1 /* 2 * Copyright (C) 2011 Fujitsu. All rights reserved. 3 * Written by Miao Xie <miaox@cn.fujitsu.com> 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public 7 * License v2 as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public 15 * License along with this program; if not, write to the 16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 17 * Boston, MA 021110-1307, USA. 18 */ 19 20 #include <linux/slab.h> 21 #include <linux/iversion.h> 22 #include "delayed-inode.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "ctree.h" 26 #include "qgroup.h" 27 28 #define BTRFS_DELAYED_WRITEBACK 512 29 #define BTRFS_DELAYED_BACKGROUND 128 30 #define BTRFS_DELAYED_BATCH 16 31 32 static struct kmem_cache *delayed_node_cache; 33 34 int __init btrfs_delayed_inode_init(void) 35 { 36 delayed_node_cache = kmem_cache_create("btrfs_delayed_node", 37 sizeof(struct btrfs_delayed_node), 38 0, 39 SLAB_MEM_SPREAD, 40 NULL); 41 if (!delayed_node_cache) 42 return -ENOMEM; 43 return 0; 44 } 45 46 void __cold btrfs_delayed_inode_exit(void) 47 { 48 kmem_cache_destroy(delayed_node_cache); 49 } 50 51 static inline void btrfs_init_delayed_node( 52 struct btrfs_delayed_node *delayed_node, 53 struct btrfs_root *root, u64 inode_id) 54 { 55 delayed_node->root = root; 56 delayed_node->inode_id = inode_id; 57 refcount_set(&delayed_node->refs, 0); 58 delayed_node->ins_root = RB_ROOT; 59 delayed_node->del_root = RB_ROOT; 60 mutex_init(&delayed_node->mutex); 61 INIT_LIST_HEAD(&delayed_node->n_list); 62 INIT_LIST_HEAD(&delayed_node->p_list); 63 } 64 65 static inline int btrfs_is_continuous_delayed_item( 66 struct btrfs_delayed_item *item1, 67 struct btrfs_delayed_item *item2) 68 { 69 if (item1->key.type == BTRFS_DIR_INDEX_KEY && 70 item1->key.objectid == item2->key.objectid && 71 item1->key.type == item2->key.type && 72 item1->key.offset + 1 == item2->key.offset) 73 return 1; 74 return 0; 75 } 76 77 static struct btrfs_delayed_node *btrfs_get_delayed_node( 78 struct btrfs_inode *btrfs_inode) 79 { 80 struct btrfs_root *root = btrfs_inode->root; 81 u64 ino = btrfs_ino(btrfs_inode); 82 struct btrfs_delayed_node *node; 83 84 node = READ_ONCE(btrfs_inode->delayed_node); 85 if (node) { 86 refcount_inc(&node->refs); 87 return node; 88 } 89 90 spin_lock(&root->inode_lock); 91 node = radix_tree_lookup(&root->delayed_nodes_tree, ino); 92 93 if (node) { 94 if (btrfs_inode->delayed_node) { 95 refcount_inc(&node->refs); /* can be accessed */ 96 BUG_ON(btrfs_inode->delayed_node != node); 97 spin_unlock(&root->inode_lock); 98 return node; 99 } 100 101 /* 102 * It's possible that we're racing into the middle of removing 103 * this node from the radix tree. In this case, the refcount 104 * was zero and it should never go back to one. Just return 105 * NULL like it was never in the radix at all; our release 106 * function is in the process of removing it. 107 * 108 * Some implementations of refcount_inc refuse to bump the 109 * refcount once it has hit zero. If we don't do this dance 110 * here, refcount_inc() may decide to just WARN_ONCE() instead 111 * of actually bumping the refcount. 112 * 113 * If this node is properly in the radix, we want to bump the 114 * refcount twice, once for the inode and once for this get 115 * operation. 116 */ 117 if (refcount_inc_not_zero(&node->refs)) { 118 refcount_inc(&node->refs); 119 btrfs_inode->delayed_node = node; 120 } else { 121 node = NULL; 122 } 123 124 spin_unlock(&root->inode_lock); 125 return node; 126 } 127 spin_unlock(&root->inode_lock); 128 129 return NULL; 130 } 131 132 /* Will return either the node or PTR_ERR(-ENOMEM) */ 133 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( 134 struct btrfs_inode *btrfs_inode) 135 { 136 struct btrfs_delayed_node *node; 137 struct btrfs_root *root = btrfs_inode->root; 138 u64 ino = btrfs_ino(btrfs_inode); 139 int ret; 140 141 again: 142 node = btrfs_get_delayed_node(btrfs_inode); 143 if (node) 144 return node; 145 146 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); 147 if (!node) 148 return ERR_PTR(-ENOMEM); 149 btrfs_init_delayed_node(node, root, ino); 150 151 /* cached in the btrfs inode and can be accessed */ 152 refcount_set(&node->refs, 2); 153 154 ret = radix_tree_preload(GFP_NOFS); 155 if (ret) { 156 kmem_cache_free(delayed_node_cache, node); 157 return ERR_PTR(ret); 158 } 159 160 spin_lock(&root->inode_lock); 161 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node); 162 if (ret == -EEXIST) { 163 spin_unlock(&root->inode_lock); 164 kmem_cache_free(delayed_node_cache, node); 165 radix_tree_preload_end(); 166 goto again; 167 } 168 btrfs_inode->delayed_node = node; 169 spin_unlock(&root->inode_lock); 170 radix_tree_preload_end(); 171 172 return node; 173 } 174 175 /* 176 * Call it when holding delayed_node->mutex 177 * 178 * If mod = 1, add this node into the prepared list. 179 */ 180 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, 181 struct btrfs_delayed_node *node, 182 int mod) 183 { 184 spin_lock(&root->lock); 185 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 186 if (!list_empty(&node->p_list)) 187 list_move_tail(&node->p_list, &root->prepare_list); 188 else if (mod) 189 list_add_tail(&node->p_list, &root->prepare_list); 190 } else { 191 list_add_tail(&node->n_list, &root->node_list); 192 list_add_tail(&node->p_list, &root->prepare_list); 193 refcount_inc(&node->refs); /* inserted into list */ 194 root->nodes++; 195 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 196 } 197 spin_unlock(&root->lock); 198 } 199 200 /* Call it when holding delayed_node->mutex */ 201 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, 202 struct btrfs_delayed_node *node) 203 { 204 spin_lock(&root->lock); 205 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 206 root->nodes--; 207 refcount_dec(&node->refs); /* not in the list */ 208 list_del_init(&node->n_list); 209 if (!list_empty(&node->p_list)) 210 list_del_init(&node->p_list); 211 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 212 } 213 spin_unlock(&root->lock); 214 } 215 216 static struct btrfs_delayed_node *btrfs_first_delayed_node( 217 struct btrfs_delayed_root *delayed_root) 218 { 219 struct list_head *p; 220 struct btrfs_delayed_node *node = NULL; 221 222 spin_lock(&delayed_root->lock); 223 if (list_empty(&delayed_root->node_list)) 224 goto out; 225 226 p = delayed_root->node_list.next; 227 node = list_entry(p, struct btrfs_delayed_node, n_list); 228 refcount_inc(&node->refs); 229 out: 230 spin_unlock(&delayed_root->lock); 231 232 return node; 233 } 234 235 static struct btrfs_delayed_node *btrfs_next_delayed_node( 236 struct btrfs_delayed_node *node) 237 { 238 struct btrfs_delayed_root *delayed_root; 239 struct list_head *p; 240 struct btrfs_delayed_node *next = NULL; 241 242 delayed_root = node->root->fs_info->delayed_root; 243 spin_lock(&delayed_root->lock); 244 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 245 /* not in the list */ 246 if (list_empty(&delayed_root->node_list)) 247 goto out; 248 p = delayed_root->node_list.next; 249 } else if (list_is_last(&node->n_list, &delayed_root->node_list)) 250 goto out; 251 else 252 p = node->n_list.next; 253 254 next = list_entry(p, struct btrfs_delayed_node, n_list); 255 refcount_inc(&next->refs); 256 out: 257 spin_unlock(&delayed_root->lock); 258 259 return next; 260 } 261 262 static void __btrfs_release_delayed_node( 263 struct btrfs_delayed_node *delayed_node, 264 int mod) 265 { 266 struct btrfs_delayed_root *delayed_root; 267 268 if (!delayed_node) 269 return; 270 271 delayed_root = delayed_node->root->fs_info->delayed_root; 272 273 mutex_lock(&delayed_node->mutex); 274 if (delayed_node->count) 275 btrfs_queue_delayed_node(delayed_root, delayed_node, mod); 276 else 277 btrfs_dequeue_delayed_node(delayed_root, delayed_node); 278 mutex_unlock(&delayed_node->mutex); 279 280 if (refcount_dec_and_test(&delayed_node->refs)) { 281 struct btrfs_root *root = delayed_node->root; 282 283 spin_lock(&root->inode_lock); 284 /* 285 * Once our refcount goes to zero, nobody is allowed to bump it 286 * back up. We can delete it now. 287 */ 288 ASSERT(refcount_read(&delayed_node->refs) == 0); 289 radix_tree_delete(&root->delayed_nodes_tree, 290 delayed_node->inode_id); 291 spin_unlock(&root->inode_lock); 292 kmem_cache_free(delayed_node_cache, delayed_node); 293 } 294 } 295 296 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) 297 { 298 __btrfs_release_delayed_node(node, 0); 299 } 300 301 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( 302 struct btrfs_delayed_root *delayed_root) 303 { 304 struct list_head *p; 305 struct btrfs_delayed_node *node = NULL; 306 307 spin_lock(&delayed_root->lock); 308 if (list_empty(&delayed_root->prepare_list)) 309 goto out; 310 311 p = delayed_root->prepare_list.next; 312 list_del_init(p); 313 node = list_entry(p, struct btrfs_delayed_node, p_list); 314 refcount_inc(&node->refs); 315 out: 316 spin_unlock(&delayed_root->lock); 317 318 return node; 319 } 320 321 static inline void btrfs_release_prepared_delayed_node( 322 struct btrfs_delayed_node *node) 323 { 324 __btrfs_release_delayed_node(node, 1); 325 } 326 327 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len) 328 { 329 struct btrfs_delayed_item *item; 330 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS); 331 if (item) { 332 item->data_len = data_len; 333 item->ins_or_del = 0; 334 item->bytes_reserved = 0; 335 item->delayed_node = NULL; 336 refcount_set(&item->refs, 1); 337 } 338 return item; 339 } 340 341 /* 342 * __btrfs_lookup_delayed_item - look up the delayed item by key 343 * @delayed_node: pointer to the delayed node 344 * @key: the key to look up 345 * @prev: used to store the prev item if the right item isn't found 346 * @next: used to store the next item if the right item isn't found 347 * 348 * Note: if we don't find the right item, we will return the prev item and 349 * the next item. 350 */ 351 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( 352 struct rb_root *root, 353 struct btrfs_key *key, 354 struct btrfs_delayed_item **prev, 355 struct btrfs_delayed_item **next) 356 { 357 struct rb_node *node, *prev_node = NULL; 358 struct btrfs_delayed_item *delayed_item = NULL; 359 int ret = 0; 360 361 node = root->rb_node; 362 363 while (node) { 364 delayed_item = rb_entry(node, struct btrfs_delayed_item, 365 rb_node); 366 prev_node = node; 367 ret = btrfs_comp_cpu_keys(&delayed_item->key, key); 368 if (ret < 0) 369 node = node->rb_right; 370 else if (ret > 0) 371 node = node->rb_left; 372 else 373 return delayed_item; 374 } 375 376 if (prev) { 377 if (!prev_node) 378 *prev = NULL; 379 else if (ret < 0) 380 *prev = delayed_item; 381 else if ((node = rb_prev(prev_node)) != NULL) { 382 *prev = rb_entry(node, struct btrfs_delayed_item, 383 rb_node); 384 } else 385 *prev = NULL; 386 } 387 388 if (next) { 389 if (!prev_node) 390 *next = NULL; 391 else if (ret > 0) 392 *next = delayed_item; 393 else if ((node = rb_next(prev_node)) != NULL) { 394 *next = rb_entry(node, struct btrfs_delayed_item, 395 rb_node); 396 } else 397 *next = NULL; 398 } 399 return NULL; 400 } 401 402 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item( 403 struct btrfs_delayed_node *delayed_node, 404 struct btrfs_key *key) 405 { 406 return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key, 407 NULL, NULL); 408 } 409 410 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, 411 struct btrfs_delayed_item *ins, 412 int action) 413 { 414 struct rb_node **p, *node; 415 struct rb_node *parent_node = NULL; 416 struct rb_root *root; 417 struct btrfs_delayed_item *item; 418 int cmp; 419 420 if (action == BTRFS_DELAYED_INSERTION_ITEM) 421 root = &delayed_node->ins_root; 422 else if (action == BTRFS_DELAYED_DELETION_ITEM) 423 root = &delayed_node->del_root; 424 else 425 BUG(); 426 p = &root->rb_node; 427 node = &ins->rb_node; 428 429 while (*p) { 430 parent_node = *p; 431 item = rb_entry(parent_node, struct btrfs_delayed_item, 432 rb_node); 433 434 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key); 435 if (cmp < 0) 436 p = &(*p)->rb_right; 437 else if (cmp > 0) 438 p = &(*p)->rb_left; 439 else 440 return -EEXIST; 441 } 442 443 rb_link_node(node, parent_node, p); 444 rb_insert_color(node, root); 445 ins->delayed_node = delayed_node; 446 ins->ins_or_del = action; 447 448 if (ins->key.type == BTRFS_DIR_INDEX_KEY && 449 action == BTRFS_DELAYED_INSERTION_ITEM && 450 ins->key.offset >= delayed_node->index_cnt) 451 delayed_node->index_cnt = ins->key.offset + 1; 452 453 delayed_node->count++; 454 atomic_inc(&delayed_node->root->fs_info->delayed_root->items); 455 return 0; 456 } 457 458 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node, 459 struct btrfs_delayed_item *item) 460 { 461 return __btrfs_add_delayed_item(node, item, 462 BTRFS_DELAYED_INSERTION_ITEM); 463 } 464 465 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node, 466 struct btrfs_delayed_item *item) 467 { 468 return __btrfs_add_delayed_item(node, item, 469 BTRFS_DELAYED_DELETION_ITEM); 470 } 471 472 static void finish_one_item(struct btrfs_delayed_root *delayed_root) 473 { 474 int seq = atomic_inc_return(&delayed_root->items_seq); 475 476 /* 477 * atomic_dec_return implies a barrier for waitqueue_active 478 */ 479 if ((atomic_dec_return(&delayed_root->items) < 480 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) && 481 waitqueue_active(&delayed_root->wait)) 482 wake_up(&delayed_root->wait); 483 } 484 485 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) 486 { 487 struct rb_root *root; 488 struct btrfs_delayed_root *delayed_root; 489 490 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root; 491 492 BUG_ON(!delayed_root); 493 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM && 494 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM); 495 496 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM) 497 root = &delayed_item->delayed_node->ins_root; 498 else 499 root = &delayed_item->delayed_node->del_root; 500 501 rb_erase(&delayed_item->rb_node, root); 