859 	mutex_unlock(&delayed_node->mutex);
1860 	btrfs_release_delayed_node(delayed_node);
1861 	return ret;
1862 }
1863 
1864 int btrfs_delayed_delete_inode_ref(struct inode *inode)
1865 {
1866 	struct btrfs_delayed_node *delayed_node;
1867 
1868 	/*
1869 	 * we don't do delayed inode updates during log recovery because it
1870 	 * leads to enospc problems.  This means we also can't do
1871 	 * delayed inode refs
1872 	 */
1873 	if (BTRFS_I(inode)->root->fs_info->log_root_recovering)
1874 		return -EAGAIN;
1875 
1876 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1877 	if (IS_ERR(delayed_node))
1878 		return PTR_ERR(delayed_node);
1879 
1880 	/*
1881 	 * We don't reserve space for inode ref deletion is because:
1882 	 * - We ONLY do async inode ref deletion for the inode who has only
1883 	 *   one link(i_nlink == 1), it means there is only one inode ref.
1884 	 *   And in most case, the inode ref and the inode item are in the
1885 	 *   same leaf, and we will deal with them at the same time.
1886 	 *   Since we are sure we will reserve the space for the inode item,
1887 	 *   it is unnecessary to reserve space for inode ref deletion.
1888 	 * - If the inode ref and the inode item are not in the same leaf,
1889 	 *   We also needn't worry about enospc problem, because we reserve
1890 	 *   much more space for the inode update than it needs.
1891 	 * - At the worst, we can steal some space from the global reservation.
1892 	 *   It is very rare.
1893 	 */
1894 	mutex_lock(&delayed_node->mutex);
1895 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1896 		goto release_node;
1897 
1898 	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1899 	delayed_node->count++;
1900 	atomic_inc(&BTRFS_I(inode)->root->fs_info->delayed_root->items);
1901 release_node:
1902 	mutex_unlock(&delayed_node->mutex);
1903 	btrfs_release_delayed_node(delayed_node);
1904 	return 0;
1905 }
1906 
1907 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1908 {
1909 	struct btrfs_root *root = delayed_node->root;
1910 	struct btrfs_delayed_item *curr_item, *prev_item;
1911 
1912 	mutex_lock(&delayed_node->mutex);
1913 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1914 	while (curr_item) {
1915 		btrfs_delayed_item_release_metadata(root, curr_item);
1916 		prev_item = curr_item;
1917 		curr_item = __btrfs_next_delayed_item(prev_item);
1918 		btrfs_release_delayed_item(prev_item);
1919 	}
1920 
1921 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1922 	while (curr_item) {
1923 		btrfs_delayed_item_release_metadata(root, curr_item);
1924 		prev_item = curr_item;
1925 		curr_item = __btrfs_next_delayed_item(prev_item);
1926 		btrfs_release_delayed_item(prev_item);
1927 	}
1928 
1929 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1930 		btrfs_release_delayed_iref(delayed_node);
1931 
1932 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1933 		btrfs_delayed_inode_release_metadata(root, delayed_node);
1934 		btrfs_release_delayed_inode(delayed_node);
1935 	}
1936 	mutex_unlock(&delayed_node->mutex);
1937 }
1938 
1939 void btrfs_kill_delayed_inode_items(struct inode *inode)
1940 {
1941 	struct btrfs_delayed_node *delayed_node;
1942 
1943 	delayed_node = btrfs_get_delayed_node(inode);
1944 	if (!delayed_node)
1945 		return;
1946 
1947 	__btrfs_kill_delayed_node(delayed_node);
1948 	btrfs_release_delayed_node(delayed_node);
1949 }
1950 
1951 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1952 {
1953 	u64 inode_id = 0;
1954 	struct btrfs_delayed_node *delayed_nodes[8];
1955 	int i, n;
1956 
1957 	while (1) {
1958 		spin_lock(&root->inode_lock);
1959 		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1960 					   (void **)delayed_nodes, inode_id,
1961 					   ARRAY_SIZE(delayed_nodes));
1962 		if (!n) {
1963 			spin_unlock(&root->inode_lock);
1964 			break;
1965 		}
1966 
1967 		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1968 
1969 		for (i = 0; i < n; i++)
1970 			atomic_inc(&delayed_nodes[i]->refs);
1971 		spin_unlock(&root->inode_lock);
1972 
1973 		for (i = 0; i < n; i++) {
1974 			__btrfs_kill_delayed_node(delayed_nodes[i]);
1975 			btrfs_release_delayed_node(delayed_nodes[i]);
1976 		}
1977 	}
1978 }
1979 
1980 void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
1981 {
1982 	struct btrfs_delayed_root *delayed_root;
1983 	struct btrfs_delayed_node *curr_node, *prev_node;
1984 
1985 	delayed_root = btrfs_get_delayed_root(root);
1986 
1987 	curr_node = btrfs_first_delayed_node(delayed_root);
1988 	while (curr_node) {
1989 		__btrfs_kill_delayed_node(curr_node);
1990 
1991 		prev_node = curr_node;
1992 		curr_node = btrfs_next_delayed_node(curr_node);
1993 		btrfs_release_delayed_node(prev_node);
1994 	}
1995 }
1996 
1997