502 delayed_item->delayed_node->count--; 503 504 finish_one_item(delayed_root); 505 } 506 507 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) 508 { 509 if (item) { 510 __btrfs_remove_delayed_item(item); 511 if (refcount_dec_and_test(&item->refs)) 512 kfree(item); 513 } 514 } 515 516 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( 517 struct btrfs_delayed_node *delayed_node) 518 { 519 struct rb_node *p; 520 struct btrfs_delayed_item *item = NULL; 521 522 p = rb_first(&delayed_node->ins_root); 523 if (p) 524 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 525 526 return item; 527 } 528 529 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( 530 struct btrfs_delayed_node *delayed_node) 531 { 532 struct rb_node *p; 533 struct btrfs_delayed_item *item = NULL; 534 535 p = rb_first(&delayed_node->del_root); 536 if (p) 537 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 538 539 return item; 540 } 541 542 static struct btrfs_delayed_item *__btrfs_next_delayed_item( 543 struct btrfs_delayed_item *item) 544 { 545 struct rb_node *p; 546 struct btrfs_delayed_item *next = NULL; 547 548 p = rb_next(&item->rb_node); 549 if (p) 550 next = rb_entry(p, struct btrfs_delayed_item, rb_node); 551 552 return next; 553 } 554 555 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, 556 struct btrfs_root *root, 557 struct btrfs_delayed_item *item) 558 { 559 struct btrfs_block_rsv *src_rsv; 560 struct btrfs_block_rsv *dst_rsv; 561 struct btrfs_fs_info *fs_info = root->fs_info; 562 u64 num_bytes; 563 int ret; 564 565 if (!trans->bytes_reserved) 566 return 0; 567 568 src_rsv = trans->block_rsv; 569 dst_rsv = &fs_info->delayed_block_rsv; 570 571 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 572 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1); 573 if (!ret) { 574 trace_btrfs_space_reservation(fs_info, "delayed_item", 575 item->key.objectid, 576 num_bytes, 1); 577 item->bytes_reserved = num_bytes; 578 } 579 580 return ret; 581 } 582 583 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, 584 struct btrfs_delayed_item *item) 585 { 586 struct btrfs_block_rsv *rsv; 587 struct btrfs_fs_info *fs_info = root->fs_info; 588 589 if (!item->bytes_reserved) 590 return; 591 592 rsv = &fs_info->delayed_block_rsv; 593 btrfs_qgroup_convert_reserved_meta(root, item->bytes_reserved); 594 trace_btrfs_space_reservation(fs_info, "delayed_item", 595 item->key.objectid, item->bytes_reserved, 596 0); 597 btrfs_block_rsv_release(fs_info, rsv, 598 item->bytes_reserved); 599 } 600 601 static int btrfs_delayed_inode_reserve_metadata( 602 struct btrfs_trans_handle *trans, 603 struct btrfs_root *root, 604 struct btrfs_inode *inode, 605 struct btrfs_delayed_node *node) 606 { 607 struct btrfs_fs_info *fs_info = root->fs_info; 608 struct btrfs_block_rsv *src_rsv; 609 struct btrfs_block_rsv *dst_rsv; 610 u64 num_bytes; 611 int ret; 612 613 src_rsv = trans->block_rsv; 614 dst_rsv = &fs_info->delayed_block_rsv; 615 616 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 617 618 ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true); 619 if (ret < 0) 620 return ret; 621 /* 622 * btrfs_dirty_inode will update the inode under btrfs_join_transaction 623 * which doesn't reserve space for speed. This is a problem since we 624 * still need to reserve space for this update, so try to reserve the 625 * space. 626 * 627 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since 628 * we always reserve enough to update the inode item. 629 */ 630 if (!src_rsv || (!trans->bytes_reserved && 631 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { 632 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes, 633 BTRFS_RESERVE_NO_FLUSH); 634 /* 635 * Since we're under a transaction reserve_metadata_bytes could 636 * try to commit the transaction which will make it return 637 * EAGAIN to make us stop the transaction we have, so return 638 * ENOSPC instead so that btrfs_dirty_inode knows what to do. 639 */ 640 if (ret == -EAGAIN) { 641 ret = -ENOSPC; 642 btrfs_qgroup_free_meta_prealloc(root, num_bytes); 643 } 644 if (!ret) { 645 node->bytes_reserved = num_bytes; 646 trace_btrfs_space_reservation(fs_info, 647 "delayed_inode", 648 btrfs_ino(inode), 649 num_bytes, 1); 650 } 651 return ret; 652 } 653 654 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1); 655 if (!ret) { 656 trace_btrfs_space_reservation(fs_info, "delayed_inode", 657 btrfs_ino(inode), num_bytes, 1); 658 node->bytes_reserved = num_bytes; 659 } 660 661 return ret; 662 } 663 664 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info, 665 struct btrfs_delayed_node *node, 666 bool qgroup_free) 667 { 668 struct btrfs_block_rsv *rsv; 669 670 if (!node->bytes_reserved) 671 return; 672 673 rsv = &fs_info->delayed_block_rsv; 674 trace_btrfs_space_reservation(fs_info, "delayed_inode", 675 node->inode_id, node->bytes_reserved, 0); 676 btrfs_block_rsv_release(fs_info, rsv, 677 node->bytes_reserved); 678 if (qgroup_free) 679 btrfs_qgroup_free_meta_prealloc(node->root, 680 node->bytes_reserved); 681 else 682 btrfs_qgroup_convert_reserved_meta(node->root, 683 node->bytes_reserved); 684 node->bytes_reserved = 0; 685 } 686 687 /* 688 * This helper will insert some continuous items into the same leaf according 689 * to the free space of the leaf. 690 */ 691 static int btrfs_batch_insert_items(struct btrfs_root *root, 692 struct btrfs_path *path, 693 struct btrfs_delayed_item *item) 694 { 695 struct btrfs_fs_info *fs_info = root->fs_info; 696 struct btrfs_delayed_item *curr, *next; 697 int free_space; 698 int total_data_size = 0, total_size = 0; 699 struct extent_buffer *leaf; 700 char *data_ptr; 701 struct btrfs_key *keys; 702 u32 *data_size; 703 struct list_head head; 704 int slot; 705 int nitems; 706 int i; 707 int ret = 0; 708 709 BUG_ON(!path->nodes[0]); 710 711 leaf = path->nodes[0]; 712 free_space = btrfs_leaf_free_space(fs_info, leaf); 713 INIT_LIST_HEAD(&head); 714 715 next = item; 716 nitems = 0; 717 718 /* 719 * count the number of the continuous items that we can insert in batch 720 */ 721 while (total_size + next->data_len + sizeof(struct btrfs_item) <= 722 free_space) { 723 total_data_size += next->data_len; 724 total_size += next->data_len + sizeof(struct btrfs_item); 725 list_add_tail(&next->tree_list, &head); 726 nitems++; 727 728 curr = next; 729 next = __btrfs_next_delayed_item(curr); 730 if (!next) 731 break; 732 733 if (!btrfs_is_continuous_delayed_item(curr, next)) 734 break; 735 } 736 737 if (!nitems) { 738 ret = 0; 739 goto out; 740 } 741 742 /* 743 * we need allocate some memory space, but it might cause the task 744 * to sleep, so we set all locked nodes in the path to blocking locks 745 * first. 746 */ 747 btrfs_set_path_blocking(path); 748 749 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS); 750 if (!keys) { 751 ret = -ENOMEM; 752 goto out; 753 } 754 755 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS); 756 if (!data_size) { 757 ret = -ENOMEM; 758 goto error; 759 } 760 761 /* get keys of all the delayed items */ 762 i = 0; 763 list_for_each_entry(next, &head, tree_list) { 764 keys[i] = next->key; 765 data_size[i] = next->data_len; 766 i++; 767 } 768 769 /* reset all the locked nodes in the patch to spinning locks. */ 770 btrfs_clear_path_blocking(path, NULL, 0); 771 772 /* insert the keys of the items */ 773 setup_items_for_insert(root, path, keys, data_size, 774 total_data_size, total_size, nitems); 775 776 /* insert the dir index items */ 777 slot = path->slots[0]; 778 list_for_each_entry_safe(curr, next, &head, tree_list) { 779 data_ptr = btrfs_item_ptr(leaf, slot, char); 780 write_extent_buffer(leaf, &curr->data, 781 (unsigned long)data_ptr, 782 curr->data_len); 783 slot++; 784 785 btrfs_delayed_item_release_metadata(root, curr); 786 787 list_del(&curr->tree_list); 788 btrfs_release_delayed_item(curr); 789 } 790 791 error: 792 kfree(data_size); 793 kfree(keys); 794 out: 795 return ret; 796 } 797 798 /* 799 * This helper can just do simple insertion that needn't extend item for new 800 * data, such as directory name index insertion, inode insertion. 801 */ 802 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, 803 struct btrfs_root *root, 804 struct btrfs_path *path, 805 struct btrfs_delayed_item *delayed_item) 806 { 807 struct extent_buffer *leaf; 808 char *ptr; 809 int ret; 810 811 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key, 812 delayed_item->data_len); 813 if (ret < 0 && ret != -EEXIST) 814 return ret; 815 816 leaf = path->nodes[0]; 817 818 ptr = btrfs_item_ptr(leaf, path->slots[0], char); 819 820 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr, 821 delayed_item->data_len); 822 btrfs_mark_buffer_dirty(leaf); 823 824 btrfs_delayed_item_release_metadata(root, delayed_item); 825 return 0; 826 } 827 828 /* 829 * we insert an item first, then if there are some continuous items, we try 830 * to insert those items into the same leaf. 831 */ 832 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, 833 struct btrfs_path *path, 834 struct btrfs_root *root, 835 struct btrfs_delayed_node *node) 836 { 837 struct btrfs_delayed_item *curr, *prev; 838 int ret = 0; 839 840 do_again: 841 mutex_lock(&node->mutex); 842 curr = __btrfs_first_delayed_insertion_item(node); 843 if (!curr) 844 goto insert_end; 845 846 ret = btrfs_insert_delayed_item(trans, root, path, curr); 847 if (ret < 0) { 848 btrfs_release_path(path); 849 goto insert_end; 850 } 851 852 prev = curr; 853 curr = __btrfs_next_delayed_item(prev); 854 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) { 855 /* insert the continuous items into the same leaf */ 856 path->slots[0]++; 857 btrfs_batch_insert_items(root, path, curr); 858 } 859 btrfs_release_delayed_item(prev); 860 btrfs_mark_buffer_dirty(path->nodes[0]); 861 862 btrfs_release_path(path); 863 mutex_unlock(&node->mutex); 864 goto do_again; 865 866 insert_end: 867 mutex_unlock(&node->mutex); 868 return ret; 869 } 870 871 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, 872 struct btrfs_root *root, 873 struct btrfs_path *path, 874 struct btrfs_delayed_item *item) 875 { 876 struct btrfs_delayed_item *curr, *next; 877 struct extent_buffer *leaf; 878 struct btrfs_key key; 879 struct list_head head; 880 int nitems, i, last_item; 881 int ret = 0; 882 883 BUG_ON(!path->nodes[0]); 884 885 leaf = path->nodes[0]; 886 887 i = path->slots[0]; 888 last_item = btrfs_header_nritems(leaf) - 1; 889 if (i > last_item) 890 return -ENOENT; /* FIXME: Is errno suitable? */ 891 892 next = item; 893 INIT_LIST_HEAD(&head); 894 btrfs_item_key_to_cpu(leaf, &key, i); 895 nitems = 0; 896 /* 897 * count the number of the dir index items that we can delete in batch 898 */ 899 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) { 900 list_add_tail(&next->tree_list, &head); 901 nitems++; 902 903 curr = next; 904 next = __btrfs_next_delayed_item(curr); 905 if (!next) 906 break; 907 908 if (!btrfs_is_continuous_delayed_item(curr, next)) 909 break; 910 911 i++; 912 if (i > last_item) 913 break; 914 btrfs_item_key_to_cpu(leaf, &key, i); 915 } 916 917 if (!nitems) 918 return 0; 919 920 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); 921 if (ret) 922 goto out; 923 924 list_for_each_entry_safe(curr, next, &head, tree_list) { 925 btrfs_delayed_item_release_metadata(root, curr); 926 list_del(&curr->tree_list); 927 btrfs_release_delayed_item(curr); 928 } 929 930 out: 931 return ret; 932 } 933 934 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, 935 struct btrfs_path *path, 936 struct btrfs_root *root, 937 struct btrfs_delayed_node *node) 938 { 939 struct btrfs_delayed_item *curr, *prev; 940 int ret = 0; 941 942 do_again: 943 mutex_lock(&node->mutex); 944 curr = __btrfs_first_delayed_deletion_item(node); 945 if (!curr) 946 goto delete_fail; 947 948 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1); 949 if (ret < 0) 950 goto delete_fail; 951 else if (ret > 0) { 952 /* 953 * can't find the item which the node points to, so this node 954 * is invalid, just drop it. 955 */ 956 prev = curr; 957 curr = __btrfs_next_delayed_item(prev); 958 btrfs_release_delayed_item(prev); 959 ret = 0; 960 btrfs_release_path(path); 961 if (curr) { 962 mutex_unlock(&node->mutex); 963 goto do_again; 964 } else 965 goto delete_fail; 966 } 967 968 btrfs_batch_delete_items(trans, root, path, curr); 969 btrfs_release_path(path); 970 mutex_unlock(&node->mutex); 971 goto do_again; 972 973 delete_fail: 974 btrfs_release_path(path); 975 mutex_unlock(&node->mutex); 976 return ret; 977 } 978 979 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) 980 { 981 struct btrfs_delayed_root *delayed_root; 982 983 if (delayed_node && 984 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 985 BUG_ON(!delayed_node->root); 986 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 987 delayed_node->count--; 988 989 delayed_root = delayed_node->root->fs_info->delayed_root; 990 finish_one_item(delayed_root); 991 } 992 } 993 994 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) 995 { 996 struct btrfs_delayed_root *delayed_root; 997 998 ASSERT(delayed_node->root); 999 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 1000 delayed_node->count--; 1001 1002 delayed_root = delayed_node->root->fs_info->delayed_root; 1003 finish_one_item(delayed_root); 1004 } 1005 1006 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1007 struct btrfs_root *root, 1008 struct btrfs_path *path, 1009 struct btrfs_delayed_node *node) 1010 { 1011 struct btrfs_fs_info *fs_info = root->fs_info; 1012 struct btrfs_key key; 1013 struct btrfs_inode_item *inode_item; 1014 struct extent_buffer *leaf; 1015 int mod; 1016 int ret; 1017 1018 key.objectid = node->inode_id; 1019 key.type = BTRFS_INODE_ITEM_KEY; 1020 key.offset = 0; 1021 1022 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1023 mod = -1; 1024 else 1025 mod = 1; 1026 1027 ret = btrfs_lookup_inode(trans, root, path, &key, mod); 1028 if (ret > 0) { 1029 btrfs_release_path(path); 1030 return -ENOENT; 1031 } else if (ret < 0) { 1032 return ret; 1033 } 1034 1035 leaf = path->nodes[0]; 1036 inode_item = btrfs_item_ptr(leaf, path->slots[0], 1037 struct btrfs_inode_item); 1038 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, 1039 sizeof(struct btrfs_inode_item)); 1040 btrfs_mark_buffer_dirty(leaf); 1041 1042 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1043 goto no_iref; 1044 1045 path->slots[0]++; 1046 if (path->slots[0] >= btrfs_header_nritems(leaf)) 1047 goto search; 1048 again: 1049 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1050 if (key.objectid != node->inode_id) 1051 goto out; 1052 1053 if (key.type != BTRFS_INODE_REF_KEY && 1054 key.type != BTRFS_INODE_EXTREF_KEY) 1055 goto out; 1056 1057 /* 1058 * Delayed iref deletion is for the inode who has only one link, 1059 * so there is only one iref. The case that several irefs are 1060 * in the same item doesn't exist. 1061 */ 1062 btrfs_del_item(trans, root, path); 1063 out: 1064 btrfs_release_delayed_iref(node); 1065 no_iref: 1066 btrfs_release_path(path); 1067 err_out: 1068 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0)); 1069 btrfs_release_delayed_inode(node); 1070 1071 return ret; 1072 1073 search: 1074 btrfs_release_path(path); 1075 1076 key.type = BTRFS_INODE_EXTREF_KEY; 1077 key.offset = -1; 1078 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1079 if (ret < 0) 1080 goto err_out; 1081 ASSERT(ret); 1082 1083 ret = 0; 1084 leaf = path->nodes[0]; 1085 path->slots[0]--; 1086 goto again; 1087 } 1088 1089 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1090 struct btrfs_root *root, 1091 struct btrfs_path *path, 1092 struct btrfs_delayed_node *node) 1093 { 1094 int ret; 1095 1096 mutex_lock(&node->mutex); 1097 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { 1098 mutex_unlock(&node->mutex); 1099 return 0; 1100 } 1101 1102 ret = __btrfs_update_delayed_inode(trans, root, path, node); 1103 mutex_unlock(&node->mutex); 1104 return ret; 1105 } 1106 1107 static inline int 1108 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1109 struct btrfs_path *path, 1110 struct btrfs_delayed_node *node) 1111 { 1112 int ret; 1113 1114 ret = btrfs_insert_delayed_items(trans, path, node->root, node); 1115 if (ret) 1116 return ret; 1117 1118 ret = btrfs_delete_delayed_items(trans, path, node->root, node); 1119 if (ret) 1120 return ret; 1121 1122 ret = btrfs_update_delayed_inode(trans, node->root, path, node); 1123 return ret; 1124 } 1125 1126 /* 1127 * Called when committing the transaction. 1128 * Returns 0 on success. 1129 * Returns < 0 on error and returns with an aborted transaction with any 1130 * outstanding delayed items cleaned up. 1131 */ 1132 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr) 1133 { 1134 struct btrfs_fs_info *fs_info = trans->fs_info; 1135 struct btrfs_delayed_root *delayed_root; 1136 struct btrfs_delayed_node *curr_node, *prev_node; 1137 struct btrfs_path *path; 1138 struct btrfs_block_rsv *block_rsv; 1139 int ret = 0; 1140 bool count = (nr > 0); 1141 1142 if (trans->aborted) 1143 return -EIO; 1144 1145 path = btrfs_alloc_path(); 1146 if (!path) 1147 return -ENOMEM; 1148 path->leave_spinning = 1; 1149 1150 block_rsv = trans->block_rsv; 1151 trans->block_rsv = &fs_info->delayed_block_rsv; 1152 1153 delayed_root = fs_info->delayed_root; 1154 1155 curr_node = btrfs_first_delayed_node(delayed_root); 1156 while (curr_node && (!count || (count && nr--))) { 1157 ret = __btrfs_commit_inode_delayed_items(trans, path, 1158 curr_node); 1159 if (ret) { 1160 btrfs_release_delayed_node(curr_node); 1161 curr_node = NULL; 1162 btrfs_abort_transaction(trans, ret); 1163 break; 1164 } 1165 1166 prev_node = curr_node; 1167 curr_node = btrfs_next_delayed_node(curr_node); 1168 btrfs_release_delayed_node(prev_node); 1169 } 1170 1171 if (curr_node) 1172 btrfs_release_delayed_node(curr_node); 1173 btrfs_free_path(path); 1174 trans->block_rsv = block_rsv; 1175 1176 return ret; 1177 } 1178 1179 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans) 1180 { 1181 return __btrfs_run_delayed_items(trans, -1); 1182 } 1183 1184 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr) 1185 { 1186 return __btrfs_run_delayed_items(trans, nr); 1187 } 1188 1189 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1190 struct btrfs_inode *inode) 1191 { 1192 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1193 struct btrfs_path *path; 1194 struct btrfs_block_rsv *block_rsv; 1195 int ret; 1196 1197 if (!delayed_node) 1198 return 0; 1199 1200 mutex_lock(&delayed_node->mutex); 1201 if (!delayed_node->count) { 1202 mutex_unlock(&delayed_node->mutex); 1203 btrfs_release_delayed_node(delayed_node); 1204 return 0; 1205 } 1206 mutex_unlock(&delayed_node->mutex); 1207 1208 path = btrfs_alloc_path(); 1209 if (!path) { 1210 btrfs_release_delayed_node(delayed_node); 1211 return -ENOMEM; 1212 } 1213 path->leave_spinning = 1; 1214 1215 block_rsv = trans->block_rsv; 1216 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; 1217 1218 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1219 1220 btrfs_release_delayed_node(delayed_node); 1221 btrfs_free_path(path); 1222 trans->block_rsv = block_rsv; 1223 1224 return ret; 1225 } 1226 1227 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode) 1228 { 1229 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1230 struct btrfs_trans_handle *trans; 1231 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1232 struct btrfs_path *path; 1233 struct btrfs_block_rsv *block_rsv; 1234 int ret; 1235 1236 if (!delayed_node) 1237 return 0; 1238 1239 mutex_lock(&delayed_node->mutex); 1240 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1241 mutex_unlock(&delayed_node->mutex); 1242 btrfs_release_delayed_node(delayed_node); 1243 return 0; 1244 } 1245 mutex_unlock(&delayed_node->mutex); 1246 1247 trans = btrfs_join_transaction(delayed_node->root); 1248 if (IS_ERR(trans)) { 1249 ret = PTR_ERR(trans); 1250 goto out; 1251 } 1252 1253 path = btrfs_alloc_path(); 1254 if (!path) { 1255 ret = -ENOMEM; 1256 goto trans_out; 1257 } 1258 path->leave_spinning = 1; 1259 1260 block_rsv = trans->block_rsv; 1261 trans->block_rsv = &fs_info->delayed_block_rsv; 1262 1263 mutex_lock(&delayed_node->mutex); 1264 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) 1265 ret = __btrfs_update_delayed_inode(trans, delayed_node->root, 1266 path, delayed_node); 1267 else 1268 ret = 0; 1269 mutex_unlock(&delayed_node->mutex); 1270 1271 btrfs_free_path(path); 1272 trans->block_rsv = block_rsv; 1273 trans_out: 1274 btrfs_end_transaction(trans); 1275 btrfs_btree_balance_dirty(fs_info); 1276 out: 1277 btrfs_release_delayed_node(delayed_node); 1278 1279 return ret; 1280 } 1281 1282 void btrfs_remove_delayed_node(struct btrfs_inode *inode) 1283 { 1284 struct btrfs_delayed_node *delayed_node; 1285 1286 delayed_node = READ_ONCE(inode->delayed_node); 1287 if (!delayed_node) 1288 return; 1289 1290 inode->delayed_node = NULL; 1291 btrfs_release_delayed_node(delayed_node); 1292 } 1293 1294 struct btrfs_async_delayed_work { 1295 struct btrfs_delayed_root *delayed_root; 1296 int nr; 1297 struct btrfs_work work; 1298 }; 1299 1300 static void btrfs_async_run_delayed_root(struct btrfs_work *work) 1301 { 1302 struct btrfs_async_delayed_work *async_work; 1303 struct btrfs_delayed_root *delayed_root; 1304 struct btrfs_trans_handle *trans; 1305 struct btrfs_path *path; 1306 struct btrfs_delayed_node *delayed_node = NULL; 1307 struct btrfs_root *root; 1308 struct btrfs_block_rsv *block_rsv; 1309 int total_done = 0; 1310 1311 async_work = container_of(work, struct btrfs_async_delayed_work, work); 1312 delayed_root = async_work->delayed_root; 1313 1314 path = btrfs_alloc_path(); 1315 if (!path) 1316 goto out; 1317 1318 do { 1319 if (atomic_read(&delayed_root->items) < 1320 BTRFS_DELAYED_BACKGROUND / 2) 1321 break; 1322 1323 delayed_node = btrfs_first_prepared_delayed_node(delayed_root); 1324 if (!delayed_node) 1325 break; 1326 1327 path->leave_spinning = 1; 1328 root = delayed_node->root; 1329 1330 trans = btrfs_join_transaction(root); 1331 if (IS_ERR(trans)) { 1332 btrfs_release_path(path); 1333 btrfs_release_prepared_delayed_node(delayed_node); 1334 total_done++; 1335 continue; 1336 } 1337 1338 block_rsv = trans->block_rsv; 1339 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1340 1341 __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1342 1343 trans->block_rsv = block_rsv; 1344 btrfs_end_transaction(trans); 1345 btrfs_btree_balance_dirty_nodelay(root->fs_info); 1346 1347 btrfs_release_path(path); 1348 btrfs_release_prepared_delayed_node(delayed_node); 1349 total_done++; 1350 1351 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) 1352 || total_done < async_work->nr); 1353 1354 btrfs_free_path(path); 1355 out: 1356 wake_up(&delayed_root->wait); 1357 kfree(async_work); 1358 } 1359 1360 1361 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, 1362 struct btrfs_fs_info *fs_info, int nr) 1363 { 1364 struct btrfs_async_delayed_work *async_work; 1365 1366 async_work = kmalloc(sizeof(*async_work), GFP_NOFS); 1367 if (!async_work) 1368 return -ENOMEM; 1369 1370 async_work->delayed_root = delayed_root; 1371 btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper, 1372 btrfs_async_run_delayed_root, NULL, NULL); 1373 async_work->nr = nr; 1374 1375 btrfs_queue_work(fs_info->delayed_workers, &async_work->work); 1376 return 0; 1377 } 1378 1379 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info) 1380 { 1381 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root)); 1382 } 1383 1384 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) 1385 { 1386 int val = atomic_read(&delayed_root->items_seq); 1387 1388 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) 1389 return 1; 1390 1391 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1392 return 1; 1393 1394 return 0; 1395 } 1396 1397 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info) 1398 { 1399 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root; 1400 1401 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) || 1402 btrfs_workqueue_normal_congested(fs_info->delayed_workers)) 1403 return; 1404 1405 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { 1406 int seq; 1407 int ret; 1408 1409 seq = atomic_read(&delayed_root->items_seq); 1410 1411 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); 1412 if (ret) 1413 return; 1414 1415 wait_event_interruptible(delayed_root->wait, 1416 could_end_wait(delayed_root, seq)); 1417 return; 1418 } 1419 1420 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); 1421 } 1422 1423 /* Will return 0 or -ENOMEM */ 1424 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, 1425 struct btrfs_fs_info *fs_info, 1426 const char *name, int name_len, 1427 struct btrfs_inode *dir, 1428 struct btrfs_disk_key *disk_key, u8 type, 1429 u64 index) 1430 { 1431 struct btrfs_delayed_node *delayed_node; 1432 struct btrfs_delayed_item *delayed_item; 1433 struct btrfs_dir_item *dir_item; 1434 int ret; 1435 1436 delayed_node = btrfs_get_or_create_delayed_node(dir); 1437 if (IS_ERR(delayed_node)) 1438 return PTR_ERR(delayed_node); 1439 1440 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len); 1441 if (!delayed_item) { 1442 ret = -ENOMEM; 1443 goto release_node; 1444 } 1445 1446 delayed_item->key.objectid = btrfs_ino(dir); 1447 delayed_item->key.type = BTRFS_DIR_INDEX_KEY; 1448 delayed_item->key.offset = index; 1449 1450 dir_item = (struct btrfs_dir_item *)delayed_item->data; 1451 dir_item->location = *disk_key; 1452 btrfs_set_stack_dir_transid(dir_item, trans->transid); 1453 btrfs_set_stack_dir_data_len(dir_item, 0); 1454 btrfs_set_stack_dir_name_len(dir_item, name_len); 1455 btrfs_set_stack_dir_type(dir_item, type); 1456 memcpy((char *)(dir_item + 1), name, name_len); 1457 1458 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item); 1459 /* 1460 * we have reserved enough space when we start a new transaction, 1461 * so reserving metadata failure is impossible 1462 */ 1463 BUG_ON(ret); 1464 1465 1466 mutex_lock(&delayed_node->mutex); 1467 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item); 1468 if (unlikely(ret)) { 1469 btrfs_err(fs_info, 1470 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1471 name_len, name, delayed_node->root->objectid, 1472 delayed_node->inode_id, ret); 1473 BUG(); 1474 } 1475 mutex_unlock(&delayed_node->mutex); 1476 1477 release_node: 1478 btrfs_release_delayed_node(delayed_node); 1479 return ret; 1480 } 1481 1482 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info, 1483 struct btrfs_delayed_node *node, 1484 struct btrfs_key *key) 1485 { 1486 struct btrfs_delayed_item *item; 1487 1488 mutex_lock(&node->mutex); 1489 item = __btrfs_lookup_delayed_insertion_item(node, key); 1490 if (!item) { 1491 mutex_unlock(&node->mutex); 1492 return 1; 1493 } 1494 1495 btrfs_delayed_item_release_metadata(node->root, item); 1496 btrfs_release_delayed_item(item); 1497 mutex_unlock(&node->mutex); 1498 return 0; 1499 } 1500 1501 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, 1502 struct btrfs_fs_info *fs_info, 1503 struct btrfs_inode *dir, u64 index) 1504 { 1505 struct btrfs_delayed_node *node; 1506 struct btrfs_delayed_item *item; 1507 struct btrfs_key item_key; 1508 int ret; 1509 1510 node = btrfs_get_or_create_delayed_node(dir); 1511 if (IS_ERR(node)) 1512 return PTR_ERR(node); 1513 1514 item_key.objectid = btrfs_ino(dir); 1515 item_key.type = BTRFS_DIR_INDEX_KEY; 1516 item_key.offset = index; 1517 1518 ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key); 1519 if (!ret) 1520 goto end; 1521 1522 item = btrfs_alloc_delayed_item(0); 1523 if (!item) { 1524 ret = -ENOMEM; 1525 goto end; 1526 } 1527 1528 item->key = item_key; 1529 1530 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item); 1531 /* 1532 * we have reserved enough space when we start a new transaction, 1533 * so reserving metadata failure is impossible. 1534 */ 1535 BUG_ON(ret); 1536 1537 mutex_lock(&node->mutex); 1538 ret = __btrfs_add_delayed_deletion_item(node, item); 1539 if (unlikely(ret)) { 1540 btrfs_err(fs_info, 1541 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1542 index, node->root->objectid, node->inode_id, ret); 1543 BUG(); 1544 } 1545 mutex_unlock(&node->mutex); 1546 end: 1547 btrfs_release_delayed_node(node); 1548 return ret; 1549 } 1550 1551 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode) 1552 { 1553 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1554 1555 if (!delayed_node) 1556 return -ENOENT; 1557 1558 /* 1559 * Since we have held i_mutex of this directory, it is impossible that 1560 * a new directory index is added into the delayed node and index_cnt 1561 * is updated now. So we needn't lock the delayed node. 1562 */ 1563 if (!delayed_node->index_cnt) { 1564 btrfs_release_delayed_node(delayed_node); 1565 return -EINVAL; 1566 } 1567 1568 inode->index_cnt = delayed_node->index_cnt; 1569 btrfs_release_delayed_node(delayed_node); 1570 return 0; 1571 } 1572 1573 bool btrfs_readdir_get_delayed_items(struct inode *inode, 1574 struct list_head *ins_list, 1575 struct list_head *del_list) 1576 { 1577 struct btrfs_delayed_node *delayed_node; 1578 struct btrfs_delayed_item *item; 1579 1580 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1581 if (!delayed_node) 1582 return false; 1583 1584 /* 1585 * We can only do one readdir with delayed items at a time because of 1586 * item->readdir_list. 1587 */ 1588 inode_unlock_shared(inode); 1589 inode_lock(inode); 1590 1591 mutex_lock(&delayed_node->mutex); 1592 item = __btrfs_first_delayed_insertion_item(delayed_node); 1593 while (item) { 1594 refcount_inc(&item->refs); 1595 list_add_tail(&item->readdir_list, ins_list); 1596 item = __btrfs_next_delayed_item(item); 1597 } 1598 1599 item = __btrfs_first_delayed_deletion_item(delayed_node); 1600 while (item) { 1601 refcount_inc(&item->refs); 1602 list_add_tail(&item->readdir_list, del_list); 1603 item = __btrfs_next_delayed_item(item); 1604 } 1605 mutex_unlock(&delayed_node->mutex); 1606 /* 1607 * This delayed node is still cached in the btrfs inode, so refs 1608 * must be > 1 now, and we needn't check it is going to be freed 1609 * or not. 1610 * 1611 * Besides that, this function is used to read dir, we do not 1612 * insert/delete delayed items in this period. So we also needn't 1613 * requeue or dequeue this delayed node. 1614 */ 1615 refcount_dec(&delayed_node->refs); 1616 1617 return true; 1618 } 1619 1620 void btrfs_readdir_put_delayed_items(struct inode *inode, 1621 struct list_head *ins_list, 1622 struct list_head *del_list) 1623 { 1624 struct btrfs_delayed_item *curr, *next; 1625 1626 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1627 list_del(&curr->readdir_list); 1628 if (refcount_dec_and_test(&curr->refs)) 1629 kfree(curr); 1630 } 1631 1632 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1633 list_del(&curr->readdir_list); 1634 if (refcount_dec_and_test(&curr->refs)) 1635 kfree(curr); 1636 } 1637 1638 /* 1639 * The VFS is going to do up_read(), so we need to downgrade back to a 1640 * read lock. 1641 */ 1642 downgrade_write(&inode->i_rwsem); 1643 } 1644 1645 int btrfs_should_delete_dir_index(struct list_head *del_list, 1646 u64 index) 1647 { 1648 struct btrfs_delayed_item *curr; 1649 int ret = 0; 1650 1651 list_for_each_entry(curr, del_list, readdir_list) { 1652 if (curr->key.offset > index) 1653 break; 1654 if (curr->key.offset == index) { 1655 ret = 1; 1656 break; 1657 } 1658 } 1659 return ret; 1660 } 1661 1662 /* 1663 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree 1664 * 1665 */ 1666 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx, 1667 struct list_head *ins_list) 1668 { 1669 struct btrfs_dir_item *di; 1670 struct btrfs_delayed_item *curr, *next; 1671 struct btrfs_key location; 1672 char *name; 1673 int name_len; 1674 int over = 0; 1675 unsigned char d_type; 1676 1677 if (list_empty(ins_list)) 1678 return 0; 1679 1680 /* 1681 * Changing the data of the delayed item is impossible. So 1682 * we needn't lock them. And we have held i_mutex of the 1683 * directory, nobody can delete any directory indexes now. 1684 */ 1685 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1686 list_del(&curr->readdir_list); 1687 1688 if (curr->key.offset < ctx->pos) { 1689 if (refcount_dec_and_test(&curr->refs)) 1690 kfree(curr); 1691 continue; 1692 } 1693 1694 ctx->pos = curr->key.offset; 1695 1696 di = (struct btrfs_dir_item *)curr->data; 1697 name = (char *)(di + 1); 1698 name_len = btrfs_stack_dir_name_len(di); 1699 1700 d_type = btrfs_filetype_table[di->type]; 1701 btrfs_disk_key_to_cpu(&location, &di->location); 1702 1703 over = !dir_emit(ctx, name, name_len, 1704 location.objectid, d_type); 1705 1706 if (refcount_dec_and_test(&curr->refs)) 1707 kfree(curr); 1708 1709 if (over) 1710 return 1; 1711 ctx->pos++; 1712 } 1713 return 0; 1714 } 1715 1716 static void fill_stack_inode_item(struct btrfs_trans_handle *trans, 1717 struct btrfs_inode_item *inode_item, 1718 struct inode *inode) 1719 { 1720 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode)); 1721 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode)); 1722 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); 1723 btrfs_set_stack_inode_mode(inode_item, inode->i_mode); 1724 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); 1725 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); 1726 btrfs_set_stack_inode_generation(inode_item, 1727 BTRFS_I(inode)->generation); 1728 btrfs_set_stack_inode_sequence(inode_item, 1729 inode_peek_iversion(inode)); 1730 btrfs_set_stack_inode_transid(inode_item, trans->transid); 1731 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); 1732 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags); 1733 btrfs_set_stack_inode_block_group(inode_item, 0); 1734 1735 btrfs_set_stack_timespec_sec(&inode_item->atime, 1736 inode->i_atime.tv_sec); 1737 btrfs_set_stack_timespec_nsec(&inode_item->atime, 1738 inode->i_atime.tv_nsec); 1739 1740 btrfs_set_stack_timespec_sec(&inode_item->mtime, 1741 inode->i_mtime.tv_sec); 1742 btrfs_set_stack_timespec_nsec(&inode_item->mtime, 1743 inode->i_mtime.tv_nsec); 1744 1745 btrfs_set_stack_timespec_sec(&inode_item->ctime, 1746 inode->i_ctime.tv_sec); 1747 btrfs_set_stack_timespec_nsec(&inode_item->ctime, 1748 inode->i_ctime.tv_nsec); 1749 1750 btrfs_set_stack_timespec_sec(&inode_item->otime, 1751 BTRFS_I(inode)->i_otime.tv_sec); 1752 btrfs_set_stack_timespec_nsec(&inode_item->otime, 1753 BTRFS_I(inode)->i_otime.tv_nsec); 1754 } 1755 1756 int btrfs_fill_inode(struct inode *inode, u32 *rdev) 1757 { 1758 struct btrfs_delayed_node *delayed_node; 1759 struct btrfs_inode_item *inode_item; 1760 1761 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1762 if (!delayed_node) 1763 return -ENOENT; 1764 1765 mutex_lock(&delayed_node->mutex); 1766 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1767 mutex_unlock(&delayed_node->mutex); 1768 btrfs_release_delayed_node(delayed_node); 1769 return -ENOENT; 1770 } 1771 1772 inode_item = &delayed_node->inode_item; 1773 1774 i_uid_write(inode, btrfs_stack_inode_uid(inode_item)); 1775 i_gid_write(inode, btrfs_stack_inode_gid(inode_item)); 1776 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item)); 1777 inode->i_mode = btrfs_stack_inode_mode(inode_item); 1778 set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); 1779 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); 1780 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); 1781 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item); 1782 1783 inode_set_iversion_queried(inode, 1784 btrfs_stack_inode_sequence(inode_item)); 1785 inode->i_rdev = 0; 1786 *rdev = btrfs_stack_inode_rdev(inode_item); 1787 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item); 1788 1789 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime); 1790 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime); 1791 1792 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime); 1793 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime); 1794 1795 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime); 1796 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime); 1797 1798 BTRFS_I(inode)->i_otime.tv_sec = 1799 btrfs_stack_timespec_sec(&inode_item->otime); 1800 BTRFS_I(inode)->i_otime.tv_nsec = 1801 btrfs_stack_timespec_nsec(&inode_item->otime); 1802 1803 inode->i_generation = BTRFS_I(inode)->generation; 1804 BTRFS_I(inode)->index_cnt = (u64)-1; 1805 1806 mutex_unlock(&delayed_node->mutex); 1807 btrfs_release_delayed_node(delayed_node); 1808 return 0; 1809 } 1810 1811 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, 1812 struct btrfs_root *root, struct inode *inode) 1813 { 1814 struct btrfs_delayed_node *delayed_node; 1815 int ret = 0; 1816 1817 delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode)); 1818 if (IS_ERR(delayed_node)) 1819 return PTR_ERR(delayed_node); 1820 1821 mutex_lock(&delayed_node->mutex); 1822 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1823 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1824 goto release_node; 1825 } 1826 1827 ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode), 1828 delayed_node); 1829 if (ret) 1830 goto release_node; 1831 1832 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1833 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 1834 delayed_node->count++; 1835 atomic_inc(&root->fs_info->delayed_root->items); 1836 release_node: 1837 mutex_unlock(&delayed_node->mutex); 1838 btrfs_release_delayed_node(delayed_node); 1839 return ret; 1840 } 1841 1842 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode) 1843 { 1844 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1845 struct btrfs_delayed_node *delayed_node; 1846 1847 /* 1848 * we don't do delayed inode updates during log recovery because it 1849 * leads to enospc problems. This means we also can't do 1850 * delayed inode refs 1851 */ 1852 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1853 return -EAGAIN; 1854 1855 delayed_node = btrfs_get_or_create_delayed_node(inode); 1856 if (IS_ERR(delayed_node)) 1857 return PTR_ERR(delayed_node); 1858 1859 /* 1860 * We don't reserve space for inode ref deletion is because: 1861 * - We ONLY do async inode ref deletion for the inode who has only 1862 * one link(i_nlink == 1), it means there is only one inode ref. 1863 * And in most case, the inode ref and the inode item are in the 1864 * same leaf, and we will deal with them at the same time. 1865 * Since we are sure we will reserve the space for the inode item, 1866 * it is unnecessary to reserve space for inode ref deletion. 1867 * - If the inode ref and the inode item are not in the same leaf, 1868 * We also needn't worry about enospc problem, because we reserve 1869 * much more space for the inode update than it needs. 1870 * - At the worst, we can steal some space from the global reservation. 1871 * It is very rare. 1872 */ 1873 mutex_lock(&delayed_node->mutex); 1874 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1875 goto release_node; 1876 1877 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 1878 delayed_node->count++; 1879 atomic_inc(&fs_info->delayed_root->items); 1880 release_node: 1881 mutex_unlock(&delayed_node->mutex); 1882 btrfs_release_delayed_node(delayed_node); 1883 return 0; 1884 } 1885 1886 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) 1887 { 1888 struct btrfs_root *root = delayed_node->root; 1889 struct btrfs_fs_info *fs_info = root->fs_info; 1890 struct btrfs_delayed_item *curr_item, *prev_item; 1891 1892 mutex_lock(&delayed_node->mutex); 1893 curr_item = __btrfs_first_delayed_insertion_item(delayed_node); 1894 while (curr_item) { 1895 btrfs_delayed_item_release_metadata(root, curr_item); 1896 prev_item = curr_item; 1897 curr_item = __btrfs_next_delayed_item(prev_item); 1898 btrfs_release_delayed_item(prev_item); 1899 } 1900 1901 curr_item = __btrfs_first_delayed_deletion_item(delayed_node); 1902 while (curr_item) { 1903 btrfs_delayed_item_release_metadata(root, curr_item); 1904 prev_item = curr_item; 1905 curr_item = __btrfs_next_delayed_item(prev_item); 1906 btrfs_release_delayed_item(prev_item); 1907 } 1908 1909 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1910 btrfs_release_delayed_iref(delayed_node); 1911 1912 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1913 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false); 1914 btrfs_release_delayed_inode(delayed_node); 1915 } 1916 mutex_unlock(&delayed_node->mutex); 1917 } 1918 1919 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode) 1920 { 1921 struct btrfs_delayed_node *delayed_node; 1922 1923 delayed_node = btrfs_get_delayed_node(inode); 1924 if (!delayed_node) 1925 return; 1926 1927 __btrfs_kill_delayed_node(delayed_node); 1928 btrfs_release_delayed_node(delayed_node); 1929 } 1930 1931 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) 1932 { 1933 u64 inode_id = 0; 1934 struct btrfs_delayed_node *delayed_nodes[8]; 1935 int i, n; 1936 1937 while (1) { 1938 spin_lock(&root->inode_lock); 1939 n = radix_tree_gang_lookup(&root->delayed_nodes_tree, 1940 (void **)delayed_nodes, inode_id, 1941 ARRAY_SIZE(delayed_nodes)); 1942 if (!n) { 1943 spin_unlock(&root->inode_lock); 1944 break; 1945 } 1946 1947 inode_id = delayed_nodes[n - 1]->inode_id + 1; 1948 1949 for (i = 0; i < n; i++) 1950 refcount_inc(&delayed_nodes[i]->refs); 1951 spin_unlock(&root->inode_lock); 1952 1953 for (i = 0; i < n; i++) { 1954 __btrfs_kill_delayed_node(delayed_nodes[i]); 1955 btrfs_release_delayed_node(delayed_nodes[i]); 1956 } 1957 } 1958 } 1959 1960 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info) 1961 { 1962 struct btrfs_delayed_node *curr_node, *prev_node; 1963 1964 curr_node = btrfs_first_delayed_node(fs_info->delayed_root); 1965 while (curr_node) { 1966 __btrfs_kill_delayed_node(curr_node); 1967 1968 prev_node = curr_node; 1969 curr_node = btrfs_next_delayed_node(curr_node); 1970 btrfs_release_delayed_node(prev_node); 1971 } 1972 } 1973 1974